1 /* SPDX-License-Identifier: GPL-2.0-or-later
2  *
3  * Copyright (C) 2005 David Brownell
4  */
5 
6 #ifndef __LINUX_SPI_H
7 #define __LINUX_SPI_H
8 
9 #include <linux/acpi.h>
10 #include <linux/bits.h>
11 #include <linux/completion.h>
12 #include <linux/device.h>
13 #include <linux/gpio/consumer.h>
14 #include <linux/kthread.h>
15 #include <linux/mod_devicetable.h>
16 #include <linux/overflow.h>
17 #include <linux/scatterlist.h>
18 #include <linux/slab.h>
19 #include <linux/u64_stats_sync.h>
20 
21 #include <uapi/linux/spi/spi.h>
22 
23 /* Max no. of CS supported per spi device */
24 #define SPI_CS_CNT_MAX 16
25 
26 struct dma_chan;
27 struct software_node;
28 struct ptp_system_timestamp;
29 struct spi_controller;
30 struct spi_transfer;
31 struct spi_controller_mem_ops;
32 struct spi_controller_mem_caps;
33 struct spi_message;
34 
35 /*
36  * INTERFACES between SPI master-side drivers and SPI slave protocol handlers,
37  * and SPI infrastructure.
38  */
39 extern struct bus_type spi_bus_type;
40 
41 /**
42  * struct spi_statistics - statistics for spi transfers
43  * @syncp:         seqcount to protect members in this struct for per-cpu update
44  *                 on 32-bit systems
45  *
46  * @messages:      number of spi-messages handled
47  * @transfers:     number of spi_transfers handled
48  * @errors:        number of errors during spi_transfer
49  * @timedout:      number of timeouts during spi_transfer
50  *
51  * @spi_sync:      number of times spi_sync is used
52  * @spi_sync_immediate:
53  *                 number of times spi_sync is executed immediately
54  *                 in calling context without queuing and scheduling
55  * @spi_async:     number of times spi_async is used
56  *
57  * @bytes:         number of bytes transferred to/from device
58  * @bytes_tx:      number of bytes sent to device
59  * @bytes_rx:      number of bytes received from device
60  *
61  * @transfer_bytes_histo:
62  *                 transfer bytes histogram
63  *
64  * @transfers_split_maxsize:
65  *                 number of transfers that have been split because of
66  *                 maxsize limit
67  */
68 struct spi_statistics {
69 	struct u64_stats_sync	syncp;
70 
71 	u64_stats_t		messages;
72 	u64_stats_t		transfers;
73 	u64_stats_t		errors;
74 	u64_stats_t		timedout;
75 
76 	u64_stats_t		spi_sync;
77 	u64_stats_t		spi_sync_immediate;
78 	u64_stats_t		spi_async;
79 
80 	u64_stats_t		bytes;
81 	u64_stats_t		bytes_rx;
82 	u64_stats_t		bytes_tx;
83 
84 #define SPI_STATISTICS_HISTO_SIZE 17
85 	u64_stats_t	transfer_bytes_histo[SPI_STATISTICS_HISTO_SIZE];
86 
87 	u64_stats_t	transfers_split_maxsize;
88 };
89 
90 #define SPI_STATISTICS_ADD_TO_FIELD(pcpu_stats, field, count)		\
91 	do {								\
92 		struct spi_statistics *__lstats;			\
93 		get_cpu();						\
94 		__lstats = this_cpu_ptr(pcpu_stats);			\
95 		u64_stats_update_begin(&__lstats->syncp);		\
96 		u64_stats_add(&__lstats->field, count);			\
97 		u64_stats_update_end(&__lstats->syncp);			\
98 		put_cpu();						\
99 	} while (0)
100 
101 #define SPI_STATISTICS_INCREMENT_FIELD(pcpu_stats, field)		\
102 	do {								\
103 		struct spi_statistics *__lstats;			\
104 		get_cpu();						\
105 		__lstats = this_cpu_ptr(pcpu_stats);			\
106 		u64_stats_update_begin(&__lstats->syncp);		\
107 		u64_stats_inc(&__lstats->field);			\
108 		u64_stats_update_end(&__lstats->syncp);			\
109 		put_cpu();						\
110 	} while (0)
111 
112 /**
113  * struct spi_delay - SPI delay information
114  * @value: Value for the delay
115  * @unit: Unit for the delay
116  */
117 struct spi_delay {
118 #define SPI_DELAY_UNIT_USECS	0
119 #define SPI_DELAY_UNIT_NSECS	1
120 #define SPI_DELAY_UNIT_SCK	2
121 	u16	value;
122 	u8	unit;
123 };
124 
125 extern int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer);
126 extern int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer);
127 extern void spi_transfer_cs_change_delay_exec(struct spi_message *msg,
128 						  struct spi_transfer *xfer);
129 
130 /**
131  * struct spi_device - Controller side proxy for an SPI slave device
132  * @dev: Driver model representation of the device.
133  * @controller: SPI controller used with the device.
134  * @master: Copy of controller, for backwards compatibility.
135  * @max_speed_hz: Maximum clock rate to be used with this chip
136  *	(on this board); may be changed by the device's driver.
137  *	The spi_transfer.speed_hz can override this for each transfer.
138  * @chip_select: Array of physical chipselect, spi->chipselect[i] gives
139  *	the corresponding physical CS for logical CS i.
140  * @mode: The spi mode defines how data is clocked out and in.
141  *	This may be changed by the device's driver.
142  *	The "active low" default for chipselect mode can be overridden
143  *	(by specifying SPI_CS_HIGH) as can the "MSB first" default for
144  *	each word in a transfer (by specifying SPI_LSB_FIRST).
145  * @bits_per_word: Data transfers involve one or more words; word sizes
146  *	like eight or 12 bits are common.  In-memory wordsizes are
147  *	powers of two bytes (e.g. 20 bit samples use 32 bits).
148  *	This may be changed by the device's driver, or left at the
149  *	default (0) indicating protocol words are eight bit bytes.
150  *	The spi_transfer.bits_per_word can override this for each transfer.
151  * @rt: Make the pump thread real time priority.
152  * @irq: Negative, or the number passed to request_irq() to receive
153  *	interrupts from this device.
154  * @controller_state: Controller's runtime state
155  * @controller_data: Board-specific definitions for controller, such as
156  *	FIFO initialization parameters; from board_info.controller_data
157  * @modalias: Name of the driver to use with this device, or an alias
158  *	for that name.  This appears in the sysfs "modalias" attribute
159  *	for driver coldplugging, and in uevents used for hotplugging
160  * @driver_override: If the name of a driver is written to this attribute, then
161  *	the device will bind to the named driver and only the named driver.
162  *	Do not set directly, because core frees it; use driver_set_override() to
163  *	set or clear it.
164  * @cs_gpiod: Array of GPIO descriptors of the corresponding chipselect lines
165  *	(optional, NULL when not using a GPIO line)
166  * @word_delay: delay to be inserted between consecutive
167  *	words of a transfer
168  * @cs_setup: delay to be introduced by the controller after CS is asserted
169  * @cs_hold: delay to be introduced by the controller before CS is deasserted
170  * @cs_inactive: delay to be introduced by the controller after CS is
171  *	deasserted. If @cs_change_delay is used from @spi_transfer, then the
172  *	two delays will be added up.
173  * @pcpu_statistics: statistics for the spi_device
174  * @cs_index_mask: Bit mask of the active chipselect(s) in the chipselect array
175  *
176  * A @spi_device is used to interchange data between an SPI slave
177  * (usually a discrete chip) and CPU memory.
178  *
179  * In @dev, the platform_data is used to hold information about this
180  * device that's meaningful to the device's protocol driver, but not
181  * to its controller.  One example might be an identifier for a chip
182  * variant with slightly different functionality; another might be
183  * information about how this particular board wires the chip's pins.
184  */
185 struct spi_device {
186 	struct device		dev;
187 	struct spi_controller	*controller;
188 	struct spi_controller	*master;	/* Compatibility layer */
189 	u32			max_speed_hz;
190 	u8			chip_select[SPI_CS_CNT_MAX];
191 	u8			bits_per_word;
192 	bool			rt;
193 #define SPI_NO_TX		BIT(31)		/* No transmit wire */
194 #define SPI_NO_RX		BIT(30)		/* No receive wire */
195 	/*
196 	 * TPM specification defines flow control over SPI. Client device
197 	 * can insert a wait state on MISO when address is transmitted by
198 	 * controller on MOSI. Detecting the wait state in software is only
199 	 * possible for full duplex controllers. For controllers that support
200 	 * only half-duplex, the wait state detection needs to be implemented
201 	 * in hardware. TPM devices would set this flag when hardware flow
202 	 * control is expected from SPI controller.
203 	 */
204 #define SPI_TPM_HW_FLOW		BIT(29)		/* TPM HW flow control */
205 	/*
206 	 * All bits defined above should be covered by SPI_MODE_KERNEL_MASK.
207 	 * The SPI_MODE_KERNEL_MASK has the SPI_MODE_USER_MASK counterpart,
208 	 * which is defined in 'include/uapi/linux/spi/spi.h'.
209 	 * The bits defined here are from bit 31 downwards, while in
210 	 * SPI_MODE_USER_MASK are from 0 upwards.
211 	 * These bits must not overlap. A static assert check should make sure of that.
212 	 * If adding extra bits, make sure to decrease the bit index below as well.
213 	 */
214 #define SPI_MODE_KERNEL_MASK	(~(BIT(29) - 1))
215 	u32			mode;
216 	int			irq;
217 	void			*controller_state;
218 	void			*controller_data;
219 	char			modalias[SPI_NAME_SIZE];
220 	const char		*driver_override;
221 	struct gpio_desc	*cs_gpiod[SPI_CS_CNT_MAX];	/* Chip select gpio desc */
222 	struct spi_delay	word_delay; /* Inter-word delay */
223 	/* CS delays */
224 	struct spi_delay	cs_setup;
225 	struct spi_delay	cs_hold;
226 	struct spi_delay	cs_inactive;
227 
228 	/* The statistics */
229 	struct spi_statistics __percpu	*pcpu_statistics;
230 
231 	/* Bit mask of the chipselect(s) that the driver need to use from
232 	 * the chipselect array.When the controller is capable to handle
233 	 * multiple chip selects & memories are connected in parallel
234 	 * then more than one bit need to be set in cs_index_mask.
235 	 */
236 	u32			cs_index_mask : SPI_CS_CNT_MAX;
237 
238 	/*
239 	 * Likely need more hooks for more protocol options affecting how
240 	 * the controller talks to each chip, like:
241 	 *  - memory packing (12 bit samples into low bits, others zeroed)
242 	 *  - priority
243 	 *  - chipselect delays
244 	 *  - ...
245 	 */
246 };
247 
248 /* Make sure that SPI_MODE_KERNEL_MASK & SPI_MODE_USER_MASK don't overlap */
249 static_assert((SPI_MODE_KERNEL_MASK & SPI_MODE_USER_MASK) == 0,
250 	      "SPI_MODE_USER_MASK & SPI_MODE_KERNEL_MASK must not overlap");
251 
to_spi_device(const struct device * dev)252 static inline struct spi_device *to_spi_device(const struct device *dev)
253 {
254 	return dev ? container_of(dev, struct spi_device, dev) : NULL;
255 }
256 
257 /* Most drivers won't need to care about device refcounting */
spi_dev_get(struct spi_device * spi)258 static inline struct spi_device *spi_dev_get(struct spi_device *spi)
259 {
260 	return (spi && get_device(&spi->dev)) ? spi : NULL;
261 }
262 
spi_dev_put(struct spi_device * spi)263 static inline void spi_dev_put(struct spi_device *spi)
264 {
265 	if (spi)
266 		put_device(&spi->dev);
267 }
268 
269 /* ctldata is for the bus_controller driver's runtime state */
spi_get_ctldata(const struct spi_device * spi)270 static inline void *spi_get_ctldata(const struct spi_device *spi)
271 {
272 	return spi->controller_state;
273 }
274 
spi_set_ctldata(struct spi_device * spi,void * state)275 static inline void spi_set_ctldata(struct spi_device *spi, void *state)
276 {
277 	spi->controller_state = state;
278 }
279 
280 /* Device driver data */
281 
spi_set_drvdata(struct spi_device * spi,void * data)282 static inline void spi_set_drvdata(struct spi_device *spi, void *data)
283 {
284 	dev_set_drvdata(&spi->dev, data);
285 }
286 
spi_get_drvdata(const struct spi_device * spi)287 static inline void *spi_get_drvdata(const struct spi_device *spi)
288 {
289 	return dev_get_drvdata(&spi->dev);
290 }
291 
spi_get_chipselect(const struct spi_device * spi,u8 idx)292 static inline u8 spi_get_chipselect(const struct spi_device *spi, u8 idx)
293 {
294 	return spi->chip_select[idx];
295 }
296 
spi_set_chipselect(struct spi_device * spi,u8 idx,u8 chipselect)297 static inline void spi_set_chipselect(struct spi_device *spi, u8 idx, u8 chipselect)
298 {
299 	spi->chip_select[idx] = chipselect;
300 }
301 
spi_get_csgpiod(const struct spi_device * spi,u8 idx)302 static inline struct gpio_desc *spi_get_csgpiod(const struct spi_device *spi, u8 idx)
303 {
304 	return spi->cs_gpiod[idx];
305 }
306 
spi_set_csgpiod(struct spi_device * spi,u8 idx,struct gpio_desc * csgpiod)307 static inline void spi_set_csgpiod(struct spi_device *spi, u8 idx, struct gpio_desc *csgpiod)
308 {
309 	spi->cs_gpiod[idx] = csgpiod;
310 }
311 
spi_is_csgpiod(struct spi_device * spi)312 static inline bool spi_is_csgpiod(struct spi_device *spi)
313 {
314 	u8 idx;
315 
316 	for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
317 		if (spi_get_csgpiod(spi, idx))
318 			return true;
319 	}
320 	return false;
321 }
322 
323 /**
324  * struct spi_driver - Host side "protocol" driver
325  * @id_table: List of SPI devices supported by this driver
326  * @probe: Binds this driver to the SPI device.  Drivers can verify
327  *	that the device is actually present, and may need to configure
328  *	characteristics (such as bits_per_word) which weren't needed for
329  *	the initial configuration done during system setup.
330  * @remove: Unbinds this driver from the SPI device
331  * @shutdown: Standard shutdown callback used during system state
332  *	transitions such as powerdown/halt and kexec
333  * @driver: SPI device drivers should initialize the name and owner
334  *	field of this structure.
335  *
336  * This represents the kind of device driver that uses SPI messages to
337  * interact with the hardware at the other end of a SPI link.  It's called
338  * a "protocol" driver because it works through messages rather than talking
339  * directly to SPI hardware (which is what the underlying SPI controller
340  * driver does to pass those messages).  These protocols are defined in the
341  * specification for the device(s) supported by the driver.
342  *
343  * As a rule, those device protocols represent the lowest level interface
344  * supported by a driver, and it will support upper level interfaces too.
345  * Examples of such upper levels include frameworks like MTD, networking,
346  * MMC, RTC, filesystem character device nodes, and hardware monitoring.
347  */
348 struct spi_driver {
349 	const struct spi_device_id *id_table;
350 	int			(*probe)(struct spi_device *spi);
351 	void			(*remove)(struct spi_device *spi);
352 	void			(*shutdown)(struct spi_device *spi);
353 	struct device_driver	driver;
354 };
355 
to_spi_driver(struct device_driver * drv)356 static inline struct spi_driver *to_spi_driver(struct device_driver *drv)
357 {
358 	return drv ? container_of(drv, struct spi_driver, driver) : NULL;
359 }
360 
361 extern int __spi_register_driver(struct module *owner, struct spi_driver *sdrv);
362 
363 /**
364  * spi_unregister_driver - reverse effect of spi_register_driver
365  * @sdrv: the driver to unregister
366  * Context: can sleep
367  */
spi_unregister_driver(struct spi_driver * sdrv)368 static inline void spi_unregister_driver(struct spi_driver *sdrv)
369 {
370 	if (sdrv)
371 		driver_unregister(&sdrv->driver);
372 }
373 
374 extern struct spi_device *spi_new_ancillary_device(struct spi_device *spi, u8 chip_select);
375 
376 /* Use a define to avoid include chaining to get THIS_MODULE */
377 #define spi_register_driver(driver) \
378 	__spi_register_driver(THIS_MODULE, driver)
379 
380 /**
381  * module_spi_driver() - Helper macro for registering a SPI driver
382  * @__spi_driver: spi_driver struct
383  *
384  * Helper macro for SPI drivers which do not do anything special in module
385  * init/exit. This eliminates a lot of boilerplate. Each module may only
386  * use this macro once, and calling it replaces module_init() and module_exit()
387  */
388 #define module_spi_driver(__spi_driver) \
389 	module_driver(__spi_driver, spi_register_driver, \
390 			spi_unregister_driver)
391 
392 /**
393  * struct spi_controller - interface to SPI master or slave controller
394  * @dev: device interface to this driver
395  * @list: link with the global spi_controller list
396  * @bus_num: board-specific (and often SOC-specific) identifier for a
397  *	given SPI controller.
398  * @num_chipselect: chipselects are used to distinguish individual
399  *	SPI slaves, and are numbered from zero to num_chipselects.
400  *	each slave has a chipselect signal, but it's common that not
401  *	every chipselect is connected to a slave.
402  * @dma_alignment: SPI controller constraint on DMA buffers alignment.
403  * @mode_bits: flags understood by this controller driver
404  * @buswidth_override_bits: flags to override for this controller driver
405  * @bits_per_word_mask: A mask indicating which values of bits_per_word are
406  *	supported by the driver. Bit n indicates that a bits_per_word n+1 is
407  *	supported. If set, the SPI core will reject any transfer with an
408  *	unsupported bits_per_word. If not set, this value is simply ignored,
409  *	and it's up to the individual driver to perform any validation.
410  * @min_speed_hz: Lowest supported transfer speed
411  * @max_speed_hz: Highest supported transfer speed
412  * @flags: other constraints relevant to this driver
413  * @slave: indicates that this is an SPI slave controller
414  * @target: indicates that this is an SPI target controller
415  * @devm_allocated: whether the allocation of this struct is devres-managed
416  * @max_transfer_size: function that returns the max transfer size for
417  *	a &spi_device; may be %NULL, so the default %SIZE_MAX will be used.
418  * @max_message_size: function that returns the max message size for
419  *	a &spi_device; may be %NULL, so the default %SIZE_MAX will be used.
420  * @io_mutex: mutex for physical bus access
421  * @add_lock: mutex to avoid adding devices to the same chipselect
422  * @bus_lock_spinlock: spinlock for SPI bus locking
423  * @bus_lock_mutex: mutex for exclusion of multiple callers
424  * @bus_lock_flag: indicates that the SPI bus is locked for exclusive use
425  * @multi_cs_cap: indicates that the SPI Controller can assert/de-assert
426  *	more than one chip select at once.
427  * @setup: updates the device mode and clocking records used by a
428  *	device's SPI controller; protocol code may call this.  This
429  *	must fail if an unrecognized or unsupported mode is requested.
430  *	It's always safe to call this unless transfers are pending on
431  *	the device whose settings are being modified.
432  * @set_cs_timing: optional hook for SPI devices to request SPI master
433  * controller for configuring specific CS setup time, hold time and inactive
434  * delay interms of clock counts
435  * @transfer: adds a message to the controller's transfer queue.
436  * @cleanup: frees controller-specific state
437  * @can_dma: determine whether this controller supports DMA
438  * @dma_map_dev: device which can be used for DMA mapping
439  * @cur_rx_dma_dev: device which is currently used for RX DMA mapping
440  * @cur_tx_dma_dev: device which is currently used for TX DMA mapping
441  * @queued: whether this controller is providing an internal message queue
442  * @kworker: pointer to thread struct for message pump
443  * @pump_messages: work struct for scheduling work to the message pump
444  * @queue_lock: spinlock to synchronise access to message queue
445  * @queue: message queue
446  * @cur_msg: the currently in-flight message
447  * @cur_msg_completion: a completion for the current in-flight message
448  * @cur_msg_incomplete: Flag used internally to opportunistically skip
449  *	the @cur_msg_completion. This flag is used to check if the driver has
450  *	already called spi_finalize_current_message().
451  * @cur_msg_need_completion: Flag used internally to opportunistically skip
452  *	the @cur_msg_completion. This flag is used to signal the context that
453  *	is running spi_finalize_current_message() that it needs to complete()
454  * @cur_msg_mapped: message has been mapped for DMA
455  * @last_cs: the last chip_select that is recorded by set_cs, -1 on non chip
456  *           selected
457  * @last_cs_mode_high: was (mode & SPI_CS_HIGH) true on the last call to set_cs.
458  * @xfer_completion: used by core transfer_one_message()
459  * @busy: message pump is busy
460  * @running: message pump is running
461  * @rt: whether this queue is set to run as a realtime task
462  * @auto_runtime_pm: the core should ensure a runtime PM reference is held
463  *                   while the hardware is prepared, using the parent
464  *                   device for the spidev
465  * @max_dma_len: Maximum length of a DMA transfer for the device.
466  * @prepare_transfer_hardware: a message will soon arrive from the queue
467  *	so the subsystem requests the driver to prepare the transfer hardware
468  *	by issuing this call
469  * @transfer_one_message: the subsystem calls the driver to transfer a single
470  *	message while queuing transfers that arrive in the meantime. When the
471  *	driver is finished with this message, it must call
472  *	spi_finalize_current_message() so the subsystem can issue the next
473  *	message
474  * @unprepare_transfer_hardware: there are currently no more messages on the
475  *	queue so the subsystem notifies the driver that it may relax the
476  *	hardware by issuing this call
477  *
478  * @set_cs: set the logic level of the chip select line.  May be called
479  *          from interrupt context.
480  * @prepare_message: set up the controller to transfer a single message,
481  *                   for example doing DMA mapping.  Called from threaded
482  *                   context.
483  * @transfer_one: transfer a single spi_transfer.
484  *
485  *                  - return 0 if the transfer is finished,
486  *                  - return 1 if the transfer is still in progress. When
487  *                    the driver is finished with this transfer it must
488  *                    call spi_finalize_current_transfer() so the subsystem
489  *                    can issue the next transfer. If the transfer fails, the
490  *                    driver must set the flag SPI_TRANS_FAIL_IO to
491  *                    spi_transfer->error first, before calling
492  *                    spi_finalize_current_transfer().
493  *                    Note: transfer_one and transfer_one_message are mutually
494  *                    exclusive; when both are set, the generic subsystem does
495  *                    not call your transfer_one callback.
496  * @handle_err: the subsystem calls the driver to handle an error that occurs
497  *		in the generic implementation of transfer_one_message().
498  * @mem_ops: optimized/dedicated operations for interactions with SPI memory.
499  *	     This field is optional and should only be implemented if the
500  *	     controller has native support for memory like operations.
501  * @mem_caps: controller capabilities for the handling of memory operations.
502  * @unprepare_message: undo any work done by prepare_message().
503  * @slave_abort: abort the ongoing transfer request on an SPI slave controller
504  * @target_abort: abort the ongoing transfer request on an SPI target controller
505  * @cs_gpiods: Array of GPIO descriptors to use as chip select lines; one per CS
506  *	number. Any individual value may be NULL for CS lines that
507  *	are not GPIOs (driven by the SPI controller itself).
508  * @use_gpio_descriptors: Turns on the code in the SPI core to parse and grab
509  *	GPIO descriptors. This will fill in @cs_gpiods and SPI devices will have
510  *	the cs_gpiod assigned if a GPIO line is found for the chipselect.
511  * @unused_native_cs: When cs_gpiods is used, spi_register_controller() will
512  *	fill in this field with the first unused native CS, to be used by SPI
513  *	controller drivers that need to drive a native CS when using GPIO CS.
514  * @max_native_cs: When cs_gpiods is used, and this field is filled in,
515  *	spi_register_controller() will validate all native CS (including the
516  *	unused native CS) against this value.
517  * @pcpu_statistics: statistics for the spi_controller
518  * @dma_tx: DMA transmit channel
519  * @dma_rx: DMA receive channel
520  * @dummy_rx: dummy receive buffer for full-duplex devices
521  * @dummy_tx: dummy transmit buffer for full-duplex devices
522  * @fw_translate_cs: If the boot firmware uses different numbering scheme
523  *	what Linux expects, this optional hook can be used to translate
524  *	between the two.
525  * @ptp_sts_supported: If the driver sets this to true, it must provide a
526  *	time snapshot in @spi_transfer->ptp_sts as close as possible to the
527  *	moment in time when @spi_transfer->ptp_sts_word_pre and
528  *	@spi_transfer->ptp_sts_word_post were transmitted.
529  *	If the driver does not set this, the SPI core takes the snapshot as
530  *	close to the driver hand-over as possible.
531  * @irq_flags: Interrupt enable state during PTP system timestamping
532  * @fallback: fallback to PIO if DMA transfer return failure with
533  *	SPI_TRANS_FAIL_NO_START.
534  * @queue_empty: signal green light for opportunistically skipping the queue
535  *	for spi_sync transfers.
536  * @must_async: disable all fast paths in the core
537  *
538  * Each SPI controller can communicate with one or more @spi_device
539  * children.  These make a small bus, sharing MOSI, MISO and SCK signals
540  * but not chip select signals.  Each device may be configured to use a
541  * different clock rate, since those shared signals are ignored unless
542  * the chip is selected.
543  *
544  * The driver for an SPI controller manages access to those devices through
545  * a queue of spi_message transactions, copying data between CPU memory and
546  * an SPI slave device.  For each such message it queues, it calls the
547  * message's completion function when the transaction completes.
548  */
549 struct spi_controller {
550 	struct device	dev;
551 
552 	struct list_head list;
553 
554 	/*
555 	 * Other than negative (== assign one dynamically), bus_num is fully
556 	 * board-specific. Usually that simplifies to being SoC-specific.
557 	 * example: one SoC has three SPI controllers, numbered 0..2,
558 	 * and one board's schematics might show it using SPI-2. Software
559 	 * would normally use bus_num=2 for that controller.
560 	 */
561 	s16			bus_num;
562 
563 	/*
564 	 * Chipselects will be integral to many controllers; some others
565 	 * might use board-specific GPIOs.
566 	 */
567 	u16			num_chipselect;
568 
569 	/* Some SPI controllers pose alignment requirements on DMAable
570 	 * buffers; let protocol drivers know about these requirements.
571 	 */
572 	u16			dma_alignment;
573 
574 	/* spi_device.mode flags understood by this controller driver */
575 	u32			mode_bits;
576 
577 	/* spi_device.mode flags override flags for this controller */
578 	u32			buswidth_override_bits;
579 
580 	/* Bitmask of supported bits_per_word for transfers */
581 	u32			bits_per_word_mask;
582 #define SPI_BPW_MASK(bits) BIT((bits) - 1)
583 #define SPI_BPW_RANGE_MASK(min, max) GENMASK((max) - 1, (min) - 1)
584 
585 	/* Limits on transfer speed */
586 	u32			min_speed_hz;
587 	u32			max_speed_hz;
588 
589 	/* Other constraints relevant to this driver */
590 	u16			flags;
591 #define SPI_CONTROLLER_HALF_DUPLEX	BIT(0)	/* Can't do full duplex */
592 #define SPI_CONTROLLER_NO_RX		BIT(1)	/* Can't do buffer read */
593 #define SPI_CONTROLLER_NO_TX		BIT(2)	/* Can't do buffer write */
594 #define SPI_CONTROLLER_MUST_RX		BIT(3)	/* Requires rx */
595 #define SPI_CONTROLLER_MUST_TX		BIT(4)	/* Requires tx */
596 #define SPI_CONTROLLER_GPIO_SS		BIT(5)	/* GPIO CS must select slave */
597 #define SPI_CONTROLLER_SUSPENDED	BIT(6)	/* Currently suspended */
598 	/*
599 	 * The spi-controller has multi chip select capability and can
600 	 * assert/de-assert more than one chip select at once.
601 	 */
602 #define SPI_CONTROLLER_MULTI_CS		BIT(7)
603 
604 	/* Flag indicating if the allocation of this struct is devres-managed */
605 	bool			devm_allocated;
606 
607 	union {
608 		/* Flag indicating this is an SPI slave controller */
609 		bool			slave;
610 		/* Flag indicating this is an SPI target controller */
611 		bool			target;
612 	};
613 
614 	/*
615 	 * On some hardware transfer / message size may be constrained
616 	 * the limit may depend on device transfer settings.
617 	 */
618 	size_t (*max_transfer_size)(struct spi_device *spi);
619 	size_t (*max_message_size)(struct spi_device *spi);
620 
621 	/* I/O mutex */
622 	struct mutex		io_mutex;
623 
624 	/* Used to avoid adding the same CS twice */
625 	struct mutex		add_lock;
626 
627 	/* Lock and mutex for SPI bus locking */
628 	spinlock_t		bus_lock_spinlock;
629 	struct mutex		bus_lock_mutex;
630 
631 	/* Flag indicating that the SPI bus is locked for exclusive use */
632 	bool			bus_lock_flag;
633 
634 	/*
635 	 * Setup mode and clock, etc (SPI driver may call many times).
636 	 *
637 	 * IMPORTANT:  this may be called when transfers to another
638 	 * device are active.  DO NOT UPDATE SHARED REGISTERS in ways
639 	 * which could break those transfers.
640 	 */
641 	int			(*setup)(struct spi_device *spi);
642 
643 	/*
644 	 * set_cs_timing() method is for SPI controllers that supports
645 	 * configuring CS timing.
646 	 *
647 	 * This hook allows SPI client drivers to request SPI controllers
648 	 * to configure specific CS timing through spi_set_cs_timing() after
649 	 * spi_setup().
650 	 */
651 	int (*set_cs_timing)(struct spi_device *spi);
652 
653 	/*
654 	 * Bidirectional bulk transfers
655 	 *
656 	 * + The transfer() method may not sleep; its main role is
657 	 *   just to add the message to the queue.
658 	 * + For now there's no remove-from-queue operation, or
659 	 *   any other request management
660 	 * + To a given spi_device, message queueing is pure FIFO
661 	 *
662 	 * + The controller's main job is to process its message queue,
663 	 *   selecting a chip (for masters), then transferring data
664 	 * + If there are multiple spi_device children, the i/o queue
665 	 *   arbitration algorithm is unspecified (round robin, FIFO,
666 	 *   priority, reservations, preemption, etc)
667 	 *
668 	 * + Chipselect stays active during the entire message
669 	 *   (unless modified by spi_transfer.cs_change != 0).
670 	 * + The message transfers use clock and SPI mode parameters
671 	 *   previously established by setup() for this device
672 	 */
673 	int			(*transfer)(struct spi_device *spi,
674 						struct spi_message *mesg);
675 
676 	/* Called on release() to free memory provided by spi_controller */
677 	void			(*cleanup)(struct spi_device *spi);
678 
679 	/*
680 	 * Used to enable core support for DMA handling, if can_dma()
681 	 * exists and returns true then the transfer will be mapped
682 	 * prior to transfer_one() being called.  The driver should
683 	 * not modify or store xfer and dma_tx and dma_rx must be set
684 	 * while the device is prepared.
685 	 */
686 	bool			(*can_dma)(struct spi_controller *ctlr,
687 					   struct spi_device *spi,
688 					   struct spi_transfer *xfer);
689 	struct device *dma_map_dev;
690 	struct device *cur_rx_dma_dev;
691 	struct device *cur_tx_dma_dev;
692 
693 	/*
694 	 * These hooks are for drivers that want to use the generic
695 	 * controller transfer queueing mechanism. If these are used, the
696 	 * transfer() function above must NOT be specified by the driver.
697 	 * Over time we expect SPI drivers to be phased over to this API.
698 	 */
699 	bool				queued;
700 	struct kthread_worker		*kworker;
701 	struct kthread_work		pump_messages;
702 	spinlock_t			queue_lock;
703 	struct list_head		queue;
704 	struct spi_message		*cur_msg;
705 	struct completion               cur_msg_completion;
706 	bool				cur_msg_incomplete;
707 	bool				cur_msg_need_completion;
708 	bool				busy;
709 	bool				running;
710 	bool				rt;
711 	bool				auto_runtime_pm;
712 	bool				cur_msg_mapped;
713 	char				last_cs[SPI_CS_CNT_MAX];
714 	char				last_cs_index_mask;
715 	bool				last_cs_mode_high;
716 	bool                            fallback;
717 	struct completion               xfer_completion;
718 	size_t				max_dma_len;
719 
720 	int (*prepare_transfer_hardware)(struct spi_controller *ctlr);
721 	int (*transfer_one_message)(struct spi_controller *ctlr,
722 				    struct spi_message *mesg);
723 	int (*unprepare_transfer_hardware)(struct spi_controller *ctlr);
724 	int (*prepare_message)(struct spi_controller *ctlr,
725 			       struct spi_message *message);
726 	int (*unprepare_message)(struct spi_controller *ctlr,
727 				 struct spi_message *message);
728 	union {
729 		int (*slave_abort)(struct spi_controller *ctlr);
730 		int (*target_abort)(struct spi_controller *ctlr);
731 	};
732 
733 	/*
734 	 * These hooks are for drivers that use a generic implementation
735 	 * of transfer_one_message() provided by the core.
736 	 */
737 	void (*set_cs)(struct spi_device *spi, bool enable);
738 	int (*transfer_one)(struct spi_controller *ctlr, struct spi_device *spi,
739 			    struct spi_transfer *transfer);
740 	void (*handle_err)(struct spi_controller *ctlr,
741 			   struct spi_message *message);
742 
743 	/* Optimized handlers for SPI memory-like operations. */
744 	const struct spi_controller_mem_ops *mem_ops;
745 	const struct spi_controller_mem_caps *mem_caps;
746 
747 	/* GPIO chip select */
748 	struct gpio_desc	**cs_gpiods;
749 	bool			use_gpio_descriptors;
750 	s8			unused_native_cs;
751 	s8			max_native_cs;
752 
753 	/* Statistics */
754 	struct spi_statistics __percpu	*pcpu_statistics;
755 
756 	/* DMA channels for use with core dmaengine helpers */
757 	struct dma_chan		*dma_tx;
758 	struct dma_chan		*dma_rx;
759 
760 	/* Dummy data for full duplex devices */
761 	void			*dummy_rx;
762 	void			*dummy_tx;
763 
764 	int (*fw_translate_cs)(struct spi_controller *ctlr, unsigned cs);
765 
766 	/*
767 	 * Driver sets this field to indicate it is able to snapshot SPI
768 	 * transfers (needed e.g. for reading the time of POSIX clocks)
769 	 */
770 	bool			ptp_sts_supported;
771 
772 	/* Interrupt enable state during PTP system timestamping */
773 	unsigned long		irq_flags;
774 
775 	/* Flag for enabling opportunistic skipping of the queue in spi_sync */
776 	bool			queue_empty;
777 	bool			must_async;
778 };
779 
spi_controller_get_devdata(struct spi_controller * ctlr)780 static inline void *spi_controller_get_devdata(struct spi_controller *ctlr)
781 {
782 	return dev_get_drvdata(&ctlr->dev);
783 }
784 
spi_controller_set_devdata(struct spi_controller * ctlr,void * data)785 static inline void spi_controller_set_devdata(struct spi_controller *ctlr,
786 					      void *data)
787 {
788 	dev_set_drvdata(&ctlr->dev, data);
789 }
790 
spi_controller_get(struct spi_controller * ctlr)791 static inline struct spi_controller *spi_controller_get(struct spi_controller *ctlr)
792 {
793 	if (!ctlr || !get_device(&ctlr->dev))
794 		return NULL;
795 	return ctlr;
796 }
797 
spi_controller_put(struct spi_controller * ctlr)798 static inline void spi_controller_put(struct spi_controller *ctlr)
799 {
800 	if (ctlr)
801 		put_device(&ctlr->dev);
802 }
803 
spi_controller_is_slave(struct spi_controller * ctlr)804 static inline bool spi_controller_is_slave(struct spi_controller *ctlr)
805 {
806 	return IS_ENABLED(CONFIG_SPI_SLAVE) && ctlr->slave;
807 }
808 
spi_controller_is_target(struct spi_controller * ctlr)809 static inline bool spi_controller_is_target(struct spi_controller *ctlr)
810 {
811 	return IS_ENABLED(CONFIG_SPI_SLAVE) && ctlr->target;
812 }
813 
814 /* PM calls that need to be issued by the driver */
815 extern int spi_controller_suspend(struct spi_controller *ctlr);
816 extern int spi_controller_resume(struct spi_controller *ctlr);
817 
818 /* Calls the driver make to interact with the message queue */
819 extern struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr);
820 extern void spi_finalize_current_message(struct spi_controller *ctlr);
821 extern void spi_finalize_current_transfer(struct spi_controller *ctlr);
822 
823 /* Helper calls for driver to timestamp transfer */
824 void spi_take_timestamp_pre(struct spi_controller *ctlr,
825 			    struct spi_transfer *xfer,
826 			    size_t progress, bool irqs_off);
827 void spi_take_timestamp_post(struct spi_controller *ctlr,
828 			     struct spi_transfer *xfer,
829 			     size_t progress, bool irqs_off);
830 
831 /* The SPI driver core manages memory for the spi_controller classdev */
832 extern struct spi_controller *__spi_alloc_controller(struct device *host,
833 						unsigned int size, bool slave);
834 
spi_alloc_master(struct device * host,unsigned int size)835 static inline struct spi_controller *spi_alloc_master(struct device *host,
836 						      unsigned int size)
837 {
838 	return __spi_alloc_controller(host, size, false);
839 }
840 
spi_alloc_slave(struct device * host,unsigned int size)841 static inline struct spi_controller *spi_alloc_slave(struct device *host,
842 						     unsigned int size)
843 {
844 	if (!IS_ENABLED(CONFIG_SPI_SLAVE))
845 		return NULL;
846 
847 	return __spi_alloc_controller(host, size, true);
848 }
849 
spi_alloc_host(struct device * dev,unsigned int size)850 static inline struct spi_controller *spi_alloc_host(struct device *dev,
851 						    unsigned int size)
852 {
853 	return __spi_alloc_controller(dev, size, false);
854 }
855 
spi_alloc_target(struct device * dev,unsigned int size)856 static inline struct spi_controller *spi_alloc_target(struct device *dev,
857 						      unsigned int size)
858 {
859 	if (!IS_ENABLED(CONFIG_SPI_SLAVE))
860 		return NULL;
861 
862 	return __spi_alloc_controller(dev, size, true);
863 }
864 
865 struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
866 						   unsigned int size,
867 						   bool slave);
868 
devm_spi_alloc_master(struct device * dev,unsigned int size)869 static inline struct spi_controller *devm_spi_alloc_master(struct device *dev,
870 							   unsigned int size)
871 {
872 	return __devm_spi_alloc_controller(dev, size, false);
873 }
874 
devm_spi_alloc_slave(struct device * dev,unsigned int size)875 static inline struct spi_controller *devm_spi_alloc_slave(struct device *dev,
876 							  unsigned int size)
877 {
878 	if (!IS_ENABLED(CONFIG_SPI_SLAVE))
879 		return NULL;
880 
881 	return __devm_spi_alloc_controller(dev, size, true);
882 }
883 
devm_spi_alloc_host(struct device * dev,unsigned int size)884 static inline struct spi_controller *devm_spi_alloc_host(struct device *dev,
885 							 unsigned int size)
886 {
887 	return __devm_spi_alloc_controller(dev, size, false);
888 }
889 
devm_spi_alloc_target(struct device * dev,unsigned int size)890 static inline struct spi_controller *devm_spi_alloc_target(struct device *dev,
891 							   unsigned int size)
892 {
893 	if (!IS_ENABLED(CONFIG_SPI_SLAVE))
894 		return NULL;
895 
896 	return __devm_spi_alloc_controller(dev, size, true);
897 }
898 
899 extern int spi_register_controller(struct spi_controller *ctlr);
900 extern int devm_spi_register_controller(struct device *dev,
901 					struct spi_controller *ctlr);
902 extern void spi_unregister_controller(struct spi_controller *ctlr);
903 
904 #if IS_ENABLED(CONFIG_ACPI)
905 extern struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev);
906 extern struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr,
907 						struct acpi_device *adev,
908 						int index);
909 int acpi_spi_count_resources(struct acpi_device *adev);
910 #endif
911 
912 /*
913  * SPI resource management while processing a SPI message
914  */
915 
916 typedef void (*spi_res_release_t)(struct spi_controller *ctlr,
917 				  struct spi_message *msg,
918 				  void *res);
919 
920 /**
921  * struct spi_res - SPI resource management structure
922  * @entry:   list entry
923  * @release: release code called prior to freeing this resource
924  * @data:    extra data allocated for the specific use-case
925  *
926  * This is based on ideas from devres, but focused on life-cycle
927  * management during spi_message processing.
928  */
929 struct spi_res {
930 	struct list_head        entry;
931 	spi_res_release_t       release;
932 	unsigned long long      data[]; /* Guarantee ull alignment */
933 };
934 
935 /*---------------------------------------------------------------------------*/
936 
937 /*
938  * I/O INTERFACE between SPI controller and protocol drivers
939  *
940  * Protocol drivers use a queue of spi_messages, each transferring data
941  * between the controller and memory buffers.
942  *
943  * The spi_messages themselves consist of a series of read+write transfer
944  * segments.  Those segments always read the same number of bits as they
945  * write; but one or the other is easily ignored by passing a NULL buffer
946  * pointer.  (This is unlike most types of I/O API, because SPI hardware
947  * is full duplex.)
948  *
949  * NOTE:  Allocation of spi_transfer and spi_message memory is entirely
950  * up to the protocol driver, which guarantees the integrity of both (as
951  * well as the data buffers) for as long as the message is queued.
952  */
953 
954 /**
955  * struct spi_transfer - a read/write buffer pair
956  * @tx_buf: data to be written (DMA-safe memory), or NULL
957  * @rx_buf: data to be read (DMA-safe memory), or NULL
958  * @tx_dma: DMA address of tx_buf, if @spi_message.is_dma_mapped
959  * @rx_dma: DMA address of rx_buf, if @spi_message.is_dma_mapped
960  * @tx_nbits: number of bits used for writing. If 0 the default
961  *      (SPI_NBITS_SINGLE) is used.
962  * @rx_nbits: number of bits used for reading. If 0 the default
963  *      (SPI_NBITS_SINGLE) is used.
964  * @len: size of rx and tx buffers (in bytes)
965  * @speed_hz: Select a speed other than the device default for this
966  *      transfer. If 0 the default (from @spi_device) is used.
967  * @bits_per_word: select a bits_per_word other than the device default
968  *      for this transfer. If 0 the default (from @spi_device) is used.
969  * @dummy_data: indicates transfer is dummy bytes transfer.
970  * @cs_off: performs the transfer with chipselect off.
971  * @cs_change: affects chipselect after this transfer completes
972  * @cs_change_delay: delay between cs deassert and assert when
973  *      @cs_change is set and @spi_transfer is not the last in @spi_message
974  * @delay: delay to be introduced after this transfer before
975  *	(optionally) changing the chipselect status, then starting
976  *	the next transfer or completing this @spi_message.
977  * @word_delay: inter word delay to be introduced after each word size
978  *	(set by bits_per_word) transmission.
979  * @effective_speed_hz: the effective SCK-speed that was used to
980  *      transfer this transfer. Set to 0 if the SPI bus driver does
981  *      not support it.
982  * @transfer_list: transfers are sequenced through @spi_message.transfers
983  * @tx_sg: Scatterlist for transmit, currently not for client use
984  * @rx_sg: Scatterlist for receive, currently not for client use
985  * @ptp_sts_word_pre: The word (subject to bits_per_word semantics) offset
986  *	within @tx_buf for which the SPI device is requesting that the time
987  *	snapshot for this transfer begins. Upon completing the SPI transfer,
988  *	this value may have changed compared to what was requested, depending
989  *	on the available snapshotting resolution (DMA transfer,
990  *	@ptp_sts_supported is false, etc).
991  * @ptp_sts_word_post: See @ptp_sts_word_post. The two can be equal (meaning
992  *	that a single byte should be snapshotted).
993  *	If the core takes care of the timestamp (if @ptp_sts_supported is false
994  *	for this controller), it will set @ptp_sts_word_pre to 0, and
995  *	@ptp_sts_word_post to the length of the transfer. This is done
996  *	purposefully (instead of setting to spi_transfer->len - 1) to denote
997  *	that a transfer-level snapshot taken from within the driver may still
998  *	be of higher quality.
999  * @ptp_sts: Pointer to a memory location held by the SPI slave device where a
1000  *	PTP system timestamp structure may lie. If drivers use PIO or their
1001  *	hardware has some sort of assist for retrieving exact transfer timing,
1002  *	they can (and should) assert @ptp_sts_supported and populate this
1003  *	structure using the ptp_read_system_*ts helper functions.
1004  *	The timestamp must represent the time at which the SPI slave device has
1005  *	processed the word, i.e. the "pre" timestamp should be taken before
1006  *	transmitting the "pre" word, and the "post" timestamp after receiving
1007  *	transmit confirmation from the controller for the "post" word.
1008  * @timestamped: true if the transfer has been timestamped
1009  * @error: Error status logged by SPI controller driver.
1010  *
1011  * SPI transfers always write the same number of bytes as they read.
1012  * Protocol drivers should always provide @rx_buf and/or @tx_buf.
1013  * In some cases, they may also want to provide DMA addresses for
1014  * the data being transferred; that may reduce overhead, when the
1015  * underlying driver uses DMA.
1016  *
1017  * If the transmit buffer is NULL, zeroes will be shifted out
1018  * while filling @rx_buf.  If the receive buffer is NULL, the data
1019  * shifted in will be discarded.  Only "len" bytes shift out (or in).
1020  * It's an error to try to shift out a partial word.  (For example, by
1021  * shifting out three bytes with word size of sixteen or twenty bits;
1022  * the former uses two bytes per word, the latter uses four bytes.)
1023  *
1024  * In-memory data values are always in native CPU byte order, translated
1025  * from the wire byte order (big-endian except with SPI_LSB_FIRST).  So
1026  * for example when bits_per_word is sixteen, buffers are 2N bytes long
1027  * (@len = 2N) and hold N sixteen bit words in CPU byte order.
1028  *
1029  * When the word size of the SPI transfer is not a power-of-two multiple
1030  * of eight bits, those in-memory words include extra bits.  In-memory
1031  * words are always seen by protocol drivers as right-justified, so the
1032  * undefined (rx) or unused (tx) bits are always the most significant bits.
1033  *
1034  * All SPI transfers start with the relevant chipselect active.  Normally
1035  * it stays selected until after the last transfer in a message.  Drivers
1036  * can affect the chipselect signal using cs_change.
1037  *
1038  * (i) If the transfer isn't the last one in the message, this flag is
1039  * used to make the chipselect briefly go inactive in the middle of the
1040  * message.  Toggling chipselect in this way may be needed to terminate
1041  * a chip command, letting a single spi_message perform all of group of
1042  * chip transactions together.
1043  *
1044  * (ii) When the transfer is the last one in the message, the chip may
1045  * stay selected until the next transfer.  On multi-device SPI busses
1046  * with nothing blocking messages going to other devices, this is just
1047  * a performance hint; starting a message to another device deselects
1048  * this one.  But in other cases, this can be used to ensure correctness.
1049  * Some devices need protocol transactions to be built from a series of
1050  * spi_message submissions, where the content of one message is determined
1051  * by the results of previous messages and where the whole transaction
1052  * ends when the chipselect goes inactive.
1053  *
1054  * When SPI can transfer in 1x,2x or 4x. It can get this transfer information
1055  * from device through @tx_nbits and @rx_nbits. In Bi-direction, these
1056  * two should both be set. User can set transfer mode with SPI_NBITS_SINGLE(1x)
1057  * SPI_NBITS_DUAL(2x) and SPI_NBITS_QUAD(4x) to support these three transfer.
1058  *
1059  * The code that submits an spi_message (and its spi_transfers)
1060  * to the lower layers is responsible for managing its memory.
1061  * Zero-initialize every field you don't set up explicitly, to
1062  * insulate against future API updates.  After you submit a message
1063  * and its transfers, ignore them until its completion callback.
1064  */
1065 struct spi_transfer {
1066 	/*
1067 	 * It's okay if tx_buf == rx_buf (right?).
1068 	 * For MicroWire, one buffer must be NULL.
1069 	 * Buffers must work with dma_*map_single() calls, unless
1070 	 * spi_message.is_dma_mapped reports a pre-existing mapping.
1071 	 */
1072 	const void	*tx_buf;
1073 	void		*rx_buf;
1074 	unsigned	len;
1075 
1076 #define SPI_TRANS_FAIL_NO_START	BIT(0)
1077 #define SPI_TRANS_FAIL_IO	BIT(1)
1078 	u16		error;
1079 
1080 	dma_addr_t	tx_dma;
1081 	dma_addr_t	rx_dma;
1082 	struct sg_table tx_sg;
1083 	struct sg_table rx_sg;
1084 
1085 	unsigned	dummy_data:1;
1086 	unsigned	cs_off:1;
1087 	unsigned	cs_change:1;
1088 	unsigned	tx_nbits:3;
1089 	unsigned	rx_nbits:3;
1090 	unsigned	timestamped:1;
1091 #define	SPI_NBITS_SINGLE	0x01 /* 1-bit transfer */
1092 #define	SPI_NBITS_DUAL		0x02 /* 2-bit transfer */
1093 #define	SPI_NBITS_QUAD		0x04 /* 4-bit transfer */
1094 	u8		bits_per_word;
1095 	struct spi_delay	delay;
1096 	struct spi_delay	cs_change_delay;
1097 	struct spi_delay	word_delay;
1098 	u32		speed_hz;
1099 
1100 	u32		effective_speed_hz;
1101 
1102 	unsigned int	ptp_sts_word_pre;
1103 	unsigned int	ptp_sts_word_post;
1104 
1105 	struct ptp_system_timestamp *ptp_sts;
1106 
1107 	struct list_head transfer_list;
1108 };
1109 
1110 /**
1111  * struct spi_message - one multi-segment SPI transaction
1112  * @transfers: list of transfer segments in this transaction
1113  * @spi: SPI device to which the transaction is queued
1114  * @is_dma_mapped: if true, the caller provided both DMA and CPU virtual
1115  *	addresses for each transfer buffer
1116  * @complete: called to report transaction completions
1117  * @context: the argument to complete() when it's called
1118  * @frame_length: the total number of bytes in the message
1119  * @actual_length: the total number of bytes that were transferred in all
1120  *	successful segments
1121  * @status: zero for success, else negative errno
1122  * @queue: for use by whichever driver currently owns the message
1123  * @state: for use by whichever driver currently owns the message
1124  * @resources: for resource management when the SPI message is processed
1125  * @prepared: spi_prepare_message was called for the this message
1126  *
1127  * A @spi_message is used to execute an atomic sequence of data transfers,
1128  * each represented by a struct spi_transfer.  The sequence is "atomic"
1129  * in the sense that no other spi_message may use that SPI bus until that
1130  * sequence completes.  On some systems, many such sequences can execute as
1131  * a single programmed DMA transfer.  On all systems, these messages are
1132  * queued, and might complete after transactions to other devices.  Messages
1133  * sent to a given spi_device are always executed in FIFO order.
1134  *
1135  * The code that submits an spi_message (and its spi_transfers)
1136  * to the lower layers is responsible for managing its memory.
1137  * Zero-initialize every field you don't set up explicitly, to
1138  * insulate against future API updates.  After you submit a message
1139  * and its transfers, ignore them until its completion callback.
1140  */
1141 struct spi_message {
1142 	struct list_head	transfers;
1143 
1144 	struct spi_device	*spi;
1145 
1146 	unsigned		is_dma_mapped:1;
1147 
1148 	/* spi_prepare_message() was called for this message */
1149 	bool			prepared;
1150 
1151 	/*
1152 	 * REVISIT: we might want a flag affecting the behavior of the
1153 	 * last transfer ... allowing things like "read 16 bit length L"
1154 	 * immediately followed by "read L bytes".  Basically imposing
1155 	 * a specific message scheduling algorithm.
1156 	 *
1157 	 * Some controller drivers (message-at-a-time queue processing)
1158 	 * could provide that as their default scheduling algorithm.  But
1159 	 * others (with multi-message pipelines) could need a flag to
1160 	 * tell them about such special cases.
1161 	 */
1162 
1163 	/* Completion is reported through a callback */
1164 	int			status;
1165 	void			(*complete)(void *context);
1166 	void			*context;
1167 	unsigned		frame_length;
1168 	unsigned		actual_length;
1169 
1170 	/*
1171 	 * For optional use by whatever driver currently owns the
1172 	 * spi_message ...  between calls to spi_async and then later
1173 	 * complete(), that's the spi_controller controller driver.
1174 	 */
1175 	struct list_head	queue;
1176 	void			*state;
1177 
1178 	/* List of spi_res resources when the SPI message is processed */
1179 	struct list_head        resources;
1180 };
1181 
spi_message_init_no_memset(struct spi_message * m)1182 static inline void spi_message_init_no_memset(struct spi_message *m)
1183 {
1184 	INIT_LIST_HEAD(&m->transfers);
1185 	INIT_LIST_HEAD(&m->resources);
1186 }
1187 
spi_message_init(struct spi_message * m)1188 static inline void spi_message_init(struct spi_message *m)
1189 {
1190 	memset(m, 0, sizeof *m);
1191 	spi_message_init_no_memset(m);
1192 }
1193 
1194 static inline void
spi_message_add_tail(struct spi_transfer * t,struct spi_message * m)1195 spi_message_add_tail(struct spi_transfer *t, struct spi_message *m)
1196 {
1197 	list_add_tail(&t->transfer_list, &m->transfers);
1198 }
1199 
1200 static inline void
spi_transfer_del(struct spi_transfer * t)1201 spi_transfer_del(struct spi_transfer *t)
1202 {
1203 	list_del(&t->transfer_list);
1204 }
1205 
1206 static inline int
spi_transfer_delay_exec(struct spi_transfer * t)1207 spi_transfer_delay_exec(struct spi_transfer *t)
1208 {
1209 	return spi_delay_exec(&t->delay, t);
1210 }
1211 
1212 /**
1213  * spi_message_init_with_transfers - Initialize spi_message and append transfers
1214  * @m: spi_message to be initialized
1215  * @xfers: An array of SPI transfers
1216  * @num_xfers: Number of items in the xfer array
1217  *
1218  * This function initializes the given spi_message and adds each spi_transfer in
1219  * the given array to the message.
1220  */
1221 static inline void
spi_message_init_with_transfers(struct spi_message * m,struct spi_transfer * xfers,unsigned int num_xfers)1222 spi_message_init_with_transfers(struct spi_message *m,
1223 struct spi_transfer *xfers, unsigned int num_xfers)
1224 {
1225 	unsigned int i;
1226 
1227 	spi_message_init(m);
1228 	for (i = 0; i < num_xfers; ++i)
1229 		spi_message_add_tail(&xfers[i], m);
1230 }
1231 
1232 /*
1233  * It's fine to embed message and transaction structures in other data
1234  * structures so long as you don't free them while they're in use.
1235  */
spi_message_alloc(unsigned ntrans,gfp_t flags)1236 static inline struct spi_message *spi_message_alloc(unsigned ntrans, gfp_t flags)
1237 {
1238 	struct spi_message_with_transfers {
1239 		struct spi_message m;
1240 		struct spi_transfer t[];
1241 	} *mwt;
1242 	unsigned i;
1243 
1244 	mwt = kzalloc(struct_size(mwt, t, ntrans), flags);
1245 	if (!mwt)
1246 		return NULL;
1247 
1248 	spi_message_init_no_memset(&mwt->m);
1249 	for (i = 0; i < ntrans; i++)
1250 		spi_message_add_tail(&mwt->t[i], &mwt->m);
1251 
1252 	return &mwt->m;
1253 }
1254 
spi_message_free(struct spi_message * m)1255 static inline void spi_message_free(struct spi_message *m)
1256 {
1257 	kfree(m);
1258 }
1259 
1260 extern int spi_setup(struct spi_device *spi);
1261 extern int spi_async(struct spi_device *spi, struct spi_message *message);
1262 extern int spi_slave_abort(struct spi_device *spi);
1263 extern int spi_target_abort(struct spi_device *spi);
1264 
1265 static inline size_t
spi_max_message_size(struct spi_device * spi)1266 spi_max_message_size(struct spi_device *spi)
1267 {
1268 	struct spi_controller *ctlr = spi->controller;
1269 
1270 	if (!ctlr->max_message_size)
1271 		return SIZE_MAX;
1272 	return ctlr->max_message_size(spi);
1273 }
1274 
1275 static inline size_t
spi_max_transfer_size(struct spi_device * spi)1276 spi_max_transfer_size(struct spi_device *spi)
1277 {
1278 	struct spi_controller *ctlr = spi->controller;
1279 	size_t tr_max = SIZE_MAX;
1280 	size_t msg_max = spi_max_message_size(spi);
1281 
1282 	if (ctlr->max_transfer_size)
1283 		tr_max = ctlr->max_transfer_size(spi);
1284 
1285 	/* Transfer size limit must not be greater than message size limit */
1286 	return min(tr_max, msg_max);
1287 }
1288 
1289 /**
1290  * spi_is_bpw_supported - Check if bits per word is supported
1291  * @spi: SPI device
1292  * @bpw: Bits per word
1293  *
1294  * This function checks to see if the SPI controller supports @bpw.
1295  *
1296  * Returns:
1297  * True if @bpw is supported, false otherwise.
1298  */
spi_is_bpw_supported(struct spi_device * spi,u32 bpw)1299 static inline bool spi_is_bpw_supported(struct spi_device *spi, u32 bpw)
1300 {
1301 	u32 bpw_mask = spi->master->bits_per_word_mask;
1302 
1303 	if (bpw == 8 || (bpw <= 32 && bpw_mask & SPI_BPW_MASK(bpw)))
1304 		return true;
1305 
1306 	return false;
1307 }
1308 
1309 /**
1310  * spi_controller_xfer_timeout - Compute a suitable timeout value
1311  * @ctlr: SPI device
1312  * @xfer: Transfer descriptor
1313  *
1314  * Compute a relevant timeout value for the given transfer. We derive the time
1315  * that it would take on a single data line and take twice this amount of time
1316  * with a minimum of 500ms to avoid false positives on loaded systems.
1317  *
1318  * Returns: Transfer timeout value in milliseconds.
1319  */
spi_controller_xfer_timeout(struct spi_controller * ctlr,struct spi_transfer * xfer)1320 static inline unsigned int spi_controller_xfer_timeout(struct spi_controller *ctlr,
1321 						       struct spi_transfer *xfer)
1322 {
1323 	return max(xfer->len * 8 * 2 / (xfer->speed_hz / 1000), 500U);
1324 }
1325 
1326 /*---------------------------------------------------------------------------*/
1327 
1328 /* SPI transfer replacement methods which make use of spi_res */
1329 
1330 struct spi_replaced_transfers;
1331 typedef void (*spi_replaced_release_t)(struct spi_controller *ctlr,
1332 				       struct spi_message *msg,
1333 				       struct spi_replaced_transfers *res);
1334 /**
1335  * struct spi_replaced_transfers - structure describing the spi_transfer
1336  *                                 replacements that have occurred
1337  *                                 so that they can get reverted
1338  * @release:            some extra release code to get executed prior to
1339  *                      releasing this structure
1340  * @extradata:          pointer to some extra data if requested or NULL
1341  * @replaced_transfers: transfers that have been replaced and which need
1342  *                      to get restored
1343  * @replaced_after:     the transfer after which the @replaced_transfers
1344  *                      are to get re-inserted
1345  * @inserted:           number of transfers inserted
1346  * @inserted_transfers: array of spi_transfers of array-size @inserted,
1347  *                      that have been replacing replaced_transfers
1348  *
1349  * Note: that @extradata will point to @inserted_transfers[@inserted]
1350  * if some extra allocation is requested, so alignment will be the same
1351  * as for spi_transfers.
1352  */
1353 struct spi_replaced_transfers {
1354 	spi_replaced_release_t release;
1355 	void *extradata;
1356 	struct list_head replaced_transfers;
1357 	struct list_head *replaced_after;
1358 	size_t inserted;
1359 	struct spi_transfer inserted_transfers[];
1360 };
1361 
1362 /*---------------------------------------------------------------------------*/
1363 
1364 /* SPI transfer transformation methods */
1365 
1366 extern int spi_split_transfers_maxsize(struct spi_controller *ctlr,
1367 				       struct spi_message *msg,
1368 				       size_t maxsize,
1369 				       gfp_t gfp);
1370 extern int spi_split_transfers_maxwords(struct spi_controller *ctlr,
1371 					struct spi_message *msg,
1372 					size_t maxwords,
1373 					gfp_t gfp);
1374 
1375 /*---------------------------------------------------------------------------*/
1376 
1377 /*
1378  * All these synchronous SPI transfer routines are utilities layered
1379  * over the core async transfer primitive.  Here, "synchronous" means
1380  * they will sleep uninterruptibly until the async transfer completes.
1381  */
1382 
1383 extern int spi_sync(struct spi_device *spi, struct spi_message *message);
1384 extern int spi_sync_locked(struct spi_device *spi, struct spi_message *message);
1385 extern int spi_bus_lock(struct spi_controller *ctlr);
1386 extern int spi_bus_unlock(struct spi_controller *ctlr);
1387 
1388 /**
1389  * spi_sync_transfer - synchronous SPI data transfer
1390  * @spi: device with which data will be exchanged
1391  * @xfers: An array of spi_transfers
1392  * @num_xfers: Number of items in the xfer array
1393  * Context: can sleep
1394  *
1395  * Does a synchronous SPI data transfer of the given spi_transfer array.
1396  *
1397  * For more specific semantics see spi_sync().
1398  *
1399  * Return: zero on success, else a negative error code.
1400  */
1401 static inline int
spi_sync_transfer(struct spi_device * spi,struct spi_transfer * xfers,unsigned int num_xfers)1402 spi_sync_transfer(struct spi_device *spi, struct spi_transfer *xfers,
1403 	unsigned int num_xfers)
1404 {
1405 	struct spi_message msg;
1406 
1407 	spi_message_init_with_transfers(&msg, xfers, num_xfers);
1408 
1409 	return spi_sync(spi, &msg);
1410 }
1411 
1412 /**
1413  * spi_write - SPI synchronous write
1414  * @spi: device to which data will be written
1415  * @buf: data buffer
1416  * @len: data buffer size
1417  * Context: can sleep
1418  *
1419  * This function writes the buffer @buf.
1420  * Callable only from contexts that can sleep.
1421  *
1422  * Return: zero on success, else a negative error code.
1423  */
1424 static inline int
spi_write(struct spi_device * spi,const void * buf,size_t len)1425 spi_write(struct spi_device *spi, const void *buf, size_t len)
1426 {
1427 	struct spi_transfer	t = {
1428 			.tx_buf		= buf,
1429 			.len		= len,
1430 		};
1431 
1432 	return spi_sync_transfer(spi, &t, 1);
1433 }
1434 
1435 /**
1436  * spi_read - SPI synchronous read
1437  * @spi: device from which data will be read
1438  * @buf: data buffer
1439  * @len: data buffer size
1440  * Context: can sleep
1441  *
1442  * This function reads the buffer @buf.
1443  * Callable only from contexts that can sleep.
1444  *
1445  * Return: zero on success, else a negative error code.
1446  */
1447 static inline int
spi_read(struct spi_device * spi,void * buf,size_t len)1448 spi_read(struct spi_device *spi, void *buf, size_t len)
1449 {
1450 	struct spi_transfer	t = {
1451 			.rx_buf		= buf,
1452 			.len		= len,
1453 		};
1454 
1455 	return spi_sync_transfer(spi, &t, 1);
1456 }
1457 
1458 /* This copies txbuf and rxbuf data; for small transfers only! */
1459 extern int spi_write_then_read(struct spi_device *spi,
1460 		const void *txbuf, unsigned n_tx,
1461 		void *rxbuf, unsigned n_rx);
1462 
1463 /**
1464  * spi_w8r8 - SPI synchronous 8 bit write followed by 8 bit read
1465  * @spi: device with which data will be exchanged
1466  * @cmd: command to be written before data is read back
1467  * Context: can sleep
1468  *
1469  * Callable only from contexts that can sleep.
1470  *
1471  * Return: the (unsigned) eight bit number returned by the
1472  * device, or else a negative error code.
1473  */
spi_w8r8(struct spi_device * spi,u8 cmd)1474 static inline ssize_t spi_w8r8(struct spi_device *spi, u8 cmd)
1475 {
1476 	ssize_t			status;
1477 	u8			result;
1478 
1479 	status = spi_write_then_read(spi, &cmd, 1, &result, 1);
1480 
1481 	/* Return negative errno or unsigned value */
1482 	return (status < 0) ? status : result;
1483 }
1484 
1485 /**
1486  * spi_w8r16 - SPI synchronous 8 bit write followed by 16 bit read
1487  * @spi: device with which data will be exchanged
1488  * @cmd: command to be written before data is read back
1489  * Context: can sleep
1490  *
1491  * The number is returned in wire-order, which is at least sometimes
1492  * big-endian.
1493  *
1494  * Callable only from contexts that can sleep.
1495  *
1496  * Return: the (unsigned) sixteen bit number returned by the
1497  * device, or else a negative error code.
1498  */
spi_w8r16(struct spi_device * spi,u8 cmd)1499 static inline ssize_t spi_w8r16(struct spi_device *spi, u8 cmd)
1500 {
1501 	ssize_t			status;
1502 	u16			result;
1503 
1504 	status = spi_write_then_read(spi, &cmd, 1, &result, 2);
1505 
1506 	/* Return negative errno or unsigned value */
1507 	return (status < 0) ? status : result;
1508 }
1509 
1510 /**
1511  * spi_w8r16be - SPI synchronous 8 bit write followed by 16 bit big-endian read
1512  * @spi: device with which data will be exchanged
1513  * @cmd: command to be written before data is read back
1514  * Context: can sleep
1515  *
1516  * This function is similar to spi_w8r16, with the exception that it will
1517  * convert the read 16 bit data word from big-endian to native endianness.
1518  *
1519  * Callable only from contexts that can sleep.
1520  *
1521  * Return: the (unsigned) sixteen bit number returned by the device in CPU
1522  * endianness, or else a negative error code.
1523  */
spi_w8r16be(struct spi_device * spi,u8 cmd)1524 static inline ssize_t spi_w8r16be(struct spi_device *spi, u8 cmd)
1525 
1526 {
1527 	ssize_t status;
1528 	__be16 result;
1529 
1530 	status = spi_write_then_read(spi, &cmd, 1, &result, 2);
1531 	if (status < 0)
1532 		return status;
1533 
1534 	return be16_to_cpu(result);
1535 }
1536 
1537 /*---------------------------------------------------------------------------*/
1538 
1539 /*
1540  * INTERFACE between board init code and SPI infrastructure.
1541  *
1542  * No SPI driver ever sees these SPI device table segments, but
1543  * it's how the SPI core (or adapters that get hotplugged) grows
1544  * the driver model tree.
1545  *
1546  * As a rule, SPI devices can't be probed.  Instead, board init code
1547  * provides a table listing the devices which are present, with enough
1548  * information to bind and set up the device's driver.  There's basic
1549  * support for non-static configurations too; enough to handle adding
1550  * parport adapters, or microcontrollers acting as USB-to-SPI bridges.
1551  */
1552 
1553 /**
1554  * struct spi_board_info - board-specific template for a SPI device
1555  * @modalias: Initializes spi_device.modalias; identifies the driver.
1556  * @platform_data: Initializes spi_device.platform_data; the particular
1557  *	data stored there is driver-specific.
1558  * @swnode: Software node for the device.
1559  * @controller_data: Initializes spi_device.controller_data; some
1560  *	controllers need hints about hardware setup, e.g. for DMA.
1561  * @irq: Initializes spi_device.irq; depends on how the board is wired.
1562  * @max_speed_hz: Initializes spi_device.max_speed_hz; based on limits
1563  *	from the chip datasheet and board-specific signal quality issues.
1564  * @bus_num: Identifies which spi_controller parents the spi_device; unused
1565  *	by spi_new_device(), and otherwise depends on board wiring.
1566  * @chip_select: Initializes spi_device.chip_select; depends on how
1567  *	the board is wired.
1568  * @mode: Initializes spi_device.mode; based on the chip datasheet, board
1569  *	wiring (some devices support both 3WIRE and standard modes), and
1570  *	possibly presence of an inverter in the chipselect path.
1571  *
1572  * When adding new SPI devices to the device tree, these structures serve
1573  * as a partial device template.  They hold information which can't always
1574  * be determined by drivers.  Information that probe() can establish (such
1575  * as the default transfer wordsize) is not included here.
1576  *
1577  * These structures are used in two places.  Their primary role is to
1578  * be stored in tables of board-specific device descriptors, which are
1579  * declared early in board initialization and then used (much later) to
1580  * populate a controller's device tree after the that controller's driver
1581  * initializes.  A secondary (and atypical) role is as a parameter to
1582  * spi_new_device() call, which happens after those controller drivers
1583  * are active in some dynamic board configuration models.
1584  */
1585 struct spi_board_info {
1586 	/*
1587 	 * The device name and module name are coupled, like platform_bus;
1588 	 * "modalias" is normally the driver name.
1589 	 *
1590 	 * platform_data goes to spi_device.dev.platform_data,
1591 	 * controller_data goes to spi_device.controller_data,
1592 	 * IRQ is copied too.
1593 	 */
1594 	char		modalias[SPI_NAME_SIZE];
1595 	const void	*platform_data;
1596 	const struct software_node *swnode;
1597 	void		*controller_data;
1598 	int		irq;
1599 
1600 	/* Slower signaling on noisy or low voltage boards */
1601 	u32		max_speed_hz;
1602 
1603 
1604 	/*
1605 	 * bus_num is board specific and matches the bus_num of some
1606 	 * spi_controller that will probably be registered later.
1607 	 *
1608 	 * chip_select reflects how this chip is wired to that master;
1609 	 * it's less than num_chipselect.
1610 	 */
1611 	u16		bus_num;
1612 	u16		chip_select;
1613 
1614 	/*
1615 	 * mode becomes spi_device.mode, and is essential for chips
1616 	 * where the default of SPI_CS_HIGH = 0 is wrong.
1617 	 */
1618 	u32		mode;
1619 
1620 	/*
1621 	 * ... may need additional spi_device chip config data here.
1622 	 * avoid stuff protocol drivers can set; but include stuff
1623 	 * needed to behave without being bound to a driver:
1624 	 *  - quirks like clock rate mattering when not selected
1625 	 */
1626 };
1627 
1628 #ifdef	CONFIG_SPI
1629 extern int
1630 spi_register_board_info(struct spi_board_info const *info, unsigned n);
1631 #else
1632 /* Board init code may ignore whether SPI is configured or not */
1633 static inline int
spi_register_board_info(struct spi_board_info const * info,unsigned n)1634 spi_register_board_info(struct spi_board_info const *info, unsigned n)
1635 	{ return 0; }
1636 #endif
1637 
1638 /*
1639  * If you're hotplugging an adapter with devices (parport, USB, etc)
1640  * use spi_new_device() to describe each device.  You can also call
1641  * spi_unregister_device() to start making that device vanish, but
1642  * normally that would be handled by spi_unregister_controller().
1643  *
1644  * You can also use spi_alloc_device() and spi_add_device() to use a two
1645  * stage registration sequence for each spi_device. This gives the caller
1646  * some more control over the spi_device structure before it is registered,
1647  * but requires that caller to initialize fields that would otherwise
1648  * be defined using the board info.
1649  */
1650 extern struct spi_device *
1651 spi_alloc_device(struct spi_controller *ctlr);
1652 
1653 extern int
1654 spi_add_device(struct spi_device *spi);
1655 
1656 extern struct spi_device *
1657 spi_new_device(struct spi_controller *, struct spi_board_info *);
1658 
1659 extern void spi_unregister_device(struct spi_device *spi);
1660 
1661 extern const struct spi_device_id *
1662 spi_get_device_id(const struct spi_device *sdev);
1663 
1664 extern const void *
1665 spi_get_device_match_data(const struct spi_device *sdev);
1666 
1667 static inline bool
spi_transfer_is_last(struct spi_controller * ctlr,struct spi_transfer * xfer)1668 spi_transfer_is_last(struct spi_controller *ctlr, struct spi_transfer *xfer)
1669 {
1670 	return list_is_last(&xfer->transfer_list, &ctlr->cur_msg->transfers);
1671 }
1672 
1673 /* Compatibility layer */
1674 #define spi_master			spi_controller
1675 
1676 #define spi_master_get_devdata(_ctlr)	spi_controller_get_devdata(_ctlr)
1677 #define spi_master_set_devdata(_ctlr, _data)	\
1678 	spi_controller_set_devdata(_ctlr, _data)
1679 #define spi_master_get(_ctlr)		spi_controller_get(_ctlr)
1680 #define spi_master_put(_ctlr)		spi_controller_put(_ctlr)
1681 #define spi_master_suspend(_ctlr)	spi_controller_suspend(_ctlr)
1682 #define spi_master_resume(_ctlr)	spi_controller_resume(_ctlr)
1683 
1684 #define spi_register_master(_ctlr)	spi_register_controller(_ctlr)
1685 #define devm_spi_register_master(_dev, _ctlr) \
1686 	devm_spi_register_controller(_dev, _ctlr)
1687 #define spi_unregister_master(_ctlr)	spi_unregister_controller(_ctlr)
1688 
1689 #endif /* __LINUX_SPI_H */
1690