1 /*
2  * Copyright (C) 2005 David Brownell
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  */
18 
19 #ifndef __LINUX_SPI_H
20 #define __LINUX_SPI_H
21 
22 #include <linux/device.h>
23 #include <linux/mod_devicetable.h>
24 #include <linux/slab.h>
25 
26 /*
27  * INTERFACES between SPI master-side drivers and SPI infrastructure.
28  * (There's no SPI slave support for Linux yet...)
29  */
30 extern struct bus_type spi_bus_type;
31 
32 /**
33  * struct spi_device - Master side proxy for an SPI slave device
34  * @dev: Driver model representation of the device.
35  * @master: SPI controller used with the device.
36  * @max_speed_hz: Maximum clock rate to be used with this chip
37  *	(on this board); may be changed by the device's driver.
38  *	The spi_transfer.speed_hz can override this for each transfer.
39  * @chip_select: Chipselect, distinguishing chips handled by @master.
40  * @mode: The spi mode defines how data is clocked out and in.
41  *	This may be changed by the device's driver.
42  *	The "active low" default for chipselect mode can be overridden
43  *	(by specifying SPI_CS_HIGH) as can the "MSB first" default for
44  *	each word in a transfer (by specifying SPI_LSB_FIRST).
45  * @bits_per_word: Data transfers involve one or more words; word sizes
46  *	like eight or 12 bits are common.  In-memory wordsizes are
47  *	powers of two bytes (e.g. 20 bit samples use 32 bits).
48  *	This may be changed by the device's driver, or left at the
49  *	default (0) indicating protocol words are eight bit bytes.
50  *	The spi_transfer.bits_per_word can override this for each transfer.
51  * @irq: Negative, or the number passed to request_irq() to receive
52  *	interrupts from this device.
53  * @controller_state: Controller's runtime state
54  * @controller_data: Board-specific definitions for controller, such as
55  *	FIFO initialization parameters; from board_info.controller_data
56  * @modalias: Name of the driver to use with this device, or an alias
57  *	for that name.  This appears in the sysfs "modalias" attribute
58  *	for driver coldplugging, and in uevents used for hotplugging
59  *
60  * A @spi_device is used to interchange data between an SPI slave
61  * (usually a discrete chip) and CPU memory.
62  *
63  * In @dev, the platform_data is used to hold information about this
64  * device that's meaningful to the device's protocol driver, but not
65  * to its controller.  One example might be an identifier for a chip
66  * variant with slightly different functionality; another might be
67  * information about how this particular board wires the chip's pins.
68  */
69 struct spi_device {
70 	struct device		dev;
71 	struct spi_master	*master;
72 	u32			max_speed_hz;
73 	u8			chip_select;
74 	u8			mode;
75 #define	SPI_CPHA	0x01			/* clock phase */
76 #define	SPI_CPOL	0x02			/* clock polarity */
77 #define	SPI_MODE_0	(0|0)			/* (original MicroWire) */
78 #define	SPI_MODE_1	(0|SPI_CPHA)
79 #define	SPI_MODE_2	(SPI_CPOL|0)
80 #define	SPI_MODE_3	(SPI_CPOL|SPI_CPHA)
81 #define	SPI_CS_HIGH	0x04			/* chipselect active high? */
82 #define	SPI_LSB_FIRST	0x08			/* per-word bits-on-wire */
83 #define	SPI_3WIRE	0x10			/* SI/SO signals shared */
84 #define	SPI_LOOP	0x20			/* loopback mode */
85 #define	SPI_NO_CS	0x40			/* 1 dev/bus, no chipselect */
86 #define	SPI_READY	0x80			/* slave pulls low to pause */
87 	u8			bits_per_word;
88 	int			irq;
89 	void			*controller_state;
90 	void			*controller_data;
91 	char			modalias[SPI_NAME_SIZE];
92 
93 	/*
94 	 * likely need more hooks for more protocol options affecting how
95 	 * the controller talks to each chip, like:
96 	 *  - memory packing (12 bit samples into low bits, others zeroed)
97 	 *  - priority
98 	 *  - drop chipselect after each word
99 	 *  - chipselect delays
100 	 *  - ...
101 	 */
102 };
103 
to_spi_device(struct device * dev)104 static inline struct spi_device *to_spi_device(struct device *dev)
105 {
106 	return dev ? container_of(dev, struct spi_device, dev) : NULL;
107 }
108 
109 /* most drivers won't need to care about device refcounting */
spi_dev_get(struct spi_device * spi)110 static inline struct spi_device *spi_dev_get(struct spi_device *spi)
111 {
112 	return (spi && get_device(&spi->dev)) ? spi : NULL;
113 }
114 
spi_dev_put(struct spi_device * spi)115 static inline void spi_dev_put(struct spi_device *spi)
116 {
117 	if (spi)
118 		put_device(&spi->dev);
119 }
120 
121 /* ctldata is for the bus_master driver's runtime state */
spi_get_ctldata(struct spi_device * spi)122 static inline void *spi_get_ctldata(struct spi_device *spi)
123 {
124 	return spi->controller_state;
125 }
126 
spi_set_ctldata(struct spi_device * spi,void * state)127 static inline void spi_set_ctldata(struct spi_device *spi, void *state)
128 {
129 	spi->controller_state = state;
130 }
131 
132 /* device driver data */
133 
spi_set_drvdata(struct spi_device * spi,void * data)134 static inline void spi_set_drvdata(struct spi_device *spi, void *data)
135 {
136 	dev_set_drvdata(&spi->dev, data);
137 }
138 
spi_get_drvdata(struct spi_device * spi)139 static inline void *spi_get_drvdata(struct spi_device *spi)
140 {
141 	return dev_get_drvdata(&spi->dev);
142 }
143 
144 struct spi_message;
145 
146 
147 
148 /**
149  * struct spi_driver - Host side "protocol" driver
150  * @id_table: List of SPI devices supported by this driver
151  * @probe: Binds this driver to the spi device.  Drivers can verify
152  *	that the device is actually present, and may need to configure
153  *	characteristics (such as bits_per_word) which weren't needed for
154  *	the initial configuration done during system setup.
155  * @remove: Unbinds this driver from the spi device
156  * @shutdown: Standard shutdown callback used during system state
157  *	transitions such as powerdown/halt and kexec
158  * @suspend: Standard suspend callback used during system state transitions
159  * @resume: Standard resume callback used during system state transitions
160  * @driver: SPI device drivers should initialize the name and owner
161  *	field of this structure.
162  *
163  * This represents the kind of device driver that uses SPI messages to
164  * interact with the hardware at the other end of a SPI link.  It's called
165  * a "protocol" driver because it works through messages rather than talking
166  * directly to SPI hardware (which is what the underlying SPI controller
167  * driver does to pass those messages).  These protocols are defined in the
168  * specification for the device(s) supported by the driver.
169  *
170  * As a rule, those device protocols represent the lowest level interface
171  * supported by a driver, and it will support upper level interfaces too.
172  * Examples of such upper levels include frameworks like MTD, networking,
173  * MMC, RTC, filesystem character device nodes, and hardware monitoring.
174  */
175 struct spi_driver {
176 	const struct spi_device_id *id_table;
177 	int			(*probe)(struct spi_device *spi);
178 	int			(*remove)(struct spi_device *spi);
179 	void			(*shutdown)(struct spi_device *spi);
180 	int			(*suspend)(struct spi_device *spi, pm_message_t mesg);
181 	int			(*resume)(struct spi_device *spi);
182 	struct device_driver	driver;
183 };
184 
to_spi_driver(struct device_driver * drv)185 static inline struct spi_driver *to_spi_driver(struct device_driver *drv)
186 {
187 	return drv ? container_of(drv, struct spi_driver, driver) : NULL;
188 }
189 
190 extern int spi_register_driver(struct spi_driver *sdrv);
191 
192 /**
193  * spi_unregister_driver - reverse effect of spi_register_driver
194  * @sdrv: the driver to unregister
195  * Context: can sleep
196  */
spi_unregister_driver(struct spi_driver * sdrv)197 static inline void spi_unregister_driver(struct spi_driver *sdrv)
198 {
199 	if (sdrv)
200 		driver_unregister(&sdrv->driver);
201 }
202 
203 /**
204  * module_spi_driver() - Helper macro for registering a SPI driver
205  * @__spi_driver: spi_driver struct
206  *
207  * Helper macro for SPI drivers which do not do anything special in module
208  * init/exit. This eliminates a lot of boilerplate. Each module may only
209  * use this macro once, and calling it replaces module_init() and module_exit()
210  */
211 #define module_spi_driver(__spi_driver) \
212 	module_driver(__spi_driver, spi_register_driver, \
213 			spi_unregister_driver)
214 
215 /**
216  * struct spi_master - interface to SPI master controller
217  * @dev: device interface to this driver
218  * @list: link with the global spi_master list
219  * @bus_num: board-specific (and often SOC-specific) identifier for a
220  *	given SPI controller.
221  * @num_chipselect: chipselects are used to distinguish individual
222  *	SPI slaves, and are numbered from zero to num_chipselects.
223  *	each slave has a chipselect signal, but it's common that not
224  *	every chipselect is connected to a slave.
225  * @dma_alignment: SPI controller constraint on DMA buffers alignment.
226  * @mode_bits: flags understood by this controller driver
227  * @flags: other constraints relevant to this driver
228  * @bus_lock_spinlock: spinlock for SPI bus locking
229  * @bus_lock_mutex: mutex for SPI bus locking
230  * @bus_lock_flag: indicates that the SPI bus is locked for exclusive use
231  * @setup: updates the device mode and clocking records used by a
232  *	device's SPI controller; protocol code may call this.  This
233  *	must fail if an unrecognized or unsupported mode is requested.
234  *	It's always safe to call this unless transfers are pending on
235  *	the device whose settings are being modified.
236  * @transfer: adds a message to the controller's transfer queue.
237  * @cleanup: frees controller-specific state
238  *
239  * Each SPI master controller can communicate with one or more @spi_device
240  * children.  These make a small bus, sharing MOSI, MISO and SCK signals
241  * but not chip select signals.  Each device may be configured to use a
242  * different clock rate, since those shared signals are ignored unless
243  * the chip is selected.
244  *
245  * The driver for an SPI controller manages access to those devices through
246  * a queue of spi_message transactions, copying data between CPU memory and
247  * an SPI slave device.  For each such message it queues, it calls the
248  * message's completion function when the transaction completes.
249  */
250 struct spi_master {
251 	struct device	dev;
252 
253 	struct list_head list;
254 
255 	/* other than negative (== assign one dynamically), bus_num is fully
256 	 * board-specific.  usually that simplifies to being SOC-specific.
257 	 * example:  one SOC has three SPI controllers, numbered 0..2,
258 	 * and one board's schematics might show it using SPI-2.  software
259 	 * would normally use bus_num=2 for that controller.
260 	 */
261 	s16			bus_num;
262 
263 	/* chipselects will be integral to many controllers; some others
264 	 * might use board-specific GPIOs.
265 	 */
266 	u16			num_chipselect;
267 
268 	/* some SPI controllers pose alignment requirements on DMAable
269 	 * buffers; let protocol drivers know about these requirements.
270 	 */
271 	u16			dma_alignment;
272 
273 	/* spi_device.mode flags understood by this controller driver */
274 	u16			mode_bits;
275 
276 	/* other constraints relevant to this driver */
277 	u16			flags;
278 #define SPI_MASTER_HALF_DUPLEX	BIT(0)		/* can't do full duplex */
279 #define SPI_MASTER_NO_RX	BIT(1)		/* can't do buffer read */
280 #define SPI_MASTER_NO_TX	BIT(2)		/* can't do buffer write */
281 
282 	/* lock and mutex for SPI bus locking */
283 	spinlock_t		bus_lock_spinlock;
284 	struct mutex		bus_lock_mutex;
285 
286 	/* flag indicating that the SPI bus is locked for exclusive use */
287 	bool			bus_lock_flag;
288 
289 	/* Setup mode and clock, etc (spi driver may call many times).
290 	 *
291 	 * IMPORTANT:  this may be called when transfers to another
292 	 * device are active.  DO NOT UPDATE SHARED REGISTERS in ways
293 	 * which could break those transfers.
294 	 */
295 	int			(*setup)(struct spi_device *spi);
296 
297 	/* bidirectional bulk transfers
298 	 *
299 	 * + The transfer() method may not sleep; its main role is
300 	 *   just to add the message to the queue.
301 	 * + For now there's no remove-from-queue operation, or
302 	 *   any other request management
303 	 * + To a given spi_device, message queueing is pure fifo
304 	 *
305 	 * + The master's main job is to process its message queue,
306 	 *   selecting a chip then transferring data
307 	 * + If there are multiple spi_device children, the i/o queue
308 	 *   arbitration algorithm is unspecified (round robin, fifo,
309 	 *   priority, reservations, preemption, etc)
310 	 *
311 	 * + Chipselect stays active during the entire message
312 	 *   (unless modified by spi_transfer.cs_change != 0).
313 	 * + The message transfers use clock and SPI mode parameters
314 	 *   previously established by setup() for this device
315 	 */
316 	int			(*transfer)(struct spi_device *spi,
317 						struct spi_message *mesg);
318 
319 	/* called on release() to free memory provided by spi_master */
320 	void			(*cleanup)(struct spi_device *spi);
321 };
322 
spi_master_get_devdata(struct spi_master * master)323 static inline void *spi_master_get_devdata(struct spi_master *master)
324 {
325 	return dev_get_drvdata(&master->dev);
326 }
327 
spi_master_set_devdata(struct spi_master * master,void * data)328 static inline void spi_master_set_devdata(struct spi_master *master, void *data)
329 {
330 	dev_set_drvdata(&master->dev, data);
331 }
332 
spi_master_get(struct spi_master * master)333 static inline struct spi_master *spi_master_get(struct spi_master *master)
334 {
335 	if (!master || !get_device(&master->dev))
336 		return NULL;
337 	return master;
338 }
339 
spi_master_put(struct spi_master * master)340 static inline void spi_master_put(struct spi_master *master)
341 {
342 	if (master)
343 		put_device(&master->dev);
344 }
345 
346 
347 /* the spi driver core manages memory for the spi_master classdev */
348 extern struct spi_master *
349 spi_alloc_master(struct device *host, unsigned size);
350 
351 extern int spi_register_master(struct spi_master *master);
352 extern void spi_unregister_master(struct spi_master *master);
353 
354 extern struct spi_master *spi_busnum_to_master(u16 busnum);
355 
356 /*---------------------------------------------------------------------------*/
357 
358 /*
359  * I/O INTERFACE between SPI controller and protocol drivers
360  *
361  * Protocol drivers use a queue of spi_messages, each transferring data
362  * between the controller and memory buffers.
363  *
364  * The spi_messages themselves consist of a series of read+write transfer
365  * segments.  Those segments always read the same number of bits as they
366  * write; but one or the other is easily ignored by passing a null buffer
367  * pointer.  (This is unlike most types of I/O API, because SPI hardware
368  * is full duplex.)
369  *
370  * NOTE:  Allocation of spi_transfer and spi_message memory is entirely
371  * up to the protocol driver, which guarantees the integrity of both (as
372  * well as the data buffers) for as long as the message is queued.
373  */
374 
375 /**
376  * struct spi_transfer - a read/write buffer pair
377  * @tx_buf: data to be written (dma-safe memory), or NULL
378  * @rx_buf: data to be read (dma-safe memory), or NULL
379  * @tx_dma: DMA address of tx_buf, if @spi_message.is_dma_mapped
380  * @rx_dma: DMA address of rx_buf, if @spi_message.is_dma_mapped
381  * @len: size of rx and tx buffers (in bytes)
382  * @speed_hz: Select a speed other than the device default for this
383  *      transfer. If 0 the default (from @spi_device) is used.
384  * @bits_per_word: select a bits_per_word other than the device default
385  *      for this transfer. If 0 the default (from @spi_device) is used.
386  * @cs_change: affects chipselect after this transfer completes
387  * @delay_usecs: microseconds to delay after this transfer before
388  *	(optionally) changing the chipselect status, then starting
389  *	the next transfer or completing this @spi_message.
390  * @transfer_list: transfers are sequenced through @spi_message.transfers
391  *
392  * SPI transfers always write the same number of bytes as they read.
393  * Protocol drivers should always provide @rx_buf and/or @tx_buf.
394  * In some cases, they may also want to provide DMA addresses for
395  * the data being transferred; that may reduce overhead, when the
396  * underlying driver uses dma.
397  *
398  * If the transmit buffer is null, zeroes will be shifted out
399  * while filling @rx_buf.  If the receive buffer is null, the data
400  * shifted in will be discarded.  Only "len" bytes shift out (or in).
401  * It's an error to try to shift out a partial word.  (For example, by
402  * shifting out three bytes with word size of sixteen or twenty bits;
403  * the former uses two bytes per word, the latter uses four bytes.)
404  *
405  * In-memory data values are always in native CPU byte order, translated
406  * from the wire byte order (big-endian except with SPI_LSB_FIRST).  So
407  * for example when bits_per_word is sixteen, buffers are 2N bytes long
408  * (@len = 2N) and hold N sixteen bit words in CPU byte order.
409  *
410  * When the word size of the SPI transfer is not a power-of-two multiple
411  * of eight bits, those in-memory words include extra bits.  In-memory
412  * words are always seen by protocol drivers as right-justified, so the
413  * undefined (rx) or unused (tx) bits are always the most significant bits.
414  *
415  * All SPI transfers start with the relevant chipselect active.  Normally
416  * it stays selected until after the last transfer in a message.  Drivers
417  * can affect the chipselect signal using cs_change.
418  *
419  * (i) If the transfer isn't the last one in the message, this flag is
420  * used to make the chipselect briefly go inactive in the middle of the
421  * message.  Toggling chipselect in this way may be needed to terminate
422  * a chip command, letting a single spi_message perform all of group of
423  * chip transactions together.
424  *
425  * (ii) When the transfer is the last one in the message, the chip may
426  * stay selected until the next transfer.  On multi-device SPI busses
427  * with nothing blocking messages going to other devices, this is just
428  * a performance hint; starting a message to another device deselects
429  * this one.  But in other cases, this can be used to ensure correctness.
430  * Some devices need protocol transactions to be built from a series of
431  * spi_message submissions, where the content of one message is determined
432  * by the results of previous messages and where the whole transaction
433  * ends when the chipselect goes intactive.
434  *
435  * The code that submits an spi_message (and its spi_transfers)
436  * to the lower layers is responsible for managing its memory.
437  * Zero-initialize every field you don't set up explicitly, to
438  * insulate against future API updates.  After you submit a message
439  * and its transfers, ignore them until its completion callback.
440  */
441 struct spi_transfer {
442 	/* it's ok if tx_buf == rx_buf (right?)
443 	 * for MicroWire, one buffer must be null
444 	 * buffers must work with dma_*map_single() calls, unless
445 	 *   spi_message.is_dma_mapped reports a pre-existing mapping
446 	 */
447 	const void	*tx_buf;
448 	void		*rx_buf;
449 	unsigned	len;
450 
451 	dma_addr_t	tx_dma;
452 	dma_addr_t	rx_dma;
453 
454 	unsigned	cs_change:1;
455 	u8		bits_per_word;
456 	u16		delay_usecs;
457 	u32		speed_hz;
458 
459 	struct list_head transfer_list;
460 };
461 
462 /**
463  * struct spi_message - one multi-segment SPI transaction
464  * @transfers: list of transfer segments in this transaction
465  * @spi: SPI device to which the transaction is queued
466  * @is_dma_mapped: if true, the caller provided both dma and cpu virtual
467  *	addresses for each transfer buffer
468  * @complete: called to report transaction completions
469  * @context: the argument to complete() when it's called
470  * @actual_length: the total number of bytes that were transferred in all
471  *	successful segments
472  * @status: zero for success, else negative errno
473  * @queue: for use by whichever driver currently owns the message
474  * @state: for use by whichever driver currently owns the message
475  *
476  * A @spi_message is used to execute an atomic sequence of data transfers,
477  * each represented by a struct spi_transfer.  The sequence is "atomic"
478  * in the sense that no other spi_message may use that SPI bus until that
479  * sequence completes.  On some systems, many such sequences can execute as
480  * as single programmed DMA transfer.  On all systems, these messages are
481  * queued, and might complete after transactions to other devices.  Messages
482  * sent to a given spi_device are alway executed in FIFO order.
483  *
484  * The code that submits an spi_message (and its spi_transfers)
485  * to the lower layers is responsible for managing its memory.
486  * Zero-initialize every field you don't set up explicitly, to
487  * insulate against future API updates.  After you submit a message
488  * and its transfers, ignore them until its completion callback.
489  */
490 struct spi_message {
491 	struct list_head	transfers;
492 
493 	struct spi_device	*spi;
494 
495 	unsigned		is_dma_mapped:1;
496 
497 	/* REVISIT:  we might want a flag affecting the behavior of the
498 	 * last transfer ... allowing things like "read 16 bit length L"
499 	 * immediately followed by "read L bytes".  Basically imposing
500 	 * a specific message scheduling algorithm.
501 	 *
502 	 * Some controller drivers (message-at-a-time queue processing)
503 	 * could provide that as their default scheduling algorithm.  But
504 	 * others (with multi-message pipelines) could need a flag to
505 	 * tell them about such special cases.
506 	 */
507 
508 	/* completion is reported through a callback */
509 	void			(*complete)(void *context);
510 	void			*context;
511 	unsigned		actual_length;
512 	int			status;
513 
514 	/* for optional use by whatever driver currently owns the
515 	 * spi_message ...  between calls to spi_async and then later
516 	 * complete(), that's the spi_master controller driver.
517 	 */
518 	struct list_head	queue;
519 	void			*state;
520 };
521 
spi_message_init(struct spi_message * m)522 static inline void spi_message_init(struct spi_message *m)
523 {
524 	memset(m, 0, sizeof *m);
525 	INIT_LIST_HEAD(&m->transfers);
526 }
527 
528 static inline void
spi_message_add_tail(struct spi_transfer * t,struct spi_message * m)529 spi_message_add_tail(struct spi_transfer *t, struct spi_message *m)
530 {
531 	list_add_tail(&t->transfer_list, &m->transfers);
532 }
533 
534 static inline void
spi_transfer_del(struct spi_transfer * t)535 spi_transfer_del(struct spi_transfer *t)
536 {
537 	list_del(&t->transfer_list);
538 }
539 
540 /* It's fine to embed message and transaction structures in other data
541  * structures so long as you don't free them while they're in use.
542  */
543 
spi_message_alloc(unsigned ntrans,gfp_t flags)544 static inline struct spi_message *spi_message_alloc(unsigned ntrans, gfp_t flags)
545 {
546 	struct spi_message *m;
547 
548 	m = kzalloc(sizeof(struct spi_message)
549 			+ ntrans * sizeof(struct spi_transfer),
550 			flags);
551 	if (m) {
552 		int i;
553 		struct spi_transfer *t = (struct spi_transfer *)(m + 1);
554 
555 		INIT_LIST_HEAD(&m->transfers);
556 		for (i = 0; i < ntrans; i++, t++)
557 			spi_message_add_tail(t, m);
558 	}
559 	return m;
560 }
561 
spi_message_free(struct spi_message * m)562 static inline void spi_message_free(struct spi_message *m)
563 {
564 	kfree(m);
565 }
566 
567 extern int spi_setup(struct spi_device *spi);
568 extern int spi_async(struct spi_device *spi, struct spi_message *message);
569 extern int spi_async_locked(struct spi_device *spi,
570 			    struct spi_message *message);
571 
572 /*---------------------------------------------------------------------------*/
573 
574 /* All these synchronous SPI transfer routines are utilities layered
575  * over the core async transfer primitive.  Here, "synchronous" means
576  * they will sleep uninterruptibly until the async transfer completes.
577  */
578 
579 extern int spi_sync(struct spi_device *spi, struct spi_message *message);
580 extern int spi_sync_locked(struct spi_device *spi, struct spi_message *message);
581 extern int spi_bus_lock(struct spi_master *master);
582 extern int spi_bus_unlock(struct spi_master *master);
583 
584 /**
585  * spi_write - SPI synchronous write
586  * @spi: device to which data will be written
587  * @buf: data buffer
588  * @len: data buffer size
589  * Context: can sleep
590  *
591  * This writes the buffer and returns zero or a negative error code.
592  * Callable only from contexts that can sleep.
593  */
594 static inline int
spi_write(struct spi_device * spi,const void * buf,size_t len)595 spi_write(struct spi_device *spi, const void *buf, size_t len)
596 {
597 	struct spi_transfer	t = {
598 			.tx_buf		= buf,
599 			.len		= len,
600 		};
601 	struct spi_message	m;
602 
603 	spi_message_init(&m);
604 	spi_message_add_tail(&t, &m);
605 	return spi_sync(spi, &m);
606 }
607 
608 /**
609  * spi_read - SPI synchronous read
610  * @spi: device from which data will be read
611  * @buf: data buffer
612  * @len: data buffer size
613  * Context: can sleep
614  *
615  * This reads the buffer and returns zero or a negative error code.
616  * Callable only from contexts that can sleep.
617  */
618 static inline int
spi_read(struct spi_device * spi,void * buf,size_t len)619 spi_read(struct spi_device *spi, void *buf, size_t len)
620 {
621 	struct spi_transfer	t = {
622 			.rx_buf		= buf,
623 			.len		= len,
624 		};
625 	struct spi_message	m;
626 
627 	spi_message_init(&m);
628 	spi_message_add_tail(&t, &m);
629 	return spi_sync(spi, &m);
630 }
631 
632 /* this copies txbuf and rxbuf data; for small transfers only! */
633 extern int spi_write_then_read(struct spi_device *spi,
634 		const void *txbuf, unsigned n_tx,
635 		void *rxbuf, unsigned n_rx);
636 
637 /**
638  * spi_w8r8 - SPI synchronous 8 bit write followed by 8 bit read
639  * @spi: device with which data will be exchanged
640  * @cmd: command to be written before data is read back
641  * Context: can sleep
642  *
643  * This returns the (unsigned) eight bit number returned by the
644  * device, or else a negative error code.  Callable only from
645  * contexts that can sleep.
646  */
spi_w8r8(struct spi_device * spi,u8 cmd)647 static inline ssize_t spi_w8r8(struct spi_device *spi, u8 cmd)
648 {
649 	ssize_t			status;
650 	u8			result;
651 
652 	status = spi_write_then_read(spi, &cmd, 1, &result, 1);
653 
654 	/* return negative errno or unsigned value */
655 	return (status < 0) ? status : result;
656 }
657 
658 /**
659  * spi_w8r16 - SPI synchronous 8 bit write followed by 16 bit read
660  * @spi: device with which data will be exchanged
661  * @cmd: command to be written before data is read back
662  * Context: can sleep
663  *
664  * This returns the (unsigned) sixteen bit number returned by the
665  * device, or else a negative error code.  Callable only from
666  * contexts that can sleep.
667  *
668  * The number is returned in wire-order, which is at least sometimes
669  * big-endian.
670  */
spi_w8r16(struct spi_device * spi,u8 cmd)671 static inline ssize_t spi_w8r16(struct spi_device *spi, u8 cmd)
672 {
673 	ssize_t			status;
674 	u16			result;
675 
676 	status = spi_write_then_read(spi, &cmd, 1, (u8 *) &result, 2);
677 
678 	/* return negative errno or unsigned value */
679 	return (status < 0) ? status : result;
680 }
681 
682 /*---------------------------------------------------------------------------*/
683 
684 /*
685  * INTERFACE between board init code and SPI infrastructure.
686  *
687  * No SPI driver ever sees these SPI device table segments, but
688  * it's how the SPI core (or adapters that get hotplugged) grows
689  * the driver model tree.
690  *
691  * As a rule, SPI devices can't be probed.  Instead, board init code
692  * provides a table listing the devices which are present, with enough
693  * information to bind and set up the device's driver.  There's basic
694  * support for nonstatic configurations too; enough to handle adding
695  * parport adapters, or microcontrollers acting as USB-to-SPI bridges.
696  */
697 
698 /**
699  * struct spi_board_info - board-specific template for a SPI device
700  * @modalias: Initializes spi_device.modalias; identifies the driver.
701  * @platform_data: Initializes spi_device.platform_data; the particular
702  *	data stored there is driver-specific.
703  * @controller_data: Initializes spi_device.controller_data; some
704  *	controllers need hints about hardware setup, e.g. for DMA.
705  * @irq: Initializes spi_device.irq; depends on how the board is wired.
706  * @max_speed_hz: Initializes spi_device.max_speed_hz; based on limits
707  *	from the chip datasheet and board-specific signal quality issues.
708  * @bus_num: Identifies which spi_master parents the spi_device; unused
709  *	by spi_new_device(), and otherwise depends on board wiring.
710  * @chip_select: Initializes spi_device.chip_select; depends on how
711  *	the board is wired.
712  * @mode: Initializes spi_device.mode; based on the chip datasheet, board
713  *	wiring (some devices support both 3WIRE and standard modes), and
714  *	possibly presence of an inverter in the chipselect path.
715  *
716  * When adding new SPI devices to the device tree, these structures serve
717  * as a partial device template.  They hold information which can't always
718  * be determined by drivers.  Information that probe() can establish (such
719  * as the default transfer wordsize) is not included here.
720  *
721  * These structures are used in two places.  Their primary role is to
722  * be stored in tables of board-specific device descriptors, which are
723  * declared early in board initialization and then used (much later) to
724  * populate a controller's device tree after the that controller's driver
725  * initializes.  A secondary (and atypical) role is as a parameter to
726  * spi_new_device() call, which happens after those controller drivers
727  * are active in some dynamic board configuration models.
728  */
729 struct spi_board_info {
730 	/* the device name and module name are coupled, like platform_bus;
731 	 * "modalias" is normally the driver name.
732 	 *
733 	 * platform_data goes to spi_device.dev.platform_data,
734 	 * controller_data goes to spi_device.controller_data,
735 	 * irq is copied too
736 	 */
737 	char		modalias[SPI_NAME_SIZE];
738 	const void	*platform_data;
739 	void		*controller_data;
740 	int		irq;
741 
742 	/* slower signaling on noisy or low voltage boards */
743 	u32		max_speed_hz;
744 
745 
746 	/* bus_num is board specific and matches the bus_num of some
747 	 * spi_master that will probably be registered later.
748 	 *
749 	 * chip_select reflects how this chip is wired to that master;
750 	 * it's less than num_chipselect.
751 	 */
752 	u16		bus_num;
753 	u16		chip_select;
754 
755 	/* mode becomes spi_device.mode, and is essential for chips
756 	 * where the default of SPI_CS_HIGH = 0 is wrong.
757 	 */
758 	u8		mode;
759 
760 	/* ... may need additional spi_device chip config data here.
761 	 * avoid stuff protocol drivers can set; but include stuff
762 	 * needed to behave without being bound to a driver:
763 	 *  - quirks like clock rate mattering when not selected
764 	 */
765 };
766 
767 #ifdef	CONFIG_SPI
768 extern int
769 spi_register_board_info(struct spi_board_info const *info, unsigned n);
770 #else
771 /* board init code may ignore whether SPI is configured or not */
772 static inline int
spi_register_board_info(struct spi_board_info const * info,unsigned n)773 spi_register_board_info(struct spi_board_info const *info, unsigned n)
774 	{ return 0; }
775 #endif
776 
777 
778 /* If you're hotplugging an adapter with devices (parport, usb, etc)
779  * use spi_new_device() to describe each device.  You can also call
780  * spi_unregister_device() to start making that device vanish, but
781  * normally that would be handled by spi_unregister_master().
782  *
783  * You can also use spi_alloc_device() and spi_add_device() to use a two
784  * stage registration sequence for each spi_device.  This gives the caller
785  * some more control over the spi_device structure before it is registered,
786  * but requires that caller to initialize fields that would otherwise
787  * be defined using the board info.
788  */
789 extern struct spi_device *
790 spi_alloc_device(struct spi_master *master);
791 
792 extern int
793 spi_add_device(struct spi_device *spi);
794 
795 extern struct spi_device *
796 spi_new_device(struct spi_master *, struct spi_board_info *);
797 
798 static inline void
spi_unregister_device(struct spi_device * spi)799 spi_unregister_device(struct spi_device *spi)
800 {
801 	if (spi)
802 		device_unregister(&spi->dev);
803 }
804 
805 extern const struct spi_device_id *
806 spi_get_device_id(const struct spi_device *sdev);
807 
808 #endif /* __LINUX_SPI_H */
809