1 #include <linux/types.h>
2 #include <asm/delay.h>
3 #include <irq.h>
4 #include <hwregs/intr_vect.h>
5 #include <hwregs/intr_vect_defs.h>
6 #include <asm/tlbflush.h>
7 #include <asm/mmu_context.h>
8 #include <hwregs/asm/mmu_defs_asm.h>
9 #include <hwregs/supp_reg.h>
10 #include <linux/atomic.h>
11 
12 #include <linux/err.h>
13 #include <linux/init.h>
14 #include <linux/timex.h>
15 #include <linux/sched.h>
16 #include <linux/kernel.h>
17 #include <linux/cpumask.h>
18 #include <linux/interrupt.h>
19 #include <linux/module.h>
20 
21 #define IPI_SCHEDULE 1
22 #define IPI_CALL 2
23 #define IPI_FLUSH_TLB 4
24 #define IPI_BOOT 8
25 
26 #define FLUSH_ALL (void*)0xffffffff
27 
28 /* Vector of locks used for various atomic operations */
29 spinlock_t cris_atomic_locks[] = {
30 	[0 ... LOCK_COUNT - 1] = __SPIN_LOCK_UNLOCKED(cris_atomic_locks)
31 };
32 
33 /* CPU masks */
34 cpumask_t phys_cpu_present_map = CPU_MASK_NONE;
35 EXPORT_SYMBOL(phys_cpu_present_map);
36 
37 /* Variables used during SMP boot */
38 volatile int cpu_now_booting = 0;
39 volatile struct thread_info *smp_init_current_idle_thread;
40 
41 /* Variables used during IPI */
42 static DEFINE_SPINLOCK(call_lock);
43 static DEFINE_SPINLOCK(tlbstate_lock);
44 
45 struct call_data_struct {
46 	void (*func) (void *info);
47 	void *info;
48 	int wait;
49 };
50 
51 static struct call_data_struct * call_data;
52 
53 static struct mm_struct* flush_mm;
54 static struct vm_area_struct* flush_vma;
55 static unsigned long flush_addr;
56 
57 /* Mode registers */
58 static unsigned long irq_regs[NR_CPUS] = {
59   regi_irq,
60   regi_irq2
61 };
62 
63 static irqreturn_t crisv32_ipi_interrupt(int irq, void *dev_id);
64 static int send_ipi(int vector, int wait, cpumask_t cpu_mask);
65 static struct irqaction irq_ipi  = {
66 	.handler = crisv32_ipi_interrupt,
67 	.flags = IRQF_DISABLED,
68 	.name = "ipi",
69 };
70 
71 extern void cris_mmu_init(void);
72 extern void cris_timer_init(void);
73 
74 /* SMP initialization */
smp_prepare_cpus(unsigned int max_cpus)75 void __init smp_prepare_cpus(unsigned int max_cpus)
76 {
77 	int i;
78 
79 	/* From now on we can expect IPIs so set them up */
80 	setup_irq(IPI_INTR_VECT, &irq_ipi);
81 
82 	/* Mark all possible CPUs as present */
83 	for (i = 0; i < max_cpus; i++)
84 		cpumask_set_cpu(i, &phys_cpu_present_map);
85 }
86 
smp_prepare_boot_cpu(void)87 void __devinit smp_prepare_boot_cpu(void)
88 {
89 	/* PGD pointer has moved after per_cpu initialization so
90 	 * update the MMU.
91 	 */
92   	pgd_t **pgd;
93 	pgd = (pgd_t**)&per_cpu(current_pgd, smp_processor_id());
94 
95 	SUPP_BANK_SEL(1);
96 	SUPP_REG_WR(RW_MM_TLB_PGD, pgd);
97 	SUPP_BANK_SEL(2);
98 	SUPP_REG_WR(RW_MM_TLB_PGD, pgd);
99 
100 	set_cpu_online(0, true);
101 	cpumask_set_cpu(0, &phys_cpu_present_map);
102 	set_cpu_possible(0, true);
103 }
104 
smp_cpus_done(unsigned int max_cpus)105 void __init smp_cpus_done(unsigned int max_cpus)
106 {
107 }
108 
109 /* Bring one cpu online.*/
110 static int __init
smp_boot_one_cpu(int cpuid)111 smp_boot_one_cpu(int cpuid)
112 {
113 	unsigned timeout;
114 	struct task_struct *idle;
115 	cpumask_t cpu_mask;
116 
117 	cpumask_clear(&cpu_mask);
118 	idle = fork_idle(cpuid);
119 	if (IS_ERR(idle))
120 		panic("SMP: fork failed for CPU:%d", cpuid);
121 
122 	task_thread_info(idle)->cpu = cpuid;
123 
124 	/* Information to the CPU that is about to boot */
125 	smp_init_current_idle_thread = task_thread_info(idle);
126 	cpu_now_booting = cpuid;
127 
128 	/* Kick it */
129 	set_cpu_online(cpuid, true);
130 	cpumask_set_cpu(cpuid, &cpu_mask);
131 	send_ipi(IPI_BOOT, 0, cpu_mask);
132 	set_cpu_online(cpuid, false);
133 
134 	/* Wait for CPU to come online */
135 	for (timeout = 0; timeout < 10000; timeout++) {
136 		if(cpu_online(cpuid)) {
137 			cpu_now_booting = 0;
138 			smp_init_current_idle_thread = NULL;
139 			return 0; /* CPU online */
140 		}
141 		udelay(100);
142 		barrier();
143 	}
144 
145 	put_task_struct(idle);
146 	idle = NULL;
147 
148 	printk(KERN_CRIT "SMP: CPU:%d is stuck.\n", cpuid);
149 	return -1;
150 }
151 
152 /* Secondary CPUs starts using C here. Here we need to setup CPU
153  * specific stuff such as the local timer and the MMU. */
smp_callin(void)154 void __init smp_callin(void)
155 {
156 	extern void cpu_idle(void);
157 
158 	int cpu = cpu_now_booting;
159 	reg_intr_vect_rw_mask vect_mask = {0};
160 
161 	/* Initialise the idle task for this CPU */
162 	atomic_inc(&init_mm.mm_count);
163 	current->active_mm = &init_mm;
164 
165 	/* Set up MMU */
166 	cris_mmu_init();
167 	__flush_tlb_all();
168 
169 	/* Setup local timer. */
170 	cris_timer_init();
171 
172 	/* Enable IRQ and idle */
173 	REG_WR(intr_vect, irq_regs[cpu], rw_mask, vect_mask);
174 	crisv32_unmask_irq(IPI_INTR_VECT);
175 	crisv32_unmask_irq(TIMER0_INTR_VECT);
176 	preempt_disable();
177 	notify_cpu_starting(cpu);
178 	local_irq_enable();
179 
180 	set_cpu_online(cpu, true);
181 	cpu_idle();
182 }
183 
184 /* Stop execution on this CPU.*/
stop_this_cpu(void * dummy)185 void stop_this_cpu(void* dummy)
186 {
187 	local_irq_disable();
188 	asm volatile("halt");
189 }
190 
191 /* Other calls */
smp_send_stop(void)192 void smp_send_stop(void)
193 {
194 	smp_call_function(stop_this_cpu, NULL, 0);
195 }
196 
setup_profiling_timer(unsigned int multiplier)197 int setup_profiling_timer(unsigned int multiplier)
198 {
199 	return -EINVAL;
200 }
201 
202 
203 /* cache_decay_ticks is used by the scheduler to decide if a process
204  * is "hot" on one CPU. A higher value means a higher penalty to move
205  * a process to another CPU. Our cache is rather small so we report
206  * 1 tick.
207  */
208 unsigned long cache_decay_ticks = 1;
209 
__cpu_up(unsigned int cpu)210 int __cpuinit __cpu_up(unsigned int cpu)
211 {
212 	smp_boot_one_cpu(cpu);
213 	return cpu_online(cpu) ? 0 : -ENOSYS;
214 }
215 
smp_send_reschedule(int cpu)216 void smp_send_reschedule(int cpu)
217 {
218 	cpumask_t cpu_mask;
219 	cpumask_clear(&cpu_mask);
220 	cpumask_set_cpu(cpu, &cpu_mask);
221 	send_ipi(IPI_SCHEDULE, 0, cpu_mask);
222 }
223 
224 /* TLB flushing
225  *
226  * Flush needs to be done on the local CPU and on any other CPU that
227  * may have the same mapping. The mm->cpu_vm_mask is used to keep track
228  * of which CPUs that a specific process has been executed on.
229  */
flush_tlb_common(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr)230 void flush_tlb_common(struct mm_struct* mm, struct vm_area_struct* vma, unsigned long addr)
231 {
232 	unsigned long flags;
233 	cpumask_t cpu_mask;
234 
235 	spin_lock_irqsave(&tlbstate_lock, flags);
236 	cpu_mask = (mm == FLUSH_ALL ? cpu_all_mask : *mm_cpumask(mm));
237 	cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
238 	flush_mm = mm;
239 	flush_vma = vma;
240 	flush_addr = addr;
241 	send_ipi(IPI_FLUSH_TLB, 1, cpu_mask);
242 	spin_unlock_irqrestore(&tlbstate_lock, flags);
243 }
244 
flush_tlb_all(void)245 void flush_tlb_all(void)
246 {
247 	__flush_tlb_all();
248 	flush_tlb_common(FLUSH_ALL, FLUSH_ALL, 0);
249 }
250 
flush_tlb_mm(struct mm_struct * mm)251 void flush_tlb_mm(struct mm_struct *mm)
252 {
253 	__flush_tlb_mm(mm);
254 	flush_tlb_common(mm, FLUSH_ALL, 0);
255 	/* No more mappings in other CPUs */
256 	cpumask_clear(mm_cpumask(mm));
257 	cpumask_set_cpu(smp_processor_id(), mm_cpumask(mm));
258 }
259 
flush_tlb_page(struct vm_area_struct * vma,unsigned long addr)260 void flush_tlb_page(struct vm_area_struct *vma,
261 			   unsigned long addr)
262 {
263 	__flush_tlb_page(vma, addr);
264 	flush_tlb_common(vma->vm_mm, vma, addr);
265 }
266 
267 /* Inter processor interrupts
268  *
269  * The IPIs are used for:
270  *   * Force a schedule on a CPU
271  *   * FLush TLB on other CPUs
272  *   * Call a function on other CPUs
273  */
274 
send_ipi(int vector,int wait,cpumask_t cpu_mask)275 int send_ipi(int vector, int wait, cpumask_t cpu_mask)
276 {
277 	int i = 0;
278 	reg_intr_vect_rw_ipi ipi = REG_RD(intr_vect, irq_regs[i], rw_ipi);
279 	int ret = 0;
280 
281 	/* Calculate CPUs to send to. */
282 	cpumask_and(&cpu_mask, &cpu_mask, cpu_online_mask);
283 
284 	/* Send the IPI. */
285 	for_each_cpu(i, &cpu_mask)
286 	{
287 		ipi.vector |= vector;
288 		REG_WR(intr_vect, irq_regs[i], rw_ipi, ipi);
289 	}
290 
291 	/* Wait for IPI to finish on other CPUS */
292 	if (wait) {
293 		for_each_cpu(i, &cpu_mask) {
294                         int j;
295                         for (j = 0 ; j < 1000; j++) {
296 				ipi = REG_RD(intr_vect, irq_regs[i], rw_ipi);
297 				if (!ipi.vector)
298 					break;
299 				udelay(100);
300 			}
301 
302 			/* Timeout? */
303 			if (ipi.vector) {
304 				printk("SMP call timeout from %d to %d\n", smp_processor_id(), i);
305 				ret = -ETIMEDOUT;
306 				dump_stack();
307 			}
308 		}
309 	}
310 	return ret;
311 }
312 
313 /*
314  * You must not call this function with disabled interrupts or from a
315  * hardware interrupt handler or from a bottom half handler.
316  */
smp_call_function(void (* func)(void * info),void * info,int wait)317 int smp_call_function(void (*func)(void *info), void *info, int wait)
318 {
319 	cpumask_t cpu_mask;
320 	struct call_data_struct data;
321 	int ret;
322 
323 	cpumask_setall(&cpu_mask);
324 	cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
325 
326 	WARN_ON(irqs_disabled());
327 
328 	data.func = func;
329 	data.info = info;
330 	data.wait = wait;
331 
332 	spin_lock(&call_lock);
333 	call_data = &data;
334 	ret = send_ipi(IPI_CALL, wait, cpu_mask);
335 	spin_unlock(&call_lock);
336 
337 	return ret;
338 }
339 
crisv32_ipi_interrupt(int irq,void * dev_id)340 irqreturn_t crisv32_ipi_interrupt(int irq, void *dev_id)
341 {
342 	void (*func) (void *info) = call_data->func;
343 	void *info = call_data->info;
344 	reg_intr_vect_rw_ipi ipi;
345 
346 	ipi = REG_RD(intr_vect, irq_regs[smp_processor_id()], rw_ipi);
347 
348 	if (ipi.vector & IPI_SCHEDULE) {
349 		scheduler_ipi();
350 	}
351 	if (ipi.vector & IPI_CALL) {
352 		func(info);
353 	}
354 	if (ipi.vector & IPI_FLUSH_TLB) {
355 		if (flush_mm == FLUSH_ALL)
356 			__flush_tlb_all();
357 		else if (flush_vma == FLUSH_ALL)
358 			__flush_tlb_mm(flush_mm);
359 		else
360 			__flush_tlb_page(flush_vma, flush_addr);
361 	}
362 
363 	ipi.vector = 0;
364 	REG_WR(intr_vect, irq_regs[smp_processor_id()], rw_ipi, ipi);
365 
366 	return IRQ_HANDLED;
367 }
368 
369