xref: /linux/include/linux/blk-mq.h (revision ec2e0fb07d789976c601bec19ecced7a501c3705)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef BLK_MQ_H
3 #define BLK_MQ_H
4 
5 #include <linux/blkdev.h>
6 #include <linux/sbitmap.h>
7 #include <linux/lockdep.h>
8 #include <linux/scatterlist.h>
9 #include <linux/prefetch.h>
10 #include <linux/srcu.h>
11 #include <linux/rw_hint.h>
12 #include <linux/rwsem.h>
13 
14 struct blk_mq_tags;
15 struct blk_flush_queue;
16 
17 #define BLKDEV_MIN_RQ	4
18 #define BLKDEV_DEFAULT_RQ	128
19 
20 enum rq_end_io_ret {
21 	RQ_END_IO_NONE,
22 	RQ_END_IO_FREE,
23 };
24 
25 typedef enum rq_end_io_ret (rq_end_io_fn)(struct request *, blk_status_t);
26 
27 /*
28  * request flags */
29 typedef __u32 __bitwise req_flags_t;
30 
31 /* Keep rqf_name[] in sync with the definitions below */
32 enum rqf_flags {
33 	/* drive already may have started this one */
34 	__RQF_STARTED,
35 	/* request for flush sequence */
36 	__RQF_FLUSH_SEQ,
37 	/* merge of different types, fail separately */
38 	__RQF_MIXED_MERGE,
39 	/* don't call prep for this one */
40 	__RQF_DONTPREP,
41 	/* use hctx->sched_tags */
42 	__RQF_SCHED_TAGS,
43 	/* use an I/O scheduler for this request */
44 	__RQF_USE_SCHED,
45 	/* vaguely specified driver internal error.  Ignored by block layer */
46 	__RQF_FAILED,
47 	/* don't warn about errors */
48 	__RQF_QUIET,
49 	/* account into disk and partition IO statistics */
50 	__RQF_IO_STAT,
51 	/* runtime pm request */
52 	__RQF_PM,
53 	/* on IO scheduler merge hash */
54 	__RQF_HASHED,
55 	/* track IO completion time */
56 	__RQF_STATS,
57 	/* Look at ->special_vec for the actual data payload instead of the
58 	   bio chain. */
59 	__RQF_SPECIAL_PAYLOAD,
60 	/* request completion needs to be signaled to zone write plugging. */
61 	__RQF_ZONE_WRITE_PLUGGING,
62 	/* ->timeout has been called, don't expire again */
63 	__RQF_TIMED_OUT,
64 	__RQF_RESV,
65 	__RQF_BITS
66 };
67 
68 #define RQF_STARTED		((__force req_flags_t)(1 << __RQF_STARTED))
69 #define RQF_FLUSH_SEQ		((__force req_flags_t)(1 << __RQF_FLUSH_SEQ))
70 #define RQF_MIXED_MERGE		((__force req_flags_t)(1 << __RQF_MIXED_MERGE))
71 #define RQF_DONTPREP		((__force req_flags_t)(1 << __RQF_DONTPREP))
72 #define RQF_SCHED_TAGS		((__force req_flags_t)(1 << __RQF_SCHED_TAGS))
73 #define RQF_USE_SCHED		((__force req_flags_t)(1 << __RQF_USE_SCHED))
74 #define RQF_FAILED		((__force req_flags_t)(1 << __RQF_FAILED))
75 #define RQF_QUIET		((__force req_flags_t)(1 << __RQF_QUIET))
76 #define RQF_IO_STAT		((__force req_flags_t)(1 << __RQF_IO_STAT))
77 #define RQF_PM			((__force req_flags_t)(1 << __RQF_PM))
78 #define RQF_HASHED		((__force req_flags_t)(1 << __RQF_HASHED))
79 #define RQF_STATS		((__force req_flags_t)(1 << __RQF_STATS))
80 #define RQF_SPECIAL_PAYLOAD	\
81 			((__force req_flags_t)(1 << __RQF_SPECIAL_PAYLOAD))
82 #define RQF_ZONE_WRITE_PLUGGING	\
83 			((__force req_flags_t)(1 << __RQF_ZONE_WRITE_PLUGGING))
84 #define RQF_TIMED_OUT		((__force req_flags_t)(1 << __RQF_TIMED_OUT))
85 #define RQF_RESV		((__force req_flags_t)(1 << __RQF_RESV))
86 
87 /* flags that prevent us from merging requests: */
88 #define RQF_NOMERGE_FLAGS \
89 	(RQF_STARTED | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD)
90 
91 enum mq_rq_state {
92 	MQ_RQ_IDLE		= 0,
93 	MQ_RQ_IN_FLIGHT		= 1,
94 	MQ_RQ_COMPLETE		= 2,
95 };
96 
97 /*
98  * Try to put the fields that are referenced together in the same cacheline.
99  *
100  * If you modify this structure, make sure to update blk_rq_init() and
101  * especially blk_mq_rq_ctx_init() to take care of the added fields.
102  */
103 struct request {
104 	struct request_queue *q;
105 	struct blk_mq_ctx *mq_ctx;
106 	struct blk_mq_hw_ctx *mq_hctx;
107 
108 	blk_opf_t cmd_flags;		/* op and common flags */
109 	req_flags_t rq_flags;
110 
111 	int tag;
112 	int internal_tag;
113 
114 	unsigned int timeout;
115 
116 	/* the following two fields are internal, NEVER access directly */
117 	unsigned int __data_len;	/* total data len */
118 	sector_t __sector;		/* sector cursor */
119 
120 	struct bio *bio;
121 	struct bio *biotail;
122 
123 	union {
124 		struct list_head queuelist;
125 		struct request *rq_next;
126 	};
127 
128 	struct block_device *part;
129 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
130 	/* Time that the first bio started allocating this request. */
131 	u64 alloc_time_ns;
132 #endif
133 	/* Time that this request was allocated for this IO. */
134 	u64 start_time_ns;
135 	/* Time that I/O was submitted to the device. */
136 	u64 io_start_time_ns;
137 
138 #ifdef CONFIG_BLK_WBT
139 	unsigned short wbt_flags;
140 #endif
141 	/*
142 	 * rq sectors used for blk stats. It has the same value
143 	 * with blk_rq_sectors(rq), except that it never be zeroed
144 	 * by completion.
145 	 */
146 	unsigned short stats_sectors;
147 
148 	/*
149 	 * Number of scatter-gather DMA addr+len pairs after
150 	 * physical address coalescing is performed.
151 	 */
152 	unsigned short nr_phys_segments;
153 	unsigned short nr_integrity_segments;
154 
155 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
156 	struct bio_crypt_ctx *crypt_ctx;
157 	struct blk_crypto_keyslot *crypt_keyslot;
158 #endif
159 
160 	enum mq_rq_state state;
161 	atomic_t ref;
162 
163 	unsigned long deadline;
164 
165 	/*
166 	 * The hash is used inside the scheduler, and killed once the
167 	 * request reaches the dispatch list. The ipi_list is only used
168 	 * to queue the request for softirq completion, which is long
169 	 * after the request has been unhashed (and even removed from
170 	 * the dispatch list).
171 	 */
172 	union {
173 		struct hlist_node hash;	/* merge hash */
174 		struct llist_node ipi_list;
175 	};
176 
177 	/*
178 	 * The rb_node is only used inside the io scheduler, requests
179 	 * are pruned when moved to the dispatch queue. special_vec must
180 	 * only be used if RQF_SPECIAL_PAYLOAD is set, and those cannot be
181 	 * insert into an IO scheduler.
182 	 */
183 	union {
184 		struct rb_node rb_node;	/* sort/lookup */
185 		struct bio_vec special_vec;
186 	};
187 
188 	/*
189 	 * Three pointers are available for the IO schedulers, if they need
190 	 * more they have to dynamically allocate it.
191 	 */
192 	struct {
193 		struct io_cq		*icq;
194 		void			*priv[2];
195 	} elv;
196 
197 	struct {
198 		unsigned int		seq;
199 		rq_end_io_fn		*saved_end_io;
200 	} flush;
201 
202 	u64 fifo_time;
203 
204 	/*
205 	 * completion callback.
206 	 */
207 	rq_end_io_fn *end_io;
208 	void *end_io_data;
209 };
210 
req_op(const struct request * req)211 static inline enum req_op req_op(const struct request *req)
212 {
213 	return req->cmd_flags & REQ_OP_MASK;
214 }
215 
blk_rq_is_passthrough(struct request * rq)216 static inline bool blk_rq_is_passthrough(struct request *rq)
217 {
218 	return blk_op_is_passthrough(rq->cmd_flags);
219 }
220 
req_get_ioprio(struct request * req)221 static inline unsigned short req_get_ioprio(struct request *req)
222 {
223 	if (req->bio)
224 		return req->bio->bi_ioprio;
225 	return 0;
226 }
227 
228 #define rq_data_dir(rq)		(op_is_write(req_op(rq)) ? WRITE : READ)
229 
230 #define rq_dma_dir(rq) \
231 	(op_is_write(req_op(rq)) ? DMA_TO_DEVICE : DMA_FROM_DEVICE)
232 
rq_list_empty(const struct rq_list * rl)233 static inline int rq_list_empty(const struct rq_list *rl)
234 {
235 	return rl->head == NULL;
236 }
237 
rq_list_init(struct rq_list * rl)238 static inline void rq_list_init(struct rq_list *rl)
239 {
240 	rl->head = NULL;
241 	rl->tail = NULL;
242 }
243 
rq_list_add_tail(struct rq_list * rl,struct request * rq)244 static inline void rq_list_add_tail(struct rq_list *rl, struct request *rq)
245 {
246 	rq->rq_next = NULL;
247 	if (rl->tail)
248 		rl->tail->rq_next = rq;
249 	else
250 		rl->head = rq;
251 	rl->tail = rq;
252 }
253 
rq_list_add_head(struct rq_list * rl,struct request * rq)254 static inline void rq_list_add_head(struct rq_list *rl, struct request *rq)
255 {
256 	rq->rq_next = rl->head;
257 	rl->head = rq;
258 	if (!rl->tail)
259 		rl->tail = rq;
260 }
261 
rq_list_pop(struct rq_list * rl)262 static inline struct request *rq_list_pop(struct rq_list *rl)
263 {
264 	struct request *rq = rl->head;
265 
266 	if (rq) {
267 		rl->head = rl->head->rq_next;
268 		if (!rl->head)
269 			rl->tail = NULL;
270 		rq->rq_next = NULL;
271 	}
272 
273 	return rq;
274 }
275 
rq_list_peek(struct rq_list * rl)276 static inline struct request *rq_list_peek(struct rq_list *rl)
277 {
278 	return rl->head;
279 }
280 
281 #define rq_list_for_each(rl, pos)					\
282 	for (pos = rq_list_peek((rl)); (pos); pos = pos->rq_next)
283 
284 #define rq_list_for_each_safe(rl, pos, nxt)				\
285 	for (pos = rq_list_peek((rl)), nxt = pos->rq_next;		\
286 		pos; pos = nxt, nxt = pos ? pos->rq_next : NULL)
287 
288 /**
289  * enum blk_eh_timer_return - How the timeout handler should proceed
290  * @BLK_EH_DONE: The block driver completed the command or will complete it at
291  *	a later time.
292  * @BLK_EH_RESET_TIMER: Reset the request timer and continue waiting for the
293  *	request to complete.
294  */
295 enum blk_eh_timer_return {
296 	BLK_EH_DONE,
297 	BLK_EH_RESET_TIMER,
298 };
299 
300 /**
301  * struct blk_mq_hw_ctx - State for a hardware queue facing the hardware
302  * block device
303  */
304 struct blk_mq_hw_ctx {
305 	struct {
306 		/** @lock: Protects the dispatch list. */
307 		spinlock_t		lock;
308 		/**
309 		 * @dispatch: Used for requests that are ready to be
310 		 * dispatched to the hardware but for some reason (e.g. lack of
311 		 * resources) could not be sent to the hardware. As soon as the
312 		 * driver can send new requests, requests at this list will
313 		 * be sent first for a fairer dispatch.
314 		 */
315 		struct list_head	dispatch;
316 		 /**
317 		  * @state: BLK_MQ_S_* flags. Defines the state of the hw
318 		  * queue (active, scheduled to restart, stopped).
319 		  */
320 		unsigned long		state;
321 	} ____cacheline_aligned_in_smp;
322 
323 	/**
324 	 * @run_work: Used for scheduling a hardware queue run at a later time.
325 	 */
326 	struct delayed_work	run_work;
327 	/** @cpumask: Map of available CPUs where this hctx can run. */
328 	cpumask_var_t		cpumask;
329 	/**
330 	 * @next_cpu: Used by blk_mq_hctx_next_cpu() for round-robin CPU
331 	 * selection from @cpumask.
332 	 */
333 	int			next_cpu;
334 	/**
335 	 * @next_cpu_batch: Counter of how many works left in the batch before
336 	 * changing to the next CPU.
337 	 */
338 	int			next_cpu_batch;
339 
340 	/** @flags: BLK_MQ_F_* flags. Defines the behaviour of the queue. */
341 	unsigned long		flags;
342 
343 	/**
344 	 * @sched_data: Pointer owned by the IO scheduler attached to a request
345 	 * queue. It's up to the IO scheduler how to use this pointer.
346 	 */
347 	void			*sched_data;
348 	/**
349 	 * @queue: Pointer to the request queue that owns this hardware context.
350 	 */
351 	struct request_queue	*queue;
352 	/** @fq: Queue of requests that need to perform a flush operation. */
353 	struct blk_flush_queue	*fq;
354 
355 	/**
356 	 * @driver_data: Pointer to data owned by the block driver that created
357 	 * this hctx
358 	 */
359 	void			*driver_data;
360 
361 	/**
362 	 * @ctx_map: Bitmap for each software queue. If bit is on, there is a
363 	 * pending request in that software queue.
364 	 */
365 	struct sbitmap		ctx_map;
366 
367 	/**
368 	 * @dispatch_from: Software queue to be used when no scheduler was
369 	 * selected.
370 	 */
371 	struct blk_mq_ctx	*dispatch_from;
372 	/**
373 	 * @dispatch_busy: Number used by blk_mq_update_dispatch_busy() to
374 	 * decide if the hw_queue is busy using Exponential Weighted Moving
375 	 * Average algorithm.
376 	 */
377 	unsigned int		dispatch_busy;
378 
379 	/** @type: HCTX_TYPE_* flags. Type of hardware queue. */
380 	unsigned short		type;
381 	/** @nr_ctx: Number of software queues. */
382 	unsigned short		nr_ctx;
383 	/** @ctxs: Array of software queues. */
384 	struct blk_mq_ctx	**ctxs;
385 
386 	/** @dispatch_wait_lock: Lock for dispatch_wait queue. */
387 	spinlock_t		dispatch_wait_lock;
388 	/**
389 	 * @dispatch_wait: Waitqueue to put requests when there is no tag
390 	 * available at the moment, to wait for another try in the future.
391 	 */
392 	wait_queue_entry_t	dispatch_wait;
393 
394 	/**
395 	 * @wait_index: Index of next available dispatch_wait queue to insert
396 	 * requests.
397 	 */
398 	atomic_t		wait_index;
399 
400 	/**
401 	 * @tags: Tags owned by the block driver. A tag at this set is only
402 	 * assigned when a request is dispatched from a hardware queue.
403 	 */
404 	struct blk_mq_tags	*tags;
405 	/**
406 	 * @sched_tags: Tags owned by I/O scheduler. If there is an I/O
407 	 * scheduler associated with a request queue, a tag is assigned when
408 	 * that request is allocated. Else, this member is not used.
409 	 */
410 	struct blk_mq_tags	*sched_tags;
411 
412 	/** @numa_node: NUMA node the storage adapter has been connected to. */
413 	unsigned int		numa_node;
414 	/** @queue_num: Index of this hardware queue. */
415 	unsigned int		queue_num;
416 
417 	/**
418 	 * @nr_active: Number of active requests. Only used when a tag set is
419 	 * shared across request queues.
420 	 */
421 	atomic_t		nr_active;
422 
423 	/** @cpuhp_online: List to store request if CPU is going to die */
424 	struct hlist_node	cpuhp_online;
425 	/** @cpuhp_dead: List to store request if some CPU die. */
426 	struct hlist_node	cpuhp_dead;
427 	/** @kobj: Kernel object for sysfs. */
428 	struct kobject		kobj;
429 
430 #ifdef CONFIG_BLK_DEBUG_FS
431 	/**
432 	 * @debugfs_dir: debugfs directory for this hardware queue. Named
433 	 * as cpu<cpu_number>.
434 	 */
435 	struct dentry		*debugfs_dir;
436 	/** @sched_debugfs_dir:	debugfs directory for the scheduler. */
437 	struct dentry		*sched_debugfs_dir;
438 #endif
439 
440 	/**
441 	 * @hctx_list: if this hctx is not in use, this is an entry in
442 	 * q->unused_hctx_list.
443 	 */
444 	struct list_head	hctx_list;
445 };
446 
447 /**
448  * struct blk_mq_queue_map - Map software queues to hardware queues
449  * @mq_map:       CPU ID to hardware queue index map. This is an array
450  *	with nr_cpu_ids elements. Each element has a value in the range
451  *	[@queue_offset, @queue_offset + @nr_queues).
452  * @nr_queues:    Number of hardware queues to map CPU IDs onto.
453  * @queue_offset: First hardware queue to map onto. Used by the PCIe NVMe
454  *	driver to map each hardware queue type (enum hctx_type) onto a distinct
455  *	set of hardware queues.
456  */
457 struct blk_mq_queue_map {
458 	unsigned int *mq_map;
459 	unsigned int nr_queues;
460 	unsigned int queue_offset;
461 };
462 
463 /**
464  * enum hctx_type - Type of hardware queue
465  * @HCTX_TYPE_DEFAULT:	All I/O not otherwise accounted for.
466  * @HCTX_TYPE_READ:	Just for READ I/O.
467  * @HCTX_TYPE_POLL:	Polled I/O of any kind.
468  * @HCTX_MAX_TYPES:	Number of types of hctx.
469  */
470 enum hctx_type {
471 	HCTX_TYPE_DEFAULT,
472 	HCTX_TYPE_READ,
473 	HCTX_TYPE_POLL,
474 
475 	HCTX_MAX_TYPES,
476 };
477 
478 /**
479  * struct blk_mq_tag_set - tag set that can be shared between request queues
480  * @ops:	   Pointers to functions that implement block driver behavior.
481  * @map:	   One or more ctx -> hctx mappings. One map exists for each
482  *		   hardware queue type (enum hctx_type) that the driver wishes
483  *		   to support. There are no restrictions on maps being of the
484  *		   same size, and it's perfectly legal to share maps between
485  *		   types.
486  * @nr_maps:	   Number of elements in the @map array. A number in the range
487  *		   [1, HCTX_MAX_TYPES].
488  * @nr_hw_queues:  Number of hardware queues supported by the block driver that
489  *		   owns this data structure.
490  * @queue_depth:   Number of tags per hardware queue, reserved tags included.
491  * @reserved_tags: Number of tags to set aside for BLK_MQ_REQ_RESERVED tag
492  *		   allocations.
493  * @cmd_size:	   Number of additional bytes to allocate per request. The block
494  *		   driver owns these additional bytes.
495  * @numa_node:	   NUMA node the storage adapter has been connected to.
496  * @timeout:	   Request processing timeout in jiffies.
497  * @flags:	   Zero or more BLK_MQ_F_* flags.
498  * @driver_data:   Pointer to data owned by the block driver that created this
499  *		   tag set.
500  * @tags:	   Tag sets. One tag set per hardware queue. Has @nr_hw_queues
501  *		   elements.
502  * @shared_tags:
503  *		   Shared set of tags. Has @nr_hw_queues elements. If set,
504  *		   shared by all @tags.
505  * @tag_list_lock: Serializes tag_list accesses.
506  * @tag_list:	   List of the request queues that use this tag set. See also
507  *		   request_queue.tag_set_list.
508  * @srcu:	   Use as lock when type of the request queue is blocking
509  *		   (BLK_MQ_F_BLOCKING).
510  * @tags_srcu:	   SRCU used to defer freeing of tags page_list to prevent
511  *		   use-after-free when iterating tags.
512  * @update_nr_hwq_lock:
513  * 		   Synchronize updating nr_hw_queues with add/del disk &
514  * 		   switching elevator.
515  */
516 struct blk_mq_tag_set {
517 	const struct blk_mq_ops	*ops;
518 	struct blk_mq_queue_map	map[HCTX_MAX_TYPES];
519 	unsigned int		nr_maps;
520 	unsigned int		nr_hw_queues;
521 	unsigned int		queue_depth;
522 	unsigned int		reserved_tags;
523 	unsigned int		cmd_size;
524 	int			numa_node;
525 	unsigned int		timeout;
526 	unsigned int		flags;
527 	void			*driver_data;
528 
529 	struct blk_mq_tags	**tags;
530 
531 	struct blk_mq_tags	*shared_tags;
532 
533 	struct mutex		tag_list_lock;
534 	struct list_head	tag_list;
535 	struct srcu_struct	*srcu;
536 	struct srcu_struct	tags_srcu;
537 
538 	struct rw_semaphore	update_nr_hwq_lock;
539 };
540 
541 /**
542  * struct blk_mq_queue_data - Data about a request inserted in a queue
543  *
544  * @rq:   Request pointer.
545  * @last: If it is the last request in the queue.
546  */
547 struct blk_mq_queue_data {
548 	struct request *rq;
549 	bool last;
550 };
551 
552 typedef bool (busy_tag_iter_fn)(struct request *, void *);
553 
554 /**
555  * struct blk_mq_ops - Callback functions that implements block driver
556  * behaviour.
557  */
558 struct blk_mq_ops {
559 	/**
560 	 * @queue_rq: Queue a new request from block IO.
561 	 */
562 	blk_status_t (*queue_rq)(struct blk_mq_hw_ctx *,
563 				 const struct blk_mq_queue_data *);
564 
565 	/**
566 	 * @commit_rqs: If a driver uses bd->last to judge when to submit
567 	 * requests to hardware, it must define this function. In case of errors
568 	 * that make us stop issuing further requests, this hook serves the
569 	 * purpose of kicking the hardware (which the last request otherwise
570 	 * would have done).
571 	 */
572 	void (*commit_rqs)(struct blk_mq_hw_ctx *);
573 
574 	/**
575 	 * @queue_rqs: Queue a list of new requests. Driver is guaranteed
576 	 * that each request belongs to the same queue. If the driver doesn't
577 	 * empty the @rqlist completely, then the rest will be queued
578 	 * individually by the block layer upon return.
579 	 */
580 	void (*queue_rqs)(struct rq_list *rqlist);
581 
582 	/**
583 	 * @get_budget: Reserve budget before queue request, once .queue_rq is
584 	 * run, it is driver's responsibility to release the
585 	 * reserved budget. Also we have to handle failure case
586 	 * of .get_budget for avoiding I/O deadlock.
587 	 */
588 	int (*get_budget)(struct request_queue *);
589 
590 	/**
591 	 * @put_budget: Release the reserved budget.
592 	 */
593 	void (*put_budget)(struct request_queue *, int);
594 
595 	/**
596 	 * @set_rq_budget_token: store rq's budget token
597 	 */
598 	void (*set_rq_budget_token)(struct request *, int);
599 	/**
600 	 * @get_rq_budget_token: retrieve rq's budget token
601 	 */
602 	int (*get_rq_budget_token)(struct request *);
603 
604 	/**
605 	 * @timeout: Called on request timeout.
606 	 */
607 	enum blk_eh_timer_return (*timeout)(struct request *);
608 
609 	/**
610 	 * @poll: Called to poll for completion of a specific tag.
611 	 */
612 	int (*poll)(struct blk_mq_hw_ctx *, struct io_comp_batch *);
613 
614 	/**
615 	 * @complete: Mark the request as complete.
616 	 */
617 	void (*complete)(struct request *);
618 
619 	/**
620 	 * @init_hctx: Called when the block layer side of a hardware queue has
621 	 * been set up, allowing the driver to allocate/init matching
622 	 * structures.
623 	 */
624 	int (*init_hctx)(struct blk_mq_hw_ctx *, void *, unsigned int);
625 	/**
626 	 * @exit_hctx: Ditto for exit/teardown.
627 	 */
628 	void (*exit_hctx)(struct blk_mq_hw_ctx *, unsigned int);
629 
630 	/**
631 	 * @init_request: Called for every command allocated by the block layer
632 	 * to allow the driver to set up driver specific data.
633 	 *
634 	 * Tag greater than or equal to queue_depth is for setting up
635 	 * flush request.
636 	 */
637 	int (*init_request)(struct blk_mq_tag_set *set, struct request *,
638 			    unsigned int, unsigned int);
639 	/**
640 	 * @exit_request: Ditto for exit/teardown.
641 	 */
642 	void (*exit_request)(struct blk_mq_tag_set *set, struct request *,
643 			     unsigned int);
644 
645 	/**
646 	 * @cleanup_rq: Called before freeing one request which isn't completed
647 	 * yet, and usually for freeing the driver private data.
648 	 */
649 	void (*cleanup_rq)(struct request *);
650 
651 	/**
652 	 * @busy: If set, returns whether or not this queue currently is busy.
653 	 */
654 	bool (*busy)(struct request_queue *);
655 
656 	/**
657 	 * @map_queues: This allows drivers specify their own queue mapping by
658 	 * overriding the setup-time function that builds the mq_map.
659 	 */
660 	void (*map_queues)(struct blk_mq_tag_set *set);
661 
662 #ifdef CONFIG_BLK_DEBUG_FS
663 	/**
664 	 * @show_rq: Used by the debugfs implementation to show driver-specific
665 	 * information about a request.
666 	 */
667 	void (*show_rq)(struct seq_file *m, struct request *rq);
668 #endif
669 };
670 
671 /* Keep hctx_flag_name[] in sync with the definitions below */
672 enum {
673 	BLK_MQ_F_TAG_QUEUE_SHARED = 1 << 1,
674 	/*
675 	 * Set when this device requires underlying blk-mq device for
676 	 * completing IO:
677 	 */
678 	BLK_MQ_F_STACKING	= 1 << 2,
679 	BLK_MQ_F_TAG_HCTX_SHARED = 1 << 3,
680 	BLK_MQ_F_BLOCKING	= 1 << 4,
681 
682 	/*
683 	 * Alloc tags on a round-robin base instead of the first available one.
684 	 */
685 	BLK_MQ_F_TAG_RR		= 1 << 5,
686 
687 	/*
688 	 * Select 'none' during queue registration in case of a single hwq
689 	 * or shared hwqs instead of 'mq-deadline'.
690 	 */
691 	BLK_MQ_F_NO_SCHED_BY_DEFAULT	= 1 << 6,
692 
693 	BLK_MQ_F_MAX = 1 << 7,
694 };
695 
696 #define BLK_MQ_MAX_DEPTH	(10240)
697 #define BLK_MQ_NO_HCTX_IDX	(-1U)
698 
699 enum {
700 	/* Keep hctx_state_name[] in sync with the definitions below */
701 	BLK_MQ_S_STOPPED,
702 	BLK_MQ_S_TAG_ACTIVE,
703 	BLK_MQ_S_SCHED_RESTART,
704 	/* hw queue is inactive after all its CPUs become offline */
705 	BLK_MQ_S_INACTIVE,
706 	BLK_MQ_S_MAX
707 };
708 
709 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set,
710 		struct queue_limits *lim, void *queuedata,
711 		struct lock_class_key *lkclass);
712 #define blk_mq_alloc_disk(set, lim, queuedata)				\
713 ({									\
714 	static struct lock_class_key __key;				\
715 									\
716 	__blk_mq_alloc_disk(set, lim, queuedata, &__key);		\
717 })
718 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
719 		struct lock_class_key *lkclass);
720 struct request_queue *blk_mq_alloc_queue(struct blk_mq_tag_set *set,
721 		struct queue_limits *lim, void *queuedata);
722 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
723 		struct request_queue *q);
724 void blk_mq_destroy_queue(struct request_queue *);
725 
726 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set);
727 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
728 		const struct blk_mq_ops *ops, unsigned int queue_depth,
729 		unsigned int set_flags);
730 void blk_mq_free_tag_set(struct blk_mq_tag_set *set);
731 
732 void blk_mq_free_request(struct request *rq);
733 int blk_rq_poll(struct request *rq, struct io_comp_batch *iob,
734 		unsigned int poll_flags);
735 
736 bool blk_mq_queue_inflight(struct request_queue *q);
737 
738 enum {
739 	/* return when out of requests */
740 	BLK_MQ_REQ_NOWAIT	= (__force blk_mq_req_flags_t)(1 << 0),
741 	/* allocate from reserved pool */
742 	BLK_MQ_REQ_RESERVED	= (__force blk_mq_req_flags_t)(1 << 1),
743 	/* set RQF_PM */
744 	BLK_MQ_REQ_PM		= (__force blk_mq_req_flags_t)(1 << 2),
745 };
746 
747 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
748 		blk_mq_req_flags_t flags);
749 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
750 		blk_opf_t opf, blk_mq_req_flags_t flags,
751 		unsigned int hctx_idx);
752 
753 /*
754  * Tag address space map.
755  */
756 struct blk_mq_tags {
757 	unsigned int nr_tags;
758 	unsigned int nr_reserved_tags;
759 	unsigned int active_queues;
760 
761 	struct sbitmap_queue bitmap_tags;
762 	struct sbitmap_queue breserved_tags;
763 
764 	struct request **rqs;
765 	struct request **static_rqs;
766 	struct list_head page_list;
767 
768 	/*
769 	 * used to clear request reference in rqs[] before freeing one
770 	 * request pool
771 	 */
772 	spinlock_t lock;
773 	struct rcu_head rcu_head;
774 };
775 
blk_mq_tag_to_rq(struct blk_mq_tags * tags,unsigned int tag)776 static inline struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags,
777 					       unsigned int tag)
778 {
779 	if (tag < tags->nr_tags) {
780 		prefetch(tags->rqs[tag]);
781 		return tags->rqs[tag];
782 	}
783 
784 	return NULL;
785 }
786 
787 enum {
788 	BLK_MQ_UNIQUE_TAG_BITS = 16,
789 	BLK_MQ_UNIQUE_TAG_MASK = (1 << BLK_MQ_UNIQUE_TAG_BITS) - 1,
790 };
791 
792 u32 blk_mq_unique_tag(struct request *rq);
793 
blk_mq_unique_tag_to_hwq(u32 unique_tag)794 static inline u16 blk_mq_unique_tag_to_hwq(u32 unique_tag)
795 {
796 	return unique_tag >> BLK_MQ_UNIQUE_TAG_BITS;
797 }
798 
blk_mq_unique_tag_to_tag(u32 unique_tag)799 static inline u16 blk_mq_unique_tag_to_tag(u32 unique_tag)
800 {
801 	return unique_tag & BLK_MQ_UNIQUE_TAG_MASK;
802 }
803 
804 /**
805  * blk_mq_rq_state() - read the current MQ_RQ_* state of a request
806  * @rq: target request.
807  */
blk_mq_rq_state(struct request * rq)808 static inline enum mq_rq_state blk_mq_rq_state(struct request *rq)
809 {
810 	return READ_ONCE(rq->state);
811 }
812 
blk_mq_request_started(struct request * rq)813 static inline int blk_mq_request_started(struct request *rq)
814 {
815 	return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
816 }
817 
blk_mq_request_completed(struct request * rq)818 static inline int blk_mq_request_completed(struct request *rq)
819 {
820 	return blk_mq_rq_state(rq) == MQ_RQ_COMPLETE;
821 }
822 
823 /*
824  *
825  * Set the state to complete when completing a request from inside ->queue_rq.
826  * This is used by drivers that want to ensure special complete actions that
827  * need access to the request are called on failure, e.g. by nvme for
828  * multipathing.
829  */
blk_mq_set_request_complete(struct request * rq)830 static inline void blk_mq_set_request_complete(struct request *rq)
831 {
832 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
833 }
834 
835 /*
836  * Complete the request directly instead of deferring it to softirq or
837  * completing it another CPU. Useful in preemptible instead of an interrupt.
838  */
blk_mq_complete_request_direct(struct request * rq,void (* complete)(struct request * rq))839 static inline void blk_mq_complete_request_direct(struct request *rq,
840 		   void (*complete)(struct request *rq))
841 {
842 	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
843 	complete(rq);
844 }
845 
846 void blk_mq_start_request(struct request *rq);
847 void blk_mq_end_request(struct request *rq, blk_status_t error);
848 void __blk_mq_end_request(struct request *rq, blk_status_t error);
849 void blk_mq_end_request_batch(struct io_comp_batch *ib);
850 
851 /*
852  * Only need start/end time stamping if we have iostat or
853  * blk stats enabled, or using an IO scheduler.
854  */
blk_mq_need_time_stamp(struct request * rq)855 static inline bool blk_mq_need_time_stamp(struct request *rq)
856 {
857 	return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS | RQF_USE_SCHED));
858 }
859 
blk_mq_is_reserved_rq(struct request * rq)860 static inline bool blk_mq_is_reserved_rq(struct request *rq)
861 {
862 	return rq->rq_flags & RQF_RESV;
863 }
864 
865 /**
866  * blk_mq_add_to_batch() - add a request to the completion batch
867  * @req: The request to add to batch
868  * @iob: The batch to add the request
869  * @is_error: Specify true if the request failed with an error
870  * @complete: The completaion handler for the request
871  *
872  * Batched completions only work when there is no I/O error and no special
873  * ->end_io handler.
874  *
875  * Return: true when the request was added to the batch, otherwise false
876  */
blk_mq_add_to_batch(struct request * req,struct io_comp_batch * iob,bool is_error,void (* complete)(struct io_comp_batch *))877 static inline bool blk_mq_add_to_batch(struct request *req,
878 				       struct io_comp_batch *iob, bool is_error,
879 				       void (*complete)(struct io_comp_batch *))
880 {
881 	/*
882 	 * Check various conditions that exclude batch processing:
883 	 * 1) No batch container
884 	 * 2) Has scheduler data attached
885 	 * 3) Not a passthrough request and end_io set
886 	 * 4) Not a passthrough request and failed with an error
887 	 */
888 	if (!iob)
889 		return false;
890 	if (req->rq_flags & RQF_SCHED_TAGS)
891 		return false;
892 	if (!blk_rq_is_passthrough(req)) {
893 		if (req->end_io)
894 			return false;
895 		if (is_error)
896 			return false;
897 	}
898 
899 	if (!iob->complete)
900 		iob->complete = complete;
901 	else if (iob->complete != complete)
902 		return false;
903 	iob->need_ts |= blk_mq_need_time_stamp(req);
904 	rq_list_add_tail(&iob->req_list, req);
905 	return true;
906 }
907 
908 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list);
909 void blk_mq_kick_requeue_list(struct request_queue *q);
910 void blk_mq_delay_kick_requeue_list(struct request_queue *q, unsigned long msecs);
911 void blk_mq_complete_request(struct request *rq);
912 bool blk_mq_complete_request_remote(struct request *rq);
913 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx);
914 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx);
915 void blk_mq_stop_hw_queues(struct request_queue *q);
916 void blk_mq_start_hw_queues(struct request_queue *q);
917 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async);
918 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async);
919 void blk_mq_quiesce_queue(struct request_queue *q);
920 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set);
921 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set);
922 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set);
923 void blk_mq_unquiesce_queue(struct request_queue *q);
924 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs);
925 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async);
926 void blk_mq_run_hw_queues(struct request_queue *q, bool async);
927 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs);
928 void blk_mq_tagset_busy_iter(struct blk_mq_tag_set *tagset,
929 		busy_tag_iter_fn *fn, void *priv);
930 void blk_mq_tagset_wait_completed_request(struct blk_mq_tag_set *tagset);
931 void blk_mq_freeze_queue_nomemsave(struct request_queue *q);
932 void blk_mq_unfreeze_queue_nomemrestore(struct request_queue *q);
933 static inline unsigned int __must_check
blk_mq_freeze_queue(struct request_queue * q)934 blk_mq_freeze_queue(struct request_queue *q)
935 {
936 	unsigned int memflags = memalloc_noio_save();
937 
938 	blk_mq_freeze_queue_nomemsave(q);
939 	return memflags;
940 }
941 static inline void
blk_mq_unfreeze_queue(struct request_queue * q,unsigned int memflags)942 blk_mq_unfreeze_queue(struct request_queue *q, unsigned int memflags)
943 {
944 	blk_mq_unfreeze_queue_nomemrestore(q);
945 	memalloc_noio_restore(memflags);
946 }
947 void blk_freeze_queue_start(struct request_queue *q);
948 void blk_mq_freeze_queue_wait(struct request_queue *q);
949 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
950 				     unsigned long timeout);
951 void blk_mq_unfreeze_queue_non_owner(struct request_queue *q);
952 void blk_freeze_queue_start_non_owner(struct request_queue *q);
953 
954 unsigned int blk_mq_num_possible_queues(unsigned int max_queues);
955 unsigned int blk_mq_num_online_queues(unsigned int max_queues);
956 void blk_mq_map_queues(struct blk_mq_queue_map *qmap);
957 void blk_mq_map_hw_queues(struct blk_mq_queue_map *qmap,
958 			  struct device *dev, unsigned int offset);
959 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues);
960 
961 void blk_mq_quiesce_queue_nowait(struct request_queue *q);
962 
963 unsigned int blk_mq_rq_cpu(struct request *rq);
964 
965 bool __blk_should_fake_timeout(struct request_queue *q);
blk_should_fake_timeout(struct request_queue * q)966 static inline bool blk_should_fake_timeout(struct request_queue *q)
967 {
968 	if (IS_ENABLED(CONFIG_FAIL_IO_TIMEOUT) &&
969 	    test_bit(QUEUE_FLAG_FAIL_IO, &q->queue_flags))
970 		return __blk_should_fake_timeout(q);
971 	return false;
972 }
973 
974 /**
975  * blk_mq_rq_from_pdu - cast a PDU to a request
976  * @pdu: the PDU (Protocol Data Unit) to be casted
977  *
978  * Return: request
979  *
980  * Driver command data is immediately after the request. So subtract request
981  * size to get back to the original request.
982  */
blk_mq_rq_from_pdu(void * pdu)983 static inline struct request *blk_mq_rq_from_pdu(void *pdu)
984 {
985 	return pdu - sizeof(struct request);
986 }
987 
988 /**
989  * blk_mq_rq_to_pdu - cast a request to a PDU
990  * @rq: the request to be casted
991  *
992  * Return: pointer to the PDU
993  *
994  * Driver command data is immediately after the request. So add request to get
995  * the PDU.
996  */
blk_mq_rq_to_pdu(struct request * rq)997 static inline void *blk_mq_rq_to_pdu(struct request *rq)
998 {
999 	return rq + 1;
1000 }
1001 
1002 #define queue_for_each_hw_ctx(q, hctx, i)				\
1003 	xa_for_each(&(q)->hctx_table, (i), (hctx))
1004 
1005 #define hctx_for_each_ctx(hctx, ctx, i)					\
1006 	for ((i) = 0; (i) < (hctx)->nr_ctx &&				\
1007 	     ({ ctx = (hctx)->ctxs[(i)]; 1; }); (i)++)
1008 
blk_mq_cleanup_rq(struct request * rq)1009 static inline void blk_mq_cleanup_rq(struct request *rq)
1010 {
1011 	if (rq->q->mq_ops->cleanup_rq)
1012 		rq->q->mq_ops->cleanup_rq(rq);
1013 }
1014 
1015 void blk_mq_hctx_set_fq_lock_class(struct blk_mq_hw_ctx *hctx,
1016 		struct lock_class_key *key);
1017 
rq_is_sync(struct request * rq)1018 static inline bool rq_is_sync(struct request *rq)
1019 {
1020 	return op_is_sync(rq->cmd_flags);
1021 }
1022 
1023 void blk_rq_init(struct request_queue *q, struct request *rq);
1024 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
1025 		struct bio_set *bs, gfp_t gfp_mask,
1026 		int (*bio_ctr)(struct bio *, struct bio *, void *), void *data);
1027 void blk_rq_unprep_clone(struct request *rq);
1028 blk_status_t blk_insert_cloned_request(struct request *rq);
1029 
1030 struct rq_map_data {
1031 	struct page **pages;
1032 	unsigned long offset;
1033 	unsigned short page_order;
1034 	unsigned short nr_entries;
1035 	bool null_mapped;
1036 	bool from_user;
1037 };
1038 
1039 int blk_rq_map_user(struct request_queue *, struct request *,
1040 		struct rq_map_data *, void __user *, unsigned long, gfp_t);
1041 int blk_rq_map_user_io(struct request *, struct rq_map_data *,
1042 		void __user *, unsigned long, gfp_t, bool, int, bool, int);
1043 int blk_rq_map_user_iov(struct request_queue *, struct request *,
1044 		struct rq_map_data *, const struct iov_iter *, gfp_t);
1045 int blk_rq_unmap_user(struct bio *);
1046 int blk_rq_map_kern(struct request *rq, void *kbuf, unsigned int len,
1047 		gfp_t gfp);
1048 int blk_rq_append_bio(struct request *rq, struct bio *bio);
1049 void blk_execute_rq_nowait(struct request *rq, bool at_head);
1050 blk_status_t blk_execute_rq(struct request *rq, bool at_head);
1051 bool blk_rq_is_poll(struct request *rq);
1052 
1053 struct req_iterator {
1054 	struct bvec_iter iter;
1055 	struct bio *bio;
1056 };
1057 
1058 #define __rq_for_each_bio(_bio, rq)	\
1059 	if ((rq->bio))			\
1060 		for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next)
1061 
1062 #define rq_for_each_segment(bvl, _rq, _iter)			\
1063 	__rq_for_each_bio(_iter.bio, _rq)			\
1064 		bio_for_each_segment(bvl, _iter.bio, _iter.iter)
1065 
1066 #define rq_for_each_bvec(bvl, _rq, _iter)			\
1067 	__rq_for_each_bio(_iter.bio, _rq)			\
1068 		bio_for_each_bvec(bvl, _iter.bio, _iter.iter)
1069 
1070 #define rq_iter_last(bvec, _iter)				\
1071 		(_iter.bio->bi_next == NULL &&			\
1072 		 bio_iter_last(bvec, _iter.iter))
1073 
1074 /*
1075  * blk_rq_pos()			: the current sector
1076  * blk_rq_bytes()		: bytes left in the entire request
1077  * blk_rq_cur_bytes()		: bytes left in the current segment
1078  * blk_rq_sectors()		: sectors left in the entire request
1079  * blk_rq_cur_sectors()		: sectors left in the current segment
1080  * blk_rq_stats_sectors()	: sectors of the entire request used for stats
1081  */
blk_rq_pos(const struct request * rq)1082 static inline sector_t blk_rq_pos(const struct request *rq)
1083 {
1084 	return rq->__sector;
1085 }
1086 
blk_rq_bytes(const struct request * rq)1087 static inline unsigned int blk_rq_bytes(const struct request *rq)
1088 {
1089 	return rq->__data_len;
1090 }
1091 
blk_rq_cur_bytes(const struct request * rq)1092 static inline int blk_rq_cur_bytes(const struct request *rq)
1093 {
1094 	if (!rq->bio)
1095 		return 0;
1096 	if (!bio_has_data(rq->bio))	/* dataless requests such as discard */
1097 		return rq->bio->bi_iter.bi_size;
1098 	return bio_iovec(rq->bio).bv_len;
1099 }
1100 
blk_rq_sectors(const struct request * rq)1101 static inline unsigned int blk_rq_sectors(const struct request *rq)
1102 {
1103 	return blk_rq_bytes(rq) >> SECTOR_SHIFT;
1104 }
1105 
blk_rq_cur_sectors(const struct request * rq)1106 static inline unsigned int blk_rq_cur_sectors(const struct request *rq)
1107 {
1108 	return blk_rq_cur_bytes(rq) >> SECTOR_SHIFT;
1109 }
1110 
blk_rq_stats_sectors(const struct request * rq)1111 static inline unsigned int blk_rq_stats_sectors(const struct request *rq)
1112 {
1113 	return rq->stats_sectors;
1114 }
1115 
1116 /*
1117  * Some commands like WRITE SAME have a payload or data transfer size which
1118  * is different from the size of the request.  Any driver that supports such
1119  * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to
1120  * calculate the data transfer size.
1121  */
blk_rq_payload_bytes(struct request * rq)1122 static inline unsigned int blk_rq_payload_bytes(struct request *rq)
1123 {
1124 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1125 		return rq->special_vec.bv_len;
1126 	return blk_rq_bytes(rq);
1127 }
1128 
1129 /*
1130  * Return the first full biovec in the request.  The caller needs to check that
1131  * there are any bvecs before calling this helper.
1132  */
req_bvec(struct request * rq)1133 static inline struct bio_vec req_bvec(struct request *rq)
1134 {
1135 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1136 		return rq->special_vec;
1137 	return mp_bvec_iter_bvec(rq->bio->bi_io_vec, rq->bio->bi_iter);
1138 }
1139 
blk_rq_count_bios(struct request * rq)1140 static inline unsigned int blk_rq_count_bios(struct request *rq)
1141 {
1142 	unsigned int nr_bios = 0;
1143 	struct bio *bio;
1144 
1145 	__rq_for_each_bio(bio, rq)
1146 		nr_bios++;
1147 
1148 	return nr_bios;
1149 }
1150 
1151 void blk_steal_bios(struct bio_list *list, struct request *rq);
1152 
1153 /*
1154  * Request completion related functions.
1155  *
1156  * blk_update_request() completes given number of bytes and updates
1157  * the request without completing it.
1158  */
1159 bool blk_update_request(struct request *rq, blk_status_t error,
1160 			       unsigned int nr_bytes);
1161 void blk_abort_request(struct request *);
1162 
1163 /*
1164  * Number of physical segments as sent to the device.
1165  *
1166  * Normally this is the number of discontiguous data segments sent by the
1167  * submitter.  But for data-less command like discard we might have no
1168  * actual data segments submitted, but the driver might have to add it's
1169  * own special payload.  In that case we still return 1 here so that this
1170  * special payload will be mapped.
1171  */
blk_rq_nr_phys_segments(struct request * rq)1172 static inline unsigned short blk_rq_nr_phys_segments(struct request *rq)
1173 {
1174 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1175 		return 1;
1176 	return rq->nr_phys_segments;
1177 }
1178 
1179 /*
1180  * Number of discard segments (or ranges) the driver needs to fill in.
1181  * Each discard bio merged into a request is counted as one segment.
1182  */
blk_rq_nr_discard_segments(struct request * rq)1183 static inline unsigned short blk_rq_nr_discard_segments(struct request *rq)
1184 {
1185 	return max_t(unsigned short, rq->nr_phys_segments, 1);
1186 }
1187 
1188 int __blk_rq_map_sg(struct request *rq, struct scatterlist *sglist,
1189 		struct scatterlist **last_sg);
blk_rq_map_sg(struct request * rq,struct scatterlist * sglist)1190 static inline int blk_rq_map_sg(struct request *rq, struct scatterlist *sglist)
1191 {
1192 	struct scatterlist *last_sg = NULL;
1193 
1194 	return __blk_rq_map_sg(rq, sglist, &last_sg);
1195 }
1196 void blk_dump_rq_flags(struct request *, char *);
1197 
1198 #endif /* BLK_MQ_H */
1199