1 /*
2 * sca3000_core.c -- support VTI sca3000 series accelerometers via SPI
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License version 2 as published by
6 * the Free Software Foundation.
7 *
8 * Copyright (c) 2009 Jonathan Cameron <jic23@cam.ac.uk>
9 *
10 * See industrialio/accels/sca3000.h for comments.
11 */
12
13 #include <linux/interrupt.h>
14 #include <linux/fs.h>
15 #include <linux/device.h>
16 #include <linux/slab.h>
17 #include <linux/kernel.h>
18 #include <linux/spi/spi.h>
19 #include <linux/sysfs.h>
20 #include <linux/module.h>
21 #include "../iio.h"
22 #include "../sysfs.h"
23 #include "../events.h"
24 #include "../buffer.h"
25
26 #include "sca3000.h"
27
28 enum sca3000_variant {
29 d01,
30 e02,
31 e04,
32 e05,
33 };
34
35 /* Note where option modes are not defined, the chip simply does not
36 * support any.
37 * Other chips in the sca3000 series use i2c and are not included here.
38 *
39 * Some of these devices are only listed in the family data sheet and
40 * do not actually appear to be available.
41 */
42 static const struct sca3000_chip_info sca3000_spi_chip_info_tbl[] = {
43 [d01] = {
44 .scale = 7357,
45 .temp_output = true,
46 .measurement_mode_freq = 250,
47 .option_mode_1 = SCA3000_OP_MODE_BYPASS,
48 .option_mode_1_freq = 250,
49 .mot_det_mult_xz = {50, 100, 200, 350, 650, 1300},
50 .mot_det_mult_y = {50, 100, 150, 250, 450, 850, 1750},
51 },
52 [e02] = {
53 .scale = 9810,
54 .measurement_mode_freq = 125,
55 .option_mode_1 = SCA3000_OP_MODE_NARROW,
56 .option_mode_1_freq = 63,
57 .mot_det_mult_xz = {100, 150, 300, 550, 1050, 2050},
58 .mot_det_mult_y = {50, 100, 200, 350, 700, 1350, 2700},
59 },
60 [e04] = {
61 .scale = 19620,
62 .measurement_mode_freq = 100,
63 .option_mode_1 = SCA3000_OP_MODE_NARROW,
64 .option_mode_1_freq = 50,
65 .option_mode_2 = SCA3000_OP_MODE_WIDE,
66 .option_mode_2_freq = 400,
67 .mot_det_mult_xz = {200, 300, 600, 1100, 2100, 4100},
68 .mot_det_mult_y = {100, 200, 400, 7000, 1400, 2700, 54000},
69 },
70 [e05] = {
71 .scale = 61313,
72 .measurement_mode_freq = 200,
73 .option_mode_1 = SCA3000_OP_MODE_NARROW,
74 .option_mode_1_freq = 50,
75 .option_mode_2 = SCA3000_OP_MODE_WIDE,
76 .option_mode_2_freq = 400,
77 .mot_det_mult_xz = {600, 900, 1700, 3200, 6100, 11900},
78 .mot_det_mult_y = {300, 600, 1200, 2000, 4100, 7800, 15600},
79 },
80 };
81
sca3000_write_reg(struct sca3000_state * st,u8 address,u8 val)82 int sca3000_write_reg(struct sca3000_state *st, u8 address, u8 val)
83 {
84 st->tx[0] = SCA3000_WRITE_REG(address);
85 st->tx[1] = val;
86 return spi_write(st->us, st->tx, 2);
87 }
88
sca3000_read_data_short(struct sca3000_state * st,uint8_t reg_address_high,int len)89 int sca3000_read_data_short(struct sca3000_state *st,
90 uint8_t reg_address_high,
91 int len)
92 {
93 struct spi_message msg;
94 struct spi_transfer xfer[2] = {
95 {
96 .len = 1,
97 .tx_buf = st->tx,
98 }, {
99 .len = len,
100 .rx_buf = st->rx,
101 }
102 };
103 st->tx[0] = SCA3000_READ_REG(reg_address_high);
104 spi_message_init(&msg);
105 spi_message_add_tail(&xfer[0], &msg);
106 spi_message_add_tail(&xfer[1], &msg);
107
108 return spi_sync(st->us, &msg);
109 }
110
111 /**
112 * sca3000_reg_lock_on() test if the ctrl register lock is on
113 *
114 * Lock must be held.
115 **/
sca3000_reg_lock_on(struct sca3000_state * st)116 static int sca3000_reg_lock_on(struct sca3000_state *st)
117 {
118 int ret;
119
120 ret = sca3000_read_data_short(st, SCA3000_REG_ADDR_STATUS, 1);
121 if (ret < 0)
122 return ret;
123
124 return !(st->rx[0] & SCA3000_LOCKED);
125 }
126
127 /**
128 * __sca3000_unlock_reg_lock() unlock the control registers
129 *
130 * Note the device does not appear to support doing this in a single transfer.
131 * This should only ever be used as part of ctrl reg read.
132 * Lock must be held before calling this
133 **/
__sca3000_unlock_reg_lock(struct sca3000_state * st)134 static int __sca3000_unlock_reg_lock(struct sca3000_state *st)
135 {
136 struct spi_message msg;
137 struct spi_transfer xfer[3] = {
138 {
139 .len = 2,
140 .cs_change = 1,
141 .tx_buf = st->tx,
142 }, {
143 .len = 2,
144 .cs_change = 1,
145 .tx_buf = st->tx + 2,
146 }, {
147 .len = 2,
148 .tx_buf = st->tx + 4,
149 },
150 };
151 st->tx[0] = SCA3000_WRITE_REG(SCA3000_REG_ADDR_UNLOCK);
152 st->tx[1] = 0x00;
153 st->tx[2] = SCA3000_WRITE_REG(SCA3000_REG_ADDR_UNLOCK);
154 st->tx[3] = 0x50;
155 st->tx[4] = SCA3000_WRITE_REG(SCA3000_REG_ADDR_UNLOCK);
156 st->tx[5] = 0xA0;
157 spi_message_init(&msg);
158 spi_message_add_tail(&xfer[0], &msg);
159 spi_message_add_tail(&xfer[1], &msg);
160 spi_message_add_tail(&xfer[2], &msg);
161
162 return spi_sync(st->us, &msg);
163 }
164
165 /**
166 * sca3000_write_ctrl_reg() write to a lock protect ctrl register
167 * @sel: selects which registers we wish to write to
168 * @val: the value to be written
169 *
170 * Certain control registers are protected against overwriting by the lock
171 * register and use a shared write address. This function allows writing of
172 * these registers.
173 * Lock must be held.
174 **/
sca3000_write_ctrl_reg(struct sca3000_state * st,uint8_t sel,uint8_t val)175 static int sca3000_write_ctrl_reg(struct sca3000_state *st,
176 uint8_t sel,
177 uint8_t val)
178 {
179
180 int ret;
181
182 ret = sca3000_reg_lock_on(st);
183 if (ret < 0)
184 goto error_ret;
185 if (ret) {
186 ret = __sca3000_unlock_reg_lock(st);
187 if (ret)
188 goto error_ret;
189 }
190
191 /* Set the control select register */
192 ret = sca3000_write_reg(st, SCA3000_REG_ADDR_CTRL_SEL, sel);
193 if (ret)
194 goto error_ret;
195
196 /* Write the actual value into the register */
197 ret = sca3000_write_reg(st, SCA3000_REG_ADDR_CTRL_DATA, val);
198
199 error_ret:
200 return ret;
201 }
202
203 /* Crucial that lock is called before calling this */
204 /**
205 * sca3000_read_ctrl_reg() read from lock protected control register.
206 *
207 * Lock must be held.
208 **/
sca3000_read_ctrl_reg(struct sca3000_state * st,u8 ctrl_reg)209 static int sca3000_read_ctrl_reg(struct sca3000_state *st,
210 u8 ctrl_reg)
211 {
212 int ret;
213
214 ret = sca3000_reg_lock_on(st);
215 if (ret < 0)
216 goto error_ret;
217 if (ret) {
218 ret = __sca3000_unlock_reg_lock(st);
219 if (ret)
220 goto error_ret;
221 }
222 /* Set the control select register */
223 ret = sca3000_write_reg(st, SCA3000_REG_ADDR_CTRL_SEL, ctrl_reg);
224 if (ret)
225 goto error_ret;
226 ret = sca3000_read_data_short(st, SCA3000_REG_ADDR_CTRL_DATA, 1);
227 if (ret)
228 goto error_ret;
229 else
230 return st->rx[0];
231 error_ret:
232 return ret;
233 }
234
235 #ifdef SCA3000_DEBUG
236 /**
237 * sca3000_check_status() check the status register
238 *
239 * Only used for debugging purposes
240 **/
sca3000_check_status(struct device * dev)241 static int sca3000_check_status(struct device *dev)
242 {
243 int ret;
244 struct iio_dev *indio_dev = dev_get_drvdata(dev);
245 struct sca3000_state *st = iio_priv(indio_dev);
246
247 mutex_lock(&st->lock);
248 ret = sca3000_read_data_short(st, SCA3000_REG_ADDR_STATUS, 1);
249 if (ret < 0)
250 goto error_ret;
251 if (st->rx[0] & SCA3000_EEPROM_CS_ERROR)
252 dev_err(dev, "eeprom error\n");
253 if (st->rx[0] & SCA3000_SPI_FRAME_ERROR)
254 dev_err(dev, "Previous SPI Frame was corrupt\n");
255
256 error_ret:
257 mutex_unlock(&st->lock);
258 return ret;
259 }
260 #endif /* SCA3000_DEBUG */
261
262
263 /**
264 * sca3000_show_reg() - sysfs interface to read the chip revision number
265 **/
sca3000_show_rev(struct device * dev,struct device_attribute * attr,char * buf)266 static ssize_t sca3000_show_rev(struct device *dev,
267 struct device_attribute *attr,
268 char *buf)
269 {
270 int len = 0, ret;
271 struct iio_dev *indio_dev = dev_get_drvdata(dev);
272 struct sca3000_state *st = iio_priv(indio_dev);
273
274 mutex_lock(&st->lock);
275 ret = sca3000_read_data_short(st, SCA3000_REG_ADDR_REVID, 1);
276 if (ret < 0)
277 goto error_ret;
278 len += sprintf(buf + len,
279 "major=%d, minor=%d\n",
280 st->rx[0] & SCA3000_REVID_MAJOR_MASK,
281 st->rx[0] & SCA3000_REVID_MINOR_MASK);
282 error_ret:
283 mutex_unlock(&st->lock);
284
285 return ret ? ret : len;
286 }
287
288 /**
289 * sca3000_show_available_measurement_modes() display available modes
290 *
291 * This is all read from chip specific data in the driver. Not all
292 * of the sca3000 series support modes other than normal.
293 **/
294 static ssize_t
sca3000_show_available_measurement_modes(struct device * dev,struct device_attribute * attr,char * buf)295 sca3000_show_available_measurement_modes(struct device *dev,
296 struct device_attribute *attr,
297 char *buf)
298 {
299 struct iio_dev *indio_dev = dev_get_drvdata(dev);
300 struct sca3000_state *st = iio_priv(indio_dev);
301 int len = 0;
302
303 len += sprintf(buf + len, "0 - normal mode");
304 switch (st->info->option_mode_1) {
305 case SCA3000_OP_MODE_NARROW:
306 len += sprintf(buf + len, ", 1 - narrow mode");
307 break;
308 case SCA3000_OP_MODE_BYPASS:
309 len += sprintf(buf + len, ", 1 - bypass mode");
310 break;
311 }
312 switch (st->info->option_mode_2) {
313 case SCA3000_OP_MODE_WIDE:
314 len += sprintf(buf + len, ", 2 - wide mode");
315 break;
316 }
317 /* always supported */
318 len += sprintf(buf + len, " 3 - motion detection\n");
319
320 return len;
321 }
322
323 /**
324 * sca3000_show_measurmenet_mode() sysfs read of current mode
325 **/
326 static ssize_t
sca3000_show_measurement_mode(struct device * dev,struct device_attribute * attr,char * buf)327 sca3000_show_measurement_mode(struct device *dev,
328 struct device_attribute *attr,
329 char *buf)
330 {
331 struct iio_dev *indio_dev = dev_get_drvdata(dev);
332 struct sca3000_state *st = iio_priv(indio_dev);
333 int len = 0, ret;
334
335 mutex_lock(&st->lock);
336 ret = sca3000_read_data_short(st, SCA3000_REG_ADDR_MODE, 1);
337 if (ret)
338 goto error_ret;
339 /* mask bottom 2 bits - only ones that are relevant */
340 st->rx[0] &= 0x03;
341 switch (st->rx[0]) {
342 case SCA3000_MEAS_MODE_NORMAL:
343 len += sprintf(buf + len, "0 - normal mode\n");
344 break;
345 case SCA3000_MEAS_MODE_MOT_DET:
346 len += sprintf(buf + len, "3 - motion detection\n");
347 break;
348 case SCA3000_MEAS_MODE_OP_1:
349 switch (st->info->option_mode_1) {
350 case SCA3000_OP_MODE_NARROW:
351 len += sprintf(buf + len, "1 - narrow mode\n");
352 break;
353 case SCA3000_OP_MODE_BYPASS:
354 len += sprintf(buf + len, "1 - bypass mode\n");
355 break;
356 }
357 break;
358 case SCA3000_MEAS_MODE_OP_2:
359 switch (st->info->option_mode_2) {
360 case SCA3000_OP_MODE_WIDE:
361 len += sprintf(buf + len, "2 - wide mode\n");
362 break;
363 }
364 break;
365 }
366
367 error_ret:
368 mutex_unlock(&st->lock);
369
370 return ret ? ret : len;
371 }
372
373 /**
374 * sca3000_store_measurement_mode() set the current mode
375 **/
376 static ssize_t
sca3000_store_measurement_mode(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)377 sca3000_store_measurement_mode(struct device *dev,
378 struct device_attribute *attr,
379 const char *buf,
380 size_t len)
381 {
382 struct iio_dev *indio_dev = dev_get_drvdata(dev);
383 struct sca3000_state *st = iio_priv(indio_dev);
384 int ret;
385 u8 mask = 0x03;
386 u8 val;
387
388 mutex_lock(&st->lock);
389 ret = kstrtou8(buf, 10, &val);
390 if (ret)
391 goto error_ret;
392 if (val > 3) {
393 ret = -EINVAL;
394 goto error_ret;
395 }
396 ret = sca3000_read_data_short(st, SCA3000_REG_ADDR_MODE, 1);
397 if (ret)
398 goto error_ret;
399 st->rx[0] &= ~mask;
400 st->rx[0] |= (val & mask);
401 ret = sca3000_write_reg(st, SCA3000_REG_ADDR_MODE, st->rx[0]);
402 if (ret)
403 goto error_ret;
404 mutex_unlock(&st->lock);
405
406 return len;
407
408 error_ret:
409 mutex_unlock(&st->lock);
410
411 return ret;
412 }
413
414
415 /* Not even vaguely standard attributes so defined here rather than
416 * in the relevant IIO core headers
417 */
418 static IIO_DEVICE_ATTR(measurement_mode_available, S_IRUGO,
419 sca3000_show_available_measurement_modes,
420 NULL, 0);
421
422 static IIO_DEVICE_ATTR(measurement_mode, S_IRUGO | S_IWUSR,
423 sca3000_show_measurement_mode,
424 sca3000_store_measurement_mode,
425 0);
426
427 /* More standard attributes */
428
429 static IIO_DEVICE_ATTR(revision, S_IRUGO, sca3000_show_rev, NULL, 0);
430
431 #define SCA3000_INFO_MASK \
432 IIO_CHAN_INFO_SCALE_SHARED_BIT
433 #define SCA3000_EVENT_MASK \
434 (IIO_EV_BIT(IIO_EV_TYPE_MAG, IIO_EV_DIR_RISING))
435
436 static struct iio_chan_spec sca3000_channels[] = {
437 IIO_CHAN(IIO_ACCEL, 1, 0, 0, NULL, 0, IIO_MOD_X, SCA3000_INFO_MASK,
438 0, 0, IIO_ST('s', 11, 16, 5), SCA3000_EVENT_MASK),
439 IIO_CHAN(IIO_ACCEL, 1, 0, 0, NULL, 0, IIO_MOD_Y, SCA3000_INFO_MASK,
440 1, 1, IIO_ST('s', 11, 16, 5), SCA3000_EVENT_MASK),
441 IIO_CHAN(IIO_ACCEL, 1, 0, 0, NULL, 0, IIO_MOD_Z, SCA3000_INFO_MASK,
442 2, 2, IIO_ST('s', 11, 16, 5), SCA3000_EVENT_MASK),
443 };
444
445 static u8 sca3000_addresses[3][3] = {
446 [0] = {SCA3000_REG_ADDR_X_MSB, SCA3000_REG_CTRL_SEL_MD_X_TH,
447 SCA3000_MD_CTRL_OR_X},
448 [1] = {SCA3000_REG_ADDR_Y_MSB, SCA3000_REG_CTRL_SEL_MD_Y_TH,
449 SCA3000_MD_CTRL_OR_Y},
450 [2] = {SCA3000_REG_ADDR_Z_MSB, SCA3000_REG_CTRL_SEL_MD_Z_TH,
451 SCA3000_MD_CTRL_OR_Z},
452 };
453
sca3000_read_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val,int * val2,long mask)454 static int sca3000_read_raw(struct iio_dev *indio_dev,
455 struct iio_chan_spec const *chan,
456 int *val,
457 int *val2,
458 long mask)
459 {
460 struct sca3000_state *st = iio_priv(indio_dev);
461 int ret;
462 u8 address;
463
464 switch (mask) {
465 case 0:
466 mutex_lock(&st->lock);
467 if (st->mo_det_use_count) {
468 mutex_unlock(&st->lock);
469 return -EBUSY;
470 }
471 address = sca3000_addresses[chan->address][0];
472 ret = sca3000_read_data_short(st, address, 2);
473 if (ret < 0) {
474 mutex_unlock(&st->lock);
475 return ret;
476 }
477 *val = (be16_to_cpup((__be16 *)st->rx) >> 3) & 0x1FFF;
478 *val = ((*val) << (sizeof(*val)*8 - 13)) >>
479 (sizeof(*val)*8 - 13);
480 mutex_unlock(&st->lock);
481 return IIO_VAL_INT;
482 case IIO_CHAN_INFO_SCALE:
483 *val = 0;
484 if (chan->type == IIO_ACCEL)
485 *val2 = st->info->scale;
486 else /* temperature */
487 *val2 = 555556;
488 return IIO_VAL_INT_PLUS_MICRO;
489 default:
490 return -EINVAL;
491 }
492 }
493
494 /**
495 * sca3000_read_av_freq() sysfs function to get available frequencies
496 *
497 * The later modes are only relevant to the ring buffer - and depend on current
498 * mode. Note that data sheet gives rather wide tolerances for these so integer
499 * division will give good enough answer and not all chips have them specified
500 * at all.
501 **/
sca3000_read_av_freq(struct device * dev,struct device_attribute * attr,char * buf)502 static ssize_t sca3000_read_av_freq(struct device *dev,
503 struct device_attribute *attr,
504 char *buf)
505 {
506 struct iio_dev *indio_dev = dev_get_drvdata(dev);
507 struct sca3000_state *st = iio_priv(indio_dev);
508 int len = 0, ret, val;
509
510 mutex_lock(&st->lock);
511 ret = sca3000_read_data_short(st, SCA3000_REG_ADDR_MODE, 1);
512 val = st->rx[0];
513 mutex_unlock(&st->lock);
514 if (ret)
515 goto error_ret;
516
517 switch (val & 0x03) {
518 case SCA3000_MEAS_MODE_NORMAL:
519 len += sprintf(buf + len, "%d %d %d\n",
520 st->info->measurement_mode_freq,
521 st->info->measurement_mode_freq/2,
522 st->info->measurement_mode_freq/4);
523 break;
524 case SCA3000_MEAS_MODE_OP_1:
525 len += sprintf(buf + len, "%d %d %d\n",
526 st->info->option_mode_1_freq,
527 st->info->option_mode_1_freq/2,
528 st->info->option_mode_1_freq/4);
529 break;
530 case SCA3000_MEAS_MODE_OP_2:
531 len += sprintf(buf + len, "%d %d %d\n",
532 st->info->option_mode_2_freq,
533 st->info->option_mode_2_freq/2,
534 st->info->option_mode_2_freq/4);
535 break;
536 }
537 return len;
538 error_ret:
539 return ret;
540 }
541 /**
542 * __sca3000_get_base_frequency() obtain mode specific base frequency
543 *
544 * lock must be held
545 **/
__sca3000_get_base_freq(struct sca3000_state * st,const struct sca3000_chip_info * info,int * base_freq)546 static inline int __sca3000_get_base_freq(struct sca3000_state *st,
547 const struct sca3000_chip_info *info,
548 int *base_freq)
549 {
550 int ret;
551
552 ret = sca3000_read_data_short(st, SCA3000_REG_ADDR_MODE, 1);
553 if (ret)
554 goto error_ret;
555 switch (0x03 & st->rx[0]) {
556 case SCA3000_MEAS_MODE_NORMAL:
557 *base_freq = info->measurement_mode_freq;
558 break;
559 case SCA3000_MEAS_MODE_OP_1:
560 *base_freq = info->option_mode_1_freq;
561 break;
562 case SCA3000_MEAS_MODE_OP_2:
563 *base_freq = info->option_mode_2_freq;
564 break;
565 }
566 error_ret:
567 return ret;
568 }
569
570 /**
571 * sca3000_read_frequency() sysfs interface to get the current frequency
572 **/
sca3000_read_frequency(struct device * dev,struct device_attribute * attr,char * buf)573 static ssize_t sca3000_read_frequency(struct device *dev,
574 struct device_attribute *attr,
575 char *buf)
576 {
577 struct iio_dev *indio_dev = dev_get_drvdata(dev);
578 struct sca3000_state *st = iio_priv(indio_dev);
579 int ret, len = 0, base_freq = 0, val;
580
581 mutex_lock(&st->lock);
582 ret = __sca3000_get_base_freq(st, st->info, &base_freq);
583 if (ret)
584 goto error_ret_mut;
585 ret = sca3000_read_ctrl_reg(st, SCA3000_REG_CTRL_SEL_OUT_CTRL);
586 mutex_unlock(&st->lock);
587 if (ret)
588 goto error_ret;
589 val = ret;
590 if (base_freq > 0)
591 switch (val & 0x03) {
592 case 0x00:
593 case 0x03:
594 len = sprintf(buf, "%d\n", base_freq);
595 break;
596 case 0x01:
597 len = sprintf(buf, "%d\n", base_freq/2);
598 break;
599 case 0x02:
600 len = sprintf(buf, "%d\n", base_freq/4);
601 break;
602 }
603
604 return len;
605 error_ret_mut:
606 mutex_unlock(&st->lock);
607 error_ret:
608 return ret;
609 }
610
611 /**
612 * sca3000_set_frequency() sysfs interface to set the current frequency
613 **/
sca3000_set_frequency(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)614 static ssize_t sca3000_set_frequency(struct device *dev,
615 struct device_attribute *attr,
616 const char *buf,
617 size_t len)
618 {
619 struct iio_dev *indio_dev = dev_get_drvdata(dev);
620 struct sca3000_state *st = iio_priv(indio_dev);
621 int ret, base_freq = 0;
622 int ctrlval;
623 long val;
624
625 ret = strict_strtol(buf, 10, &val);
626 if (ret)
627 return ret;
628
629 mutex_lock(&st->lock);
630 /* What mode are we in? */
631 ret = __sca3000_get_base_freq(st, st->info, &base_freq);
632 if (ret)
633 goto error_free_lock;
634
635 ret = sca3000_read_ctrl_reg(st, SCA3000_REG_CTRL_SEL_OUT_CTRL);
636 if (ret < 0)
637 goto error_free_lock;
638 ctrlval = ret;
639 /* clear the bits */
640 ctrlval &= ~0x03;
641
642 if (val == base_freq/2) {
643 ctrlval |= SCA3000_OUT_CTRL_BUF_DIV_2;
644 } else if (val == base_freq/4) {
645 ctrlval |= SCA3000_OUT_CTRL_BUF_DIV_4;
646 } else if (val != base_freq) {
647 ret = -EINVAL;
648 goto error_free_lock;
649 }
650 ret = sca3000_write_ctrl_reg(st, SCA3000_REG_CTRL_SEL_OUT_CTRL,
651 ctrlval);
652 error_free_lock:
653 mutex_unlock(&st->lock);
654
655 return ret ? ret : len;
656 }
657
658 /* Should only really be registered if ring buffer support is compiled in.
659 * Does no harm however and doing it right would add a fair bit of complexity
660 */
661 static IIO_DEV_ATTR_SAMP_FREQ_AVAIL(sca3000_read_av_freq);
662
663 static IIO_DEV_ATTR_SAMP_FREQ(S_IWUSR | S_IRUGO,
664 sca3000_read_frequency,
665 sca3000_set_frequency);
666
667
668 /**
669 * sca3000_read_temp() sysfs interface to get the temperature when available
670 *
671 * The alignment of data in here is downright odd. See data sheet.
672 * Converting this into a meaningful value is left to inline functions in
673 * userspace part of header.
674 **/
sca3000_read_temp(struct device * dev,struct device_attribute * attr,char * buf)675 static ssize_t sca3000_read_temp(struct device *dev,
676 struct device_attribute *attr,
677 char *buf)
678 {
679 struct iio_dev *indio_dev = dev_get_drvdata(dev);
680 struct sca3000_state *st = iio_priv(indio_dev);
681 int ret;
682 int val;
683 ret = sca3000_read_data_short(st, SCA3000_REG_ADDR_TEMP_MSB, 2);
684 if (ret < 0)
685 goto error_ret;
686 val = ((st->rx[0] & 0x3F) << 3) | ((st->rx[1] & 0xE0) >> 5);
687
688 return sprintf(buf, "%d\n", val);
689
690 error_ret:
691 return ret;
692 }
693 static IIO_DEV_ATTR_TEMP_RAW(sca3000_read_temp);
694
695 static IIO_CONST_ATTR_TEMP_SCALE("0.555556");
696 static IIO_CONST_ATTR_TEMP_OFFSET("-214.6");
697
698 /**
699 * sca3000_read_thresh() - query of a threshold
700 **/
sca3000_read_thresh(struct iio_dev * indio_dev,u64 e,int * val)701 static int sca3000_read_thresh(struct iio_dev *indio_dev,
702 u64 e,
703 int *val)
704 {
705 int ret, i;
706 struct sca3000_state *st = iio_priv(indio_dev);
707 int num = IIO_EVENT_CODE_EXTRACT_MODIFIER(e);
708 mutex_lock(&st->lock);
709 ret = sca3000_read_ctrl_reg(st, sca3000_addresses[num][1]);
710 mutex_unlock(&st->lock);
711 if (ret < 0)
712 return ret;
713 *val = 0;
714 if (num == 1)
715 for_each_set_bit(i, (unsigned long *)&ret,
716 ARRAY_SIZE(st->info->mot_det_mult_y))
717 *val += st->info->mot_det_mult_y[i];
718 else
719 for_each_set_bit(i, (unsigned long *)&ret,
720 ARRAY_SIZE(st->info->mot_det_mult_xz))
721 *val += st->info->mot_det_mult_xz[i];
722
723 return 0;
724 }
725
726 /**
727 * sca3000_write_thresh() control of threshold
728 **/
sca3000_write_thresh(struct iio_dev * indio_dev,u64 e,int val)729 static int sca3000_write_thresh(struct iio_dev *indio_dev,
730 u64 e,
731 int val)
732 {
733 struct sca3000_state *st = iio_priv(indio_dev);
734 int num = IIO_EVENT_CODE_EXTRACT_MODIFIER(e);
735 int ret;
736 int i;
737 u8 nonlinear = 0;
738
739 if (num == 1) {
740 i = ARRAY_SIZE(st->info->mot_det_mult_y);
741 while (i > 0)
742 if (val >= st->info->mot_det_mult_y[--i]) {
743 nonlinear |= (1 << i);
744 val -= st->info->mot_det_mult_y[i];
745 }
746 } else {
747 i = ARRAY_SIZE(st->info->mot_det_mult_xz);
748 while (i > 0)
749 if (val >= st->info->mot_det_mult_xz[--i]) {
750 nonlinear |= (1 << i);
751 val -= st->info->mot_det_mult_xz[i];
752 }
753 }
754
755 mutex_lock(&st->lock);
756 ret = sca3000_write_ctrl_reg(st, sca3000_addresses[num][1], nonlinear);
757 mutex_unlock(&st->lock);
758
759 return ret;
760 }
761
762 static struct attribute *sca3000_attributes[] = {
763 &iio_dev_attr_revision.dev_attr.attr,
764 &iio_dev_attr_measurement_mode_available.dev_attr.attr,
765 &iio_dev_attr_measurement_mode.dev_attr.attr,
766 &iio_dev_attr_sampling_frequency_available.dev_attr.attr,
767 &iio_dev_attr_sampling_frequency.dev_attr.attr,
768 NULL,
769 };
770
771 static struct attribute *sca3000_attributes_with_temp[] = {
772 &iio_dev_attr_revision.dev_attr.attr,
773 &iio_dev_attr_measurement_mode_available.dev_attr.attr,
774 &iio_dev_attr_measurement_mode.dev_attr.attr,
775 &iio_dev_attr_sampling_frequency_available.dev_attr.attr,
776 &iio_dev_attr_sampling_frequency.dev_attr.attr,
777 /* Only present if temp sensor is */
778 &iio_dev_attr_in_temp_raw.dev_attr.attr,
779 &iio_const_attr_in_temp_offset.dev_attr.attr,
780 &iio_const_attr_in_temp_scale.dev_attr.attr,
781 NULL,
782 };
783
784 static const struct attribute_group sca3000_attribute_group = {
785 .attrs = sca3000_attributes,
786 };
787
788 static const struct attribute_group sca3000_attribute_group_with_temp = {
789 .attrs = sca3000_attributes_with_temp,
790 };
791
792 /* RING RELATED interrupt handler */
793 /* depending on event, push to the ring buffer event chrdev or the event one */
794
795 /**
796 * sca3000_event_handler() - handling ring and non ring events
797 *
798 * This function is complicated by the fact that the devices can signify ring
799 * and non ring events via the same interrupt line and they can only
800 * be distinguished via a read of the relevant status register.
801 **/
sca3000_event_handler(int irq,void * private)802 static irqreturn_t sca3000_event_handler(int irq, void *private)
803 {
804 struct iio_dev *indio_dev = private;
805 struct sca3000_state *st = iio_priv(indio_dev);
806 int ret, val;
807 s64 last_timestamp = iio_get_time_ns();
808
809 /* Could lead if badly timed to an extra read of status reg,
810 * but ensures no interrupt is missed.
811 */
812 mutex_lock(&st->lock);
813 ret = sca3000_read_data_short(st, SCA3000_REG_ADDR_INT_STATUS, 1);
814 val = st->rx[0];
815 mutex_unlock(&st->lock);
816 if (ret)
817 goto done;
818
819 sca3000_ring_int_process(val, indio_dev->buffer);
820
821 if (val & SCA3000_INT_STATUS_FREE_FALL)
822 iio_push_event(indio_dev,
823 IIO_MOD_EVENT_CODE(IIO_ACCEL,
824 0,
825 IIO_MOD_X_AND_Y_AND_Z,
826 IIO_EV_TYPE_MAG,
827 IIO_EV_DIR_FALLING),
828 last_timestamp);
829
830 if (val & SCA3000_INT_STATUS_Y_TRIGGER)
831 iio_push_event(indio_dev,
832 IIO_MOD_EVENT_CODE(IIO_ACCEL,
833 0,
834 IIO_MOD_Y,
835 IIO_EV_TYPE_MAG,
836 IIO_EV_DIR_RISING),
837 last_timestamp);
838
839 if (val & SCA3000_INT_STATUS_X_TRIGGER)
840 iio_push_event(indio_dev,
841 IIO_MOD_EVENT_CODE(IIO_ACCEL,
842 0,
843 IIO_MOD_X,
844 IIO_EV_TYPE_MAG,
845 IIO_EV_DIR_RISING),
846 last_timestamp);
847
848 if (val & SCA3000_INT_STATUS_Z_TRIGGER)
849 iio_push_event(indio_dev,
850 IIO_MOD_EVENT_CODE(IIO_ACCEL,
851 0,
852 IIO_MOD_Z,
853 IIO_EV_TYPE_MAG,
854 IIO_EV_DIR_RISING),
855 last_timestamp);
856
857 done:
858 return IRQ_HANDLED;
859 }
860
861 /**
862 * sca3000_read_event_config() what events are enabled
863 **/
sca3000_read_event_config(struct iio_dev * indio_dev,u64 e)864 static int sca3000_read_event_config(struct iio_dev *indio_dev,
865 u64 e)
866 {
867 struct sca3000_state *st = iio_priv(indio_dev);
868 int ret;
869 u8 protect_mask = 0x03;
870 int num = IIO_EVENT_CODE_EXTRACT_MODIFIER(e);
871
872 /* read current value of mode register */
873 mutex_lock(&st->lock);
874 ret = sca3000_read_data_short(st, SCA3000_REG_ADDR_MODE, 1);
875 if (ret)
876 goto error_ret;
877
878 if ((st->rx[0] & protect_mask) != SCA3000_MEAS_MODE_MOT_DET)
879 ret = 0;
880 else {
881 ret = sca3000_read_ctrl_reg(st, SCA3000_REG_CTRL_SEL_MD_CTRL);
882 if (ret < 0)
883 goto error_ret;
884 /* only supporting logical or's for now */
885 ret = !!(ret & sca3000_addresses[num][2]);
886 }
887 error_ret:
888 mutex_unlock(&st->lock);
889
890 return ret;
891 }
892 /**
893 * sca3000_query_free_fall_mode() is free fall mode enabled
894 **/
sca3000_query_free_fall_mode(struct device * dev,struct device_attribute * attr,char * buf)895 static ssize_t sca3000_query_free_fall_mode(struct device *dev,
896 struct device_attribute *attr,
897 char *buf)
898 {
899 int ret, len;
900 struct iio_dev *indio_dev = dev_get_drvdata(dev);
901 struct sca3000_state *st = iio_priv(indio_dev);
902 int val;
903
904 mutex_lock(&st->lock);
905 ret = sca3000_read_data_short(st, SCA3000_REG_ADDR_MODE, 1);
906 val = st->rx[0];
907 mutex_unlock(&st->lock);
908 if (ret < 0)
909 return ret;
910 len = sprintf(buf, "%d\n",
911 !!(val & SCA3000_FREE_FALL_DETECT));
912 return len;
913 }
914
915 /**
916 * sca3000_set_free_fall_mode() simple on off control for free fall int
917 *
918 * In these chips the free fall detector should send an interrupt if
919 * the device falls more than 25cm. This has not been tested due
920 * to fragile wiring.
921 **/
922
sca3000_set_free_fall_mode(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)923 static ssize_t sca3000_set_free_fall_mode(struct device *dev,
924 struct device_attribute *attr,
925 const char *buf,
926 size_t len)
927 {
928 struct iio_dev *indio_dev = dev_get_drvdata(dev);
929 struct sca3000_state *st = iio_priv(indio_dev);
930 long val;
931 int ret;
932 u8 protect_mask = SCA3000_FREE_FALL_DETECT;
933
934 mutex_lock(&st->lock);
935 ret = strict_strtol(buf, 10, &val);
936 if (ret)
937 goto error_ret;
938
939 /* read current value of mode register */
940 ret = sca3000_read_data_short(st, SCA3000_REG_ADDR_MODE, 1);
941 if (ret)
942 goto error_ret;
943
944 /*if off and should be on*/
945 if (val && !(st->rx[0] & protect_mask))
946 ret = sca3000_write_reg(st, SCA3000_REG_ADDR_MODE,
947 (st->rx[0] | SCA3000_FREE_FALL_DETECT));
948 /* if on and should be off */
949 else if (!val && (st->rx[0] & protect_mask))
950 ret = sca3000_write_reg(st, SCA3000_REG_ADDR_MODE,
951 (st->rx[0] & ~protect_mask));
952 error_ret:
953 mutex_unlock(&st->lock);
954
955 return ret ? ret : len;
956 }
957
958 /**
959 * sca3000_set_mo_det() simple on off control for motion detector
960 *
961 * This is a per axis control, but enabling any will result in the
962 * motion detector unit being enabled.
963 * N.B. enabling motion detector stops normal data acquisition.
964 * There is a complexity in knowing which mode to return to when
965 * this mode is disabled. Currently normal mode is assumed.
966 **/
sca3000_write_event_config(struct iio_dev * indio_dev,u64 e,int state)967 static int sca3000_write_event_config(struct iio_dev *indio_dev,
968 u64 e,
969 int state)
970 {
971 struct sca3000_state *st = iio_priv(indio_dev);
972 int ret, ctrlval;
973 u8 protect_mask = 0x03;
974 int num = IIO_EVENT_CODE_EXTRACT_MODIFIER(e);
975
976 mutex_lock(&st->lock);
977 /* First read the motion detector config to find out if
978 * this axis is on*/
979 ret = sca3000_read_ctrl_reg(st, SCA3000_REG_CTRL_SEL_MD_CTRL);
980 if (ret < 0)
981 goto exit_point;
982 ctrlval = ret;
983 /* Off and should be on */
984 if (state && !(ctrlval & sca3000_addresses[num][2])) {
985 ret = sca3000_write_ctrl_reg(st,
986 SCA3000_REG_CTRL_SEL_MD_CTRL,
987 ctrlval |
988 sca3000_addresses[num][2]);
989 if (ret)
990 goto exit_point;
991 st->mo_det_use_count++;
992 } else if (!state && (ctrlval & sca3000_addresses[num][2])) {
993 ret = sca3000_write_ctrl_reg(st,
994 SCA3000_REG_CTRL_SEL_MD_CTRL,
995 ctrlval &
996 ~(sca3000_addresses[num][2]));
997 if (ret)
998 goto exit_point;
999 st->mo_det_use_count--;
1000 }
1001
1002 /* read current value of mode register */
1003 ret = sca3000_read_data_short(st, SCA3000_REG_ADDR_MODE, 1);
1004 if (ret)
1005 goto exit_point;
1006 /*if off and should be on*/
1007 if ((st->mo_det_use_count)
1008 && ((st->rx[0] & protect_mask) != SCA3000_MEAS_MODE_MOT_DET))
1009 ret = sca3000_write_reg(st, SCA3000_REG_ADDR_MODE,
1010 (st->rx[0] & ~protect_mask)
1011 | SCA3000_MEAS_MODE_MOT_DET);
1012 /* if on and should be off */
1013 else if (!(st->mo_det_use_count)
1014 && ((st->rx[0] & protect_mask) == SCA3000_MEAS_MODE_MOT_DET))
1015 ret = sca3000_write_reg(st, SCA3000_REG_ADDR_MODE,
1016 (st->rx[0] & ~protect_mask));
1017 exit_point:
1018 mutex_unlock(&st->lock);
1019
1020 return ret;
1021 }
1022
1023 /* Free fall detector related event attribute */
1024 static IIO_DEVICE_ATTR_NAMED(accel_xayaz_mag_falling_en,
1025 in_accel_x&y&z_mag_falling_en,
1026 S_IRUGO | S_IWUSR,
1027 sca3000_query_free_fall_mode,
1028 sca3000_set_free_fall_mode,
1029 0);
1030
1031 static IIO_CONST_ATTR_NAMED(accel_xayaz_mag_falling_period,
1032 in_accel_x&y&z_mag_falling_period,
1033 "0.226");
1034
1035 static struct attribute *sca3000_event_attributes[] = {
1036 &iio_dev_attr_accel_xayaz_mag_falling_en.dev_attr.attr,
1037 &iio_const_attr_accel_xayaz_mag_falling_period.dev_attr.attr,
1038 NULL,
1039 };
1040
1041 static struct attribute_group sca3000_event_attribute_group = {
1042 .attrs = sca3000_event_attributes,
1043 .name = "events",
1044 };
1045
1046 /**
1047 * sca3000_clean_setup() get the device into a predictable state
1048 *
1049 * Devices use flash memory to store many of the register values
1050 * and hence can come up in somewhat unpredictable states.
1051 * Hence reset everything on driver load.
1052 **/
sca3000_clean_setup(struct sca3000_state * st)1053 static int sca3000_clean_setup(struct sca3000_state *st)
1054 {
1055 int ret;
1056
1057 mutex_lock(&st->lock);
1058 /* Ensure all interrupts have been acknowledged */
1059 ret = sca3000_read_data_short(st, SCA3000_REG_ADDR_INT_STATUS, 1);
1060 if (ret)
1061 goto error_ret;
1062
1063 /* Turn off all motion detection channels */
1064 ret = sca3000_read_ctrl_reg(st, SCA3000_REG_CTRL_SEL_MD_CTRL);
1065 if (ret < 0)
1066 goto error_ret;
1067 ret = sca3000_write_ctrl_reg(st, SCA3000_REG_CTRL_SEL_MD_CTRL,
1068 ret & SCA3000_MD_CTRL_PROT_MASK);
1069 if (ret)
1070 goto error_ret;
1071
1072 /* Disable ring buffer */
1073 ret = sca3000_read_ctrl_reg(st, SCA3000_REG_CTRL_SEL_OUT_CTRL);
1074 ret = sca3000_write_ctrl_reg(st, SCA3000_REG_CTRL_SEL_OUT_CTRL,
1075 (ret & SCA3000_OUT_CTRL_PROT_MASK)
1076 | SCA3000_OUT_CTRL_BUF_X_EN
1077 | SCA3000_OUT_CTRL_BUF_Y_EN
1078 | SCA3000_OUT_CTRL_BUF_Z_EN
1079 | SCA3000_OUT_CTRL_BUF_DIV_4);
1080 if (ret)
1081 goto error_ret;
1082 /* Enable interrupts, relevant to mode and set up as active low */
1083 ret = sca3000_read_data_short(st, SCA3000_REG_ADDR_INT_MASK, 1);
1084 if (ret)
1085 goto error_ret;
1086 ret = sca3000_write_reg(st,
1087 SCA3000_REG_ADDR_INT_MASK,
1088 (ret & SCA3000_INT_MASK_PROT_MASK)
1089 | SCA3000_INT_MASK_ACTIVE_LOW);
1090 if (ret)
1091 goto error_ret;
1092 /* Select normal measurement mode, free fall off, ring off */
1093 /* Ring in 12 bit mode - it is fine to overwrite reserved bits 3,5
1094 * as that occurs in one of the example on the datasheet */
1095 ret = sca3000_read_data_short(st, SCA3000_REG_ADDR_MODE, 1);
1096 if (ret)
1097 goto error_ret;
1098 ret = sca3000_write_reg(st, SCA3000_REG_ADDR_MODE,
1099 (st->rx[0] & SCA3000_MODE_PROT_MASK));
1100 st->bpse = 11;
1101
1102 error_ret:
1103 mutex_unlock(&st->lock);
1104 return ret;
1105 }
1106
1107 static const struct iio_info sca3000_info = {
1108 .attrs = &sca3000_attribute_group,
1109 .read_raw = &sca3000_read_raw,
1110 .event_attrs = &sca3000_event_attribute_group,
1111 .read_event_value = &sca3000_read_thresh,
1112 .write_event_value = &sca3000_write_thresh,
1113 .read_event_config = &sca3000_read_event_config,
1114 .write_event_config = &sca3000_write_event_config,
1115 .driver_module = THIS_MODULE,
1116 };
1117
1118 static const struct iio_info sca3000_info_with_temp = {
1119 .attrs = &sca3000_attribute_group_with_temp,
1120 .read_raw = &sca3000_read_raw,
1121 .read_event_value = &sca3000_read_thresh,
1122 .write_event_value = &sca3000_write_thresh,
1123 .read_event_config = &sca3000_read_event_config,
1124 .write_event_config = &sca3000_write_event_config,
1125 .driver_module = THIS_MODULE,
1126 };
1127
sca3000_probe(struct spi_device * spi)1128 static int __devinit sca3000_probe(struct spi_device *spi)
1129 {
1130 int ret;
1131 struct sca3000_state *st;
1132 struct iio_dev *indio_dev;
1133
1134 indio_dev = iio_allocate_device(sizeof(*st));
1135 if (indio_dev == NULL) {
1136 ret = -ENOMEM;
1137 goto error_ret;
1138 }
1139
1140 st = iio_priv(indio_dev);
1141 spi_set_drvdata(spi, indio_dev);
1142 st->us = spi;
1143 mutex_init(&st->lock);
1144 st->info = &sca3000_spi_chip_info_tbl[spi_get_device_id(spi)
1145 ->driver_data];
1146
1147 indio_dev->dev.parent = &spi->dev;
1148 indio_dev->name = spi_get_device_id(spi)->name;
1149 if (st->info->temp_output)
1150 indio_dev->info = &sca3000_info_with_temp;
1151 else {
1152 indio_dev->info = &sca3000_info;
1153 indio_dev->channels = sca3000_channels;
1154 indio_dev->num_channels = ARRAY_SIZE(sca3000_channels);
1155 }
1156 indio_dev->modes = INDIO_DIRECT_MODE;
1157
1158 sca3000_configure_ring(indio_dev);
1159 ret = iio_device_register(indio_dev);
1160 if (ret < 0)
1161 goto error_free_dev;
1162
1163 ret = iio_buffer_register(indio_dev,
1164 sca3000_channels,
1165 ARRAY_SIZE(sca3000_channels));
1166 if (ret < 0)
1167 goto error_unregister_dev;
1168 if (indio_dev->buffer) {
1169 iio_scan_mask_set(indio_dev, indio_dev->buffer, 0);
1170 iio_scan_mask_set(indio_dev, indio_dev->buffer, 1);
1171 iio_scan_mask_set(indio_dev, indio_dev->buffer, 2);
1172 }
1173
1174 if (spi->irq) {
1175 ret = request_threaded_irq(spi->irq,
1176 NULL,
1177 &sca3000_event_handler,
1178 IRQF_TRIGGER_FALLING,
1179 "sca3000",
1180 indio_dev);
1181 if (ret)
1182 goto error_unregister_ring;
1183 }
1184 sca3000_register_ring_funcs(indio_dev);
1185 ret = sca3000_clean_setup(st);
1186 if (ret)
1187 goto error_free_irq;
1188 return 0;
1189
1190 error_free_irq:
1191 if (spi->irq)
1192 free_irq(spi->irq, indio_dev);
1193 error_unregister_ring:
1194 iio_buffer_unregister(indio_dev);
1195 error_unregister_dev:
1196 iio_device_unregister(indio_dev);
1197 error_free_dev:
1198 iio_free_device(indio_dev);
1199
1200 error_ret:
1201 return ret;
1202 }
1203
sca3000_stop_all_interrupts(struct sca3000_state * st)1204 static int sca3000_stop_all_interrupts(struct sca3000_state *st)
1205 {
1206 int ret;
1207
1208 mutex_lock(&st->lock);
1209 ret = sca3000_read_data_short(st, SCA3000_REG_ADDR_INT_MASK, 1);
1210 if (ret)
1211 goto error_ret;
1212 ret = sca3000_write_reg(st, SCA3000_REG_ADDR_INT_MASK,
1213 (st->rx[0] &
1214 ~(SCA3000_INT_MASK_RING_THREE_QUARTER |
1215 SCA3000_INT_MASK_RING_HALF |
1216 SCA3000_INT_MASK_ALL_INTS)));
1217 error_ret:
1218 mutex_unlock(&st->lock);
1219 return ret;
1220 }
1221
sca3000_remove(struct spi_device * spi)1222 static int sca3000_remove(struct spi_device *spi)
1223 {
1224 struct iio_dev *indio_dev = spi_get_drvdata(spi);
1225 struct sca3000_state *st = iio_priv(indio_dev);
1226 int ret;
1227 /* Must ensure no interrupts can be generated after this!*/
1228 ret = sca3000_stop_all_interrupts(st);
1229 if (ret)
1230 return ret;
1231 if (spi->irq)
1232 free_irq(spi->irq, indio_dev);
1233 iio_device_unregister(indio_dev);
1234 iio_buffer_unregister(indio_dev);
1235 sca3000_unconfigure_ring(indio_dev);
1236 iio_free_device(indio_dev);
1237
1238 return 0;
1239 }
1240
1241 static const struct spi_device_id sca3000_id[] = {
1242 {"sca3000_d01", d01},
1243 {"sca3000_e02", e02},
1244 {"sca3000_e04", e04},
1245 {"sca3000_e05", e05},
1246 {}
1247 };
1248 MODULE_DEVICE_TABLE(spi, sca3000_id);
1249
1250 static struct spi_driver sca3000_driver = {
1251 .driver = {
1252 .name = "sca3000",
1253 .owner = THIS_MODULE,
1254 },
1255 .probe = sca3000_probe,
1256 .remove = __devexit_p(sca3000_remove),
1257 .id_table = sca3000_id,
1258 };
1259 module_spi_driver(sca3000_driver);
1260
1261 MODULE_AUTHOR("Jonathan Cameron <jic23@cam.ac.uk>");
1262 MODULE_DESCRIPTION("VTI SCA3000 Series Accelerometers SPI driver");
1263 MODULE_LICENSE("GPL v2");
1264