1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef BLK_MQ_H
3 #define BLK_MQ_H
4
5 #include <linux/blkdev.h>
6 #include <linux/sbitmap.h>
7 #include <linux/lockdep.h>
8 #include <linux/scatterlist.h>
9 #include <linux/prefetch.h>
10 #include <linux/srcu.h>
11 #include <linux/rw_hint.h>
12 #include <linux/rwsem.h>
13
14 struct blk_mq_tags;
15 struct blk_flush_queue;
16
17 #define BLKDEV_MIN_RQ 4
18 #define BLKDEV_DEFAULT_RQ 128
19
20 enum rq_end_io_ret {
21 RQ_END_IO_NONE,
22 RQ_END_IO_FREE,
23 };
24
25 typedef enum rq_end_io_ret (rq_end_io_fn)(struct request *, blk_status_t);
26
27 /*
28 * request flags */
29 typedef __u32 __bitwise req_flags_t;
30
31 /* Keep rqf_name[] in sync with the definitions below */
32 enum rqf_flags {
33 /* drive already may have started this one */
34 __RQF_STARTED,
35 /* request for flush sequence */
36 __RQF_FLUSH_SEQ,
37 /* merge of different types, fail separately */
38 __RQF_MIXED_MERGE,
39 /* don't call prep for this one */
40 __RQF_DONTPREP,
41 /* use hctx->sched_tags */
42 __RQF_SCHED_TAGS,
43 /* use an I/O scheduler for this request */
44 __RQF_USE_SCHED,
45 /* vaguely specified driver internal error. Ignored by block layer */
46 __RQF_FAILED,
47 /* don't warn about errors */
48 __RQF_QUIET,
49 /* account into disk and partition IO statistics */
50 __RQF_IO_STAT,
51 /* runtime pm request */
52 __RQF_PM,
53 /* on IO scheduler merge hash */
54 __RQF_HASHED,
55 /* track IO completion time */
56 __RQF_STATS,
57 /* Look at ->special_vec for the actual data payload instead of the
58 bio chain. */
59 __RQF_SPECIAL_PAYLOAD,
60 /* request completion needs to be signaled to zone write plugging. */
61 __RQF_ZONE_WRITE_PLUGGING,
62 /* ->timeout has been called, don't expire again */
63 __RQF_TIMED_OUT,
64 __RQF_RESV,
65 __RQF_BITS
66 };
67
68 #define RQF_STARTED ((__force req_flags_t)(1 << __RQF_STARTED))
69 #define RQF_FLUSH_SEQ ((__force req_flags_t)(1 << __RQF_FLUSH_SEQ))
70 #define RQF_MIXED_MERGE ((__force req_flags_t)(1 << __RQF_MIXED_MERGE))
71 #define RQF_DONTPREP ((__force req_flags_t)(1 << __RQF_DONTPREP))
72 #define RQF_SCHED_TAGS ((__force req_flags_t)(1 << __RQF_SCHED_TAGS))
73 #define RQF_USE_SCHED ((__force req_flags_t)(1 << __RQF_USE_SCHED))
74 #define RQF_FAILED ((__force req_flags_t)(1 << __RQF_FAILED))
75 #define RQF_QUIET ((__force req_flags_t)(1 << __RQF_QUIET))
76 #define RQF_IO_STAT ((__force req_flags_t)(1 << __RQF_IO_STAT))
77 #define RQF_PM ((__force req_flags_t)(1 << __RQF_PM))
78 #define RQF_HASHED ((__force req_flags_t)(1 << __RQF_HASHED))
79 #define RQF_STATS ((__force req_flags_t)(1 << __RQF_STATS))
80 #define RQF_SPECIAL_PAYLOAD \
81 ((__force req_flags_t)(1 << __RQF_SPECIAL_PAYLOAD))
82 #define RQF_ZONE_WRITE_PLUGGING \
83 ((__force req_flags_t)(1 << __RQF_ZONE_WRITE_PLUGGING))
84 #define RQF_TIMED_OUT ((__force req_flags_t)(1 << __RQF_TIMED_OUT))
85 #define RQF_RESV ((__force req_flags_t)(1 << __RQF_RESV))
86
87 /* flags that prevent us from merging requests: */
88 #define RQF_NOMERGE_FLAGS \
89 (RQF_STARTED | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD)
90
91 enum mq_rq_state {
92 MQ_RQ_IDLE = 0,
93 MQ_RQ_IN_FLIGHT = 1,
94 MQ_RQ_COMPLETE = 2,
95 };
96
97 /*
98 * Try to put the fields that are referenced together in the same cacheline.
99 *
100 * If you modify this structure, make sure to update blk_rq_init() and
101 * especially blk_mq_rq_ctx_init() to take care of the added fields.
102 */
103 struct request {
104 struct request_queue *q;
105 struct blk_mq_ctx *mq_ctx;
106 struct blk_mq_hw_ctx *mq_hctx;
107
108 blk_opf_t cmd_flags; /* op and common flags */
109 req_flags_t rq_flags;
110
111 int tag;
112 int internal_tag;
113
114 unsigned int timeout;
115
116 /* the following two fields are internal, NEVER access directly */
117 unsigned int __data_len; /* total data len */
118 sector_t __sector; /* sector cursor */
119
120 struct bio *bio;
121 struct bio *biotail;
122
123 union {
124 struct list_head queuelist;
125 struct request *rq_next;
126 };
127
128 struct block_device *part;
129 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
130 /* Time that the first bio started allocating this request. */
131 u64 alloc_time_ns;
132 #endif
133 /* Time that this request was allocated for this IO. */
134 u64 start_time_ns;
135 /* Time that I/O was submitted to the device. */
136 u64 io_start_time_ns;
137
138 #ifdef CONFIG_BLK_WBT
139 unsigned short wbt_flags;
140 #endif
141 /*
142 * rq sectors used for blk stats. It has the same value
143 * with blk_rq_sectors(rq), except that it never be zeroed
144 * by completion.
145 */
146 unsigned short stats_sectors;
147
148 /*
149 * Number of scatter-gather DMA addr+len pairs after
150 * physical address coalescing is performed.
151 */
152 unsigned short nr_phys_segments;
153 unsigned short nr_integrity_segments;
154
155 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
156 struct bio_crypt_ctx *crypt_ctx;
157 struct blk_crypto_keyslot *crypt_keyslot;
158 #endif
159
160 enum mq_rq_state state;
161 atomic_t ref;
162
163 unsigned long deadline;
164
165 /*
166 * The hash is used inside the scheduler, and killed once the
167 * request reaches the dispatch list. The ipi_list is only used
168 * to queue the request for softirq completion, which is long
169 * after the request has been unhashed (and even removed from
170 * the dispatch list).
171 */
172 union {
173 struct hlist_node hash; /* merge hash */
174 struct llist_node ipi_list;
175 };
176
177 /*
178 * The rb_node is only used inside the io scheduler, requests
179 * are pruned when moved to the dispatch queue. special_vec must
180 * only be used if RQF_SPECIAL_PAYLOAD is set, and those cannot be
181 * insert into an IO scheduler.
182 */
183 union {
184 struct rb_node rb_node; /* sort/lookup */
185 struct bio_vec special_vec;
186 };
187
188 /*
189 * Three pointers are available for the IO schedulers, if they need
190 * more they have to dynamically allocate it.
191 */
192 struct {
193 struct io_cq *icq;
194 void *priv[2];
195 } elv;
196
197 struct {
198 unsigned int seq;
199 rq_end_io_fn *saved_end_io;
200 } flush;
201
202 u64 fifo_time;
203
204 /*
205 * completion callback.
206 */
207 rq_end_io_fn *end_io;
208 void *end_io_data;
209 };
210
req_op(const struct request * req)211 static inline enum req_op req_op(const struct request *req)
212 {
213 return req->cmd_flags & REQ_OP_MASK;
214 }
215
blk_rq_is_passthrough(struct request * rq)216 static inline bool blk_rq_is_passthrough(struct request *rq)
217 {
218 return blk_op_is_passthrough(rq->cmd_flags);
219 }
220
req_get_ioprio(struct request * req)221 static inline unsigned short req_get_ioprio(struct request *req)
222 {
223 if (req->bio)
224 return req->bio->bi_ioprio;
225 return 0;
226 }
227
228 #define rq_data_dir(rq) (op_is_write(req_op(rq)) ? WRITE : READ)
229
230 #define rq_dma_dir(rq) \
231 (op_is_write(req_op(rq)) ? DMA_TO_DEVICE : DMA_FROM_DEVICE)
232
rq_list_empty(const struct rq_list * rl)233 static inline int rq_list_empty(const struct rq_list *rl)
234 {
235 return rl->head == NULL;
236 }
237
rq_list_init(struct rq_list * rl)238 static inline void rq_list_init(struct rq_list *rl)
239 {
240 rl->head = NULL;
241 rl->tail = NULL;
242 }
243
rq_list_add_tail(struct rq_list * rl,struct request * rq)244 static inline void rq_list_add_tail(struct rq_list *rl, struct request *rq)
245 {
246 rq->rq_next = NULL;
247 if (rl->tail)
248 rl->tail->rq_next = rq;
249 else
250 rl->head = rq;
251 rl->tail = rq;
252 }
253
rq_list_add_head(struct rq_list * rl,struct request * rq)254 static inline void rq_list_add_head(struct rq_list *rl, struct request *rq)
255 {
256 rq->rq_next = rl->head;
257 rl->head = rq;
258 if (!rl->tail)
259 rl->tail = rq;
260 }
261
rq_list_pop(struct rq_list * rl)262 static inline struct request *rq_list_pop(struct rq_list *rl)
263 {
264 struct request *rq = rl->head;
265
266 if (rq) {
267 rl->head = rl->head->rq_next;
268 if (!rl->head)
269 rl->tail = NULL;
270 rq->rq_next = NULL;
271 }
272
273 return rq;
274 }
275
rq_list_peek(struct rq_list * rl)276 static inline struct request *rq_list_peek(struct rq_list *rl)
277 {
278 return rl->head;
279 }
280
281 #define rq_list_for_each(rl, pos) \
282 for (pos = rq_list_peek((rl)); (pos); pos = pos->rq_next)
283
284 #define rq_list_for_each_safe(rl, pos, nxt) \
285 for (pos = rq_list_peek((rl)), nxt = pos->rq_next; \
286 pos; pos = nxt, nxt = pos ? pos->rq_next : NULL)
287
288 /**
289 * enum blk_eh_timer_return - How the timeout handler should proceed
290 * @BLK_EH_DONE: The block driver completed the command or will complete it at
291 * a later time.
292 * @BLK_EH_RESET_TIMER: Reset the request timer and continue waiting for the
293 * request to complete.
294 */
295 enum blk_eh_timer_return {
296 BLK_EH_DONE,
297 BLK_EH_RESET_TIMER,
298 };
299
300 /**
301 * struct blk_mq_hw_ctx - State for a hardware queue facing the hardware
302 * block device
303 */
304 struct blk_mq_hw_ctx {
305 struct {
306 /** @lock: Protects the dispatch list. */
307 spinlock_t lock;
308 /**
309 * @dispatch: Used for requests that are ready to be
310 * dispatched to the hardware but for some reason (e.g. lack of
311 * resources) could not be sent to the hardware. As soon as the
312 * driver can send new requests, requests at this list will
313 * be sent first for a fairer dispatch.
314 */
315 struct list_head dispatch;
316 /**
317 * @state: BLK_MQ_S_* flags. Defines the state of the hw
318 * queue (active, scheduled to restart, stopped).
319 */
320 unsigned long state;
321 } ____cacheline_aligned_in_smp;
322
323 /**
324 * @run_work: Used for scheduling a hardware queue run at a later time.
325 */
326 struct delayed_work run_work;
327 /** @cpumask: Map of available CPUs where this hctx can run. */
328 cpumask_var_t cpumask;
329 /**
330 * @next_cpu: Used by blk_mq_hctx_next_cpu() for round-robin CPU
331 * selection from @cpumask.
332 */
333 int next_cpu;
334 /**
335 * @next_cpu_batch: Counter of how many works left in the batch before
336 * changing to the next CPU.
337 */
338 int next_cpu_batch;
339
340 /** @flags: BLK_MQ_F_* flags. Defines the behaviour of the queue. */
341 unsigned long flags;
342
343 /**
344 * @sched_data: Pointer owned by the IO scheduler attached to a request
345 * queue. It's up to the IO scheduler how to use this pointer.
346 */
347 void *sched_data;
348 /**
349 * @queue: Pointer to the request queue that owns this hardware context.
350 */
351 struct request_queue *queue;
352 /** @fq: Queue of requests that need to perform a flush operation. */
353 struct blk_flush_queue *fq;
354
355 /**
356 * @driver_data: Pointer to data owned by the block driver that created
357 * this hctx
358 */
359 void *driver_data;
360
361 /**
362 * @ctx_map: Bitmap for each software queue. If bit is on, there is a
363 * pending request in that software queue.
364 */
365 struct sbitmap ctx_map;
366
367 /**
368 * @dispatch_from: Software queue to be used when no scheduler was
369 * selected.
370 */
371 struct blk_mq_ctx *dispatch_from;
372 /**
373 * @dispatch_busy: Number used by blk_mq_update_dispatch_busy() to
374 * decide if the hw_queue is busy using Exponential Weighted Moving
375 * Average algorithm.
376 */
377 unsigned int dispatch_busy;
378
379 /** @type: HCTX_TYPE_* flags. Type of hardware queue. */
380 unsigned short type;
381 /** @nr_ctx: Number of software queues. */
382 unsigned short nr_ctx;
383 /** @ctxs: Array of software queues. */
384 struct blk_mq_ctx **ctxs;
385
386 /** @dispatch_wait_lock: Lock for dispatch_wait queue. */
387 spinlock_t dispatch_wait_lock;
388 /**
389 * @dispatch_wait: Waitqueue to put requests when there is no tag
390 * available at the moment, to wait for another try in the future.
391 */
392 wait_queue_entry_t dispatch_wait;
393
394 /**
395 * @wait_index: Index of next available dispatch_wait queue to insert
396 * requests.
397 */
398 atomic_t wait_index;
399
400 /**
401 * @tags: Tags owned by the block driver. A tag at this set is only
402 * assigned when a request is dispatched from a hardware queue.
403 */
404 struct blk_mq_tags *tags;
405 /**
406 * @sched_tags: Tags owned by I/O scheduler. If there is an I/O
407 * scheduler associated with a request queue, a tag is assigned when
408 * that request is allocated. Else, this member is not used.
409 */
410 struct blk_mq_tags *sched_tags;
411
412 /** @numa_node: NUMA node the storage adapter has been connected to. */
413 unsigned int numa_node;
414 /** @queue_num: Index of this hardware queue. */
415 unsigned int queue_num;
416
417 /**
418 * @nr_active: Number of active requests. Only used when a tag set is
419 * shared across request queues.
420 */
421 atomic_t nr_active;
422
423 /** @cpuhp_online: List to store request if CPU is going to die */
424 struct hlist_node cpuhp_online;
425 /** @cpuhp_dead: List to store request if some CPU die. */
426 struct hlist_node cpuhp_dead;
427 /** @kobj: Kernel object for sysfs. */
428 struct kobject kobj;
429
430 #ifdef CONFIG_BLK_DEBUG_FS
431 /**
432 * @debugfs_dir: debugfs directory for this hardware queue. Named
433 * as cpu<cpu_number>.
434 */
435 struct dentry *debugfs_dir;
436 /** @sched_debugfs_dir: debugfs directory for the scheduler. */
437 struct dentry *sched_debugfs_dir;
438 #endif
439
440 /**
441 * @hctx_list: if this hctx is not in use, this is an entry in
442 * q->unused_hctx_list.
443 */
444 struct list_head hctx_list;
445 };
446
447 /**
448 * struct blk_mq_queue_map - Map software queues to hardware queues
449 * @mq_map: CPU ID to hardware queue index map. This is an array
450 * with nr_cpu_ids elements. Each element has a value in the range
451 * [@queue_offset, @queue_offset + @nr_queues).
452 * @nr_queues: Number of hardware queues to map CPU IDs onto.
453 * @queue_offset: First hardware queue to map onto. Used by the PCIe NVMe
454 * driver to map each hardware queue type (enum hctx_type) onto a distinct
455 * set of hardware queues.
456 */
457 struct blk_mq_queue_map {
458 unsigned int *mq_map;
459 unsigned int nr_queues;
460 unsigned int queue_offset;
461 };
462
463 /**
464 * enum hctx_type - Type of hardware queue
465 * @HCTX_TYPE_DEFAULT: All I/O not otherwise accounted for.
466 * @HCTX_TYPE_READ: Just for READ I/O.
467 * @HCTX_TYPE_POLL: Polled I/O of any kind.
468 * @HCTX_MAX_TYPES: Number of types of hctx.
469 */
470 enum hctx_type {
471 HCTX_TYPE_DEFAULT,
472 HCTX_TYPE_READ,
473 HCTX_TYPE_POLL,
474
475 HCTX_MAX_TYPES,
476 };
477
478 /**
479 * struct blk_mq_tag_set - tag set that can be shared between request queues
480 * @ops: Pointers to functions that implement block driver behavior.
481 * @map: One or more ctx -> hctx mappings. One map exists for each
482 * hardware queue type (enum hctx_type) that the driver wishes
483 * to support. There are no restrictions on maps being of the
484 * same size, and it's perfectly legal to share maps between
485 * types.
486 * @nr_maps: Number of elements in the @map array. A number in the range
487 * [1, HCTX_MAX_TYPES].
488 * @nr_hw_queues: Number of hardware queues supported by the block driver that
489 * owns this data structure.
490 * @queue_depth: Number of tags per hardware queue, reserved tags included.
491 * @reserved_tags: Number of tags to set aside for BLK_MQ_REQ_RESERVED tag
492 * allocations.
493 * @cmd_size: Number of additional bytes to allocate per request. The block
494 * driver owns these additional bytes.
495 * @numa_node: NUMA node the storage adapter has been connected to.
496 * @timeout: Request processing timeout in jiffies.
497 * @flags: Zero or more BLK_MQ_F_* flags.
498 * @driver_data: Pointer to data owned by the block driver that created this
499 * tag set.
500 * @tags: Tag sets. One tag set per hardware queue. Has @nr_hw_queues
501 * elements.
502 * @shared_tags:
503 * Shared set of tags. Has @nr_hw_queues elements. If set,
504 * shared by all @tags.
505 * @tag_list_lock: Serializes tag_list accesses.
506 * @tag_list: List of the request queues that use this tag set. See also
507 * request_queue.tag_set_list.
508 * @srcu: Use as lock when type of the request queue is blocking
509 * (BLK_MQ_F_BLOCKING).
510 * @tags_srcu: SRCU used to defer freeing of tags page_list to prevent
511 * use-after-free when iterating tags.
512 * @update_nr_hwq_lock:
513 * Synchronize updating nr_hw_queues with add/del disk &
514 * switching elevator.
515 */
516 struct blk_mq_tag_set {
517 const struct blk_mq_ops *ops;
518 struct blk_mq_queue_map map[HCTX_MAX_TYPES];
519 unsigned int nr_maps;
520 unsigned int nr_hw_queues;
521 unsigned int queue_depth;
522 unsigned int reserved_tags;
523 unsigned int cmd_size;
524 int numa_node;
525 unsigned int timeout;
526 unsigned int flags;
527 void *driver_data;
528
529 struct blk_mq_tags **tags;
530
531 struct blk_mq_tags *shared_tags;
532
533 struct mutex tag_list_lock;
534 struct list_head tag_list;
535 struct srcu_struct *srcu;
536 struct srcu_struct tags_srcu;
537
538 struct rw_semaphore update_nr_hwq_lock;
539 };
540
541 /**
542 * struct blk_mq_queue_data - Data about a request inserted in a queue
543 *
544 * @rq: Request pointer.
545 * @last: If it is the last request in the queue.
546 */
547 struct blk_mq_queue_data {
548 struct request *rq;
549 bool last;
550 };
551
552 typedef bool (busy_tag_iter_fn)(struct request *, void *);
553
554 /**
555 * struct blk_mq_ops - Callback functions that implements block driver
556 * behaviour.
557 */
558 struct blk_mq_ops {
559 /**
560 * @queue_rq: Queue a new request from block IO.
561 */
562 blk_status_t (*queue_rq)(struct blk_mq_hw_ctx *,
563 const struct blk_mq_queue_data *);
564
565 /**
566 * @commit_rqs: If a driver uses bd->last to judge when to submit
567 * requests to hardware, it must define this function. In case of errors
568 * that make us stop issuing further requests, this hook serves the
569 * purpose of kicking the hardware (which the last request otherwise
570 * would have done).
571 */
572 void (*commit_rqs)(struct blk_mq_hw_ctx *);
573
574 /**
575 * @queue_rqs: Queue a list of new requests. Driver is guaranteed
576 * that each request belongs to the same queue. If the driver doesn't
577 * empty the @rqlist completely, then the rest will be queued
578 * individually by the block layer upon return.
579 */
580 void (*queue_rqs)(struct rq_list *rqlist);
581
582 /**
583 * @get_budget: Reserve budget before queue request, once .queue_rq is
584 * run, it is driver's responsibility to release the
585 * reserved budget. Also we have to handle failure case
586 * of .get_budget for avoiding I/O deadlock.
587 */
588 int (*get_budget)(struct request_queue *);
589
590 /**
591 * @put_budget: Release the reserved budget.
592 */
593 void (*put_budget)(struct request_queue *, int);
594
595 /**
596 * @set_rq_budget_token: store rq's budget token
597 */
598 void (*set_rq_budget_token)(struct request *, int);
599 /**
600 * @get_rq_budget_token: retrieve rq's budget token
601 */
602 int (*get_rq_budget_token)(struct request *);
603
604 /**
605 * @timeout: Called on request timeout.
606 */
607 enum blk_eh_timer_return (*timeout)(struct request *);
608
609 /**
610 * @poll: Called to poll for completion of a specific tag.
611 */
612 int (*poll)(struct blk_mq_hw_ctx *, struct io_comp_batch *);
613
614 /**
615 * @complete: Mark the request as complete.
616 */
617 void (*complete)(struct request *);
618
619 /**
620 * @init_hctx: Called when the block layer side of a hardware queue has
621 * been set up, allowing the driver to allocate/init matching
622 * structures.
623 */
624 int (*init_hctx)(struct blk_mq_hw_ctx *, void *, unsigned int);
625 /**
626 * @exit_hctx: Ditto for exit/teardown.
627 */
628 void (*exit_hctx)(struct blk_mq_hw_ctx *, unsigned int);
629
630 /**
631 * @init_request: Called for every command allocated by the block layer
632 * to allow the driver to set up driver specific data.
633 *
634 * Tag greater than or equal to queue_depth is for setting up
635 * flush request.
636 */
637 int (*init_request)(struct blk_mq_tag_set *set, struct request *,
638 unsigned int, unsigned int);
639 /**
640 * @exit_request: Ditto for exit/teardown.
641 */
642 void (*exit_request)(struct blk_mq_tag_set *set, struct request *,
643 unsigned int);
644
645 /**
646 * @cleanup_rq: Called before freeing one request which isn't completed
647 * yet, and usually for freeing the driver private data.
648 */
649 void (*cleanup_rq)(struct request *);
650
651 /**
652 * @busy: If set, returns whether or not this queue currently is busy.
653 */
654 bool (*busy)(struct request_queue *);
655
656 /**
657 * @map_queues: This allows drivers specify their own queue mapping by
658 * overriding the setup-time function that builds the mq_map.
659 */
660 void (*map_queues)(struct blk_mq_tag_set *set);
661
662 #ifdef CONFIG_BLK_DEBUG_FS
663 /**
664 * @show_rq: Used by the debugfs implementation to show driver-specific
665 * information about a request.
666 */
667 void (*show_rq)(struct seq_file *m, struct request *rq);
668 #endif
669 };
670
671 /* Keep hctx_flag_name[] in sync with the definitions below */
672 enum {
673 BLK_MQ_F_TAG_QUEUE_SHARED = 1 << 1,
674 /*
675 * Set when this device requires underlying blk-mq device for
676 * completing IO:
677 */
678 BLK_MQ_F_STACKING = 1 << 2,
679 BLK_MQ_F_TAG_HCTX_SHARED = 1 << 3,
680 BLK_MQ_F_BLOCKING = 1 << 4,
681
682 /*
683 * Alloc tags on a round-robin base instead of the first available one.
684 */
685 BLK_MQ_F_TAG_RR = 1 << 5,
686
687 /*
688 * Select 'none' during queue registration in case of a single hwq
689 * or shared hwqs instead of 'mq-deadline'.
690 */
691 BLK_MQ_F_NO_SCHED_BY_DEFAULT = 1 << 6,
692
693 BLK_MQ_F_MAX = 1 << 7,
694 };
695
696 #define BLK_MQ_MAX_DEPTH (10240)
697 #define BLK_MQ_NO_HCTX_IDX (-1U)
698
699 enum {
700 /* Keep hctx_state_name[] in sync with the definitions below */
701 BLK_MQ_S_STOPPED,
702 BLK_MQ_S_TAG_ACTIVE,
703 BLK_MQ_S_SCHED_RESTART,
704 /* hw queue is inactive after all its CPUs become offline */
705 BLK_MQ_S_INACTIVE,
706 BLK_MQ_S_MAX
707 };
708
709 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set,
710 struct queue_limits *lim, void *queuedata,
711 struct lock_class_key *lkclass);
712 #define blk_mq_alloc_disk(set, lim, queuedata) \
713 ({ \
714 static struct lock_class_key __key; \
715 \
716 __blk_mq_alloc_disk(set, lim, queuedata, &__key); \
717 })
718 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
719 struct lock_class_key *lkclass);
720 struct request_queue *blk_mq_alloc_queue(struct blk_mq_tag_set *set,
721 struct queue_limits *lim, void *queuedata);
722 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
723 struct request_queue *q);
724 void blk_mq_destroy_queue(struct request_queue *);
725
726 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set);
727 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
728 const struct blk_mq_ops *ops, unsigned int queue_depth,
729 unsigned int set_flags);
730 void blk_mq_free_tag_set(struct blk_mq_tag_set *set);
731
732 void blk_mq_free_request(struct request *rq);
733 int blk_rq_poll(struct request *rq, struct io_comp_batch *iob,
734 unsigned int poll_flags);
735
736 bool blk_mq_queue_inflight(struct request_queue *q);
737
738 enum {
739 /* return when out of requests */
740 BLK_MQ_REQ_NOWAIT = (__force blk_mq_req_flags_t)(1 << 0),
741 /* allocate from reserved pool */
742 BLK_MQ_REQ_RESERVED = (__force blk_mq_req_flags_t)(1 << 1),
743 /* set RQF_PM */
744 BLK_MQ_REQ_PM = (__force blk_mq_req_flags_t)(1 << 2),
745 };
746
747 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
748 blk_mq_req_flags_t flags);
749 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
750 blk_opf_t opf, blk_mq_req_flags_t flags,
751 unsigned int hctx_idx);
752
753 /*
754 * Tag address space map.
755 */
756 struct blk_mq_tags {
757 unsigned int nr_tags;
758 unsigned int nr_reserved_tags;
759 unsigned int active_queues;
760
761 struct sbitmap_queue bitmap_tags;
762 struct sbitmap_queue breserved_tags;
763
764 struct request **rqs;
765 struct request **static_rqs;
766 struct list_head page_list;
767
768 /*
769 * used to clear request reference in rqs[] before freeing one
770 * request pool
771 */
772 spinlock_t lock;
773 struct rcu_head rcu_head;
774 };
775
blk_mq_tag_to_rq(struct blk_mq_tags * tags,unsigned int tag)776 static inline struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags,
777 unsigned int tag)
778 {
779 if (tag < tags->nr_tags) {
780 prefetch(tags->rqs[tag]);
781 return tags->rqs[tag];
782 }
783
784 return NULL;
785 }
786
787 enum {
788 BLK_MQ_UNIQUE_TAG_BITS = 16,
789 BLK_MQ_UNIQUE_TAG_MASK = (1 << BLK_MQ_UNIQUE_TAG_BITS) - 1,
790 };
791
792 u32 blk_mq_unique_tag(struct request *rq);
793
blk_mq_unique_tag_to_hwq(u32 unique_tag)794 static inline u16 blk_mq_unique_tag_to_hwq(u32 unique_tag)
795 {
796 return unique_tag >> BLK_MQ_UNIQUE_TAG_BITS;
797 }
798
blk_mq_unique_tag_to_tag(u32 unique_tag)799 static inline u16 blk_mq_unique_tag_to_tag(u32 unique_tag)
800 {
801 return unique_tag & BLK_MQ_UNIQUE_TAG_MASK;
802 }
803
804 /**
805 * blk_mq_rq_state() - read the current MQ_RQ_* state of a request
806 * @rq: target request.
807 */
blk_mq_rq_state(struct request * rq)808 static inline enum mq_rq_state blk_mq_rq_state(struct request *rq)
809 {
810 return READ_ONCE(rq->state);
811 }
812
blk_mq_request_started(struct request * rq)813 static inline int blk_mq_request_started(struct request *rq)
814 {
815 return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
816 }
817
blk_mq_request_completed(struct request * rq)818 static inline int blk_mq_request_completed(struct request *rq)
819 {
820 return blk_mq_rq_state(rq) == MQ_RQ_COMPLETE;
821 }
822
823 /*
824 *
825 * Set the state to complete when completing a request from inside ->queue_rq.
826 * This is used by drivers that want to ensure special complete actions that
827 * need access to the request are called on failure, e.g. by nvme for
828 * multipathing.
829 */
blk_mq_set_request_complete(struct request * rq)830 static inline void blk_mq_set_request_complete(struct request *rq)
831 {
832 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
833 }
834
835 /*
836 * Complete the request directly instead of deferring it to softirq or
837 * completing it another CPU. Useful in preemptible instead of an interrupt.
838 */
blk_mq_complete_request_direct(struct request * rq,void (* complete)(struct request * rq))839 static inline void blk_mq_complete_request_direct(struct request *rq,
840 void (*complete)(struct request *rq))
841 {
842 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
843 complete(rq);
844 }
845
846 void blk_mq_start_request(struct request *rq);
847 void blk_mq_end_request(struct request *rq, blk_status_t error);
848 void __blk_mq_end_request(struct request *rq, blk_status_t error);
849 void blk_mq_end_request_batch(struct io_comp_batch *ib);
850
851 /*
852 * Only need start/end time stamping if we have iostat or
853 * blk stats enabled, or using an IO scheduler.
854 */
blk_mq_need_time_stamp(struct request * rq)855 static inline bool blk_mq_need_time_stamp(struct request *rq)
856 {
857 return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS | RQF_USE_SCHED));
858 }
859
blk_mq_is_reserved_rq(struct request * rq)860 static inline bool blk_mq_is_reserved_rq(struct request *rq)
861 {
862 return rq->rq_flags & RQF_RESV;
863 }
864
865 /**
866 * blk_mq_add_to_batch() - add a request to the completion batch
867 * @req: The request to add to batch
868 * @iob: The batch to add the request
869 * @is_error: Specify true if the request failed with an error
870 * @complete: The completaion handler for the request
871 *
872 * Batched completions only work when there is no I/O error and no special
873 * ->end_io handler.
874 *
875 * Return: true when the request was added to the batch, otherwise false
876 */
blk_mq_add_to_batch(struct request * req,struct io_comp_batch * iob,bool is_error,void (* complete)(struct io_comp_batch *))877 static inline bool blk_mq_add_to_batch(struct request *req,
878 struct io_comp_batch *iob, bool is_error,
879 void (*complete)(struct io_comp_batch *))
880 {
881 /*
882 * Check various conditions that exclude batch processing:
883 * 1) No batch container
884 * 2) Has scheduler data attached
885 * 3) Not a passthrough request and end_io set
886 * 4) Not a passthrough request and failed with an error
887 */
888 if (!iob)
889 return false;
890 if (req->rq_flags & RQF_SCHED_TAGS)
891 return false;
892 if (!blk_rq_is_passthrough(req)) {
893 if (req->end_io)
894 return false;
895 if (is_error)
896 return false;
897 }
898
899 if (!iob->complete)
900 iob->complete = complete;
901 else if (iob->complete != complete)
902 return false;
903 iob->need_ts |= blk_mq_need_time_stamp(req);
904 rq_list_add_tail(&iob->req_list, req);
905 return true;
906 }
907
908 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list);
909 void blk_mq_kick_requeue_list(struct request_queue *q);
910 void blk_mq_delay_kick_requeue_list(struct request_queue *q, unsigned long msecs);
911 void blk_mq_complete_request(struct request *rq);
912 bool blk_mq_complete_request_remote(struct request *rq);
913 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx);
914 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx);
915 void blk_mq_stop_hw_queues(struct request_queue *q);
916 void blk_mq_start_hw_queues(struct request_queue *q);
917 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async);
918 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async);
919 void blk_mq_quiesce_queue(struct request_queue *q);
920 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set);
921 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set);
922 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set);
923 void blk_mq_unquiesce_queue(struct request_queue *q);
924 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs);
925 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async);
926 void blk_mq_run_hw_queues(struct request_queue *q, bool async);
927 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs);
928 void blk_mq_tagset_busy_iter(struct blk_mq_tag_set *tagset,
929 busy_tag_iter_fn *fn, void *priv);
930 void blk_mq_tagset_wait_completed_request(struct blk_mq_tag_set *tagset);
931 void blk_mq_freeze_queue_nomemsave(struct request_queue *q);
932 void blk_mq_unfreeze_queue_nomemrestore(struct request_queue *q);
933 static inline unsigned int __must_check
blk_mq_freeze_queue(struct request_queue * q)934 blk_mq_freeze_queue(struct request_queue *q)
935 {
936 unsigned int memflags = memalloc_noio_save();
937
938 blk_mq_freeze_queue_nomemsave(q);
939 return memflags;
940 }
941 static inline void
blk_mq_unfreeze_queue(struct request_queue * q,unsigned int memflags)942 blk_mq_unfreeze_queue(struct request_queue *q, unsigned int memflags)
943 {
944 blk_mq_unfreeze_queue_nomemrestore(q);
945 memalloc_noio_restore(memflags);
946 }
947 void blk_freeze_queue_start(struct request_queue *q);
948 void blk_mq_freeze_queue_wait(struct request_queue *q);
949 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
950 unsigned long timeout);
951 void blk_mq_unfreeze_queue_non_owner(struct request_queue *q);
952 void blk_freeze_queue_start_non_owner(struct request_queue *q);
953
954 unsigned int blk_mq_num_possible_queues(unsigned int max_queues);
955 unsigned int blk_mq_num_online_queues(unsigned int max_queues);
956 void blk_mq_map_queues(struct blk_mq_queue_map *qmap);
957 void blk_mq_map_hw_queues(struct blk_mq_queue_map *qmap,
958 struct device *dev, unsigned int offset);
959 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues);
960
961 void blk_mq_quiesce_queue_nowait(struct request_queue *q);
962
963 unsigned int blk_mq_rq_cpu(struct request *rq);
964
965 bool __blk_should_fake_timeout(struct request_queue *q);
blk_should_fake_timeout(struct request_queue * q)966 static inline bool blk_should_fake_timeout(struct request_queue *q)
967 {
968 if (IS_ENABLED(CONFIG_FAIL_IO_TIMEOUT) &&
969 test_bit(QUEUE_FLAG_FAIL_IO, &q->queue_flags))
970 return __blk_should_fake_timeout(q);
971 return false;
972 }
973
974 /**
975 * blk_mq_rq_from_pdu - cast a PDU to a request
976 * @pdu: the PDU (Protocol Data Unit) to be casted
977 *
978 * Return: request
979 *
980 * Driver command data is immediately after the request. So subtract request
981 * size to get back to the original request.
982 */
blk_mq_rq_from_pdu(void * pdu)983 static inline struct request *blk_mq_rq_from_pdu(void *pdu)
984 {
985 return pdu - sizeof(struct request);
986 }
987
988 /**
989 * blk_mq_rq_to_pdu - cast a request to a PDU
990 * @rq: the request to be casted
991 *
992 * Return: pointer to the PDU
993 *
994 * Driver command data is immediately after the request. So add request to get
995 * the PDU.
996 */
blk_mq_rq_to_pdu(struct request * rq)997 static inline void *blk_mq_rq_to_pdu(struct request *rq)
998 {
999 return rq + 1;
1000 }
1001
1002 #define queue_for_each_hw_ctx(q, hctx, i) \
1003 xa_for_each(&(q)->hctx_table, (i), (hctx))
1004
1005 #define hctx_for_each_ctx(hctx, ctx, i) \
1006 for ((i) = 0; (i) < (hctx)->nr_ctx && \
1007 ({ ctx = (hctx)->ctxs[(i)]; 1; }); (i)++)
1008
blk_mq_cleanup_rq(struct request * rq)1009 static inline void blk_mq_cleanup_rq(struct request *rq)
1010 {
1011 if (rq->q->mq_ops->cleanup_rq)
1012 rq->q->mq_ops->cleanup_rq(rq);
1013 }
1014
1015 void blk_mq_hctx_set_fq_lock_class(struct blk_mq_hw_ctx *hctx,
1016 struct lock_class_key *key);
1017
rq_is_sync(struct request * rq)1018 static inline bool rq_is_sync(struct request *rq)
1019 {
1020 return op_is_sync(rq->cmd_flags);
1021 }
1022
1023 void blk_rq_init(struct request_queue *q, struct request *rq);
1024 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
1025 struct bio_set *bs, gfp_t gfp_mask,
1026 int (*bio_ctr)(struct bio *, struct bio *, void *), void *data);
1027 void blk_rq_unprep_clone(struct request *rq);
1028 blk_status_t blk_insert_cloned_request(struct request *rq);
1029
1030 struct rq_map_data {
1031 struct page **pages;
1032 unsigned long offset;
1033 unsigned short page_order;
1034 unsigned short nr_entries;
1035 bool null_mapped;
1036 bool from_user;
1037 };
1038
1039 int blk_rq_map_user(struct request_queue *, struct request *,
1040 struct rq_map_data *, void __user *, unsigned long, gfp_t);
1041 int blk_rq_map_user_io(struct request *, struct rq_map_data *,
1042 void __user *, unsigned long, gfp_t, bool, int, bool, int);
1043 int blk_rq_map_user_iov(struct request_queue *, struct request *,
1044 struct rq_map_data *, const struct iov_iter *, gfp_t);
1045 int blk_rq_unmap_user(struct bio *);
1046 int blk_rq_map_kern(struct request *rq, void *kbuf, unsigned int len,
1047 gfp_t gfp);
1048 int blk_rq_append_bio(struct request *rq, struct bio *bio);
1049 void blk_execute_rq_nowait(struct request *rq, bool at_head);
1050 blk_status_t blk_execute_rq(struct request *rq, bool at_head);
1051 bool blk_rq_is_poll(struct request *rq);
1052
1053 struct req_iterator {
1054 struct bvec_iter iter;
1055 struct bio *bio;
1056 };
1057
1058 #define __rq_for_each_bio(_bio, rq) \
1059 if ((rq->bio)) \
1060 for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next)
1061
1062 #define rq_for_each_segment(bvl, _rq, _iter) \
1063 __rq_for_each_bio(_iter.bio, _rq) \
1064 bio_for_each_segment(bvl, _iter.bio, _iter.iter)
1065
1066 #define rq_for_each_bvec(bvl, _rq, _iter) \
1067 __rq_for_each_bio(_iter.bio, _rq) \
1068 bio_for_each_bvec(bvl, _iter.bio, _iter.iter)
1069
1070 #define rq_iter_last(bvec, _iter) \
1071 (_iter.bio->bi_next == NULL && \
1072 bio_iter_last(bvec, _iter.iter))
1073
1074 /*
1075 * blk_rq_pos() : the current sector
1076 * blk_rq_bytes() : bytes left in the entire request
1077 * blk_rq_cur_bytes() : bytes left in the current segment
1078 * blk_rq_sectors() : sectors left in the entire request
1079 * blk_rq_cur_sectors() : sectors left in the current segment
1080 * blk_rq_stats_sectors() : sectors of the entire request used for stats
1081 */
blk_rq_pos(const struct request * rq)1082 static inline sector_t blk_rq_pos(const struct request *rq)
1083 {
1084 return rq->__sector;
1085 }
1086
blk_rq_bytes(const struct request * rq)1087 static inline unsigned int blk_rq_bytes(const struct request *rq)
1088 {
1089 return rq->__data_len;
1090 }
1091
blk_rq_cur_bytes(const struct request * rq)1092 static inline int blk_rq_cur_bytes(const struct request *rq)
1093 {
1094 if (!rq->bio)
1095 return 0;
1096 if (!bio_has_data(rq->bio)) /* dataless requests such as discard */
1097 return rq->bio->bi_iter.bi_size;
1098 return bio_iovec(rq->bio).bv_len;
1099 }
1100
blk_rq_sectors(const struct request * rq)1101 static inline unsigned int blk_rq_sectors(const struct request *rq)
1102 {
1103 return blk_rq_bytes(rq) >> SECTOR_SHIFT;
1104 }
1105
blk_rq_cur_sectors(const struct request * rq)1106 static inline unsigned int blk_rq_cur_sectors(const struct request *rq)
1107 {
1108 return blk_rq_cur_bytes(rq) >> SECTOR_SHIFT;
1109 }
1110
blk_rq_stats_sectors(const struct request * rq)1111 static inline unsigned int blk_rq_stats_sectors(const struct request *rq)
1112 {
1113 return rq->stats_sectors;
1114 }
1115
1116 /*
1117 * Some commands like WRITE SAME have a payload or data transfer size which
1118 * is different from the size of the request. Any driver that supports such
1119 * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to
1120 * calculate the data transfer size.
1121 */
blk_rq_payload_bytes(struct request * rq)1122 static inline unsigned int blk_rq_payload_bytes(struct request *rq)
1123 {
1124 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1125 return rq->special_vec.bv_len;
1126 return blk_rq_bytes(rq);
1127 }
1128
1129 /*
1130 * Return the first full biovec in the request. The caller needs to check that
1131 * there are any bvecs before calling this helper.
1132 */
req_bvec(struct request * rq)1133 static inline struct bio_vec req_bvec(struct request *rq)
1134 {
1135 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1136 return rq->special_vec;
1137 return mp_bvec_iter_bvec(rq->bio->bi_io_vec, rq->bio->bi_iter);
1138 }
1139
blk_rq_count_bios(struct request * rq)1140 static inline unsigned int blk_rq_count_bios(struct request *rq)
1141 {
1142 unsigned int nr_bios = 0;
1143 struct bio *bio;
1144
1145 __rq_for_each_bio(bio, rq)
1146 nr_bios++;
1147
1148 return nr_bios;
1149 }
1150
1151 void blk_steal_bios(struct bio_list *list, struct request *rq);
1152
1153 /*
1154 * Request completion related functions.
1155 *
1156 * blk_update_request() completes given number of bytes and updates
1157 * the request without completing it.
1158 */
1159 bool blk_update_request(struct request *rq, blk_status_t error,
1160 unsigned int nr_bytes);
1161 void blk_abort_request(struct request *);
1162
1163 /*
1164 * Number of physical segments as sent to the device.
1165 *
1166 * Normally this is the number of discontiguous data segments sent by the
1167 * submitter. But for data-less command like discard we might have no
1168 * actual data segments submitted, but the driver might have to add it's
1169 * own special payload. In that case we still return 1 here so that this
1170 * special payload will be mapped.
1171 */
blk_rq_nr_phys_segments(struct request * rq)1172 static inline unsigned short blk_rq_nr_phys_segments(struct request *rq)
1173 {
1174 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1175 return 1;
1176 return rq->nr_phys_segments;
1177 }
1178
1179 /*
1180 * Number of discard segments (or ranges) the driver needs to fill in.
1181 * Each discard bio merged into a request is counted as one segment.
1182 */
blk_rq_nr_discard_segments(struct request * rq)1183 static inline unsigned short blk_rq_nr_discard_segments(struct request *rq)
1184 {
1185 return max_t(unsigned short, rq->nr_phys_segments, 1);
1186 }
1187
1188 int __blk_rq_map_sg(struct request *rq, struct scatterlist *sglist,
1189 struct scatterlist **last_sg);
blk_rq_map_sg(struct request * rq,struct scatterlist * sglist)1190 static inline int blk_rq_map_sg(struct request *rq, struct scatterlist *sglist)
1191 {
1192 struct scatterlist *last_sg = NULL;
1193
1194 return __blk_rq_map_sg(rq, sglist, &last_sg);
1195 }
1196 void blk_dump_rq_flags(struct request *, char *);
1197
1198 #endif /* BLK_MQ_H */
1199