1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3 * Copyright(c) 2016 Intel Corporation.
4 */
5
6 #include <linux/slab.h>
7 #include <linux/vmalloc.h>
8 #include <rdma/ib_umem.h>
9 #include <rdma/rdma_vt.h>
10 #include "vt.h"
11 #include "mr.h"
12 #include "trace.h"
13
14 /**
15 * rvt_driver_mr_init - Init MR resources per driver
16 * @rdi: rvt dev struct
17 *
18 * Do any intilization needed when a driver registers with rdmavt.
19 *
20 * Return: 0 on success or errno on failure
21 */
rvt_driver_mr_init(struct rvt_dev_info * rdi)22 int rvt_driver_mr_init(struct rvt_dev_info *rdi)
23 {
24 unsigned int lkey_table_size = rdi->dparms.lkey_table_size;
25 unsigned lk_tab_size;
26 int i;
27
28 /*
29 * The top hfi1_lkey_table_size bits are used to index the
30 * table. The lower 8 bits can be owned by the user (copied from
31 * the LKEY). The remaining bits act as a generation number or tag.
32 */
33 if (!lkey_table_size)
34 return -EINVAL;
35
36 spin_lock_init(&rdi->lkey_table.lock);
37
38 /* ensure generation is at least 4 bits */
39 if (lkey_table_size > RVT_MAX_LKEY_TABLE_BITS) {
40 rvt_pr_warn(rdi, "lkey bits %u too large, reduced to %u\n",
41 lkey_table_size, RVT_MAX_LKEY_TABLE_BITS);
42 rdi->dparms.lkey_table_size = RVT_MAX_LKEY_TABLE_BITS;
43 lkey_table_size = rdi->dparms.lkey_table_size;
44 }
45 rdi->lkey_table.max = 1 << lkey_table_size;
46 rdi->lkey_table.shift = 32 - lkey_table_size;
47 lk_tab_size = rdi->lkey_table.max * sizeof(*rdi->lkey_table.table);
48 rdi->lkey_table.table = (struct rvt_mregion __rcu **)
49 vmalloc_node(lk_tab_size, rdi->dparms.node);
50 if (!rdi->lkey_table.table)
51 return -ENOMEM;
52
53 RCU_INIT_POINTER(rdi->dma_mr, NULL);
54 for (i = 0; i < rdi->lkey_table.max; i++)
55 RCU_INIT_POINTER(rdi->lkey_table.table[i], NULL);
56
57 rdi->dparms.props.max_mr = rdi->lkey_table.max;
58 return 0;
59 }
60
61 /**
62 * rvt_mr_exit - clean up MR
63 * @rdi: rvt dev structure
64 *
65 * called when drivers have unregistered or perhaps failed to register with us
66 */
rvt_mr_exit(struct rvt_dev_info * rdi)67 void rvt_mr_exit(struct rvt_dev_info *rdi)
68 {
69 if (rdi->dma_mr)
70 rvt_pr_err(rdi, "DMA MR not null!\n");
71
72 vfree(rdi->lkey_table.table);
73 }
74
rvt_deinit_mregion(struct rvt_mregion * mr)75 static void rvt_deinit_mregion(struct rvt_mregion *mr)
76 {
77 int i = mr->mapsz;
78
79 mr->mapsz = 0;
80 while (i)
81 kfree(mr->map[--i]);
82 percpu_ref_exit(&mr->refcount);
83 }
84
__rvt_mregion_complete(struct percpu_ref * ref)85 static void __rvt_mregion_complete(struct percpu_ref *ref)
86 {
87 struct rvt_mregion *mr = container_of(ref, struct rvt_mregion,
88 refcount);
89
90 complete(&mr->comp);
91 }
92
rvt_init_mregion(struct rvt_mregion * mr,struct ib_pd * pd,int count,unsigned int percpu_flags)93 static int rvt_init_mregion(struct rvt_mregion *mr, struct ib_pd *pd,
94 int count, unsigned int percpu_flags)
95 {
96 int m, i = 0;
97 struct rvt_dev_info *dev = ib_to_rvt(pd->device);
98
99 mr->mapsz = 0;
100 m = (count + RVT_SEGSZ - 1) / RVT_SEGSZ;
101 for (; i < m; i++) {
102 mr->map[i] = kzalloc_node(sizeof(*mr->map[0]), GFP_KERNEL,
103 dev->dparms.node);
104 if (!mr->map[i])
105 goto bail;
106 mr->mapsz++;
107 }
108 init_completion(&mr->comp);
109 /* count returning the ptr to user */
110 if (percpu_ref_init(&mr->refcount, &__rvt_mregion_complete,
111 percpu_flags, GFP_KERNEL))
112 goto bail;
113
114 atomic_set(&mr->lkey_invalid, 0);
115 mr->pd = pd;
116 mr->max_segs = count;
117 return 0;
118 bail:
119 rvt_deinit_mregion(mr);
120 return -ENOMEM;
121 }
122
123 /**
124 * rvt_alloc_lkey - allocate an lkey
125 * @mr: memory region that this lkey protects
126 * @dma_region: 0->normal key, 1->restricted DMA key
127 *
128 * Returns 0 if successful, otherwise returns -errno.
129 *
130 * Increments mr reference count as required.
131 *
132 * Sets the lkey field mr for non-dma regions.
133 *
134 */
rvt_alloc_lkey(struct rvt_mregion * mr,int dma_region)135 static int rvt_alloc_lkey(struct rvt_mregion *mr, int dma_region)
136 {
137 unsigned long flags;
138 u32 r;
139 u32 n;
140 int ret = 0;
141 struct rvt_dev_info *dev = ib_to_rvt(mr->pd->device);
142 struct rvt_lkey_table *rkt = &dev->lkey_table;
143
144 rvt_get_mr(mr);
145 spin_lock_irqsave(&rkt->lock, flags);
146
147 /* special case for dma_mr lkey == 0 */
148 if (dma_region) {
149 struct rvt_mregion *tmr;
150
151 tmr = rcu_access_pointer(dev->dma_mr);
152 if (!tmr) {
153 mr->lkey_published = 1;
154 /* Insure published written first */
155 rcu_assign_pointer(dev->dma_mr, mr);
156 rvt_get_mr(mr);
157 }
158 goto success;
159 }
160
161 /* Find the next available LKEY */
162 r = rkt->next;
163 n = r;
164 for (;;) {
165 if (!rcu_access_pointer(rkt->table[r]))
166 break;
167 r = (r + 1) & (rkt->max - 1);
168 if (r == n)
169 goto bail;
170 }
171 rkt->next = (r + 1) & (rkt->max - 1);
172 /*
173 * Make sure lkey is never zero which is reserved to indicate an
174 * unrestricted LKEY.
175 */
176 rkt->gen++;
177 /*
178 * bits are capped to ensure enough bits for generation number
179 */
180 mr->lkey = (r << (32 - dev->dparms.lkey_table_size)) |
181 ((((1 << (24 - dev->dparms.lkey_table_size)) - 1) & rkt->gen)
182 << 8);
183 if (mr->lkey == 0) {
184 mr->lkey |= 1 << 8;
185 rkt->gen++;
186 }
187 mr->lkey_published = 1;
188 /* Insure published written first */
189 rcu_assign_pointer(rkt->table[r], mr);
190 success:
191 spin_unlock_irqrestore(&rkt->lock, flags);
192 out:
193 return ret;
194 bail:
195 rvt_put_mr(mr);
196 spin_unlock_irqrestore(&rkt->lock, flags);
197 ret = -ENOMEM;
198 goto out;
199 }
200
201 /**
202 * rvt_free_lkey - free an lkey
203 * @mr: mr to free from tables
204 */
rvt_free_lkey(struct rvt_mregion * mr)205 static void rvt_free_lkey(struct rvt_mregion *mr)
206 {
207 unsigned long flags;
208 u32 lkey = mr->lkey;
209 u32 r;
210 struct rvt_dev_info *dev = ib_to_rvt(mr->pd->device);
211 struct rvt_lkey_table *rkt = &dev->lkey_table;
212 int freed = 0;
213
214 spin_lock_irqsave(&rkt->lock, flags);
215 if (!lkey) {
216 if (mr->lkey_published) {
217 mr->lkey_published = 0;
218 /* insure published is written before pointer */
219 rcu_assign_pointer(dev->dma_mr, NULL);
220 rvt_put_mr(mr);
221 }
222 } else {
223 if (!mr->lkey_published)
224 goto out;
225 r = lkey >> (32 - dev->dparms.lkey_table_size);
226 mr->lkey_published = 0;
227 /* insure published is written before pointer */
228 rcu_assign_pointer(rkt->table[r], NULL);
229 }
230 freed++;
231 out:
232 spin_unlock_irqrestore(&rkt->lock, flags);
233 if (freed)
234 percpu_ref_kill(&mr->refcount);
235 }
236
__rvt_alloc_mr(int count,struct ib_pd * pd)237 static struct rvt_mr *__rvt_alloc_mr(int count, struct ib_pd *pd)
238 {
239 struct rvt_mr *mr;
240 int rval = -ENOMEM;
241 int m;
242
243 /* Allocate struct plus pointers to first level page tables. */
244 m = (count + RVT_SEGSZ - 1) / RVT_SEGSZ;
245 mr = kzalloc(struct_size(mr, mr.map, m), GFP_KERNEL);
246 if (!mr)
247 goto bail;
248
249 rval = rvt_init_mregion(&mr->mr, pd, count, 0);
250 if (rval)
251 goto bail;
252 /*
253 * ib_reg_phys_mr() will initialize mr->ibmr except for
254 * lkey and rkey.
255 */
256 rval = rvt_alloc_lkey(&mr->mr, 0);
257 if (rval)
258 goto bail_mregion;
259 mr->ibmr.lkey = mr->mr.lkey;
260 mr->ibmr.rkey = mr->mr.lkey;
261 done:
262 return mr;
263
264 bail_mregion:
265 rvt_deinit_mregion(&mr->mr);
266 bail:
267 kfree(mr);
268 mr = ERR_PTR(rval);
269 goto done;
270 }
271
__rvt_free_mr(struct rvt_mr * mr)272 static void __rvt_free_mr(struct rvt_mr *mr)
273 {
274 rvt_free_lkey(&mr->mr);
275 rvt_deinit_mregion(&mr->mr);
276 kfree(mr);
277 }
278
279 /**
280 * rvt_get_dma_mr - get a DMA memory region
281 * @pd: protection domain for this memory region
282 * @acc: access flags
283 *
284 * Return: the memory region on success, otherwise returns an errno.
285 */
rvt_get_dma_mr(struct ib_pd * pd,int acc)286 struct ib_mr *rvt_get_dma_mr(struct ib_pd *pd, int acc)
287 {
288 struct rvt_mr *mr;
289 struct ib_mr *ret;
290 int rval;
291
292 if (ibpd_to_rvtpd(pd)->user)
293 return ERR_PTR(-EPERM);
294
295 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
296 if (!mr) {
297 ret = ERR_PTR(-ENOMEM);
298 goto bail;
299 }
300
301 rval = rvt_init_mregion(&mr->mr, pd, 0, 0);
302 if (rval) {
303 ret = ERR_PTR(rval);
304 goto bail;
305 }
306
307 rval = rvt_alloc_lkey(&mr->mr, 1);
308 if (rval) {
309 ret = ERR_PTR(rval);
310 goto bail_mregion;
311 }
312
313 mr->mr.access_flags = acc;
314 ret = &mr->ibmr;
315 done:
316 return ret;
317
318 bail_mregion:
319 rvt_deinit_mregion(&mr->mr);
320 bail:
321 kfree(mr);
322 goto done;
323 }
324
325 /**
326 * rvt_reg_user_mr - register a userspace memory region
327 * @pd: protection domain for this memory region
328 * @start: starting userspace address
329 * @length: length of region to register
330 * @virt_addr: associated virtual address
331 * @mr_access_flags: access flags for this memory region
332 * @dmah: dma handle
333 * @udata: unused by the driver
334 *
335 * Return: the memory region on success, otherwise returns an errno.
336 */
rvt_reg_user_mr(struct ib_pd * pd,u64 start,u64 length,u64 virt_addr,int mr_access_flags,struct ib_dmah * dmah,struct ib_udata * udata)337 struct ib_mr *rvt_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
338 u64 virt_addr, int mr_access_flags,
339 struct ib_dmah *dmah,
340 struct ib_udata *udata)
341 {
342 struct rvt_mr *mr;
343 struct ib_umem *umem;
344 struct sg_page_iter sg_iter;
345 int n, m;
346 struct ib_mr *ret;
347
348 if (dmah)
349 return ERR_PTR(-EOPNOTSUPP);
350
351 if (length == 0)
352 return ERR_PTR(-EINVAL);
353
354 umem = ib_umem_get(pd->device, start, length, mr_access_flags);
355 if (IS_ERR(umem))
356 return ERR_CAST(umem);
357
358 n = ib_umem_num_pages(umem);
359
360 mr = __rvt_alloc_mr(n, pd);
361 if (IS_ERR(mr)) {
362 ret = ERR_CAST(mr);
363 goto bail_umem;
364 }
365
366 mr->mr.user_base = start;
367 mr->mr.iova = virt_addr;
368 mr->mr.length = length;
369 mr->mr.offset = ib_umem_offset(umem);
370 mr->mr.access_flags = mr_access_flags;
371 mr->umem = umem;
372
373 mr->mr.page_shift = PAGE_SHIFT;
374 m = 0;
375 n = 0;
376 for_each_sgtable_page (&umem->sgt_append.sgt, &sg_iter, 0) {
377 void *vaddr;
378
379 vaddr = page_address(sg_page_iter_page(&sg_iter));
380 if (!vaddr) {
381 ret = ERR_PTR(-EINVAL);
382 goto bail_inval;
383 }
384 mr->mr.map[m]->segs[n].vaddr = vaddr;
385 mr->mr.map[m]->segs[n].length = PAGE_SIZE;
386 trace_rvt_mr_user_seg(&mr->mr, m, n, vaddr, PAGE_SIZE);
387 if (++n == RVT_SEGSZ) {
388 m++;
389 n = 0;
390 }
391 }
392 return &mr->ibmr;
393
394 bail_inval:
395 __rvt_free_mr(mr);
396
397 bail_umem:
398 ib_umem_release(umem);
399
400 return ret;
401 }
402
403 /**
404 * rvt_dereg_clean_qp_cb - callback from iterator
405 * @qp: the qp
406 * @v: the mregion (as u64)
407 *
408 * This routine fields the callback for all QPs and
409 * for QPs in the same PD as the MR will call the
410 * rvt_qp_mr_clean() to potentially cleanup references.
411 */
rvt_dereg_clean_qp_cb(struct rvt_qp * qp,u64 v)412 static void rvt_dereg_clean_qp_cb(struct rvt_qp *qp, u64 v)
413 {
414 struct rvt_mregion *mr = (struct rvt_mregion *)v;
415
416 /* skip PDs that are not ours */
417 if (mr->pd != qp->ibqp.pd)
418 return;
419 rvt_qp_mr_clean(qp, mr->lkey);
420 }
421
422 /**
423 * rvt_dereg_clean_qps - find QPs for reference cleanup
424 * @mr: the MR that is being deregistered
425 *
426 * This routine iterates RC QPs looking for references
427 * to the lkey noted in mr.
428 */
rvt_dereg_clean_qps(struct rvt_mregion * mr)429 static void rvt_dereg_clean_qps(struct rvt_mregion *mr)
430 {
431 struct rvt_dev_info *rdi = ib_to_rvt(mr->pd->device);
432
433 rvt_qp_iter(rdi, (u64)mr, rvt_dereg_clean_qp_cb);
434 }
435
436 /**
437 * rvt_check_refs - check references
438 * @mr: the megion
439 * @t: the caller identification
440 *
441 * This routine checks MRs holding a reference during
442 * when being de-registered.
443 *
444 * If the count is non-zero, the code calls a clean routine then
445 * waits for the timeout for the count to zero.
446 */
rvt_check_refs(struct rvt_mregion * mr,const char * t)447 static int rvt_check_refs(struct rvt_mregion *mr, const char *t)
448 {
449 unsigned long timeout;
450 struct rvt_dev_info *rdi = ib_to_rvt(mr->pd->device);
451
452 if (mr->lkey) {
453 /* avoid dma mr */
454 rvt_dereg_clean_qps(mr);
455 /* @mr was indexed on rcu protected @lkey_table */
456 synchronize_rcu();
457 }
458
459 timeout = wait_for_completion_timeout(&mr->comp, 5 * HZ);
460 if (!timeout) {
461 rvt_pr_err(rdi,
462 "%s timeout mr %p pd %p lkey %x refcount %ld\n",
463 t, mr, mr->pd, mr->lkey,
464 atomic_long_read(&mr->refcount.data->count));
465 rvt_get_mr(mr);
466 return -EBUSY;
467 }
468 return 0;
469 }
470
471 /**
472 * rvt_mr_has_lkey - is MR
473 * @mr: the mregion
474 * @lkey: the lkey
475 */
rvt_mr_has_lkey(struct rvt_mregion * mr,u32 lkey)476 bool rvt_mr_has_lkey(struct rvt_mregion *mr, u32 lkey)
477 {
478 return mr && lkey == mr->lkey;
479 }
480
481 /**
482 * rvt_ss_has_lkey - is mr in sge tests
483 * @ss: the sge state
484 * @lkey: the lkey
485 *
486 * This code tests for an MR in the indicated
487 * sge state.
488 */
rvt_ss_has_lkey(struct rvt_sge_state * ss,u32 lkey)489 bool rvt_ss_has_lkey(struct rvt_sge_state *ss, u32 lkey)
490 {
491 int i;
492 bool rval = false;
493
494 if (!ss->num_sge)
495 return rval;
496 /* first one */
497 rval = rvt_mr_has_lkey(ss->sge.mr, lkey);
498 /* any others */
499 for (i = 0; !rval && i < ss->num_sge - 1; i++)
500 rval = rvt_mr_has_lkey(ss->sg_list[i].mr, lkey);
501 return rval;
502 }
503
504 /**
505 * rvt_dereg_mr - unregister and free a memory region
506 * @ibmr: the memory region to free
507 * @udata: unused by the driver
508 *
509 * Note that this is called to free MRs created by rvt_get_dma_mr()
510 * or rvt_reg_user_mr().
511 *
512 * Returns 0 on success.
513 */
rvt_dereg_mr(struct ib_mr * ibmr,struct ib_udata * udata)514 int rvt_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata)
515 {
516 struct rvt_mr *mr = to_imr(ibmr);
517 int ret;
518
519 rvt_free_lkey(&mr->mr);
520
521 rvt_put_mr(&mr->mr); /* will set completion if last */
522 ret = rvt_check_refs(&mr->mr, __func__);
523 if (ret)
524 goto out;
525 rvt_deinit_mregion(&mr->mr);
526 ib_umem_release(mr->umem);
527 kfree(mr);
528 out:
529 return ret;
530 }
531
532 /**
533 * rvt_alloc_mr - Allocate a memory region usable with the
534 * @pd: protection domain for this memory region
535 * @mr_type: mem region type
536 * @max_num_sg: Max number of segments allowed
537 *
538 * Return: the memory region on success, otherwise return an errno.
539 */
rvt_alloc_mr(struct ib_pd * pd,enum ib_mr_type mr_type,u32 max_num_sg)540 struct ib_mr *rvt_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
541 u32 max_num_sg)
542 {
543 struct rvt_mr *mr;
544
545 if (mr_type != IB_MR_TYPE_MEM_REG)
546 return ERR_PTR(-EINVAL);
547
548 mr = __rvt_alloc_mr(max_num_sg, pd);
549 if (IS_ERR(mr))
550 return ERR_CAST(mr);
551
552 return &mr->ibmr;
553 }
554
555 /**
556 * rvt_set_page - page assignment function called by ib_sg_to_pages
557 * @ibmr: memory region
558 * @addr: dma address of mapped page
559 *
560 * Return: 0 on success
561 */
rvt_set_page(struct ib_mr * ibmr,u64 addr)562 static int rvt_set_page(struct ib_mr *ibmr, u64 addr)
563 {
564 struct rvt_mr *mr = to_imr(ibmr);
565 u32 ps = 1 << mr->mr.page_shift;
566 u32 mapped_segs = mr->mr.length >> mr->mr.page_shift;
567 int m, n;
568
569 if (unlikely(mapped_segs == mr->mr.max_segs))
570 return -ENOMEM;
571
572 m = mapped_segs / RVT_SEGSZ;
573 n = mapped_segs % RVT_SEGSZ;
574 mr->mr.map[m]->segs[n].vaddr = (void *)addr;
575 mr->mr.map[m]->segs[n].length = ps;
576 mr->mr.length += ps;
577 trace_rvt_mr_page_seg(&mr->mr, m, n, (void *)addr, ps);
578
579 return 0;
580 }
581
582 /**
583 * rvt_map_mr_sg - map sg list and set it the memory region
584 * @ibmr: memory region
585 * @sg: dma mapped scatterlist
586 * @sg_nents: number of entries in sg
587 * @sg_offset: offset in bytes into sg
588 *
589 * Overwrite rvt_mr length with mr length calculated by ib_sg_to_pages.
590 *
591 * Return: number of sg elements mapped to the memory region
592 */
rvt_map_mr_sg(struct ib_mr * ibmr,struct scatterlist * sg,int sg_nents,unsigned int * sg_offset)593 int rvt_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg,
594 int sg_nents, unsigned int *sg_offset)
595 {
596 struct rvt_mr *mr = to_imr(ibmr);
597 int ret;
598
599 mr->mr.length = 0;
600 mr->mr.page_shift = PAGE_SHIFT;
601 ret = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset, rvt_set_page);
602 mr->mr.user_base = ibmr->iova;
603 mr->mr.iova = ibmr->iova;
604 mr->mr.offset = ibmr->iova - (u64)mr->mr.map[0]->segs[0].vaddr;
605 mr->mr.length = (size_t)ibmr->length;
606 trace_rvt_map_mr_sg(ibmr, sg_nents, sg_offset);
607 return ret;
608 }
609
610 /**
611 * rvt_fast_reg_mr - fast register physical MR
612 * @qp: the queue pair where the work request comes from
613 * @ibmr: the memory region to be registered
614 * @key: updated key for this memory region
615 * @access: access flags for this memory region
616 *
617 * Returns 0 on success.
618 */
rvt_fast_reg_mr(struct rvt_qp * qp,struct ib_mr * ibmr,u32 key,int access)619 int rvt_fast_reg_mr(struct rvt_qp *qp, struct ib_mr *ibmr, u32 key,
620 int access)
621 {
622 struct rvt_mr *mr = to_imr(ibmr);
623
624 if (qp->ibqp.pd != mr->mr.pd)
625 return -EACCES;
626
627 /* not applicable to dma MR or user MR */
628 if (!mr->mr.lkey || mr->umem)
629 return -EINVAL;
630
631 if ((key & 0xFFFFFF00) != (mr->mr.lkey & 0xFFFFFF00))
632 return -EINVAL;
633
634 ibmr->lkey = key;
635 ibmr->rkey = key;
636 mr->mr.lkey = key;
637 mr->mr.access_flags = access;
638 mr->mr.iova = ibmr->iova;
639 atomic_set(&mr->mr.lkey_invalid, 0);
640
641 return 0;
642 }
643 EXPORT_SYMBOL(rvt_fast_reg_mr);
644
645 /**
646 * rvt_invalidate_rkey - invalidate an MR rkey
647 * @qp: queue pair associated with the invalidate op
648 * @rkey: rkey to invalidate
649 *
650 * Returns 0 on success.
651 */
rvt_invalidate_rkey(struct rvt_qp * qp,u32 rkey)652 int rvt_invalidate_rkey(struct rvt_qp *qp, u32 rkey)
653 {
654 struct rvt_dev_info *dev = ib_to_rvt(qp->ibqp.device);
655 struct rvt_lkey_table *rkt = &dev->lkey_table;
656 struct rvt_mregion *mr;
657
658 if (rkey == 0)
659 return -EINVAL;
660
661 rcu_read_lock();
662 mr = rcu_dereference(
663 rkt->table[(rkey >> (32 - dev->dparms.lkey_table_size))]);
664 if (unlikely(!mr || mr->lkey != rkey || qp->ibqp.pd != mr->pd))
665 goto bail;
666
667 atomic_set(&mr->lkey_invalid, 1);
668 rcu_read_unlock();
669 return 0;
670
671 bail:
672 rcu_read_unlock();
673 return -EINVAL;
674 }
675 EXPORT_SYMBOL(rvt_invalidate_rkey);
676
677 /**
678 * rvt_sge_adjacent - is isge compressible
679 * @last_sge: last outgoing SGE written
680 * @sge: SGE to check
681 *
682 * If adjacent will update last_sge to add length.
683 *
684 * Return: true if isge is adjacent to last sge
685 */
rvt_sge_adjacent(struct rvt_sge * last_sge,struct ib_sge * sge)686 static inline bool rvt_sge_adjacent(struct rvt_sge *last_sge,
687 struct ib_sge *sge)
688 {
689 if (last_sge && sge->lkey == last_sge->mr->lkey &&
690 ((uint64_t)(last_sge->vaddr + last_sge->length) == sge->addr)) {
691 if (sge->lkey) {
692 if (unlikely((sge->addr - last_sge->mr->user_base +
693 sge->length > last_sge->mr->length)))
694 return false; /* overrun, caller will catch */
695 } else {
696 last_sge->length += sge->length;
697 }
698 last_sge->sge_length += sge->length;
699 trace_rvt_sge_adjacent(last_sge, sge);
700 return true;
701 }
702 return false;
703 }
704
705 /**
706 * rvt_lkey_ok - check IB SGE for validity and initialize
707 * @rkt: table containing lkey to check SGE against
708 * @pd: protection domain
709 * @isge: outgoing internal SGE
710 * @last_sge: last outgoing SGE written
711 * @sge: SGE to check
712 * @acc: access flags
713 *
714 * Check the IB SGE for validity and initialize our internal version
715 * of it.
716 *
717 * Increments the reference count when a new sge is stored.
718 *
719 * Return: 0 if compressed, 1 if added , otherwise returns -errno.
720 */
rvt_lkey_ok(struct rvt_lkey_table * rkt,struct rvt_pd * pd,struct rvt_sge * isge,struct rvt_sge * last_sge,struct ib_sge * sge,int acc)721 int rvt_lkey_ok(struct rvt_lkey_table *rkt, struct rvt_pd *pd,
722 struct rvt_sge *isge, struct rvt_sge *last_sge,
723 struct ib_sge *sge, int acc)
724 {
725 struct rvt_mregion *mr;
726 unsigned n, m;
727 size_t off;
728
729 /*
730 * We use LKEY == zero for kernel virtual addresses
731 * (see rvt_get_dma_mr()).
732 */
733 if (sge->lkey == 0) {
734 struct rvt_dev_info *dev = ib_to_rvt(pd->ibpd.device);
735
736 if (pd->user)
737 return -EINVAL;
738 if (rvt_sge_adjacent(last_sge, sge))
739 return 0;
740 rcu_read_lock();
741 mr = rcu_dereference(dev->dma_mr);
742 if (!mr)
743 goto bail;
744 rvt_get_mr(mr);
745 rcu_read_unlock();
746
747 isge->mr = mr;
748 isge->vaddr = (void *)sge->addr;
749 isge->length = sge->length;
750 isge->sge_length = sge->length;
751 isge->m = 0;
752 isge->n = 0;
753 goto ok;
754 }
755 if (rvt_sge_adjacent(last_sge, sge))
756 return 0;
757 rcu_read_lock();
758 mr = rcu_dereference(rkt->table[sge->lkey >> rkt->shift]);
759 if (!mr)
760 goto bail;
761 rvt_get_mr(mr);
762 if (!READ_ONCE(mr->lkey_published))
763 goto bail_unref;
764
765 if (unlikely(atomic_read(&mr->lkey_invalid) ||
766 mr->lkey != sge->lkey || mr->pd != &pd->ibpd))
767 goto bail_unref;
768
769 off = sge->addr - mr->user_base;
770 if (unlikely(sge->addr < mr->user_base ||
771 off + sge->length > mr->length ||
772 (mr->access_flags & acc) != acc))
773 goto bail_unref;
774 rcu_read_unlock();
775
776 off += mr->offset;
777 if (mr->page_shift) {
778 /*
779 * page sizes are uniform power of 2 so no loop is necessary
780 * entries_spanned_by_off is the number of times the loop below
781 * would have executed.
782 */
783 size_t entries_spanned_by_off;
784
785 entries_spanned_by_off = off >> mr->page_shift;
786 off -= (entries_spanned_by_off << mr->page_shift);
787 m = entries_spanned_by_off / RVT_SEGSZ;
788 n = entries_spanned_by_off % RVT_SEGSZ;
789 } else {
790 m = 0;
791 n = 0;
792 while (off >= mr->map[m]->segs[n].length) {
793 off -= mr->map[m]->segs[n].length;
794 n++;
795 if (n >= RVT_SEGSZ) {
796 m++;
797 n = 0;
798 }
799 }
800 }
801 isge->mr = mr;
802 isge->vaddr = mr->map[m]->segs[n].vaddr + off;
803 isge->length = mr->map[m]->segs[n].length - off;
804 isge->sge_length = sge->length;
805 isge->m = m;
806 isge->n = n;
807 ok:
808 trace_rvt_sge_new(isge, sge);
809 return 1;
810 bail_unref:
811 rvt_put_mr(mr);
812 bail:
813 rcu_read_unlock();
814 return -EINVAL;
815 }
816 EXPORT_SYMBOL(rvt_lkey_ok);
817
818 /**
819 * rvt_rkey_ok - check the IB virtual address, length, and RKEY
820 * @qp: qp for validation
821 * @sge: SGE state
822 * @len: length of data
823 * @vaddr: virtual address to place data
824 * @rkey: rkey to check
825 * @acc: access flags
826 *
827 * Return: 1 if successful, otherwise 0.
828 *
829 * increments the reference count upon success
830 */
rvt_rkey_ok(struct rvt_qp * qp,struct rvt_sge * sge,u32 len,u64 vaddr,u32 rkey,int acc)831 int rvt_rkey_ok(struct rvt_qp *qp, struct rvt_sge *sge,
832 u32 len, u64 vaddr, u32 rkey, int acc)
833 {
834 struct rvt_dev_info *dev = ib_to_rvt(qp->ibqp.device);
835 struct rvt_lkey_table *rkt = &dev->lkey_table;
836 struct rvt_mregion *mr;
837 unsigned n, m;
838 size_t off;
839
840 /*
841 * We use RKEY == zero for kernel virtual addresses
842 * (see rvt_get_dma_mr()).
843 */
844 rcu_read_lock();
845 if (rkey == 0) {
846 struct rvt_pd *pd = ibpd_to_rvtpd(qp->ibqp.pd);
847 struct rvt_dev_info *rdi = ib_to_rvt(pd->ibpd.device);
848
849 if (pd->user)
850 goto bail;
851 mr = rcu_dereference(rdi->dma_mr);
852 if (!mr)
853 goto bail;
854 rvt_get_mr(mr);
855 rcu_read_unlock();
856
857 sge->mr = mr;
858 sge->vaddr = (void *)vaddr;
859 sge->length = len;
860 sge->sge_length = len;
861 sge->m = 0;
862 sge->n = 0;
863 goto ok;
864 }
865
866 mr = rcu_dereference(rkt->table[rkey >> rkt->shift]);
867 if (!mr)
868 goto bail;
869 rvt_get_mr(mr);
870 /* insure mr read is before test */
871 if (!READ_ONCE(mr->lkey_published))
872 goto bail_unref;
873 if (unlikely(atomic_read(&mr->lkey_invalid) ||
874 mr->lkey != rkey || qp->ibqp.pd != mr->pd))
875 goto bail_unref;
876
877 off = vaddr - mr->iova;
878 if (unlikely(vaddr < mr->iova || off + len > mr->length ||
879 (mr->access_flags & acc) == 0))
880 goto bail_unref;
881 rcu_read_unlock();
882
883 off += mr->offset;
884 if (mr->page_shift) {
885 /*
886 * page sizes are uniform power of 2 so no loop is necessary
887 * entries_spanned_by_off is the number of times the loop below
888 * would have executed.
889 */
890 size_t entries_spanned_by_off;
891
892 entries_spanned_by_off = off >> mr->page_shift;
893 off -= (entries_spanned_by_off << mr->page_shift);
894 m = entries_spanned_by_off / RVT_SEGSZ;
895 n = entries_spanned_by_off % RVT_SEGSZ;
896 } else {
897 m = 0;
898 n = 0;
899 while (off >= mr->map[m]->segs[n].length) {
900 off -= mr->map[m]->segs[n].length;
901 n++;
902 if (n >= RVT_SEGSZ) {
903 m++;
904 n = 0;
905 }
906 }
907 }
908 sge->mr = mr;
909 sge->vaddr = mr->map[m]->segs[n].vaddr + off;
910 sge->length = mr->map[m]->segs[n].length - off;
911 sge->sge_length = len;
912 sge->m = m;
913 sge->n = n;
914 ok:
915 return 1;
916 bail_unref:
917 rvt_put_mr(mr);
918 bail:
919 rcu_read_unlock();
920 return 0;
921 }
922 EXPORT_SYMBOL(rvt_rkey_ok);
923