xref: /qemu/target/arm/ptw.c (revision 5cb8b0988bdf1e1b22f66925604fe9a44a568993)
1 /*
2  * ARM page table walking.
3  *
4  * This code is licensed under the GNU GPL v2 or later.
5  *
6  * SPDX-License-Identifier: GPL-2.0-or-later
7  */
8 
9 #include "qemu/osdep.h"
10 #include "qemu/log.h"
11 #include "qemu/range.h"
12 #include "qemu/main-loop.h"
13 #include "exec/page-protection.h"
14 #include "exec/target_page.h"
15 #include "exec/tlb-flags.h"
16 #include "accel/tcg/probe.h"
17 #include "cpu.h"
18 #include "internals.h"
19 #include "cpu-features.h"
20 #include "idau.h"
21 
22 typedef struct S1Translate {
23     /*
24      * in_mmu_idx : specifies which TTBR, TCR, etc to use for the walk.
25      * Together with in_space, specifies the architectural translation regime.
26      */
27     ARMMMUIdx in_mmu_idx;
28     /*
29      * in_ptw_idx: specifies which mmuidx to use for the actual
30      * page table descriptor load operations. This will be one of the
31      * ARMMMUIdx_Stage2* or one of the ARMMMUIdx_Phys_* indexes.
32      * If a Secure ptw is "downgraded" to NonSecure by an NSTable bit,
33      * this field is updated accordingly.
34      */
35     ARMMMUIdx in_ptw_idx;
36     /*
37      * in_space: the security space for this walk. This plus
38      * the in_mmu_idx specify the architectural translation regime.
39      * If a Secure ptw is "downgraded" to NonSecure by an NSTable bit,
40      * this field is updated accordingly.
41      *
42      * Note that the security space for the in_ptw_idx may be different
43      * from that for the in_mmu_idx. We do not need to explicitly track
44      * the in_ptw_idx security space because:
45      *  - if the in_ptw_idx is an ARMMMUIdx_Phys_* then the mmuidx
46      *    itself specifies the security space
47      *  - if the in_ptw_idx is an ARMMMUIdx_Stage2* then the security
48      *    space used for ptw reads is the same as that of the security
49      *    space of the stage 1 translation for all cases except where
50      *    stage 1 is Secure; in that case the only possibilities for
51      *    the ptw read are Secure and NonSecure, and the in_ptw_idx
52      *    value being Stage2 vs Stage2_S distinguishes those.
53      */
54     ARMSecuritySpace in_space;
55     /*
56      * in_debug: is this a QEMU debug access (gdbstub, etc)? Debug
57      * accesses will not update the guest page table access flags
58      * and will not change the state of the softmmu TLBs.
59      */
60     bool in_debug;
61     /*
62      * If this is stage 2 of a stage 1+2 page table walk, then this must
63      * be true if stage 1 is an EL0 access; otherwise this is ignored.
64      * Stage 2 is indicated by in_mmu_idx set to ARMMMUIdx_Stage2{,_S}.
65      */
66     bool in_s1_is_el0;
67     bool out_rw;
68     bool out_be;
69     ARMSecuritySpace out_space;
70     hwaddr out_virt;
71     hwaddr out_phys;
72     void *out_host;
73 } S1Translate;
74 
75 static bool get_phys_addr_nogpc(CPUARMState *env, S1Translate *ptw,
76                                 vaddr address,
77                                 MMUAccessType access_type, MemOp memop,
78                                 GetPhysAddrResult *result,
79                                 ARMMMUFaultInfo *fi);
80 
81 static bool get_phys_addr_gpc(CPUARMState *env, S1Translate *ptw,
82                               vaddr address,
83                               MMUAccessType access_type, MemOp memop,
84                               GetPhysAddrResult *result,
85                               ARMMMUFaultInfo *fi);
86 
87 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
88                       int user_rw, int prot_rw, int xn, int pxn,
89                       ARMSecuritySpace in_pa, ARMSecuritySpace out_pa);
90 
91 /* This mapping is common between ID_AA64MMFR0.PARANGE and TCR_ELx.{I}PS. */
92 static const uint8_t pamax_map[] = {
93     [0] = 32,
94     [1] = 36,
95     [2] = 40,
96     [3] = 42,
97     [4] = 44,
98     [5] = 48,
99     [6] = 52,
100 };
101 
round_down_to_parange_index(uint8_t bit_size)102 uint8_t round_down_to_parange_index(uint8_t bit_size)
103 {
104     for (int i = ARRAY_SIZE(pamax_map) - 1; i >= 0; i--) {
105         if (pamax_map[i] <= bit_size) {
106             return i;
107         }
108     }
109     g_assert_not_reached();
110 }
111 
round_down_to_parange_bit_size(uint8_t bit_size)112 uint8_t round_down_to_parange_bit_size(uint8_t bit_size)
113 {
114     return pamax_map[round_down_to_parange_index(bit_size)];
115 }
116 
117 /*
118  * The cpu-specific constant value of PAMax; also used by hw/arm/virt.
119  * Note that machvirt_init calls this on a CPU that is inited but not realized!
120  */
arm_pamax(ARMCPU * cpu)121 unsigned int arm_pamax(ARMCPU *cpu)
122 {
123     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
124         unsigned int parange =
125             FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
126 
127         /*
128          * id_aa64mmfr0 is a read-only register so values outside of the
129          * supported mappings can be considered an implementation error.
130          */
131         assert(parange < ARRAY_SIZE(pamax_map));
132         return pamax_map[parange];
133     }
134 
135     if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
136         /* v7 or v8 with LPAE */
137         return 40;
138     }
139     /* Anything else */
140     return 32;
141 }
142 
143 /*
144  * Convert a possible stage1+2 MMU index into the appropriate stage 1 MMU index
145  */
stage_1_mmu_idx(ARMMMUIdx mmu_idx)146 ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
147 {
148     switch (mmu_idx) {
149     case ARMMMUIdx_E10_0:
150         return ARMMMUIdx_Stage1_E0;
151     case ARMMMUIdx_E10_1:
152         return ARMMMUIdx_Stage1_E1;
153     case ARMMMUIdx_E10_1_PAN:
154         return ARMMMUIdx_Stage1_E1_PAN;
155     default:
156         return mmu_idx;
157     }
158 }
159 
arm_stage1_mmu_idx(CPUARMState * env)160 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
161 {
162     return stage_1_mmu_idx(arm_mmu_idx(env));
163 }
164 
165 /*
166  * Return where we should do ptw loads from for a stage 2 walk.
167  * This depends on whether the address we are looking up is a
168  * Secure IPA or a NonSecure IPA, which we know from whether this is
169  * Stage2 or Stage2_S.
170  * If this is the Secure EL1&0 regime we need to check the NSW and SW bits.
171  */
ptw_idx_for_stage_2(CPUARMState * env,ARMMMUIdx stage2idx)172 static ARMMMUIdx ptw_idx_for_stage_2(CPUARMState *env, ARMMMUIdx stage2idx)
173 {
174     bool s2walk_secure;
175 
176     /*
177      * We're OK to check the current state of the CPU here because
178      * (1) we always invalidate all TLBs when the SCR_EL3.NS or SCR_EL3.NSE bit
179      * changes.
180      * (2) there's no way to do a lookup that cares about Stage 2 for a
181      * different security state to the current one for AArch64, and AArch32
182      * never has a secure EL2. (AArch32 ATS12NSO[UP][RW] allow EL3 to do
183      * an NS stage 1+2 lookup while the NS bit is 0.)
184      */
185     if (!arm_el_is_aa64(env, 3)) {
186         return ARMMMUIdx_Phys_NS;
187     }
188 
189     switch (arm_security_space_below_el3(env)) {
190     case ARMSS_NonSecure:
191         return ARMMMUIdx_Phys_NS;
192     case ARMSS_Realm:
193         return ARMMMUIdx_Phys_Realm;
194     case ARMSS_Secure:
195         if (stage2idx == ARMMMUIdx_Stage2_S) {
196             s2walk_secure = !(env->cp15.vstcr_el2 & VSTCR_SW);
197         } else {
198             s2walk_secure = !(env->cp15.vtcr_el2 & VTCR_NSW);
199         }
200         return s2walk_secure ? ARMMMUIdx_Phys_S : ARMMMUIdx_Phys_NS;
201     default:
202         g_assert_not_reached();
203     }
204 }
205 
regime_translation_big_endian(CPUARMState * env,ARMMMUIdx mmu_idx)206 static bool regime_translation_big_endian(CPUARMState *env, ARMMMUIdx mmu_idx)
207 {
208     return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
209 }
210 
211 /* Return the TTBR associated with this translation regime */
regime_ttbr(CPUARMState * env,ARMMMUIdx mmu_idx,int ttbrn)212 static uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, int ttbrn)
213 {
214     if (mmu_idx == ARMMMUIdx_Stage2) {
215         return env->cp15.vttbr_el2;
216     }
217     if (mmu_idx == ARMMMUIdx_Stage2_S) {
218         return env->cp15.vsttbr_el2;
219     }
220     if (ttbrn == 0) {
221         return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
222     } else {
223         return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
224     }
225 }
226 
227 /* Return true if the specified stage of address translation is disabled */
regime_translation_disabled(CPUARMState * env,ARMMMUIdx mmu_idx,ARMSecuritySpace space)228 static bool regime_translation_disabled(CPUARMState *env, ARMMMUIdx mmu_idx,
229                                         ARMSecuritySpace space)
230 {
231     uint64_t hcr_el2;
232 
233     if (arm_feature(env, ARM_FEATURE_M)) {
234         bool is_secure = arm_space_is_secure(space);
235         switch (env->v7m.mpu_ctrl[is_secure] &
236                 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
237         case R_V7M_MPU_CTRL_ENABLE_MASK:
238             /* Enabled, but not for HardFault and NMI */
239             return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
240         case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
241             /* Enabled for all cases */
242             return false;
243         case 0:
244         default:
245             /*
246              * HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
247              * we warned about that in armv7m_nvic.c when the guest set it.
248              */
249             return true;
250         }
251     }
252 
253 
254     switch (mmu_idx) {
255     case ARMMMUIdx_Stage2:
256     case ARMMMUIdx_Stage2_S:
257         /* HCR.DC means HCR.VM behaves as 1 */
258         hcr_el2 = arm_hcr_el2_eff_secstate(env, space);
259         return (hcr_el2 & (HCR_DC | HCR_VM)) == 0;
260 
261     case ARMMMUIdx_E10_0:
262     case ARMMMUIdx_E10_1:
263     case ARMMMUIdx_E10_1_PAN:
264         /* TGE means that EL0/1 act as if SCTLR_EL1.M is zero */
265         hcr_el2 = arm_hcr_el2_eff_secstate(env, space);
266         if (hcr_el2 & HCR_TGE) {
267             return true;
268         }
269         break;
270 
271     case ARMMMUIdx_Stage1_E0:
272     case ARMMMUIdx_Stage1_E1:
273     case ARMMMUIdx_Stage1_E1_PAN:
274         /* HCR.DC means SCTLR_EL1.M behaves as 0 */
275         hcr_el2 = arm_hcr_el2_eff_secstate(env, space);
276         if (hcr_el2 & HCR_DC) {
277             return true;
278         }
279         break;
280 
281     case ARMMMUIdx_E20_0:
282     case ARMMMUIdx_E20_2:
283     case ARMMMUIdx_E20_2_PAN:
284     case ARMMMUIdx_E2:
285     case ARMMMUIdx_E3:
286     case ARMMMUIdx_E30_0:
287     case ARMMMUIdx_E30_3_PAN:
288         break;
289 
290     case ARMMMUIdx_Phys_S:
291     case ARMMMUIdx_Phys_NS:
292     case ARMMMUIdx_Phys_Root:
293     case ARMMMUIdx_Phys_Realm:
294         /* No translation for physical address spaces. */
295         return true;
296 
297     default:
298         g_assert_not_reached();
299     }
300 
301     return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
302 }
303 
granule_protection_check(CPUARMState * env,uint64_t paddress,ARMSecuritySpace pspace,ARMMMUFaultInfo * fi)304 static bool granule_protection_check(CPUARMState *env, uint64_t paddress,
305                                      ARMSecuritySpace pspace,
306                                      ARMMMUFaultInfo *fi)
307 {
308     MemTxAttrs attrs = {
309         .secure = true,
310         .space = ARMSS_Root,
311     };
312     ARMCPU *cpu = env_archcpu(env);
313     uint64_t gpccr = env->cp15.gpccr_el3;
314     unsigned pps, pgs, l0gptsz, level = 0;
315     uint64_t tableaddr, pps_mask, align, entry, index;
316     AddressSpace *as;
317     MemTxResult result;
318     int gpi;
319 
320     if (!FIELD_EX64(gpccr, GPCCR, GPC)) {
321         return true;
322     }
323 
324     /*
325      * GPC Priority 1 (R_GMGRR):
326      * R_JWCSM: If the configuration of GPCCR_EL3 is invalid,
327      * the access fails as GPT walk fault at level 0.
328      */
329 
330     /*
331      * Configuration of PPS to a value exceeding the implemented
332      * physical address size is invalid.
333      */
334     pps = FIELD_EX64(gpccr, GPCCR, PPS);
335     if (pps > FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE)) {
336         goto fault_walk;
337     }
338     pps = pamax_map[pps];
339     pps_mask = MAKE_64BIT_MASK(0, pps);
340 
341     switch (FIELD_EX64(gpccr, GPCCR, SH)) {
342     case 0b10: /* outer shareable */
343         break;
344     case 0b00: /* non-shareable */
345     case 0b11: /* inner shareable */
346         /* Inner and Outer non-cacheable requires Outer shareable. */
347         if (FIELD_EX64(gpccr, GPCCR, ORGN) == 0 &&
348             FIELD_EX64(gpccr, GPCCR, IRGN) == 0) {
349             goto fault_walk;
350         }
351         break;
352     default:   /* reserved */
353         goto fault_walk;
354     }
355 
356     switch (FIELD_EX64(gpccr, GPCCR, PGS)) {
357     case 0b00: /* 4KB */
358         pgs = 12;
359         break;
360     case 0b01: /* 64KB */
361         pgs = 16;
362         break;
363     case 0b10: /* 16KB */
364         pgs = 14;
365         break;
366     default: /* reserved */
367         goto fault_walk;
368     }
369 
370     /* Note this field is read-only and fixed at reset. */
371     l0gptsz = 30 + FIELD_EX64(gpccr, GPCCR, L0GPTSZ);
372 
373     /*
374      * GPC Priority 2: Secure, Realm or Root address exceeds PPS.
375      * R_CPDSB: A NonSecure physical address input exceeding PPS
376      * does not experience any fault.
377      */
378     if (paddress & ~pps_mask) {
379         if (pspace == ARMSS_NonSecure) {
380             return true;
381         }
382         goto fault_size;
383     }
384 
385     /* GPC Priority 3: the base address of GPTBR_EL3 exceeds PPS. */
386     tableaddr = env->cp15.gptbr_el3 << 12;
387     if (tableaddr & ~pps_mask) {
388         goto fault_size;
389     }
390 
391     /*
392      * BADDR is aligned per a function of PPS and L0GPTSZ.
393      * These bits of GPTBR_EL3 are RES0, but are not a configuration error,
394      * unlike the RES0 bits of the GPT entries (R_XNKFZ).
395      */
396     align = MAX(pps - l0gptsz + 3, 12);
397     align = MAKE_64BIT_MASK(0, align);
398     tableaddr &= ~align;
399 
400     as = arm_addressspace(env_cpu(env), attrs);
401 
402     /* Level 0 lookup. */
403     index = extract64(paddress, l0gptsz, pps - l0gptsz);
404     tableaddr += index * 8;
405     entry = address_space_ldq_le(as, tableaddr, attrs, &result);
406     if (result != MEMTX_OK) {
407         goto fault_eabt;
408     }
409 
410     switch (extract32(entry, 0, 4)) {
411     case 1: /* block descriptor */
412         if (entry >> 8) {
413             goto fault_walk; /* RES0 bits not 0 */
414         }
415         gpi = extract32(entry, 4, 4);
416         goto found;
417     case 3: /* table descriptor */
418         tableaddr = entry & ~0xf;
419         align = MAX(l0gptsz - pgs - 1, 12);
420         align = MAKE_64BIT_MASK(0, align);
421         if (tableaddr & (~pps_mask | align)) {
422             goto fault_walk; /* RES0 bits not 0 */
423         }
424         break;
425     default: /* invalid */
426         goto fault_walk;
427     }
428 
429     /* Level 1 lookup */
430     level = 1;
431     index = extract64(paddress, pgs + 4, l0gptsz - pgs - 4);
432     tableaddr += index * 8;
433     entry = address_space_ldq_le(as, tableaddr, attrs, &result);
434     if (result != MEMTX_OK) {
435         goto fault_eabt;
436     }
437 
438     switch (extract32(entry, 0, 4)) {
439     case 1: /* contiguous descriptor */
440         if (entry >> 10) {
441             goto fault_walk; /* RES0 bits not 0 */
442         }
443         /*
444          * Because the softmmu tlb only works on units of TARGET_PAGE_SIZE,
445          * and because we cannot invalidate by pa, and thus will always
446          * flush entire tlbs, we don't actually care about the range here
447          * and can simply extract the GPI as the result.
448          */
449         if (extract32(entry, 8, 2) == 0) {
450             goto fault_walk; /* reserved contig */
451         }
452         gpi = extract32(entry, 4, 4);
453         break;
454     default:
455         index = extract64(paddress, pgs, 4);
456         gpi = extract64(entry, index * 4, 4);
457         break;
458     }
459 
460  found:
461     switch (gpi) {
462     case 0b0000: /* no access */
463         break;
464     case 0b1111: /* all access */
465         return true;
466     case 0b1000:
467     case 0b1001:
468     case 0b1010:
469     case 0b1011:
470         if (pspace == (gpi & 3)) {
471             return true;
472         }
473         break;
474     default:
475         goto fault_walk; /* reserved */
476     }
477 
478     fi->gpcf = GPCF_Fail;
479     goto fault_common;
480  fault_eabt:
481     fi->gpcf = GPCF_EABT;
482     goto fault_common;
483  fault_size:
484     fi->gpcf = GPCF_AddressSize;
485     goto fault_common;
486  fault_walk:
487     fi->gpcf = GPCF_Walk;
488  fault_common:
489     fi->level = level;
490     fi->paddr = paddress;
491     fi->paddr_space = pspace;
492     return false;
493 }
494 
S1_attrs_are_device(uint8_t attrs)495 static bool S1_attrs_are_device(uint8_t attrs)
496 {
497     /*
498      * This slightly under-decodes the MAIR_ELx field:
499      * 0b0000dd01 is Device with FEAT_XS, otherwise UNPREDICTABLE;
500      * 0b0000dd1x is UNPREDICTABLE.
501      */
502     return (attrs & 0xf0) == 0;
503 }
504 
S2_attrs_are_device(uint64_t hcr,uint8_t attrs)505 static bool S2_attrs_are_device(uint64_t hcr, uint8_t attrs)
506 {
507     /*
508      * For an S1 page table walk, the stage 1 attributes are always
509      * some form of "this is Normal memory". The combined S1+S2
510      * attributes are therefore only Device if stage 2 specifies Device.
511      * With HCR_EL2.FWB == 0 this is when descriptor bits [5:4] are 0b00,
512      * ie when cacheattrs.attrs bits [3:2] are 0b00.
513      * With HCR_EL2.FWB == 1 this is when descriptor bit [4] is 0, ie
514      * when cacheattrs.attrs bit [2] is 0.
515      */
516     if (hcr & HCR_FWB) {
517         return (attrs & 0x4) == 0;
518     } else {
519         return (attrs & 0xc) == 0;
520     }
521 }
522 
S2_security_space(ARMSecuritySpace s1_space,ARMMMUIdx s2_mmu_idx)523 static ARMSecuritySpace S2_security_space(ARMSecuritySpace s1_space,
524                                           ARMMMUIdx s2_mmu_idx)
525 {
526     /*
527      * Return the security space to use for stage 2 when doing
528      * the S1 page table descriptor load.
529      */
530     if (regime_is_stage2(s2_mmu_idx)) {
531         /*
532          * The security space for ptw reads is almost always the same
533          * as that of the security space of the stage 1 translation.
534          * The only exception is when stage 1 is Secure; in that case
535          * the ptw read might be to the Secure or the NonSecure space
536          * (but never Realm or Root), and the s2_mmu_idx tells us which.
537          * Root translations are always single-stage.
538          */
539         if (s1_space == ARMSS_Secure) {
540             return arm_secure_to_space(s2_mmu_idx == ARMMMUIdx_Stage2_S);
541         } else {
542             assert(s2_mmu_idx != ARMMMUIdx_Stage2_S);
543             assert(s1_space != ARMSS_Root);
544             return s1_space;
545         }
546     } else {
547         /* ptw loads are from phys: the mmu idx itself says which space */
548         return arm_phys_to_space(s2_mmu_idx);
549     }
550 }
551 
fault_s1ns(ARMSecuritySpace space,ARMMMUIdx s2_mmu_idx)552 static bool fault_s1ns(ARMSecuritySpace space, ARMMMUIdx s2_mmu_idx)
553 {
554     /*
555      * For stage 2 faults in Secure EL22, S1NS indicates
556      * whether the faulting IPA is in the Secure or NonSecure
557      * IPA space. For all other kinds of fault, it is false.
558      */
559     return space == ARMSS_Secure && regime_is_stage2(s2_mmu_idx)
560         && s2_mmu_idx == ARMMMUIdx_Stage2_S;
561 }
562 
563 /* Translate a S1 pagetable walk through S2 if needed.  */
S1_ptw_translate(CPUARMState * env,S1Translate * ptw,hwaddr addr,ARMMMUFaultInfo * fi)564 static bool S1_ptw_translate(CPUARMState *env, S1Translate *ptw,
565                              hwaddr addr, ARMMMUFaultInfo *fi)
566 {
567     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
568     ARMMMUIdx s2_mmu_idx = ptw->in_ptw_idx;
569     uint8_t pte_attrs;
570 
571     ptw->out_virt = addr;
572 
573     if (unlikely(ptw->in_debug)) {
574         /*
575          * From gdbstub, do not use softmmu so that we don't modify the
576          * state of the cpu at all, including softmmu tlb contents.
577          */
578         ARMSecuritySpace s2_space = S2_security_space(ptw->in_space, s2_mmu_idx);
579         S1Translate s2ptw = {
580             .in_mmu_idx = s2_mmu_idx,
581             .in_ptw_idx = ptw_idx_for_stage_2(env, s2_mmu_idx),
582             .in_space = s2_space,
583             .in_debug = true,
584         };
585         GetPhysAddrResult s2 = { };
586 
587         if (get_phys_addr_gpc(env, &s2ptw, addr, MMU_DATA_LOAD, 0, &s2, fi)) {
588             goto fail;
589         }
590 
591         ptw->out_phys = s2.f.phys_addr;
592         pte_attrs = s2.cacheattrs.attrs;
593         ptw->out_host = NULL;
594         ptw->out_rw = false;
595         ptw->out_space = s2.f.attrs.space;
596     } else {
597 #ifdef CONFIG_TCG
598         CPUTLBEntryFull *full;
599         int flags;
600 
601         env->tlb_fi = fi;
602         flags = probe_access_full_mmu(env, addr, 0, MMU_DATA_LOAD,
603                                       arm_to_core_mmu_idx(s2_mmu_idx),
604                                       &ptw->out_host, &full);
605         env->tlb_fi = NULL;
606 
607         if (unlikely(flags & TLB_INVALID_MASK)) {
608             goto fail;
609         }
610         ptw->out_phys = full->phys_addr | (addr & ~TARGET_PAGE_MASK);
611         ptw->out_rw = full->prot & PAGE_WRITE;
612         pte_attrs = full->extra.arm.pte_attrs;
613         ptw->out_space = full->attrs.space;
614 #else
615         g_assert_not_reached();
616 #endif
617     }
618 
619     if (regime_is_stage2(s2_mmu_idx)) {
620         uint64_t hcr = arm_hcr_el2_eff_secstate(env, ptw->in_space);
621 
622         if ((hcr & HCR_PTW) && S2_attrs_are_device(hcr, pte_attrs)) {
623             /*
624              * PTW set and S1 walk touched S2 Device memory:
625              * generate Permission fault.
626              */
627             fi->type = ARMFault_Permission;
628             fi->s2addr = addr;
629             fi->stage2 = true;
630             fi->s1ptw = true;
631             fi->s1ns = fault_s1ns(ptw->in_space, s2_mmu_idx);
632             return false;
633         }
634     }
635 
636     ptw->out_be = regime_translation_big_endian(env, mmu_idx);
637     return true;
638 
639  fail:
640     assert(fi->type != ARMFault_None);
641     if (fi->type == ARMFault_GPCFOnOutput) {
642         fi->type = ARMFault_GPCFOnWalk;
643     }
644     fi->s2addr = addr;
645     fi->stage2 = regime_is_stage2(s2_mmu_idx);
646     fi->s1ptw = fi->stage2;
647     fi->s1ns = fault_s1ns(ptw->in_space, s2_mmu_idx);
648     return false;
649 }
650 
651 /* All loads done in the course of a page table walk go through here. */
arm_ldl_ptw(CPUARMState * env,S1Translate * ptw,ARMMMUFaultInfo * fi)652 static uint32_t arm_ldl_ptw(CPUARMState *env, S1Translate *ptw,
653                             ARMMMUFaultInfo *fi)
654 {
655     CPUState *cs = env_cpu(env);
656     void *host = ptw->out_host;
657     uint32_t data;
658 
659     if (likely(host)) {
660         /* Page tables are in RAM, and we have the host address. */
661         data = qatomic_read((uint32_t *)host);
662         if (ptw->out_be) {
663             data = be32_to_cpu(data);
664         } else {
665             data = le32_to_cpu(data);
666         }
667     } else {
668         /* Page tables are in MMIO. */
669         MemTxAttrs attrs = {
670             .space = ptw->out_space,
671             .secure = arm_space_is_secure(ptw->out_space),
672         };
673         AddressSpace *as = arm_addressspace(cs, attrs);
674         MemTxResult result = MEMTX_OK;
675 
676         if (ptw->out_be) {
677             data = address_space_ldl_be(as, ptw->out_phys, attrs, &result);
678         } else {
679             data = address_space_ldl_le(as, ptw->out_phys, attrs, &result);
680         }
681         if (unlikely(result != MEMTX_OK)) {
682             fi->type = ARMFault_SyncExternalOnWalk;
683             fi->ea = arm_extabort_type(result);
684             return 0;
685         }
686     }
687     return data;
688 }
689 
arm_ldq_ptw(CPUARMState * env,S1Translate * ptw,ARMMMUFaultInfo * fi)690 static uint64_t arm_ldq_ptw(CPUARMState *env, S1Translate *ptw,
691                             ARMMMUFaultInfo *fi)
692 {
693     CPUState *cs = env_cpu(env);
694     void *host = ptw->out_host;
695     uint64_t data;
696 
697     if (likely(host)) {
698         /* Page tables are in RAM, and we have the host address. */
699 #ifdef CONFIG_ATOMIC64
700         data = qatomic_read__nocheck((uint64_t *)host);
701         if (ptw->out_be) {
702             data = be64_to_cpu(data);
703         } else {
704             data = le64_to_cpu(data);
705         }
706 #else
707         if (ptw->out_be) {
708             data = ldq_be_p(host);
709         } else {
710             data = ldq_le_p(host);
711         }
712 #endif
713     } else {
714         /* Page tables are in MMIO. */
715         MemTxAttrs attrs = {
716             .space = ptw->out_space,
717             .secure = arm_space_is_secure(ptw->out_space),
718         };
719         AddressSpace *as = arm_addressspace(cs, attrs);
720         MemTxResult result = MEMTX_OK;
721 
722         if (ptw->out_be) {
723             data = address_space_ldq_be(as, ptw->out_phys, attrs, &result);
724         } else {
725             data = address_space_ldq_le(as, ptw->out_phys, attrs, &result);
726         }
727         if (unlikely(result != MEMTX_OK)) {
728             fi->type = ARMFault_SyncExternalOnWalk;
729             fi->ea = arm_extabort_type(result);
730             return 0;
731         }
732     }
733     return data;
734 }
735 
arm_casq_ptw(CPUARMState * env,uint64_t old_val,uint64_t new_val,S1Translate * ptw,ARMMMUFaultInfo * fi)736 static uint64_t arm_casq_ptw(CPUARMState *env, uint64_t old_val,
737                              uint64_t new_val, S1Translate *ptw,
738                              ARMMMUFaultInfo *fi)
739 {
740 #if defined(CONFIG_ATOMIC64) && defined(CONFIG_TCG)
741     uint64_t cur_val;
742     void *host = ptw->out_host;
743 
744     if (unlikely(!host)) {
745         /* Page table in MMIO Memory Region */
746         CPUState *cs = env_cpu(env);
747         MemTxAttrs attrs = {
748             .space = ptw->out_space,
749             .secure = arm_space_is_secure(ptw->out_space),
750         };
751         AddressSpace *as = arm_addressspace(cs, attrs);
752         MemTxResult result = MEMTX_OK;
753         bool need_lock = !bql_locked();
754 
755         if (need_lock) {
756             bql_lock();
757         }
758         if (ptw->out_be) {
759             cur_val = address_space_ldq_be(as, ptw->out_phys, attrs, &result);
760             if (unlikely(result != MEMTX_OK)) {
761                 fi->type = ARMFault_SyncExternalOnWalk;
762                 fi->ea = arm_extabort_type(result);
763                 if (need_lock) {
764                     bql_unlock();
765                 }
766                 return old_val;
767             }
768             if (cur_val == old_val) {
769                 address_space_stq_be(as, ptw->out_phys, new_val, attrs, &result);
770                 if (unlikely(result != MEMTX_OK)) {
771                     fi->type = ARMFault_SyncExternalOnWalk;
772                     fi->ea = arm_extabort_type(result);
773                     if (need_lock) {
774                         bql_unlock();
775                     }
776                     return old_val;
777                 }
778                 cur_val = new_val;
779             }
780         } else {
781             cur_val = address_space_ldq_le(as, ptw->out_phys, attrs, &result);
782             if (unlikely(result != MEMTX_OK)) {
783                 fi->type = ARMFault_SyncExternalOnWalk;
784                 fi->ea = arm_extabort_type(result);
785                 if (need_lock) {
786                     bql_unlock();
787                 }
788                 return old_val;
789             }
790             if (cur_val == old_val) {
791                 address_space_stq_le(as, ptw->out_phys, new_val, attrs, &result);
792                 if (unlikely(result != MEMTX_OK)) {
793                     fi->type = ARMFault_SyncExternalOnWalk;
794                     fi->ea = arm_extabort_type(result);
795                     if (need_lock) {
796                         bql_unlock();
797                     }
798                     return old_val;
799                 }
800                 cur_val = new_val;
801             }
802         }
803         if (need_lock) {
804             bql_unlock();
805         }
806         return cur_val;
807     }
808 
809     /*
810      * Raising a stage2 Protection fault for an atomic update to a read-only
811      * page is delayed until it is certain that there is a change to make.
812      */
813     if (unlikely(!ptw->out_rw)) {
814         int flags;
815 
816         env->tlb_fi = fi;
817         flags = probe_access_full_mmu(env, ptw->out_virt, 0,
818                                       MMU_DATA_STORE,
819                                       arm_to_core_mmu_idx(ptw->in_ptw_idx),
820                                       NULL, NULL);
821         env->tlb_fi = NULL;
822 
823         if (unlikely(flags & TLB_INVALID_MASK)) {
824             /*
825              * We know this must be a stage 2 fault because the granule
826              * protection table does not separately track read and write
827              * permission, so all GPC faults are caught in S1_ptw_translate():
828              * we only get here for "readable but not writeable".
829              */
830             assert(fi->type != ARMFault_None);
831             fi->s2addr = ptw->out_virt;
832             fi->stage2 = true;
833             fi->s1ptw = true;
834             fi->s1ns = fault_s1ns(ptw->in_space, ptw->in_ptw_idx);
835             return 0;
836         }
837 
838         /* In case CAS mismatches and we loop, remember writability. */
839         ptw->out_rw = true;
840     }
841 
842     if (ptw->out_be) {
843         old_val = cpu_to_be64(old_val);
844         new_val = cpu_to_be64(new_val);
845         cur_val = qatomic_cmpxchg__nocheck((uint64_t *)host, old_val, new_val);
846         cur_val = be64_to_cpu(cur_val);
847     } else {
848         old_val = cpu_to_le64(old_val);
849         new_val = cpu_to_le64(new_val);
850         cur_val = qatomic_cmpxchg__nocheck((uint64_t *)host, old_val, new_val);
851         cur_val = le64_to_cpu(cur_val);
852     }
853     return cur_val;
854 #else
855     /* AArch32 does not have FEAT_HADFS; non-TCG guests only use debug-mode. */
856     g_assert_not_reached();
857 #endif
858 }
859 
get_level1_table_address(CPUARMState * env,ARMMMUIdx mmu_idx,uint32_t * table,uint32_t address)860 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
861                                      uint32_t *table, uint32_t address)
862 {
863     /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
864     uint64_t tcr = regime_tcr(env, mmu_idx);
865     int maskshift = extract32(tcr, 0, 3);
866     uint32_t mask = ~(((uint32_t)0xffffffffu) >> maskshift);
867     uint32_t base_mask;
868 
869     if (address & mask) {
870         if (tcr & TTBCR_PD1) {
871             /* Translation table walk disabled for TTBR1 */
872             return false;
873         }
874         *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
875     } else {
876         if (tcr & TTBCR_PD0) {
877             /* Translation table walk disabled for TTBR0 */
878             return false;
879         }
880         base_mask = ~((uint32_t)0x3fffu >> maskshift);
881         *table = regime_ttbr(env, mmu_idx, 0) & base_mask;
882     }
883     *table |= (address >> 18) & 0x3ffc;
884     return true;
885 }
886 
887 /*
888  * Translate section/page access permissions to page R/W protection flags
889  * @env:         CPUARMState
890  * @mmu_idx:     MMU index indicating required translation regime
891  * @ap:          The 3-bit access permissions (AP[2:0])
892  * @domain_prot: The 2-bit domain access permissions
893  * @is_user: TRUE if accessing from PL0
894  */
ap_to_rw_prot_is_user(CPUARMState * env,ARMMMUIdx mmu_idx,int ap,int domain_prot,bool is_user)895 static int ap_to_rw_prot_is_user(CPUARMState *env, ARMMMUIdx mmu_idx,
896                          int ap, int domain_prot, bool is_user)
897 {
898     if (domain_prot == 3) {
899         return PAGE_READ | PAGE_WRITE;
900     }
901 
902     switch (ap) {
903     case 0:
904         if (arm_feature(env, ARM_FEATURE_V7)) {
905             return 0;
906         }
907         switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
908         case SCTLR_S:
909             return is_user ? 0 : PAGE_READ;
910         case SCTLR_R:
911             return PAGE_READ;
912         default:
913             return 0;
914         }
915     case 1:
916         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
917     case 2:
918         if (is_user) {
919             return PAGE_READ;
920         } else {
921             return PAGE_READ | PAGE_WRITE;
922         }
923     case 3:
924         return PAGE_READ | PAGE_WRITE;
925     case 4: /* Reserved.  */
926         return 0;
927     case 5:
928         return is_user ? 0 : PAGE_READ;
929     case 6:
930         return PAGE_READ;
931     case 7:
932         if (!arm_feature(env, ARM_FEATURE_V6K)) {
933             return 0;
934         }
935         return PAGE_READ;
936     default:
937         g_assert_not_reached();
938     }
939 }
940 
941 /*
942  * Translate section/page access permissions to page R/W protection flags
943  * @env:         CPUARMState
944  * @mmu_idx:     MMU index indicating required translation regime
945  * @ap:          The 3-bit access permissions (AP[2:0])
946  * @domain_prot: The 2-bit domain access permissions
947  */
ap_to_rw_prot(CPUARMState * env,ARMMMUIdx mmu_idx,int ap,int domain_prot)948 static int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
949                          int ap, int domain_prot)
950 {
951    return ap_to_rw_prot_is_user(env, mmu_idx, ap, domain_prot,
952                                 regime_is_user(env, mmu_idx));
953 }
954 
955 /*
956  * Translate section/page access permissions to page R/W protection flags.
957  * @ap:      The 2-bit simple AP (AP[2:1])
958  * @is_user: TRUE if accessing from PL0
959  */
simple_ap_to_rw_prot_is_user(int ap,bool is_user)960 static int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
961 {
962     switch (ap) {
963     case 0:
964         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
965     case 1:
966         return PAGE_READ | PAGE_WRITE;
967     case 2:
968         return is_user ? 0 : PAGE_READ;
969     case 3:
970         return PAGE_READ;
971     default:
972         g_assert_not_reached();
973     }
974 }
975 
simple_ap_to_rw_prot(CPUARMState * env,ARMMMUIdx mmu_idx,int ap)976 static int simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
977 {
978     return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
979 }
980 
get_phys_addr_v5(CPUARMState * env,S1Translate * ptw,uint32_t address,MMUAccessType access_type,GetPhysAddrResult * result,ARMMMUFaultInfo * fi)981 static bool get_phys_addr_v5(CPUARMState *env, S1Translate *ptw,
982                              uint32_t address, MMUAccessType access_type,
983                              GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
984 {
985     int level = 1;
986     uint32_t table;
987     uint32_t desc;
988     int type;
989     int ap;
990     int domain = 0;
991     int domain_prot;
992     hwaddr phys_addr;
993     uint32_t dacr;
994 
995     /* Pagetable walk.  */
996     /* Lookup l1 descriptor.  */
997     if (!get_level1_table_address(env, ptw->in_mmu_idx, &table, address)) {
998         /* Section translation fault if page walk is disabled by PD0 or PD1 */
999         fi->type = ARMFault_Translation;
1000         goto do_fault;
1001     }
1002     if (!S1_ptw_translate(env, ptw, table, fi)) {
1003         goto do_fault;
1004     }
1005     desc = arm_ldl_ptw(env, ptw, fi);
1006     if (fi->type != ARMFault_None) {
1007         goto do_fault;
1008     }
1009     type = (desc & 3);
1010     domain = (desc >> 5) & 0x0f;
1011     if (regime_el(env, ptw->in_mmu_idx) == 1) {
1012         dacr = env->cp15.dacr_ns;
1013     } else {
1014         dacr = env->cp15.dacr_s;
1015     }
1016     domain_prot = (dacr >> (domain * 2)) & 3;
1017     if (type == 0) {
1018         /* Section translation fault.  */
1019         fi->type = ARMFault_Translation;
1020         goto do_fault;
1021     }
1022     if (type != 2) {
1023         level = 2;
1024     }
1025     if (domain_prot == 0 || domain_prot == 2) {
1026         fi->type = ARMFault_Domain;
1027         goto do_fault;
1028     }
1029     if (type == 2) {
1030         /* 1Mb section.  */
1031         phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
1032         ap = (desc >> 10) & 3;
1033         result->f.lg_page_size = 20; /* 1MB */
1034     } else {
1035         /* Lookup l2 entry.  */
1036         if (type == 1) {
1037             /* Coarse pagetable.  */
1038             table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
1039         } else {
1040             /* Fine pagetable.  */
1041             table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
1042         }
1043         if (!S1_ptw_translate(env, ptw, table, fi)) {
1044             goto do_fault;
1045         }
1046         desc = arm_ldl_ptw(env, ptw, fi);
1047         if (fi->type != ARMFault_None) {
1048             goto do_fault;
1049         }
1050         switch (desc & 3) {
1051         case 0: /* Page translation fault.  */
1052             fi->type = ARMFault_Translation;
1053             goto do_fault;
1054         case 1: /* 64k page.  */
1055             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
1056             ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
1057             result->f.lg_page_size = 16;
1058             break;
1059         case 2: /* 4k page.  */
1060             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1061             ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
1062             result->f.lg_page_size = 12;
1063             break;
1064         case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
1065             if (type == 1) {
1066                 /* ARMv6/XScale extended small page format */
1067                 if (arm_feature(env, ARM_FEATURE_XSCALE)
1068                     || arm_feature(env, ARM_FEATURE_V6)) {
1069                     phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1070                     result->f.lg_page_size = 12;
1071                 } else {
1072                     /*
1073                      * UNPREDICTABLE in ARMv5; we choose to take a
1074                      * page translation fault.
1075                      */
1076                     fi->type = ARMFault_Translation;
1077                     goto do_fault;
1078                 }
1079             } else {
1080                 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
1081                 result->f.lg_page_size = 10;
1082             }
1083             ap = (desc >> 4) & 3;
1084             break;
1085         default:
1086             /* Never happens, but compiler isn't smart enough to tell.  */
1087             g_assert_not_reached();
1088         }
1089     }
1090     result->f.prot = ap_to_rw_prot(env, ptw->in_mmu_idx, ap, domain_prot);
1091     result->f.prot |= result->f.prot ? PAGE_EXEC : 0;
1092     if (!(result->f.prot & (1 << access_type))) {
1093         /* Access permission fault.  */
1094         fi->type = ARMFault_Permission;
1095         goto do_fault;
1096     }
1097     result->f.phys_addr = phys_addr;
1098     return false;
1099 do_fault:
1100     fi->domain = domain;
1101     fi->level = level;
1102     return true;
1103 }
1104 
get_phys_addr_v6(CPUARMState * env,S1Translate * ptw,uint32_t address,MMUAccessType access_type,GetPhysAddrResult * result,ARMMMUFaultInfo * fi)1105 static bool get_phys_addr_v6(CPUARMState *env, S1Translate *ptw,
1106                              uint32_t address, MMUAccessType access_type,
1107                              GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
1108 {
1109     ARMCPU *cpu = env_archcpu(env);
1110     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
1111     int level = 1;
1112     uint32_t table;
1113     uint32_t desc;
1114     uint32_t xn;
1115     uint32_t pxn = 0;
1116     int type;
1117     int ap;
1118     int domain = 0;
1119     int domain_prot;
1120     hwaddr phys_addr;
1121     uint32_t dacr;
1122     bool ns;
1123     ARMSecuritySpace out_space;
1124 
1125     /* Pagetable walk.  */
1126     /* Lookup l1 descriptor.  */
1127     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
1128         /* Section translation fault if page walk is disabled by PD0 or PD1 */
1129         fi->type = ARMFault_Translation;
1130         goto do_fault;
1131     }
1132     if (!S1_ptw_translate(env, ptw, table, fi)) {
1133         goto do_fault;
1134     }
1135     desc = arm_ldl_ptw(env, ptw, fi);
1136     if (fi->type != ARMFault_None) {
1137         goto do_fault;
1138     }
1139     type = (desc & 3);
1140     if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) {
1141         /* Section translation fault, or attempt to use the encoding
1142          * which is Reserved on implementations without PXN.
1143          */
1144         fi->type = ARMFault_Translation;
1145         goto do_fault;
1146     }
1147     if ((type == 1) || !(desc & (1 << 18))) {
1148         /* Page or Section.  */
1149         domain = (desc >> 5) & 0x0f;
1150     }
1151     if (regime_el(env, mmu_idx) == 1) {
1152         dacr = env->cp15.dacr_ns;
1153     } else {
1154         dacr = env->cp15.dacr_s;
1155     }
1156     if (type == 1) {
1157         level = 2;
1158     }
1159     domain_prot = (dacr >> (domain * 2)) & 3;
1160     if (domain_prot == 0 || domain_prot == 2) {
1161         /* Section or Page domain fault */
1162         fi->type = ARMFault_Domain;
1163         goto do_fault;
1164     }
1165     if (type != 1) {
1166         if (desc & (1 << 18)) {
1167             /* Supersection.  */
1168             phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
1169             phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
1170             phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
1171             result->f.lg_page_size = 24;  /* 16MB */
1172         } else {
1173             /* Section.  */
1174             phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
1175             result->f.lg_page_size = 20;  /* 1MB */
1176         }
1177         ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
1178         xn = desc & (1 << 4);
1179         pxn = desc & 1;
1180         ns = extract32(desc, 19, 1);
1181     } else {
1182         if (cpu_isar_feature(aa32_pxn, cpu)) {
1183             pxn = (desc >> 2) & 1;
1184         }
1185         ns = extract32(desc, 3, 1);
1186         /* Lookup l2 entry.  */
1187         table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
1188         if (!S1_ptw_translate(env, ptw, table, fi)) {
1189             goto do_fault;
1190         }
1191         desc = arm_ldl_ptw(env, ptw, fi);
1192         if (fi->type != ARMFault_None) {
1193             goto do_fault;
1194         }
1195         ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
1196         switch (desc & 3) {
1197         case 0: /* Page translation fault.  */
1198             fi->type = ARMFault_Translation;
1199             goto do_fault;
1200         case 1: /* 64k page.  */
1201             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
1202             xn = desc & (1 << 15);
1203             result->f.lg_page_size = 16;
1204             break;
1205         case 2: case 3: /* 4k page.  */
1206             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1207             xn = desc & 1;
1208             result->f.lg_page_size = 12;
1209             break;
1210         default:
1211             /* Never happens, but compiler isn't smart enough to tell.  */
1212             g_assert_not_reached();
1213         }
1214     }
1215     out_space = ptw->in_space;
1216     if (ns) {
1217         /*
1218          * The NS bit will (as required by the architecture) have no effect if
1219          * the CPU doesn't support TZ or this is a non-secure translation
1220          * regime, because the output space will already be non-secure.
1221          */
1222         out_space = ARMSS_NonSecure;
1223     }
1224     if (domain_prot == 3) {
1225         result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
1226     } else {
1227         int user_rw, prot_rw;
1228 
1229         if (arm_feature(env, ARM_FEATURE_V6K) &&
1230                 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
1231             /* The simplified model uses AP[0] as an access control bit.  */
1232             if ((ap & 1) == 0) {
1233                 /* Access flag fault.  */
1234                 fi->type = ARMFault_AccessFlag;
1235                 goto do_fault;
1236             }
1237             prot_rw = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
1238             user_rw = simple_ap_to_rw_prot_is_user(ap >> 1, 1);
1239         } else {
1240             prot_rw = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
1241             user_rw = ap_to_rw_prot_is_user(env, mmu_idx, ap, domain_prot, 1);
1242         }
1243 
1244         result->f.prot = get_S1prot(env, mmu_idx, false, user_rw, prot_rw,
1245                                     xn, pxn, result->f.attrs.space, out_space);
1246         if (!(result->f.prot & (1 << access_type))) {
1247             /* Access permission fault.  */
1248             fi->type = ARMFault_Permission;
1249             goto do_fault;
1250         }
1251     }
1252     result->f.attrs.space = out_space;
1253     result->f.attrs.secure = arm_space_is_secure(out_space);
1254     result->f.phys_addr = phys_addr;
1255     return false;
1256 do_fault:
1257     fi->domain = domain;
1258     fi->level = level;
1259     return true;
1260 }
1261 
1262 /*
1263  * Translate S2 section/page access permissions to protection flags
1264  * @env:     CPUARMState
1265  * @s2ap:    The 2-bit stage2 access permissions (S2AP)
1266  * @xn:      XN (execute-never) bits
1267  * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0
1268  */
get_S2prot_noexecute(int s2ap)1269 static int get_S2prot_noexecute(int s2ap)
1270 {
1271     int prot = 0;
1272 
1273     if (s2ap & 1) {
1274         prot |= PAGE_READ;
1275     }
1276     if (s2ap & 2) {
1277         prot |= PAGE_WRITE;
1278     }
1279     return prot;
1280 }
1281 
get_S2prot(CPUARMState * env,int s2ap,int xn,bool s1_is_el0)1282 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0)
1283 {
1284     int prot = get_S2prot_noexecute(s2ap);
1285 
1286     if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) {
1287         switch (xn) {
1288         case 0:
1289             prot |= PAGE_EXEC;
1290             break;
1291         case 1:
1292             if (s1_is_el0) {
1293                 prot |= PAGE_EXEC;
1294             }
1295             break;
1296         case 2:
1297             break;
1298         case 3:
1299             if (!s1_is_el0) {
1300                 prot |= PAGE_EXEC;
1301             }
1302             break;
1303         default:
1304             g_assert_not_reached();
1305         }
1306     } else {
1307         if (!extract32(xn, 1, 1)) {
1308             if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
1309                 prot |= PAGE_EXEC;
1310             }
1311         }
1312     }
1313     return prot;
1314 }
1315 
1316 /*
1317  * Translate section/page access permissions to protection flags
1318  * @env:     CPUARMState
1319  * @mmu_idx: MMU index indicating required translation regime
1320  * @is_aa64: TRUE if AArch64
1321  * @user_rw: Translated AP for user access
1322  * @prot_rw: Translated AP for privileged access
1323  * @xn:      XN (execute-never) bit
1324  * @pxn:     PXN (privileged execute-never) bit
1325  * @in_pa:   The original input pa space
1326  * @out_pa:  The output pa space, modified by NSTable, NS, and NSE
1327  */
get_S1prot(CPUARMState * env,ARMMMUIdx mmu_idx,bool is_aa64,int user_rw,int prot_rw,int xn,int pxn,ARMSecuritySpace in_pa,ARMSecuritySpace out_pa)1328 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
1329                       int user_rw, int prot_rw, int xn, int pxn,
1330                       ARMSecuritySpace in_pa, ARMSecuritySpace out_pa)
1331 {
1332     ARMCPU *cpu = env_archcpu(env);
1333     bool is_user = regime_is_user(env, mmu_idx);
1334     bool have_wxn;
1335     int wxn = 0;
1336 
1337     assert(!regime_is_stage2(mmu_idx));
1338 
1339     if (is_user) {
1340         prot_rw = user_rw;
1341     } else {
1342         /*
1343          * PAN controls can forbid data accesses but don't affect insn fetch.
1344          * Plain PAN forbids data accesses if EL0 has data permissions;
1345          * PAN3 forbids data accesses if EL0 has either data or exec perms.
1346          * Note that for AArch64 the 'user can exec' case is exactly !xn.
1347          * We make the IMPDEF choices that SCR_EL3.SIF and Realm EL2&0
1348          * do not affect EPAN.
1349          */
1350         if (user_rw && regime_is_pan(env, mmu_idx)) {
1351             prot_rw = 0;
1352         } else if (cpu_isar_feature(aa64_pan3, cpu) && is_aa64 &&
1353                    regime_is_pan(env, mmu_idx) &&
1354                    (regime_sctlr(env, mmu_idx) & SCTLR_EPAN) && !xn) {
1355             prot_rw = 0;
1356         }
1357     }
1358 
1359     if (in_pa != out_pa) {
1360         switch (in_pa) {
1361         case ARMSS_Root:
1362             /*
1363              * R_ZWRVD: permission fault for insn fetched from non-Root,
1364              * I_WWBFB: SIF has no effect in EL3.
1365              */
1366             return prot_rw;
1367         case ARMSS_Realm:
1368             /*
1369              * R_PKTDS: permission fault for insn fetched from non-Realm,
1370              * for Realm EL2 or EL2&0.  The corresponding fault for EL1&0
1371              * happens during any stage2 translation.
1372              */
1373             switch (mmu_idx) {
1374             case ARMMMUIdx_E2:
1375             case ARMMMUIdx_E20_0:
1376             case ARMMMUIdx_E20_2:
1377             case ARMMMUIdx_E20_2_PAN:
1378                 return prot_rw;
1379             default:
1380                 break;
1381             }
1382             break;
1383         case ARMSS_Secure:
1384             if (env->cp15.scr_el3 & SCR_SIF) {
1385                 return prot_rw;
1386             }
1387             break;
1388         default:
1389             /* Input NonSecure must have output NonSecure. */
1390             g_assert_not_reached();
1391         }
1392     }
1393 
1394     /* TODO have_wxn should be replaced with
1395      *   ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
1396      * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
1397      * compatible processors have EL2, which is required for [U]WXN.
1398      */
1399     have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
1400 
1401     if (have_wxn) {
1402         wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
1403     }
1404 
1405     if (is_aa64) {
1406         if (regime_has_2_ranges(mmu_idx) && !is_user) {
1407             xn = pxn || (user_rw & PAGE_WRITE);
1408         }
1409     } else if (arm_feature(env, ARM_FEATURE_V7)) {
1410         switch (regime_el(env, mmu_idx)) {
1411         case 1:
1412         case 3:
1413             if (is_user) {
1414                 xn = xn || !(user_rw & PAGE_READ);
1415             } else {
1416                 int uwxn = 0;
1417                 if (have_wxn) {
1418                     uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
1419                 }
1420                 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
1421                      (uwxn && (user_rw & PAGE_WRITE));
1422             }
1423             break;
1424         case 2:
1425             break;
1426         }
1427     } else {
1428         xn = wxn = 0;
1429     }
1430 
1431     if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
1432         return prot_rw;
1433     }
1434     return prot_rw | PAGE_EXEC;
1435 }
1436 
aa32_va_parameters(CPUARMState * env,uint32_t va,ARMMMUIdx mmu_idx)1437 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
1438                                           ARMMMUIdx mmu_idx)
1439 {
1440     uint64_t tcr = regime_tcr(env, mmu_idx);
1441     uint32_t el = regime_el(env, mmu_idx);
1442     int select, tsz;
1443     bool epd, hpd;
1444 
1445     assert(mmu_idx != ARMMMUIdx_Stage2_S);
1446 
1447     if (mmu_idx == ARMMMUIdx_Stage2) {
1448         /* VTCR */
1449         bool sext = extract32(tcr, 4, 1);
1450         bool sign = extract32(tcr, 3, 1);
1451 
1452         /*
1453          * If the sign-extend bit is not the same as t0sz[3], the result
1454          * is unpredictable. Flag this as a guest error.
1455          */
1456         if (sign != sext) {
1457             qemu_log_mask(LOG_GUEST_ERROR,
1458                           "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
1459         }
1460         tsz = sextract32(tcr, 0, 4) + 8;
1461         select = 0;
1462         hpd = false;
1463         epd = false;
1464     } else if (el == 2) {
1465         /* HTCR */
1466         tsz = extract32(tcr, 0, 3);
1467         select = 0;
1468         hpd = extract64(tcr, 24, 1);
1469         epd = false;
1470     } else {
1471         int t0sz = extract32(tcr, 0, 3);
1472         int t1sz = extract32(tcr, 16, 3);
1473 
1474         if (t1sz == 0) {
1475             select = va > (0xffffffffu >> t0sz);
1476         } else {
1477             /* Note that we will detect errors later.  */
1478             select = va >= ~(0xffffffffu >> t1sz);
1479         }
1480         if (!select) {
1481             tsz = t0sz;
1482             epd = extract32(tcr, 7, 1);
1483             hpd = extract64(tcr, 41, 1);
1484         } else {
1485             tsz = t1sz;
1486             epd = extract32(tcr, 23, 1);
1487             hpd = extract64(tcr, 42, 1);
1488         }
1489         /* For aarch32, hpd0 is not enabled without t2e as well.  */
1490         hpd &= extract32(tcr, 6, 1);
1491     }
1492 
1493     return (ARMVAParameters) {
1494         .tsz = tsz,
1495         .select = select,
1496         .epd = epd,
1497         .hpd = hpd,
1498     };
1499 }
1500 
1501 /*
1502  * check_s2_mmu_setup
1503  * @cpu:        ARMCPU
1504  * @is_aa64:    True if the translation regime is in AArch64 state
1505  * @tcr:        VTCR_EL2 or VSTCR_EL2
1506  * @ds:         Effective value of TCR.DS.
1507  * @iasize:     Bitsize of IPAs
1508  * @stride:     Page-table stride (See the ARM ARM)
1509  *
1510  * Decode the starting level of the S2 lookup, returning INT_MIN if
1511  * the configuration is invalid.
1512  */
check_s2_mmu_setup(ARMCPU * cpu,bool is_aa64,uint64_t tcr,bool ds,int iasize,int stride)1513 static int check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, uint64_t tcr,
1514                               bool ds, int iasize, int stride)
1515 {
1516     int sl0, sl2, startlevel, granulebits, levels;
1517     int s1_min_iasize, s1_max_iasize;
1518 
1519     sl0 = extract32(tcr, 6, 2);
1520     if (is_aa64) {
1521         /*
1522          * AArch64.S2InvalidSL: Interpretation of SL depends on the page size,
1523          * so interleave AArch64.S2StartLevel.
1524          */
1525         switch (stride) {
1526         case 9: /* 4KB */
1527             /* SL2 is RES0 unless DS=1 & 4KB granule. */
1528             sl2 = extract64(tcr, 33, 1);
1529             if (ds && sl2) {
1530                 if (sl0 != 0) {
1531                     goto fail;
1532                 }
1533                 startlevel = -1;
1534             } else {
1535                 startlevel = 2 - sl0;
1536                 switch (sl0) {
1537                 case 2:
1538                     if (arm_pamax(cpu) < 44) {
1539                         goto fail;
1540                     }
1541                     break;
1542                 case 3:
1543                     if (!cpu_isar_feature(aa64_st, cpu)) {
1544                         goto fail;
1545                     }
1546                     startlevel = 3;
1547                     break;
1548                 }
1549             }
1550             break;
1551         case 11: /* 16KB */
1552             switch (sl0) {
1553             case 2:
1554                 if (arm_pamax(cpu) < 42) {
1555                     goto fail;
1556                 }
1557                 break;
1558             case 3:
1559                 if (!ds) {
1560                     goto fail;
1561                 }
1562                 break;
1563             }
1564             startlevel = 3 - sl0;
1565             break;
1566         case 13: /* 64KB */
1567             switch (sl0) {
1568             case 2:
1569                 if (arm_pamax(cpu) < 44) {
1570                     goto fail;
1571                 }
1572                 break;
1573             case 3:
1574                 goto fail;
1575             }
1576             startlevel = 3 - sl0;
1577             break;
1578         default:
1579             g_assert_not_reached();
1580         }
1581     } else {
1582         /*
1583          * Things are simpler for AArch32 EL2, with only 4k pages.
1584          * There is no separate S2InvalidSL function, but AArch32.S2Walk
1585          * begins with walkparms.sl0 in {'1x'}.
1586          */
1587         assert(stride == 9);
1588         if (sl0 >= 2) {
1589             goto fail;
1590         }
1591         startlevel = 2 - sl0;
1592     }
1593 
1594     /* AArch{64,32}.S2InconsistentSL are functionally equivalent.  */
1595     levels = 3 - startlevel;
1596     granulebits = stride + 3;
1597 
1598     s1_min_iasize = levels * stride + granulebits + 1;
1599     s1_max_iasize = s1_min_iasize + (stride - 1) + 4;
1600 
1601     if (iasize >= s1_min_iasize && iasize <= s1_max_iasize) {
1602         return startlevel;
1603     }
1604 
1605  fail:
1606     return INT_MIN;
1607 }
1608 
lpae_block_desc_valid(ARMCPU * cpu,bool ds,ARMGranuleSize gran,int level)1609 static bool lpae_block_desc_valid(ARMCPU *cpu, bool ds,
1610                                   ARMGranuleSize gran, int level)
1611 {
1612     /*
1613      * See pseudocode AArch46.BlockDescSupported(): block descriptors
1614      * are not valid at all levels, depending on the page size.
1615      */
1616     switch (gran) {
1617     case Gran4K:
1618         return (level == 0 && ds) || level == 1 || level == 2;
1619     case Gran16K:
1620         return (level == 1 && ds) || level == 2;
1621     case Gran64K:
1622         return (level == 1 && arm_pamax(cpu) == 52) || level == 2;
1623     default:
1624         g_assert_not_reached();
1625     }
1626 }
1627 
nv_nv1_enabled(CPUARMState * env,S1Translate * ptw)1628 static bool nv_nv1_enabled(CPUARMState *env, S1Translate *ptw)
1629 {
1630     uint64_t hcr = arm_hcr_el2_eff_secstate(env, ptw->in_space);
1631     return (hcr & (HCR_NV | HCR_NV1)) == (HCR_NV | HCR_NV1);
1632 }
1633 
1634 /**
1635  * get_phys_addr_lpae: perform one stage of page table walk, LPAE format
1636  *
1637  * Returns false if the translation was successful. Otherwise, phys_ptr,
1638  * attrs, prot and page_size may not be filled in, and the populated fsr
1639  * value provides information on why the translation aborted, in the format
1640  * of a long-format DFSR/IFSR fault register, with the following caveat:
1641  * the WnR bit is never set (the caller must do this).
1642  *
1643  * @env: CPUARMState
1644  * @ptw: Current and next stage parameters for the walk.
1645  * @address: virtual address to get physical address for
1646  * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH
1647  * @memop: memory operation feeding this access, or 0 for none
1648  * @result: set on translation success,
1649  * @fi: set to fault info if the translation fails
1650  */
get_phys_addr_lpae(CPUARMState * env,S1Translate * ptw,uint64_t address,MMUAccessType access_type,MemOp memop,GetPhysAddrResult * result,ARMMMUFaultInfo * fi)1651 static bool get_phys_addr_lpae(CPUARMState *env, S1Translate *ptw,
1652                                uint64_t address,
1653                                MMUAccessType access_type, MemOp memop,
1654                                GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
1655 {
1656     ARMCPU *cpu = env_archcpu(env);
1657     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
1658     int32_t level;
1659     ARMVAParameters param;
1660     uint64_t ttbr;
1661     hwaddr descaddr, indexmask, indexmask_grainsize;
1662     uint32_t tableattrs;
1663     uint64_t page_size;
1664     uint64_t attrs;
1665     int32_t stride;
1666     int addrsize, inputsize, outputsize;
1667     uint64_t tcr = regime_tcr(env, mmu_idx);
1668     int ap, xn, pxn;
1669     uint32_t el = regime_el(env, mmu_idx);
1670     uint64_t descaddrmask;
1671     bool aarch64 = arm_el_is_aa64(env, el);
1672     uint64_t descriptor, new_descriptor;
1673     ARMSecuritySpace out_space;
1674     bool device;
1675 
1676     /* TODO: This code does not support shareability levels. */
1677     if (aarch64) {
1678         int ps;
1679 
1680         param = aa64_va_parameters(env, address, mmu_idx,
1681                                    access_type != MMU_INST_FETCH,
1682                                    !arm_el_is_aa64(env, 1));
1683         level = 0;
1684 
1685         /*
1686          * If TxSZ is programmed to a value larger than the maximum,
1687          * or smaller than the effective minimum, it is IMPLEMENTATION
1688          * DEFINED whether we behave as if the field were programmed
1689          * within bounds, or if a level 0 Translation fault is generated.
1690          *
1691          * With FEAT_LVA, fault on less than minimum becomes required,
1692          * so our choice is to always raise the fault.
1693          */
1694         if (param.tsz_oob) {
1695             goto do_translation_fault;
1696         }
1697 
1698         addrsize = 64 - 8 * param.tbi;
1699         inputsize = 64 - param.tsz;
1700 
1701         /*
1702          * Bound PS by PARANGE to find the effective output address size.
1703          * ID_AA64MMFR0 is a read-only register so values outside of the
1704          * supported mappings can be considered an implementation error.
1705          */
1706         ps = FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
1707         ps = MIN(ps, param.ps);
1708         assert(ps < ARRAY_SIZE(pamax_map));
1709         outputsize = pamax_map[ps];
1710 
1711         /*
1712          * With LPA2, the effective output address (OA) size is at most 48 bits
1713          * unless TCR.DS == 1
1714          */
1715         if (!param.ds && param.gran != Gran64K) {
1716             outputsize = MIN(outputsize, 48);
1717         }
1718     } else {
1719         param = aa32_va_parameters(env, address, mmu_idx);
1720         level = 1;
1721         addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32);
1722         inputsize = addrsize - param.tsz;
1723         outputsize = 40;
1724     }
1725 
1726     /*
1727      * We determined the region when collecting the parameters, but we
1728      * have not yet validated that the address is valid for the region.
1729      * Extract the top bits and verify that they all match select.
1730      *
1731      * For aa32, if inputsize == addrsize, then we have selected the
1732      * region by exclusion in aa32_va_parameters and there is no more
1733      * validation to do here.
1734      */
1735     if (inputsize < addrsize) {
1736         uint64_t top_bits = sextract64(address, inputsize,
1737                                            addrsize - inputsize);
1738         if (-top_bits != param.select) {
1739             /* The gap between the two regions is a Translation fault */
1740             goto do_translation_fault;
1741         }
1742     }
1743 
1744     stride = arm_granule_bits(param.gran) - 3;
1745 
1746     /*
1747      * Note that QEMU ignores shareability and cacheability attributes,
1748      * so we don't need to do anything with the SH, ORGN, IRGN fields
1749      * in the TTBCR.  Similarly, TTBCR:A1 selects whether we get the
1750      * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
1751      * implement any ASID-like capability so we can ignore it (instead
1752      * we will always flush the TLB any time the ASID is changed).
1753      */
1754     ttbr = regime_ttbr(env, mmu_idx, param.select);
1755 
1756     /*
1757      * Here we should have set up all the parameters for the translation:
1758      * inputsize, ttbr, epd, stride, tbi
1759      */
1760 
1761     if (param.epd) {
1762         /*
1763          * Translation table walk disabled => Translation fault on TLB miss
1764          * Note: This is always 0 on 64-bit EL2 and EL3.
1765          */
1766         goto do_translation_fault;
1767     }
1768 
1769     if (!regime_is_stage2(mmu_idx)) {
1770         /*
1771          * The starting level depends on the virtual address size (which can
1772          * be up to 48 bits) and the translation granule size. It indicates
1773          * the number of strides (stride bits at a time) needed to
1774          * consume the bits of the input address. In the pseudocode this is:
1775          *  level = 4 - RoundUp((inputsize - grainsize) / stride)
1776          * where their 'inputsize' is our 'inputsize', 'grainsize' is
1777          * our 'stride + 3' and 'stride' is our 'stride'.
1778          * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
1779          * = 4 - (inputsize - stride - 3 + stride - 1) / stride
1780          * = 4 - (inputsize - 4) / stride;
1781          */
1782         level = 4 - (inputsize - 4) / stride;
1783     } else {
1784         int startlevel = check_s2_mmu_setup(cpu, aarch64, tcr, param.ds,
1785                                             inputsize, stride);
1786         if (startlevel == INT_MIN) {
1787             level = 0;
1788             goto do_translation_fault;
1789         }
1790         level = startlevel;
1791     }
1792 
1793     indexmask_grainsize = MAKE_64BIT_MASK(0, stride + 3);
1794     indexmask = MAKE_64BIT_MASK(0, inputsize - (stride * (4 - level)));
1795 
1796     /* Now we can extract the actual base address from the TTBR */
1797     descaddr = extract64(ttbr, 0, 48);
1798 
1799     /*
1800      * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [5:2] of TTBR.
1801      *
1802      * Otherwise, if the base address is out of range, raise AddressSizeFault.
1803      * In the pseudocode, this is !IsZero(baseregister<47:outputsize>),
1804      * but we've just cleared the bits above 47, so simplify the test.
1805      */
1806     if (outputsize > 48) {
1807         descaddr |= extract64(ttbr, 2, 4) << 48;
1808     } else if (descaddr >> outputsize) {
1809         level = 0;
1810         fi->type = ARMFault_AddressSize;
1811         goto do_fault;
1812     }
1813 
1814     /*
1815      * We rely on this masking to clear the RES0 bits at the bottom of the TTBR
1816      * and also to mask out CnP (bit 0) which could validly be non-zero.
1817      */
1818     descaddr &= ~indexmask;
1819 
1820     /*
1821      * For AArch32, the address field in the descriptor goes up to bit 39
1822      * for both v7 and v8.  However, for v8 the SBZ bits [47:40] must be 0
1823      * or an AddressSize fault is raised.  So for v8 we extract those SBZ
1824      * bits as part of the address, which will be checked via outputsize.
1825      * For AArch64, the address field goes up to bit 47, or 49 with FEAT_LPA2;
1826      * the highest bits of a 52-bit output are placed elsewhere.
1827      */
1828     if (param.ds) {
1829         descaddrmask = MAKE_64BIT_MASK(0, 50);
1830     } else if (arm_feature(env, ARM_FEATURE_V8)) {
1831         descaddrmask = MAKE_64BIT_MASK(0, 48);
1832     } else {
1833         descaddrmask = MAKE_64BIT_MASK(0, 40);
1834     }
1835     descaddrmask &= ~indexmask_grainsize;
1836     tableattrs = 0;
1837 
1838  next_level:
1839     descaddr |= (address >> (stride * (4 - level))) & indexmask;
1840     descaddr &= ~7ULL;
1841 
1842     /*
1843      * Process the NSTable bit from the previous level.  This changes
1844      * the table address space and the output space from Secure to
1845      * NonSecure.  With RME, the EL3 translation regime does not change
1846      * from Root to NonSecure.
1847      */
1848     if (ptw->in_space == ARMSS_Secure
1849         && !regime_is_stage2(mmu_idx)
1850         && extract32(tableattrs, 4, 1)) {
1851         /*
1852          * Stage2_S -> Stage2 or Phys_S -> Phys_NS
1853          * Assert the relative order of the secure/non-secure indexes.
1854          */
1855         QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_S + 1 != ARMMMUIdx_Phys_NS);
1856         QEMU_BUILD_BUG_ON(ARMMMUIdx_Stage2_S + 1 != ARMMMUIdx_Stage2);
1857         ptw->in_ptw_idx += 1;
1858         ptw->in_space = ARMSS_NonSecure;
1859     }
1860 
1861     if (!S1_ptw_translate(env, ptw, descaddr, fi)) {
1862         goto do_fault;
1863     }
1864     descriptor = arm_ldq_ptw(env, ptw, fi);
1865     if (fi->type != ARMFault_None) {
1866         goto do_fault;
1867     }
1868     new_descriptor = descriptor;
1869 
1870  restart_atomic_update:
1871     if (!(descriptor & 1) ||
1872         (!(descriptor & 2) &&
1873          !lpae_block_desc_valid(cpu, param.ds, param.gran, level))) {
1874         /* Invalid, or a block descriptor at an invalid level */
1875         goto do_translation_fault;
1876     }
1877 
1878     descaddr = descriptor & descaddrmask;
1879 
1880     /*
1881      * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [15:12]
1882      * of descriptor.  For FEAT_LPA2 and effective DS, bits [51:50] of
1883      * descaddr are in [9:8].  Otherwise, if descaddr is out of range,
1884      * raise AddressSizeFault.
1885      */
1886     if (outputsize > 48) {
1887         if (param.ds) {
1888             descaddr |= extract64(descriptor, 8, 2) << 50;
1889         } else {
1890             descaddr |= extract64(descriptor, 12, 4) << 48;
1891         }
1892     } else if (descaddr >> outputsize) {
1893         fi->type = ARMFault_AddressSize;
1894         goto do_fault;
1895     }
1896 
1897     if ((descriptor & 2) && (level < 3)) {
1898         /*
1899          * Table entry. The top five bits are attributes which may
1900          * propagate down through lower levels of the table (and
1901          * which are all arranged so that 0 means "no effect", so
1902          * we can gather them up by ORing in the bits at each level).
1903          */
1904         tableattrs |= extract64(descriptor, 59, 5);
1905         level++;
1906         indexmask = indexmask_grainsize;
1907         goto next_level;
1908     }
1909 
1910     /*
1911      * Block entry at level 1 or 2, or page entry at level 3.
1912      * These are basically the same thing, although the number
1913      * of bits we pull in from the vaddr varies. Note that although
1914      * descaddrmask masks enough of the low bits of the descriptor
1915      * to give a correct page or table address, the address field
1916      * in a block descriptor is smaller; so we need to explicitly
1917      * clear the lower bits here before ORing in the low vaddr bits.
1918      *
1919      * Afterward, descaddr is the final physical address.
1920      */
1921     page_size = (1ULL << ((stride * (4 - level)) + 3));
1922     descaddr &= ~(hwaddr)(page_size - 1);
1923     descaddr |= (address & (page_size - 1));
1924 
1925     if (likely(!ptw->in_debug)) {
1926         /*
1927          * Access flag.
1928          * If HA is enabled, prepare to update the descriptor below.
1929          * Otherwise, pass the access fault on to software.
1930          */
1931         if (!(descriptor & (1 << 10))) {
1932             if (param.ha) {
1933                 new_descriptor |= 1 << 10; /* AF */
1934             } else {
1935                 fi->type = ARMFault_AccessFlag;
1936                 goto do_fault;
1937             }
1938         }
1939 
1940         /*
1941          * Dirty Bit.
1942          * If HD is enabled, pre-emptively set/clear the appropriate AP/S2AP
1943          * bit for writeback. The actual write protection test may still be
1944          * overridden by tableattrs, to be merged below.
1945          */
1946         if (param.hd
1947             && extract64(descriptor, 51, 1)  /* DBM */
1948             && access_type == MMU_DATA_STORE) {
1949             if (regime_is_stage2(mmu_idx)) {
1950                 new_descriptor |= 1ull << 7;    /* set S2AP[1] */
1951             } else {
1952                 new_descriptor &= ~(1ull << 7); /* clear AP[2] */
1953             }
1954         }
1955     }
1956 
1957     /*
1958      * Extract attributes from the (modified) descriptor, and apply
1959      * table descriptors. Stage 2 table descriptors do not include
1960      * any attribute fields. HPD disables all the table attributes
1961      * except NSTable (which we have already handled).
1962      */
1963     attrs = new_descriptor & (MAKE_64BIT_MASK(2, 10) | MAKE_64BIT_MASK(50, 14));
1964     if (!regime_is_stage2(mmu_idx)) {
1965         if (!param.hpd) {
1966             attrs |= extract64(tableattrs, 0, 2) << 53;     /* XN, PXN */
1967             /*
1968              * The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
1969              * means "force PL1 access only", which means forcing AP[1] to 0.
1970              */
1971             attrs &= ~(extract64(tableattrs, 2, 1) << 6); /* !APT[0] => AP[1] */
1972             attrs |= extract32(tableattrs, 3, 1) << 7;    /* APT[1] => AP[2] */
1973         }
1974     }
1975 
1976     ap = extract32(attrs, 6, 2);
1977     out_space = ptw->in_space;
1978     if (regime_is_stage2(mmu_idx)) {
1979         /*
1980          * R_GYNXY: For stage2 in Realm security state, bit 55 is NS.
1981          * The bit remains ignored for other security states.
1982          * R_YMCSL: Executing an insn fetched from non-Realm causes
1983          * a stage2 permission fault.
1984          */
1985         if (out_space == ARMSS_Realm && extract64(attrs, 55, 1)) {
1986             out_space = ARMSS_NonSecure;
1987             result->f.prot = get_S2prot_noexecute(ap);
1988         } else {
1989             xn = extract64(attrs, 53, 2);
1990             result->f.prot = get_S2prot(env, ap, xn, ptw->in_s1_is_el0);
1991         }
1992 
1993         result->cacheattrs.is_s2_format = true;
1994         result->cacheattrs.attrs = extract32(attrs, 2, 4);
1995         /*
1996          * Security state does not really affect HCR_EL2.FWB;
1997          * we only need to filter FWB for aa32 or other FEAT.
1998          */
1999         device = S2_attrs_are_device(arm_hcr_el2_eff(env),
2000                                      result->cacheattrs.attrs);
2001     } else {
2002         int nse, ns = extract32(attrs, 5, 1);
2003         uint8_t attrindx;
2004         uint64_t mair;
2005         int user_rw, prot_rw;
2006 
2007         switch (out_space) {
2008         case ARMSS_Root:
2009             /*
2010              * R_GVZML: Bit 11 becomes the NSE field in the EL3 regime.
2011              * R_XTYPW: NSE and NS together select the output pa space.
2012              */
2013             nse = extract32(attrs, 11, 1);
2014             out_space = (nse << 1) | ns;
2015             if (out_space == ARMSS_Secure &&
2016                 !cpu_isar_feature(aa64_sel2, cpu)) {
2017                 out_space = ARMSS_NonSecure;
2018             }
2019             break;
2020         case ARMSS_Secure:
2021             if (ns) {
2022                 out_space = ARMSS_NonSecure;
2023             }
2024             break;
2025         case ARMSS_Realm:
2026             switch (mmu_idx) {
2027             case ARMMMUIdx_Stage1_E0:
2028             case ARMMMUIdx_Stage1_E1:
2029             case ARMMMUIdx_Stage1_E1_PAN:
2030                 /* I_CZPRF: For Realm EL1&0 stage1, NS bit is RES0. */
2031                 break;
2032             case ARMMMUIdx_E2:
2033             case ARMMMUIdx_E20_0:
2034             case ARMMMUIdx_E20_2:
2035             case ARMMMUIdx_E20_2_PAN:
2036                 /*
2037                  * R_LYKFZ, R_WGRZN: For Realm EL2 and EL2&1,
2038                  * NS changes the output to non-secure space.
2039                  */
2040                 if (ns) {
2041                     out_space = ARMSS_NonSecure;
2042                 }
2043                 break;
2044             default:
2045                 g_assert_not_reached();
2046             }
2047             break;
2048         case ARMSS_NonSecure:
2049             /* R_QRMFF: For NonSecure state, the NS bit is RES0. */
2050             break;
2051         default:
2052             g_assert_not_reached();
2053         }
2054         xn = extract64(attrs, 54, 1);
2055         pxn = extract64(attrs, 53, 1);
2056 
2057         if (el == 1 && nv_nv1_enabled(env, ptw)) {
2058             /*
2059              * With FEAT_NV, when HCR_EL2.{NV,NV1} == {1,1}, the block/page
2060              * descriptor bit 54 holds PXN, 53 is RES0, and the effective value
2061              * of UXN is 0. Similarly for bits 59 and 60 in table descriptors
2062              * (which we have already folded into bits 53 and 54 of attrs).
2063              * AP[1] (descriptor bit 6, our ap bit 0) is treated as 0.
2064              * Similarly, APTable[0] from the table descriptor is treated as 0;
2065              * we already folded this into AP[1] and squashing that to 0 does
2066              * the right thing.
2067              */
2068             pxn = xn;
2069             xn = 0;
2070             ap &= ~1;
2071         }
2072 
2073         user_rw = simple_ap_to_rw_prot_is_user(ap, true);
2074         prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
2075         /*
2076          * Note that we modified ptw->in_space earlier for NSTable, but
2077          * result->f.attrs retains a copy of the original security space.
2078          */
2079         result->f.prot = get_S1prot(env, mmu_idx, aarch64, user_rw, prot_rw,
2080                                     xn, pxn, result->f.attrs.space, out_space);
2081 
2082         /* Index into MAIR registers for cache attributes */
2083         attrindx = extract32(attrs, 2, 3);
2084         mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
2085         assert(attrindx <= 7);
2086         result->cacheattrs.is_s2_format = false;
2087         result->cacheattrs.attrs = extract64(mair, attrindx * 8, 8);
2088 
2089         /* When in aarch64 mode, and BTI is enabled, remember GP in the TLB. */
2090         if (aarch64 && cpu_isar_feature(aa64_bti, cpu)) {
2091             result->f.extra.arm.guarded = extract64(attrs, 50, 1); /* GP */
2092         }
2093         device = S1_attrs_are_device(result->cacheattrs.attrs);
2094     }
2095 
2096     /*
2097      * Enable alignment checks on Device memory.
2098      *
2099      * Per R_XCHFJ, the correct ordering for alignment, permission,
2100      * and stage 2 faults is:
2101      *    - Alignment fault caused by the memory type
2102      *    - Permission fault
2103      *    - A stage 2 fault on the memory access
2104      * Perform the alignment check now, so that we recognize it in
2105      * the correct order.  Set TLB_CHECK_ALIGNED so that any subsequent
2106      * softmmu tlb hit will also check the alignment; clear along the
2107      * non-device path so that tlb_fill_flags is consistent in the
2108      * event of restart_atomic_update.
2109      *
2110      * In v7, for a CPU without the Virtualization Extensions this
2111      * access is UNPREDICTABLE; we choose to make it take the alignment
2112      * fault as is required for a v7VE CPU. (QEMU doesn't emulate any
2113      * CPUs with ARM_FEATURE_LPAE but not ARM_FEATURE_V7VE anyway.)
2114      */
2115     if (device) {
2116         unsigned a_bits = memop_atomicity_bits(memop);
2117         if (address & ((1 << a_bits) - 1)) {
2118             fi->type = ARMFault_Alignment;
2119             goto do_fault;
2120         }
2121         result->f.tlb_fill_flags = TLB_CHECK_ALIGNED;
2122     } else {
2123         result->f.tlb_fill_flags = 0;
2124     }
2125 
2126     if (!(result->f.prot & (1 << access_type))) {
2127         fi->type = ARMFault_Permission;
2128         goto do_fault;
2129     }
2130 
2131     /* If FEAT_HAFDBS has made changes, update the PTE. */
2132     if (new_descriptor != descriptor) {
2133         new_descriptor = arm_casq_ptw(env, descriptor, new_descriptor, ptw, fi);
2134         if (fi->type != ARMFault_None) {
2135             goto do_fault;
2136         }
2137         /*
2138          * I_YZSVV says that if the in-memory descriptor has changed,
2139          * then we must use the information in that new value
2140          * (which might include a different output address, different
2141          * attributes, or generate a fault).
2142          * Restart the handling of the descriptor value from scratch.
2143          */
2144         if (new_descriptor != descriptor) {
2145             descriptor = new_descriptor;
2146             goto restart_atomic_update;
2147         }
2148     }
2149 
2150     result->f.attrs.space = out_space;
2151     result->f.attrs.secure = arm_space_is_secure(out_space);
2152 
2153     /*
2154      * For FEAT_LPA2 and effective DS, the SH field in the attributes
2155      * was re-purposed for output address bits.  The SH attribute in
2156      * that case comes from TCR_ELx, which we extracted earlier.
2157      */
2158     if (param.ds) {
2159         result->cacheattrs.shareability = param.sh;
2160     } else {
2161         result->cacheattrs.shareability = extract32(attrs, 8, 2);
2162     }
2163 
2164     result->f.phys_addr = descaddr;
2165     result->f.lg_page_size = ctz64(page_size);
2166     return false;
2167 
2168  do_translation_fault:
2169     fi->type = ARMFault_Translation;
2170  do_fault:
2171     if (fi->s1ptw) {
2172         /* Retain the existing stage 2 fi->level */
2173         assert(fi->stage2);
2174     } else {
2175         fi->level = level;
2176         fi->stage2 = regime_is_stage2(mmu_idx);
2177     }
2178     fi->s1ns = fault_s1ns(ptw->in_space, mmu_idx);
2179     return true;
2180 }
2181 
get_phys_addr_pmsav5(CPUARMState * env,S1Translate * ptw,uint32_t address,MMUAccessType access_type,GetPhysAddrResult * result,ARMMMUFaultInfo * fi)2182 static bool get_phys_addr_pmsav5(CPUARMState *env,
2183                                  S1Translate *ptw,
2184                                  uint32_t address,
2185                                  MMUAccessType access_type,
2186                                  GetPhysAddrResult *result,
2187                                  ARMMMUFaultInfo *fi)
2188 {
2189     int n;
2190     uint32_t mask;
2191     uint32_t base;
2192     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
2193     bool is_user = regime_is_user(env, mmu_idx);
2194 
2195     if (regime_translation_disabled(env, mmu_idx, ptw->in_space)) {
2196         /* MPU disabled.  */
2197         result->f.phys_addr = address;
2198         result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2199         return false;
2200     }
2201 
2202     result->f.phys_addr = address;
2203     for (n = 7; n >= 0; n--) {
2204         base = env->cp15.c6_region[n];
2205         if ((base & 1) == 0) {
2206             continue;
2207         }
2208         mask = 1 << ((base >> 1) & 0x1f);
2209         /* Keep this shift separate from the above to avoid an
2210            (undefined) << 32.  */
2211         mask = (mask << 1) - 1;
2212         if (((base ^ address) & ~mask) == 0) {
2213             break;
2214         }
2215     }
2216     if (n < 0) {
2217         fi->type = ARMFault_Background;
2218         return true;
2219     }
2220 
2221     if (access_type == MMU_INST_FETCH) {
2222         mask = env->cp15.pmsav5_insn_ap;
2223     } else {
2224         mask = env->cp15.pmsav5_data_ap;
2225     }
2226     mask = (mask >> (n * 4)) & 0xf;
2227     switch (mask) {
2228     case 0:
2229         fi->type = ARMFault_Permission;
2230         fi->level = 1;
2231         return true;
2232     case 1:
2233         if (is_user) {
2234             fi->type = ARMFault_Permission;
2235             fi->level = 1;
2236             return true;
2237         }
2238         result->f.prot = PAGE_READ | PAGE_WRITE;
2239         break;
2240     case 2:
2241         result->f.prot = PAGE_READ;
2242         if (!is_user) {
2243             result->f.prot |= PAGE_WRITE;
2244         }
2245         break;
2246     case 3:
2247         result->f.prot = PAGE_READ | PAGE_WRITE;
2248         break;
2249     case 5:
2250         if (is_user) {
2251             fi->type = ARMFault_Permission;
2252             fi->level = 1;
2253             return true;
2254         }
2255         result->f.prot = PAGE_READ;
2256         break;
2257     case 6:
2258         result->f.prot = PAGE_READ;
2259         break;
2260     default:
2261         /* Bad permission.  */
2262         fi->type = ARMFault_Permission;
2263         fi->level = 1;
2264         return true;
2265     }
2266     result->f.prot |= PAGE_EXEC;
2267     return false;
2268 }
2269 
get_phys_addr_pmsav7_default(CPUARMState * env,ARMMMUIdx mmu_idx,int32_t address,uint8_t * prot)2270 static void get_phys_addr_pmsav7_default(CPUARMState *env, ARMMMUIdx mmu_idx,
2271                                          int32_t address, uint8_t *prot)
2272 {
2273     if (!arm_feature(env, ARM_FEATURE_M)) {
2274         *prot = PAGE_READ | PAGE_WRITE;
2275         switch (address) {
2276         case 0xF0000000 ... 0xFFFFFFFF:
2277             if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
2278                 /* hivecs execing is ok */
2279                 *prot |= PAGE_EXEC;
2280             }
2281             break;
2282         case 0x00000000 ... 0x7FFFFFFF:
2283             *prot |= PAGE_EXEC;
2284             break;
2285         }
2286     } else {
2287         /* Default system address map for M profile cores.
2288          * The architecture specifies which regions are execute-never;
2289          * at the MPU level no other checks are defined.
2290          */
2291         switch (address) {
2292         case 0x00000000 ... 0x1fffffff: /* ROM */
2293         case 0x20000000 ... 0x3fffffff: /* SRAM */
2294         case 0x60000000 ... 0x7fffffff: /* RAM */
2295         case 0x80000000 ... 0x9fffffff: /* RAM */
2296             *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2297             break;
2298         case 0x40000000 ... 0x5fffffff: /* Peripheral */
2299         case 0xa0000000 ... 0xbfffffff: /* Device */
2300         case 0xc0000000 ... 0xdfffffff: /* Device */
2301         case 0xe0000000 ... 0xffffffff: /* System */
2302             *prot = PAGE_READ | PAGE_WRITE;
2303             break;
2304         default:
2305             g_assert_not_reached();
2306         }
2307     }
2308 }
2309 
m_is_ppb_region(CPUARMState * env,uint32_t address)2310 static bool m_is_ppb_region(CPUARMState *env, uint32_t address)
2311 {
2312     /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
2313     return arm_feature(env, ARM_FEATURE_M) &&
2314         extract32(address, 20, 12) == 0xe00;
2315 }
2316 
m_is_system_region(CPUARMState * env,uint32_t address)2317 static bool m_is_system_region(CPUARMState *env, uint32_t address)
2318 {
2319     /*
2320      * True if address is in the M profile system region
2321      * 0xe0000000 - 0xffffffff
2322      */
2323     return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
2324 }
2325 
pmsav7_use_background_region(ARMCPU * cpu,ARMMMUIdx mmu_idx,bool is_secure,bool is_user)2326 static bool pmsav7_use_background_region(ARMCPU *cpu, ARMMMUIdx mmu_idx,
2327                                          bool is_secure, bool is_user)
2328 {
2329     /*
2330      * Return true if we should use the default memory map as a
2331      * "background" region if there are no hits against any MPU regions.
2332      */
2333     CPUARMState *env = &cpu->env;
2334 
2335     if (is_user) {
2336         return false;
2337     }
2338 
2339     if (arm_feature(env, ARM_FEATURE_M)) {
2340         return env->v7m.mpu_ctrl[is_secure] & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
2341     }
2342 
2343     if (mmu_idx == ARMMMUIdx_Stage2) {
2344         return false;
2345     }
2346 
2347     return regime_sctlr(env, mmu_idx) & SCTLR_BR;
2348 }
2349 
get_phys_addr_pmsav7(CPUARMState * env,S1Translate * ptw,uint32_t address,MMUAccessType access_type,GetPhysAddrResult * result,ARMMMUFaultInfo * fi)2350 static bool get_phys_addr_pmsav7(CPUARMState *env,
2351                                  S1Translate *ptw,
2352                                  uint32_t address,
2353                                  MMUAccessType access_type,
2354                                  GetPhysAddrResult *result,
2355                                  ARMMMUFaultInfo *fi)
2356 {
2357     ARMCPU *cpu = env_archcpu(env);
2358     int n;
2359     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
2360     bool is_user = regime_is_user(env, mmu_idx);
2361     bool secure = arm_space_is_secure(ptw->in_space);
2362 
2363     result->f.phys_addr = address;
2364     result->f.lg_page_size = TARGET_PAGE_BITS;
2365     result->f.prot = 0;
2366 
2367     if (regime_translation_disabled(env, mmu_idx, ptw->in_space) ||
2368         m_is_ppb_region(env, address)) {
2369         /*
2370          * MPU disabled or M profile PPB access: use default memory map.
2371          * The other case which uses the default memory map in the
2372          * v7M ARM ARM pseudocode is exception vector reads from the vector
2373          * table. In QEMU those accesses are done in arm_v7m_load_vector(),
2374          * which always does a direct read using address_space_ldl(), rather
2375          * than going via this function, so we don't need to check that here.
2376          */
2377         get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot);
2378     } else { /* MPU enabled */
2379         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
2380             /* region search */
2381             uint32_t base = env->pmsav7.drbar[n];
2382             uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
2383             uint32_t rmask;
2384             bool srdis = false;
2385 
2386             if (!(env->pmsav7.drsr[n] & 0x1)) {
2387                 continue;
2388             }
2389 
2390             if (!rsize) {
2391                 qemu_log_mask(LOG_GUEST_ERROR,
2392                               "DRSR[%d]: Rsize field cannot be 0\n", n);
2393                 continue;
2394             }
2395             rsize++;
2396             rmask = (1ull << rsize) - 1;
2397 
2398             if (base & rmask) {
2399                 qemu_log_mask(LOG_GUEST_ERROR,
2400                               "DRBAR[%d]: 0x%" PRIx32 " misaligned "
2401                               "to DRSR region size, mask = 0x%" PRIx32 "\n",
2402                               n, base, rmask);
2403                 continue;
2404             }
2405 
2406             if (address < base || address > base + rmask) {
2407                 /*
2408                  * Address not in this region. We must check whether the
2409                  * region covers addresses in the same page as our address.
2410                  * In that case we must not report a size that covers the
2411                  * whole page for a subsequent hit against a different MPU
2412                  * region or the background region, because it would result in
2413                  * incorrect TLB hits for subsequent accesses to addresses that
2414                  * are in this MPU region.
2415                  */
2416                 if (ranges_overlap(base, rmask,
2417                                    address & TARGET_PAGE_MASK,
2418                                    TARGET_PAGE_SIZE)) {
2419                     result->f.lg_page_size = 0;
2420                 }
2421                 continue;
2422             }
2423 
2424             /* Region matched */
2425 
2426             if (rsize >= 8) { /* no subregions for regions < 256 bytes */
2427                 int i, snd;
2428                 uint32_t srdis_mask;
2429 
2430                 rsize -= 3; /* sub region size (power of 2) */
2431                 snd = ((address - base) >> rsize) & 0x7;
2432                 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
2433 
2434                 srdis_mask = srdis ? 0x3 : 0x0;
2435                 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
2436                     /*
2437                      * This will check in groups of 2, 4 and then 8, whether
2438                      * the subregion bits are consistent. rsize is incremented
2439                      * back up to give the region size, considering consistent
2440                      * adjacent subregions as one region. Stop testing if rsize
2441                      * is already big enough for an entire QEMU page.
2442                      */
2443                     int snd_rounded = snd & ~(i - 1);
2444                     uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
2445                                                      snd_rounded + 8, i);
2446                     if (srdis_mask ^ srdis_multi) {
2447                         break;
2448                     }
2449                     srdis_mask = (srdis_mask << i) | srdis_mask;
2450                     rsize++;
2451                 }
2452             }
2453             if (srdis) {
2454                 continue;
2455             }
2456             if (rsize < TARGET_PAGE_BITS) {
2457                 result->f.lg_page_size = rsize;
2458             }
2459             break;
2460         }
2461 
2462         if (n == -1) { /* no hits */
2463             if (!pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) {
2464                 /* background fault */
2465                 fi->type = ARMFault_Background;
2466                 return true;
2467             }
2468             get_phys_addr_pmsav7_default(env, mmu_idx, address,
2469                                          &result->f.prot);
2470         } else { /* a MPU hit! */
2471             uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
2472             uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
2473 
2474             if (m_is_system_region(env, address)) {
2475                 /* System space is always execute never */
2476                 xn = 1;
2477             }
2478 
2479             if (is_user) { /* User mode AP bit decoding */
2480                 switch (ap) {
2481                 case 0:
2482                 case 1:
2483                 case 5:
2484                     break; /* no access */
2485                 case 3:
2486                     result->f.prot |= PAGE_WRITE;
2487                     /* fall through */
2488                 case 2:
2489                 case 6:
2490                     result->f.prot |= PAGE_READ | PAGE_EXEC;
2491                     break;
2492                 case 7:
2493                     /* for v7M, same as 6; for R profile a reserved value */
2494                     if (arm_feature(env, ARM_FEATURE_M)) {
2495                         result->f.prot |= PAGE_READ | PAGE_EXEC;
2496                         break;
2497                     }
2498                     /* fall through */
2499                 default:
2500                     qemu_log_mask(LOG_GUEST_ERROR,
2501                                   "DRACR[%d]: Bad value for AP bits: 0x%"
2502                                   PRIx32 "\n", n, ap);
2503                 }
2504             } else { /* Priv. mode AP bits decoding */
2505                 switch (ap) {
2506                 case 0:
2507                     break; /* no access */
2508                 case 1:
2509                 case 2:
2510                 case 3:
2511                     result->f.prot |= PAGE_WRITE;
2512                     /* fall through */
2513                 case 5:
2514                 case 6:
2515                     result->f.prot |= PAGE_READ | PAGE_EXEC;
2516                     break;
2517                 case 7:
2518                     /* for v7M, same as 6; for R profile a reserved value */
2519                     if (arm_feature(env, ARM_FEATURE_M)) {
2520                         result->f.prot |= PAGE_READ | PAGE_EXEC;
2521                         break;
2522                     }
2523                     /* fall through */
2524                 default:
2525                     qemu_log_mask(LOG_GUEST_ERROR,
2526                                   "DRACR[%d]: Bad value for AP bits: 0x%"
2527                                   PRIx32 "\n", n, ap);
2528                 }
2529             }
2530 
2531             /* execute never */
2532             if (xn) {
2533                 result->f.prot &= ~PAGE_EXEC;
2534             }
2535         }
2536     }
2537 
2538     fi->type = ARMFault_Permission;
2539     fi->level = 1;
2540     return !(result->f.prot & (1 << access_type));
2541 }
2542 
regime_rbar(CPUARMState * env,ARMMMUIdx mmu_idx,uint32_t secure)2543 static uint32_t *regime_rbar(CPUARMState *env, ARMMMUIdx mmu_idx,
2544                              uint32_t secure)
2545 {
2546     if (regime_el(env, mmu_idx) == 2) {
2547         return env->pmsav8.hprbar;
2548     } else {
2549         return env->pmsav8.rbar[secure];
2550     }
2551 }
2552 
regime_rlar(CPUARMState * env,ARMMMUIdx mmu_idx,uint32_t secure)2553 static uint32_t *regime_rlar(CPUARMState *env, ARMMMUIdx mmu_idx,
2554                              uint32_t secure)
2555 {
2556     if (regime_el(env, mmu_idx) == 2) {
2557         return env->pmsav8.hprlar;
2558     } else {
2559         return env->pmsav8.rlar[secure];
2560     }
2561 }
2562 
pmsav8_mpu_lookup(CPUARMState * env,uint32_t address,MMUAccessType access_type,ARMMMUIdx mmu_idx,bool secure,GetPhysAddrResult * result,ARMMMUFaultInfo * fi,uint32_t * mregion)2563 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
2564                        MMUAccessType access_type, ARMMMUIdx mmu_idx,
2565                        bool secure, GetPhysAddrResult *result,
2566                        ARMMMUFaultInfo *fi, uint32_t *mregion)
2567 {
2568     /*
2569      * Perform a PMSAv8 MPU lookup (without also doing the SAU check
2570      * that a full phys-to-virt translation does).
2571      * mregion is (if not NULL) set to the region number which matched,
2572      * or -1 if no region number is returned (MPU off, address did not
2573      * hit a region, address hit in multiple regions).
2574      * If the region hit doesn't cover the entire TARGET_PAGE the address
2575      * is within, then we set the result page_size to 1 to force the
2576      * memory system to use a subpage.
2577      */
2578     ARMCPU *cpu = env_archcpu(env);
2579     bool is_user = regime_is_user(env, mmu_idx);
2580     int n;
2581     int matchregion = -1;
2582     bool hit = false;
2583     uint32_t addr_page_base = address & TARGET_PAGE_MASK;
2584     uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
2585     int region_counter;
2586 
2587     if (regime_el(env, mmu_idx) == 2) {
2588         region_counter = cpu->pmsav8r_hdregion;
2589     } else {
2590         region_counter = cpu->pmsav7_dregion;
2591     }
2592 
2593     result->f.lg_page_size = TARGET_PAGE_BITS;
2594     result->f.phys_addr = address;
2595     result->f.prot = 0;
2596     if (mregion) {
2597         *mregion = -1;
2598     }
2599 
2600     if (mmu_idx == ARMMMUIdx_Stage2) {
2601         fi->stage2 = true;
2602     }
2603 
2604     /*
2605      * Unlike the ARM ARM pseudocode, we don't need to check whether this
2606      * was an exception vector read from the vector table (which is always
2607      * done using the default system address map), because those accesses
2608      * are done in arm_v7m_load_vector(), which always does a direct
2609      * read using address_space_ldl(), rather than going via this function.
2610      */
2611     if (regime_translation_disabled(env, mmu_idx, arm_secure_to_space(secure))) {
2612         /* MPU disabled */
2613         hit = true;
2614     } else if (m_is_ppb_region(env, address)) {
2615         hit = true;
2616     } else {
2617         if (pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) {
2618             hit = true;
2619         }
2620 
2621         uint32_t bitmask;
2622         if (arm_feature(env, ARM_FEATURE_M)) {
2623             bitmask = 0x1f;
2624         } else {
2625             bitmask = 0x3f;
2626             fi->level = 0;
2627         }
2628 
2629         for (n = region_counter - 1; n >= 0; n--) {
2630             /* region search */
2631             /*
2632              * Note that the base address is bits [31:x] from the register
2633              * with bits [x-1:0] all zeroes, but the limit address is bits
2634              * [31:x] from the register with bits [x:0] all ones. Where x is
2635              * 5 for Cortex-M and 6 for Cortex-R
2636              */
2637             uint32_t base = regime_rbar(env, mmu_idx, secure)[n] & ~bitmask;
2638             uint32_t limit = regime_rlar(env, mmu_idx, secure)[n] | bitmask;
2639 
2640             if (!(regime_rlar(env, mmu_idx, secure)[n] & 0x1)) {
2641                 /* Region disabled */
2642                 continue;
2643             }
2644 
2645             if (address < base || address > limit) {
2646                 /*
2647                  * Address not in this region. We must check whether the
2648                  * region covers addresses in the same page as our address.
2649                  * In that case we must not report a size that covers the
2650                  * whole page for a subsequent hit against a different MPU
2651                  * region or the background region, because it would result in
2652                  * incorrect TLB hits for subsequent accesses to addresses that
2653                  * are in this MPU region.
2654                  */
2655                 if (limit >= base &&
2656                     ranges_overlap(base, limit - base + 1,
2657                                    addr_page_base,
2658                                    TARGET_PAGE_SIZE)) {
2659                     result->f.lg_page_size = 0;
2660                 }
2661                 continue;
2662             }
2663 
2664             if (base > addr_page_base || limit < addr_page_limit) {
2665                 result->f.lg_page_size = 0;
2666             }
2667 
2668             if (matchregion != -1) {
2669                 /*
2670                  * Multiple regions match -- always a failure (unlike
2671                  * PMSAv7 where highest-numbered-region wins)
2672                  */
2673                 fi->type = ARMFault_Permission;
2674                 if (arm_feature(env, ARM_FEATURE_M)) {
2675                     fi->level = 1;
2676                 }
2677                 return true;
2678             }
2679 
2680             matchregion = n;
2681             hit = true;
2682         }
2683     }
2684 
2685     if (!hit) {
2686         if (arm_feature(env, ARM_FEATURE_M)) {
2687             fi->type = ARMFault_Background;
2688         } else {
2689             fi->type = ARMFault_Permission;
2690         }
2691         return true;
2692     }
2693 
2694     if (matchregion == -1) {
2695         /* hit using the background region */
2696         get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot);
2697     } else {
2698         uint32_t matched_rbar = regime_rbar(env, mmu_idx, secure)[matchregion];
2699         uint32_t matched_rlar = regime_rlar(env, mmu_idx, secure)[matchregion];
2700         uint32_t ap = extract32(matched_rbar, 1, 2);
2701         uint32_t xn = extract32(matched_rbar, 0, 1);
2702         bool pxn = false;
2703 
2704         if (arm_feature(env, ARM_FEATURE_V8_1M)) {
2705             pxn = extract32(matched_rlar, 4, 1);
2706         }
2707 
2708         if (m_is_system_region(env, address)) {
2709             /* System space is always execute never */
2710             xn = 1;
2711         }
2712 
2713         if (regime_el(env, mmu_idx) == 2) {
2714             result->f.prot = simple_ap_to_rw_prot_is_user(ap,
2715                                             mmu_idx != ARMMMUIdx_E2);
2716         } else {
2717             result->f.prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
2718         }
2719 
2720         if (!arm_feature(env, ARM_FEATURE_M)) {
2721             uint8_t attrindx = extract32(matched_rlar, 1, 3);
2722             uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
2723             uint8_t sh = extract32(matched_rlar, 3, 2);
2724 
2725             if (regime_sctlr(env, mmu_idx) & SCTLR_WXN &&
2726                 result->f.prot & PAGE_WRITE && mmu_idx != ARMMMUIdx_Stage2) {
2727                 xn = 0x1;
2728             }
2729 
2730             if ((regime_el(env, mmu_idx) == 1) &&
2731                 regime_sctlr(env, mmu_idx) & SCTLR_UWXN && ap == 0x1) {
2732                 pxn = 0x1;
2733             }
2734 
2735             result->cacheattrs.is_s2_format = false;
2736             result->cacheattrs.attrs = extract64(mair, attrindx * 8, 8);
2737             result->cacheattrs.shareability = sh;
2738         }
2739 
2740         if (result->f.prot && !xn && !(pxn && !is_user)) {
2741             result->f.prot |= PAGE_EXEC;
2742         }
2743 
2744         if (mregion) {
2745             *mregion = matchregion;
2746         }
2747     }
2748 
2749     fi->type = ARMFault_Permission;
2750     if (arm_feature(env, ARM_FEATURE_M)) {
2751         fi->level = 1;
2752     }
2753     return !(result->f.prot & (1 << access_type));
2754 }
2755 
v8m_is_sau_exempt(CPUARMState * env,uint32_t address,MMUAccessType access_type)2756 static bool v8m_is_sau_exempt(CPUARMState *env,
2757                               uint32_t address, MMUAccessType access_type)
2758 {
2759     /*
2760      * The architecture specifies that certain address ranges are
2761      * exempt from v8M SAU/IDAU checks.
2762      */
2763     return
2764         (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
2765         (address >= 0xe0000000 && address <= 0xe0002fff) ||
2766         (address >= 0xe000e000 && address <= 0xe000efff) ||
2767         (address >= 0xe002e000 && address <= 0xe002efff) ||
2768         (address >= 0xe0040000 && address <= 0xe0041fff) ||
2769         (address >= 0xe00ff000 && address <= 0xe00fffff);
2770 }
2771 
v8m_security_lookup(CPUARMState * env,uint32_t address,MMUAccessType access_type,ARMMMUIdx mmu_idx,bool is_secure,V8M_SAttributes * sattrs)2772 void v8m_security_lookup(CPUARMState *env, uint32_t address,
2773                          MMUAccessType access_type, ARMMMUIdx mmu_idx,
2774                          bool is_secure, V8M_SAttributes *sattrs)
2775 {
2776     /*
2777      * Look up the security attributes for this address. Compare the
2778      * pseudocode SecurityCheck() function.
2779      * We assume the caller has zero-initialized *sattrs.
2780      */
2781     ARMCPU *cpu = env_archcpu(env);
2782     int r;
2783     bool idau_exempt = false, idau_ns = true, idau_nsc = true;
2784     int idau_region = IREGION_NOTVALID;
2785     uint32_t addr_page_base = address & TARGET_PAGE_MASK;
2786     uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
2787 
2788     if (cpu->idau) {
2789         IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
2790         IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
2791 
2792         iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
2793                    &idau_nsc);
2794     }
2795 
2796     if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
2797         /* 0xf0000000..0xffffffff is always S for insn fetches */
2798         return;
2799     }
2800 
2801     if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
2802         sattrs->ns = !is_secure;
2803         return;
2804     }
2805 
2806     if (idau_region != IREGION_NOTVALID) {
2807         sattrs->irvalid = true;
2808         sattrs->iregion = idau_region;
2809     }
2810 
2811     switch (env->sau.ctrl & 3) {
2812     case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
2813         break;
2814     case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
2815         sattrs->ns = true;
2816         break;
2817     default: /* SAU.ENABLE == 1 */
2818         for (r = 0; r < cpu->sau_sregion; r++) {
2819             if (env->sau.rlar[r] & 1) {
2820                 uint32_t base = env->sau.rbar[r] & ~0x1f;
2821                 uint32_t limit = env->sau.rlar[r] | 0x1f;
2822 
2823                 if (base <= address && limit >= address) {
2824                     if (base > addr_page_base || limit < addr_page_limit) {
2825                         sattrs->subpage = true;
2826                     }
2827                     if (sattrs->srvalid) {
2828                         /*
2829                          * If we hit in more than one region then we must report
2830                          * as Secure, not NS-Callable, with no valid region
2831                          * number info.
2832                          */
2833                         sattrs->ns = false;
2834                         sattrs->nsc = false;
2835                         sattrs->sregion = 0;
2836                         sattrs->srvalid = false;
2837                         break;
2838                     } else {
2839                         if (env->sau.rlar[r] & 2) {
2840                             sattrs->nsc = true;
2841                         } else {
2842                             sattrs->ns = true;
2843                         }
2844                         sattrs->srvalid = true;
2845                         sattrs->sregion = r;
2846                     }
2847                 } else {
2848                     /*
2849                      * Address not in this region. We must check whether the
2850                      * region covers addresses in the same page as our address.
2851                      * In that case we must not report a size that covers the
2852                      * whole page for a subsequent hit against a different MPU
2853                      * region or the background region, because it would result
2854                      * in incorrect TLB hits for subsequent accesses to
2855                      * addresses that are in this MPU region.
2856                      */
2857                     if (limit >= base &&
2858                         ranges_overlap(base, limit - base + 1,
2859                                        addr_page_base,
2860                                        TARGET_PAGE_SIZE)) {
2861                         sattrs->subpage = true;
2862                     }
2863                 }
2864             }
2865         }
2866         break;
2867     }
2868 
2869     /*
2870      * The IDAU will override the SAU lookup results if it specifies
2871      * higher security than the SAU does.
2872      */
2873     if (!idau_ns) {
2874         if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
2875             sattrs->ns = false;
2876             sattrs->nsc = idau_nsc;
2877         }
2878     }
2879 }
2880 
get_phys_addr_pmsav8(CPUARMState * env,S1Translate * ptw,uint32_t address,MMUAccessType access_type,GetPhysAddrResult * result,ARMMMUFaultInfo * fi)2881 static bool get_phys_addr_pmsav8(CPUARMState *env,
2882                                  S1Translate *ptw,
2883                                  uint32_t address,
2884                                  MMUAccessType access_type,
2885                                  GetPhysAddrResult *result,
2886                                  ARMMMUFaultInfo *fi)
2887 {
2888     V8M_SAttributes sattrs = {};
2889     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
2890     bool secure = arm_space_is_secure(ptw->in_space);
2891     bool ret;
2892 
2893     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2894         v8m_security_lookup(env, address, access_type, mmu_idx,
2895                             secure, &sattrs);
2896         if (access_type == MMU_INST_FETCH) {
2897             /*
2898              * Instruction fetches always use the MMU bank and the
2899              * transaction attribute determined by the fetch address,
2900              * regardless of CPU state. This is painful for QEMU
2901              * to handle, because it would mean we need to encode
2902              * into the mmu_idx not just the (user, negpri) information
2903              * for the current security state but also that for the
2904              * other security state, which would balloon the number
2905              * of mmu_idx values needed alarmingly.
2906              * Fortunately we can avoid this because it's not actually
2907              * possible to arbitrarily execute code from memory with
2908              * the wrong security attribute: it will always generate
2909              * an exception of some kind or another, apart from the
2910              * special case of an NS CPU executing an SG instruction
2911              * in S&NSC memory. So we always just fail the translation
2912              * here and sort things out in the exception handler
2913              * (including possibly emulating an SG instruction).
2914              */
2915             if (sattrs.ns != !secure) {
2916                 if (sattrs.nsc) {
2917                     fi->type = ARMFault_QEMU_NSCExec;
2918                 } else {
2919                     fi->type = ARMFault_QEMU_SFault;
2920                 }
2921                 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS;
2922                 result->f.phys_addr = address;
2923                 result->f.prot = 0;
2924                 return true;
2925             }
2926         } else {
2927             /*
2928              * For data accesses we always use the MMU bank indicated
2929              * by the current CPU state, but the security attributes
2930              * might downgrade a secure access to nonsecure.
2931              */
2932             if (sattrs.ns) {
2933                 result->f.attrs.secure = false;
2934                 result->f.attrs.space = ARMSS_NonSecure;
2935             } else if (!secure) {
2936                 /*
2937                  * NS access to S memory must fault.
2938                  * Architecturally we should first check whether the
2939                  * MPU information for this address indicates that we
2940                  * are doing an unaligned access to Device memory, which
2941                  * should generate a UsageFault instead. QEMU does not
2942                  * currently check for that kind of unaligned access though.
2943                  * If we added it we would need to do so as a special case
2944                  * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
2945                  */
2946                 fi->type = ARMFault_QEMU_SFault;
2947                 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS;
2948                 result->f.phys_addr = address;
2949                 result->f.prot = 0;
2950                 return true;
2951             }
2952         }
2953     }
2954 
2955     ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, secure,
2956                             result, fi, NULL);
2957     if (sattrs.subpage) {
2958         result->f.lg_page_size = 0;
2959     }
2960     return ret;
2961 }
2962 
2963 /*
2964  * Translate from the 4-bit stage 2 representation of
2965  * memory attributes (without cache-allocation hints) to
2966  * the 8-bit representation of the stage 1 MAIR registers
2967  * (which includes allocation hints).
2968  *
2969  * ref: shared/translation/attrs/S2AttrDecode()
2970  *      .../S2ConvertAttrsHints()
2971  */
convert_stage2_attrs(uint64_t hcr,uint8_t s2attrs)2972 static uint8_t convert_stage2_attrs(uint64_t hcr, uint8_t s2attrs)
2973 {
2974     uint8_t hiattr = extract32(s2attrs, 2, 2);
2975     uint8_t loattr = extract32(s2attrs, 0, 2);
2976     uint8_t hihint = 0, lohint = 0;
2977 
2978     if (hiattr != 0) { /* normal memory */
2979         if (hcr & HCR_CD) { /* cache disabled */
2980             hiattr = loattr = 1; /* non-cacheable */
2981         } else {
2982             if (hiattr != 1) { /* Write-through or write-back */
2983                 hihint = 3; /* RW allocate */
2984             }
2985             if (loattr != 1) { /* Write-through or write-back */
2986                 lohint = 3; /* RW allocate */
2987             }
2988         }
2989     }
2990 
2991     return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
2992 }
2993 
2994 /*
2995  * Combine either inner or outer cacheability attributes for normal
2996  * memory, according to table D4-42 and pseudocode procedure
2997  * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
2998  *
2999  * NB: only stage 1 includes allocation hints (RW bits), leading to
3000  * some asymmetry.
3001  */
combine_cacheattr_nibble(uint8_t s1,uint8_t s2)3002 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
3003 {
3004     if (s1 == 4 || s2 == 4) {
3005         /* non-cacheable has precedence */
3006         return 4;
3007     } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
3008         /* stage 1 write-through takes precedence */
3009         return s1;
3010     } else if (extract32(s2, 2, 2) == 2) {
3011         /* stage 2 write-through takes precedence, but the allocation hint
3012          * is still taken from stage 1
3013          */
3014         return (2 << 2) | extract32(s1, 0, 2);
3015     } else { /* write-back */
3016         return s1;
3017     }
3018 }
3019 
3020 /*
3021  * Combine the memory type and cacheability attributes of
3022  * s1 and s2 for the HCR_EL2.FWB == 0 case, returning the
3023  * combined attributes in MAIR_EL1 format.
3024  */
combined_attrs_nofwb(uint64_t hcr,ARMCacheAttrs s1,ARMCacheAttrs s2)3025 static uint8_t combined_attrs_nofwb(uint64_t hcr,
3026                                     ARMCacheAttrs s1, ARMCacheAttrs s2)
3027 {
3028     uint8_t s1lo, s2lo, s1hi, s2hi, s2_mair_attrs, ret_attrs;
3029 
3030     if (s2.is_s2_format) {
3031         s2_mair_attrs = convert_stage2_attrs(hcr, s2.attrs);
3032     } else {
3033         s2_mair_attrs = s2.attrs;
3034     }
3035 
3036     s1lo = extract32(s1.attrs, 0, 4);
3037     s2lo = extract32(s2_mair_attrs, 0, 4);
3038     s1hi = extract32(s1.attrs, 4, 4);
3039     s2hi = extract32(s2_mair_attrs, 4, 4);
3040 
3041     /* Combine memory type and cacheability attributes */
3042     if (s1hi == 0 || s2hi == 0) {
3043         /* Device has precedence over normal */
3044         if (s1lo == 0 || s2lo == 0) {
3045             /* nGnRnE has precedence over anything */
3046             ret_attrs = 0;
3047         } else if (s1lo == 4 || s2lo == 4) {
3048             /* non-Reordering has precedence over Reordering */
3049             ret_attrs = 4;  /* nGnRE */
3050         } else if (s1lo == 8 || s2lo == 8) {
3051             /* non-Gathering has precedence over Gathering */
3052             ret_attrs = 8;  /* nGRE */
3053         } else {
3054             ret_attrs = 0xc; /* GRE */
3055         }
3056     } else { /* Normal memory */
3057         /* Outer/inner cacheability combine independently */
3058         ret_attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
3059                   | combine_cacheattr_nibble(s1lo, s2lo);
3060     }
3061     return ret_attrs;
3062 }
3063 
force_cacheattr_nibble_wb(uint8_t attr)3064 static uint8_t force_cacheattr_nibble_wb(uint8_t attr)
3065 {
3066     /*
3067      * Given the 4 bits specifying the outer or inner cacheability
3068      * in MAIR format, return a value specifying Normal Write-Back,
3069      * with the allocation and transient hints taken from the input
3070      * if the input specified some kind of cacheable attribute.
3071      */
3072     if (attr == 0 || attr == 4) {
3073         /*
3074          * 0 == an UNPREDICTABLE encoding
3075          * 4 == Non-cacheable
3076          * Either way, force Write-Back RW allocate non-transient
3077          */
3078         return 0xf;
3079     }
3080     /* Change WriteThrough to WriteBack, keep allocation and transient hints */
3081     return attr | 4;
3082 }
3083 
3084 /*
3085  * Combine the memory type and cacheability attributes of
3086  * s1 and s2 for the HCR_EL2.FWB == 1 case, returning the
3087  * combined attributes in MAIR_EL1 format.
3088  */
combined_attrs_fwb(ARMCacheAttrs s1,ARMCacheAttrs s2)3089 static uint8_t combined_attrs_fwb(ARMCacheAttrs s1, ARMCacheAttrs s2)
3090 {
3091     assert(s2.is_s2_format && !s1.is_s2_format);
3092 
3093     switch (s2.attrs) {
3094     case 7:
3095         /* Use stage 1 attributes */
3096         return s1.attrs;
3097     case 6:
3098         /*
3099          * Force Normal Write-Back. Note that if S1 is Normal cacheable
3100          * then we take the allocation hints from it; otherwise it is
3101          * RW allocate, non-transient.
3102          */
3103         if ((s1.attrs & 0xf0) == 0) {
3104             /* S1 is Device */
3105             return 0xff;
3106         }
3107         /* Need to check the Inner and Outer nibbles separately */
3108         return force_cacheattr_nibble_wb(s1.attrs & 0xf) |
3109             force_cacheattr_nibble_wb(s1.attrs >> 4) << 4;
3110     case 5:
3111         /* If S1 attrs are Device, use them; otherwise Normal Non-cacheable */
3112         if ((s1.attrs & 0xf0) == 0) {
3113             return s1.attrs;
3114         }
3115         return 0x44;
3116     case 0 ... 3:
3117         /* Force Device, of subtype specified by S2 */
3118         return s2.attrs << 2;
3119     default:
3120         /*
3121          * RESERVED values (including RES0 descriptor bit [5] being nonzero);
3122          * arbitrarily force Device.
3123          */
3124         return 0;
3125     }
3126 }
3127 
3128 /*
3129  * Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
3130  * and CombineS1S2Desc()
3131  *
3132  * @env:     CPUARMState
3133  * @s1:      Attributes from stage 1 walk
3134  * @s2:      Attributes from stage 2 walk
3135  */
combine_cacheattrs(uint64_t hcr,ARMCacheAttrs s1,ARMCacheAttrs s2)3136 static ARMCacheAttrs combine_cacheattrs(uint64_t hcr,
3137                                         ARMCacheAttrs s1, ARMCacheAttrs s2)
3138 {
3139     ARMCacheAttrs ret;
3140     bool tagged = false;
3141 
3142     assert(!s1.is_s2_format);
3143     ret.is_s2_format = false;
3144 
3145     if (s1.attrs == 0xf0) {
3146         tagged = true;
3147         s1.attrs = 0xff;
3148     }
3149 
3150     /* Combine shareability attributes (table D4-43) */
3151     if (s1.shareability == 2 || s2.shareability == 2) {
3152         /* if either are outer-shareable, the result is outer-shareable */
3153         ret.shareability = 2;
3154     } else if (s1.shareability == 3 || s2.shareability == 3) {
3155         /* if either are inner-shareable, the result is inner-shareable */
3156         ret.shareability = 3;
3157     } else {
3158         /* both non-shareable */
3159         ret.shareability = 0;
3160     }
3161 
3162     /* Combine memory type and cacheability attributes */
3163     if (hcr & HCR_FWB) {
3164         ret.attrs = combined_attrs_fwb(s1, s2);
3165     } else {
3166         ret.attrs = combined_attrs_nofwb(hcr, s1, s2);
3167     }
3168 
3169     /*
3170      * Any location for which the resultant memory type is any
3171      * type of Device memory is always treated as Outer Shareable.
3172      * Any location for which the resultant memory type is Normal
3173      * Inner Non-cacheable, Outer Non-cacheable is always treated
3174      * as Outer Shareable.
3175      * TODO: FEAT_XS adds another value (0x40) also meaning iNCoNC
3176      */
3177     if ((ret.attrs & 0xf0) == 0 || ret.attrs == 0x44) {
3178         ret.shareability = 2;
3179     }
3180 
3181     /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */
3182     if (tagged && ret.attrs == 0xff) {
3183         ret.attrs = 0xf0;
3184     }
3185 
3186     return ret;
3187 }
3188 
3189 /*
3190  * MMU disabled.  S1 addresses within aa64 translation regimes are
3191  * still checked for bounds -- see AArch64.S1DisabledOutput().
3192  */
get_phys_addr_disabled(CPUARMState * env,S1Translate * ptw,vaddr address,MMUAccessType access_type,GetPhysAddrResult * result,ARMMMUFaultInfo * fi)3193 static bool get_phys_addr_disabled(CPUARMState *env,
3194                                    S1Translate *ptw,
3195                                    vaddr address,
3196                                    MMUAccessType access_type,
3197                                    GetPhysAddrResult *result,
3198                                    ARMMMUFaultInfo *fi)
3199 {
3200     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
3201     uint8_t memattr = 0x00;    /* Device nGnRnE */
3202     uint8_t shareability = 0;  /* non-shareable */
3203     int r_el;
3204 
3205     switch (mmu_idx) {
3206     case ARMMMUIdx_Stage2:
3207     case ARMMMUIdx_Stage2_S:
3208     case ARMMMUIdx_Phys_S:
3209     case ARMMMUIdx_Phys_NS:
3210     case ARMMMUIdx_Phys_Root:
3211     case ARMMMUIdx_Phys_Realm:
3212         break;
3213 
3214     default:
3215         r_el = regime_el(env, mmu_idx);
3216         if (arm_el_is_aa64(env, r_el)) {
3217             int pamax = arm_pamax(env_archcpu(env));
3218             uint64_t tcr = env->cp15.tcr_el[r_el];
3219             int addrtop, tbi;
3220 
3221             tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
3222             if (access_type == MMU_INST_FETCH) {
3223                 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
3224             }
3225             tbi = (tbi >> extract64(address, 55, 1)) & 1;
3226             addrtop = (tbi ? 55 : 63);
3227 
3228             if (extract64(address, pamax, addrtop - pamax + 1) != 0) {
3229                 fi->type = ARMFault_AddressSize;
3230                 fi->level = 0;
3231                 fi->stage2 = false;
3232                 return 1;
3233             }
3234 
3235             /*
3236              * When TBI is disabled, we've just validated that all of the
3237              * bits above PAMax are zero, so logically we only need to
3238              * clear the top byte for TBI.  But it's clearer to follow
3239              * the pseudocode set of addrdesc.paddress.
3240              */
3241             address = extract64(address, 0, 52);
3242         }
3243 
3244         /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */
3245         if (r_el == 1) {
3246             uint64_t hcr = arm_hcr_el2_eff_secstate(env, ptw->in_space);
3247             if (hcr & HCR_DC) {
3248                 if (hcr & HCR_DCT) {
3249                     memattr = 0xf0;  /* Tagged, Normal, WB, RWA */
3250                 } else {
3251                     memattr = 0xff;  /* Normal, WB, RWA */
3252                 }
3253             }
3254         }
3255         if (memattr == 0) {
3256             if (access_type == MMU_INST_FETCH) {
3257                 if (regime_sctlr(env, mmu_idx) & SCTLR_I) {
3258                     memattr = 0xee;  /* Normal, WT, RA, NT */
3259                 } else {
3260                     memattr = 0x44;  /* Normal, NC, No */
3261                 }
3262             }
3263             shareability = 2; /* outer shareable */
3264         }
3265         result->cacheattrs.is_s2_format = false;
3266         break;
3267     }
3268 
3269     result->f.phys_addr = address;
3270     result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
3271     result->f.lg_page_size = TARGET_PAGE_BITS;
3272     result->cacheattrs.shareability = shareability;
3273     result->cacheattrs.attrs = memattr;
3274     return false;
3275 }
3276 
get_phys_addr_twostage(CPUARMState * env,S1Translate * ptw,vaddr address,MMUAccessType access_type,MemOp memop,GetPhysAddrResult * result,ARMMMUFaultInfo * fi)3277 static bool get_phys_addr_twostage(CPUARMState *env, S1Translate *ptw,
3278                                    vaddr address,
3279                                    MMUAccessType access_type, MemOp memop,
3280                                    GetPhysAddrResult *result,
3281                                    ARMMMUFaultInfo *fi)
3282 {
3283     hwaddr ipa;
3284     int s1_prot, s1_lgpgsz;
3285     ARMSecuritySpace in_space = ptw->in_space;
3286     bool ret, ipa_secure, s1_guarded;
3287     ARMCacheAttrs cacheattrs1;
3288     ARMSecuritySpace ipa_space;
3289     uint64_t hcr;
3290 
3291     ret = get_phys_addr_nogpc(env, ptw, address, access_type,
3292                               memop, result, fi);
3293 
3294     /* If S1 fails, return early.  */
3295     if (ret) {
3296         return ret;
3297     }
3298 
3299     ipa = result->f.phys_addr;
3300     ipa_secure = result->f.attrs.secure;
3301     ipa_space = result->f.attrs.space;
3302 
3303     ptw->in_s1_is_el0 = ptw->in_mmu_idx == ARMMMUIdx_Stage1_E0;
3304     ptw->in_mmu_idx = ipa_secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2;
3305     ptw->in_space = ipa_space;
3306     ptw->in_ptw_idx = ptw_idx_for_stage_2(env, ptw->in_mmu_idx);
3307 
3308     /*
3309      * S1 is done, now do S2 translation.
3310      * Save the stage1 results so that we may merge prot and cacheattrs later.
3311      */
3312     s1_prot = result->f.prot;
3313     s1_lgpgsz = result->f.lg_page_size;
3314     s1_guarded = result->f.extra.arm.guarded;
3315     cacheattrs1 = result->cacheattrs;
3316     memset(result, 0, sizeof(*result));
3317 
3318     ret = get_phys_addr_nogpc(env, ptw, ipa, access_type,
3319                               memop, result, fi);
3320     fi->s2addr = ipa;
3321 
3322     /* Combine the S1 and S2 perms.  */
3323     result->f.prot &= s1_prot;
3324 
3325     /* If S2 fails, return early.  */
3326     if (ret) {
3327         return ret;
3328     }
3329 
3330     /*
3331      * If either S1 or S2 returned a result smaller than TARGET_PAGE_SIZE,
3332      * this means "don't put this in the TLB"; in this case, return a
3333      * result with lg_page_size == 0 to achieve that. Otherwise,
3334      * use the maximum of the S1 & S2 page size, so that invalidation
3335      * of pages > TARGET_PAGE_SIZE works correctly. (This works even though
3336      * we know the combined result permissions etc only cover the minimum
3337      * of the S1 and S2 page size, because we know that the common TLB code
3338      * never actually creates TLB entries bigger than TARGET_PAGE_SIZE,
3339      * and passing a larger page size value only affects invalidations.)
3340      */
3341     if (result->f.lg_page_size < TARGET_PAGE_BITS ||
3342         s1_lgpgsz < TARGET_PAGE_BITS) {
3343         result->f.lg_page_size = 0;
3344     } else if (result->f.lg_page_size < s1_lgpgsz) {
3345         result->f.lg_page_size = s1_lgpgsz;
3346     }
3347 
3348     /* Combine the S1 and S2 cache attributes. */
3349     hcr = arm_hcr_el2_eff_secstate(env, in_space);
3350     if (hcr & HCR_DC) {
3351         /*
3352          * HCR.DC forces the first stage attributes to
3353          *  Normal Non-Shareable,
3354          *  Inner Write-Back Read-Allocate Write-Allocate,
3355          *  Outer Write-Back Read-Allocate Write-Allocate.
3356          * Do not overwrite Tagged within attrs.
3357          */
3358         if (cacheattrs1.attrs != 0xf0) {
3359             cacheattrs1.attrs = 0xff;
3360         }
3361         cacheattrs1.shareability = 0;
3362     }
3363     result->cacheattrs = combine_cacheattrs(hcr, cacheattrs1,
3364                                             result->cacheattrs);
3365 
3366     /* No BTI GP information in stage 2, we just use the S1 value */
3367     result->f.extra.arm.guarded = s1_guarded;
3368 
3369     /*
3370      * Check if IPA translates to secure or non-secure PA space.
3371      * Note that VSTCR overrides VTCR and {N}SW overrides {N}SA.
3372      */
3373     if (in_space == ARMSS_Secure) {
3374         result->f.attrs.secure =
3375             !(env->cp15.vstcr_el2 & (VSTCR_SA | VSTCR_SW))
3376             && (ipa_secure
3377                 || !(env->cp15.vtcr_el2 & (VTCR_NSA | VTCR_NSW)));
3378         result->f.attrs.space = arm_secure_to_space(result->f.attrs.secure);
3379     }
3380 
3381     return false;
3382 }
3383 
get_phys_addr_nogpc(CPUARMState * env,S1Translate * ptw,vaddr address,MMUAccessType access_type,MemOp memop,GetPhysAddrResult * result,ARMMMUFaultInfo * fi)3384 static bool get_phys_addr_nogpc(CPUARMState *env, S1Translate *ptw,
3385                                       vaddr address,
3386                                       MMUAccessType access_type, MemOp memop,
3387                                       GetPhysAddrResult *result,
3388                                       ARMMMUFaultInfo *fi)
3389 {
3390     ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
3391     ARMMMUIdx s1_mmu_idx;
3392 
3393     /*
3394      * The page table entries may downgrade Secure to NonSecure, but
3395      * cannot upgrade a NonSecure translation regime's attributes
3396      * to Secure or Realm.
3397      */
3398     result->f.attrs.space = ptw->in_space;
3399     result->f.attrs.secure = arm_space_is_secure(ptw->in_space);
3400 
3401     switch (mmu_idx) {
3402     case ARMMMUIdx_Phys_S:
3403     case ARMMMUIdx_Phys_NS:
3404     case ARMMMUIdx_Phys_Root:
3405     case ARMMMUIdx_Phys_Realm:
3406         /* Checking Phys early avoids special casing later vs regime_el. */
3407         return get_phys_addr_disabled(env, ptw, address, access_type,
3408                                       result, fi);
3409 
3410     case ARMMMUIdx_Stage1_E0:
3411     case ARMMMUIdx_Stage1_E1:
3412     case ARMMMUIdx_Stage1_E1_PAN:
3413         /*
3414          * First stage lookup uses second stage for ptw; only
3415          * Secure has both S and NS IPA and starts with Stage2_S.
3416          */
3417         ptw->in_ptw_idx = (ptw->in_space == ARMSS_Secure) ?
3418             ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2;
3419         break;
3420 
3421     case ARMMMUIdx_Stage2:
3422     case ARMMMUIdx_Stage2_S:
3423         /*
3424          * Second stage lookup uses physical for ptw; whether this is S or
3425          * NS may depend on the SW/NSW bits if this is a stage 2 lookup for
3426          * the Secure EL2&0 regime.
3427          */
3428         ptw->in_ptw_idx = ptw_idx_for_stage_2(env, mmu_idx);
3429         break;
3430 
3431     case ARMMMUIdx_E10_0:
3432         s1_mmu_idx = ARMMMUIdx_Stage1_E0;
3433         goto do_twostage;
3434     case ARMMMUIdx_E10_1:
3435         s1_mmu_idx = ARMMMUIdx_Stage1_E1;
3436         goto do_twostage;
3437     case ARMMMUIdx_E10_1_PAN:
3438         s1_mmu_idx = ARMMMUIdx_Stage1_E1_PAN;
3439     do_twostage:
3440         /*
3441          * Call ourselves recursively to do the stage 1 and then stage 2
3442          * translations if mmu_idx is a two-stage regime, and EL2 present.
3443          * Otherwise, a stage1+stage2 translation is just stage 1.
3444          */
3445         ptw->in_mmu_idx = mmu_idx = s1_mmu_idx;
3446         if (arm_feature(env, ARM_FEATURE_EL2) &&
3447             !regime_translation_disabled(env, ARMMMUIdx_Stage2, ptw->in_space)) {
3448             return get_phys_addr_twostage(env, ptw, address, access_type,
3449                                           memop, result, fi);
3450         }
3451         /* fall through */
3452 
3453     default:
3454         /* Single stage uses physical for ptw. */
3455         ptw->in_ptw_idx = arm_space_to_phys(ptw->in_space);
3456         break;
3457     }
3458 
3459     result->f.attrs.user = regime_is_user(env, mmu_idx);
3460 
3461     /*
3462      * Fast Context Switch Extension. This doesn't exist at all in v8.
3463      * In v7 and earlier it affects all stage 1 translations.
3464      */
3465     if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2
3466         && !arm_feature(env, ARM_FEATURE_V8)) {
3467         if (regime_el(env, mmu_idx) == 3) {
3468             address += env->cp15.fcseidr_s;
3469         } else {
3470             address += env->cp15.fcseidr_ns;
3471         }
3472     }
3473 
3474     if (arm_feature(env, ARM_FEATURE_PMSA)) {
3475         bool ret;
3476         result->f.lg_page_size = TARGET_PAGE_BITS;
3477 
3478         if (arm_feature(env, ARM_FEATURE_V8)) {
3479             /* PMSAv8 */
3480             ret = get_phys_addr_pmsav8(env, ptw, address, access_type,
3481                                        result, fi);
3482         } else if (arm_feature(env, ARM_FEATURE_V7)) {
3483             /* PMSAv7 */
3484             ret = get_phys_addr_pmsav7(env, ptw, address, access_type,
3485                                        result, fi);
3486         } else {
3487             /* Pre-v7 MPU */
3488             ret = get_phys_addr_pmsav5(env, ptw, address, access_type,
3489                                        result, fi);
3490         }
3491         qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
3492                       " mmu_idx %u -> %s (prot %c%c%c)\n",
3493                       access_type == MMU_DATA_LOAD ? "reading" :
3494                       (access_type == MMU_DATA_STORE ? "writing" : "execute"),
3495                       (uint32_t)address, mmu_idx,
3496                       ret ? "Miss" : "Hit",
3497                       result->f.prot & PAGE_READ ? 'r' : '-',
3498                       result->f.prot & PAGE_WRITE ? 'w' : '-',
3499                       result->f.prot & PAGE_EXEC ? 'x' : '-');
3500 
3501         return ret;
3502     }
3503 
3504     /* Definitely a real MMU, not an MPU */
3505 
3506     if (regime_translation_disabled(env, mmu_idx, ptw->in_space)) {
3507         return get_phys_addr_disabled(env, ptw, address, access_type,
3508                                       result, fi);
3509     }
3510 
3511     if (regime_using_lpae_format(env, mmu_idx)) {
3512         return get_phys_addr_lpae(env, ptw, address, access_type,
3513                                   memop, result, fi);
3514     } else if (arm_feature(env, ARM_FEATURE_V7) ||
3515                regime_sctlr(env, mmu_idx) & SCTLR_XP) {
3516         return get_phys_addr_v6(env, ptw, address, access_type, result, fi);
3517     } else {
3518         return get_phys_addr_v5(env, ptw, address, access_type, result, fi);
3519     }
3520 }
3521 
get_phys_addr_gpc(CPUARMState * env,S1Translate * ptw,vaddr address,MMUAccessType access_type,MemOp memop,GetPhysAddrResult * result,ARMMMUFaultInfo * fi)3522 static bool get_phys_addr_gpc(CPUARMState *env, S1Translate *ptw,
3523                               vaddr address,
3524                               MMUAccessType access_type, MemOp memop,
3525                               GetPhysAddrResult *result,
3526                               ARMMMUFaultInfo *fi)
3527 {
3528     if (get_phys_addr_nogpc(env, ptw, address, access_type,
3529                             memop, result, fi)) {
3530         return true;
3531     }
3532     if (!granule_protection_check(env, result->f.phys_addr,
3533                                   result->f.attrs.space, fi)) {
3534         fi->type = ARMFault_GPCFOnOutput;
3535         return true;
3536     }
3537     return false;
3538 }
3539 
get_phys_addr_with_space_nogpc(CPUARMState * env,vaddr address,MMUAccessType access_type,MemOp memop,ARMMMUIdx mmu_idx,ARMSecuritySpace space,GetPhysAddrResult * result,ARMMMUFaultInfo * fi)3540 bool get_phys_addr_with_space_nogpc(CPUARMState *env, vaddr address,
3541                                     MMUAccessType access_type, MemOp memop,
3542                                     ARMMMUIdx mmu_idx, ARMSecuritySpace space,
3543                                     GetPhysAddrResult *result,
3544                                     ARMMMUFaultInfo *fi)
3545 {
3546     S1Translate ptw = {
3547         .in_mmu_idx = mmu_idx,
3548         .in_space = space,
3549     };
3550     return get_phys_addr_nogpc(env, &ptw, address, access_type,
3551                                memop, result, fi);
3552 }
3553 
3554 static ARMSecuritySpace
arm_mmu_idx_to_security_space(CPUARMState * env,ARMMMUIdx mmu_idx)3555 arm_mmu_idx_to_security_space(CPUARMState *env, ARMMMUIdx mmu_idx)
3556 {
3557     ARMSecuritySpace ss;
3558 
3559     switch (mmu_idx) {
3560     case ARMMMUIdx_E10_0:
3561     case ARMMMUIdx_E10_1:
3562     case ARMMMUIdx_E10_1_PAN:
3563     case ARMMMUIdx_E20_0:
3564     case ARMMMUIdx_E20_2:
3565     case ARMMMUIdx_E20_2_PAN:
3566     case ARMMMUIdx_Stage1_E0:
3567     case ARMMMUIdx_Stage1_E1:
3568     case ARMMMUIdx_Stage1_E1_PAN:
3569     case ARMMMUIdx_E2:
3570         ss = arm_security_space_below_el3(env);
3571         break;
3572     case ARMMMUIdx_Stage2:
3573         /*
3574          * For Secure EL2, we need this index to be NonSecure;
3575          * otherwise this will already be NonSecure or Realm.
3576          */
3577         ss = arm_security_space_below_el3(env);
3578         if (ss == ARMSS_Secure) {
3579             ss = ARMSS_NonSecure;
3580         }
3581         break;
3582     case ARMMMUIdx_Phys_NS:
3583     case ARMMMUIdx_MPrivNegPri:
3584     case ARMMMUIdx_MUserNegPri:
3585     case ARMMMUIdx_MPriv:
3586     case ARMMMUIdx_MUser:
3587         ss = ARMSS_NonSecure;
3588         break;
3589     case ARMMMUIdx_Stage2_S:
3590     case ARMMMUIdx_Phys_S:
3591     case ARMMMUIdx_MSPrivNegPri:
3592     case ARMMMUIdx_MSUserNegPri:
3593     case ARMMMUIdx_MSPriv:
3594     case ARMMMUIdx_MSUser:
3595         ss = ARMSS_Secure;
3596         break;
3597     case ARMMMUIdx_E3:
3598     case ARMMMUIdx_E30_0:
3599     case ARMMMUIdx_E30_3_PAN:
3600         if (arm_feature(env, ARM_FEATURE_AARCH64) &&
3601             cpu_isar_feature(aa64_rme, env_archcpu(env))) {
3602             ss = ARMSS_Root;
3603         } else {
3604             ss = ARMSS_Secure;
3605         }
3606         break;
3607     case ARMMMUIdx_Phys_Root:
3608         ss = ARMSS_Root;
3609         break;
3610     case ARMMMUIdx_Phys_Realm:
3611         ss = ARMSS_Realm;
3612         break;
3613     default:
3614         g_assert_not_reached();
3615     }
3616 
3617     return ss;
3618 }
3619 
get_phys_addr(CPUARMState * env,vaddr address,MMUAccessType access_type,MemOp memop,ARMMMUIdx mmu_idx,GetPhysAddrResult * result,ARMMMUFaultInfo * fi)3620 bool get_phys_addr(CPUARMState *env, vaddr address,
3621                    MMUAccessType access_type, MemOp memop, ARMMMUIdx mmu_idx,
3622                    GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
3623 {
3624     S1Translate ptw = {
3625         .in_mmu_idx = mmu_idx,
3626         .in_space = arm_mmu_idx_to_security_space(env, mmu_idx),
3627     };
3628 
3629     return get_phys_addr_gpc(env, &ptw, address, access_type,
3630                              memop, result, fi);
3631 }
3632 
arm_cpu_get_phys_page(CPUARMState * env,vaddr addr,MemTxAttrs * attrs,ARMMMUIdx mmu_idx)3633 static hwaddr arm_cpu_get_phys_page(CPUARMState *env, vaddr addr,
3634                                     MemTxAttrs *attrs, ARMMMUIdx mmu_idx)
3635 {
3636     S1Translate ptw = {
3637         .in_mmu_idx = mmu_idx,
3638         .in_space = arm_mmu_idx_to_security_space(env, mmu_idx),
3639         .in_debug = true,
3640     };
3641     GetPhysAddrResult res = {};
3642     ARMMMUFaultInfo fi = {};
3643     bool ret = get_phys_addr_gpc(env, &ptw, addr, MMU_DATA_LOAD, 0, &res, &fi);
3644     *attrs = res.f.attrs;
3645 
3646     if (ret) {
3647         return -1;
3648     }
3649     return res.f.phys_addr;
3650 }
3651 
arm_cpu_get_phys_page_attrs_debug(CPUState * cs,vaddr addr,MemTxAttrs * attrs)3652 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
3653                                          MemTxAttrs *attrs)
3654 {
3655     ARMCPU *cpu = ARM_CPU(cs);
3656     CPUARMState *env = &cpu->env;
3657     ARMMMUIdx mmu_idx = arm_mmu_idx(env);
3658 
3659     hwaddr res = arm_cpu_get_phys_page(env, addr, attrs, mmu_idx);
3660 
3661     if (res != -1) {
3662         return res;
3663     }
3664 
3665     /*
3666      * Memory may be accessible for an "unprivileged load/store" variant.
3667      * In this case, get_a64_user_mem_index function generates an op using an
3668      * unprivileged mmu idx, so we need to try with it.
3669      */
3670     switch (mmu_idx) {
3671     case ARMMMUIdx_E10_1:
3672     case ARMMMUIdx_E10_1_PAN:
3673         return arm_cpu_get_phys_page(env, addr, attrs, ARMMMUIdx_E10_0);
3674     case ARMMMUIdx_E20_2:
3675     case ARMMMUIdx_E20_2_PAN:
3676         return arm_cpu_get_phys_page(env, addr, attrs, ARMMMUIdx_E20_0);
3677     default:
3678         return -1;
3679     }
3680 }
3681