xref: /linux/kernel/sched/idle.c (revision bf76f23aa1c178e9115eba17f699fa726aed669b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic entry points for the idle threads and
4  * implementation of the idle task scheduling class.
5  *
6  * (NOTE: these are not related to SCHED_IDLE batch scheduled
7  *        tasks which are handled in sched/fair.c )
8  */
9 #include <linux/cpuidle.h>
10 #include <linux/suspend.h>
11 #include <linux/livepatch.h>
12 #include "sched.h"
13 #include "smp.h"
14 
15 /* Linker adds these: start and end of __cpuidle functions */
16 extern char __cpuidle_text_start[], __cpuidle_text_end[];
17 
18 /**
19  * sched_idle_set_state - Record idle state for the current CPU.
20  * @idle_state: State to record.
21  */
sched_idle_set_state(struct cpuidle_state * idle_state)22 void sched_idle_set_state(struct cpuidle_state *idle_state)
23 {
24 	idle_set_state(this_rq(), idle_state);
25 }
26 
27 static int __read_mostly cpu_idle_force_poll;
28 
cpu_idle_poll_ctrl(bool enable)29 void cpu_idle_poll_ctrl(bool enable)
30 {
31 	if (enable) {
32 		cpu_idle_force_poll++;
33 	} else {
34 		cpu_idle_force_poll--;
35 		WARN_ON_ONCE(cpu_idle_force_poll < 0);
36 	}
37 }
38 
39 #ifdef CONFIG_GENERIC_IDLE_POLL_SETUP
cpu_idle_poll_setup(char * __unused)40 static int __init cpu_idle_poll_setup(char *__unused)
41 {
42 	cpu_idle_force_poll = 1;
43 
44 	return 1;
45 }
46 __setup("nohlt", cpu_idle_poll_setup);
47 
cpu_idle_nopoll_setup(char * __unused)48 static int __init cpu_idle_nopoll_setup(char *__unused)
49 {
50 	cpu_idle_force_poll = 0;
51 
52 	return 1;
53 }
54 __setup("hlt", cpu_idle_nopoll_setup);
55 #endif /* CONFIG_GENERIC_IDLE_POLL_SETUP */
56 
cpu_idle_poll(void)57 static noinline int __cpuidle cpu_idle_poll(void)
58 {
59 	instrumentation_begin();
60 	trace_cpu_idle(0, smp_processor_id());
61 	stop_critical_timings();
62 	ct_cpuidle_enter();
63 
64 	raw_local_irq_enable();
65 	while (!tif_need_resched() &&
66 	       (cpu_idle_force_poll || tick_check_broadcast_expired()))
67 		cpu_relax();
68 	raw_local_irq_disable();
69 
70 	ct_cpuidle_exit();
71 	start_critical_timings();
72 	trace_cpu_idle(PWR_EVENT_EXIT, smp_processor_id());
73 	local_irq_enable();
74 	instrumentation_end();
75 
76 	return 1;
77 }
78 
79 /* Weak implementations for optional arch specific functions */
arch_cpu_idle_prepare(void)80 void __weak arch_cpu_idle_prepare(void) { }
arch_cpu_idle_enter(void)81 void __weak arch_cpu_idle_enter(void) { }
arch_cpu_idle_exit(void)82 void __weak arch_cpu_idle_exit(void) { }
arch_cpu_idle_dead(void)83 void __weak __noreturn arch_cpu_idle_dead(void) { while (1); }
arch_cpu_idle(void)84 void __weak arch_cpu_idle(void)
85 {
86 	cpu_idle_force_poll = 1;
87 }
88 
89 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST_IDLE
90 DEFINE_STATIC_KEY_FALSE(arch_needs_tick_broadcast);
91 
cond_tick_broadcast_enter(void)92 static inline void cond_tick_broadcast_enter(void)
93 {
94 	if (static_branch_unlikely(&arch_needs_tick_broadcast))
95 		tick_broadcast_enter();
96 }
97 
cond_tick_broadcast_exit(void)98 static inline void cond_tick_broadcast_exit(void)
99 {
100 	if (static_branch_unlikely(&arch_needs_tick_broadcast))
101 		tick_broadcast_exit();
102 }
103 #else /* !CONFIG_GENERIC_CLOCKEVENTS_BROADCAST_IDLE: */
cond_tick_broadcast_enter(void)104 static inline void cond_tick_broadcast_enter(void) { }
cond_tick_broadcast_exit(void)105 static inline void cond_tick_broadcast_exit(void) { }
106 #endif /* !CONFIG_GENERIC_CLOCKEVENTS_BROADCAST_IDLE */
107 
108 /**
109  * default_idle_call - Default CPU idle routine.
110  *
111  * To use when the cpuidle framework cannot be used.
112  */
default_idle_call(void)113 void __cpuidle default_idle_call(void)
114 {
115 	instrumentation_begin();
116 	if (!current_clr_polling_and_test()) {
117 		cond_tick_broadcast_enter();
118 		trace_cpu_idle(1, smp_processor_id());
119 		stop_critical_timings();
120 
121 		ct_cpuidle_enter();
122 		arch_cpu_idle();
123 		ct_cpuidle_exit();
124 
125 		start_critical_timings();
126 		trace_cpu_idle(PWR_EVENT_EXIT, smp_processor_id());
127 		cond_tick_broadcast_exit();
128 	}
129 	local_irq_enable();
130 	instrumentation_end();
131 }
132 
call_cpuidle_s2idle(struct cpuidle_driver * drv,struct cpuidle_device * dev)133 static int call_cpuidle_s2idle(struct cpuidle_driver *drv,
134 			       struct cpuidle_device *dev)
135 {
136 	if (current_clr_polling_and_test())
137 		return -EBUSY;
138 
139 	return cpuidle_enter_s2idle(drv, dev);
140 }
141 
call_cpuidle(struct cpuidle_driver * drv,struct cpuidle_device * dev,int next_state)142 static int call_cpuidle(struct cpuidle_driver *drv, struct cpuidle_device *dev,
143 		      int next_state)
144 {
145 	/*
146 	 * The idle task must be scheduled, it is pointless to go to idle, just
147 	 * update no idle residency and return.
148 	 */
149 	if (current_clr_polling_and_test()) {
150 		dev->last_residency_ns = 0;
151 		local_irq_enable();
152 		return -EBUSY;
153 	}
154 
155 	/*
156 	 * Enter the idle state previously returned by the governor decision.
157 	 * This function will block until an interrupt occurs and will take
158 	 * care of re-enabling the local interrupts
159 	 */
160 	return cpuidle_enter(drv, dev, next_state);
161 }
162 
163 /**
164  * cpuidle_idle_call - the main idle function
165  *
166  * NOTE: no locks or semaphores should be used here
167  *
168  * On architectures that support TIF_POLLING_NRFLAG, is called with polling
169  * set, and it returns with polling set.  If it ever stops polling, it
170  * must clear the polling bit.
171  */
cpuidle_idle_call(void)172 static void cpuidle_idle_call(void)
173 {
174 	struct cpuidle_device *dev = cpuidle_get_device();
175 	struct cpuidle_driver *drv = cpuidle_get_cpu_driver(dev);
176 	int next_state, entered_state;
177 
178 	/*
179 	 * Check if the idle task must be rescheduled. If it is the
180 	 * case, exit the function after re-enabling the local IRQ.
181 	 */
182 	if (need_resched()) {
183 		local_irq_enable();
184 		return;
185 	}
186 
187 	if (cpuidle_not_available(drv, dev)) {
188 		tick_nohz_idle_stop_tick();
189 
190 		default_idle_call();
191 		goto exit_idle;
192 	}
193 
194 	/*
195 	 * Suspend-to-idle ("s2idle") is a system state in which all user space
196 	 * has been frozen, all I/O devices have been suspended and the only
197 	 * activity happens here and in interrupts (if any). In that case bypass
198 	 * the cpuidle governor and go straight for the deepest idle state
199 	 * available.  Possibly also suspend the local tick and the entire
200 	 * timekeeping to prevent timer interrupts from kicking us out of idle
201 	 * until a proper wakeup interrupt happens.
202 	 */
203 
204 	if (idle_should_enter_s2idle() || dev->forced_idle_latency_limit_ns) {
205 		u64 max_latency_ns;
206 
207 		if (idle_should_enter_s2idle()) {
208 
209 			entered_state = call_cpuidle_s2idle(drv, dev);
210 			if (entered_state > 0)
211 				goto exit_idle;
212 
213 			max_latency_ns = U64_MAX;
214 		} else {
215 			max_latency_ns = dev->forced_idle_latency_limit_ns;
216 		}
217 
218 		tick_nohz_idle_stop_tick();
219 
220 		next_state = cpuidle_find_deepest_state(drv, dev, max_latency_ns);
221 		call_cpuidle(drv, dev, next_state);
222 	} else {
223 		bool stop_tick = true;
224 
225 		/*
226 		 * Ask the cpuidle framework to choose a convenient idle state.
227 		 */
228 		next_state = cpuidle_select(drv, dev, &stop_tick);
229 
230 		if (stop_tick || tick_nohz_tick_stopped())
231 			tick_nohz_idle_stop_tick();
232 		else
233 			tick_nohz_idle_retain_tick();
234 
235 		entered_state = call_cpuidle(drv, dev, next_state);
236 		/*
237 		 * Give the governor an opportunity to reflect on the outcome
238 		 */
239 		cpuidle_reflect(dev, entered_state);
240 	}
241 
242 exit_idle:
243 	__current_set_polling();
244 
245 	/*
246 	 * It is up to the idle functions to re-enable local interrupts
247 	 */
248 	if (WARN_ON_ONCE(irqs_disabled()))
249 		local_irq_enable();
250 }
251 
252 /*
253  * Generic idle loop implementation
254  *
255  * Called with polling cleared.
256  */
do_idle(void)257 static void do_idle(void)
258 {
259 	int cpu = smp_processor_id();
260 
261 	/*
262 	 * Check if we need to update blocked load
263 	 */
264 	nohz_run_idle_balance(cpu);
265 
266 	/*
267 	 * If the arch has a polling bit, we maintain an invariant:
268 	 *
269 	 * Our polling bit is clear if we're not scheduled (i.e. if rq->curr !=
270 	 * rq->idle). This means that, if rq->idle has the polling bit set,
271 	 * then setting need_resched is guaranteed to cause the CPU to
272 	 * reschedule.
273 	 */
274 
275 	__current_set_polling();
276 	tick_nohz_idle_enter();
277 
278 	while (!need_resched()) {
279 
280 		/*
281 		 * Interrupts shouldn't be re-enabled from that point on until
282 		 * the CPU sleeping instruction is reached. Otherwise an interrupt
283 		 * may fire and queue a timer that would be ignored until the CPU
284 		 * wakes from the sleeping instruction. And testing need_resched()
285 		 * doesn't tell about pending needed timer reprogram.
286 		 *
287 		 * Several cases to consider:
288 		 *
289 		 * - SLEEP-UNTIL-PENDING-INTERRUPT based instructions such as
290 		 *   "wfi" or "mwait" are fine because they can be entered with
291 		 *   interrupt disabled.
292 		 *
293 		 * - sti;mwait() couple is fine because the interrupts are
294 		 *   re-enabled only upon the execution of mwait, leaving no gap
295 		 *   in-between.
296 		 *
297 		 * - ROLLBACK based idle handlers with the sleeping instruction
298 		 *   called with interrupts enabled are NOT fine. In this scheme
299 		 *   when the interrupt detects it has interrupted an idle handler,
300 		 *   it rolls back to its beginning which performs the
301 		 *   need_resched() check before re-executing the sleeping
302 		 *   instruction. This can leak a pending needed timer reprogram.
303 		 *   If such a scheme is really mandatory due to the lack of an
304 		 *   appropriate CPU sleeping instruction, then a FAST-FORWARD
305 		 *   must instead be applied: when the interrupt detects it has
306 		 *   interrupted an idle handler, it must resume to the end of
307 		 *   this idle handler so that the generic idle loop is iterated
308 		 *   again to reprogram the tick.
309 		 */
310 		local_irq_disable();
311 
312 		if (cpu_is_offline(cpu)) {
313 			cpuhp_report_idle_dead();
314 			arch_cpu_idle_dead();
315 		}
316 
317 		arch_cpu_idle_enter();
318 		rcu_nocb_flush_deferred_wakeup();
319 
320 		/*
321 		 * In poll mode we re-enable interrupts and spin. Also if we
322 		 * detected in the wakeup from idle path that the tick
323 		 * broadcast device expired for us, we don't want to go deep
324 		 * idle as we know that the IPI is going to arrive right away.
325 		 */
326 		if (cpu_idle_force_poll || tick_check_broadcast_expired()) {
327 			tick_nohz_idle_restart_tick();
328 			cpu_idle_poll();
329 		} else {
330 			cpuidle_idle_call();
331 		}
332 		arch_cpu_idle_exit();
333 	}
334 
335 	/*
336 	 * Since we fell out of the loop above, we know TIF_NEED_RESCHED must
337 	 * be set, propagate it into PREEMPT_NEED_RESCHED.
338 	 *
339 	 * This is required because for polling idle loops we will not have had
340 	 * an IPI to fold the state for us.
341 	 */
342 	preempt_set_need_resched();
343 	tick_nohz_idle_exit();
344 	__current_clr_polling();
345 
346 	/*
347 	 * We promise to call sched_ttwu_pending() and reschedule if
348 	 * need_resched() is set while polling is set. That means that clearing
349 	 * polling needs to be visible before doing these things.
350 	 */
351 	smp_mb__after_atomic();
352 
353 	/*
354 	 * RCU relies on this call to be done outside of an RCU read-side
355 	 * critical section.
356 	 */
357 	flush_smp_call_function_queue();
358 	schedule_idle();
359 
360 	if (unlikely(klp_patch_pending(current)))
361 		klp_update_patch_state(current);
362 }
363 
cpu_in_idle(unsigned long pc)364 bool cpu_in_idle(unsigned long pc)
365 {
366 	return pc >= (unsigned long)__cpuidle_text_start &&
367 		pc < (unsigned long)__cpuidle_text_end;
368 }
369 
370 struct idle_timer {
371 	struct hrtimer timer;
372 	int done;
373 };
374 
idle_inject_timer_fn(struct hrtimer * timer)375 static enum hrtimer_restart idle_inject_timer_fn(struct hrtimer *timer)
376 {
377 	struct idle_timer *it = container_of(timer, struct idle_timer, timer);
378 
379 	WRITE_ONCE(it->done, 1);
380 	set_tsk_need_resched(current);
381 
382 	return HRTIMER_NORESTART;
383 }
384 
play_idle_precise(u64 duration_ns,u64 latency_ns)385 void play_idle_precise(u64 duration_ns, u64 latency_ns)
386 {
387 	struct idle_timer it;
388 
389 	/*
390 	 * Only FIFO tasks can disable the tick since they don't need the forced
391 	 * preemption.
392 	 */
393 	WARN_ON_ONCE(current->policy != SCHED_FIFO);
394 	WARN_ON_ONCE(current->nr_cpus_allowed != 1);
395 	WARN_ON_ONCE(!(current->flags & PF_KTHREAD));
396 	WARN_ON_ONCE(!(current->flags & PF_NO_SETAFFINITY));
397 	WARN_ON_ONCE(!duration_ns);
398 	WARN_ON_ONCE(current->mm);
399 
400 	rcu_sleep_check();
401 	preempt_disable();
402 	current->flags |= PF_IDLE;
403 	cpuidle_use_deepest_state(latency_ns);
404 
405 	it.done = 0;
406 	hrtimer_setup_on_stack(&it.timer, idle_inject_timer_fn, CLOCK_MONOTONIC,
407 			       HRTIMER_MODE_REL_HARD);
408 	hrtimer_start(&it.timer, ns_to_ktime(duration_ns),
409 		      HRTIMER_MODE_REL_PINNED_HARD);
410 
411 	while (!READ_ONCE(it.done))
412 		do_idle();
413 
414 	cpuidle_use_deepest_state(0);
415 	current->flags &= ~PF_IDLE;
416 
417 	preempt_fold_need_resched();
418 	preempt_enable();
419 }
420 EXPORT_SYMBOL_GPL(play_idle_precise);
421 
cpu_startup_entry(enum cpuhp_state state)422 void cpu_startup_entry(enum cpuhp_state state)
423 {
424 	current->flags |= PF_IDLE;
425 	arch_cpu_idle_prepare();
426 	cpuhp_online_idle(state);
427 	while (1)
428 		do_idle();
429 }
430 
431 /*
432  * idle-task scheduling class.
433  */
434 
435 static int
select_task_rq_idle(struct task_struct * p,int cpu,int flags)436 select_task_rq_idle(struct task_struct *p, int cpu, int flags)
437 {
438 	return task_cpu(p); /* IDLE tasks as never migrated */
439 }
440 
441 static int
balance_idle(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)442 balance_idle(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
443 {
444 	return WARN_ON_ONCE(1);
445 }
446 
447 /*
448  * Idle tasks are unconditionally rescheduled:
449  */
wakeup_preempt_idle(struct rq * rq,struct task_struct * p,int flags)450 static void wakeup_preempt_idle(struct rq *rq, struct task_struct *p, int flags)
451 {
452 	resched_curr(rq);
453 }
454 
put_prev_task_idle(struct rq * rq,struct task_struct * prev,struct task_struct * next)455 static void put_prev_task_idle(struct rq *rq, struct task_struct *prev, struct task_struct *next)
456 {
457 	dl_server_update_idle_time(rq, prev);
458 	scx_update_idle(rq, false, true);
459 }
460 
set_next_task_idle(struct rq * rq,struct task_struct * next,bool first)461 static void set_next_task_idle(struct rq *rq, struct task_struct *next, bool first)
462 {
463 	update_idle_core(rq);
464 	scx_update_idle(rq, true, true);
465 	schedstat_inc(rq->sched_goidle);
466 	next->se.exec_start = rq_clock_task(rq);
467 }
468 
pick_task_idle(struct rq * rq)469 struct task_struct *pick_task_idle(struct rq *rq)
470 {
471 	scx_update_idle(rq, true, false);
472 	return rq->idle;
473 }
474 
475 /*
476  * It is not legal to sleep in the idle task - print a warning
477  * message if some code attempts to do it:
478  */
479 static bool
dequeue_task_idle(struct rq * rq,struct task_struct * p,int flags)480 dequeue_task_idle(struct rq *rq, struct task_struct *p, int flags)
481 {
482 	raw_spin_rq_unlock_irq(rq);
483 	printk(KERN_ERR "bad: scheduling from the idle thread!\n");
484 	dump_stack();
485 	raw_spin_rq_lock_irq(rq);
486 	return true;
487 }
488 
489 /*
490  * scheduler tick hitting a task of our scheduling class.
491  *
492  * NOTE: This function can be called remotely by the tick offload that
493  * goes along full dynticks. Therefore no local assumption can be made
494  * and everything must be accessed through the @rq and @curr passed in
495  * parameters.
496  */
task_tick_idle(struct rq * rq,struct task_struct * curr,int queued)497 static void task_tick_idle(struct rq *rq, struct task_struct *curr, int queued)
498 {
499 }
500 
switched_to_idle(struct rq * rq,struct task_struct * p)501 static void switched_to_idle(struct rq *rq, struct task_struct *p)
502 {
503 	BUG();
504 }
505 
506 static void
prio_changed_idle(struct rq * rq,struct task_struct * p,int oldprio)507 prio_changed_idle(struct rq *rq, struct task_struct *p, int oldprio)
508 {
509 	BUG();
510 }
511 
update_curr_idle(struct rq * rq)512 static void update_curr_idle(struct rq *rq)
513 {
514 }
515 
516 /*
517  * Simple, special scheduling class for the per-CPU idle tasks:
518  */
519 DEFINE_SCHED_CLASS(idle) = {
520 
521 	/* no enqueue/yield_task for idle tasks */
522 
523 	/* dequeue is not valid, we print a debug message there: */
524 	.dequeue_task		= dequeue_task_idle,
525 
526 	.wakeup_preempt		= wakeup_preempt_idle,
527 
528 	.pick_task		= pick_task_idle,
529 	.put_prev_task		= put_prev_task_idle,
530 	.set_next_task          = set_next_task_idle,
531 
532 	.balance		= balance_idle,
533 	.select_task_rq		= select_task_rq_idle,
534 	.set_cpus_allowed	= set_cpus_allowed_common,
535 
536 	.task_tick		= task_tick_idle,
537 
538 	.prio_changed		= prio_changed_idle,
539 	.switched_to		= switched_to_idle,
540 	.update_curr		= update_curr_idle,
541 };
542