1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2019 Intel Corporation
4 */
5
6 #include <linux/string_helpers.h>
7
8 #include <drm/intel/i915_drm.h>
9
10 #include "display/intel_display.h"
11 #include "display/intel_display_irq.h"
12 #include "i915_drv.h"
13 #include "i915_irq.h"
14 #include "i915_reg.h"
15 #include "intel_breadcrumbs.h"
16 #include "intel_gt.h"
17 #include "intel_gt_clock_utils.h"
18 #include "intel_gt_irq.h"
19 #include "intel_gt_pm.h"
20 #include "intel_gt_pm_irq.h"
21 #include "intel_gt_print.h"
22 #include "intel_gt_regs.h"
23 #include "intel_mchbar_regs.h"
24 #include "intel_pcode.h"
25 #include "intel_rps.h"
26 #include "vlv_sideband.h"
27 #include "../../../platform/x86/intel_ips.h"
28
29 #define BUSY_MAX_EI 20u /* ms */
30
31 /*
32 * Lock protecting IPS related data structures
33 */
34 static DEFINE_SPINLOCK(mchdev_lock);
35
rps_to_gt(struct intel_rps * rps)36 static struct intel_gt *rps_to_gt(struct intel_rps *rps)
37 {
38 return container_of(rps, struct intel_gt, rps);
39 }
40
rps_to_i915(struct intel_rps * rps)41 static struct drm_i915_private *rps_to_i915(struct intel_rps *rps)
42 {
43 return rps_to_gt(rps)->i915;
44 }
45
rps_to_uncore(struct intel_rps * rps)46 static struct intel_uncore *rps_to_uncore(struct intel_rps *rps)
47 {
48 return rps_to_gt(rps)->uncore;
49 }
50
rps_to_slpc(struct intel_rps * rps)51 static struct intel_guc_slpc *rps_to_slpc(struct intel_rps *rps)
52 {
53 struct intel_gt *gt = rps_to_gt(rps);
54
55 return >_to_guc(gt)->slpc;
56 }
57
rps_uses_slpc(struct intel_rps * rps)58 static bool rps_uses_slpc(struct intel_rps *rps)
59 {
60 struct intel_gt *gt = rps_to_gt(rps);
61
62 return intel_uc_uses_guc_slpc(>->uc);
63 }
64
rps_pm_sanitize_mask(struct intel_rps * rps,u32 mask)65 static u32 rps_pm_sanitize_mask(struct intel_rps *rps, u32 mask)
66 {
67 return mask & ~rps->pm_intrmsk_mbz;
68 }
69
set(struct intel_uncore * uncore,i915_reg_t reg,u32 val)70 static void set(struct intel_uncore *uncore, i915_reg_t reg, u32 val)
71 {
72 intel_uncore_write_fw(uncore, reg, val);
73 }
74
rps_timer(struct timer_list * t)75 static void rps_timer(struct timer_list *t)
76 {
77 struct intel_rps *rps = from_timer(rps, t, timer);
78 struct intel_gt *gt = rps_to_gt(rps);
79 struct intel_engine_cs *engine;
80 ktime_t dt, last, timestamp;
81 enum intel_engine_id id;
82 s64 max_busy[3] = {};
83
84 timestamp = 0;
85 for_each_engine(engine, gt, id) {
86 s64 busy;
87 int i;
88
89 dt = intel_engine_get_busy_time(engine, ×tamp);
90 last = engine->stats.rps;
91 engine->stats.rps = dt;
92
93 busy = ktime_to_ns(ktime_sub(dt, last));
94 for (i = 0; i < ARRAY_SIZE(max_busy); i++) {
95 if (busy > max_busy[i])
96 swap(busy, max_busy[i]);
97 }
98 }
99 last = rps->pm_timestamp;
100 rps->pm_timestamp = timestamp;
101
102 if (intel_rps_is_active(rps)) {
103 s64 busy;
104 int i;
105
106 dt = ktime_sub(timestamp, last);
107
108 /*
109 * Our goal is to evaluate each engine independently, so we run
110 * at the lowest clocks required to sustain the heaviest
111 * workload. However, a task may be split into sequential
112 * dependent operations across a set of engines, such that
113 * the independent contributions do not account for high load,
114 * but overall the task is GPU bound. For example, consider
115 * video decode on vcs followed by colour post-processing
116 * on vecs, followed by general post-processing on rcs.
117 * Since multi-engines being active does imply a single
118 * continuous workload across all engines, we hedge our
119 * bets by only contributing a factor of the distributed
120 * load into our busyness calculation.
121 */
122 busy = max_busy[0];
123 for (i = 1; i < ARRAY_SIZE(max_busy); i++) {
124 if (!max_busy[i])
125 break;
126
127 busy += div_u64(max_busy[i], 1 << i);
128 }
129 GT_TRACE(gt,
130 "busy:%lld [%d%%], max:[%lld, %lld, %lld], interval:%d\n",
131 busy, (int)div64_u64(100 * busy, dt),
132 max_busy[0], max_busy[1], max_busy[2],
133 rps->pm_interval);
134
135 if (100 * busy > rps->power.up_threshold * dt &&
136 rps->cur_freq < rps->max_freq_softlimit) {
137 rps->pm_iir |= GEN6_PM_RP_UP_THRESHOLD;
138 rps->pm_interval = 1;
139 queue_work(gt->i915->unordered_wq, &rps->work);
140 } else if (100 * busy < rps->power.down_threshold * dt &&
141 rps->cur_freq > rps->min_freq_softlimit) {
142 rps->pm_iir |= GEN6_PM_RP_DOWN_THRESHOLD;
143 rps->pm_interval = 1;
144 queue_work(gt->i915->unordered_wq, &rps->work);
145 } else {
146 rps->last_adj = 0;
147 }
148
149 mod_timer(&rps->timer,
150 jiffies + msecs_to_jiffies(rps->pm_interval));
151 rps->pm_interval = min(rps->pm_interval * 2, BUSY_MAX_EI);
152 }
153 }
154
rps_start_timer(struct intel_rps * rps)155 static void rps_start_timer(struct intel_rps *rps)
156 {
157 rps->pm_timestamp = ktime_sub(ktime_get(), rps->pm_timestamp);
158 rps->pm_interval = 1;
159 mod_timer(&rps->timer, jiffies + 1);
160 }
161
rps_stop_timer(struct intel_rps * rps)162 static void rps_stop_timer(struct intel_rps *rps)
163 {
164 timer_delete_sync(&rps->timer);
165 rps->pm_timestamp = ktime_sub(ktime_get(), rps->pm_timestamp);
166 cancel_work_sync(&rps->work);
167 }
168
rps_pm_mask(struct intel_rps * rps,u8 val)169 static u32 rps_pm_mask(struct intel_rps *rps, u8 val)
170 {
171 u32 mask = 0;
172
173 /* We use UP_EI_EXPIRED interrupts for both up/down in manual mode */
174 if (val > rps->min_freq_softlimit)
175 mask |= (GEN6_PM_RP_UP_EI_EXPIRED |
176 GEN6_PM_RP_DOWN_THRESHOLD |
177 GEN6_PM_RP_DOWN_TIMEOUT);
178
179 if (val < rps->max_freq_softlimit)
180 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
181
182 mask &= rps->pm_events;
183
184 return rps_pm_sanitize_mask(rps, ~mask);
185 }
186
rps_reset_ei(struct intel_rps * rps)187 static void rps_reset_ei(struct intel_rps *rps)
188 {
189 memset(&rps->ei, 0, sizeof(rps->ei));
190 }
191
rps_enable_interrupts(struct intel_rps * rps)192 static void rps_enable_interrupts(struct intel_rps *rps)
193 {
194 struct intel_gt *gt = rps_to_gt(rps);
195
196 GEM_BUG_ON(rps_uses_slpc(rps));
197
198 GT_TRACE(gt, "interrupts:on rps->pm_events: %x, rps_pm_mask:%x\n",
199 rps->pm_events, rps_pm_mask(rps, rps->last_freq));
200
201 rps_reset_ei(rps);
202
203 spin_lock_irq(gt->irq_lock);
204 gen6_gt_pm_enable_irq(gt, rps->pm_events);
205 spin_unlock_irq(gt->irq_lock);
206
207 intel_uncore_write(gt->uncore,
208 GEN6_PMINTRMSK, rps_pm_mask(rps, rps->last_freq));
209 }
210
gen6_rps_reset_interrupts(struct intel_rps * rps)211 static void gen6_rps_reset_interrupts(struct intel_rps *rps)
212 {
213 gen6_gt_pm_reset_iir(rps_to_gt(rps), GEN6_PM_RPS_EVENTS);
214 }
215
gen11_rps_reset_interrupts(struct intel_rps * rps)216 static void gen11_rps_reset_interrupts(struct intel_rps *rps)
217 {
218 while (gen11_gt_reset_one_iir(rps_to_gt(rps), 0, GEN11_GTPM))
219 ;
220 }
221
rps_reset_interrupts(struct intel_rps * rps)222 static void rps_reset_interrupts(struct intel_rps *rps)
223 {
224 struct intel_gt *gt = rps_to_gt(rps);
225
226 spin_lock_irq(gt->irq_lock);
227 if (GRAPHICS_VER(gt->i915) >= 11)
228 gen11_rps_reset_interrupts(rps);
229 else
230 gen6_rps_reset_interrupts(rps);
231
232 rps->pm_iir = 0;
233 spin_unlock_irq(gt->irq_lock);
234 }
235
rps_disable_interrupts(struct intel_rps * rps)236 static void rps_disable_interrupts(struct intel_rps *rps)
237 {
238 struct intel_gt *gt = rps_to_gt(rps);
239
240 intel_uncore_write(gt->uncore,
241 GEN6_PMINTRMSK, rps_pm_sanitize_mask(rps, ~0u));
242
243 spin_lock_irq(gt->irq_lock);
244 gen6_gt_pm_disable_irq(gt, GEN6_PM_RPS_EVENTS);
245 spin_unlock_irq(gt->irq_lock);
246
247 intel_synchronize_irq(gt->i915);
248
249 /*
250 * Now that we will not be generating any more work, flush any
251 * outstanding tasks. As we are called on the RPS idle path,
252 * we will reset the GPU to minimum frequencies, so the current
253 * state of the worker can be discarded.
254 */
255 cancel_work_sync(&rps->work);
256
257 rps_reset_interrupts(rps);
258 GT_TRACE(gt, "interrupts:off\n");
259 }
260
261 static const struct cparams {
262 u16 i;
263 u16 t;
264 u16 m;
265 u16 c;
266 } cparams[] = {
267 { 1, 1333, 301, 28664 },
268 { 1, 1067, 294, 24460 },
269 { 1, 800, 294, 25192 },
270 { 0, 1333, 276, 27605 },
271 { 0, 1067, 276, 27605 },
272 { 0, 800, 231, 23784 },
273 };
274
gen5_rps_init(struct intel_rps * rps)275 static void gen5_rps_init(struct intel_rps *rps)
276 {
277 struct drm_i915_private *i915 = rps_to_i915(rps);
278 struct intel_uncore *uncore = rps_to_uncore(rps);
279 u8 fmax, fmin, fstart;
280 u32 rgvmodectl;
281 int c_m, i;
282
283 if (i915->fsb_freq <= 3200000)
284 c_m = 0;
285 else if (i915->fsb_freq <= 4800000)
286 c_m = 1;
287 else
288 c_m = 2;
289
290 for (i = 0; i < ARRAY_SIZE(cparams); i++) {
291 if (cparams[i].i == c_m &&
292 cparams[i].t == DIV_ROUND_CLOSEST(i915->mem_freq, 1000)) {
293 rps->ips.m = cparams[i].m;
294 rps->ips.c = cparams[i].c;
295 break;
296 }
297 }
298
299 rgvmodectl = intel_uncore_read(uncore, MEMMODECTL);
300
301 /* Set up min, max, and cur for interrupt handling */
302 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
303 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
304 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
305 MEMMODE_FSTART_SHIFT;
306 drm_dbg(&i915->drm, "fmax: %d, fmin: %d, fstart: %d\n",
307 fmax, fmin, fstart);
308
309 rps->min_freq = fmax;
310 rps->efficient_freq = fstart;
311 rps->max_freq = fmin;
312 }
313
314 static unsigned long
__ips_chipset_val(struct intel_ips * ips)315 __ips_chipset_val(struct intel_ips *ips)
316 {
317 struct intel_uncore *uncore =
318 rps_to_uncore(container_of(ips, struct intel_rps, ips));
319 unsigned long now = jiffies_to_msecs(jiffies), dt;
320 unsigned long result;
321 u64 total, delta;
322
323 lockdep_assert_held(&mchdev_lock);
324
325 /*
326 * Prevent division-by-zero if we are asking too fast.
327 * Also, we don't get interesting results if we are polling
328 * faster than once in 10ms, so just return the saved value
329 * in such cases.
330 */
331 dt = now - ips->last_time1;
332 if (dt <= 10)
333 return ips->chipset_power;
334
335 /* FIXME: handle per-counter overflow */
336 total = intel_uncore_read(uncore, DMIEC);
337 total += intel_uncore_read(uncore, DDREC);
338 total += intel_uncore_read(uncore, CSIEC);
339
340 delta = total - ips->last_count1;
341
342 result = div_u64(div_u64(ips->m * delta, dt) + ips->c, 10);
343
344 ips->last_count1 = total;
345 ips->last_time1 = now;
346
347 ips->chipset_power = result;
348
349 return result;
350 }
351
ips_mch_val(struct intel_uncore * uncore)352 static unsigned long ips_mch_val(struct intel_uncore *uncore)
353 {
354 unsigned int m, x, b;
355 u32 tsfs;
356
357 tsfs = intel_uncore_read(uncore, TSFS);
358 x = intel_uncore_read8(uncore, TR1);
359
360 b = tsfs & TSFS_INTR_MASK;
361 m = (tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT;
362
363 return m * x / 127 - b;
364 }
365
_pxvid_to_vd(u8 pxvid)366 static int _pxvid_to_vd(u8 pxvid)
367 {
368 if (pxvid == 0)
369 return 0;
370
371 if (pxvid >= 8 && pxvid < 31)
372 pxvid = 31;
373
374 return (pxvid + 2) * 125;
375 }
376
pvid_to_extvid(struct drm_i915_private * i915,u8 pxvid)377 static u32 pvid_to_extvid(struct drm_i915_private *i915, u8 pxvid)
378 {
379 const int vd = _pxvid_to_vd(pxvid);
380
381 if (INTEL_INFO(i915)->is_mobile)
382 return max(vd - 1125, 0);
383
384 return vd;
385 }
386
__gen5_ips_update(struct intel_ips * ips)387 static void __gen5_ips_update(struct intel_ips *ips)
388 {
389 struct intel_uncore *uncore =
390 rps_to_uncore(container_of(ips, struct intel_rps, ips));
391 u64 now, delta, dt;
392 u32 count;
393
394 lockdep_assert_held(&mchdev_lock);
395
396 now = ktime_get_raw_ns();
397 dt = now - ips->last_time2;
398 do_div(dt, NSEC_PER_MSEC);
399
400 /* Don't divide by 0 */
401 if (dt <= 10)
402 return;
403
404 count = intel_uncore_read(uncore, GFXEC);
405 delta = count - ips->last_count2;
406
407 ips->last_count2 = count;
408 ips->last_time2 = now;
409
410 /* More magic constants... */
411 ips->gfx_power = div_u64(delta * 1181, dt * 10);
412 }
413
gen5_rps_update(struct intel_rps * rps)414 static void gen5_rps_update(struct intel_rps *rps)
415 {
416 spin_lock_irq(&mchdev_lock);
417 __gen5_ips_update(&rps->ips);
418 spin_unlock_irq(&mchdev_lock);
419 }
420
gen5_invert_freq(struct intel_rps * rps,unsigned int val)421 static unsigned int gen5_invert_freq(struct intel_rps *rps,
422 unsigned int val)
423 {
424 /* Invert the frequency bin into an ips delay */
425 val = rps->max_freq - val;
426 val = rps->min_freq + val;
427
428 return val;
429 }
430
__gen5_rps_set(struct intel_rps * rps,u8 val)431 static int __gen5_rps_set(struct intel_rps *rps, u8 val)
432 {
433 struct intel_uncore *uncore = rps_to_uncore(rps);
434 u16 rgvswctl;
435
436 lockdep_assert_held(&mchdev_lock);
437
438 rgvswctl = intel_uncore_read16(uncore, MEMSWCTL);
439 if (rgvswctl & MEMCTL_CMD_STS) {
440 drm_dbg(&rps_to_i915(rps)->drm,
441 "gpu busy, RCS change rejected\n");
442 return -EBUSY; /* still busy with another command */
443 }
444
445 /* Invert the frequency bin into an ips delay */
446 val = gen5_invert_freq(rps, val);
447
448 rgvswctl =
449 (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
450 (val << MEMCTL_FREQ_SHIFT) |
451 MEMCTL_SFCAVM;
452 intel_uncore_write16(uncore, MEMSWCTL, rgvswctl);
453 intel_uncore_posting_read16(uncore, MEMSWCTL);
454
455 rgvswctl |= MEMCTL_CMD_STS;
456 intel_uncore_write16(uncore, MEMSWCTL, rgvswctl);
457
458 return 0;
459 }
460
gen5_rps_set(struct intel_rps * rps,u8 val)461 static int gen5_rps_set(struct intel_rps *rps, u8 val)
462 {
463 int err;
464
465 spin_lock_irq(&mchdev_lock);
466 err = __gen5_rps_set(rps, val);
467 spin_unlock_irq(&mchdev_lock);
468
469 return err;
470 }
471
intel_pxfreq(u32 vidfreq)472 static unsigned long intel_pxfreq(u32 vidfreq)
473 {
474 int div = (vidfreq & 0x3f0000) >> 16;
475 int post = (vidfreq & 0x3000) >> 12;
476 int pre = (vidfreq & 0x7);
477
478 if (!pre)
479 return 0;
480
481 return div * 133333 / (pre << post);
482 }
483
init_emon(struct intel_uncore * uncore)484 static unsigned int init_emon(struct intel_uncore *uncore)
485 {
486 u8 pxw[16];
487 int i;
488
489 /* Disable to program */
490 intel_uncore_write(uncore, ECR, 0);
491 intel_uncore_posting_read(uncore, ECR);
492
493 /* Program energy weights for various events */
494 intel_uncore_write(uncore, SDEW, 0x15040d00);
495 intel_uncore_write(uncore, CSIEW0, 0x007f0000);
496 intel_uncore_write(uncore, CSIEW1, 0x1e220004);
497 intel_uncore_write(uncore, CSIEW2, 0x04000004);
498
499 for (i = 0; i < 5; i++)
500 intel_uncore_write(uncore, PEW(i), 0);
501 for (i = 0; i < 3; i++)
502 intel_uncore_write(uncore, DEW(i), 0);
503
504 /* Program P-state weights to account for frequency power adjustment */
505 for (i = 0; i < 16; i++) {
506 u32 pxvidfreq = intel_uncore_read(uncore, PXVFREQ(i));
507 unsigned int freq = intel_pxfreq(pxvidfreq);
508 unsigned int vid =
509 (pxvidfreq & PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT;
510 unsigned int val;
511
512 val = vid * vid * freq / 1000 * 255;
513 val /= 127 * 127 * 900;
514
515 pxw[i] = val;
516 }
517 /* Render standby states get 0 weight */
518 pxw[14] = 0;
519 pxw[15] = 0;
520
521 for (i = 0; i < 4; i++) {
522 intel_uncore_write(uncore, PXW(i),
523 pxw[i * 4 + 0] << 24 |
524 pxw[i * 4 + 1] << 16 |
525 pxw[i * 4 + 2] << 8 |
526 pxw[i * 4 + 3] << 0);
527 }
528
529 /* Adjust magic regs to magic values (more experimental results) */
530 intel_uncore_write(uncore, OGW0, 0);
531 intel_uncore_write(uncore, OGW1, 0);
532 intel_uncore_write(uncore, EG0, 0x00007f00);
533 intel_uncore_write(uncore, EG1, 0x0000000e);
534 intel_uncore_write(uncore, EG2, 0x000e0000);
535 intel_uncore_write(uncore, EG3, 0x68000300);
536 intel_uncore_write(uncore, EG4, 0x42000000);
537 intel_uncore_write(uncore, EG5, 0x00140031);
538 intel_uncore_write(uncore, EG6, 0);
539 intel_uncore_write(uncore, EG7, 0);
540
541 for (i = 0; i < 8; i++)
542 intel_uncore_write(uncore, PXWL(i), 0);
543
544 /* Enable PMON + select events */
545 intel_uncore_write(uncore, ECR, 0x80000019);
546
547 return intel_uncore_read(uncore, LCFUSE02) & LCFUSE_HIV_MASK;
548 }
549
gen5_rps_enable(struct intel_rps * rps)550 static bool gen5_rps_enable(struct intel_rps *rps)
551 {
552 struct drm_i915_private *i915 = rps_to_i915(rps);
553 struct intel_uncore *uncore = rps_to_uncore(rps);
554 u8 fstart, vstart;
555 u32 rgvmodectl;
556
557 spin_lock_irq(&mchdev_lock);
558
559 rgvmodectl = intel_uncore_read(uncore, MEMMODECTL);
560
561 /* Enable temp reporting */
562 intel_uncore_write16(uncore, PMMISC,
563 intel_uncore_read16(uncore, PMMISC) | MCPPCE_EN);
564 intel_uncore_write16(uncore, TSC1,
565 intel_uncore_read16(uncore, TSC1) | TSE);
566
567 /* 100ms RC evaluation intervals */
568 intel_uncore_write(uncore, RCUPEI, 100000);
569 intel_uncore_write(uncore, RCDNEI, 100000);
570
571 /* Set max/min thresholds to 90ms and 80ms respectively */
572 intel_uncore_write(uncore, RCBMAXAVG, 90000);
573 intel_uncore_write(uncore, RCBMINAVG, 80000);
574
575 intel_uncore_write(uncore, MEMIHYST, 1);
576
577 /* Set up min, max, and cur for interrupt handling */
578 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
579 MEMMODE_FSTART_SHIFT;
580
581 vstart = (intel_uncore_read(uncore, PXVFREQ(fstart)) &
582 PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT;
583
584 intel_uncore_write(uncore,
585 MEMINTREN,
586 MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
587
588 intel_uncore_write(uncore, VIDSTART, vstart);
589 intel_uncore_posting_read(uncore, VIDSTART);
590
591 rgvmodectl |= MEMMODE_SWMODE_EN;
592 intel_uncore_write(uncore, MEMMODECTL, rgvmodectl);
593
594 if (wait_for_atomic((intel_uncore_read(uncore, MEMSWCTL) &
595 MEMCTL_CMD_STS) == 0, 10))
596 drm_err(&uncore->i915->drm,
597 "stuck trying to change perf mode\n");
598 mdelay(1);
599
600 __gen5_rps_set(rps, rps->cur_freq);
601
602 rps->ips.last_count1 = intel_uncore_read(uncore, DMIEC);
603 rps->ips.last_count1 += intel_uncore_read(uncore, DDREC);
604 rps->ips.last_count1 += intel_uncore_read(uncore, CSIEC);
605 rps->ips.last_time1 = jiffies_to_msecs(jiffies);
606
607 rps->ips.last_count2 = intel_uncore_read(uncore, GFXEC);
608 rps->ips.last_time2 = ktime_get_raw_ns();
609
610 spin_lock(&i915->irq_lock);
611 ilk_enable_display_irq(i915, DE_PCU_EVENT);
612 spin_unlock(&i915->irq_lock);
613
614 spin_unlock_irq(&mchdev_lock);
615
616 rps->ips.corr = init_emon(uncore);
617
618 return true;
619 }
620
gen5_rps_disable(struct intel_rps * rps)621 static void gen5_rps_disable(struct intel_rps *rps)
622 {
623 struct drm_i915_private *i915 = rps_to_i915(rps);
624 struct intel_uncore *uncore = rps_to_uncore(rps);
625 u16 rgvswctl;
626
627 spin_lock_irq(&mchdev_lock);
628
629 spin_lock(&i915->irq_lock);
630 ilk_disable_display_irq(i915, DE_PCU_EVENT);
631 spin_unlock(&i915->irq_lock);
632
633 rgvswctl = intel_uncore_read16(uncore, MEMSWCTL);
634
635 /* Ack interrupts, disable EFC interrupt */
636 intel_uncore_rmw(uncore, MEMINTREN, MEMINT_EVAL_CHG_EN, 0);
637 intel_uncore_write(uncore, MEMINTRSTS, MEMINT_EVAL_CHG);
638
639 /* Go back to the starting frequency */
640 __gen5_rps_set(rps, rps->idle_freq);
641 mdelay(1);
642 rgvswctl |= MEMCTL_CMD_STS;
643 intel_uncore_write(uncore, MEMSWCTL, rgvswctl);
644 mdelay(1);
645
646 spin_unlock_irq(&mchdev_lock);
647 }
648
rps_limits(struct intel_rps * rps,u8 val)649 static u32 rps_limits(struct intel_rps *rps, u8 val)
650 {
651 u32 limits;
652
653 /*
654 * Only set the down limit when we've reached the lowest level to avoid
655 * getting more interrupts, otherwise leave this clear. This prevents a
656 * race in the hw when coming out of rc6: There's a tiny window where
657 * the hw runs at the minimal clock before selecting the desired
658 * frequency, if the down threshold expires in that window we will not
659 * receive a down interrupt.
660 */
661 if (GRAPHICS_VER(rps_to_i915(rps)) >= 9) {
662 limits = rps->max_freq_softlimit << 23;
663 if (val <= rps->min_freq_softlimit)
664 limits |= rps->min_freq_softlimit << 14;
665 } else {
666 limits = rps->max_freq_softlimit << 24;
667 if (val <= rps->min_freq_softlimit)
668 limits |= rps->min_freq_softlimit << 16;
669 }
670
671 return limits;
672 }
673
rps_set_power(struct intel_rps * rps,int new_power)674 static void rps_set_power(struct intel_rps *rps, int new_power)
675 {
676 struct intel_gt *gt = rps_to_gt(rps);
677 struct intel_uncore *uncore = gt->uncore;
678 u32 ei_up = 0, ei_down = 0;
679
680 lockdep_assert_held(&rps->power.mutex);
681
682 if (new_power == rps->power.mode)
683 return;
684
685 /* Note the units here are not exactly 1us, but 1280ns. */
686 switch (new_power) {
687 case LOW_POWER:
688 ei_up = 16000;
689 ei_down = 32000;
690 break;
691
692 case BETWEEN:
693 ei_up = 13000;
694 ei_down = 32000;
695 break;
696
697 case HIGH_POWER:
698 ei_up = 10000;
699 ei_down = 32000;
700 break;
701 }
702
703 /* When byt can survive without system hang with dynamic
704 * sw freq adjustments, this restriction can be lifted.
705 */
706 if (IS_VALLEYVIEW(gt->i915))
707 goto skip_hw_write;
708
709 GT_TRACE(gt,
710 "changing power mode [%d], up %d%% @ %dus, down %d%% @ %dus\n",
711 new_power,
712 rps->power.up_threshold, ei_up,
713 rps->power.down_threshold, ei_down);
714
715 set(uncore, GEN6_RP_UP_EI,
716 intel_gt_ns_to_pm_interval(gt, ei_up * 1000));
717 set(uncore, GEN6_RP_UP_THRESHOLD,
718 intel_gt_ns_to_pm_interval(gt,
719 ei_up * rps->power.up_threshold * 10));
720
721 set(uncore, GEN6_RP_DOWN_EI,
722 intel_gt_ns_to_pm_interval(gt, ei_down * 1000));
723 set(uncore, GEN6_RP_DOWN_THRESHOLD,
724 intel_gt_ns_to_pm_interval(gt,
725 ei_down *
726 rps->power.down_threshold * 10));
727
728 set(uncore, GEN6_RP_CONTROL,
729 (GRAPHICS_VER(gt->i915) > 9 ? 0 : GEN6_RP_MEDIA_TURBO) |
730 GEN6_RP_MEDIA_HW_NORMAL_MODE |
731 GEN6_RP_MEDIA_IS_GFX |
732 GEN6_RP_ENABLE |
733 GEN6_RP_UP_BUSY_AVG |
734 GEN6_RP_DOWN_IDLE_AVG);
735
736 skip_hw_write:
737 rps->power.mode = new_power;
738 }
739
gen6_rps_set_thresholds(struct intel_rps * rps,u8 val)740 static void gen6_rps_set_thresholds(struct intel_rps *rps, u8 val)
741 {
742 int new_power;
743
744 new_power = rps->power.mode;
745 switch (rps->power.mode) {
746 case LOW_POWER:
747 if (val > rps->efficient_freq + 1 &&
748 val > rps->cur_freq)
749 new_power = BETWEEN;
750 break;
751
752 case BETWEEN:
753 if (val <= rps->efficient_freq &&
754 val < rps->cur_freq)
755 new_power = LOW_POWER;
756 else if (val >= rps->rp0_freq &&
757 val > rps->cur_freq)
758 new_power = HIGH_POWER;
759 break;
760
761 case HIGH_POWER:
762 if (val < (rps->rp1_freq + rps->rp0_freq) >> 1 &&
763 val < rps->cur_freq)
764 new_power = BETWEEN;
765 break;
766 }
767 /* Max/min bins are special */
768 if (val <= rps->min_freq_softlimit)
769 new_power = LOW_POWER;
770 if (val >= rps->max_freq_softlimit)
771 new_power = HIGH_POWER;
772
773 mutex_lock(&rps->power.mutex);
774 if (rps->power.interactive)
775 new_power = HIGH_POWER;
776 rps_set_power(rps, new_power);
777 mutex_unlock(&rps->power.mutex);
778 }
779
intel_rps_mark_interactive(struct intel_rps * rps,bool interactive)780 void intel_rps_mark_interactive(struct intel_rps *rps, bool interactive)
781 {
782 GT_TRACE(rps_to_gt(rps), "mark interactive: %s\n",
783 str_yes_no(interactive));
784
785 mutex_lock(&rps->power.mutex);
786 if (interactive) {
787 if (!rps->power.interactive++ && intel_rps_is_active(rps))
788 rps_set_power(rps, HIGH_POWER);
789 } else {
790 GEM_BUG_ON(!rps->power.interactive);
791 rps->power.interactive--;
792 }
793 mutex_unlock(&rps->power.mutex);
794 }
795
gen6_rps_set(struct intel_rps * rps,u8 val)796 static int gen6_rps_set(struct intel_rps *rps, u8 val)
797 {
798 struct intel_uncore *uncore = rps_to_uncore(rps);
799 struct drm_i915_private *i915 = rps_to_i915(rps);
800 u32 swreq;
801
802 GEM_BUG_ON(rps_uses_slpc(rps));
803
804 if (GRAPHICS_VER(i915) >= 9)
805 swreq = GEN9_FREQUENCY(val);
806 else if (IS_HASWELL(i915) || IS_BROADWELL(i915))
807 swreq = HSW_FREQUENCY(val);
808 else
809 swreq = (GEN6_FREQUENCY(val) |
810 GEN6_OFFSET(0) |
811 GEN6_AGGRESSIVE_TURBO);
812 set(uncore, GEN6_RPNSWREQ, swreq);
813
814 GT_TRACE(rps_to_gt(rps), "set val:%x, freq:%d, swreq:%x\n",
815 val, intel_gpu_freq(rps, val), swreq);
816
817 return 0;
818 }
819
vlv_rps_set(struct intel_rps * rps,u8 val)820 static int vlv_rps_set(struct intel_rps *rps, u8 val)
821 {
822 struct drm_i915_private *i915 = rps_to_i915(rps);
823 int err;
824
825 vlv_punit_get(i915);
826 err = vlv_punit_write(i915, PUNIT_REG_GPU_FREQ_REQ, val);
827 vlv_punit_put(i915);
828
829 GT_TRACE(rps_to_gt(rps), "set val:%x, freq:%d\n",
830 val, intel_gpu_freq(rps, val));
831
832 return err;
833 }
834
rps_set(struct intel_rps * rps,u8 val,bool update)835 static int rps_set(struct intel_rps *rps, u8 val, bool update)
836 {
837 struct drm_i915_private *i915 = rps_to_i915(rps);
838 int err;
839
840 if (val == rps->last_freq)
841 return 0;
842
843 if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915))
844 err = vlv_rps_set(rps, val);
845 else if (GRAPHICS_VER(i915) >= 6)
846 err = gen6_rps_set(rps, val);
847 else
848 err = gen5_rps_set(rps, val);
849 if (err)
850 return err;
851
852 if (update && GRAPHICS_VER(i915) >= 6)
853 gen6_rps_set_thresholds(rps, val);
854 rps->last_freq = val;
855
856 return 0;
857 }
858
intel_rps_unpark(struct intel_rps * rps)859 void intel_rps_unpark(struct intel_rps *rps)
860 {
861 if (!intel_rps_is_enabled(rps))
862 return;
863
864 GT_TRACE(rps_to_gt(rps), "unpark:%x\n", rps->cur_freq);
865
866 /*
867 * Use the user's desired frequency as a guide, but for better
868 * performance, jump directly to RPe as our starting frequency.
869 */
870 mutex_lock(&rps->lock);
871
872 intel_rps_set_active(rps);
873 intel_rps_set(rps,
874 clamp(rps->cur_freq,
875 rps->min_freq_softlimit,
876 rps->max_freq_softlimit));
877
878 mutex_unlock(&rps->lock);
879
880 rps->pm_iir = 0;
881 if (intel_rps_has_interrupts(rps))
882 rps_enable_interrupts(rps);
883 if (intel_rps_uses_timer(rps))
884 rps_start_timer(rps);
885
886 if (GRAPHICS_VER(rps_to_i915(rps)) == 5)
887 gen5_rps_update(rps);
888 }
889
intel_rps_park(struct intel_rps * rps)890 void intel_rps_park(struct intel_rps *rps)
891 {
892 int adj;
893
894 if (!intel_rps_is_enabled(rps))
895 return;
896
897 if (!intel_rps_clear_active(rps))
898 return;
899
900 if (intel_rps_uses_timer(rps))
901 rps_stop_timer(rps);
902 if (intel_rps_has_interrupts(rps))
903 rps_disable_interrupts(rps);
904
905 if (rps->last_freq <= rps->idle_freq)
906 return;
907
908 /*
909 * The punit delays the write of the frequency and voltage until it
910 * determines the GPU is awake. During normal usage we don't want to
911 * waste power changing the frequency if the GPU is sleeping (rc6).
912 * However, the GPU and driver is now idle and we do not want to delay
913 * switching to minimum voltage (reducing power whilst idle) as we do
914 * not expect to be woken in the near future and so must flush the
915 * change by waking the device.
916 *
917 * We choose to take the media powerwell (either would do to trick the
918 * punit into committing the voltage change) as that takes a lot less
919 * power than the render powerwell.
920 */
921 intel_uncore_forcewake_get(rps_to_uncore(rps), FORCEWAKE_MEDIA);
922 rps_set(rps, rps->idle_freq, false);
923 intel_uncore_forcewake_put(rps_to_uncore(rps), FORCEWAKE_MEDIA);
924
925 /*
926 * Since we will try and restart from the previously requested
927 * frequency on unparking, treat this idle point as a downclock
928 * interrupt and reduce the frequency for resume. If we park/unpark
929 * more frequently than the rps worker can run, we will not respond
930 * to any EI and never see a change in frequency.
931 *
932 * (Note we accommodate Cherryview's limitation of only using an
933 * even bin by applying it to all.)
934 */
935 adj = rps->last_adj;
936 if (adj < 0)
937 adj *= 2;
938 else /* CHV needs even encode values */
939 adj = -2;
940 rps->last_adj = adj;
941 rps->cur_freq = max_t(int, rps->cur_freq + adj, rps->min_freq);
942 if (rps->cur_freq < rps->efficient_freq) {
943 rps->cur_freq = rps->efficient_freq;
944 rps->last_adj = 0;
945 }
946
947 GT_TRACE(rps_to_gt(rps), "park:%x\n", rps->cur_freq);
948 }
949
intel_rps_get_boost_frequency(struct intel_rps * rps)950 u32 intel_rps_get_boost_frequency(struct intel_rps *rps)
951 {
952 struct intel_guc_slpc *slpc;
953
954 if (rps_uses_slpc(rps)) {
955 slpc = rps_to_slpc(rps);
956
957 return slpc->boost_freq;
958 } else {
959 return intel_gpu_freq(rps, rps->boost_freq);
960 }
961 }
962
rps_set_boost_freq(struct intel_rps * rps,u32 val)963 static int rps_set_boost_freq(struct intel_rps *rps, u32 val)
964 {
965 bool boost = false;
966
967 /* Validate against (static) hardware limits */
968 val = intel_freq_opcode(rps, val);
969 if (val < rps->min_freq || val > rps->max_freq)
970 return -EINVAL;
971
972 mutex_lock(&rps->lock);
973 if (val != rps->boost_freq) {
974 rps->boost_freq = val;
975 boost = atomic_read(&rps->num_waiters);
976 }
977 mutex_unlock(&rps->lock);
978 if (boost)
979 queue_work(rps_to_gt(rps)->i915->unordered_wq, &rps->work);
980
981 return 0;
982 }
983
intel_rps_set_boost_frequency(struct intel_rps * rps,u32 freq)984 int intel_rps_set_boost_frequency(struct intel_rps *rps, u32 freq)
985 {
986 struct intel_guc_slpc *slpc;
987
988 if (rps_uses_slpc(rps)) {
989 slpc = rps_to_slpc(rps);
990
991 return intel_guc_slpc_set_boost_freq(slpc, freq);
992 } else {
993 return rps_set_boost_freq(rps, freq);
994 }
995 }
996
intel_rps_dec_waiters(struct intel_rps * rps)997 void intel_rps_dec_waiters(struct intel_rps *rps)
998 {
999 struct intel_guc_slpc *slpc;
1000
1001 if (rps_uses_slpc(rps)) {
1002 slpc = rps_to_slpc(rps);
1003
1004 /* Don't decrement num_waiters for req where increment was skipped */
1005 if (slpc->power_profile == SLPC_POWER_PROFILES_POWER_SAVING)
1006 return;
1007
1008 intel_guc_slpc_dec_waiters(slpc);
1009 } else {
1010 atomic_dec(&rps->num_waiters);
1011 }
1012 }
1013
intel_rps_boost(struct i915_request * rq)1014 void intel_rps_boost(struct i915_request *rq)
1015 {
1016 struct intel_guc_slpc *slpc;
1017
1018 if (i915_request_signaled(rq) || i915_request_has_waitboost(rq))
1019 return;
1020
1021 /* Waitboost is not needed for contexts marked with a Freq hint */
1022 if (test_bit(CONTEXT_LOW_LATENCY, &rq->context->flags))
1023 return;
1024
1025 /* Serializes with i915_request_retire() */
1026 if (!test_and_set_bit(I915_FENCE_FLAG_BOOST, &rq->fence.flags)) {
1027 struct intel_rps *rps = &READ_ONCE(rq->engine)->gt->rps;
1028
1029 if (rps_uses_slpc(rps)) {
1030 slpc = rps_to_slpc(rps);
1031
1032 /* Waitboost should not be done with power saving profile */
1033 if (slpc->power_profile == SLPC_POWER_PROFILES_POWER_SAVING)
1034 return;
1035
1036 /* Return if old value is non zero */
1037 if (!atomic_fetch_inc(&slpc->num_waiters)) {
1038 /*
1039 * Skip queuing boost work if frequency is already boosted,
1040 * but still increment num_waiters.
1041 */
1042 if (slpc->min_freq_softlimit >= slpc->boost_freq)
1043 return;
1044
1045 GT_TRACE(rps_to_gt(rps), "boost fence:%llx:%llx\n",
1046 rq->fence.context, rq->fence.seqno);
1047 queue_work(rps_to_gt(rps)->i915->unordered_wq,
1048 &slpc->boost_work);
1049 }
1050
1051 return;
1052 }
1053
1054 if (atomic_fetch_inc(&rps->num_waiters))
1055 return;
1056
1057 if (!intel_rps_is_active(rps))
1058 return;
1059
1060 GT_TRACE(rps_to_gt(rps), "boost fence:%llx:%llx\n",
1061 rq->fence.context, rq->fence.seqno);
1062
1063 if (READ_ONCE(rps->cur_freq) < rps->boost_freq)
1064 queue_work(rps_to_gt(rps)->i915->unordered_wq, &rps->work);
1065
1066 WRITE_ONCE(rps->boosts, rps->boosts + 1); /* debug only */
1067 }
1068 }
1069
intel_rps_set(struct intel_rps * rps,u8 val)1070 int intel_rps_set(struct intel_rps *rps, u8 val)
1071 {
1072 int err;
1073
1074 lockdep_assert_held(&rps->lock);
1075 GEM_BUG_ON(val > rps->max_freq);
1076 GEM_BUG_ON(val < rps->min_freq);
1077
1078 if (intel_rps_is_active(rps)) {
1079 err = rps_set(rps, val, true);
1080 if (err)
1081 return err;
1082
1083 /*
1084 * Make sure we continue to get interrupts
1085 * until we hit the minimum or maximum frequencies.
1086 */
1087 if (intel_rps_has_interrupts(rps)) {
1088 struct intel_uncore *uncore = rps_to_uncore(rps);
1089
1090 set(uncore,
1091 GEN6_RP_INTERRUPT_LIMITS, rps_limits(rps, val));
1092
1093 set(uncore, GEN6_PMINTRMSK, rps_pm_mask(rps, val));
1094 }
1095 }
1096
1097 rps->cur_freq = val;
1098 return 0;
1099 }
1100
intel_rps_read_state_cap(struct intel_rps * rps)1101 static u32 intel_rps_read_state_cap(struct intel_rps *rps)
1102 {
1103 struct drm_i915_private *i915 = rps_to_i915(rps);
1104 struct intel_uncore *uncore = rps_to_uncore(rps);
1105
1106 if (IS_GEN9_LP(i915))
1107 return intel_uncore_read(uncore, BXT_RP_STATE_CAP);
1108 else
1109 return intel_uncore_read(uncore, GEN6_RP_STATE_CAP);
1110 }
1111
1112 static void
mtl_get_freq_caps(struct intel_rps * rps,struct intel_rps_freq_caps * caps)1113 mtl_get_freq_caps(struct intel_rps *rps, struct intel_rps_freq_caps *caps)
1114 {
1115 struct intel_uncore *uncore = rps_to_uncore(rps);
1116 u32 rp_state_cap = rps_to_gt(rps)->type == GT_MEDIA ?
1117 intel_uncore_read(uncore, MTL_MEDIAP_STATE_CAP) :
1118 intel_uncore_read(uncore, MTL_RP_STATE_CAP);
1119 u32 rpe = rps_to_gt(rps)->type == GT_MEDIA ?
1120 intel_uncore_read(uncore, MTL_MPE_FREQUENCY) :
1121 intel_uncore_read(uncore, MTL_GT_RPE_FREQUENCY);
1122
1123 /* MTL values are in units of 16.67 MHz */
1124 caps->rp0_freq = REG_FIELD_GET(MTL_RP0_CAP_MASK, rp_state_cap);
1125 caps->min_freq = REG_FIELD_GET(MTL_RPN_CAP_MASK, rp_state_cap);
1126 caps->rp1_freq = REG_FIELD_GET(MTL_RPE_MASK, rpe);
1127 }
1128
1129 static void
__gen6_rps_get_freq_caps(struct intel_rps * rps,struct intel_rps_freq_caps * caps)1130 __gen6_rps_get_freq_caps(struct intel_rps *rps, struct intel_rps_freq_caps *caps)
1131 {
1132 struct drm_i915_private *i915 = rps_to_i915(rps);
1133 u32 rp_state_cap;
1134
1135 rp_state_cap = intel_rps_read_state_cap(rps);
1136
1137 /* static values from HW: RP0 > RP1 > RPn (min_freq) */
1138 if (IS_GEN9_LP(i915)) {
1139 caps->rp0_freq = (rp_state_cap >> 16) & 0xff;
1140 caps->rp1_freq = (rp_state_cap >> 8) & 0xff;
1141 caps->min_freq = (rp_state_cap >> 0) & 0xff;
1142 } else {
1143 caps->rp0_freq = (rp_state_cap >> 0) & 0xff;
1144 if (GRAPHICS_VER(i915) >= 10)
1145 caps->rp1_freq = REG_FIELD_GET(RPE_MASK,
1146 intel_uncore_read(to_gt(i915)->uncore,
1147 GEN10_FREQ_INFO_REC));
1148 else
1149 caps->rp1_freq = (rp_state_cap >> 8) & 0xff;
1150 caps->min_freq = (rp_state_cap >> 16) & 0xff;
1151 }
1152
1153 if (IS_GEN9_BC(i915) || GRAPHICS_VER(i915) >= 11) {
1154 /*
1155 * In this case rp_state_cap register reports frequencies in
1156 * units of 50 MHz. Convert these to the actual "hw unit", i.e.
1157 * units of 16.67 MHz
1158 */
1159 caps->rp0_freq *= GEN9_FREQ_SCALER;
1160 caps->rp1_freq *= GEN9_FREQ_SCALER;
1161 caps->min_freq *= GEN9_FREQ_SCALER;
1162 }
1163 }
1164
1165 /**
1166 * gen6_rps_get_freq_caps - Get freq caps exposed by HW
1167 * @rps: the intel_rps structure
1168 * @caps: returned freq caps
1169 *
1170 * Returned "caps" frequencies should be converted to MHz using
1171 * intel_gpu_freq()
1172 */
gen6_rps_get_freq_caps(struct intel_rps * rps,struct intel_rps_freq_caps * caps)1173 void gen6_rps_get_freq_caps(struct intel_rps *rps, struct intel_rps_freq_caps *caps)
1174 {
1175 struct drm_i915_private *i915 = rps_to_i915(rps);
1176
1177 if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70))
1178 return mtl_get_freq_caps(rps, caps);
1179 else
1180 return __gen6_rps_get_freq_caps(rps, caps);
1181 }
1182
gen6_rps_init(struct intel_rps * rps)1183 static void gen6_rps_init(struct intel_rps *rps)
1184 {
1185 struct drm_i915_private *i915 = rps_to_i915(rps);
1186 struct intel_rps_freq_caps caps;
1187
1188 gen6_rps_get_freq_caps(rps, &caps);
1189 rps->rp0_freq = caps.rp0_freq;
1190 rps->rp1_freq = caps.rp1_freq;
1191 rps->min_freq = caps.min_freq;
1192
1193 /* hw_max = RP0 until we check for overclocking */
1194 rps->max_freq = rps->rp0_freq;
1195
1196 rps->efficient_freq = rps->rp1_freq;
1197 if (IS_HASWELL(i915) || IS_BROADWELL(i915) ||
1198 IS_GEN9_BC(i915) || GRAPHICS_VER(i915) >= 11) {
1199 u32 ddcc_status = 0;
1200 u32 mult = 1;
1201
1202 if (IS_GEN9_BC(i915) || GRAPHICS_VER(i915) >= 11)
1203 mult = GEN9_FREQ_SCALER;
1204 if (snb_pcode_read(rps_to_gt(rps)->uncore,
1205 HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
1206 &ddcc_status, NULL) == 0)
1207 rps->efficient_freq =
1208 clamp_t(u32,
1209 ((ddcc_status >> 8) & 0xff) * mult,
1210 rps->min_freq,
1211 rps->max_freq);
1212 }
1213 }
1214
rps_reset(struct intel_rps * rps)1215 static bool rps_reset(struct intel_rps *rps)
1216 {
1217 struct drm_i915_private *i915 = rps_to_i915(rps);
1218
1219 /* force a reset */
1220 rps->power.mode = -1;
1221 rps->last_freq = -1;
1222
1223 if (rps_set(rps, rps->min_freq, true)) {
1224 drm_err(&i915->drm, "Failed to reset RPS to initial values\n");
1225 return false;
1226 }
1227
1228 rps->cur_freq = rps->min_freq;
1229 return true;
1230 }
1231
1232 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
gen9_rps_enable(struct intel_rps * rps)1233 static bool gen9_rps_enable(struct intel_rps *rps)
1234 {
1235 struct intel_gt *gt = rps_to_gt(rps);
1236 struct intel_uncore *uncore = gt->uncore;
1237
1238 /* Program defaults and thresholds for RPS */
1239 if (GRAPHICS_VER(gt->i915) == 9)
1240 intel_uncore_write_fw(uncore, GEN6_RC_VIDEO_FREQ,
1241 GEN9_FREQUENCY(rps->rp1_freq));
1242
1243 intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 0xa);
1244
1245 rps->pm_events = GEN6_PM_RP_UP_THRESHOLD | GEN6_PM_RP_DOWN_THRESHOLD;
1246
1247 return rps_reset(rps);
1248 }
1249
gen8_rps_enable(struct intel_rps * rps)1250 static bool gen8_rps_enable(struct intel_rps *rps)
1251 {
1252 struct intel_uncore *uncore = rps_to_uncore(rps);
1253
1254 intel_uncore_write_fw(uncore, GEN6_RC_VIDEO_FREQ,
1255 HSW_FREQUENCY(rps->rp1_freq));
1256
1257 intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1258
1259 rps->pm_events = GEN6_PM_RP_UP_THRESHOLD | GEN6_PM_RP_DOWN_THRESHOLD;
1260
1261 return rps_reset(rps);
1262 }
1263
gen6_rps_enable(struct intel_rps * rps)1264 static bool gen6_rps_enable(struct intel_rps *rps)
1265 {
1266 struct intel_uncore *uncore = rps_to_uncore(rps);
1267
1268 /* Power down if completely idle for over 50ms */
1269 intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 50000);
1270 intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1271
1272 rps->pm_events = (GEN6_PM_RP_UP_THRESHOLD |
1273 GEN6_PM_RP_DOWN_THRESHOLD |
1274 GEN6_PM_RP_DOWN_TIMEOUT);
1275
1276 return rps_reset(rps);
1277 }
1278
chv_rps_max_freq(struct intel_rps * rps)1279 static int chv_rps_max_freq(struct intel_rps *rps)
1280 {
1281 struct drm_i915_private *i915 = rps_to_i915(rps);
1282 struct intel_gt *gt = rps_to_gt(rps);
1283 u32 val;
1284
1285 val = vlv_punit_read(i915, FB_GFX_FMAX_AT_VMAX_FUSE);
1286
1287 switch (gt->info.sseu.eu_total) {
1288 case 8:
1289 /* (2 * 4) config */
1290 val >>= FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT;
1291 break;
1292 case 12:
1293 /* (2 * 6) config */
1294 val >>= FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT;
1295 break;
1296 case 16:
1297 /* (2 * 8) config */
1298 default:
1299 /* Setting (2 * 8) Min RP0 for any other combination */
1300 val >>= FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT;
1301 break;
1302 }
1303
1304 return val & FB_GFX_FREQ_FUSE_MASK;
1305 }
1306
chv_rps_rpe_freq(struct intel_rps * rps)1307 static int chv_rps_rpe_freq(struct intel_rps *rps)
1308 {
1309 struct drm_i915_private *i915 = rps_to_i915(rps);
1310 u32 val;
1311
1312 val = vlv_punit_read(i915, PUNIT_GPU_DUTYCYCLE_REG);
1313 val >>= PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT;
1314
1315 return val & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
1316 }
1317
chv_rps_guar_freq(struct intel_rps * rps)1318 static int chv_rps_guar_freq(struct intel_rps *rps)
1319 {
1320 struct drm_i915_private *i915 = rps_to_i915(rps);
1321 u32 val;
1322
1323 val = vlv_punit_read(i915, FB_GFX_FMAX_AT_VMAX_FUSE);
1324
1325 return val & FB_GFX_FREQ_FUSE_MASK;
1326 }
1327
chv_rps_min_freq(struct intel_rps * rps)1328 static u32 chv_rps_min_freq(struct intel_rps *rps)
1329 {
1330 struct drm_i915_private *i915 = rps_to_i915(rps);
1331 u32 val;
1332
1333 val = vlv_punit_read(i915, FB_GFX_FMIN_AT_VMIN_FUSE);
1334 val >>= FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT;
1335
1336 return val & FB_GFX_FREQ_FUSE_MASK;
1337 }
1338
chv_rps_enable(struct intel_rps * rps)1339 static bool chv_rps_enable(struct intel_rps *rps)
1340 {
1341 struct intel_uncore *uncore = rps_to_uncore(rps);
1342 struct drm_i915_private *i915 = rps_to_i915(rps);
1343 u32 val;
1344
1345 /* 1: Program defaults and thresholds for RPS*/
1346 intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 1000000);
1347 intel_uncore_write_fw(uncore, GEN6_RP_UP_THRESHOLD, 59400);
1348 intel_uncore_write_fw(uncore, GEN6_RP_DOWN_THRESHOLD, 245000);
1349 intel_uncore_write_fw(uncore, GEN6_RP_UP_EI, 66000);
1350 intel_uncore_write_fw(uncore, GEN6_RP_DOWN_EI, 350000);
1351
1352 intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1353
1354 /* 2: Enable RPS */
1355 intel_uncore_write_fw(uncore, GEN6_RP_CONTROL,
1356 GEN6_RP_MEDIA_HW_NORMAL_MODE |
1357 GEN6_RP_MEDIA_IS_GFX |
1358 GEN6_RP_ENABLE |
1359 GEN6_RP_UP_BUSY_AVG |
1360 GEN6_RP_DOWN_IDLE_AVG);
1361
1362 rps->pm_events = (GEN6_PM_RP_UP_THRESHOLD |
1363 GEN6_PM_RP_DOWN_THRESHOLD |
1364 GEN6_PM_RP_DOWN_TIMEOUT);
1365
1366 /* Setting Fixed Bias */
1367 vlv_punit_get(i915);
1368
1369 val = VLV_OVERRIDE_EN | VLV_SOC_TDP_EN | CHV_BIAS_CPU_50_SOC_50;
1370 vlv_punit_write(i915, VLV_TURBO_SOC_OVERRIDE, val);
1371
1372 val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
1373
1374 vlv_punit_put(i915);
1375
1376 /* RPS code assumes GPLL is used */
1377 drm_WARN_ONCE(&i915->drm, (val & GPLLENABLE) == 0,
1378 "GPLL not enabled\n");
1379
1380 drm_dbg(&i915->drm, "GPLL enabled? %s\n",
1381 str_yes_no(val & GPLLENABLE));
1382 drm_dbg(&i915->drm, "GPU status: 0x%08x\n", val);
1383
1384 return rps_reset(rps);
1385 }
1386
vlv_rps_guar_freq(struct intel_rps * rps)1387 static int vlv_rps_guar_freq(struct intel_rps *rps)
1388 {
1389 struct drm_i915_private *i915 = rps_to_i915(rps);
1390 u32 val, rp1;
1391
1392 val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FREQ_FUSE);
1393
1394 rp1 = val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK;
1395 rp1 >>= FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
1396
1397 return rp1;
1398 }
1399
vlv_rps_max_freq(struct intel_rps * rps)1400 static int vlv_rps_max_freq(struct intel_rps *rps)
1401 {
1402 struct drm_i915_private *i915 = rps_to_i915(rps);
1403 u32 val, rp0;
1404
1405 val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FREQ_FUSE);
1406
1407 rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
1408 /* Clamp to max */
1409 rp0 = min_t(u32, rp0, 0xea);
1410
1411 return rp0;
1412 }
1413
vlv_rps_rpe_freq(struct intel_rps * rps)1414 static int vlv_rps_rpe_freq(struct intel_rps *rps)
1415 {
1416 struct drm_i915_private *i915 = rps_to_i915(rps);
1417 u32 val, rpe;
1418
1419 val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
1420 rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
1421 val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
1422 rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
1423
1424 return rpe;
1425 }
1426
vlv_rps_min_freq(struct intel_rps * rps)1427 static int vlv_rps_min_freq(struct intel_rps *rps)
1428 {
1429 struct drm_i915_private *i915 = rps_to_i915(rps);
1430 u32 val;
1431
1432 val = vlv_punit_read(i915, PUNIT_REG_GPU_LFM) & 0xff;
1433 /*
1434 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
1435 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
1436 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
1437 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
1438 * to make sure it matches what Punit accepts.
1439 */
1440 return max_t(u32, val, 0xc0);
1441 }
1442
vlv_rps_enable(struct intel_rps * rps)1443 static bool vlv_rps_enable(struct intel_rps *rps)
1444 {
1445 struct intel_uncore *uncore = rps_to_uncore(rps);
1446 struct drm_i915_private *i915 = rps_to_i915(rps);
1447 u32 val;
1448
1449 intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 1000000);
1450 intel_uncore_write_fw(uncore, GEN6_RP_UP_THRESHOLD, 59400);
1451 intel_uncore_write_fw(uncore, GEN6_RP_DOWN_THRESHOLD, 245000);
1452 intel_uncore_write_fw(uncore, GEN6_RP_UP_EI, 66000);
1453 intel_uncore_write_fw(uncore, GEN6_RP_DOWN_EI, 350000);
1454
1455 intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1456
1457 intel_uncore_write_fw(uncore, GEN6_RP_CONTROL,
1458 GEN6_RP_MEDIA_TURBO |
1459 GEN6_RP_MEDIA_HW_NORMAL_MODE |
1460 GEN6_RP_MEDIA_IS_GFX |
1461 GEN6_RP_ENABLE |
1462 GEN6_RP_UP_BUSY_AVG |
1463 GEN6_RP_DOWN_IDLE_CONT);
1464
1465 /* WaGsvRC0ResidencyMethod:vlv */
1466 rps->pm_events = GEN6_PM_RP_UP_EI_EXPIRED;
1467
1468 vlv_punit_get(i915);
1469
1470 /* Setting Fixed Bias */
1471 val = VLV_OVERRIDE_EN | VLV_SOC_TDP_EN | VLV_BIAS_CPU_125_SOC_875;
1472 vlv_punit_write(i915, VLV_TURBO_SOC_OVERRIDE, val);
1473
1474 val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
1475
1476 vlv_punit_put(i915);
1477
1478 /* RPS code assumes GPLL is used */
1479 drm_WARN_ONCE(&i915->drm, (val & GPLLENABLE) == 0,
1480 "GPLL not enabled\n");
1481
1482 drm_dbg(&i915->drm, "GPLL enabled? %s\n",
1483 str_yes_no(val & GPLLENABLE));
1484 drm_dbg(&i915->drm, "GPU status: 0x%08x\n", val);
1485
1486 return rps_reset(rps);
1487 }
1488
__ips_gfx_val(struct intel_ips * ips)1489 static unsigned long __ips_gfx_val(struct intel_ips *ips)
1490 {
1491 struct intel_rps *rps = container_of(ips, typeof(*rps), ips);
1492 struct intel_uncore *uncore = rps_to_uncore(rps);
1493 unsigned int t, state1, state2;
1494 u32 pxvid, ext_v;
1495 u64 corr, corr2;
1496
1497 lockdep_assert_held(&mchdev_lock);
1498
1499 pxvid = intel_uncore_read(uncore, PXVFREQ(rps->cur_freq));
1500 pxvid = (pxvid >> 24) & 0x7f;
1501 ext_v = pvid_to_extvid(rps_to_i915(rps), pxvid);
1502
1503 state1 = ext_v;
1504
1505 /* Revel in the empirically derived constants */
1506
1507 /* Correction factor in 1/100000 units */
1508 t = ips_mch_val(uncore);
1509 if (t > 80)
1510 corr = t * 2349 + 135940;
1511 else if (t >= 50)
1512 corr = t * 964 + 29317;
1513 else /* < 50 */
1514 corr = t * 301 + 1004;
1515
1516 corr = div_u64(corr * 150142 * state1, 10000) - 78642;
1517 corr2 = div_u64(corr, 100000) * ips->corr;
1518
1519 state2 = div_u64(corr2 * state1, 10000);
1520 state2 /= 100; /* convert to mW */
1521
1522 __gen5_ips_update(ips);
1523
1524 return ips->gfx_power + state2;
1525 }
1526
has_busy_stats(struct intel_rps * rps)1527 static bool has_busy_stats(struct intel_rps *rps)
1528 {
1529 struct intel_engine_cs *engine;
1530 enum intel_engine_id id;
1531
1532 for_each_engine(engine, rps_to_gt(rps), id) {
1533 if (!intel_engine_supports_stats(engine))
1534 return false;
1535 }
1536
1537 return true;
1538 }
1539
intel_rps_enable(struct intel_rps * rps)1540 void intel_rps_enable(struct intel_rps *rps)
1541 {
1542 struct drm_i915_private *i915 = rps_to_i915(rps);
1543 struct intel_uncore *uncore = rps_to_uncore(rps);
1544 bool enabled = false;
1545
1546 if (!HAS_RPS(i915))
1547 return;
1548
1549 if (rps_uses_slpc(rps))
1550 return;
1551
1552 intel_gt_check_clock_frequency(rps_to_gt(rps));
1553
1554 intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
1555 if (rps->max_freq <= rps->min_freq)
1556 /* leave disabled, no room for dynamic reclocking */;
1557 else if (IS_CHERRYVIEW(i915))
1558 enabled = chv_rps_enable(rps);
1559 else if (IS_VALLEYVIEW(i915))
1560 enabled = vlv_rps_enable(rps);
1561 else if (GRAPHICS_VER(i915) >= 9)
1562 enabled = gen9_rps_enable(rps);
1563 else if (GRAPHICS_VER(i915) >= 8)
1564 enabled = gen8_rps_enable(rps);
1565 else if (GRAPHICS_VER(i915) >= 6)
1566 enabled = gen6_rps_enable(rps);
1567 else if (IS_IRONLAKE_M(i915))
1568 enabled = gen5_rps_enable(rps);
1569 else
1570 MISSING_CASE(GRAPHICS_VER(i915));
1571 intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
1572 if (!enabled)
1573 return;
1574
1575 GT_TRACE(rps_to_gt(rps),
1576 "min:%x, max:%x, freq:[%d, %d], thresholds:[%u, %u]\n",
1577 rps->min_freq, rps->max_freq,
1578 intel_gpu_freq(rps, rps->min_freq),
1579 intel_gpu_freq(rps, rps->max_freq),
1580 rps->power.up_threshold,
1581 rps->power.down_threshold);
1582
1583 GEM_BUG_ON(rps->max_freq < rps->min_freq);
1584 GEM_BUG_ON(rps->idle_freq > rps->max_freq);
1585
1586 GEM_BUG_ON(rps->efficient_freq < rps->min_freq);
1587 GEM_BUG_ON(rps->efficient_freq > rps->max_freq);
1588
1589 if (has_busy_stats(rps))
1590 intel_rps_set_timer(rps);
1591 else if (GRAPHICS_VER(i915) >= 6 && GRAPHICS_VER(i915) <= 11)
1592 intel_rps_set_interrupts(rps);
1593 else
1594 /* Ironlake currently uses intel_ips.ko */ {}
1595
1596 intel_rps_set_enabled(rps);
1597 }
1598
gen6_rps_disable(struct intel_rps * rps)1599 static void gen6_rps_disable(struct intel_rps *rps)
1600 {
1601 set(rps_to_uncore(rps), GEN6_RP_CONTROL, 0);
1602 }
1603
intel_rps_disable(struct intel_rps * rps)1604 void intel_rps_disable(struct intel_rps *rps)
1605 {
1606 struct drm_i915_private *i915 = rps_to_i915(rps);
1607
1608 if (!intel_rps_is_enabled(rps))
1609 return;
1610
1611 intel_rps_clear_enabled(rps);
1612 intel_rps_clear_interrupts(rps);
1613 intel_rps_clear_timer(rps);
1614
1615 if (GRAPHICS_VER(i915) >= 6)
1616 gen6_rps_disable(rps);
1617 else if (IS_IRONLAKE_M(i915))
1618 gen5_rps_disable(rps);
1619 }
1620
byt_gpu_freq(struct intel_rps * rps,int val)1621 static int byt_gpu_freq(struct intel_rps *rps, int val)
1622 {
1623 /*
1624 * N = val - 0xb7
1625 * Slow = Fast = GPLL ref * N
1626 */
1627 return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * (val - 0xb7), 1000);
1628 }
1629
byt_freq_opcode(struct intel_rps * rps,int val)1630 static int byt_freq_opcode(struct intel_rps *rps, int val)
1631 {
1632 return DIV_ROUND_CLOSEST(1000 * val, rps->gpll_ref_freq) + 0xb7;
1633 }
1634
chv_gpu_freq(struct intel_rps * rps,int val)1635 static int chv_gpu_freq(struct intel_rps *rps, int val)
1636 {
1637 /*
1638 * N = val / 2
1639 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
1640 */
1641 return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * val, 2 * 2 * 1000);
1642 }
1643
chv_freq_opcode(struct intel_rps * rps,int val)1644 static int chv_freq_opcode(struct intel_rps *rps, int val)
1645 {
1646 /* CHV needs even values */
1647 return DIV_ROUND_CLOSEST(2 * 1000 * val, rps->gpll_ref_freq) * 2;
1648 }
1649
intel_gpu_freq(struct intel_rps * rps,int val)1650 int intel_gpu_freq(struct intel_rps *rps, int val)
1651 {
1652 struct drm_i915_private *i915 = rps_to_i915(rps);
1653
1654 if (GRAPHICS_VER(i915) >= 9)
1655 return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
1656 GEN9_FREQ_SCALER);
1657 else if (IS_CHERRYVIEW(i915))
1658 return chv_gpu_freq(rps, val);
1659 else if (IS_VALLEYVIEW(i915))
1660 return byt_gpu_freq(rps, val);
1661 else if (GRAPHICS_VER(i915) >= 6)
1662 return val * GT_FREQUENCY_MULTIPLIER;
1663 else
1664 return val;
1665 }
1666
intel_freq_opcode(struct intel_rps * rps,int val)1667 int intel_freq_opcode(struct intel_rps *rps, int val)
1668 {
1669 struct drm_i915_private *i915 = rps_to_i915(rps);
1670
1671 if (GRAPHICS_VER(i915) >= 9)
1672 return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
1673 GT_FREQUENCY_MULTIPLIER);
1674 else if (IS_CHERRYVIEW(i915))
1675 return chv_freq_opcode(rps, val);
1676 else if (IS_VALLEYVIEW(i915))
1677 return byt_freq_opcode(rps, val);
1678 else if (GRAPHICS_VER(i915) >= 6)
1679 return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
1680 else
1681 return val;
1682 }
1683
vlv_init_gpll_ref_freq(struct intel_rps * rps)1684 static void vlv_init_gpll_ref_freq(struct intel_rps *rps)
1685 {
1686 struct drm_i915_private *i915 = rps_to_i915(rps);
1687
1688 rps->gpll_ref_freq =
1689 vlv_get_cck_clock(i915, "GPLL ref",
1690 CCK_GPLL_CLOCK_CONTROL,
1691 i915->czclk_freq);
1692
1693 drm_dbg(&i915->drm, "GPLL reference freq: %d kHz\n",
1694 rps->gpll_ref_freq);
1695 }
1696
vlv_rps_init(struct intel_rps * rps)1697 static void vlv_rps_init(struct intel_rps *rps)
1698 {
1699 struct drm_i915_private *i915 = rps_to_i915(rps);
1700
1701 vlv_iosf_sb_get(i915,
1702 BIT(VLV_IOSF_SB_PUNIT) |
1703 BIT(VLV_IOSF_SB_NC) |
1704 BIT(VLV_IOSF_SB_CCK));
1705
1706 vlv_init_gpll_ref_freq(rps);
1707
1708 rps->max_freq = vlv_rps_max_freq(rps);
1709 rps->rp0_freq = rps->max_freq;
1710 drm_dbg(&i915->drm, "max GPU freq: %d MHz (%u)\n",
1711 intel_gpu_freq(rps, rps->max_freq), rps->max_freq);
1712
1713 rps->efficient_freq = vlv_rps_rpe_freq(rps);
1714 drm_dbg(&i915->drm, "RPe GPU freq: %d MHz (%u)\n",
1715 intel_gpu_freq(rps, rps->efficient_freq), rps->efficient_freq);
1716
1717 rps->rp1_freq = vlv_rps_guar_freq(rps);
1718 drm_dbg(&i915->drm, "RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
1719 intel_gpu_freq(rps, rps->rp1_freq), rps->rp1_freq);
1720
1721 rps->min_freq = vlv_rps_min_freq(rps);
1722 drm_dbg(&i915->drm, "min GPU freq: %d MHz (%u)\n",
1723 intel_gpu_freq(rps, rps->min_freq), rps->min_freq);
1724
1725 vlv_iosf_sb_put(i915,
1726 BIT(VLV_IOSF_SB_PUNIT) |
1727 BIT(VLV_IOSF_SB_NC) |
1728 BIT(VLV_IOSF_SB_CCK));
1729 }
1730
chv_rps_init(struct intel_rps * rps)1731 static void chv_rps_init(struct intel_rps *rps)
1732 {
1733 struct drm_i915_private *i915 = rps_to_i915(rps);
1734
1735 vlv_iosf_sb_get(i915,
1736 BIT(VLV_IOSF_SB_PUNIT) |
1737 BIT(VLV_IOSF_SB_NC) |
1738 BIT(VLV_IOSF_SB_CCK));
1739
1740 vlv_init_gpll_ref_freq(rps);
1741
1742 rps->max_freq = chv_rps_max_freq(rps);
1743 rps->rp0_freq = rps->max_freq;
1744 drm_dbg(&i915->drm, "max GPU freq: %d MHz (%u)\n",
1745 intel_gpu_freq(rps, rps->max_freq), rps->max_freq);
1746
1747 rps->efficient_freq = chv_rps_rpe_freq(rps);
1748 drm_dbg(&i915->drm, "RPe GPU freq: %d MHz (%u)\n",
1749 intel_gpu_freq(rps, rps->efficient_freq), rps->efficient_freq);
1750
1751 rps->rp1_freq = chv_rps_guar_freq(rps);
1752 drm_dbg(&i915->drm, "RP1(Guar) GPU freq: %d MHz (%u)\n",
1753 intel_gpu_freq(rps, rps->rp1_freq), rps->rp1_freq);
1754
1755 rps->min_freq = chv_rps_min_freq(rps);
1756 drm_dbg(&i915->drm, "min GPU freq: %d MHz (%u)\n",
1757 intel_gpu_freq(rps, rps->min_freq), rps->min_freq);
1758
1759 vlv_iosf_sb_put(i915,
1760 BIT(VLV_IOSF_SB_PUNIT) |
1761 BIT(VLV_IOSF_SB_NC) |
1762 BIT(VLV_IOSF_SB_CCK));
1763
1764 drm_WARN_ONCE(&i915->drm, (rps->max_freq | rps->efficient_freq |
1765 rps->rp1_freq | rps->min_freq) & 1,
1766 "Odd GPU freq values\n");
1767 }
1768
vlv_c0_read(struct intel_uncore * uncore,struct intel_rps_ei * ei)1769 static void vlv_c0_read(struct intel_uncore *uncore, struct intel_rps_ei *ei)
1770 {
1771 ei->ktime = ktime_get_raw();
1772 ei->render_c0 = intel_uncore_read(uncore, VLV_RENDER_C0_COUNT);
1773 ei->media_c0 = intel_uncore_read(uncore, VLV_MEDIA_C0_COUNT);
1774 }
1775
vlv_wa_c0_ei(struct intel_rps * rps,u32 pm_iir)1776 static u32 vlv_wa_c0_ei(struct intel_rps *rps, u32 pm_iir)
1777 {
1778 struct intel_uncore *uncore = rps_to_uncore(rps);
1779 const struct intel_rps_ei *prev = &rps->ei;
1780 struct intel_rps_ei now;
1781 u32 events = 0;
1782
1783 if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0)
1784 return 0;
1785
1786 vlv_c0_read(uncore, &now);
1787
1788 if (prev->ktime) {
1789 u64 time, c0;
1790 u32 render, media;
1791
1792 time = ktime_us_delta(now.ktime, prev->ktime);
1793
1794 time *= rps_to_i915(rps)->czclk_freq;
1795
1796 /* Workload can be split between render + media,
1797 * e.g. SwapBuffers being blitted in X after being rendered in
1798 * mesa. To account for this we need to combine both engines
1799 * into our activity counter.
1800 */
1801 render = now.render_c0 - prev->render_c0;
1802 media = now.media_c0 - prev->media_c0;
1803 c0 = max(render, media);
1804 c0 *= 1000 * 100 << 8; /* to usecs and scale to threshold% */
1805
1806 if (c0 > time * rps->power.up_threshold)
1807 events = GEN6_PM_RP_UP_THRESHOLD;
1808 else if (c0 < time * rps->power.down_threshold)
1809 events = GEN6_PM_RP_DOWN_THRESHOLD;
1810 }
1811
1812 rps->ei = now;
1813 return events;
1814 }
1815
rps_work(struct work_struct * work)1816 static void rps_work(struct work_struct *work)
1817 {
1818 struct intel_rps *rps = container_of(work, typeof(*rps), work);
1819 struct intel_gt *gt = rps_to_gt(rps);
1820 struct drm_i915_private *i915 = rps_to_i915(rps);
1821 bool client_boost = false;
1822 int new_freq, adj, min, max;
1823 u32 pm_iir = 0;
1824
1825 spin_lock_irq(gt->irq_lock);
1826 pm_iir = fetch_and_zero(&rps->pm_iir) & rps->pm_events;
1827 client_boost = atomic_read(&rps->num_waiters);
1828 spin_unlock_irq(gt->irq_lock);
1829
1830 /* Make sure we didn't queue anything we're not going to process. */
1831 if (!pm_iir && !client_boost)
1832 goto out;
1833
1834 mutex_lock(&rps->lock);
1835 if (!intel_rps_is_active(rps)) {
1836 mutex_unlock(&rps->lock);
1837 return;
1838 }
1839
1840 pm_iir |= vlv_wa_c0_ei(rps, pm_iir);
1841
1842 adj = rps->last_adj;
1843 new_freq = rps->cur_freq;
1844 min = rps->min_freq_softlimit;
1845 max = rps->max_freq_softlimit;
1846 if (client_boost)
1847 max = rps->max_freq;
1848
1849 GT_TRACE(gt,
1850 "pm_iir:%x, client_boost:%s, last:%d, cur:%x, min:%x, max:%x\n",
1851 pm_iir, str_yes_no(client_boost),
1852 adj, new_freq, min, max);
1853
1854 if (client_boost && new_freq < rps->boost_freq) {
1855 new_freq = rps->boost_freq;
1856 adj = 0;
1857 } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1858 if (adj > 0)
1859 adj *= 2;
1860 else /* CHV needs even encode values */
1861 adj = IS_CHERRYVIEW(gt->i915) ? 2 : 1;
1862
1863 if (new_freq >= rps->max_freq_softlimit)
1864 adj = 0;
1865 } else if (client_boost) {
1866 adj = 0;
1867 } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1868 if (rps->cur_freq > rps->efficient_freq)
1869 new_freq = rps->efficient_freq;
1870 else if (rps->cur_freq > rps->min_freq_softlimit)
1871 new_freq = rps->min_freq_softlimit;
1872 adj = 0;
1873 } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1874 if (adj < 0)
1875 adj *= 2;
1876 else /* CHV needs even encode values */
1877 adj = IS_CHERRYVIEW(gt->i915) ? -2 : -1;
1878
1879 if (new_freq <= rps->min_freq_softlimit)
1880 adj = 0;
1881 } else { /* unknown event */
1882 adj = 0;
1883 }
1884
1885 /*
1886 * sysfs frequency limits may have snuck in while
1887 * servicing the interrupt
1888 */
1889 new_freq += adj;
1890 new_freq = clamp_t(int, new_freq, min, max);
1891
1892 if (intel_rps_set(rps, new_freq)) {
1893 drm_dbg(&i915->drm, "Failed to set new GPU frequency\n");
1894 adj = 0;
1895 }
1896 rps->last_adj = adj;
1897
1898 mutex_unlock(&rps->lock);
1899
1900 out:
1901 spin_lock_irq(gt->irq_lock);
1902 gen6_gt_pm_unmask_irq(gt, rps->pm_events);
1903 spin_unlock_irq(gt->irq_lock);
1904 }
1905
gen11_rps_irq_handler(struct intel_rps * rps,u32 pm_iir)1906 void gen11_rps_irq_handler(struct intel_rps *rps, u32 pm_iir)
1907 {
1908 struct intel_gt *gt = rps_to_gt(rps);
1909 const u32 events = rps->pm_events & pm_iir;
1910
1911 lockdep_assert_held(gt->irq_lock);
1912
1913 if (unlikely(!events))
1914 return;
1915
1916 GT_TRACE(gt, "irq events:%x\n", events);
1917
1918 gen6_gt_pm_mask_irq(gt, events);
1919
1920 rps->pm_iir |= events;
1921 queue_work(gt->i915->unordered_wq, &rps->work);
1922 }
1923
gen6_rps_irq_handler(struct intel_rps * rps,u32 pm_iir)1924 void gen6_rps_irq_handler(struct intel_rps *rps, u32 pm_iir)
1925 {
1926 struct intel_gt *gt = rps_to_gt(rps);
1927 u32 events;
1928
1929 events = pm_iir & rps->pm_events;
1930 if (events) {
1931 spin_lock(gt->irq_lock);
1932
1933 GT_TRACE(gt, "irq events:%x\n", events);
1934
1935 gen6_gt_pm_mask_irq(gt, events);
1936 rps->pm_iir |= events;
1937
1938 queue_work(gt->i915->unordered_wq, &rps->work);
1939 spin_unlock(gt->irq_lock);
1940 }
1941
1942 if (GRAPHICS_VER(gt->i915) >= 8)
1943 return;
1944
1945 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1946 intel_engine_cs_irq(gt->engine[VECS0], pm_iir >> 10);
1947
1948 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1949 drm_dbg(&rps_to_i915(rps)->drm,
1950 "Command parser error, pm_iir 0x%08x\n", pm_iir);
1951 }
1952
gen5_rps_irq_handler(struct intel_rps * rps)1953 void gen5_rps_irq_handler(struct intel_rps *rps)
1954 {
1955 struct intel_uncore *uncore = rps_to_uncore(rps);
1956 u32 busy_up, busy_down, max_avg, min_avg;
1957 u8 new_freq;
1958
1959 spin_lock(&mchdev_lock);
1960
1961 intel_uncore_write16(uncore,
1962 MEMINTRSTS,
1963 intel_uncore_read(uncore, MEMINTRSTS));
1964
1965 intel_uncore_write16(uncore, MEMINTRSTS, MEMINT_EVAL_CHG);
1966 busy_up = intel_uncore_read(uncore, RCPREVBSYTUPAVG);
1967 busy_down = intel_uncore_read(uncore, RCPREVBSYTDNAVG);
1968 max_avg = intel_uncore_read(uncore, RCBMAXAVG);
1969 min_avg = intel_uncore_read(uncore, RCBMINAVG);
1970
1971 /* Handle RCS change request from hw */
1972 new_freq = rps->cur_freq;
1973 if (busy_up > max_avg)
1974 new_freq++;
1975 else if (busy_down < min_avg)
1976 new_freq--;
1977 new_freq = clamp(new_freq,
1978 rps->min_freq_softlimit,
1979 rps->max_freq_softlimit);
1980
1981 if (new_freq != rps->cur_freq && !__gen5_rps_set(rps, new_freq))
1982 rps->cur_freq = new_freq;
1983
1984 spin_unlock(&mchdev_lock);
1985 }
1986
intel_rps_init_early(struct intel_rps * rps)1987 void intel_rps_init_early(struct intel_rps *rps)
1988 {
1989 mutex_init(&rps->lock);
1990 mutex_init(&rps->power.mutex);
1991
1992 INIT_WORK(&rps->work, rps_work);
1993 timer_setup(&rps->timer, rps_timer, 0);
1994
1995 atomic_set(&rps->num_waiters, 0);
1996 }
1997
intel_rps_init(struct intel_rps * rps)1998 void intel_rps_init(struct intel_rps *rps)
1999 {
2000 struct drm_i915_private *i915 = rps_to_i915(rps);
2001
2002 if (rps_uses_slpc(rps))
2003 return;
2004
2005 if (IS_CHERRYVIEW(i915))
2006 chv_rps_init(rps);
2007 else if (IS_VALLEYVIEW(i915))
2008 vlv_rps_init(rps);
2009 else if (GRAPHICS_VER(i915) >= 6)
2010 gen6_rps_init(rps);
2011 else if (IS_IRONLAKE_M(i915))
2012 gen5_rps_init(rps);
2013
2014 /* Derive initial user preferences/limits from the hardware limits */
2015 rps->max_freq_softlimit = rps->max_freq;
2016 rps_to_gt(rps)->defaults.max_freq = rps->max_freq_softlimit;
2017 rps->min_freq_softlimit = rps->min_freq;
2018 rps_to_gt(rps)->defaults.min_freq = rps->min_freq_softlimit;
2019
2020 /* After setting max-softlimit, find the overclock max freq */
2021 if (GRAPHICS_VER(i915) == 6 || IS_IVYBRIDGE(i915) || IS_HASWELL(i915)) {
2022 u32 params = 0;
2023
2024 snb_pcode_read(rps_to_gt(rps)->uncore, GEN6_READ_OC_PARAMS, ¶ms, NULL);
2025 if (params & BIT(31)) { /* OC supported */
2026 drm_dbg(&i915->drm,
2027 "Overclocking supported, max: %dMHz, overclock: %dMHz\n",
2028 (rps->max_freq & 0xff) * 50,
2029 (params & 0xff) * 50);
2030 rps->max_freq = params & 0xff;
2031 }
2032 }
2033
2034 /* Set default thresholds in % */
2035 rps->power.up_threshold = 95;
2036 rps_to_gt(rps)->defaults.rps_up_threshold = rps->power.up_threshold;
2037 rps->power.down_threshold = 85;
2038 rps_to_gt(rps)->defaults.rps_down_threshold = rps->power.down_threshold;
2039
2040 /* Finally allow us to boost to max by default */
2041 rps->boost_freq = rps->max_freq;
2042 rps->idle_freq = rps->min_freq;
2043
2044 /* Start in the middle, from here we will autotune based on workload */
2045 rps->cur_freq = rps->efficient_freq;
2046
2047 rps->pm_intrmsk_mbz = 0;
2048
2049 /*
2050 * SNB,IVB,HSW can while VLV,CHV may hard hang on looping batchbuffer
2051 * if GEN6_PM_UP_EI_EXPIRED is masked.
2052 *
2053 * TODO: verify if this can be reproduced on VLV,CHV.
2054 */
2055 if (GRAPHICS_VER(i915) <= 7)
2056 rps->pm_intrmsk_mbz |= GEN6_PM_RP_UP_EI_EXPIRED;
2057
2058 if (GRAPHICS_VER(i915) >= 8 && GRAPHICS_VER(i915) < 11)
2059 rps->pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
2060
2061 /* GuC needs ARAT expired interrupt unmasked */
2062 if (intel_uc_uses_guc_submission(&rps_to_gt(rps)->uc))
2063 rps->pm_intrmsk_mbz |= ARAT_EXPIRED_INTRMSK;
2064 }
2065
intel_rps_sanitize(struct intel_rps * rps)2066 void intel_rps_sanitize(struct intel_rps *rps)
2067 {
2068 if (rps_uses_slpc(rps))
2069 return;
2070
2071 if (GRAPHICS_VER(rps_to_i915(rps)) >= 6)
2072 rps_disable_interrupts(rps);
2073 }
2074
intel_rps_read_rpstat(struct intel_rps * rps)2075 u32 intel_rps_read_rpstat(struct intel_rps *rps)
2076 {
2077 struct drm_i915_private *i915 = rps_to_i915(rps);
2078 i915_reg_t rpstat;
2079
2080 rpstat = (GRAPHICS_VER(i915) >= 12) ? GEN12_RPSTAT1 : GEN6_RPSTAT1;
2081
2082 return intel_uncore_read(rps_to_gt(rps)->uncore, rpstat);
2083 }
2084
intel_rps_get_cagf(struct intel_rps * rps,u32 rpstat)2085 static u32 intel_rps_get_cagf(struct intel_rps *rps, u32 rpstat)
2086 {
2087 struct drm_i915_private *i915 = rps_to_i915(rps);
2088 u32 cagf;
2089
2090 if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70))
2091 cagf = REG_FIELD_GET(MTL_CAGF_MASK, rpstat);
2092 else if (GRAPHICS_VER(i915) >= 12)
2093 cagf = REG_FIELD_GET(GEN12_CAGF_MASK, rpstat);
2094 else if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915))
2095 cagf = REG_FIELD_GET(RPE_MASK, rpstat);
2096 else if (GRAPHICS_VER(i915) >= 9)
2097 cagf = REG_FIELD_GET(GEN9_CAGF_MASK, rpstat);
2098 else if (IS_HASWELL(i915) || IS_BROADWELL(i915))
2099 cagf = REG_FIELD_GET(HSW_CAGF_MASK, rpstat);
2100 else if (GRAPHICS_VER(i915) >= 6)
2101 cagf = REG_FIELD_GET(GEN6_CAGF_MASK, rpstat);
2102 else
2103 cagf = gen5_invert_freq(rps, REG_FIELD_GET(MEMSTAT_PSTATE_MASK, rpstat));
2104
2105 return cagf;
2106 }
2107
__read_cagf(struct intel_rps * rps,bool take_fw)2108 static u32 __read_cagf(struct intel_rps *rps, bool take_fw)
2109 {
2110 struct drm_i915_private *i915 = rps_to_i915(rps);
2111 struct intel_uncore *uncore = rps_to_uncore(rps);
2112 i915_reg_t r = INVALID_MMIO_REG;
2113 u32 freq;
2114
2115 /*
2116 * For Gen12+ reading freq from HW does not need a forcewake and
2117 * registers will return 0 freq when GT is in RC6
2118 */
2119 if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70)) {
2120 r = MTL_MIRROR_TARGET_WP1;
2121 } else if (GRAPHICS_VER(i915) >= 12) {
2122 r = GEN12_RPSTAT1;
2123 } else if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915)) {
2124 vlv_punit_get(i915);
2125 freq = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
2126 vlv_punit_put(i915);
2127 } else if (GRAPHICS_VER(i915) >= 6) {
2128 r = GEN6_RPSTAT1;
2129 } else {
2130 r = MEMSTAT_ILK;
2131 }
2132
2133 if (i915_mmio_reg_valid(r))
2134 freq = take_fw ? intel_uncore_read(uncore, r) : intel_uncore_read_fw(uncore, r);
2135
2136 return intel_rps_get_cagf(rps, freq);
2137 }
2138
read_cagf(struct intel_rps * rps)2139 static u32 read_cagf(struct intel_rps *rps)
2140 {
2141 return __read_cagf(rps, true);
2142 }
2143
intel_rps_read_actual_frequency(struct intel_rps * rps)2144 u32 intel_rps_read_actual_frequency(struct intel_rps *rps)
2145 {
2146 struct intel_runtime_pm *rpm = rps_to_uncore(rps)->rpm;
2147 intel_wakeref_t wakeref;
2148 u32 freq = 0;
2149
2150 with_intel_runtime_pm_if_in_use(rpm, wakeref)
2151 freq = intel_gpu_freq(rps, read_cagf(rps));
2152
2153 return freq;
2154 }
2155
intel_rps_read_actual_frequency_fw(struct intel_rps * rps)2156 u32 intel_rps_read_actual_frequency_fw(struct intel_rps *rps)
2157 {
2158 return intel_gpu_freq(rps, __read_cagf(rps, false));
2159 }
2160
intel_rps_read_punit_req(struct intel_rps * rps)2161 static u32 intel_rps_read_punit_req(struct intel_rps *rps)
2162 {
2163 struct intel_uncore *uncore = rps_to_uncore(rps);
2164 struct intel_runtime_pm *rpm = rps_to_uncore(rps)->rpm;
2165 intel_wakeref_t wakeref;
2166 u32 freq = 0;
2167
2168 with_intel_runtime_pm_if_in_use(rpm, wakeref)
2169 freq = intel_uncore_read(uncore, GEN6_RPNSWREQ);
2170
2171 return freq;
2172 }
2173
intel_rps_get_req(u32 pureq)2174 static u32 intel_rps_get_req(u32 pureq)
2175 {
2176 u32 req = pureq >> GEN9_SW_REQ_UNSLICE_RATIO_SHIFT;
2177
2178 return req;
2179 }
2180
intel_rps_read_punit_req_frequency(struct intel_rps * rps)2181 u32 intel_rps_read_punit_req_frequency(struct intel_rps *rps)
2182 {
2183 u32 freq = intel_rps_get_req(intel_rps_read_punit_req(rps));
2184
2185 return intel_gpu_freq(rps, freq);
2186 }
2187
intel_rps_get_requested_frequency(struct intel_rps * rps)2188 u32 intel_rps_get_requested_frequency(struct intel_rps *rps)
2189 {
2190 if (rps_uses_slpc(rps))
2191 return intel_rps_read_punit_req_frequency(rps);
2192 else
2193 return intel_gpu_freq(rps, rps->cur_freq);
2194 }
2195
intel_rps_get_max_frequency(struct intel_rps * rps)2196 u32 intel_rps_get_max_frequency(struct intel_rps *rps)
2197 {
2198 struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2199
2200 if (rps_uses_slpc(rps))
2201 return slpc->max_freq_softlimit;
2202 else
2203 return intel_gpu_freq(rps, rps->max_freq_softlimit);
2204 }
2205
2206 /**
2207 * intel_rps_get_max_raw_freq - returns the max frequency in some raw format.
2208 * @rps: the intel_rps structure
2209 *
2210 * Returns the max frequency in a raw format. In newer platforms raw is in
2211 * units of 50 MHz.
2212 */
intel_rps_get_max_raw_freq(struct intel_rps * rps)2213 u32 intel_rps_get_max_raw_freq(struct intel_rps *rps)
2214 {
2215 struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2216 u32 freq;
2217
2218 if (rps_uses_slpc(rps)) {
2219 return DIV_ROUND_CLOSEST(slpc->rp0_freq,
2220 GT_FREQUENCY_MULTIPLIER);
2221 } else {
2222 freq = rps->max_freq;
2223 if (GRAPHICS_VER(rps_to_i915(rps)) >= 9) {
2224 /* Convert GT frequency to 50 MHz units */
2225 freq /= GEN9_FREQ_SCALER;
2226 }
2227 return freq;
2228 }
2229 }
2230
intel_rps_get_rp0_frequency(struct intel_rps * rps)2231 u32 intel_rps_get_rp0_frequency(struct intel_rps *rps)
2232 {
2233 struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2234
2235 if (rps_uses_slpc(rps))
2236 return slpc->rp0_freq;
2237 else
2238 return intel_gpu_freq(rps, rps->rp0_freq);
2239 }
2240
intel_rps_get_rp1_frequency(struct intel_rps * rps)2241 u32 intel_rps_get_rp1_frequency(struct intel_rps *rps)
2242 {
2243 struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2244
2245 if (rps_uses_slpc(rps))
2246 return slpc->rp1_freq;
2247 else
2248 return intel_gpu_freq(rps, rps->rp1_freq);
2249 }
2250
intel_rps_get_rpn_frequency(struct intel_rps * rps)2251 u32 intel_rps_get_rpn_frequency(struct intel_rps *rps)
2252 {
2253 struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2254
2255 if (rps_uses_slpc(rps))
2256 return slpc->min_freq;
2257 else
2258 return intel_gpu_freq(rps, rps->min_freq);
2259 }
2260
rps_frequency_dump(struct intel_rps * rps,struct drm_printer * p)2261 static void rps_frequency_dump(struct intel_rps *rps, struct drm_printer *p)
2262 {
2263 struct intel_gt *gt = rps_to_gt(rps);
2264 struct drm_i915_private *i915 = gt->i915;
2265 struct intel_uncore *uncore = gt->uncore;
2266 struct intel_rps_freq_caps caps;
2267 u32 rp_state_limits;
2268 u32 gt_perf_status;
2269 u32 rpmodectl, rpinclimit, rpdeclimit;
2270 u32 rpstat, cagf, reqf;
2271 u32 rpcurupei, rpcurup, rpprevup;
2272 u32 rpcurdownei, rpcurdown, rpprevdown;
2273 u32 rpupei, rpupt, rpdownei, rpdownt;
2274 u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
2275
2276 rp_state_limits = intel_uncore_read(uncore, GEN6_RP_STATE_LIMITS);
2277 gen6_rps_get_freq_caps(rps, &caps);
2278 if (IS_GEN9_LP(i915))
2279 gt_perf_status = intel_uncore_read(uncore, BXT_GT_PERF_STATUS);
2280 else
2281 gt_perf_status = intel_uncore_read(uncore, GEN6_GT_PERF_STATUS);
2282
2283 /* RPSTAT1 is in the GT power well */
2284 intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
2285
2286 reqf = intel_uncore_read(uncore, GEN6_RPNSWREQ);
2287 if (GRAPHICS_VER(i915) >= 9) {
2288 reqf >>= 23;
2289 } else {
2290 reqf &= ~GEN6_TURBO_DISABLE;
2291 if (IS_HASWELL(i915) || IS_BROADWELL(i915))
2292 reqf >>= 24;
2293 else
2294 reqf >>= 25;
2295 }
2296 reqf = intel_gpu_freq(rps, reqf);
2297
2298 rpmodectl = intel_uncore_read(uncore, GEN6_RP_CONTROL);
2299 rpinclimit = intel_uncore_read(uncore, GEN6_RP_UP_THRESHOLD);
2300 rpdeclimit = intel_uncore_read(uncore, GEN6_RP_DOWN_THRESHOLD);
2301
2302 rpstat = intel_rps_read_rpstat(rps);
2303 rpcurupei = intel_uncore_read(uncore, GEN6_RP_CUR_UP_EI) & GEN6_CURICONT_MASK;
2304 rpcurup = intel_uncore_read(uncore, GEN6_RP_CUR_UP) & GEN6_CURBSYTAVG_MASK;
2305 rpprevup = intel_uncore_read(uncore, GEN6_RP_PREV_UP) & GEN6_CURBSYTAVG_MASK;
2306 rpcurdownei = intel_uncore_read(uncore, GEN6_RP_CUR_DOWN_EI) & GEN6_CURIAVG_MASK;
2307 rpcurdown = intel_uncore_read(uncore, GEN6_RP_CUR_DOWN) & GEN6_CURBSYTAVG_MASK;
2308 rpprevdown = intel_uncore_read(uncore, GEN6_RP_PREV_DOWN) & GEN6_CURBSYTAVG_MASK;
2309
2310 rpupei = intel_uncore_read(uncore, GEN6_RP_UP_EI);
2311 rpupt = intel_uncore_read(uncore, GEN6_RP_UP_THRESHOLD);
2312
2313 rpdownei = intel_uncore_read(uncore, GEN6_RP_DOWN_EI);
2314 rpdownt = intel_uncore_read(uncore, GEN6_RP_DOWN_THRESHOLD);
2315
2316 cagf = intel_rps_read_actual_frequency(rps);
2317
2318 intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
2319
2320 if (GRAPHICS_VER(i915) >= 11) {
2321 pm_ier = intel_uncore_read(uncore, GEN11_GPM_WGBOXPERF_INTR_ENABLE);
2322 pm_imr = intel_uncore_read(uncore, GEN11_GPM_WGBOXPERF_INTR_MASK);
2323 /*
2324 * The equivalent to the PM ISR & IIR cannot be read
2325 * without affecting the current state of the system
2326 */
2327 pm_isr = 0;
2328 pm_iir = 0;
2329 } else if (GRAPHICS_VER(i915) >= 8) {
2330 pm_ier = intel_uncore_read(uncore, GEN8_GT_IER(2));
2331 pm_imr = intel_uncore_read(uncore, GEN8_GT_IMR(2));
2332 pm_isr = intel_uncore_read(uncore, GEN8_GT_ISR(2));
2333 pm_iir = intel_uncore_read(uncore, GEN8_GT_IIR(2));
2334 } else {
2335 pm_ier = intel_uncore_read(uncore, GEN6_PMIER);
2336 pm_imr = intel_uncore_read(uncore, GEN6_PMIMR);
2337 pm_isr = intel_uncore_read(uncore, GEN6_PMISR);
2338 pm_iir = intel_uncore_read(uncore, GEN6_PMIIR);
2339 }
2340 pm_mask = intel_uncore_read(uncore, GEN6_PMINTRMSK);
2341
2342 drm_printf(p, "Video Turbo Mode: %s\n",
2343 str_yes_no(rpmodectl & GEN6_RP_MEDIA_TURBO));
2344 drm_printf(p, "HW control enabled: %s\n",
2345 str_yes_no(rpmodectl & GEN6_RP_ENABLE));
2346 drm_printf(p, "SW control enabled: %s\n",
2347 str_yes_no((rpmodectl & GEN6_RP_MEDIA_MODE_MASK) == GEN6_RP_MEDIA_SW_MODE));
2348
2349 drm_printf(p, "PM IER=0x%08x IMR=0x%08x, MASK=0x%08x\n",
2350 pm_ier, pm_imr, pm_mask);
2351 if (GRAPHICS_VER(i915) <= 10)
2352 drm_printf(p, "PM ISR=0x%08x IIR=0x%08x\n",
2353 pm_isr, pm_iir);
2354 drm_printf(p, "pm_intrmsk_mbz: 0x%08x\n",
2355 rps->pm_intrmsk_mbz);
2356 drm_printf(p, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
2357 drm_printf(p, "Render p-state ratio: %d\n",
2358 (gt_perf_status & (GRAPHICS_VER(i915) >= 9 ? 0x1ff00 : 0xff00)) >> 8);
2359 drm_printf(p, "Render p-state VID: %d\n",
2360 gt_perf_status & 0xff);
2361 drm_printf(p, "Render p-state limit: %d\n",
2362 rp_state_limits & 0xff);
2363 drm_printf(p, "RPSTAT1: 0x%08x\n", rpstat);
2364 drm_printf(p, "RPMODECTL: 0x%08x\n", rpmodectl);
2365 drm_printf(p, "RPINCLIMIT: 0x%08x\n", rpinclimit);
2366 drm_printf(p, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
2367 drm_printf(p, "RPNSWREQ: %dMHz\n", reqf);
2368 drm_printf(p, "CAGF: %dMHz\n", cagf);
2369 drm_printf(p, "RP CUR UP EI: %d (%lldns)\n",
2370 rpcurupei,
2371 intel_gt_pm_interval_to_ns(gt, rpcurupei));
2372 drm_printf(p, "RP CUR UP: %d (%lldns)\n",
2373 rpcurup, intel_gt_pm_interval_to_ns(gt, rpcurup));
2374 drm_printf(p, "RP PREV UP: %d (%lldns)\n",
2375 rpprevup, intel_gt_pm_interval_to_ns(gt, rpprevup));
2376 drm_printf(p, "Up threshold: %d%%\n",
2377 rps->power.up_threshold);
2378 drm_printf(p, "RP UP EI: %d (%lldns)\n",
2379 rpupei, intel_gt_pm_interval_to_ns(gt, rpupei));
2380 drm_printf(p, "RP UP THRESHOLD: %d (%lldns)\n",
2381 rpupt, intel_gt_pm_interval_to_ns(gt, rpupt));
2382
2383 drm_printf(p, "RP CUR DOWN EI: %d (%lldns)\n",
2384 rpcurdownei,
2385 intel_gt_pm_interval_to_ns(gt, rpcurdownei));
2386 drm_printf(p, "RP CUR DOWN: %d (%lldns)\n",
2387 rpcurdown,
2388 intel_gt_pm_interval_to_ns(gt, rpcurdown));
2389 drm_printf(p, "RP PREV DOWN: %d (%lldns)\n",
2390 rpprevdown,
2391 intel_gt_pm_interval_to_ns(gt, rpprevdown));
2392 drm_printf(p, "Down threshold: %d%%\n",
2393 rps->power.down_threshold);
2394 drm_printf(p, "RP DOWN EI: %d (%lldns)\n",
2395 rpdownei, intel_gt_pm_interval_to_ns(gt, rpdownei));
2396 drm_printf(p, "RP DOWN THRESHOLD: %d (%lldns)\n",
2397 rpdownt, intel_gt_pm_interval_to_ns(gt, rpdownt));
2398
2399 drm_printf(p, "Lowest (RPN) frequency: %dMHz\n",
2400 intel_gpu_freq(rps, caps.min_freq));
2401 drm_printf(p, "Nominal (RP1) frequency: %dMHz\n",
2402 intel_gpu_freq(rps, caps.rp1_freq));
2403 drm_printf(p, "Max non-overclocked (RP0) frequency: %dMHz\n",
2404 intel_gpu_freq(rps, caps.rp0_freq));
2405 drm_printf(p, "Max overclocked frequency: %dMHz\n",
2406 intel_gpu_freq(rps, rps->max_freq));
2407
2408 drm_printf(p, "Current freq: %d MHz\n",
2409 intel_gpu_freq(rps, rps->cur_freq));
2410 drm_printf(p, "Actual freq: %d MHz\n", cagf);
2411 drm_printf(p, "Idle freq: %d MHz\n",
2412 intel_gpu_freq(rps, rps->idle_freq));
2413 drm_printf(p, "Min freq: %d MHz\n",
2414 intel_gpu_freq(rps, rps->min_freq));
2415 drm_printf(p, "Boost freq: %d MHz\n",
2416 intel_gpu_freq(rps, rps->boost_freq));
2417 drm_printf(p, "Max freq: %d MHz\n",
2418 intel_gpu_freq(rps, rps->max_freq));
2419 drm_printf(p,
2420 "efficient (RPe) frequency: %d MHz\n",
2421 intel_gpu_freq(rps, rps->efficient_freq));
2422 }
2423
slpc_frequency_dump(struct intel_rps * rps,struct drm_printer * p)2424 static void slpc_frequency_dump(struct intel_rps *rps, struct drm_printer *p)
2425 {
2426 struct intel_gt *gt = rps_to_gt(rps);
2427 struct intel_uncore *uncore = gt->uncore;
2428 struct intel_rps_freq_caps caps;
2429 u32 pm_mask;
2430
2431 gen6_rps_get_freq_caps(rps, &caps);
2432 pm_mask = intel_uncore_read(uncore, GEN6_PMINTRMSK);
2433
2434 drm_printf(p, "PM MASK=0x%08x\n", pm_mask);
2435 drm_printf(p, "pm_intrmsk_mbz: 0x%08x\n",
2436 rps->pm_intrmsk_mbz);
2437 drm_printf(p, "RPSTAT1: 0x%08x\n", intel_rps_read_rpstat(rps));
2438 drm_printf(p, "RPNSWREQ: %dMHz\n", intel_rps_get_requested_frequency(rps));
2439 drm_printf(p, "Lowest (RPN) frequency: %dMHz\n",
2440 intel_gpu_freq(rps, caps.min_freq));
2441 drm_printf(p, "Nominal (RP1) frequency: %dMHz\n",
2442 intel_gpu_freq(rps, caps.rp1_freq));
2443 drm_printf(p, "Max non-overclocked (RP0) frequency: %dMHz\n",
2444 intel_gpu_freq(rps, caps.rp0_freq));
2445 drm_printf(p, "Current freq: %d MHz\n",
2446 intel_rps_get_requested_frequency(rps));
2447 drm_printf(p, "Actual freq: %d MHz\n",
2448 intel_rps_read_actual_frequency(rps));
2449 drm_printf(p, "Min freq: %d MHz\n",
2450 intel_rps_get_min_frequency(rps));
2451 drm_printf(p, "Boost freq: %d MHz\n",
2452 intel_rps_get_boost_frequency(rps));
2453 drm_printf(p, "Max freq: %d MHz\n",
2454 intel_rps_get_max_frequency(rps));
2455 drm_printf(p,
2456 "efficient (RPe) frequency: %d MHz\n",
2457 intel_gpu_freq(rps, caps.rp1_freq));
2458 }
2459
gen6_rps_frequency_dump(struct intel_rps * rps,struct drm_printer * p)2460 void gen6_rps_frequency_dump(struct intel_rps *rps, struct drm_printer *p)
2461 {
2462 if (rps_uses_slpc(rps))
2463 return slpc_frequency_dump(rps, p);
2464 else
2465 return rps_frequency_dump(rps, p);
2466 }
2467
set_max_freq(struct intel_rps * rps,u32 val)2468 static int set_max_freq(struct intel_rps *rps, u32 val)
2469 {
2470 struct drm_i915_private *i915 = rps_to_i915(rps);
2471 int ret = 0;
2472
2473 mutex_lock(&rps->lock);
2474
2475 val = intel_freq_opcode(rps, val);
2476 if (val < rps->min_freq ||
2477 val > rps->max_freq ||
2478 val < rps->min_freq_softlimit) {
2479 ret = -EINVAL;
2480 goto unlock;
2481 }
2482
2483 if (val > rps->rp0_freq)
2484 drm_dbg(&i915->drm, "User requested overclocking to %d\n",
2485 intel_gpu_freq(rps, val));
2486
2487 rps->max_freq_softlimit = val;
2488
2489 val = clamp_t(int, rps->cur_freq,
2490 rps->min_freq_softlimit,
2491 rps->max_freq_softlimit);
2492
2493 /*
2494 * We still need *_set_rps to process the new max_delay and
2495 * update the interrupt limits and PMINTRMSK even though
2496 * frequency request may be unchanged.
2497 */
2498 intel_rps_set(rps, val);
2499
2500 unlock:
2501 mutex_unlock(&rps->lock);
2502
2503 return ret;
2504 }
2505
intel_rps_set_max_frequency(struct intel_rps * rps,u32 val)2506 int intel_rps_set_max_frequency(struct intel_rps *rps, u32 val)
2507 {
2508 struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2509
2510 if (rps_uses_slpc(rps))
2511 return intel_guc_slpc_set_max_freq(slpc, val);
2512 else
2513 return set_max_freq(rps, val);
2514 }
2515
intel_rps_get_min_frequency(struct intel_rps * rps)2516 u32 intel_rps_get_min_frequency(struct intel_rps *rps)
2517 {
2518 struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2519
2520 if (rps_uses_slpc(rps))
2521 return slpc->min_freq_softlimit;
2522 else
2523 return intel_gpu_freq(rps, rps->min_freq_softlimit);
2524 }
2525
2526 /**
2527 * intel_rps_get_min_raw_freq - returns the min frequency in some raw format.
2528 * @rps: the intel_rps structure
2529 *
2530 * Returns the min frequency in a raw format. In newer platforms raw is in
2531 * units of 50 MHz.
2532 */
intel_rps_get_min_raw_freq(struct intel_rps * rps)2533 u32 intel_rps_get_min_raw_freq(struct intel_rps *rps)
2534 {
2535 struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2536 u32 freq;
2537
2538 if (rps_uses_slpc(rps)) {
2539 return DIV_ROUND_CLOSEST(slpc->min_freq,
2540 GT_FREQUENCY_MULTIPLIER);
2541 } else {
2542 freq = rps->min_freq;
2543 if (GRAPHICS_VER(rps_to_i915(rps)) >= 9) {
2544 /* Convert GT frequency to 50 MHz units */
2545 freq /= GEN9_FREQ_SCALER;
2546 }
2547 return freq;
2548 }
2549 }
2550
set_min_freq(struct intel_rps * rps,u32 val)2551 static int set_min_freq(struct intel_rps *rps, u32 val)
2552 {
2553 int ret = 0;
2554
2555 mutex_lock(&rps->lock);
2556
2557 val = intel_freq_opcode(rps, val);
2558 if (val < rps->min_freq ||
2559 val > rps->max_freq ||
2560 val > rps->max_freq_softlimit) {
2561 ret = -EINVAL;
2562 goto unlock;
2563 }
2564
2565 rps->min_freq_softlimit = val;
2566
2567 val = clamp_t(int, rps->cur_freq,
2568 rps->min_freq_softlimit,
2569 rps->max_freq_softlimit);
2570
2571 /*
2572 * We still need *_set_rps to process the new min_delay and
2573 * update the interrupt limits and PMINTRMSK even though
2574 * frequency request may be unchanged.
2575 */
2576 intel_rps_set(rps, val);
2577
2578 unlock:
2579 mutex_unlock(&rps->lock);
2580
2581 return ret;
2582 }
2583
intel_rps_set_min_frequency(struct intel_rps * rps,u32 val)2584 int intel_rps_set_min_frequency(struct intel_rps *rps, u32 val)
2585 {
2586 struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2587
2588 if (rps_uses_slpc(rps))
2589 return intel_guc_slpc_set_min_freq(slpc, val);
2590 else
2591 return set_min_freq(rps, val);
2592 }
2593
intel_rps_get_up_threshold(struct intel_rps * rps)2594 u8 intel_rps_get_up_threshold(struct intel_rps *rps)
2595 {
2596 return rps->power.up_threshold;
2597 }
2598
rps_set_threshold(struct intel_rps * rps,u8 * threshold,u8 val)2599 static int rps_set_threshold(struct intel_rps *rps, u8 *threshold, u8 val)
2600 {
2601 int ret;
2602
2603 if (val > 100)
2604 return -EINVAL;
2605
2606 ret = mutex_lock_interruptible(&rps->lock);
2607 if (ret)
2608 return ret;
2609
2610 if (*threshold == val)
2611 goto out_unlock;
2612
2613 *threshold = val;
2614
2615 /* Force reset. */
2616 rps->last_freq = -1;
2617 mutex_lock(&rps->power.mutex);
2618 rps->power.mode = -1;
2619 mutex_unlock(&rps->power.mutex);
2620
2621 intel_rps_set(rps, clamp(rps->cur_freq,
2622 rps->min_freq_softlimit,
2623 rps->max_freq_softlimit));
2624
2625 out_unlock:
2626 mutex_unlock(&rps->lock);
2627
2628 return ret;
2629 }
2630
intel_rps_set_up_threshold(struct intel_rps * rps,u8 threshold)2631 int intel_rps_set_up_threshold(struct intel_rps *rps, u8 threshold)
2632 {
2633 return rps_set_threshold(rps, &rps->power.up_threshold, threshold);
2634 }
2635
intel_rps_get_down_threshold(struct intel_rps * rps)2636 u8 intel_rps_get_down_threshold(struct intel_rps *rps)
2637 {
2638 return rps->power.down_threshold;
2639 }
2640
intel_rps_set_down_threshold(struct intel_rps * rps,u8 threshold)2641 int intel_rps_set_down_threshold(struct intel_rps *rps, u8 threshold)
2642 {
2643 return rps_set_threshold(rps, &rps->power.down_threshold, threshold);
2644 }
2645
intel_rps_set_manual(struct intel_rps * rps,bool enable)2646 static void intel_rps_set_manual(struct intel_rps *rps, bool enable)
2647 {
2648 struct intel_uncore *uncore = rps_to_uncore(rps);
2649 u32 state = enable ? GEN9_RPSWCTL_ENABLE : GEN9_RPSWCTL_DISABLE;
2650
2651 /* Allow punit to process software requests */
2652 intel_uncore_write(uncore, GEN6_RP_CONTROL, state);
2653 }
2654
intel_rps_raise_unslice(struct intel_rps * rps)2655 void intel_rps_raise_unslice(struct intel_rps *rps)
2656 {
2657 struct intel_uncore *uncore = rps_to_uncore(rps);
2658
2659 mutex_lock(&rps->lock);
2660
2661 if (rps_uses_slpc(rps)) {
2662 /* RP limits have not been initialized yet for SLPC path */
2663 struct intel_rps_freq_caps caps;
2664
2665 gen6_rps_get_freq_caps(rps, &caps);
2666
2667 intel_rps_set_manual(rps, true);
2668 intel_uncore_write(uncore, GEN6_RPNSWREQ,
2669 ((caps.rp0_freq <<
2670 GEN9_SW_REQ_UNSLICE_RATIO_SHIFT) |
2671 GEN9_IGNORE_SLICE_RATIO));
2672 intel_rps_set_manual(rps, false);
2673 } else {
2674 intel_rps_set(rps, rps->rp0_freq);
2675 }
2676
2677 mutex_unlock(&rps->lock);
2678 }
2679
intel_rps_lower_unslice(struct intel_rps * rps)2680 void intel_rps_lower_unslice(struct intel_rps *rps)
2681 {
2682 struct intel_uncore *uncore = rps_to_uncore(rps);
2683
2684 mutex_lock(&rps->lock);
2685
2686 if (rps_uses_slpc(rps)) {
2687 /* RP limits have not been initialized yet for SLPC path */
2688 struct intel_rps_freq_caps caps;
2689
2690 gen6_rps_get_freq_caps(rps, &caps);
2691
2692 intel_rps_set_manual(rps, true);
2693 intel_uncore_write(uncore, GEN6_RPNSWREQ,
2694 ((caps.min_freq <<
2695 GEN9_SW_REQ_UNSLICE_RATIO_SHIFT) |
2696 GEN9_IGNORE_SLICE_RATIO));
2697 intel_rps_set_manual(rps, false);
2698 } else {
2699 intel_rps_set(rps, rps->min_freq);
2700 }
2701
2702 mutex_unlock(&rps->lock);
2703 }
2704
rps_read_mmio(struct intel_rps * rps,i915_reg_t reg32)2705 static u32 rps_read_mmio(struct intel_rps *rps, i915_reg_t reg32)
2706 {
2707 struct intel_gt *gt = rps_to_gt(rps);
2708 intel_wakeref_t wakeref;
2709 u32 val;
2710
2711 with_intel_runtime_pm(gt->uncore->rpm, wakeref)
2712 val = intel_uncore_read(gt->uncore, reg32);
2713
2714 return val;
2715 }
2716
rps_read_mask_mmio(struct intel_rps * rps,i915_reg_t reg32,u32 mask)2717 bool rps_read_mask_mmio(struct intel_rps *rps,
2718 i915_reg_t reg32, u32 mask)
2719 {
2720 return rps_read_mmio(rps, reg32) & mask;
2721 }
2722
2723 /* External interface for intel_ips.ko */
2724
2725 static struct drm_i915_private __rcu *ips_mchdev;
2726
2727 /*
2728 * Tells the intel_ips driver that the i915 driver is now loaded, if
2729 * IPS got loaded first.
2730 *
2731 * This awkward dance is so that neither module has to depend on the
2732 * other in order for IPS to do the appropriate communication of
2733 * GPU turbo limits to i915.
2734 */
2735 static void
ips_ping_for_i915_load(void)2736 ips_ping_for_i915_load(void)
2737 {
2738 void (*link)(void);
2739
2740 link = symbol_get(ips_link_to_i915_driver);
2741 if (link) {
2742 link();
2743 symbol_put(ips_link_to_i915_driver);
2744 }
2745 }
2746
intel_rps_driver_register(struct intel_rps * rps)2747 void intel_rps_driver_register(struct intel_rps *rps)
2748 {
2749 struct intel_gt *gt = rps_to_gt(rps);
2750
2751 /*
2752 * We only register the i915 ips part with intel-ips once everything is
2753 * set up, to avoid intel-ips sneaking in and reading bogus values.
2754 */
2755 if (GRAPHICS_VER(gt->i915) == 5) {
2756 GEM_BUG_ON(ips_mchdev);
2757 rcu_assign_pointer(ips_mchdev, gt->i915);
2758 ips_ping_for_i915_load();
2759 }
2760 }
2761
intel_rps_driver_unregister(struct intel_rps * rps)2762 void intel_rps_driver_unregister(struct intel_rps *rps)
2763 {
2764 if (rcu_access_pointer(ips_mchdev) == rps_to_i915(rps))
2765 rcu_assign_pointer(ips_mchdev, NULL);
2766 }
2767
mchdev_get(void)2768 static struct drm_i915_private *mchdev_get(void)
2769 {
2770 struct drm_i915_private *i915;
2771
2772 rcu_read_lock();
2773 i915 = rcu_dereference(ips_mchdev);
2774 if (i915 && !kref_get_unless_zero(&i915->drm.ref))
2775 i915 = NULL;
2776 rcu_read_unlock();
2777
2778 return i915;
2779 }
2780
2781 /**
2782 * i915_read_mch_val - return value for IPS use
2783 *
2784 * Calculate and return a value for the IPS driver to use when deciding whether
2785 * we have thermal and power headroom to increase CPU or GPU power budget.
2786 */
i915_read_mch_val(void)2787 unsigned long i915_read_mch_val(void)
2788 {
2789 struct drm_i915_private *i915;
2790 unsigned long chipset_val = 0;
2791 unsigned long graphics_val = 0;
2792 intel_wakeref_t wakeref;
2793
2794 i915 = mchdev_get();
2795 if (!i915)
2796 return 0;
2797
2798 with_intel_runtime_pm(&i915->runtime_pm, wakeref) {
2799 struct intel_ips *ips = &to_gt(i915)->rps.ips;
2800
2801 spin_lock_irq(&mchdev_lock);
2802 chipset_val = __ips_chipset_val(ips);
2803 graphics_val = __ips_gfx_val(ips);
2804 spin_unlock_irq(&mchdev_lock);
2805 }
2806
2807 drm_dev_put(&i915->drm);
2808 return chipset_val + graphics_val;
2809 }
2810 EXPORT_SYMBOL_GPL(i915_read_mch_val);
2811
2812 /**
2813 * i915_gpu_raise - raise GPU frequency limit
2814 *
2815 * Raise the limit; IPS indicates we have thermal headroom.
2816 */
i915_gpu_raise(void)2817 bool i915_gpu_raise(void)
2818 {
2819 struct drm_i915_private *i915;
2820 struct intel_rps *rps;
2821
2822 i915 = mchdev_get();
2823 if (!i915)
2824 return false;
2825
2826 rps = &to_gt(i915)->rps;
2827
2828 spin_lock_irq(&mchdev_lock);
2829 if (rps->max_freq_softlimit < rps->max_freq)
2830 rps->max_freq_softlimit++;
2831 spin_unlock_irq(&mchdev_lock);
2832
2833 drm_dev_put(&i915->drm);
2834 return true;
2835 }
2836 EXPORT_SYMBOL_GPL(i915_gpu_raise);
2837
2838 /**
2839 * i915_gpu_lower - lower GPU frequency limit
2840 *
2841 * IPS indicates we're close to a thermal limit, so throttle back the GPU
2842 * frequency maximum.
2843 */
i915_gpu_lower(void)2844 bool i915_gpu_lower(void)
2845 {
2846 struct drm_i915_private *i915;
2847 struct intel_rps *rps;
2848
2849 i915 = mchdev_get();
2850 if (!i915)
2851 return false;
2852
2853 rps = &to_gt(i915)->rps;
2854
2855 spin_lock_irq(&mchdev_lock);
2856 if (rps->max_freq_softlimit > rps->min_freq)
2857 rps->max_freq_softlimit--;
2858 spin_unlock_irq(&mchdev_lock);
2859
2860 drm_dev_put(&i915->drm);
2861 return true;
2862 }
2863 EXPORT_SYMBOL_GPL(i915_gpu_lower);
2864
2865 /**
2866 * i915_gpu_busy - indicate GPU business to IPS
2867 *
2868 * Tell the IPS driver whether or not the GPU is busy.
2869 */
i915_gpu_busy(void)2870 bool i915_gpu_busy(void)
2871 {
2872 struct drm_i915_private *i915;
2873 bool ret;
2874
2875 i915 = mchdev_get();
2876 if (!i915)
2877 return false;
2878
2879 ret = to_gt(i915)->awake;
2880
2881 drm_dev_put(&i915->drm);
2882 return ret;
2883 }
2884 EXPORT_SYMBOL_GPL(i915_gpu_busy);
2885
2886 /**
2887 * i915_gpu_turbo_disable - disable graphics turbo
2888 *
2889 * Disable graphics turbo by resetting the max frequency and setting the
2890 * current frequency to the default.
2891 */
i915_gpu_turbo_disable(void)2892 bool i915_gpu_turbo_disable(void)
2893 {
2894 struct drm_i915_private *i915;
2895 struct intel_rps *rps;
2896 bool ret;
2897
2898 i915 = mchdev_get();
2899 if (!i915)
2900 return false;
2901
2902 rps = &to_gt(i915)->rps;
2903
2904 spin_lock_irq(&mchdev_lock);
2905 rps->max_freq_softlimit = rps->min_freq;
2906 ret = !__gen5_rps_set(&to_gt(i915)->rps, rps->min_freq);
2907 spin_unlock_irq(&mchdev_lock);
2908
2909 drm_dev_put(&i915->drm);
2910 return ret;
2911 }
2912 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
2913
2914 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2915 #include "selftest_rps.c"
2916 #include "selftest_slpc.c"
2917 #endif
2918