1 /*
2 * QEMU Executable loader
3 *
4 * Copyright (c) 2006 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 *
24 * Gunzip functionality in this file is derived from u-boot:
25 *
26 * (C) Copyright 2008 Semihalf
27 *
28 * (C) Copyright 2000-2005
29 * Wolfgang Denk, DENX Software Engineering, wd@denx.de.
30 *
31 * This program is free software; you can redistribute it and/or
32 * modify it under the terms of the GNU General Public License as
33 * published by the Free Software Foundation; either version 2 of
34 * the License, or (at your option) any later version.
35 *
36 * This program is distributed in the hope that it will be useful,
37 * but WITHOUT ANY WARRANTY; without even the implied warranty of
38 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
39 * GNU General Public License for more details.
40 *
41 * You should have received a copy of the GNU General Public License along
42 * with this program; if not, see <http://www.gnu.org/licenses/>.
43 */
44
45 #include "qemu/osdep.h"
46 #include "qemu/datadir.h"
47 #include "qemu/error-report.h"
48 #include "qapi/error.h"
49 #include "qapi/qapi-commands-machine.h"
50 #include "qapi/type-helpers.h"
51 #include "trace.h"
52 #include "hw/hw.h"
53 #include "disas/disas.h"
54 #include "migration/cpr.h"
55 #include "migration/vmstate.h"
56 #include "monitor/monitor.h"
57 #include "system/reset.h"
58 #include "system/system.h"
59 #include "uboot_image.h"
60 #include "hw/loader.h"
61 #include "hw/nvram/fw_cfg.h"
62 #include "system/memory.h"
63 #include "hw/boards.h"
64 #include "qemu/cutils.h"
65 #include "system/runstate.h"
66 #include "tcg/debuginfo.h"
67
68 #include <zlib.h>
69
70 static int roms_loaded;
71
72 /* return the size or -1 if error */
get_image_size(const char * filename)73 int64_t get_image_size(const char *filename)
74 {
75 int fd;
76 int64_t size;
77 fd = open(filename, O_RDONLY | O_BINARY);
78 if (fd < 0)
79 return -1;
80 size = lseek(fd, 0, SEEK_END);
81 close(fd);
82 return size;
83 }
84
85 /* return the size or -1 if error */
load_image_size(const char * filename,void * addr,size_t size)86 ssize_t load_image_size(const char *filename, void *addr, size_t size)
87 {
88 int fd;
89 ssize_t actsize, l = 0;
90
91 fd = open(filename, O_RDONLY | O_BINARY);
92 if (fd < 0) {
93 return -1;
94 }
95
96 while ((actsize = read(fd, addr + l, size - l)) > 0) {
97 l += actsize;
98 }
99
100 close(fd);
101
102 return actsize < 0 ? -1 : l;
103 }
104
105 /* read()-like version */
read_targphys(const char * name,int fd,hwaddr dst_addr,size_t nbytes)106 ssize_t read_targphys(const char *name,
107 int fd, hwaddr dst_addr, size_t nbytes)
108 {
109 uint8_t *buf;
110 ssize_t did;
111
112 buf = g_malloc(nbytes);
113 did = read(fd, buf, nbytes);
114 if (did > 0)
115 rom_add_blob_fixed("read", buf, did, dst_addr);
116 g_free(buf);
117 return did;
118 }
119
load_image_targphys(const char * filename,hwaddr addr,uint64_t max_sz)120 ssize_t load_image_targphys(const char *filename,
121 hwaddr addr, uint64_t max_sz)
122 {
123 return load_image_targphys_as(filename, addr, max_sz, NULL);
124 }
125
126 /* return the size or -1 if error */
load_image_targphys_as(const char * filename,hwaddr addr,uint64_t max_sz,AddressSpace * as)127 ssize_t load_image_targphys_as(const char *filename,
128 hwaddr addr, uint64_t max_sz, AddressSpace *as)
129 {
130 ssize_t size;
131
132 size = get_image_size(filename);
133 if (size < 0 || size > max_sz) {
134 return -1;
135 }
136 if (size > 0) {
137 if (rom_add_file_fixed_as(filename, addr, -1, as) < 0) {
138 return -1;
139 }
140 }
141 return size;
142 }
143
load_image_mr(const char * filename,MemoryRegion * mr)144 ssize_t load_image_mr(const char *filename, MemoryRegion *mr)
145 {
146 ssize_t size;
147
148 if (!memory_access_is_direct(mr, false, MEMTXATTRS_UNSPECIFIED)) {
149 /* Can only load an image into RAM or ROM */
150 return -1;
151 }
152
153 size = get_image_size(filename);
154
155 if (size < 0 || size > memory_region_size(mr)) {
156 return -1;
157 }
158 if (size > 0) {
159 if (rom_add_file_mr(filename, mr, -1) < 0) {
160 return -1;
161 }
162 }
163 return size;
164 }
165
pstrcpy_targphys(const char * name,hwaddr dest,int buf_size,const char * source)166 void pstrcpy_targphys(const char *name, hwaddr dest, int buf_size,
167 const char *source)
168 {
169 const char *nulp;
170 char *ptr;
171
172 if (buf_size <= 0) return;
173 nulp = memchr(source, 0, buf_size);
174 if (nulp) {
175 rom_add_blob_fixed(name, source, (nulp - source) + 1, dest);
176 } else {
177 rom_add_blob_fixed(name, source, buf_size, dest);
178 ptr = rom_ptr(dest + buf_size - 1, sizeof(*ptr));
179 *ptr = 0;
180 }
181 }
182
183 /* A.OUT loader */
184
185 struct exec
186 {
187 uint32_t a_info; /* Use macros N_MAGIC, etc for access */
188 uint32_t a_text; /* length of text, in bytes */
189 uint32_t a_data; /* length of data, in bytes */
190 uint32_t a_bss; /* length of uninitialized data area, in bytes */
191 uint32_t a_syms; /* length of symbol table data in file, in bytes */
192 uint32_t a_entry; /* start address */
193 uint32_t a_trsize; /* length of relocation info for text, in bytes */
194 uint32_t a_drsize; /* length of relocation info for data, in bytes */
195 };
196
bswap_ahdr(struct exec * e)197 static void bswap_ahdr(struct exec *e)
198 {
199 bswap32s(&e->a_info);
200 bswap32s(&e->a_text);
201 bswap32s(&e->a_data);
202 bswap32s(&e->a_bss);
203 bswap32s(&e->a_syms);
204 bswap32s(&e->a_entry);
205 bswap32s(&e->a_trsize);
206 bswap32s(&e->a_drsize);
207 }
208
209 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
210 #define OMAGIC 0407
211 #define NMAGIC 0410
212 #define ZMAGIC 0413
213 #define QMAGIC 0314
214 #define _N_HDROFF(x) (1024 - sizeof (struct exec))
215 #define N_TXTOFF(x) \
216 (N_MAGIC(x) == ZMAGIC ? _N_HDROFF((x)) + sizeof (struct exec) : \
217 (N_MAGIC(x) == QMAGIC ? 0 : sizeof (struct exec)))
218 #define N_TXTADDR(x, target_page_size) (N_MAGIC(x) == QMAGIC ? target_page_size : 0)
219 #define _N_SEGMENT_ROUND(x, target_page_size) (((x) + target_page_size - 1) & ~(target_page_size - 1))
220
221 #define _N_TXTENDADDR(x, target_page_size) (N_TXTADDR(x, target_page_size)+(x).a_text)
222
223 #define N_DATADDR(x, target_page_size) \
224 (N_MAGIC(x)==OMAGIC? (_N_TXTENDADDR(x, target_page_size)) \
225 : (_N_SEGMENT_ROUND (_N_TXTENDADDR(x, target_page_size), target_page_size)))
226
227
load_aout(const char * filename,hwaddr addr,int max_sz,bool big_endian,hwaddr target_page_size)228 ssize_t load_aout(const char *filename, hwaddr addr, int max_sz,
229 bool big_endian, hwaddr target_page_size)
230 {
231 int fd;
232 ssize_t size, ret;
233 struct exec e;
234 uint32_t magic;
235
236 fd = open(filename, O_RDONLY | O_BINARY);
237 if (fd < 0)
238 return -1;
239
240 size = read(fd, &e, sizeof(e));
241 if (size < 0)
242 goto fail;
243
244 if (big_endian != HOST_BIG_ENDIAN) {
245 bswap_ahdr(&e);
246 }
247
248 magic = N_MAGIC(e);
249 switch (magic) {
250 case ZMAGIC:
251 case QMAGIC:
252 case OMAGIC:
253 if (e.a_text + e.a_data > max_sz)
254 goto fail;
255 lseek(fd, N_TXTOFF(e), SEEK_SET);
256 size = read_targphys(filename, fd, addr, e.a_text + e.a_data);
257 if (size < 0)
258 goto fail;
259 break;
260 case NMAGIC:
261 if (N_DATADDR(e, target_page_size) + e.a_data > max_sz)
262 goto fail;
263 lseek(fd, N_TXTOFF(e), SEEK_SET);
264 size = read_targphys(filename, fd, addr, e.a_text);
265 if (size < 0)
266 goto fail;
267 ret = read_targphys(filename, fd, addr + N_DATADDR(e, target_page_size),
268 e.a_data);
269 if (ret < 0)
270 goto fail;
271 size += ret;
272 break;
273 default:
274 goto fail;
275 }
276 close(fd);
277 return size;
278 fail:
279 close(fd);
280 return -1;
281 }
282
283 /* ELF loader */
284
load_at(int fd,off_t offset,size_t size)285 static void *load_at(int fd, off_t offset, size_t size)
286 {
287 void *ptr;
288 if (lseek(fd, offset, SEEK_SET) < 0)
289 return NULL;
290 ptr = g_malloc(size);
291 if (read(fd, ptr, size) != size) {
292 g_free(ptr);
293 return NULL;
294 }
295 return ptr;
296 }
297
298 #ifdef ELF_CLASS
299 #undef ELF_CLASS
300 #endif
301
302 #define ELF_CLASS ELFCLASS32
303 #include "elf.h"
304
305 #define SZ 32
306 #define elf_word uint32_t
307 #define elf_sword int32_t
308 #define bswapSZs bswap32s
309 #include "hw/elf_ops.h.inc"
310
311 #undef elfhdr
312 #undef elf_phdr
313 #undef elf_shdr
314 #undef elf_sym
315 #undef elf_rela
316 #undef elf_note
317 #undef elf_word
318 #undef elf_sword
319 #undef bswapSZs
320 #undef SZ
321 #define elfhdr elf64_hdr
322 #define elf_phdr elf64_phdr
323 #define elf_note elf64_note
324 #define elf_shdr elf64_shdr
325 #define elf_sym elf64_sym
326 #define elf_rela elf64_rela
327 #define elf_word uint64_t
328 #define elf_sword int64_t
329 #define bswapSZs bswap64s
330 #define SZ 64
331 #include "hw/elf_ops.h.inc"
332
load_elf_strerror(ssize_t error)333 const char *load_elf_strerror(ssize_t error)
334 {
335 switch (error) {
336 case 0:
337 return "No error";
338 case ELF_LOAD_FAILED:
339 return "Failed to load ELF";
340 case ELF_LOAD_NOT_ELF:
341 return "The image is not ELF";
342 case ELF_LOAD_WRONG_ARCH:
343 return "The image is from incompatible architecture";
344 case ELF_LOAD_WRONG_ENDIAN:
345 return "The image has incorrect endianness";
346 case ELF_LOAD_TOO_BIG:
347 return "The image segments are too big to load";
348 default:
349 return "Unknown error";
350 }
351 }
352
load_elf_hdr(const char * filename,void * hdr,bool * is64,Error ** errp)353 void load_elf_hdr(const char *filename, void *hdr, bool *is64, Error **errp)
354 {
355 int fd;
356 uint8_t e_ident_local[EI_NIDENT];
357 uint8_t *e_ident;
358 size_t hdr_size, off;
359 bool is64l;
360
361 if (!hdr) {
362 hdr = e_ident_local;
363 }
364 e_ident = hdr;
365
366 fd = open(filename, O_RDONLY | O_BINARY);
367 if (fd < 0) {
368 error_setg_errno(errp, errno, "Failed to open file: %s", filename);
369 return;
370 }
371 if (read(fd, hdr, EI_NIDENT) != EI_NIDENT) {
372 error_setg_errno(errp, errno, "Failed to read file: %s", filename);
373 goto fail;
374 }
375 if (e_ident[0] != ELFMAG0 ||
376 e_ident[1] != ELFMAG1 ||
377 e_ident[2] != ELFMAG2 ||
378 e_ident[3] != ELFMAG3) {
379 error_setg(errp, "Bad ELF magic");
380 goto fail;
381 }
382
383 is64l = e_ident[EI_CLASS] == ELFCLASS64;
384 hdr_size = is64l ? sizeof(Elf64_Ehdr) : sizeof(Elf32_Ehdr);
385 if (is64) {
386 *is64 = is64l;
387 }
388
389 off = EI_NIDENT;
390 while (hdr != e_ident_local && off < hdr_size) {
391 size_t br = read(fd, hdr + off, hdr_size - off);
392 switch (br) {
393 case 0:
394 error_setg(errp, "File too short: %s", filename);
395 goto fail;
396 case -1:
397 error_setg_errno(errp, errno, "Failed to read file: %s",
398 filename);
399 goto fail;
400 }
401 off += br;
402 }
403
404 fail:
405 close(fd);
406 }
407
408 /* return < 0 if error, otherwise the number of bytes loaded in memory */
load_elf(const char * filename,uint64_t (* elf_note_fn)(void *,void *,bool),uint64_t (* translate_fn)(void *,uint64_t),void * translate_opaque,uint64_t * pentry,uint64_t * lowaddr,uint64_t * highaddr,uint32_t * pflags,int elf_data_order,int elf_machine,int clear_lsb,int data_swab)409 ssize_t load_elf(const char *filename,
410 uint64_t (*elf_note_fn)(void *, void *, bool),
411 uint64_t (*translate_fn)(void *, uint64_t),
412 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr,
413 uint64_t *highaddr, uint32_t *pflags, int elf_data_order,
414 int elf_machine, int clear_lsb, int data_swab)
415 {
416 return load_elf_as(filename, elf_note_fn, translate_fn, translate_opaque,
417 pentry, lowaddr, highaddr, pflags, elf_data_order,
418 elf_machine, clear_lsb, data_swab, NULL);
419 }
420
421 /* return < 0 if error, otherwise the number of bytes loaded in memory */
load_elf_as(const char * filename,uint64_t (* elf_note_fn)(void *,void *,bool),uint64_t (* translate_fn)(void *,uint64_t),void * translate_opaque,uint64_t * pentry,uint64_t * lowaddr,uint64_t * highaddr,uint32_t * pflags,int elf_data_order,int elf_machine,int clear_lsb,int data_swab,AddressSpace * as)422 ssize_t load_elf_as(const char *filename,
423 uint64_t (*elf_note_fn)(void *, void *, bool),
424 uint64_t (*translate_fn)(void *, uint64_t),
425 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr,
426 uint64_t *highaddr, uint32_t *pflags, int elf_data_order,
427 int elf_machine, int clear_lsb, int data_swab,
428 AddressSpace *as)
429 {
430 return load_elf_ram_sym(filename, elf_note_fn,
431 translate_fn, translate_opaque,
432 pentry, lowaddr, highaddr, pflags, elf_data_order,
433 elf_machine, clear_lsb, data_swab, as,
434 true, NULL);
435 }
436
437 /* return < 0 if error, otherwise the number of bytes loaded in memory */
load_elf_ram_sym(const char * filename,uint64_t (* elf_note_fn)(void *,void *,bool),uint64_t (* translate_fn)(void *,uint64_t),void * translate_opaque,uint64_t * pentry,uint64_t * lowaddr,uint64_t * highaddr,uint32_t * pflags,int elf_data_order,int elf_machine,int clear_lsb,int data_swab,AddressSpace * as,bool load_rom,symbol_fn_t sym_cb)438 ssize_t load_elf_ram_sym(const char *filename,
439 uint64_t (*elf_note_fn)(void *, void *, bool),
440 uint64_t (*translate_fn)(void *, uint64_t),
441 void *translate_opaque, uint64_t *pentry,
442 uint64_t *lowaddr, uint64_t *highaddr,
443 uint32_t *pflags, int elf_data_order, int elf_machine,
444 int clear_lsb, int data_swab,
445 AddressSpace *as, bool load_rom, symbol_fn_t sym_cb)
446 {
447 const int host_data_order = HOST_BIG_ENDIAN ? ELFDATA2MSB : ELFDATA2LSB;
448 int fd, must_swab;
449 ssize_t ret = ELF_LOAD_FAILED;
450 uint8_t e_ident[EI_NIDENT];
451
452 fd = open(filename, O_RDONLY | O_BINARY);
453 if (fd < 0) {
454 perror(filename);
455 return -1;
456 }
457 if (read(fd, e_ident, sizeof(e_ident)) != sizeof(e_ident))
458 goto fail;
459 if (e_ident[0] != ELFMAG0 ||
460 e_ident[1] != ELFMAG1 ||
461 e_ident[2] != ELFMAG2 ||
462 e_ident[3] != ELFMAG3) {
463 ret = ELF_LOAD_NOT_ELF;
464 goto fail;
465 }
466
467 if (elf_data_order != ELFDATANONE && elf_data_order != e_ident[EI_DATA]) {
468 ret = ELF_LOAD_WRONG_ENDIAN;
469 goto fail;
470 }
471
472 must_swab = host_data_order != e_ident[EI_DATA];
473
474 lseek(fd, 0, SEEK_SET);
475 if (e_ident[EI_CLASS] == ELFCLASS64) {
476 ret = load_elf64(filename, fd, elf_note_fn,
477 translate_fn, translate_opaque, must_swab,
478 pentry, lowaddr, highaddr, pflags, elf_machine,
479 clear_lsb, data_swab, as, load_rom, sym_cb);
480 } else {
481 ret = load_elf32(filename, fd, elf_note_fn,
482 translate_fn, translate_opaque, must_swab,
483 pentry, lowaddr, highaddr, pflags, elf_machine,
484 clear_lsb, data_swab, as, load_rom, sym_cb);
485 }
486
487 if (ret > 0) {
488 debuginfo_report_elf(filename, fd, 0);
489 }
490
491 fail:
492 close(fd);
493 return ret;
494 }
495
bswap_uboot_header(uboot_image_header_t * hdr)496 static void bswap_uboot_header(uboot_image_header_t *hdr)
497 {
498 #if !HOST_BIG_ENDIAN
499 bswap32s(&hdr->ih_magic);
500 bswap32s(&hdr->ih_hcrc);
501 bswap32s(&hdr->ih_time);
502 bswap32s(&hdr->ih_size);
503 bswap32s(&hdr->ih_load);
504 bswap32s(&hdr->ih_ep);
505 bswap32s(&hdr->ih_dcrc);
506 #endif
507 }
508
509
510 #define ZALLOC_ALIGNMENT 16
511
zalloc(void * x,unsigned items,unsigned size)512 static void *zalloc(void *x, unsigned items, unsigned size)
513 {
514 void *p;
515
516 size *= items;
517 size = (size + ZALLOC_ALIGNMENT - 1) & ~(ZALLOC_ALIGNMENT - 1);
518
519 p = g_malloc(size);
520
521 return (p);
522 }
523
zfree(void * x,void * addr)524 static void zfree(void *x, void *addr)
525 {
526 g_free(addr);
527 }
528
529
530 #define HEAD_CRC 2
531 #define EXTRA_FIELD 4
532 #define ORIG_NAME 8
533 #define COMMENT 0x10
534 #define RESERVED 0xe0
535
536 #define DEFLATED 8
537
gunzip(void * dst,size_t dstlen,uint8_t * src,size_t srclen)538 ssize_t gunzip(void *dst, size_t dstlen, uint8_t *src, size_t srclen)
539 {
540 z_stream s = {};
541 ssize_t dstbytes;
542 int r, i, flags;
543
544 /* skip header */
545 i = 10;
546 if (srclen < 4) {
547 goto toosmall;
548 }
549 flags = src[3];
550 if (src[2] != DEFLATED || (flags & RESERVED) != 0) {
551 puts ("Error: Bad gzipped data\n");
552 return -1;
553 }
554 if ((flags & EXTRA_FIELD) != 0) {
555 if (srclen < 12) {
556 goto toosmall;
557 }
558 i = 12 + src[10] + (src[11] << 8);
559 }
560 if ((flags & ORIG_NAME) != 0) {
561 while (i < srclen && src[i++] != 0) {
562 /* do nothing */
563 }
564 }
565 if ((flags & COMMENT) != 0) {
566 while (i < srclen && src[i++] != 0) {
567 /* do nothing */
568 }
569 }
570 if ((flags & HEAD_CRC) != 0) {
571 i += 2;
572 }
573 if (i >= srclen) {
574 goto toosmall;
575 }
576
577 s.zalloc = zalloc;
578 s.zfree = zfree;
579
580 r = inflateInit2(&s, -MAX_WBITS);
581 if (r != Z_OK) {
582 printf ("Error: inflateInit2() returned %d\n", r);
583 return (-1);
584 }
585 s.next_in = src + i;
586 s.avail_in = srclen - i;
587 s.next_out = dst;
588 s.avail_out = dstlen;
589 r = inflate(&s, Z_FINISH);
590 if (r != Z_OK && r != Z_STREAM_END) {
591 printf ("Error: inflate() returned %d\n", r);
592 inflateEnd(&s);
593 return -1;
594 }
595 dstbytes = s.next_out - (unsigned char *) dst;
596 inflateEnd(&s);
597
598 return dstbytes;
599
600 toosmall:
601 puts("Error: gunzip out of data in header\n");
602 return -1;
603 }
604
605 /* Load a U-Boot image. */
load_uboot_image(const char * filename,hwaddr * ep,hwaddr * loadaddr,int * is_linux,uint8_t image_type,uint64_t (* translate_fn)(void *,uint64_t),void * translate_opaque,AddressSpace * as)606 static ssize_t load_uboot_image(const char *filename, hwaddr *ep,
607 hwaddr *loadaddr, int *is_linux,
608 uint8_t image_type,
609 uint64_t (*translate_fn)(void *, uint64_t),
610 void *translate_opaque, AddressSpace *as)
611 {
612 int fd;
613 ssize_t size;
614 hwaddr address;
615 uboot_image_header_t h;
616 uboot_image_header_t *hdr = &h;
617 uint8_t *data = NULL;
618 int ret = -1;
619 int do_uncompress = 0;
620
621 fd = open(filename, O_RDONLY | O_BINARY);
622 if (fd < 0)
623 return -1;
624
625 size = read(fd, hdr, sizeof(uboot_image_header_t));
626 if (size < sizeof(uboot_image_header_t)) {
627 goto out;
628 }
629
630 bswap_uboot_header(hdr);
631
632 if (hdr->ih_magic != IH_MAGIC)
633 goto out;
634
635 if (hdr->ih_type != image_type) {
636 if (!(image_type == IH_TYPE_KERNEL &&
637 hdr->ih_type == IH_TYPE_KERNEL_NOLOAD)) {
638 fprintf(stderr, "Wrong image type %d, expected %d\n", hdr->ih_type,
639 image_type);
640 goto out;
641 }
642 }
643
644 /* TODO: Implement other image types. */
645 switch (hdr->ih_type) {
646 case IH_TYPE_KERNEL_NOLOAD:
647 if (!loadaddr || *loadaddr == LOAD_UIMAGE_LOADADDR_INVALID) {
648 fprintf(stderr, "this image format (kernel_noload) cannot be "
649 "loaded on this machine type");
650 goto out;
651 }
652
653 hdr->ih_load = *loadaddr + sizeof(*hdr);
654 hdr->ih_ep += hdr->ih_load;
655 /* fall through */
656 case IH_TYPE_KERNEL:
657 address = hdr->ih_load;
658 if (translate_fn) {
659 address = translate_fn(translate_opaque, address);
660 }
661 if (loadaddr) {
662 *loadaddr = hdr->ih_load;
663 }
664
665 switch (hdr->ih_comp) {
666 case IH_COMP_NONE:
667 break;
668 case IH_COMP_GZIP:
669 do_uncompress = 1;
670 break;
671 default:
672 fprintf(stderr,
673 "Unable to load u-boot images with compression type %d\n",
674 hdr->ih_comp);
675 goto out;
676 }
677
678 if (ep) {
679 *ep = hdr->ih_ep;
680 }
681
682 /* TODO: Check CPU type. */
683 if (is_linux) {
684 if (hdr->ih_os == IH_OS_LINUX) {
685 *is_linux = 1;
686 } else if (hdr->ih_os == IH_OS_VXWORKS) {
687 /*
688 * VxWorks 7 uses the same boot interface as the Linux kernel
689 * on Arm (64-bit only), PowerPC and RISC-V architectures.
690 */
691 switch (hdr->ih_arch) {
692 case IH_ARCH_ARM64:
693 case IH_ARCH_PPC:
694 case IH_ARCH_RISCV:
695 *is_linux = 1;
696 break;
697 default:
698 *is_linux = 0;
699 break;
700 }
701 } else {
702 *is_linux = 0;
703 }
704 }
705
706 break;
707 case IH_TYPE_RAMDISK:
708 address = *loadaddr;
709 break;
710 default:
711 fprintf(stderr, "Unsupported u-boot image type %d\n", hdr->ih_type);
712 goto out;
713 }
714
715 data = g_malloc(hdr->ih_size);
716
717 if (read(fd, data, hdr->ih_size) != hdr->ih_size) {
718 fprintf(stderr, "Error reading file\n");
719 goto out;
720 }
721
722 if (do_uncompress) {
723 uint8_t *compressed_data;
724 size_t max_bytes;
725 ssize_t bytes;
726
727 compressed_data = data;
728 max_bytes = UBOOT_MAX_GUNZIP_BYTES;
729 data = g_malloc(max_bytes);
730
731 bytes = gunzip(data, max_bytes, compressed_data, hdr->ih_size);
732 g_free(compressed_data);
733 if (bytes < 0) {
734 fprintf(stderr, "Unable to decompress gzipped image!\n");
735 goto out;
736 }
737 hdr->ih_size = bytes;
738 }
739
740 rom_add_blob_fixed_as(filename, data, hdr->ih_size, address, as);
741
742 ret = hdr->ih_size;
743
744 out:
745 g_free(data);
746 close(fd);
747 return ret;
748 }
749
load_uimage(const char * filename,hwaddr * ep,hwaddr * loadaddr,int * is_linux,uint64_t (* translate_fn)(void *,uint64_t),void * translate_opaque)750 ssize_t load_uimage(const char *filename, hwaddr *ep, hwaddr *loadaddr,
751 int *is_linux,
752 uint64_t (*translate_fn)(void *, uint64_t),
753 void *translate_opaque)
754 {
755 return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL,
756 translate_fn, translate_opaque, NULL);
757 }
758
load_uimage_as(const char * filename,hwaddr * ep,hwaddr * loadaddr,int * is_linux,uint64_t (* translate_fn)(void *,uint64_t),void * translate_opaque,AddressSpace * as)759 ssize_t load_uimage_as(const char *filename, hwaddr *ep, hwaddr *loadaddr,
760 int *is_linux,
761 uint64_t (*translate_fn)(void *, uint64_t),
762 void *translate_opaque, AddressSpace *as)
763 {
764 return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL,
765 translate_fn, translate_opaque, as);
766 }
767
768 /* Load a ramdisk. */
load_ramdisk(const char * filename,hwaddr addr,uint64_t max_sz)769 ssize_t load_ramdisk(const char *filename, hwaddr addr, uint64_t max_sz)
770 {
771 return load_ramdisk_as(filename, addr, max_sz, NULL);
772 }
773
load_ramdisk_as(const char * filename,hwaddr addr,uint64_t max_sz,AddressSpace * as)774 ssize_t load_ramdisk_as(const char *filename, hwaddr addr, uint64_t max_sz,
775 AddressSpace *as)
776 {
777 return load_uboot_image(filename, NULL, &addr, NULL, IH_TYPE_RAMDISK,
778 NULL, NULL, as);
779 }
780
781 /* Load a gzip-compressed kernel to a dynamically allocated buffer. */
load_image_gzipped_buffer(const char * filename,uint64_t max_sz,uint8_t ** buffer)782 ssize_t load_image_gzipped_buffer(const char *filename, uint64_t max_sz,
783 uint8_t **buffer)
784 {
785 uint8_t *compressed_data = NULL;
786 uint8_t *data = NULL;
787 gsize len;
788 ssize_t bytes;
789 int ret = -1;
790
791 if (!g_file_get_contents(filename, (char **) &compressed_data, &len,
792 NULL)) {
793 goto out;
794 }
795
796 /* Is it a gzip-compressed file? */
797 if (len < 2 ||
798 compressed_data[0] != 0x1f ||
799 compressed_data[1] != 0x8b) {
800 goto out;
801 }
802
803 if (max_sz > LOAD_IMAGE_MAX_GUNZIP_BYTES) {
804 max_sz = LOAD_IMAGE_MAX_GUNZIP_BYTES;
805 }
806
807 data = g_malloc(max_sz);
808 bytes = gunzip(data, max_sz, compressed_data, len);
809 if (bytes < 0) {
810 fprintf(stderr, "%s: unable to decompress gzipped kernel file\n",
811 filename);
812 goto out;
813 }
814
815 /* trim to actual size and return to caller */
816 *buffer = g_realloc(data, bytes);
817 ret = bytes;
818 /* ownership has been transferred to caller */
819 data = NULL;
820
821 out:
822 g_free(compressed_data);
823 g_free(data);
824 return ret;
825 }
826
827
828 /* The PE/COFF MS-DOS stub magic number */
829 #define EFI_PE_MSDOS_MAGIC "MZ"
830
831 /*
832 * The Linux header magic number for a EFI PE/COFF
833 * image targeting an unspecified architecture.
834 */
835 #define EFI_PE_LINUX_MAGIC "\xcd\x23\x82\x81"
836
837 /*
838 * Bootable Linux kernel images may be packaged as EFI zboot images, which are
839 * self-decompressing executables when loaded via EFI. The compressed payload
840 * can also be extracted from the image and decompressed by a non-EFI loader.
841 *
842 * The de facto specification for this format is at the following URL:
843 *
844 * https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/firmware/efi/libstub/zboot-header.S
845 *
846 * This definition is based on Linux upstream commit 29636a5ce87beba.
847 */
848 struct linux_efi_zboot_header {
849 uint8_t msdos_magic[2]; /* PE/COFF 'MZ' magic number */
850 uint8_t reserved0[2];
851 uint8_t zimg[4]; /* "zimg" for Linux EFI zboot images */
852 uint32_t payload_offset; /* LE offset to compressed payload */
853 uint32_t payload_size; /* LE size of the compressed payload */
854 uint8_t reserved1[8];
855 char compression_type[32]; /* Compression type, NUL terminated */
856 uint8_t linux_magic[4]; /* Linux header magic */
857 uint32_t pe_header_offset; /* LE offset to the PE header */
858 };
859
860 /*
861 * Check whether *buffer points to a Linux EFI zboot image in memory.
862 *
863 * If it does, attempt to decompress it to a new buffer, and free the old one.
864 * If any of this fails, return an error to the caller.
865 *
866 * If the image is not a Linux EFI zboot image, do nothing and return success.
867 */
unpack_efi_zboot_image(uint8_t ** buffer,ssize_t * size)868 ssize_t unpack_efi_zboot_image(uint8_t **buffer, ssize_t *size)
869 {
870 const struct linux_efi_zboot_header *header;
871 uint8_t *data = NULL;
872 ssize_t ploff, plsize;
873 ssize_t bytes;
874
875 /* ignore if this is too small to be a EFI zboot image */
876 if (*size < sizeof(*header)) {
877 return 0;
878 }
879
880 header = (struct linux_efi_zboot_header *)*buffer;
881
882 /* ignore if this is not a Linux EFI zboot image */
883 if (memcmp(&header->msdos_magic, EFI_PE_MSDOS_MAGIC, 2) != 0 ||
884 memcmp(&header->zimg, "zimg", 4) != 0 ||
885 memcmp(&header->linux_magic, EFI_PE_LINUX_MAGIC, 4) != 0) {
886 return 0;
887 }
888
889 if (strcmp(header->compression_type, "gzip") != 0) {
890 fprintf(stderr,
891 "unable to handle EFI zboot image with \"%.*s\" compression\n",
892 (int)sizeof(header->compression_type) - 1,
893 header->compression_type);
894 return -1;
895 }
896
897 ploff = ldl_le_p(&header->payload_offset);
898 plsize = ldl_le_p(&header->payload_size);
899
900 if (ploff < 0 || plsize < 0 || ploff + plsize > *size) {
901 fprintf(stderr, "unable to handle corrupt EFI zboot image\n");
902 return -1;
903 }
904
905 data = g_malloc(LOAD_IMAGE_MAX_GUNZIP_BYTES);
906 bytes = gunzip(data, LOAD_IMAGE_MAX_GUNZIP_BYTES, *buffer + ploff, plsize);
907 if (bytes < 0) {
908 fprintf(stderr, "failed to decompress EFI zboot image\n");
909 g_free(data);
910 return -1;
911 }
912
913 g_free(*buffer);
914 *buffer = g_realloc(data, bytes);
915 *size = bytes;
916 return bytes;
917 }
918
919 /*
920 * Functions for reboot-persistent memory regions.
921 * - used for vga bios and option roms.
922 * - also linux kernel (-kernel / -initrd).
923 */
924
925 typedef struct Rom Rom;
926
927 struct Rom {
928 char *name;
929 char *path;
930
931 /* datasize is the amount of memory allocated in "data". If datasize is less
932 * than romsize, it means that the area from datasize to romsize is filled
933 * with zeros.
934 */
935 size_t romsize;
936 size_t datasize;
937
938 uint8_t *data;
939 MemoryRegion *mr;
940 AddressSpace *as;
941 int isrom;
942 char *fw_dir;
943 char *fw_file;
944 GMappedFile *mapped_file;
945
946 bool committed;
947
948 hwaddr addr;
949 QTAILQ_ENTRY(Rom) next;
950 };
951
952 static FWCfgState *fw_cfg;
953 static QTAILQ_HEAD(, Rom) roms = QTAILQ_HEAD_INITIALIZER(roms);
954
955 /*
956 * rom->data can be heap-allocated or memory-mapped (e.g. when added with
957 * rom_add_elf_program())
958 */
rom_free_data(Rom * rom)959 static void rom_free_data(Rom *rom)
960 {
961 if (rom->mapped_file) {
962 g_mapped_file_unref(rom->mapped_file);
963 rom->mapped_file = NULL;
964 } else {
965 g_free(rom->data);
966 }
967
968 rom->data = NULL;
969 }
970
rom_free(Rom * rom)971 static void rom_free(Rom *rom)
972 {
973 rom_free_data(rom);
974 g_free(rom->path);
975 g_free(rom->name);
976 g_free(rom->fw_dir);
977 g_free(rom->fw_file);
978 g_free(rom);
979 }
980
rom_order_compare(Rom * rom,Rom * item)981 static inline bool rom_order_compare(Rom *rom, Rom *item)
982 {
983 return ((uintptr_t)(void *)rom->as > (uintptr_t)(void *)item->as) ||
984 (rom->as == item->as && rom->addr >= item->addr);
985 }
986
rom_insert(Rom * rom)987 static void rom_insert(Rom *rom)
988 {
989 Rom *item;
990
991 if (roms_loaded) {
992 hw_error ("ROM images must be loaded at startup\n");
993 }
994
995 /* The user didn't specify an address space, this is the default */
996 if (!rom->as) {
997 rom->as = &address_space_memory;
998 }
999
1000 rom->committed = false;
1001
1002 /* List is ordered by load address in the same address space */
1003 QTAILQ_FOREACH(item, &roms, next) {
1004 if (rom_order_compare(rom, item)) {
1005 continue;
1006 }
1007 QTAILQ_INSERT_BEFORE(item, rom, next);
1008 return;
1009 }
1010 QTAILQ_INSERT_TAIL(&roms, rom, next);
1011 }
1012
fw_cfg_resized(const char * id,uint64_t length,void * host)1013 static void fw_cfg_resized(const char *id, uint64_t length, void *host)
1014 {
1015 if (fw_cfg) {
1016 fw_cfg_modify_file(fw_cfg, id + strlen("/rom@"), host, length);
1017 }
1018 }
1019
rom_set_mr(Rom * rom,Object * owner,const char * name,bool ro)1020 static void *rom_set_mr(Rom *rom, Object *owner, const char *name, bool ro)
1021 {
1022 void *data;
1023
1024 rom->mr = g_malloc(sizeof(*rom->mr));
1025 memory_region_init_resizeable_ram(rom->mr, owner, name,
1026 rom->datasize, rom->romsize,
1027 fw_cfg_resized,
1028 &error_fatal);
1029 memory_region_set_readonly(rom->mr, ro);
1030 vmstate_register_ram_global(rom->mr);
1031
1032 data = memory_region_get_ram_ptr(rom->mr);
1033 if (!cpr_is_incoming()) {
1034 memcpy(data, rom->data, rom->datasize);
1035 }
1036
1037 return data;
1038 }
1039
rom_add_file(const char * file,const char * fw_dir,hwaddr addr,int32_t bootindex,bool has_option_rom,MemoryRegion * mr,AddressSpace * as)1040 ssize_t rom_add_file(const char *file, const char *fw_dir,
1041 hwaddr addr, int32_t bootindex,
1042 bool has_option_rom, MemoryRegion *mr,
1043 AddressSpace *as)
1044 {
1045 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
1046 Rom *rom;
1047 gsize size;
1048 g_autoptr(GError) gerr = NULL;
1049 char devpath[100];
1050
1051 if (as && mr) {
1052 fprintf(stderr, "Specifying an Address Space and Memory Region is " \
1053 "not valid when loading a rom\n");
1054 /* We haven't allocated anything so we don't need any cleanup */
1055 return -1;
1056 }
1057
1058 rom = g_malloc0(sizeof(*rom));
1059 rom->name = g_strdup(file);
1060 rom->path = qemu_find_file(QEMU_FILE_TYPE_BIOS, rom->name);
1061 rom->as = as;
1062 if (rom->path == NULL) {
1063 rom->path = g_strdup(file);
1064 }
1065
1066 if (!g_file_get_contents(rom->path, (gchar **) &rom->data,
1067 &size, &gerr)) {
1068 fprintf(stderr, "rom: file %-20s: error %s\n",
1069 rom->name, gerr->message);
1070 goto err;
1071 }
1072
1073 if (fw_dir) {
1074 rom->fw_dir = g_strdup(fw_dir);
1075 rom->fw_file = g_strdup(file);
1076 }
1077 rom->addr = addr;
1078 rom->romsize = size;
1079 rom->datasize = rom->romsize;
1080 rom_insert(rom);
1081 if (rom->fw_file && fw_cfg) {
1082 const char *basename;
1083 char fw_file_name[FW_CFG_MAX_FILE_PATH];
1084 void *data;
1085
1086 basename = strrchr(rom->fw_file, '/');
1087 if (basename) {
1088 basename++;
1089 } else {
1090 basename = rom->fw_file;
1091 }
1092 snprintf(fw_file_name, sizeof(fw_file_name), "%s/%s", rom->fw_dir,
1093 basename);
1094 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name);
1095
1096 if ((!has_option_rom || mc->option_rom_has_mr) && mc->rom_file_has_mr) {
1097 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, true);
1098 } else {
1099 data = rom->data;
1100 }
1101
1102 fw_cfg_add_file(fw_cfg, fw_file_name, data, rom->romsize);
1103 } else {
1104 if (mr) {
1105 rom->mr = mr;
1106 snprintf(devpath, sizeof(devpath), "/rom@%s", file);
1107 } else {
1108 snprintf(devpath, sizeof(devpath), "/rom@" HWADDR_FMT_plx, addr);
1109 }
1110 }
1111
1112 add_boot_device_path(bootindex, NULL, devpath);
1113 return 0;
1114
1115 err:
1116 rom_free(rom);
1117 return -1;
1118 }
1119
rom_add_blob(const char * name,const void * blob,size_t len,size_t max_len,hwaddr addr,const char * fw_file_name,FWCfgCallback fw_callback,void * callback_opaque,AddressSpace * as,bool read_only)1120 MemoryRegion *rom_add_blob(const char *name, const void *blob, size_t len,
1121 size_t max_len, hwaddr addr, const char *fw_file_name,
1122 FWCfgCallback fw_callback, void *callback_opaque,
1123 AddressSpace *as, bool read_only)
1124 {
1125 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
1126 Rom *rom;
1127 MemoryRegion *mr = NULL;
1128
1129 rom = g_malloc0(sizeof(*rom));
1130 rom->name = g_strdup(name);
1131 rom->as = as;
1132 rom->addr = addr;
1133 rom->romsize = max_len ? max_len : len;
1134 rom->datasize = len;
1135 g_assert(rom->romsize >= rom->datasize);
1136 rom->data = g_malloc0(rom->datasize);
1137 memcpy(rom->data, blob, len);
1138 rom_insert(rom);
1139 if (fw_file_name && fw_cfg) {
1140 char devpath[100];
1141 void *data;
1142
1143 if (read_only) {
1144 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name);
1145 } else {
1146 snprintf(devpath, sizeof(devpath), "/ram@%s", fw_file_name);
1147 }
1148
1149 if (mc->rom_file_has_mr) {
1150 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, read_only);
1151 mr = rom->mr;
1152 } else {
1153 data = rom->data;
1154 }
1155
1156 fw_cfg_add_file_callback(fw_cfg, fw_file_name,
1157 fw_callback, NULL, callback_opaque,
1158 data, rom->datasize, read_only);
1159 }
1160 return mr;
1161 }
1162
1163 /* This function is specific for elf program because we don't need to allocate
1164 * all the rom. We just allocate the first part and the rest is just zeros. This
1165 * is why romsize and datasize are different. Also, this function takes its own
1166 * reference to "mapped_file", so we don't have to allocate and copy the buffer.
1167 */
rom_add_elf_program(const char * name,GMappedFile * mapped_file,void * data,size_t datasize,size_t romsize,hwaddr addr,AddressSpace * as)1168 int rom_add_elf_program(const char *name, GMappedFile *mapped_file, void *data,
1169 size_t datasize, size_t romsize, hwaddr addr,
1170 AddressSpace *as)
1171 {
1172 Rom *rom;
1173
1174 rom = g_malloc0(sizeof(*rom));
1175 rom->name = g_strdup(name);
1176 rom->addr = addr;
1177 rom->datasize = datasize;
1178 rom->romsize = romsize;
1179 rom->data = data;
1180 rom->as = as;
1181
1182 if (mapped_file && data) {
1183 g_mapped_file_ref(mapped_file);
1184 rom->mapped_file = mapped_file;
1185 }
1186
1187 rom_insert(rom);
1188 return 0;
1189 }
1190
rom_add_vga(const char * file)1191 ssize_t rom_add_vga(const char *file)
1192 {
1193 return rom_add_file(file, "vgaroms", 0, -1, true, NULL, NULL);
1194 }
1195
rom_add_option(const char * file,int32_t bootindex)1196 ssize_t rom_add_option(const char *file, int32_t bootindex)
1197 {
1198 return rom_add_file(file, "genroms", 0, bootindex, true, NULL, NULL);
1199 }
1200
rom_reset(void * unused)1201 static void rom_reset(void *unused)
1202 {
1203 Rom *rom;
1204
1205 QTAILQ_FOREACH(rom, &roms, next) {
1206 if (rom->fw_file) {
1207 continue;
1208 }
1209 /*
1210 * We don't need to fill in the RAM with ROM data because we'll fill
1211 * the data in during the next incoming migration in all cases. Note
1212 * that some of those RAMs can actually be modified by the guest.
1213 */
1214 if (runstate_check(RUN_STATE_INMIGRATE)) {
1215 if (rom->data && rom->isrom) {
1216 /*
1217 * Free it so that a rom_reset after migration doesn't
1218 * overwrite a potentially modified 'rom'.
1219 */
1220 rom_free_data(rom);
1221 }
1222 continue;
1223 }
1224
1225 if (rom->data == NULL) {
1226 continue;
1227 }
1228 if (rom->mr) {
1229 void *host = memory_region_get_ram_ptr(rom->mr);
1230 memcpy(host, rom->data, rom->datasize);
1231 memset(host + rom->datasize, 0, rom->romsize - rom->datasize);
1232 } else {
1233 address_space_write_rom(rom->as, rom->addr, MEMTXATTRS_UNSPECIFIED,
1234 rom->data, rom->datasize);
1235 address_space_set(rom->as, rom->addr + rom->datasize, 0,
1236 rom->romsize - rom->datasize,
1237 MEMTXATTRS_UNSPECIFIED);
1238 }
1239 if (rom->isrom) {
1240 /* rom needs to be written only once */
1241 rom_free_data(rom);
1242 }
1243 /*
1244 * The rom loader is really on the same level as firmware in the guest
1245 * shadowing a ROM into RAM. Such a shadowing mechanism needs to ensure
1246 * that the instruction cache for that new region is clear, so that the
1247 * CPU definitely fetches its instructions from the just written data.
1248 */
1249 cpu_flush_icache_range(rom->addr, rom->datasize);
1250
1251 trace_loader_write_rom(rom->name, rom->addr, rom->datasize, rom->isrom);
1252 }
1253 }
1254
1255 /* Return true if two consecutive ROMs in the ROM list overlap */
roms_overlap(Rom * last_rom,Rom * this_rom)1256 static bool roms_overlap(Rom *last_rom, Rom *this_rom)
1257 {
1258 if (!last_rom) {
1259 return false;
1260 }
1261 return last_rom->as == this_rom->as &&
1262 last_rom->addr + last_rom->romsize > this_rom->addr;
1263 }
1264
rom_as_name(Rom * rom)1265 static const char *rom_as_name(Rom *rom)
1266 {
1267 const char *name = rom->as ? rom->as->name : NULL;
1268 return name ?: "anonymous";
1269 }
1270
rom_print_overlap_error_header(void)1271 static void rom_print_overlap_error_header(void)
1272 {
1273 error_report("Some ROM regions are overlapping");
1274 error_printf(
1275 "These ROM regions might have been loaded by "
1276 "direct user request or by default.\n"
1277 "They could be BIOS/firmware images, a guest kernel, "
1278 "initrd or some other file loaded into guest memory.\n"
1279 "Check whether you intended to load all this guest code, and "
1280 "whether it has been built to load to the correct addresses.\n");
1281 }
1282
rom_print_one_overlap_error(Rom * last_rom,Rom * rom)1283 static void rom_print_one_overlap_error(Rom *last_rom, Rom *rom)
1284 {
1285 error_printf(
1286 "\nThe following two regions overlap (in the %s address space):\n",
1287 rom_as_name(rom));
1288 error_printf(
1289 " %s (addresses 0x" HWADDR_FMT_plx " - 0x" HWADDR_FMT_plx ")\n",
1290 last_rom->name, last_rom->addr, last_rom->addr + last_rom->romsize);
1291 error_printf(
1292 " %s (addresses 0x" HWADDR_FMT_plx " - 0x" HWADDR_FMT_plx ")\n",
1293 rom->name, rom->addr, rom->addr + rom->romsize);
1294 }
1295
rom_check_and_register_reset(void)1296 int rom_check_and_register_reset(void)
1297 {
1298 MemoryRegionSection section;
1299 Rom *rom, *last_rom = NULL;
1300 bool found_overlap = false;
1301
1302 QTAILQ_FOREACH(rom, &roms, next) {
1303 if (rom->fw_file) {
1304 continue;
1305 }
1306 if (!rom->mr) {
1307 if (roms_overlap(last_rom, rom)) {
1308 if (!found_overlap) {
1309 found_overlap = true;
1310 rom_print_overlap_error_header();
1311 }
1312 rom_print_one_overlap_error(last_rom, rom);
1313 /* Keep going through the list so we report all overlaps */
1314 }
1315 last_rom = rom;
1316 }
1317 section = memory_region_find(rom->mr ? rom->mr : get_system_memory(),
1318 rom->addr, 1);
1319 rom->isrom = int128_nz(section.size) && memory_region_is_rom(section.mr);
1320 memory_region_unref(section.mr);
1321 }
1322 if (found_overlap) {
1323 return -1;
1324 }
1325
1326 qemu_register_reset(rom_reset, NULL);
1327 roms_loaded = 1;
1328 return 0;
1329 }
1330
rom_set_fw(FWCfgState * f)1331 void rom_set_fw(FWCfgState *f)
1332 {
1333 fw_cfg = f;
1334 }
1335
rom_transaction_begin(void)1336 void rom_transaction_begin(void)
1337 {
1338 Rom *rom;
1339
1340 /* Ignore ROMs added without the transaction API */
1341 QTAILQ_FOREACH(rom, &roms, next) {
1342 rom->committed = true;
1343 }
1344 }
1345
rom_transaction_end(bool commit)1346 void rom_transaction_end(bool commit)
1347 {
1348 Rom *rom;
1349 Rom *tmp;
1350
1351 QTAILQ_FOREACH_SAFE(rom, &roms, next, tmp) {
1352 if (rom->committed) {
1353 continue;
1354 }
1355 if (commit) {
1356 rom->committed = true;
1357 } else {
1358 QTAILQ_REMOVE(&roms, rom, next);
1359 rom_free(rom);
1360 }
1361 }
1362 }
1363
find_rom(hwaddr addr,size_t size)1364 static Rom *find_rom(hwaddr addr, size_t size)
1365 {
1366 Rom *rom;
1367
1368 QTAILQ_FOREACH(rom, &roms, next) {
1369 if (rom->fw_file) {
1370 continue;
1371 }
1372 if (rom->mr) {
1373 continue;
1374 }
1375 if (rom->addr > addr) {
1376 continue;
1377 }
1378 if (rom->addr + rom->romsize < addr + size) {
1379 continue;
1380 }
1381 return rom;
1382 }
1383 return NULL;
1384 }
1385
1386 typedef struct RomSec {
1387 hwaddr base;
1388 int se; /* start/end flag */
1389 } RomSec;
1390
1391
1392 /*
1393 * Sort into address order. We break ties between rom-startpoints
1394 * and rom-endpoints in favour of the startpoint, by sorting the 0->1
1395 * transition before the 1->0 transition. Either way round would
1396 * work, but this way saves a little work later by avoiding
1397 * dealing with "gaps" of 0 length.
1398 */
sort_secs(gconstpointer a,gconstpointer b,gpointer d)1399 static gint sort_secs(gconstpointer a, gconstpointer b, gpointer d)
1400 {
1401 RomSec *ra = (RomSec *) a;
1402 RomSec *rb = (RomSec *) b;
1403
1404 if (ra->base == rb->base) {
1405 return ra->se - rb->se;
1406 }
1407 return ra->base > rb->base ? 1 : -1;
1408 }
1409
add_romsec_to_list(GList * secs,hwaddr base,int se)1410 static GList *add_romsec_to_list(GList *secs, hwaddr base, int se)
1411 {
1412 RomSec *cand = g_new(RomSec, 1);
1413 cand->base = base;
1414 cand->se = se;
1415 return g_list_prepend(secs, cand);
1416 }
1417
rom_find_largest_gap_between(hwaddr base,size_t size)1418 RomGap rom_find_largest_gap_between(hwaddr base, size_t size)
1419 {
1420 Rom *rom;
1421 RomSec *cand;
1422 RomGap res = {0, 0};
1423 hwaddr gapstart = base;
1424 GList *it, *secs = NULL;
1425 int count = 0;
1426
1427 QTAILQ_FOREACH(rom, &roms, next) {
1428 /* Ignore blobs being loaded to special places */
1429 if (rom->mr || rom->fw_file) {
1430 continue;
1431 }
1432 /* ignore anything finishing below base */
1433 if (rom->addr + rom->romsize <= base) {
1434 continue;
1435 }
1436 /* ignore anything starting above the region */
1437 if (rom->addr >= base + size) {
1438 continue;
1439 }
1440
1441 /* Save the start and end of each relevant ROM */
1442 secs = add_romsec_to_list(secs, rom->addr, 1);
1443
1444 if (rom->addr + rom->romsize < base + size) {
1445 secs = add_romsec_to_list(secs, rom->addr + rom->romsize, -1);
1446 }
1447 }
1448
1449 /* sentinel */
1450 secs = add_romsec_to_list(secs, base + size, 1);
1451
1452 secs = g_list_sort_with_data(secs, sort_secs, NULL);
1453
1454 for (it = g_list_first(secs); it; it = g_list_next(it)) {
1455 cand = (RomSec *) it->data;
1456 if (count == 0 && count + cand->se == 1) {
1457 size_t gap = cand->base - gapstart;
1458 if (gap > res.size) {
1459 res.base = gapstart;
1460 res.size = gap;
1461 }
1462 } else if (count == 1 && count + cand->se == 0) {
1463 gapstart = cand->base;
1464 }
1465 count += cand->se;
1466 }
1467
1468 g_list_free_full(secs, g_free);
1469 return res;
1470 }
1471
1472 /*
1473 * Copies memory from registered ROMs to dest. Any memory that is contained in
1474 * a ROM between addr and addr + size is copied. Note that this can involve
1475 * multiple ROMs, which need not start at addr and need not end at addr + size.
1476 */
rom_copy(uint8_t * dest,hwaddr addr,size_t size)1477 int rom_copy(uint8_t *dest, hwaddr addr, size_t size)
1478 {
1479 hwaddr end = addr + size;
1480 uint8_t *s, *d = dest;
1481 size_t l = 0;
1482 Rom *rom;
1483
1484 QTAILQ_FOREACH(rom, &roms, next) {
1485 if (rom->fw_file) {
1486 continue;
1487 }
1488 if (rom->mr) {
1489 continue;
1490 }
1491 if (rom->addr + rom->romsize < addr) {
1492 continue;
1493 }
1494 if (rom->addr > end || rom->addr < addr) {
1495 break;
1496 }
1497
1498 d = dest + (rom->addr - addr);
1499 s = rom->data;
1500 l = rom->datasize;
1501
1502 if ((d + l) > (dest + size)) {
1503 l = dest - d;
1504 }
1505
1506 if (l > 0) {
1507 memcpy(d, s, l);
1508 }
1509
1510 if (rom->romsize > rom->datasize) {
1511 /* If datasize is less than romsize, it means that we didn't
1512 * allocate all the ROM because the trailing data are only zeros.
1513 */
1514
1515 d += l;
1516 l = rom->romsize - rom->datasize;
1517
1518 if ((d + l) > (dest + size)) {
1519 /* Rom size doesn't fit in the destination area. Adjust to avoid
1520 * overflow.
1521 */
1522 l = dest - d;
1523 }
1524
1525 if (l > 0) {
1526 memset(d, 0x0, l);
1527 }
1528 }
1529 }
1530
1531 return (d + l) - dest;
1532 }
1533
rom_ptr(hwaddr addr,size_t size)1534 void *rom_ptr(hwaddr addr, size_t size)
1535 {
1536 Rom *rom;
1537
1538 rom = find_rom(addr, size);
1539 if (!rom || !rom->data)
1540 return NULL;
1541 return rom->data + (addr - rom->addr);
1542 }
1543
1544 typedef struct FindRomCBData {
1545 size_t size; /* Amount of data we want from ROM, in bytes */
1546 MemoryRegion *mr; /* MR at the unaliased guest addr */
1547 hwaddr xlat; /* Offset of addr within mr */
1548 void *rom; /* Output: rom data pointer, if found */
1549 } FindRomCBData;
1550
find_rom_cb(Int128 start,Int128 len,const MemoryRegion * mr,hwaddr offset_in_region,void * opaque)1551 static bool find_rom_cb(Int128 start, Int128 len, const MemoryRegion *mr,
1552 hwaddr offset_in_region, void *opaque)
1553 {
1554 FindRomCBData *cbdata = opaque;
1555 hwaddr alias_addr;
1556
1557 if (mr != cbdata->mr) {
1558 return false;
1559 }
1560
1561 alias_addr = int128_get64(start) + cbdata->xlat - offset_in_region;
1562 cbdata->rom = rom_ptr(alias_addr, cbdata->size);
1563 if (!cbdata->rom) {
1564 return false;
1565 }
1566 /* Found a match, stop iterating */
1567 return true;
1568 }
1569
rom_ptr_for_as(AddressSpace * as,hwaddr addr,size_t size)1570 void *rom_ptr_for_as(AddressSpace *as, hwaddr addr, size_t size)
1571 {
1572 /*
1573 * Find any ROM data for the given guest address range. If there
1574 * is a ROM blob then return a pointer to the host memory
1575 * corresponding to 'addr'; otherwise return NULL.
1576 *
1577 * We look not only for ROM blobs that were loaded directly to
1578 * addr, but also for ROM blobs that were loaded to aliases of
1579 * that memory at other addresses within the AddressSpace.
1580 *
1581 * Note that we do not check @as against the 'as' member in the
1582 * 'struct Rom' returned by rom_ptr(). The Rom::as is the
1583 * AddressSpace which the rom blob should be written to, whereas
1584 * our @as argument is the AddressSpace which we are (effectively)
1585 * reading from, and the same underlying RAM will often be visible
1586 * in multiple AddressSpaces. (A common example is a ROM blob
1587 * written to the 'system' address space but then read back via a
1588 * CPU's cpu->as pointer.) This does mean we might potentially
1589 * return a false-positive match if a ROM blob was loaded into an
1590 * AS which is entirely separate and distinct from the one we're
1591 * querying, but this issue exists also for rom_ptr() and hasn't
1592 * caused any problems in practice.
1593 */
1594 FlatView *fv;
1595 void *rom;
1596 hwaddr len_unused;
1597 FindRomCBData cbdata = {};
1598
1599 /* Easy case: there's data at the actual address */
1600 rom = rom_ptr(addr, size);
1601 if (rom) {
1602 return rom;
1603 }
1604
1605 RCU_READ_LOCK_GUARD();
1606
1607 fv = address_space_to_flatview(as);
1608 cbdata.mr = flatview_translate(fv, addr, &cbdata.xlat, &len_unused,
1609 false, MEMTXATTRS_UNSPECIFIED);
1610 if (!cbdata.mr) {
1611 /* Nothing at this address, so there can't be any aliasing */
1612 return NULL;
1613 }
1614 cbdata.size = size;
1615 flatview_for_each_range(fv, find_rom_cb, &cbdata);
1616 return cbdata.rom;
1617 }
1618
qmp_x_query_roms(Error ** errp)1619 HumanReadableText *qmp_x_query_roms(Error **errp)
1620 {
1621 Rom *rom;
1622 g_autoptr(GString) buf = g_string_new("");
1623
1624 QTAILQ_FOREACH(rom, &roms, next) {
1625 if (rom->mr) {
1626 g_string_append_printf(buf, "%s"
1627 " size=0x%06zx name=\"%s\"\n",
1628 memory_region_name(rom->mr),
1629 rom->romsize,
1630 rom->name);
1631 } else if (!rom->fw_file) {
1632 g_string_append_printf(buf, "addr=" HWADDR_FMT_plx
1633 " size=0x%06zx mem=%s name=\"%s\"\n",
1634 rom->addr, rom->romsize,
1635 rom->isrom ? "rom" : "ram",
1636 rom->name);
1637 } else {
1638 g_string_append_printf(buf, "fw=%s/%s"
1639 " size=0x%06zx name=\"%s\"\n",
1640 rom->fw_dir,
1641 rom->fw_file,
1642 rom->romsize,
1643 rom->name);
1644 }
1645 }
1646
1647 return human_readable_text_from_str(buf);
1648 }
1649
1650 typedef enum HexRecord HexRecord;
1651 enum HexRecord {
1652 DATA_RECORD = 0,
1653 EOF_RECORD,
1654 EXT_SEG_ADDR_RECORD,
1655 START_SEG_ADDR_RECORD,
1656 EXT_LINEAR_ADDR_RECORD,
1657 START_LINEAR_ADDR_RECORD,
1658 };
1659
1660 /* Each record contains a 16-bit address which is combined with the upper 16
1661 * bits of the implicit "next address" to form a 32-bit address.
1662 */
1663 #define NEXT_ADDR_MASK 0xffff0000
1664
1665 #define DATA_FIELD_MAX_LEN 0xff
1666 #define LEN_EXCEPT_DATA 0x5
1667 /* 0x5 = sizeof(byte_count) + sizeof(address) + sizeof(record_type) +
1668 * sizeof(checksum) */
1669 typedef struct {
1670 uint8_t byte_count;
1671 uint16_t address;
1672 uint8_t record_type;
1673 uint8_t data[DATA_FIELD_MAX_LEN];
1674 uint8_t checksum;
1675 } HexLine;
1676
1677 /* return 0 or -1 if error */
parse_record(HexLine * line,uint8_t * our_checksum,const uint8_t c,uint32_t * index,const bool in_process)1678 static bool parse_record(HexLine *line, uint8_t *our_checksum, const uint8_t c,
1679 uint32_t *index, const bool in_process)
1680 {
1681 /* +-------+---------------+-------+---------------------+--------+
1682 * | byte | |record | | |
1683 * | count | address | type | data |checksum|
1684 * +-------+---------------+-------+---------------------+--------+
1685 * ^ ^ ^ ^ ^ ^
1686 * |1 byte | 2 bytes |1 byte | 0-255 bytes | 1 byte |
1687 */
1688 uint8_t value = 0;
1689 uint32_t idx = *index;
1690 /* ignore space */
1691 if (g_ascii_isspace(c)) {
1692 return true;
1693 }
1694 if (!g_ascii_isxdigit(c) || !in_process) {
1695 return false;
1696 }
1697 value = g_ascii_xdigit_value(c);
1698 value = (idx & 0x1) ? (value & 0xf) : (value << 4);
1699 if (idx < 2) {
1700 line->byte_count |= value;
1701 } else if (2 <= idx && idx < 6) {
1702 line->address <<= 4;
1703 line->address += g_ascii_xdigit_value(c);
1704 } else if (6 <= idx && idx < 8) {
1705 line->record_type |= value;
1706 } else if (8 <= idx && idx < 8 + 2 * line->byte_count) {
1707 line->data[(idx - 8) >> 1] |= value;
1708 } else if (8 + 2 * line->byte_count <= idx &&
1709 idx < 10 + 2 * line->byte_count) {
1710 line->checksum |= value;
1711 } else {
1712 return false;
1713 }
1714 *our_checksum += value;
1715 ++(*index);
1716 return true;
1717 }
1718
1719 typedef struct {
1720 const char *filename;
1721 HexLine line;
1722 uint8_t *bin_buf;
1723 hwaddr *start_addr;
1724 int total_size;
1725 uint32_t next_address_to_write;
1726 uint32_t current_address;
1727 uint32_t current_rom_index;
1728 uint32_t rom_start_address;
1729 AddressSpace *as;
1730 bool complete;
1731 } HexParser;
1732
1733 /* return size or -1 if error */
handle_record_type(HexParser * parser)1734 static int handle_record_type(HexParser *parser)
1735 {
1736 HexLine *line = &(parser->line);
1737 switch (line->record_type) {
1738 case DATA_RECORD:
1739 parser->current_address =
1740 (parser->next_address_to_write & NEXT_ADDR_MASK) | line->address;
1741 /* verify this is a contiguous block of memory */
1742 if (parser->current_address != parser->next_address_to_write) {
1743 if (parser->current_rom_index != 0) {
1744 rom_add_blob_fixed_as(parser->filename, parser->bin_buf,
1745 parser->current_rom_index,
1746 parser->rom_start_address, parser->as);
1747 }
1748 parser->rom_start_address = parser->current_address;
1749 parser->current_rom_index = 0;
1750 }
1751
1752 /* copy from line buffer to output bin_buf */
1753 memcpy(parser->bin_buf + parser->current_rom_index, line->data,
1754 line->byte_count);
1755 parser->current_rom_index += line->byte_count;
1756 parser->total_size += line->byte_count;
1757 /* save next address to write */
1758 parser->next_address_to_write =
1759 parser->current_address + line->byte_count;
1760 break;
1761
1762 case EOF_RECORD:
1763 if (parser->current_rom_index != 0) {
1764 rom_add_blob_fixed_as(parser->filename, parser->bin_buf,
1765 parser->current_rom_index,
1766 parser->rom_start_address, parser->as);
1767 }
1768 parser->complete = true;
1769 return parser->total_size;
1770 case EXT_SEG_ADDR_RECORD:
1771 case EXT_LINEAR_ADDR_RECORD:
1772 if (line->byte_count != 2 && line->address != 0) {
1773 return -1;
1774 }
1775
1776 if (parser->current_rom_index != 0) {
1777 rom_add_blob_fixed_as(parser->filename, parser->bin_buf,
1778 parser->current_rom_index,
1779 parser->rom_start_address, parser->as);
1780 }
1781
1782 /* save next address to write,
1783 * in case of non-contiguous block of memory */
1784 parser->next_address_to_write = (line->data[0] << 12) |
1785 (line->data[1] << 4);
1786 if (line->record_type == EXT_LINEAR_ADDR_RECORD) {
1787 parser->next_address_to_write <<= 12;
1788 }
1789
1790 parser->rom_start_address = parser->next_address_to_write;
1791 parser->current_rom_index = 0;
1792 break;
1793
1794 case START_SEG_ADDR_RECORD:
1795 if (line->byte_count != 4 && line->address != 0) {
1796 return -1;
1797 }
1798
1799 /* x86 16-bit CS:IP segmented addressing */
1800 *(parser->start_addr) = (((line->data[0] << 8) | line->data[1]) << 4) +
1801 ((line->data[2] << 8) | line->data[3]);
1802 break;
1803
1804 case START_LINEAR_ADDR_RECORD:
1805 if (line->byte_count != 4 && line->address != 0) {
1806 return -1;
1807 }
1808
1809 *(parser->start_addr) = ldl_be_p(line->data);
1810 break;
1811
1812 default:
1813 return -1;
1814 }
1815
1816 return parser->total_size;
1817 }
1818
1819 /* return size or -1 if error */
parse_hex_blob(const char * filename,hwaddr * addr,uint8_t * hex_blob,size_t hex_blob_size,AddressSpace * as)1820 static int parse_hex_blob(const char *filename, hwaddr *addr, uint8_t *hex_blob,
1821 size_t hex_blob_size, AddressSpace *as)
1822 {
1823 bool in_process = false; /* avoid re-enter and
1824 * check whether record begin with ':' */
1825 uint8_t *end = hex_blob + hex_blob_size;
1826 uint8_t our_checksum = 0;
1827 uint32_t record_index = 0;
1828 HexParser parser = {
1829 .filename = filename,
1830 .bin_buf = g_malloc(hex_blob_size),
1831 .start_addr = addr,
1832 .as = as,
1833 .complete = false
1834 };
1835
1836 rom_transaction_begin();
1837
1838 for (; hex_blob < end && !parser.complete; ++hex_blob) {
1839 switch (*hex_blob) {
1840 case '\r':
1841 case '\n':
1842 if (!in_process) {
1843 break;
1844 }
1845
1846 in_process = false;
1847 if ((LEN_EXCEPT_DATA + parser.line.byte_count) * 2 !=
1848 record_index ||
1849 our_checksum != 0) {
1850 parser.total_size = -1;
1851 goto out;
1852 }
1853
1854 if (handle_record_type(&parser) == -1) {
1855 parser.total_size = -1;
1856 goto out;
1857 }
1858 break;
1859
1860 /* start of a new record. */
1861 case ':':
1862 memset(&parser.line, 0, sizeof(HexLine));
1863 in_process = true;
1864 record_index = 0;
1865 break;
1866
1867 /* decoding lines */
1868 default:
1869 if (!parse_record(&parser.line, &our_checksum, *hex_blob,
1870 &record_index, in_process)) {
1871 parser.total_size = -1;
1872 goto out;
1873 }
1874 break;
1875 }
1876 }
1877
1878 out:
1879 g_free(parser.bin_buf);
1880 rom_transaction_end(parser.total_size != -1);
1881 return parser.total_size;
1882 }
1883
1884 /* return size or -1 if error */
load_targphys_hex_as(const char * filename,hwaddr * entry,AddressSpace * as)1885 ssize_t load_targphys_hex_as(const char *filename, hwaddr *entry,
1886 AddressSpace *as)
1887 {
1888 gsize hex_blob_size;
1889 gchar *hex_blob;
1890 ssize_t total_size = 0;
1891
1892 if (!g_file_get_contents(filename, &hex_blob, &hex_blob_size, NULL)) {
1893 return -1;
1894 }
1895
1896 total_size = parse_hex_blob(filename, entry, (uint8_t *)hex_blob,
1897 hex_blob_size, as);
1898
1899 g_free(hex_blob);
1900 return total_size;
1901 }
1902