xref: /linux/arch/x86/xen/mmu_pv.c (revision ab93e0dd72c37d378dd936f031ffb83ff2bd87ce)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /*
4  * Xen mmu operations
5  *
6  * This file contains the various mmu fetch and update operations.
7  * The most important job they must perform is the mapping between the
8  * domain's pfn and the overall machine mfns.
9  *
10  * Xen allows guests to directly update the pagetable, in a controlled
11  * fashion.  In other words, the guest modifies the same pagetable
12  * that the CPU actually uses, which eliminates the overhead of having
13  * a separate shadow pagetable.
14  *
15  * In order to allow this, it falls on the guest domain to map its
16  * notion of a "physical" pfn - which is just a domain-local linear
17  * address - into a real "machine address" which the CPU's MMU can
18  * use.
19  *
20  * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
21  * inserted directly into the pagetable.  When creating a new
22  * pte/pmd/pgd, it converts the passed pfn into an mfn.  Conversely,
23  * when reading the content back with __(pgd|pmd|pte)_val, it converts
24  * the mfn back into a pfn.
25  *
26  * The other constraint is that all pages which make up a pagetable
27  * must be mapped read-only in the guest.  This prevents uncontrolled
28  * guest updates to the pagetable.  Xen strictly enforces this, and
29  * will disallow any pagetable update which will end up mapping a
30  * pagetable page RW, and will disallow using any writable page as a
31  * pagetable.
32  *
33  * Naively, when loading %cr3 with the base of a new pagetable, Xen
34  * would need to validate the whole pagetable before going on.
35  * Naturally, this is quite slow.  The solution is to "pin" a
36  * pagetable, which enforces all the constraints on the pagetable even
37  * when it is not actively in use.  This means that Xen can be assured
38  * that it is still valid when you do load it into %cr3, and doesn't
39  * need to revalidate it.
40  *
41  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
42  */
43 #include <linux/sched/mm.h>
44 #include <linux/debugfs.h>
45 #include <linux/bug.h>
46 #include <linux/vmalloc.h>
47 #include <linux/export.h>
48 #include <linux/init.h>
49 #include <linux/gfp.h>
50 #include <linux/memblock.h>
51 #include <linux/seq_file.h>
52 #include <linux/crash_dump.h>
53 #include <linux/pgtable.h>
54 #ifdef CONFIG_KEXEC_CORE
55 #include <linux/kexec.h>
56 #endif
57 
58 #include <trace/events/xen.h>
59 
60 #include <asm/tlbflush.h>
61 #include <asm/fixmap.h>
62 #include <asm/mmu_context.h>
63 #include <asm/setup.h>
64 #include <asm/paravirt.h>
65 #include <asm/e820/api.h>
66 #include <asm/linkage.h>
67 #include <asm/page.h>
68 #include <asm/init.h>
69 #include <asm/memtype.h>
70 #include <asm/smp.h>
71 #include <asm/tlb.h>
72 
73 #include <asm/xen/hypercall.h>
74 #include <asm/xen/hypervisor.h>
75 
76 #include <xen/xen.h>
77 #include <xen/page.h>
78 #include <xen/interface/xen.h>
79 #include <xen/interface/hvm/hvm_op.h>
80 #include <xen/interface/version.h>
81 #include <xen/interface/memory.h>
82 #include <xen/hvc-console.h>
83 #include <xen/swiotlb-xen.h>
84 
85 #include "xen-ops.h"
86 
87 /*
88  * Prototypes for functions called via PV_CALLEE_SAVE_REGS_THUNK() in order
89  * to avoid warnings with "-Wmissing-prototypes".
90  */
91 pteval_t xen_pte_val(pte_t pte);
92 pgdval_t xen_pgd_val(pgd_t pgd);
93 pmdval_t xen_pmd_val(pmd_t pmd);
94 pudval_t xen_pud_val(pud_t pud);
95 p4dval_t xen_p4d_val(p4d_t p4d);
96 pte_t xen_make_pte(pteval_t pte);
97 pgd_t xen_make_pgd(pgdval_t pgd);
98 pmd_t xen_make_pmd(pmdval_t pmd);
99 pud_t xen_make_pud(pudval_t pud);
100 p4d_t xen_make_p4d(p4dval_t p4d);
101 pte_t xen_make_pte_init(pteval_t pte);
102 
103 #ifdef CONFIG_X86_VSYSCALL_EMULATION
104 /* l3 pud for userspace vsyscall mapping */
105 static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
106 #endif
107 
108 /*
109  * Protects atomic reservation decrease/increase against concurrent increases.
110  * Also protects non-atomic updates of current_pages and balloon lists.
111  */
112 static DEFINE_SPINLOCK(xen_reservation_lock);
113 
114 /* Protected by xen_reservation_lock. */
115 #define MIN_CONTIG_ORDER 9 /* 2MB */
116 static unsigned int discontig_frames_order = MIN_CONTIG_ORDER;
117 static unsigned long discontig_frames_early[1UL << MIN_CONTIG_ORDER] __initdata;
118 static unsigned long *discontig_frames __refdata = discontig_frames_early;
119 static bool discontig_frames_dyn;
120 
alloc_discontig_frames(unsigned int order)121 static int alloc_discontig_frames(unsigned int order)
122 {
123 	unsigned long *new_array, *old_array;
124 	unsigned int old_order;
125 	unsigned long flags;
126 
127 	BUG_ON(order < MIN_CONTIG_ORDER);
128 	BUILD_BUG_ON(sizeof(discontig_frames_early) != PAGE_SIZE);
129 
130 	new_array = (unsigned long *)__get_free_pages(GFP_KERNEL,
131 						      order - MIN_CONTIG_ORDER);
132 	if (!new_array)
133 		return -ENOMEM;
134 
135 	spin_lock_irqsave(&xen_reservation_lock, flags);
136 
137 	old_order = discontig_frames_order;
138 
139 	if (order > discontig_frames_order || !discontig_frames_dyn) {
140 		if (!discontig_frames_dyn)
141 			old_array = NULL;
142 		else
143 			old_array = discontig_frames;
144 
145 		discontig_frames = new_array;
146 		discontig_frames_order = order;
147 		discontig_frames_dyn = true;
148 	} else {
149 		old_array = new_array;
150 	}
151 
152 	spin_unlock_irqrestore(&xen_reservation_lock, flags);
153 
154 	free_pages((unsigned long)old_array, old_order - MIN_CONTIG_ORDER);
155 
156 	return 0;
157 }
158 
159 /*
160  * Note about cr3 (pagetable base) values:
161  *
162  * xen_cr3 contains the current logical cr3 value; it contains the
163  * last set cr3.  This may not be the current effective cr3, because
164  * its update may be being lazily deferred.  However, a vcpu looking
165  * at its own cr3 can use this value knowing that it everything will
166  * be self-consistent.
167  *
168  * xen_current_cr3 contains the actual vcpu cr3; it is set once the
169  * hypercall to set the vcpu cr3 is complete (so it may be a little
170  * out of date, but it will never be set early).  If one vcpu is
171  * looking at another vcpu's cr3 value, it should use this variable.
172  */
173 DEFINE_PER_CPU(unsigned long, xen_cr3);	 /* cr3 stored as physaddr */
174 static DEFINE_PER_CPU(unsigned long, xen_current_cr3);	/* actual vcpu cr3 */
175 
176 static phys_addr_t xen_pt_base, xen_pt_size __initdata;
177 
178 static DEFINE_STATIC_KEY_FALSE(xen_struct_pages_ready);
179 
180 /*
181  * Just beyond the highest usermode address.  STACK_TOP_MAX has a
182  * redzone above it, so round it up to a PGD boundary.
183  */
184 #define USER_LIMIT	((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
185 
make_lowmem_page_readonly(void * vaddr)186 void make_lowmem_page_readonly(void *vaddr)
187 {
188 	pte_t *pte, ptev;
189 	unsigned long address = (unsigned long)vaddr;
190 	unsigned int level;
191 
192 	pte = lookup_address(address, &level);
193 	if (pte == NULL)
194 		return;		/* vaddr missing */
195 
196 	ptev = pte_wrprotect(*pte);
197 
198 	if (HYPERVISOR_update_va_mapping(address, ptev, 0))
199 		BUG();
200 }
201 
make_lowmem_page_readwrite(void * vaddr)202 void make_lowmem_page_readwrite(void *vaddr)
203 {
204 	pte_t *pte, ptev;
205 	unsigned long address = (unsigned long)vaddr;
206 	unsigned int level;
207 
208 	pte = lookup_address(address, &level);
209 	if (pte == NULL)
210 		return;		/* vaddr missing */
211 
212 	ptev = pte_mkwrite_novma(*pte);
213 
214 	if (HYPERVISOR_update_va_mapping(address, ptev, 0))
215 		BUG();
216 }
217 
218 
219 /*
220  * During early boot all page table pages are pinned, but we do not have struct
221  * pages, so return true until struct pages are ready.
222  */
xen_page_pinned(void * ptr)223 static bool xen_page_pinned(void *ptr)
224 {
225 	if (static_branch_likely(&xen_struct_pages_ready)) {
226 		struct page *page = virt_to_page(ptr);
227 
228 		return PagePinned(page);
229 	}
230 	return true;
231 }
232 
xen_extend_mmu_update(const struct mmu_update * update)233 static void xen_extend_mmu_update(const struct mmu_update *update)
234 {
235 	struct multicall_space mcs;
236 	struct mmu_update *u;
237 
238 	mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
239 
240 	if (mcs.mc != NULL) {
241 		mcs.mc->args[1]++;
242 	} else {
243 		mcs = __xen_mc_entry(sizeof(*u));
244 		MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
245 	}
246 
247 	u = mcs.args;
248 	*u = *update;
249 }
250 
xen_extend_mmuext_op(const struct mmuext_op * op)251 static void xen_extend_mmuext_op(const struct mmuext_op *op)
252 {
253 	struct multicall_space mcs;
254 	struct mmuext_op *u;
255 
256 	mcs = xen_mc_extend_args(__HYPERVISOR_mmuext_op, sizeof(*u));
257 
258 	if (mcs.mc != NULL) {
259 		mcs.mc->args[1]++;
260 	} else {
261 		mcs = __xen_mc_entry(sizeof(*u));
262 		MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
263 	}
264 
265 	u = mcs.args;
266 	*u = *op;
267 }
268 
xen_set_pmd_hyper(pmd_t * ptr,pmd_t val)269 static void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
270 {
271 	struct mmu_update u;
272 
273 	preempt_disable();
274 
275 	xen_mc_batch();
276 
277 	/* ptr may be ioremapped for 64-bit pagetable setup */
278 	u.ptr = arbitrary_virt_to_machine(ptr).maddr;
279 	u.val = pmd_val_ma(val);
280 	xen_extend_mmu_update(&u);
281 
282 	xen_mc_issue(XEN_LAZY_MMU);
283 
284 	preempt_enable();
285 }
286 
xen_set_pmd(pmd_t * ptr,pmd_t val)287 static void xen_set_pmd(pmd_t *ptr, pmd_t val)
288 {
289 	trace_xen_mmu_set_pmd(ptr, val);
290 
291 	/* If page is not pinned, we can just update the entry
292 	   directly */
293 	if (!xen_page_pinned(ptr)) {
294 		*ptr = val;
295 		return;
296 	}
297 
298 	xen_set_pmd_hyper(ptr, val);
299 }
300 
301 /*
302  * Associate a virtual page frame with a given physical page frame
303  * and protection flags for that frame.
304  */
set_pte_mfn(unsigned long vaddr,unsigned long mfn,pgprot_t flags)305 void __init set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
306 {
307 	if (HYPERVISOR_update_va_mapping(vaddr, mfn_pte(mfn, flags),
308 					 UVMF_INVLPG))
309 		BUG();
310 }
311 
xen_batched_set_pte(pte_t * ptep,pte_t pteval)312 static bool xen_batched_set_pte(pte_t *ptep, pte_t pteval)
313 {
314 	struct mmu_update u;
315 
316 	if (xen_get_lazy_mode() != XEN_LAZY_MMU)
317 		return false;
318 
319 	xen_mc_batch();
320 
321 	u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
322 	u.val = pte_val_ma(pteval);
323 	xen_extend_mmu_update(&u);
324 
325 	xen_mc_issue(XEN_LAZY_MMU);
326 
327 	return true;
328 }
329 
__xen_set_pte(pte_t * ptep,pte_t pteval)330 static inline void __xen_set_pte(pte_t *ptep, pte_t pteval)
331 {
332 	if (!xen_batched_set_pte(ptep, pteval)) {
333 		/*
334 		 * Could call native_set_pte() here and trap and
335 		 * emulate the PTE write, but a hypercall is much cheaper.
336 		 */
337 		struct mmu_update u;
338 
339 		u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
340 		u.val = pte_val_ma(pteval);
341 		HYPERVISOR_mmu_update(&u, 1, NULL, DOMID_SELF);
342 	}
343 }
344 
xen_set_pte(pte_t * ptep,pte_t pteval)345 static void xen_set_pte(pte_t *ptep, pte_t pteval)
346 {
347 	trace_xen_mmu_set_pte(ptep, pteval);
348 	__xen_set_pte(ptep, pteval);
349 }
350 
xen_ptep_modify_prot_start(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)351 static pte_t xen_ptep_modify_prot_start(struct vm_area_struct *vma,
352 					unsigned long addr, pte_t *ptep)
353 {
354 	/* Just return the pte as-is.  We preserve the bits on commit */
355 	trace_xen_mmu_ptep_modify_prot_start(vma->vm_mm, addr, ptep, *ptep);
356 	return *ptep;
357 }
358 
xen_ptep_modify_prot_commit(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t pte)359 static void xen_ptep_modify_prot_commit(struct vm_area_struct *vma,
360 					unsigned long addr,
361 					pte_t *ptep, pte_t pte)
362 {
363 	struct mmu_update u;
364 
365 	trace_xen_mmu_ptep_modify_prot_commit(vma->vm_mm, addr, ptep, pte);
366 	xen_mc_batch();
367 
368 	u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
369 	u.val = pte_val_ma(pte);
370 	xen_extend_mmu_update(&u);
371 
372 	xen_mc_issue(XEN_LAZY_MMU);
373 }
374 
375 /* Assume pteval_t is equivalent to all the other *val_t types. */
pte_mfn_to_pfn(pteval_t val)376 static pteval_t pte_mfn_to_pfn(pteval_t val)
377 {
378 	if (val & _PAGE_PRESENT) {
379 		unsigned long mfn = (val & XEN_PTE_MFN_MASK) >> PAGE_SHIFT;
380 		unsigned long pfn = mfn_to_pfn(mfn);
381 
382 		pteval_t flags = val & PTE_FLAGS_MASK;
383 		if (unlikely(pfn == ~0))
384 			val = flags & ~_PAGE_PRESENT;
385 		else
386 			val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
387 	}
388 
389 	return val;
390 }
391 
pte_pfn_to_mfn(pteval_t val)392 static pteval_t pte_pfn_to_mfn(pteval_t val)
393 {
394 	if (val & _PAGE_PRESENT) {
395 		unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
396 		pteval_t flags = val & PTE_FLAGS_MASK;
397 		unsigned long mfn;
398 
399 		mfn = __pfn_to_mfn(pfn);
400 
401 		/*
402 		 * If there's no mfn for the pfn, then just create an
403 		 * empty non-present pte.  Unfortunately this loses
404 		 * information about the original pfn, so
405 		 * pte_mfn_to_pfn is asymmetric.
406 		 */
407 		if (unlikely(mfn == INVALID_P2M_ENTRY)) {
408 			mfn = 0;
409 			flags = 0;
410 		} else
411 			mfn &= ~(FOREIGN_FRAME_BIT | IDENTITY_FRAME_BIT);
412 		val = ((pteval_t)mfn << PAGE_SHIFT) | flags;
413 	}
414 
415 	return val;
416 }
417 
xen_pte_val(pte_t pte)418 __visible pteval_t xen_pte_val(pte_t pte)
419 {
420 	pteval_t pteval = pte.pte;
421 
422 	return pte_mfn_to_pfn(pteval);
423 }
424 PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val);
425 
xen_pgd_val(pgd_t pgd)426 __visible pgdval_t xen_pgd_val(pgd_t pgd)
427 {
428 	return pte_mfn_to_pfn(pgd.pgd);
429 }
430 PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val);
431 
xen_make_pte(pteval_t pte)432 __visible pte_t xen_make_pte(pteval_t pte)
433 {
434 	pte = pte_pfn_to_mfn(pte);
435 
436 	return native_make_pte(pte);
437 }
438 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte);
439 
xen_make_pgd(pgdval_t pgd)440 __visible pgd_t xen_make_pgd(pgdval_t pgd)
441 {
442 	pgd = pte_pfn_to_mfn(pgd);
443 	return native_make_pgd(pgd);
444 }
445 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd);
446 
xen_pmd_val(pmd_t pmd)447 __visible pmdval_t xen_pmd_val(pmd_t pmd)
448 {
449 	return pte_mfn_to_pfn(pmd.pmd);
450 }
451 PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val);
452 
xen_set_pud_hyper(pud_t * ptr,pud_t val)453 static void xen_set_pud_hyper(pud_t *ptr, pud_t val)
454 {
455 	struct mmu_update u;
456 
457 	preempt_disable();
458 
459 	xen_mc_batch();
460 
461 	/* ptr may be ioremapped for 64-bit pagetable setup */
462 	u.ptr = arbitrary_virt_to_machine(ptr).maddr;
463 	u.val = pud_val_ma(val);
464 	xen_extend_mmu_update(&u);
465 
466 	xen_mc_issue(XEN_LAZY_MMU);
467 
468 	preempt_enable();
469 }
470 
xen_set_pud(pud_t * ptr,pud_t val)471 static void xen_set_pud(pud_t *ptr, pud_t val)
472 {
473 	trace_xen_mmu_set_pud(ptr, val);
474 
475 	/* If page is not pinned, we can just update the entry
476 	   directly */
477 	if (!xen_page_pinned(ptr)) {
478 		*ptr = val;
479 		return;
480 	}
481 
482 	xen_set_pud_hyper(ptr, val);
483 }
484 
xen_make_pmd(pmdval_t pmd)485 __visible pmd_t xen_make_pmd(pmdval_t pmd)
486 {
487 	pmd = pte_pfn_to_mfn(pmd);
488 	return native_make_pmd(pmd);
489 }
490 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd);
491 
xen_pud_val(pud_t pud)492 __visible pudval_t xen_pud_val(pud_t pud)
493 {
494 	return pte_mfn_to_pfn(pud.pud);
495 }
496 PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val);
497 
xen_make_pud(pudval_t pud)498 __visible pud_t xen_make_pud(pudval_t pud)
499 {
500 	pud = pte_pfn_to_mfn(pud);
501 
502 	return native_make_pud(pud);
503 }
504 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud);
505 
xen_get_user_pgd(pgd_t * pgd)506 static pgd_t *xen_get_user_pgd(pgd_t *pgd)
507 {
508 	pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
509 	unsigned offset = pgd - pgd_page;
510 	pgd_t *user_ptr = NULL;
511 
512 	if (offset < pgd_index(USER_LIMIT)) {
513 		struct page *page = virt_to_page(pgd_page);
514 		user_ptr = (pgd_t *)page->private;
515 		if (user_ptr)
516 			user_ptr += offset;
517 	}
518 
519 	return user_ptr;
520 }
521 
__xen_set_p4d_hyper(p4d_t * ptr,p4d_t val)522 static void __xen_set_p4d_hyper(p4d_t *ptr, p4d_t val)
523 {
524 	struct mmu_update u;
525 
526 	u.ptr = virt_to_machine(ptr).maddr;
527 	u.val = p4d_val_ma(val);
528 	xen_extend_mmu_update(&u);
529 }
530 
531 /*
532  * Raw hypercall-based set_p4d, intended for in early boot before
533  * there's a page structure.  This implies:
534  *  1. The only existing pagetable is the kernel's
535  *  2. It is always pinned
536  *  3. It has no user pagetable attached to it
537  */
xen_set_p4d_hyper(p4d_t * ptr,p4d_t val)538 static void __init xen_set_p4d_hyper(p4d_t *ptr, p4d_t val)
539 {
540 	preempt_disable();
541 
542 	xen_mc_batch();
543 
544 	__xen_set_p4d_hyper(ptr, val);
545 
546 	xen_mc_issue(XEN_LAZY_MMU);
547 
548 	preempt_enable();
549 }
550 
xen_set_p4d(p4d_t * ptr,p4d_t val)551 static void xen_set_p4d(p4d_t *ptr, p4d_t val)
552 {
553 	pgd_t *user_ptr = xen_get_user_pgd((pgd_t *)ptr);
554 	pgd_t pgd_val;
555 
556 	trace_xen_mmu_set_p4d(ptr, (p4d_t *)user_ptr, val);
557 
558 	/* If page is not pinned, we can just update the entry
559 	   directly */
560 	if (!xen_page_pinned(ptr)) {
561 		*ptr = val;
562 		if (user_ptr) {
563 			WARN_ON(xen_page_pinned(user_ptr));
564 			pgd_val.pgd = p4d_val_ma(val);
565 			*user_ptr = pgd_val;
566 		}
567 		return;
568 	}
569 
570 	/* If it's pinned, then we can at least batch the kernel and
571 	   user updates together. */
572 	xen_mc_batch();
573 
574 	__xen_set_p4d_hyper(ptr, val);
575 	if (user_ptr)
576 		__xen_set_p4d_hyper((p4d_t *)user_ptr, val);
577 
578 	xen_mc_issue(XEN_LAZY_MMU);
579 }
580 
xen_p4d_val(p4d_t p4d)581 __visible p4dval_t xen_p4d_val(p4d_t p4d)
582 {
583 	return pte_mfn_to_pfn(p4d.p4d);
584 }
585 PV_CALLEE_SAVE_REGS_THUNK(xen_p4d_val);
586 
xen_make_p4d(p4dval_t p4d)587 __visible p4d_t xen_make_p4d(p4dval_t p4d)
588 {
589 	p4d = pte_pfn_to_mfn(p4d);
590 
591 	return native_make_p4d(p4d);
592 }
593 PV_CALLEE_SAVE_REGS_THUNK(xen_make_p4d);
594 
xen_pmd_walk(struct mm_struct * mm,pmd_t * pmd,void (* func)(struct mm_struct * mm,struct page *,enum pt_level),bool last,unsigned long limit)595 static void xen_pmd_walk(struct mm_struct *mm, pmd_t *pmd,
596 			 void (*func)(struct mm_struct *mm, struct page *,
597 				      enum pt_level),
598 			 bool last, unsigned long limit)
599 {
600 	int i, nr;
601 
602 	nr = last ? pmd_index(limit) + 1 : PTRS_PER_PMD;
603 	for (i = 0; i < nr; i++) {
604 		if (!pmd_none(pmd[i]))
605 			(*func)(mm, pmd_page(pmd[i]), PT_PTE);
606 	}
607 }
608 
xen_pud_walk(struct mm_struct * mm,pud_t * pud,void (* func)(struct mm_struct * mm,struct page *,enum pt_level),bool last,unsigned long limit)609 static void xen_pud_walk(struct mm_struct *mm, pud_t *pud,
610 			 void (*func)(struct mm_struct *mm, struct page *,
611 				      enum pt_level),
612 			 bool last, unsigned long limit)
613 {
614 	int i, nr;
615 
616 	nr = last ? pud_index(limit) + 1 : PTRS_PER_PUD;
617 	for (i = 0; i < nr; i++) {
618 		pmd_t *pmd;
619 
620 		if (pud_none(pud[i]))
621 			continue;
622 
623 		pmd = pmd_offset(&pud[i], 0);
624 		if (PTRS_PER_PMD > 1)
625 			(*func)(mm, virt_to_page(pmd), PT_PMD);
626 		xen_pmd_walk(mm, pmd, func, last && i == nr - 1, limit);
627 	}
628 }
629 
xen_p4d_walk(struct mm_struct * mm,p4d_t * p4d,void (* func)(struct mm_struct * mm,struct page *,enum pt_level),bool last,unsigned long limit)630 static void xen_p4d_walk(struct mm_struct *mm, p4d_t *p4d,
631 			 void (*func)(struct mm_struct *mm, struct page *,
632 				      enum pt_level),
633 			 bool last, unsigned long limit)
634 {
635 	pud_t *pud;
636 
637 
638 	if (p4d_none(*p4d))
639 		return;
640 
641 	pud = pud_offset(p4d, 0);
642 	if (PTRS_PER_PUD > 1)
643 		(*func)(mm, virt_to_page(pud), PT_PUD);
644 	xen_pud_walk(mm, pud, func, last, limit);
645 }
646 
647 /*
648  * (Yet another) pagetable walker.  This one is intended for pinning a
649  * pagetable.  This means that it walks a pagetable and calls the
650  * callback function on each page it finds making up the page table,
651  * at every level.  It walks the entire pagetable, but it only bothers
652  * pinning pte pages which are below limit.  In the normal case this
653  * will be STACK_TOP_MAX, but at boot we need to pin up to
654  * FIXADDR_TOP.
655  *
656  * We must skip the Xen hole in the middle of the address space, just after
657  * the big x86-64 virtual hole.
658  */
__xen_pgd_walk(struct mm_struct * mm,pgd_t * pgd,void (* func)(struct mm_struct * mm,struct page *,enum pt_level),unsigned long limit)659 static void __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
660 			   void (*func)(struct mm_struct *mm, struct page *,
661 					enum pt_level),
662 			   unsigned long limit)
663 {
664 	int i, nr;
665 	unsigned hole_low = 0, hole_high = 0;
666 
667 	/* The limit is the last byte to be touched */
668 	limit--;
669 	BUG_ON(limit >= FIXADDR_TOP);
670 
671 	/*
672 	 * 64-bit has a great big hole in the middle of the address
673 	 * space, which contains the Xen mappings.
674 	 */
675 	hole_low = pgd_index(GUARD_HOLE_BASE_ADDR);
676 	hole_high = pgd_index(GUARD_HOLE_END_ADDR);
677 
678 	nr = pgd_index(limit) + 1;
679 	for (i = 0; i < nr; i++) {
680 		p4d_t *p4d;
681 
682 		if (i >= hole_low && i < hole_high)
683 			continue;
684 
685 		if (pgd_none(pgd[i]))
686 			continue;
687 
688 		p4d = p4d_offset(&pgd[i], 0);
689 		xen_p4d_walk(mm, p4d, func, i == nr - 1, limit);
690 	}
691 
692 	/* Do the top level last, so that the callbacks can use it as
693 	   a cue to do final things like tlb flushes. */
694 	(*func)(mm, virt_to_page(pgd), PT_PGD);
695 }
696 
xen_pgd_walk(struct mm_struct * mm,void (* func)(struct mm_struct * mm,struct page *,enum pt_level),unsigned long limit)697 static void xen_pgd_walk(struct mm_struct *mm,
698 			 void (*func)(struct mm_struct *mm, struct page *,
699 				      enum pt_level),
700 			 unsigned long limit)
701 {
702 	__xen_pgd_walk(mm, mm->pgd, func, limit);
703 }
704 
705 /* If we're using split pte locks, then take the page's lock and
706    return a pointer to it.  Otherwise return NULL. */
xen_pte_lock(struct page * page,struct mm_struct * mm)707 static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
708 {
709 	spinlock_t *ptl = NULL;
710 
711 #if defined(CONFIG_SPLIT_PTE_PTLOCKS)
712 	ptl = ptlock_ptr(page_ptdesc(page));
713 	spin_lock_nest_lock(ptl, &mm->page_table_lock);
714 #endif
715 
716 	return ptl;
717 }
718 
xen_pte_unlock(void * v)719 static void xen_pte_unlock(void *v)
720 {
721 	spinlock_t *ptl = v;
722 	spin_unlock(ptl);
723 }
724 
xen_do_pin(unsigned level,unsigned long pfn)725 static void xen_do_pin(unsigned level, unsigned long pfn)
726 {
727 	struct mmuext_op op;
728 
729 	op.cmd = level;
730 	op.arg1.mfn = pfn_to_mfn(pfn);
731 
732 	xen_extend_mmuext_op(&op);
733 }
734 
xen_pin_page(struct mm_struct * mm,struct page * page,enum pt_level level)735 static void xen_pin_page(struct mm_struct *mm, struct page *page,
736 			 enum pt_level level)
737 {
738 	unsigned pgfl = TestSetPagePinned(page);
739 
740 	if (!pgfl) {
741 		void *pt = lowmem_page_address(page);
742 		unsigned long pfn = page_to_pfn(page);
743 		struct multicall_space mcs = __xen_mc_entry(0);
744 		spinlock_t *ptl;
745 
746 		/*
747 		 * We need to hold the pagetable lock between the time
748 		 * we make the pagetable RO and when we actually pin
749 		 * it.  If we don't, then other users may come in and
750 		 * attempt to update the pagetable by writing it,
751 		 * which will fail because the memory is RO but not
752 		 * pinned, so Xen won't do the trap'n'emulate.
753 		 *
754 		 * If we're using split pte locks, we can't hold the
755 		 * entire pagetable's worth of locks during the
756 		 * traverse, because we may wrap the preempt count (8
757 		 * bits).  The solution is to mark RO and pin each PTE
758 		 * page while holding the lock.  This means the number
759 		 * of locks we end up holding is never more than a
760 		 * batch size (~32 entries, at present).
761 		 *
762 		 * If we're not using split pte locks, we needn't pin
763 		 * the PTE pages independently, because we're
764 		 * protected by the overall pagetable lock.
765 		 */
766 		ptl = NULL;
767 		if (level == PT_PTE)
768 			ptl = xen_pte_lock(page, mm);
769 
770 		MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
771 					pfn_pte(pfn, PAGE_KERNEL_RO),
772 					level == PT_PGD ? UVMF_TLB_FLUSH : 0);
773 
774 		if (ptl) {
775 			xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
776 
777 			/* Queue a deferred unlock for when this batch
778 			   is completed. */
779 			xen_mc_callback(xen_pte_unlock, ptl);
780 		}
781 	}
782 }
783 
784 /* This is called just after a mm has been created, but it has not
785    been used yet.  We need to make sure that its pagetable is all
786    read-only, and can be pinned. */
__xen_pgd_pin(struct mm_struct * mm,pgd_t * pgd)787 static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
788 {
789 	pgd_t *user_pgd = xen_get_user_pgd(pgd);
790 
791 	trace_xen_mmu_pgd_pin(mm, pgd);
792 
793 	xen_mc_batch();
794 
795 	__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT);
796 
797 	xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
798 
799 	if (user_pgd) {
800 		xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
801 		xen_do_pin(MMUEXT_PIN_L4_TABLE,
802 			   PFN_DOWN(__pa(user_pgd)));
803 	}
804 
805 	xen_mc_issue(0);
806 }
807 
xen_pgd_pin(struct mm_struct * mm)808 static void xen_pgd_pin(struct mm_struct *mm)
809 {
810 	__xen_pgd_pin(mm, mm->pgd);
811 }
812 
813 /*
814  * On save, we need to pin all pagetables to make sure they get their
815  * mfns turned into pfns.  Search the list for any unpinned pgds and pin
816  * them (unpinned pgds are not currently in use, probably because the
817  * process is under construction or destruction).
818  *
819  * Expected to be called in stop_machine() ("equivalent to taking
820  * every spinlock in the system"), so the locking doesn't really
821  * matter all that much.
822  */
xen_mm_pin_all(void)823 void xen_mm_pin_all(void)
824 {
825 	struct page *page;
826 
827 	spin_lock(&init_mm.page_table_lock);
828 	spin_lock(&pgd_lock);
829 
830 	list_for_each_entry(page, &pgd_list, lru) {
831 		if (!PagePinned(page)) {
832 			__xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
833 			SetPageSavePinned(page);
834 		}
835 	}
836 
837 	spin_unlock(&pgd_lock);
838 	spin_unlock(&init_mm.page_table_lock);
839 }
840 
xen_mark_pinned(struct mm_struct * mm,struct page * page,enum pt_level level)841 static void __init xen_mark_pinned(struct mm_struct *mm, struct page *page,
842 				   enum pt_level level)
843 {
844 	SetPagePinned(page);
845 }
846 
847 /*
848  * The init_mm pagetable is really pinned as soon as its created, but
849  * that's before we have page structures to store the bits.  So do all
850  * the book-keeping now once struct pages for allocated pages are
851  * initialized. This happens only after memblock_free_all() is called.
852  */
xen_after_bootmem(void)853 static void __init xen_after_bootmem(void)
854 {
855 	static_branch_enable(&xen_struct_pages_ready);
856 #ifdef CONFIG_X86_VSYSCALL_EMULATION
857 	SetPagePinned(virt_to_page(level3_user_vsyscall));
858 #endif
859 	xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
860 
861 	if (alloc_discontig_frames(MIN_CONTIG_ORDER))
862 		BUG();
863 }
864 
xen_unpin_page(struct mm_struct * mm,struct page * page,enum pt_level level)865 static void xen_unpin_page(struct mm_struct *mm, struct page *page,
866 			   enum pt_level level)
867 {
868 	unsigned pgfl = TestClearPagePinned(page);
869 
870 	if (pgfl) {
871 		void *pt = lowmem_page_address(page);
872 		unsigned long pfn = page_to_pfn(page);
873 		spinlock_t *ptl = NULL;
874 		struct multicall_space mcs;
875 
876 		/*
877 		 * Do the converse to pin_page.  If we're using split
878 		 * pte locks, we must be holding the lock for while
879 		 * the pte page is unpinned but still RO to prevent
880 		 * concurrent updates from seeing it in this
881 		 * partially-pinned state.
882 		 */
883 		if (level == PT_PTE) {
884 			ptl = xen_pte_lock(page, mm);
885 
886 			if (ptl)
887 				xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
888 		}
889 
890 		mcs = __xen_mc_entry(0);
891 
892 		MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
893 					pfn_pte(pfn, PAGE_KERNEL),
894 					level == PT_PGD ? UVMF_TLB_FLUSH : 0);
895 
896 		if (ptl) {
897 			/* unlock when batch completed */
898 			xen_mc_callback(xen_pte_unlock, ptl);
899 		}
900 	}
901 }
902 
903 /* Release a pagetables pages back as normal RW */
__xen_pgd_unpin(struct mm_struct * mm,pgd_t * pgd)904 static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
905 {
906 	pgd_t *user_pgd = xen_get_user_pgd(pgd);
907 
908 	trace_xen_mmu_pgd_unpin(mm, pgd);
909 
910 	xen_mc_batch();
911 
912 	xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
913 
914 	if (user_pgd) {
915 		xen_do_pin(MMUEXT_UNPIN_TABLE,
916 			   PFN_DOWN(__pa(user_pgd)));
917 		xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
918 	}
919 
920 	__xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
921 
922 	xen_mc_issue(0);
923 }
924 
xen_pgd_unpin(struct mm_struct * mm)925 static void xen_pgd_unpin(struct mm_struct *mm)
926 {
927 	__xen_pgd_unpin(mm, mm->pgd);
928 }
929 
930 /*
931  * On resume, undo any pinning done at save, so that the rest of the
932  * kernel doesn't see any unexpected pinned pagetables.
933  */
xen_mm_unpin_all(void)934 void xen_mm_unpin_all(void)
935 {
936 	struct page *page;
937 
938 	spin_lock(&init_mm.page_table_lock);
939 	spin_lock(&pgd_lock);
940 
941 	list_for_each_entry(page, &pgd_list, lru) {
942 		if (PageSavePinned(page)) {
943 			BUG_ON(!PagePinned(page));
944 			__xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
945 			ClearPageSavePinned(page);
946 		}
947 	}
948 
949 	spin_unlock(&pgd_lock);
950 	spin_unlock(&init_mm.page_table_lock);
951 }
952 
xen_enter_mmap(struct mm_struct * mm)953 static void xen_enter_mmap(struct mm_struct *mm)
954 {
955 	spin_lock(&mm->page_table_lock);
956 	xen_pgd_pin(mm);
957 	spin_unlock(&mm->page_table_lock);
958 }
959 
drop_mm_ref_this_cpu(void * info)960 static void drop_mm_ref_this_cpu(void *info)
961 {
962 	struct mm_struct *mm = info;
963 
964 	if (this_cpu_read(cpu_tlbstate.loaded_mm) == mm)
965 		leave_mm();
966 
967 	/*
968 	 * If this cpu still has a stale cr3 reference, then make sure
969 	 * it has been flushed.
970 	 */
971 	if (this_cpu_read(xen_current_cr3) == __pa(mm->pgd))
972 		xen_mc_flush();
973 }
974 
975 #ifdef CONFIG_SMP
976 /*
977  * Another cpu may still have their %cr3 pointing at the pagetable, so
978  * we need to repoint it somewhere else before we can unpin it.
979  */
xen_drop_mm_ref(struct mm_struct * mm)980 static void xen_drop_mm_ref(struct mm_struct *mm)
981 {
982 	cpumask_var_t mask;
983 	unsigned cpu;
984 
985 	drop_mm_ref_this_cpu(mm);
986 
987 	/* Get the "official" set of cpus referring to our pagetable. */
988 	if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) {
989 		for_each_online_cpu(cpu) {
990 			if (per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
991 				continue;
992 			smp_call_function_single(cpu, drop_mm_ref_this_cpu, mm, 1);
993 		}
994 		return;
995 	}
996 
997 	/*
998 	 * It's possible that a vcpu may have a stale reference to our
999 	 * cr3, because its in lazy mode, and it hasn't yet flushed
1000 	 * its set of pending hypercalls yet.  In this case, we can
1001 	 * look at its actual current cr3 value, and force it to flush
1002 	 * if needed.
1003 	 */
1004 	cpumask_clear(mask);
1005 	for_each_online_cpu(cpu) {
1006 		if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
1007 			cpumask_set_cpu(cpu, mask);
1008 	}
1009 
1010 	smp_call_function_many(mask, drop_mm_ref_this_cpu, mm, 1);
1011 	free_cpumask_var(mask);
1012 }
1013 #else
xen_drop_mm_ref(struct mm_struct * mm)1014 static void xen_drop_mm_ref(struct mm_struct *mm)
1015 {
1016 	drop_mm_ref_this_cpu(mm);
1017 }
1018 #endif
1019 
1020 /*
1021  * While a process runs, Xen pins its pagetables, which means that the
1022  * hypervisor forces it to be read-only, and it controls all updates
1023  * to it.  This means that all pagetable updates have to go via the
1024  * hypervisor, which is moderately expensive.
1025  *
1026  * Since we're pulling the pagetable down, we switch to use init_mm,
1027  * unpin old process pagetable and mark it all read-write, which
1028  * allows further operations on it to be simple memory accesses.
1029  *
1030  * The only subtle point is that another CPU may be still using the
1031  * pagetable because of lazy tlb flushing.  This means we need need to
1032  * switch all CPUs off this pagetable before we can unpin it.
1033  */
xen_exit_mmap(struct mm_struct * mm)1034 static void xen_exit_mmap(struct mm_struct *mm)
1035 {
1036 	get_cpu();		/* make sure we don't move around */
1037 	xen_drop_mm_ref(mm);
1038 	put_cpu();
1039 
1040 	spin_lock(&mm->page_table_lock);
1041 
1042 	/* pgd may not be pinned in the error exit path of execve */
1043 	if (xen_page_pinned(mm->pgd))
1044 		xen_pgd_unpin(mm);
1045 
1046 	spin_unlock(&mm->page_table_lock);
1047 }
1048 
1049 static void xen_post_allocator_init(void);
1050 
pin_pagetable_pfn(unsigned cmd,unsigned long pfn)1051 static void __init pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1052 {
1053 	struct mmuext_op op;
1054 
1055 	op.cmd = cmd;
1056 	op.arg1.mfn = pfn_to_mfn(pfn);
1057 	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
1058 		BUG();
1059 }
1060 
xen_cleanhighmap(unsigned long vaddr,unsigned long vaddr_end)1061 static void __init xen_cleanhighmap(unsigned long vaddr,
1062 				    unsigned long vaddr_end)
1063 {
1064 	unsigned long kernel_end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
1065 	pmd_t *pmd = level2_kernel_pgt + pmd_index(vaddr);
1066 
1067 	/* NOTE: The loop is more greedy than the cleanup_highmap variant.
1068 	 * We include the PMD passed in on _both_ boundaries. */
1069 	for (; vaddr <= vaddr_end && (pmd < (level2_kernel_pgt + PTRS_PER_PMD));
1070 			pmd++, vaddr += PMD_SIZE) {
1071 		if (pmd_none(*pmd))
1072 			continue;
1073 		if (vaddr < (unsigned long) _text || vaddr > kernel_end)
1074 			set_pmd(pmd, __pmd(0));
1075 	}
1076 	/* In case we did something silly, we should crash in this function
1077 	 * instead of somewhere later and be confusing. */
1078 	xen_mc_flush();
1079 }
1080 
1081 /*
1082  * Make a page range writeable and free it.
1083  */
xen_free_ro_pages(unsigned long paddr,unsigned long size)1084 static void __init xen_free_ro_pages(unsigned long paddr, unsigned long size)
1085 {
1086 	void *vaddr = __va(paddr);
1087 	void *vaddr_end = vaddr + size;
1088 
1089 	for (; vaddr < vaddr_end; vaddr += PAGE_SIZE)
1090 		make_lowmem_page_readwrite(vaddr);
1091 
1092 	memblock_phys_free(paddr, size);
1093 }
1094 
xen_cleanmfnmap_free_pgtbl(void * pgtbl,bool unpin)1095 static void __init xen_cleanmfnmap_free_pgtbl(void *pgtbl, bool unpin)
1096 {
1097 	unsigned long pa = __pa(pgtbl) & PHYSICAL_PAGE_MASK;
1098 
1099 	if (unpin)
1100 		pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(pa));
1101 	ClearPagePinned(virt_to_page(__va(pa)));
1102 	xen_free_ro_pages(pa, PAGE_SIZE);
1103 }
1104 
xen_cleanmfnmap_pmd(pmd_t * pmd,bool unpin)1105 static void __init xen_cleanmfnmap_pmd(pmd_t *pmd, bool unpin)
1106 {
1107 	unsigned long pa;
1108 	pte_t *pte_tbl;
1109 	int i;
1110 
1111 	if (pmd_leaf(*pmd)) {
1112 		pa = pmd_val(*pmd) & PHYSICAL_PAGE_MASK;
1113 		xen_free_ro_pages(pa, PMD_SIZE);
1114 		return;
1115 	}
1116 
1117 	pte_tbl = pte_offset_kernel(pmd, 0);
1118 	for (i = 0; i < PTRS_PER_PTE; i++) {
1119 		if (pte_none(pte_tbl[i]))
1120 			continue;
1121 		pa = pte_pfn(pte_tbl[i]) << PAGE_SHIFT;
1122 		xen_free_ro_pages(pa, PAGE_SIZE);
1123 	}
1124 	set_pmd(pmd, __pmd(0));
1125 	xen_cleanmfnmap_free_pgtbl(pte_tbl, unpin);
1126 }
1127 
xen_cleanmfnmap_pud(pud_t * pud,bool unpin)1128 static void __init xen_cleanmfnmap_pud(pud_t *pud, bool unpin)
1129 {
1130 	unsigned long pa;
1131 	pmd_t *pmd_tbl;
1132 	int i;
1133 
1134 	if (pud_leaf(*pud)) {
1135 		pa = pud_val(*pud) & PHYSICAL_PAGE_MASK;
1136 		xen_free_ro_pages(pa, PUD_SIZE);
1137 		return;
1138 	}
1139 
1140 	pmd_tbl = pmd_offset(pud, 0);
1141 	for (i = 0; i < PTRS_PER_PMD; i++) {
1142 		if (pmd_none(pmd_tbl[i]))
1143 			continue;
1144 		xen_cleanmfnmap_pmd(pmd_tbl + i, unpin);
1145 	}
1146 	set_pud(pud, __pud(0));
1147 	xen_cleanmfnmap_free_pgtbl(pmd_tbl, unpin);
1148 }
1149 
xen_cleanmfnmap_p4d(p4d_t * p4d,bool unpin)1150 static void __init xen_cleanmfnmap_p4d(p4d_t *p4d, bool unpin)
1151 {
1152 	unsigned long pa;
1153 	pud_t *pud_tbl;
1154 	int i;
1155 
1156 	if (p4d_leaf(*p4d)) {
1157 		pa = p4d_val(*p4d) & PHYSICAL_PAGE_MASK;
1158 		xen_free_ro_pages(pa, P4D_SIZE);
1159 		return;
1160 	}
1161 
1162 	pud_tbl = pud_offset(p4d, 0);
1163 	for (i = 0; i < PTRS_PER_PUD; i++) {
1164 		if (pud_none(pud_tbl[i]))
1165 			continue;
1166 		xen_cleanmfnmap_pud(pud_tbl + i, unpin);
1167 	}
1168 	set_p4d(p4d, __p4d(0));
1169 	xen_cleanmfnmap_free_pgtbl(pud_tbl, unpin);
1170 }
1171 
1172 /*
1173  * Since it is well isolated we can (and since it is perhaps large we should)
1174  * also free the page tables mapping the initial P->M table.
1175  */
xen_cleanmfnmap(unsigned long vaddr)1176 static void __init xen_cleanmfnmap(unsigned long vaddr)
1177 {
1178 	pgd_t *pgd;
1179 	p4d_t *p4d;
1180 	bool unpin;
1181 
1182 	unpin = (vaddr == 2 * PGDIR_SIZE);
1183 	vaddr &= PMD_MASK;
1184 	pgd = pgd_offset_k(vaddr);
1185 	p4d = p4d_offset(pgd, 0);
1186 	if (!p4d_none(*p4d))
1187 		xen_cleanmfnmap_p4d(p4d, unpin);
1188 }
1189 
xen_pagetable_p2m_free(void)1190 static void __init xen_pagetable_p2m_free(void)
1191 {
1192 	unsigned long size;
1193 	unsigned long addr;
1194 
1195 	size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
1196 
1197 	/* No memory or already called. */
1198 	if ((unsigned long)xen_p2m_addr == xen_start_info->mfn_list)
1199 		return;
1200 
1201 	/* using __ka address and sticking INVALID_P2M_ENTRY! */
1202 	memset((void *)xen_start_info->mfn_list, 0xff, size);
1203 
1204 	addr = xen_start_info->mfn_list;
1205 	/*
1206 	 * We could be in __ka space.
1207 	 * We roundup to the PMD, which means that if anybody at this stage is
1208 	 * using the __ka address of xen_start_info or
1209 	 * xen_start_info->shared_info they are in going to crash. Fortunately
1210 	 * we have already revectored in xen_setup_kernel_pagetable.
1211 	 */
1212 	size = roundup(size, PMD_SIZE);
1213 
1214 	if (addr >= __START_KERNEL_map) {
1215 		xen_cleanhighmap(addr, addr + size);
1216 		size = PAGE_ALIGN(xen_start_info->nr_pages *
1217 				  sizeof(unsigned long));
1218 		memblock_free((void *)addr, size);
1219 	} else {
1220 		xen_cleanmfnmap(addr);
1221 	}
1222 }
1223 
xen_pagetable_cleanhighmap(void)1224 static void __init xen_pagetable_cleanhighmap(void)
1225 {
1226 	unsigned long size;
1227 	unsigned long addr;
1228 
1229 	/* At this stage, cleanup_highmap has already cleaned __ka space
1230 	 * from _brk_limit way up to the max_pfn_mapped (which is the end of
1231 	 * the ramdisk). We continue on, erasing PMD entries that point to page
1232 	 * tables - do note that they are accessible at this stage via __va.
1233 	 * As Xen is aligning the memory end to a 4MB boundary, for good
1234 	 * measure we also round up to PMD_SIZE * 2 - which means that if
1235 	 * anybody is using __ka address to the initial boot-stack - and try
1236 	 * to use it - they are going to crash. The xen_start_info has been
1237 	 * taken care of already in xen_setup_kernel_pagetable. */
1238 	addr = xen_start_info->pt_base;
1239 	size = xen_start_info->nr_pt_frames * PAGE_SIZE;
1240 
1241 	xen_cleanhighmap(addr, roundup(addr + size, PMD_SIZE * 2));
1242 	xen_start_info->pt_base = (unsigned long)__va(__pa(xen_start_info->pt_base));
1243 }
1244 
xen_pagetable_p2m_setup(void)1245 static void __init xen_pagetable_p2m_setup(void)
1246 {
1247 	xen_vmalloc_p2m_tree();
1248 
1249 	xen_pagetable_p2m_free();
1250 
1251 	xen_pagetable_cleanhighmap();
1252 
1253 	/* And revector! Bye bye old array */
1254 	xen_start_info->mfn_list = (unsigned long)xen_p2m_addr;
1255 }
1256 
xen_pagetable_init(void)1257 static void __init xen_pagetable_init(void)
1258 {
1259 	/*
1260 	 * The majority of further PTE writes is to pagetables already
1261 	 * announced as such to Xen. Hence it is more efficient to use
1262 	 * hypercalls for these updates.
1263 	 */
1264 	pv_ops.mmu.set_pte = __xen_set_pte;
1265 
1266 	paging_init();
1267 	xen_post_allocator_init();
1268 
1269 	xen_pagetable_p2m_setup();
1270 
1271 	/* Allocate and initialize top and mid mfn levels for p2m structure */
1272 	xen_build_mfn_list_list();
1273 
1274 	/* Remap memory freed due to conflicts with E820 map */
1275 	xen_remap_memory();
1276 	xen_setup_mfn_list_list();
1277 }
1278 
xen_write_cr2(unsigned long cr2)1279 static noinstr void xen_write_cr2(unsigned long cr2)
1280 {
1281 	this_cpu_read(xen_vcpu)->arch.cr2 = cr2;
1282 }
1283 
xen_flush_tlb(void)1284 static noinline void xen_flush_tlb(void)
1285 {
1286 	struct mmuext_op *op;
1287 	struct multicall_space mcs;
1288 
1289 	preempt_disable();
1290 
1291 	mcs = xen_mc_entry(sizeof(*op));
1292 
1293 	op = mcs.args;
1294 	op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
1295 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1296 
1297 	xen_mc_issue(XEN_LAZY_MMU);
1298 
1299 	preempt_enable();
1300 }
1301 
xen_flush_tlb_one_user(unsigned long addr)1302 static void xen_flush_tlb_one_user(unsigned long addr)
1303 {
1304 	struct mmuext_op *op;
1305 	struct multicall_space mcs;
1306 
1307 	trace_xen_mmu_flush_tlb_one_user(addr);
1308 
1309 	preempt_disable();
1310 
1311 	mcs = xen_mc_entry(sizeof(*op));
1312 	op = mcs.args;
1313 	op->cmd = MMUEXT_INVLPG_LOCAL;
1314 	op->arg1.linear_addr = addr & PAGE_MASK;
1315 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1316 
1317 	xen_mc_issue(XEN_LAZY_MMU);
1318 
1319 	preempt_enable();
1320 }
1321 
xen_flush_tlb_multi(const struct cpumask * cpus,const struct flush_tlb_info * info)1322 static void xen_flush_tlb_multi(const struct cpumask *cpus,
1323 				const struct flush_tlb_info *info)
1324 {
1325 	struct {
1326 		struct mmuext_op op;
1327 		DECLARE_BITMAP(mask, NR_CPUS);
1328 	} *args;
1329 	struct multicall_space mcs;
1330 	const size_t mc_entry_size = sizeof(args->op) +
1331 		sizeof(args->mask[0]) * BITS_TO_LONGS(num_possible_cpus());
1332 
1333 	trace_xen_mmu_flush_tlb_multi(cpus, info->mm, info->start, info->end);
1334 
1335 	if (cpumask_empty(cpus))
1336 		return;		/* nothing to do */
1337 
1338 	mcs = xen_mc_entry(mc_entry_size);
1339 	args = mcs.args;
1340 	args->op.arg2.vcpumask = to_cpumask(args->mask);
1341 
1342 	/* Remove any offline CPUs */
1343 	cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask);
1344 
1345 	args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
1346 	if (info->end != TLB_FLUSH_ALL &&
1347 	    (info->end - info->start) <= PAGE_SIZE) {
1348 		args->op.cmd = MMUEXT_INVLPG_MULTI;
1349 		args->op.arg1.linear_addr = info->start;
1350 	}
1351 
1352 	MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
1353 
1354 	xen_mc_issue(XEN_LAZY_MMU);
1355 }
1356 
xen_read_cr3(void)1357 static unsigned long xen_read_cr3(void)
1358 {
1359 	return this_cpu_read(xen_cr3);
1360 }
1361 
set_current_cr3(void * v)1362 static void set_current_cr3(void *v)
1363 {
1364 	this_cpu_write(xen_current_cr3, (unsigned long)v);
1365 }
1366 
__xen_write_cr3(bool kernel,unsigned long cr3)1367 static void __xen_write_cr3(bool kernel, unsigned long cr3)
1368 {
1369 	struct mmuext_op op;
1370 	unsigned long mfn;
1371 
1372 	trace_xen_mmu_write_cr3(kernel, cr3);
1373 
1374 	if (cr3)
1375 		mfn = pfn_to_mfn(PFN_DOWN(cr3));
1376 	else
1377 		mfn = 0;
1378 
1379 	WARN_ON(mfn == 0 && kernel);
1380 
1381 	op.cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
1382 	op.arg1.mfn = mfn;
1383 
1384 	xen_extend_mmuext_op(&op);
1385 
1386 	if (kernel) {
1387 		this_cpu_write(xen_cr3, cr3);
1388 
1389 		/* Update xen_current_cr3 once the batch has actually
1390 		   been submitted. */
1391 		xen_mc_callback(set_current_cr3, (void *)cr3);
1392 	}
1393 }
xen_write_cr3(unsigned long cr3)1394 static void xen_write_cr3(unsigned long cr3)
1395 {
1396 	pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
1397 
1398 	BUG_ON(preemptible());
1399 
1400 	xen_mc_batch();  /* disables interrupts */
1401 
1402 	/* Update while interrupts are disabled, so its atomic with
1403 	   respect to ipis */
1404 	this_cpu_write(xen_cr3, cr3);
1405 
1406 	__xen_write_cr3(true, cr3);
1407 
1408 	if (user_pgd)
1409 		__xen_write_cr3(false, __pa(user_pgd));
1410 	else
1411 		__xen_write_cr3(false, 0);
1412 
1413 	xen_mc_issue(XEN_LAZY_CPU);  /* interrupts restored */
1414 }
1415 
1416 /*
1417  * At the start of the day - when Xen launches a guest, it has already
1418  * built pagetables for the guest. We diligently look over them
1419  * in xen_setup_kernel_pagetable and graft as appropriate them in the
1420  * init_top_pgt and its friends. Then when we are happy we load
1421  * the new init_top_pgt - and continue on.
1422  *
1423  * The generic code starts (start_kernel) and 'init_mem_mapping' sets
1424  * up the rest of the pagetables. When it has completed it loads the cr3.
1425  * N.B. that baremetal would start at 'start_kernel' (and the early
1426  * #PF handler would create bootstrap pagetables) - so we are running
1427  * with the same assumptions as what to do when write_cr3 is executed
1428  * at this point.
1429  *
1430  * Since there are no user-page tables at all, we have two variants
1431  * of xen_write_cr3 - the early bootup (this one), and the late one
1432  * (xen_write_cr3). The reason we have to do that is that in 64-bit
1433  * the Linux kernel and user-space are both in ring 3 while the
1434  * hypervisor is in ring 0.
1435  */
xen_write_cr3_init(unsigned long cr3)1436 static void __init xen_write_cr3_init(unsigned long cr3)
1437 {
1438 	BUG_ON(preemptible());
1439 
1440 	xen_mc_batch();  /* disables interrupts */
1441 
1442 	/* Update while interrupts are disabled, so its atomic with
1443 	   respect to ipis */
1444 	this_cpu_write(xen_cr3, cr3);
1445 
1446 	__xen_write_cr3(true, cr3);
1447 
1448 	xen_mc_issue(XEN_LAZY_CPU);  /* interrupts restored */
1449 }
1450 
xen_pgd_alloc(struct mm_struct * mm)1451 static int xen_pgd_alloc(struct mm_struct *mm)
1452 {
1453 	pgd_t *pgd = mm->pgd;
1454 	struct page *page = virt_to_page(pgd);
1455 	pgd_t *user_pgd;
1456 	int ret = -ENOMEM;
1457 
1458 	BUG_ON(PagePinned(virt_to_page(pgd)));
1459 	BUG_ON(page->private != 0);
1460 
1461 	user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1462 	page->private = (unsigned long)user_pgd;
1463 
1464 	if (user_pgd != NULL) {
1465 #ifdef CONFIG_X86_VSYSCALL_EMULATION
1466 		user_pgd[pgd_index(VSYSCALL_ADDR)] =
1467 			__pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
1468 #endif
1469 		ret = 0;
1470 	}
1471 
1472 	BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
1473 
1474 	return ret;
1475 }
1476 
xen_pgd_free(struct mm_struct * mm,pgd_t * pgd)1477 static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
1478 {
1479 	pgd_t *user_pgd = xen_get_user_pgd(pgd);
1480 
1481 	if (user_pgd)
1482 		free_page((unsigned long)user_pgd);
1483 }
1484 
1485 /*
1486  * Init-time set_pte while constructing initial pagetables, which
1487  * doesn't allow RO page table pages to be remapped RW.
1488  *
1489  * If there is no MFN for this PFN then this page is initially
1490  * ballooned out so clear the PTE (as in decrease_reservation() in
1491  * drivers/xen/balloon.c).
1492  *
1493  * Many of these PTE updates are done on unpinned and writable pages
1494  * and doing a hypercall for these is unnecessary and expensive.  At
1495  * this point it is rarely possible to tell if a page is pinned, so
1496  * mostly write the PTE directly and rely on Xen trapping and
1497  * emulating any updates as necessary.
1498  */
xen_set_pte_init(pte_t * ptep,pte_t pte)1499 static void __init xen_set_pte_init(pte_t *ptep, pte_t pte)
1500 {
1501 	if (unlikely(is_early_ioremap_ptep(ptep)))
1502 		__xen_set_pte(ptep, pte);
1503 	else
1504 		native_set_pte(ptep, pte);
1505 }
1506 
xen_make_pte_init(pteval_t pte)1507 __visible pte_t xen_make_pte_init(pteval_t pte)
1508 {
1509 	unsigned long pfn;
1510 
1511 	/*
1512 	 * Pages belonging to the initial p2m list mapped outside the default
1513 	 * address range must be mapped read-only. This region contains the
1514 	 * page tables for mapping the p2m list, too, and page tables MUST be
1515 	 * mapped read-only.
1516 	 */
1517 	pfn = (pte & PTE_PFN_MASK) >> PAGE_SHIFT;
1518 	if (xen_start_info->mfn_list < __START_KERNEL_map &&
1519 	    pfn >= xen_start_info->first_p2m_pfn &&
1520 	    pfn < xen_start_info->first_p2m_pfn + xen_start_info->nr_p2m_frames)
1521 		pte &= ~_PAGE_RW;
1522 
1523 	pte = pte_pfn_to_mfn(pte);
1524 	return native_make_pte(pte);
1525 }
1526 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte_init);
1527 
1528 /* Early in boot, while setting up the initial pagetable, assume
1529    everything is pinned. */
xen_alloc_pte_init(struct mm_struct * mm,unsigned long pfn)1530 static void __init xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
1531 {
1532 #ifdef CONFIG_FLATMEM
1533 	BUG_ON(mem_map);	/* should only be used early */
1534 #endif
1535 	make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1536 	pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1537 }
1538 
1539 /* Used for pmd and pud */
xen_alloc_pmd_init(struct mm_struct * mm,unsigned long pfn)1540 static void __init xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn)
1541 {
1542 #ifdef CONFIG_FLATMEM
1543 	BUG_ON(mem_map);	/* should only be used early */
1544 #endif
1545 	make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1546 }
1547 
1548 /* Early release_pte assumes that all pts are pinned, since there's
1549    only init_mm and anything attached to that is pinned. */
xen_release_pte_init(unsigned long pfn)1550 static void __init xen_release_pte_init(unsigned long pfn)
1551 {
1552 	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1553 	make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1554 }
1555 
xen_release_pmd_init(unsigned long pfn)1556 static void __init xen_release_pmd_init(unsigned long pfn)
1557 {
1558 	make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1559 }
1560 
__pin_pagetable_pfn(unsigned cmd,unsigned long pfn)1561 static inline void __pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1562 {
1563 	struct multicall_space mcs;
1564 	struct mmuext_op *op;
1565 
1566 	mcs = __xen_mc_entry(sizeof(*op));
1567 	op = mcs.args;
1568 	op->cmd = cmd;
1569 	op->arg1.mfn = pfn_to_mfn(pfn);
1570 
1571 	MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
1572 }
1573 
__set_pfn_prot(unsigned long pfn,pgprot_t prot)1574 static inline void __set_pfn_prot(unsigned long pfn, pgprot_t prot)
1575 {
1576 	struct multicall_space mcs;
1577 	unsigned long addr = (unsigned long)__va(pfn << PAGE_SHIFT);
1578 
1579 	mcs = __xen_mc_entry(0);
1580 	MULTI_update_va_mapping(mcs.mc, (unsigned long)addr,
1581 				pfn_pte(pfn, prot), 0);
1582 }
1583 
1584 /* This needs to make sure the new pte page is pinned iff its being
1585    attached to a pinned pagetable. */
xen_alloc_ptpage(struct mm_struct * mm,unsigned long pfn,unsigned level)1586 static inline void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn,
1587 				    unsigned level)
1588 {
1589 	bool pinned = xen_page_pinned(mm->pgd);
1590 
1591 	trace_xen_mmu_alloc_ptpage(mm, pfn, level, pinned);
1592 
1593 	if (pinned) {
1594 		struct page *page = pfn_to_page(pfn);
1595 
1596 		pinned = false;
1597 		if (static_branch_likely(&xen_struct_pages_ready)) {
1598 			pinned = PagePinned(page);
1599 			SetPagePinned(page);
1600 		}
1601 
1602 		xen_mc_batch();
1603 
1604 		__set_pfn_prot(pfn, PAGE_KERNEL_RO);
1605 
1606 		if (level == PT_PTE && IS_ENABLED(CONFIG_SPLIT_PTE_PTLOCKS) &&
1607 		    !pinned)
1608 			__pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1609 
1610 		xen_mc_issue(XEN_LAZY_MMU);
1611 	}
1612 }
1613 
xen_alloc_pte(struct mm_struct * mm,unsigned long pfn)1614 static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
1615 {
1616 	xen_alloc_ptpage(mm, pfn, PT_PTE);
1617 }
1618 
xen_alloc_pmd(struct mm_struct * mm,unsigned long pfn)1619 static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
1620 {
1621 	xen_alloc_ptpage(mm, pfn, PT_PMD);
1622 }
1623 
1624 /* This should never happen until we're OK to use struct page */
xen_release_ptpage(unsigned long pfn,unsigned level)1625 static inline void xen_release_ptpage(unsigned long pfn, unsigned level)
1626 {
1627 	struct page *page = pfn_to_page(pfn);
1628 	bool pinned = PagePinned(page);
1629 
1630 	trace_xen_mmu_release_ptpage(pfn, level, pinned);
1631 
1632 	if (pinned) {
1633 		xen_mc_batch();
1634 
1635 		if (level == PT_PTE && IS_ENABLED(CONFIG_SPLIT_PTE_PTLOCKS))
1636 			__pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1637 
1638 		__set_pfn_prot(pfn, PAGE_KERNEL);
1639 
1640 		xen_mc_issue(XEN_LAZY_MMU);
1641 
1642 		ClearPagePinned(page);
1643 	}
1644 }
1645 
xen_release_pte(unsigned long pfn)1646 static void xen_release_pte(unsigned long pfn)
1647 {
1648 	xen_release_ptpage(pfn, PT_PTE);
1649 }
1650 
xen_release_pmd(unsigned long pfn)1651 static void xen_release_pmd(unsigned long pfn)
1652 {
1653 	xen_release_ptpage(pfn, PT_PMD);
1654 }
1655 
xen_alloc_pud(struct mm_struct * mm,unsigned long pfn)1656 static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
1657 {
1658 	xen_alloc_ptpage(mm, pfn, PT_PUD);
1659 }
1660 
xen_release_pud(unsigned long pfn)1661 static void xen_release_pud(unsigned long pfn)
1662 {
1663 	xen_release_ptpage(pfn, PT_PUD);
1664 }
1665 
1666 /*
1667  * Like __va(), but returns address in the kernel mapping (which is
1668  * all we have until the physical memory mapping has been set up.
1669  */
__ka(phys_addr_t paddr)1670 static void * __init __ka(phys_addr_t paddr)
1671 {
1672 	return (void *)(paddr + __START_KERNEL_map);
1673 }
1674 
1675 /* Convert a machine address to physical address */
m2p(phys_addr_t maddr)1676 static unsigned long __init m2p(phys_addr_t maddr)
1677 {
1678 	phys_addr_t paddr;
1679 
1680 	maddr &= XEN_PTE_MFN_MASK;
1681 	paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1682 
1683 	return paddr;
1684 }
1685 
1686 /* Convert a machine address to kernel virtual */
m2v(phys_addr_t maddr)1687 static void * __init m2v(phys_addr_t maddr)
1688 {
1689 	return __ka(m2p(maddr));
1690 }
1691 
1692 /* Set the page permissions on an identity-mapped pages */
set_page_prot_flags(void * addr,pgprot_t prot,unsigned long flags)1693 static void __init set_page_prot_flags(void *addr, pgprot_t prot,
1694 				       unsigned long flags)
1695 {
1696 	unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1697 	pte_t pte = pfn_pte(pfn, prot);
1698 
1699 	if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, flags))
1700 		BUG();
1701 }
set_page_prot(void * addr,pgprot_t prot)1702 static void __init set_page_prot(void *addr, pgprot_t prot)
1703 {
1704 	return set_page_prot_flags(addr, prot, UVMF_NONE);
1705 }
1706 
xen_setup_machphys_mapping(void)1707 void __init xen_setup_machphys_mapping(void)
1708 {
1709 	struct xen_machphys_mapping mapping;
1710 
1711 	if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) {
1712 		machine_to_phys_mapping = (unsigned long *)mapping.v_start;
1713 		machine_to_phys_nr = mapping.max_mfn + 1;
1714 	} else {
1715 		machine_to_phys_nr = MACH2PHYS_NR_ENTRIES;
1716 	}
1717 }
1718 
convert_pfn_mfn(void * v)1719 static void __init convert_pfn_mfn(void *v)
1720 {
1721 	pte_t *pte = v;
1722 	int i;
1723 
1724 	/* All levels are converted the same way, so just treat them
1725 	   as ptes. */
1726 	for (i = 0; i < PTRS_PER_PTE; i++)
1727 		pte[i] = xen_make_pte(pte[i].pte);
1728 }
check_pt_base(unsigned long * pt_base,unsigned long * pt_end,unsigned long addr)1729 static void __init check_pt_base(unsigned long *pt_base, unsigned long *pt_end,
1730 				 unsigned long addr)
1731 {
1732 	if (*pt_base == PFN_DOWN(__pa(addr))) {
1733 		set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
1734 		clear_page((void *)addr);
1735 		(*pt_base)++;
1736 	}
1737 	if (*pt_end == PFN_DOWN(__pa(addr))) {
1738 		set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
1739 		clear_page((void *)addr);
1740 		(*pt_end)--;
1741 	}
1742 }
1743 /*
1744  * Set up the initial kernel pagetable.
1745  *
1746  * We can construct this by grafting the Xen provided pagetable into
1747  * head_64.S's preconstructed pagetables.  We copy the Xen L2's into
1748  * level2_ident_pgt, and level2_kernel_pgt.  This means that only the
1749  * kernel has a physical mapping to start with - but that's enough to
1750  * get __va working.  We need to fill in the rest of the physical
1751  * mapping once some sort of allocator has been set up.
1752  */
xen_setup_kernel_pagetable(pgd_t * pgd,unsigned long max_pfn)1753 void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1754 {
1755 	pud_t *l3;
1756 	pmd_t *l2;
1757 	unsigned long addr[3];
1758 	unsigned long pt_base, pt_end;
1759 	unsigned i;
1760 
1761 	/* max_pfn_mapped is the last pfn mapped in the initial memory
1762 	 * mappings. Considering that on Xen after the kernel mappings we
1763 	 * have the mappings of some pages that don't exist in pfn space, we
1764 	 * set max_pfn_mapped to the last real pfn mapped. */
1765 	if (xen_start_info->mfn_list < __START_KERNEL_map)
1766 		max_pfn_mapped = xen_start_info->first_p2m_pfn;
1767 	else
1768 		max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list));
1769 
1770 	pt_base = PFN_DOWN(__pa(xen_start_info->pt_base));
1771 	pt_end = pt_base + xen_start_info->nr_pt_frames;
1772 
1773 	/* Zap identity mapping */
1774 	init_top_pgt[0] = __pgd(0);
1775 
1776 	/* Pre-constructed entries are in pfn, so convert to mfn */
1777 	/* L4[273] -> level3_ident_pgt  */
1778 	/* L4[511] -> level3_kernel_pgt */
1779 	convert_pfn_mfn(init_top_pgt);
1780 
1781 	/* L3_i[0] -> level2_ident_pgt */
1782 	convert_pfn_mfn(level3_ident_pgt);
1783 	/* L3_k[510] -> level2_kernel_pgt */
1784 	/* L3_k[511] -> level2_fixmap_pgt */
1785 	convert_pfn_mfn(level3_kernel_pgt);
1786 
1787 	/* L3_k[511][508-FIXMAP_PMD_NUM ... 507] -> level1_fixmap_pgt */
1788 	convert_pfn_mfn(level2_fixmap_pgt);
1789 
1790 	/* We get [511][511] and have Xen's version of level2_kernel_pgt */
1791 	l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1792 	l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1793 
1794 	addr[0] = (unsigned long)pgd;
1795 	addr[1] = (unsigned long)l3;
1796 	addr[2] = (unsigned long)l2;
1797 	/* Graft it onto L4[273][0]. Note that we creating an aliasing problem:
1798 	 * Both L4[273][0] and L4[511][510] have entries that point to the same
1799 	 * L2 (PMD) tables. Meaning that if you modify it in __va space
1800 	 * it will be also modified in the __ka space! (But if you just
1801 	 * modify the PMD table to point to other PTE's or none, then you
1802 	 * are OK - which is what cleanup_highmap does) */
1803 	copy_page(level2_ident_pgt, l2);
1804 	/* Graft it onto L4[511][510] */
1805 	copy_page(level2_kernel_pgt, l2);
1806 
1807 	/*
1808 	 * Zap execute permission from the ident map. Due to the sharing of
1809 	 * L1 entries we need to do this in the L2.
1810 	 */
1811 	if (__supported_pte_mask & _PAGE_NX) {
1812 		for (i = 0; i < PTRS_PER_PMD; ++i) {
1813 			if (pmd_none(level2_ident_pgt[i]))
1814 				continue;
1815 			level2_ident_pgt[i] = pmd_set_flags(level2_ident_pgt[i], _PAGE_NX);
1816 		}
1817 	}
1818 
1819 	/* Copy the initial P->M table mappings if necessary. */
1820 	i = pgd_index(xen_start_info->mfn_list);
1821 	if (i && i < pgd_index(__START_KERNEL_map))
1822 		init_top_pgt[i] = ((pgd_t *)xen_start_info->pt_base)[i];
1823 
1824 	/* Make pagetable pieces RO */
1825 	set_page_prot(init_top_pgt, PAGE_KERNEL_RO);
1826 	set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1827 	set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1828 	set_page_prot(level2_ident_pgt, PAGE_KERNEL_RO);
1829 	set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1830 	set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1831 
1832 	for (i = 0; i < FIXMAP_PMD_NUM; i++) {
1833 		set_page_prot(level1_fixmap_pgt + i * PTRS_PER_PTE,
1834 			      PAGE_KERNEL_RO);
1835 	}
1836 
1837 	/* Pin down new L4 */
1838 	pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1839 			  PFN_DOWN(__pa_symbol(init_top_pgt)));
1840 
1841 	/* Unpin Xen-provided one */
1842 	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1843 
1844 #ifdef CONFIG_X86_VSYSCALL_EMULATION
1845 	/* Pin user vsyscall L3 */
1846 	set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1847 	pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE,
1848 			  PFN_DOWN(__pa_symbol(level3_user_vsyscall)));
1849 #endif
1850 
1851 	/*
1852 	 * At this stage there can be no user pgd, and no page structure to
1853 	 * attach it to, so make sure we just set kernel pgd.
1854 	 */
1855 	xen_mc_batch();
1856 	__xen_write_cr3(true, __pa(init_top_pgt));
1857 	xen_mc_issue(XEN_LAZY_CPU);
1858 
1859 	/* We can't that easily rip out L3 and L2, as the Xen pagetables are
1860 	 * set out this way: [L4], [L1], [L2], [L3], [L1], [L1] ...  for
1861 	 * the initial domain. For guests using the toolstack, they are in:
1862 	 * [L4], [L3], [L2], [L1], [L1], order .. So for dom0 we can only
1863 	 * rip out the [L4] (pgd), but for guests we shave off three pages.
1864 	 */
1865 	for (i = 0; i < ARRAY_SIZE(addr); i++)
1866 		check_pt_base(&pt_base, &pt_end, addr[i]);
1867 
1868 	/* Our (by three pages) smaller Xen pagetable that we are using */
1869 	xen_pt_base = PFN_PHYS(pt_base);
1870 	xen_pt_size = (pt_end - pt_base) * PAGE_SIZE;
1871 	memblock_reserve(xen_pt_base, xen_pt_size);
1872 
1873 	/* Revector the xen_start_info */
1874 	xen_start_info = (struct start_info *)__va(__pa(xen_start_info));
1875 }
1876 
1877 /*
1878  * Read a value from a physical address.
1879  */
xen_read_phys_ulong(phys_addr_t addr)1880 static unsigned long __init xen_read_phys_ulong(phys_addr_t addr)
1881 {
1882 	unsigned long *vaddr;
1883 	unsigned long val;
1884 
1885 	vaddr = early_memremap_ro(addr, sizeof(val));
1886 	val = *vaddr;
1887 	early_memunmap(vaddr, sizeof(val));
1888 	return val;
1889 }
1890 
1891 /*
1892  * Translate a virtual address to a physical one without relying on mapped
1893  * page tables. Don't rely on big pages being aligned in (guest) physical
1894  * space!
1895  */
xen_early_virt_to_phys(unsigned long vaddr)1896 static phys_addr_t __init xen_early_virt_to_phys(unsigned long vaddr)
1897 {
1898 	phys_addr_t pa;
1899 	pgd_t pgd;
1900 	pud_t pud;
1901 	pmd_t pmd;
1902 	pte_t pte;
1903 
1904 	pa = read_cr3_pa();
1905 	pgd = native_make_pgd(xen_read_phys_ulong(pa + pgd_index(vaddr) *
1906 						       sizeof(pgd)));
1907 	if (!pgd_present(pgd))
1908 		return 0;
1909 
1910 	pa = pgd_val(pgd) & PTE_PFN_MASK;
1911 	pud = native_make_pud(xen_read_phys_ulong(pa + pud_index(vaddr) *
1912 						       sizeof(pud)));
1913 	if (!pud_present(pud))
1914 		return 0;
1915 	pa = pud_val(pud) & PTE_PFN_MASK;
1916 	if (pud_leaf(pud))
1917 		return pa + (vaddr & ~PUD_MASK);
1918 
1919 	pmd = native_make_pmd(xen_read_phys_ulong(pa + pmd_index(vaddr) *
1920 						       sizeof(pmd)));
1921 	if (!pmd_present(pmd))
1922 		return 0;
1923 	pa = pmd_val(pmd) & PTE_PFN_MASK;
1924 	if (pmd_leaf(pmd))
1925 		return pa + (vaddr & ~PMD_MASK);
1926 
1927 	pte = native_make_pte(xen_read_phys_ulong(pa + pte_index(vaddr) *
1928 						       sizeof(pte)));
1929 	if (!pte_present(pte))
1930 		return 0;
1931 	pa = pte_pfn(pte) << PAGE_SHIFT;
1932 
1933 	return pa | (vaddr & ~PAGE_MASK);
1934 }
1935 
1936 /*
1937  * Find a new area for the hypervisor supplied p2m list and relocate the p2m to
1938  * this area.
1939  */
xen_relocate_p2m(void)1940 void __init xen_relocate_p2m(void)
1941 {
1942 	phys_addr_t size, new_area, pt_phys, pmd_phys, pud_phys;
1943 	unsigned long p2m_pfn, p2m_pfn_end, n_frames, pfn, pfn_end;
1944 	int n_pte, n_pt, n_pmd, n_pud, idx_pte, idx_pt, idx_pmd, idx_pud;
1945 	pte_t *pt;
1946 	pmd_t *pmd;
1947 	pud_t *pud;
1948 	pgd_t *pgd;
1949 	unsigned long *new_p2m;
1950 
1951 	size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
1952 	n_pte = roundup(size, PAGE_SIZE) >> PAGE_SHIFT;
1953 	n_pt = roundup(size, PMD_SIZE) >> PMD_SHIFT;
1954 	n_pmd = roundup(size, PUD_SIZE) >> PUD_SHIFT;
1955 	n_pud = roundup(size, P4D_SIZE) >> P4D_SHIFT;
1956 	n_frames = n_pte + n_pt + n_pmd + n_pud;
1957 
1958 	new_area = xen_find_free_area(PFN_PHYS(n_frames));
1959 	if (!new_area) {
1960 		xen_raw_console_write("Can't find new memory area for p2m needed due to E820 map conflict\n");
1961 		BUG();
1962 	}
1963 
1964 	/*
1965 	 * Setup the page tables for addressing the new p2m list.
1966 	 * We have asked the hypervisor to map the p2m list at the user address
1967 	 * PUD_SIZE. It may have done so, or it may have used a kernel space
1968 	 * address depending on the Xen version.
1969 	 * To avoid any possible virtual address collision, just use
1970 	 * 2 * PUD_SIZE for the new area.
1971 	 */
1972 	pud_phys = new_area;
1973 	pmd_phys = pud_phys + PFN_PHYS(n_pud);
1974 	pt_phys = pmd_phys + PFN_PHYS(n_pmd);
1975 	p2m_pfn = PFN_DOWN(pt_phys) + n_pt;
1976 
1977 	pgd = __va(read_cr3_pa());
1978 	new_p2m = (unsigned long *)(2 * PGDIR_SIZE);
1979 	for (idx_pud = 0; idx_pud < n_pud; idx_pud++) {
1980 		pud = early_memremap(pud_phys, PAGE_SIZE);
1981 		clear_page(pud);
1982 		for (idx_pmd = 0; idx_pmd < min(n_pmd, PTRS_PER_PUD);
1983 				idx_pmd++) {
1984 			pmd = early_memremap(pmd_phys, PAGE_SIZE);
1985 			clear_page(pmd);
1986 			for (idx_pt = 0; idx_pt < min(n_pt, PTRS_PER_PMD);
1987 					idx_pt++) {
1988 				pt = early_memremap(pt_phys, PAGE_SIZE);
1989 				clear_page(pt);
1990 				for (idx_pte = 0;
1991 				     idx_pte < min(n_pte, PTRS_PER_PTE);
1992 				     idx_pte++) {
1993 					pt[idx_pte] = pfn_pte(p2m_pfn,
1994 							      PAGE_KERNEL);
1995 					p2m_pfn++;
1996 				}
1997 				n_pte -= PTRS_PER_PTE;
1998 				early_memunmap(pt, PAGE_SIZE);
1999 				make_lowmem_page_readonly(__va(pt_phys));
2000 				pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE,
2001 						PFN_DOWN(pt_phys));
2002 				pmd[idx_pt] = __pmd(_PAGE_TABLE | pt_phys);
2003 				pt_phys += PAGE_SIZE;
2004 			}
2005 			n_pt -= PTRS_PER_PMD;
2006 			early_memunmap(pmd, PAGE_SIZE);
2007 			make_lowmem_page_readonly(__va(pmd_phys));
2008 			pin_pagetable_pfn(MMUEXT_PIN_L2_TABLE,
2009 					PFN_DOWN(pmd_phys));
2010 			pud[idx_pmd] = __pud(_PAGE_TABLE | pmd_phys);
2011 			pmd_phys += PAGE_SIZE;
2012 		}
2013 		n_pmd -= PTRS_PER_PUD;
2014 		early_memunmap(pud, PAGE_SIZE);
2015 		make_lowmem_page_readonly(__va(pud_phys));
2016 		pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(pud_phys));
2017 		set_pgd(pgd + 2 + idx_pud, __pgd(_PAGE_TABLE | pud_phys));
2018 		pud_phys += PAGE_SIZE;
2019 	}
2020 
2021 	/* Now copy the old p2m info to the new area. */
2022 	memcpy(new_p2m, xen_p2m_addr, size);
2023 	xen_p2m_addr = new_p2m;
2024 
2025 	/* Release the old p2m list and set new list info. */
2026 	p2m_pfn = PFN_DOWN(xen_early_virt_to_phys(xen_start_info->mfn_list));
2027 	BUG_ON(!p2m_pfn);
2028 	p2m_pfn_end = p2m_pfn + PFN_DOWN(size);
2029 
2030 	if (xen_start_info->mfn_list < __START_KERNEL_map) {
2031 		pfn = xen_start_info->first_p2m_pfn;
2032 		pfn_end = xen_start_info->first_p2m_pfn +
2033 			  xen_start_info->nr_p2m_frames;
2034 		set_pgd(pgd + 1, __pgd(0));
2035 	} else {
2036 		pfn = p2m_pfn;
2037 		pfn_end = p2m_pfn_end;
2038 	}
2039 
2040 	memblock_phys_free(PFN_PHYS(pfn), PAGE_SIZE * (pfn_end - pfn));
2041 	while (pfn < pfn_end) {
2042 		if (pfn == p2m_pfn) {
2043 			pfn = p2m_pfn_end;
2044 			continue;
2045 		}
2046 		make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
2047 		pfn++;
2048 	}
2049 
2050 	xen_start_info->mfn_list = (unsigned long)xen_p2m_addr;
2051 	xen_start_info->first_p2m_pfn =  PFN_DOWN(new_area);
2052 	xen_start_info->nr_p2m_frames = n_frames;
2053 }
2054 
xen_reserve_special_pages(void)2055 void __init xen_reserve_special_pages(void)
2056 {
2057 	phys_addr_t paddr;
2058 
2059 	memblock_reserve(__pa(xen_start_info), PAGE_SIZE);
2060 	if (xen_start_info->store_mfn) {
2061 		paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->store_mfn));
2062 		memblock_reserve(paddr, PAGE_SIZE);
2063 	}
2064 	if (!xen_initial_domain()) {
2065 		paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->console.domU.mfn));
2066 		memblock_reserve(paddr, PAGE_SIZE);
2067 	}
2068 }
2069 
xen_pt_check_e820(void)2070 void __init xen_pt_check_e820(void)
2071 {
2072 	xen_chk_is_e820_usable(xen_pt_base, xen_pt_size, "page table");
2073 }
2074 
2075 static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss;
2076 
xen_set_fixmap(unsigned idx,phys_addr_t phys,pgprot_t prot)2077 static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot)
2078 {
2079 	pte_t pte;
2080 	unsigned long vaddr;
2081 
2082 	phys >>= PAGE_SHIFT;
2083 
2084 	switch (idx) {
2085 	case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
2086 #ifdef CONFIG_X86_VSYSCALL_EMULATION
2087 	case VSYSCALL_PAGE:
2088 #endif
2089 		/* All local page mappings */
2090 		pte = pfn_pte(phys, prot);
2091 		break;
2092 
2093 #ifdef CONFIG_X86_LOCAL_APIC
2094 	case FIX_APIC_BASE:	/* maps dummy local APIC */
2095 		pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2096 		break;
2097 #endif
2098 
2099 #ifdef CONFIG_X86_IO_APIC
2100 	case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END:
2101 		/*
2102 		 * We just don't map the IO APIC - all access is via
2103 		 * hypercalls.  Keep the address in the pte for reference.
2104 		 */
2105 		pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2106 		break;
2107 #endif
2108 
2109 	case FIX_PARAVIRT_BOOTMAP:
2110 		/* This is an MFN, but it isn't an IO mapping from the
2111 		   IO domain */
2112 		pte = mfn_pte(phys, prot);
2113 		break;
2114 
2115 	default:
2116 		/* By default, set_fixmap is used for hardware mappings */
2117 		pte = mfn_pte(phys, prot);
2118 		break;
2119 	}
2120 
2121 	vaddr = __fix_to_virt(idx);
2122 	if (HYPERVISOR_update_va_mapping(vaddr, pte, UVMF_INVLPG))
2123 		BUG();
2124 
2125 #ifdef CONFIG_X86_VSYSCALL_EMULATION
2126 	/* Replicate changes to map the vsyscall page into the user
2127 	   pagetable vsyscall mapping. */
2128 	if (idx == VSYSCALL_PAGE)
2129 		set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
2130 #endif
2131 }
2132 
xen_enter_lazy_mmu(void)2133 static void xen_enter_lazy_mmu(void)
2134 {
2135 	enter_lazy(XEN_LAZY_MMU);
2136 }
2137 
xen_flush_lazy_mmu(void)2138 static void xen_flush_lazy_mmu(void)
2139 {
2140 	preempt_disable();
2141 
2142 	if (xen_get_lazy_mode() == XEN_LAZY_MMU) {
2143 		arch_leave_lazy_mmu_mode();
2144 		arch_enter_lazy_mmu_mode();
2145 	}
2146 
2147 	preempt_enable();
2148 }
2149 
xen_post_allocator_init(void)2150 static void __init xen_post_allocator_init(void)
2151 {
2152 	pv_ops.mmu.set_pte = xen_set_pte;
2153 	pv_ops.mmu.set_pmd = xen_set_pmd;
2154 	pv_ops.mmu.set_pud = xen_set_pud;
2155 	pv_ops.mmu.set_p4d = xen_set_p4d;
2156 
2157 	/* This will work as long as patching hasn't happened yet
2158 	   (which it hasn't) */
2159 	pv_ops.mmu.alloc_pte = xen_alloc_pte;
2160 	pv_ops.mmu.alloc_pmd = xen_alloc_pmd;
2161 	pv_ops.mmu.release_pte = xen_release_pte;
2162 	pv_ops.mmu.release_pmd = xen_release_pmd;
2163 	pv_ops.mmu.alloc_pud = xen_alloc_pud;
2164 	pv_ops.mmu.release_pud = xen_release_pud;
2165 	pv_ops.mmu.make_pte = PV_CALLEE_SAVE(xen_make_pte);
2166 
2167 	pv_ops.mmu.write_cr3 = &xen_write_cr3;
2168 }
2169 
xen_leave_lazy_mmu(void)2170 static void xen_leave_lazy_mmu(void)
2171 {
2172 	preempt_disable();
2173 	xen_mc_flush();
2174 	leave_lazy(XEN_LAZY_MMU);
2175 	preempt_enable();
2176 }
2177 
2178 static const typeof(pv_ops) xen_mmu_ops __initconst = {
2179 	.mmu = {
2180 		.read_cr2 = __PV_IS_CALLEE_SAVE(xen_read_cr2),
2181 		.write_cr2 = xen_write_cr2,
2182 
2183 		.read_cr3 = xen_read_cr3,
2184 		.write_cr3 = xen_write_cr3_init,
2185 
2186 		.flush_tlb_user = xen_flush_tlb,
2187 		.flush_tlb_kernel = xen_flush_tlb,
2188 		.flush_tlb_one_user = xen_flush_tlb_one_user,
2189 		.flush_tlb_multi = xen_flush_tlb_multi,
2190 
2191 		.pgd_alloc = xen_pgd_alloc,
2192 		.pgd_free = xen_pgd_free,
2193 
2194 		.alloc_pte = xen_alloc_pte_init,
2195 		.release_pte = xen_release_pte_init,
2196 		.alloc_pmd = xen_alloc_pmd_init,
2197 		.release_pmd = xen_release_pmd_init,
2198 
2199 		.set_pte = xen_set_pte_init,
2200 		.set_pmd = xen_set_pmd_hyper,
2201 
2202 		.ptep_modify_prot_start = xen_ptep_modify_prot_start,
2203 		.ptep_modify_prot_commit = xen_ptep_modify_prot_commit,
2204 
2205 		.pte_val = PV_CALLEE_SAVE(xen_pte_val),
2206 		.pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
2207 
2208 		.make_pte = PV_CALLEE_SAVE(xen_make_pte_init),
2209 		.make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
2210 
2211 		.set_pud = xen_set_pud_hyper,
2212 
2213 		.make_pmd = PV_CALLEE_SAVE(xen_make_pmd),
2214 		.pmd_val = PV_CALLEE_SAVE(xen_pmd_val),
2215 
2216 		.pud_val = PV_CALLEE_SAVE(xen_pud_val),
2217 		.make_pud = PV_CALLEE_SAVE(xen_make_pud),
2218 		.set_p4d = xen_set_p4d_hyper,
2219 
2220 		.alloc_pud = xen_alloc_pmd_init,
2221 		.release_pud = xen_release_pmd_init,
2222 
2223 		.p4d_val = PV_CALLEE_SAVE(xen_p4d_val),
2224 		.make_p4d = PV_CALLEE_SAVE(xen_make_p4d),
2225 
2226 		.enter_mmap = xen_enter_mmap,
2227 		.exit_mmap = xen_exit_mmap,
2228 
2229 		.lazy_mode = {
2230 			.enter = xen_enter_lazy_mmu,
2231 			.leave = xen_leave_lazy_mmu,
2232 			.flush = xen_flush_lazy_mmu,
2233 		},
2234 
2235 		.set_fixmap = xen_set_fixmap,
2236 	},
2237 };
2238 
xen_init_mmu_ops(void)2239 void __init xen_init_mmu_ops(void)
2240 {
2241 	x86_init.paging.pagetable_init = xen_pagetable_init;
2242 	x86_init.hyper.init_after_bootmem = xen_after_bootmem;
2243 
2244 	pv_ops.mmu = xen_mmu_ops.mmu;
2245 
2246 	memset(dummy_mapping, 0xff, PAGE_SIZE);
2247 }
2248 
2249 #define VOID_PTE (mfn_pte(0, __pgprot(0)))
xen_zap_pfn_range(unsigned long vaddr,unsigned int order,unsigned long * in_frames,unsigned long * out_frames)2250 static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order,
2251 				unsigned long *in_frames,
2252 				unsigned long *out_frames)
2253 {
2254 	int i;
2255 	struct multicall_space mcs;
2256 
2257 	xen_mc_batch();
2258 	for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) {
2259 		mcs = __xen_mc_entry(0);
2260 
2261 		if (in_frames)
2262 			in_frames[i] = virt_to_mfn((void *)vaddr);
2263 
2264 		MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0);
2265 		__set_phys_to_machine(virt_to_pfn((void *)vaddr), INVALID_P2M_ENTRY);
2266 
2267 		if (out_frames)
2268 			out_frames[i] = virt_to_pfn((void *)vaddr);
2269 	}
2270 	xen_mc_issue(0);
2271 }
2272 
2273 /*
2274  * Update the pfn-to-mfn mappings for a virtual address range, either to
2275  * point to an array of mfns, or contiguously from a single starting
2276  * mfn.
2277  */
xen_remap_exchanged_ptes(unsigned long vaddr,int order,unsigned long * mfns,unsigned long first_mfn)2278 static void xen_remap_exchanged_ptes(unsigned long vaddr, int order,
2279 				     unsigned long *mfns,
2280 				     unsigned long first_mfn)
2281 {
2282 	unsigned i, limit;
2283 	unsigned long mfn;
2284 
2285 	xen_mc_batch();
2286 
2287 	limit = 1u << order;
2288 	for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) {
2289 		struct multicall_space mcs;
2290 		unsigned flags;
2291 
2292 		mcs = __xen_mc_entry(0);
2293 		if (mfns)
2294 			mfn = mfns[i];
2295 		else
2296 			mfn = first_mfn + i;
2297 
2298 		if (i < (limit - 1))
2299 			flags = 0;
2300 		else {
2301 			if (order == 0)
2302 				flags = UVMF_INVLPG | UVMF_ALL;
2303 			else
2304 				flags = UVMF_TLB_FLUSH | UVMF_ALL;
2305 		}
2306 
2307 		MULTI_update_va_mapping(mcs.mc, vaddr,
2308 				mfn_pte(mfn, PAGE_KERNEL), flags);
2309 
2310 		set_phys_to_machine(virt_to_pfn((void *)vaddr), mfn);
2311 	}
2312 
2313 	xen_mc_issue(0);
2314 }
2315 
2316 /*
2317  * Perform the hypercall to exchange a region of our pfns to point to
2318  * memory with the required contiguous alignment.  Takes the pfns as
2319  * input, and populates mfns as output.
2320  *
2321  * Returns a success code indicating whether the hypervisor was able to
2322  * satisfy the request or not.
2323  */
xen_exchange_memory(unsigned long extents_in,unsigned int order_in,unsigned long * pfns_in,unsigned long extents_out,unsigned int order_out,unsigned long * mfns_out,unsigned int address_bits)2324 static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in,
2325 			       unsigned long *pfns_in,
2326 			       unsigned long extents_out,
2327 			       unsigned int order_out,
2328 			       unsigned long *mfns_out,
2329 			       unsigned int address_bits)
2330 {
2331 	long rc;
2332 	int success;
2333 
2334 	struct xen_memory_exchange exchange = {
2335 		.in = {
2336 			.nr_extents   = extents_in,
2337 			.extent_order = order_in,
2338 			.extent_start = pfns_in,
2339 			.domid        = DOMID_SELF
2340 		},
2341 		.out = {
2342 			.nr_extents   = extents_out,
2343 			.extent_order = order_out,
2344 			.extent_start = mfns_out,
2345 			.address_bits = address_bits,
2346 			.domid        = DOMID_SELF
2347 		}
2348 	};
2349 
2350 	BUG_ON(extents_in << order_in != extents_out << order_out);
2351 
2352 	rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange);
2353 	success = (exchange.nr_exchanged == extents_in);
2354 
2355 	BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0)));
2356 	BUG_ON(success && (rc != 0));
2357 
2358 	return success;
2359 }
2360 
xen_create_contiguous_region(phys_addr_t pstart,unsigned int order,unsigned int address_bits,dma_addr_t * dma_handle)2361 int xen_create_contiguous_region(phys_addr_t pstart, unsigned int order,
2362 				 unsigned int address_bits,
2363 				 dma_addr_t *dma_handle)
2364 {
2365 	unsigned long *in_frames, out_frame;
2366 	unsigned long  flags;
2367 	int            success;
2368 	unsigned long vstart = (unsigned long)phys_to_virt(pstart);
2369 
2370 	if (unlikely(order > discontig_frames_order)) {
2371 		if (!discontig_frames_dyn)
2372 			return -ENOMEM;
2373 
2374 		if (alloc_discontig_frames(order))
2375 			return -ENOMEM;
2376 	}
2377 
2378 	memset((void *) vstart, 0, PAGE_SIZE << order);
2379 
2380 	spin_lock_irqsave(&xen_reservation_lock, flags);
2381 
2382 	in_frames = discontig_frames;
2383 
2384 	/* 1. Zap current PTEs, remembering MFNs. */
2385 	xen_zap_pfn_range(vstart, order, in_frames, NULL);
2386 
2387 	/* 2. Get a new contiguous memory extent. */
2388 	out_frame = virt_to_pfn((void *)vstart);
2389 	success = xen_exchange_memory(1UL << order, 0, in_frames,
2390 				      1, order, &out_frame,
2391 				      address_bits);
2392 
2393 	/* 3. Map the new extent in place of old pages. */
2394 	if (success)
2395 		xen_remap_exchanged_ptes(vstart, order, NULL, out_frame);
2396 	else
2397 		xen_remap_exchanged_ptes(vstart, order, in_frames, 0);
2398 
2399 	spin_unlock_irqrestore(&xen_reservation_lock, flags);
2400 
2401 	*dma_handle = virt_to_machine(vstart).maddr;
2402 	return success ? 0 : -ENOMEM;
2403 }
2404 
xen_destroy_contiguous_region(phys_addr_t pstart,unsigned int order)2405 void xen_destroy_contiguous_region(phys_addr_t pstart, unsigned int order)
2406 {
2407 	unsigned long *out_frames, in_frame;
2408 	unsigned long  flags;
2409 	int success;
2410 	unsigned long vstart;
2411 
2412 	if (unlikely(order > discontig_frames_order))
2413 		return;
2414 
2415 	vstart = (unsigned long)phys_to_virt(pstart);
2416 	memset((void *) vstart, 0, PAGE_SIZE << order);
2417 
2418 	spin_lock_irqsave(&xen_reservation_lock, flags);
2419 
2420 	out_frames = discontig_frames;
2421 
2422 	/* 1. Find start MFN of contiguous extent. */
2423 	in_frame = virt_to_mfn((void *)vstart);
2424 
2425 	/* 2. Zap current PTEs. */
2426 	xen_zap_pfn_range(vstart, order, NULL, out_frames);
2427 
2428 	/* 3. Do the exchange for non-contiguous MFNs. */
2429 	success = xen_exchange_memory(1, order, &in_frame, 1UL << order,
2430 					0, out_frames, 0);
2431 
2432 	/* 4. Map new pages in place of old pages. */
2433 	if (success)
2434 		xen_remap_exchanged_ptes(vstart, order, out_frames, 0);
2435 	else
2436 		xen_remap_exchanged_ptes(vstart, order, NULL, in_frame);
2437 
2438 	spin_unlock_irqrestore(&xen_reservation_lock, flags);
2439 }
2440 
xen_flush_tlb_all(void)2441 static noinline void xen_flush_tlb_all(void)
2442 {
2443 	struct mmuext_op *op;
2444 	struct multicall_space mcs;
2445 
2446 	preempt_disable();
2447 
2448 	mcs = xen_mc_entry(sizeof(*op));
2449 
2450 	op = mcs.args;
2451 	op->cmd = MMUEXT_TLB_FLUSH_ALL;
2452 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
2453 
2454 	xen_mc_issue(XEN_LAZY_MMU);
2455 
2456 	preempt_enable();
2457 }
2458 
2459 #define REMAP_BATCH_SIZE 16
2460 
2461 struct remap_data {
2462 	xen_pfn_t *pfn;
2463 	bool contiguous;
2464 	bool no_translate;
2465 	pgprot_t prot;
2466 	struct mmu_update *mmu_update;
2467 };
2468 
remap_area_pfn_pte_fn(pte_t * ptep,unsigned long addr,void * data)2469 static int remap_area_pfn_pte_fn(pte_t *ptep, unsigned long addr, void *data)
2470 {
2471 	struct remap_data *rmd = data;
2472 	pte_t pte = pte_mkspecial(mfn_pte(*rmd->pfn, rmd->prot));
2473 
2474 	/*
2475 	 * If we have a contiguous range, just update the pfn itself,
2476 	 * else update pointer to be "next pfn".
2477 	 */
2478 	if (rmd->contiguous)
2479 		(*rmd->pfn)++;
2480 	else
2481 		rmd->pfn++;
2482 
2483 	rmd->mmu_update->ptr = virt_to_machine(ptep).maddr;
2484 	rmd->mmu_update->ptr |= rmd->no_translate ?
2485 		MMU_PT_UPDATE_NO_TRANSLATE :
2486 		MMU_NORMAL_PT_UPDATE;
2487 	rmd->mmu_update->val = pte_val_ma(pte);
2488 	rmd->mmu_update++;
2489 
2490 	return 0;
2491 }
2492 
xen_remap_pfn(struct vm_area_struct * vma,unsigned long addr,xen_pfn_t * pfn,int nr,int * err_ptr,pgprot_t prot,unsigned int domid,bool no_translate)2493 int xen_remap_pfn(struct vm_area_struct *vma, unsigned long addr,
2494 		  xen_pfn_t *pfn, int nr, int *err_ptr, pgprot_t prot,
2495 		  unsigned int domid, bool no_translate)
2496 {
2497 	int err = 0;
2498 	struct remap_data rmd;
2499 	struct mmu_update mmu_update[REMAP_BATCH_SIZE];
2500 	unsigned long range;
2501 	int mapped = 0;
2502 
2503 	BUG_ON(!((vma->vm_flags & (VM_PFNMAP | VM_IO)) == (VM_PFNMAP | VM_IO)));
2504 
2505 	rmd.pfn = pfn;
2506 	rmd.prot = prot;
2507 	/*
2508 	 * We use the err_ptr to indicate if there we are doing a contiguous
2509 	 * mapping or a discontiguous mapping.
2510 	 */
2511 	rmd.contiguous = !err_ptr;
2512 	rmd.no_translate = no_translate;
2513 
2514 	while (nr) {
2515 		int index = 0;
2516 		int done = 0;
2517 		int batch = min(REMAP_BATCH_SIZE, nr);
2518 		int batch_left = batch;
2519 
2520 		range = (unsigned long)batch << PAGE_SHIFT;
2521 
2522 		rmd.mmu_update = mmu_update;
2523 		err = apply_to_page_range(vma->vm_mm, addr, range,
2524 					  remap_area_pfn_pte_fn, &rmd);
2525 		if (err)
2526 			goto out;
2527 
2528 		/*
2529 		 * We record the error for each page that gives an error, but
2530 		 * continue mapping until the whole set is done
2531 		 */
2532 		do {
2533 			int i;
2534 
2535 			err = HYPERVISOR_mmu_update(&mmu_update[index],
2536 						    batch_left, &done, domid);
2537 
2538 			/*
2539 			 * @err_ptr may be the same buffer as @gfn, so
2540 			 * only clear it after each chunk of @gfn is
2541 			 * used.
2542 			 */
2543 			if (err_ptr) {
2544 				for (i = index; i < index + done; i++)
2545 					err_ptr[i] = 0;
2546 			}
2547 			if (err < 0) {
2548 				if (!err_ptr)
2549 					goto out;
2550 				err_ptr[i] = err;
2551 				done++; /* Skip failed frame. */
2552 			} else
2553 				mapped += done;
2554 			batch_left -= done;
2555 			index += done;
2556 		} while (batch_left);
2557 
2558 		nr -= batch;
2559 		addr += range;
2560 		if (err_ptr)
2561 			err_ptr += batch;
2562 		cond_resched();
2563 	}
2564 out:
2565 
2566 	xen_flush_tlb_all();
2567 
2568 	return err < 0 ? err : mapped;
2569 }
2570 EXPORT_SYMBOL_GPL(xen_remap_pfn);
2571 
2572 #ifdef CONFIG_VMCORE_INFO
paddr_vmcoreinfo_note(void)2573 phys_addr_t paddr_vmcoreinfo_note(void)
2574 {
2575 	if (xen_pv_domain())
2576 		return virt_to_machine(vmcoreinfo_note).maddr;
2577 	else
2578 		return __pa(vmcoreinfo_note);
2579 }
2580 #endif /* CONFIG_KEXEC_CORE */
2581