1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * S390 kdump implementation
4 *
5 * Copyright IBM Corp. 2011
6 * Author(s): Michael Holzheu <holzheu@linux.vnet.ibm.com>
7 */
8
9 #include <linux/crash_dump.h>
10 #include <asm/lowcore.h>
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/mm.h>
14 #include <linux/gfp.h>
15 #include <linux/slab.h>
16 #include <linux/memblock.h>
17 #include <linux/elf.h>
18 #include <linux/uio.h>
19 #include <asm/asm-offsets.h>
20 #include <asm/os_info.h>
21 #include <asm/elf.h>
22 #include <asm/ipl.h>
23 #include <asm/sclp.h>
24 #include <asm/maccess.h>
25 #include <asm/fpu.h>
26
27 #define PTR_ADD(x, y) (((char *) (x)) + ((unsigned long) (y)))
28 #define PTR_SUB(x, y) (((char *) (x)) - ((unsigned long) (y)))
29 #define PTR_DIFF(x, y) ((unsigned long)(((char *) (x)) - ((unsigned long) (y))))
30
31 static struct memblock_region oldmem_region;
32
33 static struct memblock_type oldmem_type = {
34 .cnt = 1,
35 .max = 1,
36 .total_size = 0,
37 .regions = &oldmem_region,
38 .name = "oldmem",
39 };
40
41 struct save_area {
42 struct list_head list;
43 u64 psw[2];
44 u64 ctrs[16];
45 u64 gprs[16];
46 u32 acrs[16];
47 u64 fprs[16];
48 u32 fpc;
49 u32 prefix;
50 u32 todpreg;
51 u64 timer;
52 u64 todcmp;
53 u64 vxrs_low[16];
54 __vector128 vxrs_high[16];
55 };
56
57 static LIST_HEAD(dump_save_areas);
58
59 /*
60 * Allocate a save area
61 */
save_area_alloc(bool is_boot_cpu)62 struct save_area * __init save_area_alloc(bool is_boot_cpu)
63 {
64 struct save_area *sa;
65
66 sa = memblock_alloc_or_panic(sizeof(*sa), 8);
67
68 if (is_boot_cpu)
69 list_add(&sa->list, &dump_save_areas);
70 else
71 list_add_tail(&sa->list, &dump_save_areas);
72 return sa;
73 }
74
75 /*
76 * Return the address of the save area for the boot CPU
77 */
save_area_boot_cpu(void)78 struct save_area * __init save_area_boot_cpu(void)
79 {
80 return list_first_entry_or_null(&dump_save_areas, struct save_area, list);
81 }
82
83 /*
84 * Copy CPU registers into the save area
85 */
save_area_add_regs(struct save_area * sa,void * regs)86 void __init save_area_add_regs(struct save_area *sa, void *regs)
87 {
88 struct lowcore *lc;
89
90 lc = (struct lowcore *)(regs - __LC_FPREGS_SAVE_AREA);
91 memcpy(&sa->psw, &lc->psw_save_area, sizeof(sa->psw));
92 memcpy(&sa->ctrs, &lc->cregs_save_area, sizeof(sa->ctrs));
93 memcpy(&sa->gprs, &lc->gpregs_save_area, sizeof(sa->gprs));
94 memcpy(&sa->acrs, &lc->access_regs_save_area, sizeof(sa->acrs));
95 memcpy(&sa->fprs, &lc->floating_pt_save_area, sizeof(sa->fprs));
96 memcpy(&sa->fpc, &lc->fpt_creg_save_area, sizeof(sa->fpc));
97 memcpy(&sa->prefix, &lc->prefixreg_save_area, sizeof(sa->prefix));
98 memcpy(&sa->todpreg, &lc->tod_progreg_save_area, sizeof(sa->todpreg));
99 memcpy(&sa->timer, &lc->cpu_timer_save_area, sizeof(sa->timer));
100 memcpy(&sa->todcmp, &lc->clock_comp_save_area, sizeof(sa->todcmp));
101 }
102
103 /*
104 * Copy vector registers into the save area
105 */
save_area_add_vxrs(struct save_area * sa,__vector128 * vxrs)106 void __init save_area_add_vxrs(struct save_area *sa, __vector128 *vxrs)
107 {
108 int i;
109
110 /* Copy lower halves of vector registers 0-15 */
111 for (i = 0; i < 16; i++)
112 sa->vxrs_low[i] = vxrs[i].low;
113 /* Copy vector registers 16-31 */
114 memcpy(sa->vxrs_high, vxrs + 16, 16 * sizeof(__vector128));
115 }
116
copy_oldmem_iter(struct iov_iter * iter,unsigned long src,size_t count)117 static size_t copy_oldmem_iter(struct iov_iter *iter, unsigned long src, size_t count)
118 {
119 size_t len, copied, res = 0;
120
121 while (count) {
122 if (!oldmem_data.start && src < sclp.hsa_size) {
123 /* Copy from zfcp/nvme dump HSA area */
124 len = min(count, sclp.hsa_size - src);
125 copied = memcpy_hsa_iter(iter, src, len);
126 } else {
127 /* Check for swapped kdump oldmem areas */
128 if (oldmem_data.start && src - oldmem_data.start < oldmem_data.size) {
129 src -= oldmem_data.start;
130 len = min(count, oldmem_data.size - src);
131 } else if (oldmem_data.start && src < oldmem_data.size) {
132 len = min(count, oldmem_data.size - src);
133 src += oldmem_data.start;
134 } else {
135 len = count;
136 }
137 copied = memcpy_real_iter(iter, src, len);
138 }
139 count -= copied;
140 src += copied;
141 res += copied;
142 if (copied < len)
143 break;
144 }
145 return res;
146 }
147
copy_oldmem_kernel(void * dst,unsigned long src,size_t count)148 int copy_oldmem_kernel(void *dst, unsigned long src, size_t count)
149 {
150 struct iov_iter iter;
151 struct kvec kvec;
152
153 kvec.iov_base = dst;
154 kvec.iov_len = count;
155 iov_iter_kvec(&iter, ITER_DEST, &kvec, 1, count);
156 if (copy_oldmem_iter(&iter, src, count) < count)
157 return -EFAULT;
158 return 0;
159 }
160
161 /*
162 * Copy one page from "oldmem"
163 */
copy_oldmem_page(struct iov_iter * iter,unsigned long pfn,size_t csize,unsigned long offset)164 ssize_t copy_oldmem_page(struct iov_iter *iter, unsigned long pfn, size_t csize,
165 unsigned long offset)
166 {
167 unsigned long src;
168
169 src = pfn_to_phys(pfn) + offset;
170 return copy_oldmem_iter(iter, src, csize);
171 }
172
173 /*
174 * Remap "oldmem" for kdump
175 *
176 * For the kdump reserved memory this functions performs a swap operation:
177 * [0 - OLDMEM_SIZE] is mapped to [OLDMEM_BASE - OLDMEM_BASE + OLDMEM_SIZE]
178 */
remap_oldmem_pfn_range_kdump(struct vm_area_struct * vma,unsigned long from,unsigned long pfn,unsigned long size,pgprot_t prot)179 static int remap_oldmem_pfn_range_kdump(struct vm_area_struct *vma,
180 unsigned long from, unsigned long pfn,
181 unsigned long size, pgprot_t prot)
182 {
183 unsigned long size_old;
184 int rc;
185
186 if (pfn < oldmem_data.size >> PAGE_SHIFT) {
187 size_old = min(size, oldmem_data.size - (pfn << PAGE_SHIFT));
188 rc = remap_pfn_range(vma, from,
189 pfn + (oldmem_data.start >> PAGE_SHIFT),
190 size_old, prot);
191 if (rc || size == size_old)
192 return rc;
193 size -= size_old;
194 from += size_old;
195 pfn += size_old >> PAGE_SHIFT;
196 }
197 return remap_pfn_range(vma, from, pfn, size, prot);
198 }
199
200 /*
201 * Remap "oldmem" for zfcp/nvme dump
202 *
203 * We only map available memory above HSA size. Memory below HSA size
204 * is read on demand using the copy_oldmem_page() function.
205 */
remap_oldmem_pfn_range_zfcpdump(struct vm_area_struct * vma,unsigned long from,unsigned long pfn,unsigned long size,pgprot_t prot)206 static int remap_oldmem_pfn_range_zfcpdump(struct vm_area_struct *vma,
207 unsigned long from,
208 unsigned long pfn,
209 unsigned long size, pgprot_t prot)
210 {
211 unsigned long hsa_end = sclp.hsa_size;
212 unsigned long size_hsa;
213
214 if (pfn < hsa_end >> PAGE_SHIFT) {
215 size_hsa = min(size, hsa_end - (pfn << PAGE_SHIFT));
216 if (size == size_hsa)
217 return 0;
218 size -= size_hsa;
219 from += size_hsa;
220 pfn += size_hsa >> PAGE_SHIFT;
221 }
222 return remap_pfn_range(vma, from, pfn, size, prot);
223 }
224
225 /*
226 * Remap "oldmem" for kdump or zfcp/nvme dump
227 */
remap_oldmem_pfn_range(struct vm_area_struct * vma,unsigned long from,unsigned long pfn,unsigned long size,pgprot_t prot)228 int remap_oldmem_pfn_range(struct vm_area_struct *vma, unsigned long from,
229 unsigned long pfn, unsigned long size, pgprot_t prot)
230 {
231 if (oldmem_data.start)
232 return remap_oldmem_pfn_range_kdump(vma, from, pfn, size, prot);
233 else
234 return remap_oldmem_pfn_range_zfcpdump(vma, from, pfn, size,
235 prot);
236 }
237
238 /*
239 * Return true only when in a kdump or stand-alone kdump environment.
240 * Note that /proc/vmcore might also be available in "standard zfcp/nvme dump"
241 * environments, where this function returns false; see dump_available().
242 */
is_kdump_kernel(void)243 bool is_kdump_kernel(void)
244 {
245 return oldmem_data.start;
246 }
247 EXPORT_SYMBOL_GPL(is_kdump_kernel);
248
249 /*
250 * Initialize ELF note
251 */
nt_init_name(void * buf,Elf64_Word type,void * desc,int d_len,const char * name)252 static void *nt_init_name(void *buf, Elf64_Word type, void *desc, int d_len,
253 const char *name)
254 {
255 Elf64_Nhdr *note;
256 u64 len;
257
258 note = (Elf64_Nhdr *)buf;
259 note->n_namesz = strlen(name) + 1;
260 note->n_descsz = d_len;
261 note->n_type = type;
262 len = sizeof(Elf64_Nhdr);
263
264 memcpy(buf + len, name, note->n_namesz);
265 len = roundup(len + note->n_namesz, 4);
266
267 memcpy(buf + len, desc, note->n_descsz);
268 len = roundup(len + note->n_descsz, 4);
269
270 return PTR_ADD(buf, len);
271 }
272
273 #define nt_init(buf, type, desc) \
274 nt_init_name(buf, NT_ ## type, &(desc), sizeof(desc), NN_ ## type)
275
276 /*
277 * Calculate the size of ELF note
278 */
nt_size_name(int d_len,const char * name)279 static size_t nt_size_name(int d_len, const char *name)
280 {
281 size_t size;
282
283 size = sizeof(Elf64_Nhdr);
284 size += roundup(strlen(name) + 1, 4);
285 size += roundup(d_len, 4);
286
287 return size;
288 }
289
290 #define nt_size(type, desc) nt_size_name(sizeof(desc), NN_ ## type)
291
292 /*
293 * Fill ELF notes for one CPU with save area registers
294 */
fill_cpu_elf_notes(void * ptr,int cpu,struct save_area * sa)295 static void *fill_cpu_elf_notes(void *ptr, int cpu, struct save_area *sa)
296 {
297 struct elf_prstatus nt_prstatus;
298 elf_fpregset_t nt_fpregset;
299
300 /* Prepare prstatus note */
301 memset(&nt_prstatus, 0, sizeof(nt_prstatus));
302 memcpy(&nt_prstatus.pr_reg.gprs, sa->gprs, sizeof(sa->gprs));
303 memcpy(&nt_prstatus.pr_reg.psw, sa->psw, sizeof(sa->psw));
304 memcpy(&nt_prstatus.pr_reg.acrs, sa->acrs, sizeof(sa->acrs));
305 nt_prstatus.common.pr_pid = cpu;
306 /* Prepare fpregset (floating point) note */
307 memset(&nt_fpregset, 0, sizeof(nt_fpregset));
308 memcpy(&nt_fpregset.fpc, &sa->fpc, sizeof(sa->fpc));
309 memcpy(&nt_fpregset.fprs, &sa->fprs, sizeof(sa->fprs));
310 /* Create ELF notes for the CPU */
311 ptr = nt_init(ptr, PRSTATUS, nt_prstatus);
312 ptr = nt_init(ptr, PRFPREG, nt_fpregset);
313 ptr = nt_init(ptr, S390_TIMER, sa->timer);
314 ptr = nt_init(ptr, S390_TODCMP, sa->todcmp);
315 ptr = nt_init(ptr, S390_TODPREG, sa->todpreg);
316 ptr = nt_init(ptr, S390_CTRS, sa->ctrs);
317 ptr = nt_init(ptr, S390_PREFIX, sa->prefix);
318 if (cpu_has_vx()) {
319 ptr = nt_init(ptr, S390_VXRS_HIGH, sa->vxrs_high);
320 ptr = nt_init(ptr, S390_VXRS_LOW, sa->vxrs_low);
321 }
322 return ptr;
323 }
324
325 /*
326 * Calculate size of ELF notes per cpu
327 */
get_cpu_elf_notes_size(void)328 static size_t get_cpu_elf_notes_size(void)
329 {
330 struct save_area *sa = NULL;
331 size_t size;
332
333 size = nt_size(PRSTATUS, struct elf_prstatus);
334 size += nt_size(PRFPREG, elf_fpregset_t);
335 size += nt_size(S390_TIMER, sa->timer);
336 size += nt_size(S390_TODCMP, sa->todcmp);
337 size += nt_size(S390_TODPREG, sa->todpreg);
338 size += nt_size(S390_CTRS, sa->ctrs);
339 size += nt_size(S390_PREFIX, sa->prefix);
340 if (cpu_has_vx()) {
341 size += nt_size(S390_VXRS_HIGH, sa->vxrs_high);
342 size += nt_size(S390_VXRS_LOW, sa->vxrs_low);
343 }
344
345 return size;
346 }
347
348 /*
349 * Initialize prpsinfo note (new kernel)
350 */
nt_prpsinfo(void * ptr)351 static void *nt_prpsinfo(void *ptr)
352 {
353 struct elf_prpsinfo prpsinfo;
354
355 memset(&prpsinfo, 0, sizeof(prpsinfo));
356 prpsinfo.pr_sname = 'R';
357 strcpy(prpsinfo.pr_fname, "vmlinux");
358 return nt_init(ptr, PRPSINFO, prpsinfo);
359 }
360
361 /*
362 * Get vmcoreinfo using lowcore->vmcore_info (new kernel)
363 */
get_vmcoreinfo_old(unsigned long * size)364 static void *get_vmcoreinfo_old(unsigned long *size)
365 {
366 char nt_name[11], *vmcoreinfo;
367 unsigned long addr;
368 Elf64_Nhdr note;
369
370 if (copy_oldmem_kernel(&addr, __LC_VMCORE_INFO, sizeof(addr)))
371 return NULL;
372 memset(nt_name, 0, sizeof(nt_name));
373 if (copy_oldmem_kernel(¬e, addr, sizeof(note)))
374 return NULL;
375 if (copy_oldmem_kernel(nt_name, addr + sizeof(note),
376 sizeof(nt_name) - 1))
377 return NULL;
378 if (strcmp(nt_name, VMCOREINFO_NOTE_NAME) != 0)
379 return NULL;
380 vmcoreinfo = kzalloc(note.n_descsz, GFP_KERNEL);
381 if (!vmcoreinfo)
382 return NULL;
383 if (copy_oldmem_kernel(vmcoreinfo, addr + 24, note.n_descsz)) {
384 kfree(vmcoreinfo);
385 return NULL;
386 }
387 *size = note.n_descsz;
388 return vmcoreinfo;
389 }
390
391 /*
392 * Initialize vmcoreinfo note (new kernel)
393 */
nt_vmcoreinfo(void * ptr)394 static void *nt_vmcoreinfo(void *ptr)
395 {
396 const char *name = VMCOREINFO_NOTE_NAME;
397 unsigned long size;
398 void *vmcoreinfo;
399
400 vmcoreinfo = os_info_old_entry(OS_INFO_VMCOREINFO, &size);
401 if (vmcoreinfo)
402 return nt_init_name(ptr, 0, vmcoreinfo, size, name);
403
404 vmcoreinfo = get_vmcoreinfo_old(&size);
405 if (!vmcoreinfo)
406 return ptr;
407 ptr = nt_init_name(ptr, 0, vmcoreinfo, size, name);
408 kfree(vmcoreinfo);
409 return ptr;
410 }
411
nt_vmcoreinfo_size(void)412 static size_t nt_vmcoreinfo_size(void)
413 {
414 const char *name = VMCOREINFO_NOTE_NAME;
415 unsigned long size;
416 void *vmcoreinfo;
417
418 vmcoreinfo = os_info_old_entry(OS_INFO_VMCOREINFO, &size);
419 if (vmcoreinfo)
420 return nt_size_name(size, name);
421
422 vmcoreinfo = get_vmcoreinfo_old(&size);
423 if (!vmcoreinfo)
424 return 0;
425
426 kfree(vmcoreinfo);
427 return nt_size_name(size, name);
428 }
429
430 /*
431 * Initialize final note (needed for /proc/vmcore code)
432 */
nt_final(void * ptr)433 static void *nt_final(void *ptr)
434 {
435 Elf64_Nhdr *note;
436
437 note = (Elf64_Nhdr *) ptr;
438 note->n_namesz = 0;
439 note->n_descsz = 0;
440 note->n_type = 0;
441 return PTR_ADD(ptr, sizeof(Elf64_Nhdr));
442 }
443
444 /*
445 * Initialize ELF header (new kernel)
446 */
ehdr_init(Elf64_Ehdr * ehdr,int phdr_count)447 static void *ehdr_init(Elf64_Ehdr *ehdr, int phdr_count)
448 {
449 memset(ehdr, 0, sizeof(*ehdr));
450 memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
451 ehdr->e_ident[EI_CLASS] = ELFCLASS64;
452 ehdr->e_ident[EI_DATA] = ELFDATA2MSB;
453 ehdr->e_ident[EI_VERSION] = EV_CURRENT;
454 memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
455 ehdr->e_type = ET_CORE;
456 ehdr->e_machine = EM_S390;
457 ehdr->e_version = EV_CURRENT;
458 ehdr->e_phoff = sizeof(Elf64_Ehdr);
459 ehdr->e_ehsize = sizeof(Elf64_Ehdr);
460 ehdr->e_phentsize = sizeof(Elf64_Phdr);
461 /* Number of PT_LOAD program headers plus PT_NOTE program header */
462 ehdr->e_phnum = phdr_count + 1;
463 return ehdr + 1;
464 }
465
466 /*
467 * Return CPU count for ELF header (new kernel)
468 */
get_cpu_cnt(void)469 static int get_cpu_cnt(void)
470 {
471 struct save_area *sa;
472 int cpus = 0;
473
474 list_for_each_entry(sa, &dump_save_areas, list)
475 if (sa->prefix != 0)
476 cpus++;
477 return cpus;
478 }
479
480 /*
481 * Return memory chunk count for ELF header (new kernel)
482 */
get_mem_chunk_cnt(void)483 static int get_mem_chunk_cnt(void)
484 {
485 int cnt = 0;
486 u64 idx;
487
488 for_each_physmem_range(idx, &oldmem_type, NULL, NULL)
489 cnt++;
490 return cnt;
491 }
492
fill_ptload(Elf64_Phdr * phdr,unsigned long paddr,unsigned long vaddr,unsigned long size)493 static void fill_ptload(Elf64_Phdr *phdr, unsigned long paddr,
494 unsigned long vaddr, unsigned long size)
495 {
496 phdr->p_type = PT_LOAD;
497 phdr->p_vaddr = vaddr;
498 phdr->p_offset = paddr;
499 phdr->p_paddr = paddr;
500 phdr->p_filesz = size;
501 phdr->p_memsz = size;
502 phdr->p_flags = PF_R | PF_W | PF_X;
503 phdr->p_align = PAGE_SIZE;
504 }
505
506 /*
507 * Initialize ELF loads (new kernel)
508 */
loads_init(Elf64_Phdr * phdr,bool os_info_has_vm)509 static void loads_init(Elf64_Phdr *phdr, bool os_info_has_vm)
510 {
511 unsigned long old_identity_base = 0;
512 phys_addr_t start, end;
513 u64 idx;
514
515 if (os_info_has_vm)
516 old_identity_base = os_info_old_value(OS_INFO_IDENTITY_BASE);
517 for_each_physmem_range(idx, &oldmem_type, &start, &end) {
518 fill_ptload(phdr, start, old_identity_base + start,
519 end - start);
520 phdr++;
521 }
522 }
523
os_info_has_vm(void)524 static bool os_info_has_vm(void)
525 {
526 return os_info_old_value(OS_INFO_KASLR_OFFSET);
527 }
528
529 #ifdef CONFIG_PROC_VMCORE_DEVICE_RAM
530 /*
531 * Fill PT_LOAD for a physical memory range owned by a device and detected by
532 * its device driver.
533 */
elfcorehdr_fill_device_ram_ptload_elf64(Elf64_Phdr * phdr,unsigned long long paddr,unsigned long long size)534 void elfcorehdr_fill_device_ram_ptload_elf64(Elf64_Phdr *phdr,
535 unsigned long long paddr, unsigned long long size)
536 {
537 unsigned long old_identity_base = 0;
538
539 if (os_info_has_vm())
540 old_identity_base = os_info_old_value(OS_INFO_IDENTITY_BASE);
541 fill_ptload(phdr, paddr, old_identity_base + paddr, size);
542 }
543 #endif
544
545 /*
546 * Prepare PT_LOAD type program header for kernel image region
547 */
text_init(Elf64_Phdr * phdr)548 static void text_init(Elf64_Phdr *phdr)
549 {
550 unsigned long start_phys = os_info_old_value(OS_INFO_IMAGE_PHYS);
551 unsigned long start = os_info_old_value(OS_INFO_IMAGE_START);
552 unsigned long end = os_info_old_value(OS_INFO_IMAGE_END);
553
554 phdr->p_type = PT_LOAD;
555 phdr->p_vaddr = start;
556 phdr->p_filesz = end - start;
557 phdr->p_memsz = end - start;
558 phdr->p_offset = start_phys;
559 phdr->p_paddr = start_phys;
560 phdr->p_flags = PF_R | PF_W | PF_X;
561 phdr->p_align = PAGE_SIZE;
562 }
563
564 /*
565 * Initialize notes (new kernel)
566 */
notes_init(Elf64_Phdr * phdr,void * ptr,u64 notes_offset)567 static void *notes_init(Elf64_Phdr *phdr, void *ptr, u64 notes_offset)
568 {
569 struct save_area *sa;
570 void *ptr_start = ptr;
571 int cpu;
572
573 ptr = nt_prpsinfo(ptr);
574
575 cpu = 1;
576 list_for_each_entry(sa, &dump_save_areas, list)
577 if (sa->prefix != 0)
578 ptr = fill_cpu_elf_notes(ptr, cpu++, sa);
579 ptr = nt_vmcoreinfo(ptr);
580 ptr = nt_final(ptr);
581 memset(phdr, 0, sizeof(*phdr));
582 phdr->p_type = PT_NOTE;
583 phdr->p_offset = notes_offset;
584 phdr->p_filesz = (unsigned long) PTR_SUB(ptr, ptr_start);
585 phdr->p_memsz = phdr->p_filesz;
586 return ptr;
587 }
588
get_elfcorehdr_size(int phdr_count)589 static size_t get_elfcorehdr_size(int phdr_count)
590 {
591 size_t size;
592
593 size = sizeof(Elf64_Ehdr);
594 /* PT_NOTES */
595 size += sizeof(Elf64_Phdr);
596 /* nt_prpsinfo */
597 size += nt_size(PRPSINFO, struct elf_prpsinfo);
598 /* regsets */
599 size += get_cpu_cnt() * get_cpu_elf_notes_size();
600 /* nt_vmcoreinfo */
601 size += nt_vmcoreinfo_size();
602 /* nt_final */
603 size += sizeof(Elf64_Nhdr);
604 /* PT_LOADS */
605 size += phdr_count * sizeof(Elf64_Phdr);
606
607 return size;
608 }
609
610 /*
611 * Create ELF core header (new kernel)
612 */
elfcorehdr_alloc(unsigned long long * addr,unsigned long long * size)613 int elfcorehdr_alloc(unsigned long long *addr, unsigned long long *size)
614 {
615 Elf64_Phdr *phdr_notes, *phdr_loads, *phdr_text;
616 int mem_chunk_cnt, phdr_text_cnt;
617 size_t alloc_size;
618 void *ptr, *hdr;
619 u64 hdr_off;
620
621 /* If we are not in kdump or zfcp/nvme dump mode return */
622 if (!oldmem_data.start && !is_ipl_type_dump())
623 return 0;
624 /* If we cannot get HSA size for zfcp/nvme dump return error */
625 if (is_ipl_type_dump() && !sclp.hsa_size)
626 return -ENODEV;
627
628 /* For kdump, exclude previous crashkernel memory */
629 if (oldmem_data.start) {
630 oldmem_region.base = oldmem_data.start;
631 oldmem_region.size = oldmem_data.size;
632 oldmem_type.total_size = oldmem_data.size;
633 }
634
635 mem_chunk_cnt = get_mem_chunk_cnt();
636 phdr_text_cnt = os_info_has_vm() ? 1 : 0;
637
638 alloc_size = get_elfcorehdr_size(mem_chunk_cnt + phdr_text_cnt);
639
640 hdr = kzalloc(alloc_size, GFP_KERNEL);
641
642 /*
643 * Without elfcorehdr /proc/vmcore cannot be created. Thus creating
644 * a dump with this crash kernel will fail. Panic now to allow other
645 * dump mechanisms to take over.
646 */
647 if (!hdr)
648 panic("s390 kdump allocating elfcorehdr failed");
649
650 /* Init elf header */
651 phdr_notes = ehdr_init(hdr, mem_chunk_cnt + phdr_text_cnt);
652 /* Init program headers */
653 if (phdr_text_cnt) {
654 phdr_text = phdr_notes + 1;
655 phdr_loads = phdr_text + 1;
656 } else {
657 phdr_loads = phdr_notes + 1;
658 }
659 ptr = PTR_ADD(phdr_loads, sizeof(Elf64_Phdr) * mem_chunk_cnt);
660 /* Init notes */
661 hdr_off = PTR_DIFF(ptr, hdr);
662 ptr = notes_init(phdr_notes, ptr, ((unsigned long) hdr) + hdr_off);
663 /* Init kernel text program header */
664 if (phdr_text_cnt)
665 text_init(phdr_text);
666 /* Init loads */
667 loads_init(phdr_loads, phdr_text_cnt);
668 /* Finalize program headers */
669 hdr_off = PTR_DIFF(ptr, hdr);
670 *addr = (unsigned long long) hdr;
671 *size = (unsigned long long) hdr_off;
672 BUG_ON(elfcorehdr_size > alloc_size);
673 return 0;
674 }
675
676 /*
677 * Free ELF core header (new kernel)
678 */
elfcorehdr_free(unsigned long long addr)679 void elfcorehdr_free(unsigned long long addr)
680 {
681 kfree((void *)(unsigned long)addr);
682 }
683
684 /*
685 * Read from ELF header
686 */
elfcorehdr_read(char * buf,size_t count,u64 * ppos)687 ssize_t elfcorehdr_read(char *buf, size_t count, u64 *ppos)
688 {
689 void *src = (void *)(unsigned long)*ppos;
690
691 memcpy(buf, src, count);
692 *ppos += count;
693 return count;
694 }
695
696 /*
697 * Read from ELF notes data
698 */
elfcorehdr_read_notes(char * buf,size_t count,u64 * ppos)699 ssize_t elfcorehdr_read_notes(char *buf, size_t count, u64 *ppos)
700 {
701 void *src = (void *)(unsigned long)*ppos;
702
703 memcpy(buf, src, count);
704 *ppos += count;
705 return count;
706 }
707