1 /*
2  * Copyright 2018 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25 
26 #include "dccg.h"
27 #include "clk_mgr_internal.h"
28 
29 
30 #include "dcn20/dcn20_clk_mgr.h"
31 #include "rn_clk_mgr.h"
32 
33 
34 #include "dce100/dce_clk_mgr.h"
35 #include "rn_clk_mgr_vbios_smu.h"
36 #include "reg_helper.h"
37 #include "core_types.h"
38 #include "dm_helpers.h"
39 
40 #include "atomfirmware.h"
41 #include "clk/clk_10_0_2_offset.h"
42 #include "clk/clk_10_0_2_sh_mask.h"
43 #include "renoir_ip_offset.h"
44 
45 
46 /* Constants */
47 
48 #define LPDDR_MEM_RETRAIN_LATENCY 4.977 /* Number obtained from LPDDR4 Training Counter Requirement doc */
49 #define SMU_VER_55_51_0 0x373300 /* SMU Version that is able to set DISPCLK below 100MHz */
50 
51 /* Macros */
52 
53 #define REG(reg_name) \
54 	(CLK_BASE.instance[0].segment[mm ## reg_name ## _BASE_IDX] + mm ## reg_name)
55 
56 
57 /* TODO: evaluate how to lower or disable all dcn clocks in screen off case */
rn_get_active_display_cnt_wa(struct dc * dc,struct dc_state * context)58 int rn_get_active_display_cnt_wa(
59 		struct dc *dc,
60 		struct dc_state *context)
61 {
62 	int i, display_count;
63 	bool tmds_present = false;
64 
65 	display_count = 0;
66 	for (i = 0; i < context->stream_count; i++) {
67 		const struct dc_stream_state *stream = context->streams[i];
68 
69 		if (stream->signal == SIGNAL_TYPE_HDMI_TYPE_A ||
70 				stream->signal == SIGNAL_TYPE_DVI_SINGLE_LINK ||
71 				stream->signal == SIGNAL_TYPE_DVI_DUAL_LINK)
72 			tmds_present = true;
73 	}
74 
75 	for (i = 0; i < dc->link_count; i++) {
76 		const struct dc_link *link = dc->links[i];
77 
78 		/*
79 		 * Only notify active stream or virtual stream.
80 		 * Need to notify virtual stream to work around
81 		 * headless case. HPD does not fire when system is in
82 		 * S0i2.
83 		 */
84 		/* abusing the fact that the dig and phy are coupled to see if the phy is enabled */
85 		if (link->connector_signal == SIGNAL_TYPE_VIRTUAL ||
86 				link->link_enc->funcs->is_dig_enabled(link->link_enc))
87 			display_count++;
88 	}
89 
90 	/* WA for hang on HDMI after display off back back on*/
91 	if (display_count == 0 && tmds_present)
92 		display_count = 1;
93 
94 	return display_count;
95 }
96 
rn_set_low_power_state(struct clk_mgr * clk_mgr_base)97 void rn_set_low_power_state(struct clk_mgr *clk_mgr_base)
98 {
99 	struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
100 
101 	rn_vbios_smu_set_dcn_low_power_state(clk_mgr, DCN_PWR_STATE_LOW_POWER);
102 	/* update power state */
103 	clk_mgr_base->clks.pwr_state = DCN_PWR_STATE_LOW_POWER;
104 }
105 
rn_update_clocks(struct clk_mgr * clk_mgr_base,struct dc_state * context,bool safe_to_lower)106 void rn_update_clocks(struct clk_mgr *clk_mgr_base,
107 			struct dc_state *context,
108 			bool safe_to_lower)
109 {
110 	struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
111 	struct dc_clocks *new_clocks = &context->bw_ctx.bw.dcn.clk;
112 	struct dc *dc = clk_mgr_base->ctx->dc;
113 	int display_count;
114 	bool update_dppclk = false;
115 	bool update_dispclk = false;
116 	bool dpp_clock_lowered = false;
117 
118 	struct dmcu *dmcu = clk_mgr_base->ctx->dc->res_pool->dmcu;
119 
120 	if (dc->work_arounds.skip_clock_update)
121 		return;
122 
123 	/*
124 	 * if it is safe to lower, but we are already in the lower state, we don't have to do anything
125 	 * also if safe to lower is false, we just go in the higher state
126 	 */
127 	if (safe_to_lower) {
128 		/* check that we're not already in lower */
129 		if (clk_mgr_base->clks.pwr_state != DCN_PWR_STATE_LOW_POWER) {
130 
131 			display_count = rn_get_active_display_cnt_wa(dc, context);
132 			/* if we can go lower, go lower */
133 			if (display_count == 0) {
134 				rn_vbios_smu_set_dcn_low_power_state(clk_mgr, DCN_PWR_STATE_LOW_POWER);
135 				/* update power state */
136 				clk_mgr_base->clks.pwr_state = DCN_PWR_STATE_LOW_POWER;
137 			}
138 		}
139 	} else {
140 		/* check that we're not already in D0 */
141 		if (clk_mgr_base->clks.pwr_state != DCN_PWR_STATE_MISSION_MODE) {
142 			rn_vbios_smu_set_dcn_low_power_state(clk_mgr, DCN_PWR_STATE_MISSION_MODE);
143 			/* update power state */
144 			clk_mgr_base->clks.pwr_state = DCN_PWR_STATE_MISSION_MODE;
145 		}
146 	}
147 
148 	if (should_set_clock(safe_to_lower, new_clocks->dcfclk_khz, clk_mgr_base->clks.dcfclk_khz)) {
149 		clk_mgr_base->clks.dcfclk_khz = new_clocks->dcfclk_khz;
150 		rn_vbios_smu_set_hard_min_dcfclk(clk_mgr, clk_mgr_base->clks.dcfclk_khz);
151 	}
152 
153 	if (should_set_clock(safe_to_lower,
154 			new_clocks->dcfclk_deep_sleep_khz, clk_mgr_base->clks.dcfclk_deep_sleep_khz)) {
155 		clk_mgr_base->clks.dcfclk_deep_sleep_khz = new_clocks->dcfclk_deep_sleep_khz;
156 		rn_vbios_smu_set_min_deep_sleep_dcfclk(clk_mgr, clk_mgr_base->clks.dcfclk_deep_sleep_khz);
157 	}
158 
159 	// workaround: Limit dppclk to 100Mhz to avoid lower eDP panel switch to plus 4K monitor underflow.
160 	// Do not adjust dppclk if dppclk is 0 to avoid unexpected result
161 	if (!IS_DIAG_DC(dc->ctx->dce_environment)) {
162 		if (new_clocks->dppclk_khz < 100000 && new_clocks->dppclk_khz > 0)
163 			new_clocks->dppclk_khz = 100000;
164 	}
165 
166 	/*
167 	 * Temporally ignore thew 0 cases for disp and dpp clks.
168 	 * We may have a new feature that requires 0 clks in the future.
169 	 */
170 	if (new_clocks->dppclk_khz == 0 || new_clocks->dispclk_khz == 0) {
171 		new_clocks->dppclk_khz = clk_mgr_base->clks.dppclk_khz;
172 		new_clocks->dispclk_khz = clk_mgr_base->clks.dispclk_khz;
173 	}
174 
175 	if (should_set_clock(safe_to_lower, new_clocks->dppclk_khz, clk_mgr_base->clks.dppclk_khz)) {
176 		if (clk_mgr_base->clks.dppclk_khz > new_clocks->dppclk_khz)
177 			dpp_clock_lowered = true;
178 		clk_mgr_base->clks.dppclk_khz = new_clocks->dppclk_khz;
179 		update_dppclk = true;
180 	}
181 
182 	if (should_set_clock(safe_to_lower, new_clocks->dispclk_khz, clk_mgr_base->clks.dispclk_khz)) {
183 		clk_mgr_base->clks.dispclk_khz = new_clocks->dispclk_khz;
184 		rn_vbios_smu_set_dispclk(clk_mgr, clk_mgr_base->clks.dispclk_khz);
185 
186 		update_dispclk = true;
187 	}
188 
189 	if (dpp_clock_lowered) {
190 		// increase per DPP DTO before lowering global dppclk
191 		dcn20_update_clocks_update_dpp_dto(clk_mgr, context, safe_to_lower);
192 		rn_vbios_smu_set_dppclk(clk_mgr, clk_mgr_base->clks.dppclk_khz);
193 	} else {
194 		// increase global DPPCLK before lowering per DPP DTO
195 		if (update_dppclk || update_dispclk)
196 			rn_vbios_smu_set_dppclk(clk_mgr, clk_mgr_base->clks.dppclk_khz);
197 		// always update dtos unless clock is lowered and not safe to lower
198 		if (new_clocks->dppclk_khz >= dc->current_state->bw_ctx.bw.dcn.clk.dppclk_khz)
199 			dcn20_update_clocks_update_dpp_dto(clk_mgr, context, safe_to_lower);
200 	}
201 
202 	if (update_dispclk &&
203 			dmcu && dmcu->funcs->is_dmcu_initialized(dmcu)) {
204 		/*update dmcu for wait_loop count*/
205 		dmcu->funcs->set_psr_wait_loop(dmcu,
206 			clk_mgr_base->clks.dispclk_khz / 1000 / 7);
207 	}
208 }
209 
210 
get_vco_frequency_from_reg(struct clk_mgr_internal * clk_mgr)211 static int get_vco_frequency_from_reg(struct clk_mgr_internal *clk_mgr)
212 {
213 	/* get FbMult value */
214 	struct fixed31_32 pll_req;
215 	unsigned int fbmult_frac_val = 0;
216 	unsigned int fbmult_int_val = 0;
217 
218 
219 	/*
220 	 * Register value of fbmult is in 8.16 format, we are converting to 31.32
221 	 * to leverage the fix point operations available in driver
222 	 */
223 
224 	REG_GET(CLK1_CLK_PLL_REQ, FbMult_frac, &fbmult_frac_val); /* 16 bit fractional part*/
225 	REG_GET(CLK1_CLK_PLL_REQ, FbMult_int, &fbmult_int_val); /* 8 bit integer part */
226 
227 	pll_req = dc_fixpt_from_int(fbmult_int_val);
228 
229 	/*
230 	 * since fractional part is only 16 bit in register definition but is 32 bit
231 	 * in our fix point definiton, need to shift left by 16 to obtain correct value
232 	 */
233 	pll_req.value |= fbmult_frac_val << 16;
234 
235 	/* multiply by REFCLK period */
236 	pll_req = dc_fixpt_mul_int(pll_req, clk_mgr->dfs_ref_freq_khz);
237 
238 	/* integer part is now VCO frequency in kHz */
239 	return dc_fixpt_floor(pll_req);
240 }
241 
rn_dump_clk_registers_internal(struct rn_clk_internal * internal,struct clk_mgr * clk_mgr_base)242 static void rn_dump_clk_registers_internal(struct rn_clk_internal *internal, struct clk_mgr *clk_mgr_base)
243 {
244 	struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
245 
246 	internal->CLK1_CLK3_CURRENT_CNT = REG_READ(CLK1_CLK3_CURRENT_CNT);
247 	internal->CLK1_CLK3_BYPASS_CNTL = REG_READ(CLK1_CLK3_BYPASS_CNTL);
248 
249 	internal->CLK1_CLK3_DS_CNTL = REG_READ(CLK1_CLK3_DS_CNTL);	//dcf deep sleep divider
250 	internal->CLK1_CLK3_ALLOW_DS = REG_READ(CLK1_CLK3_ALLOW_DS);
251 
252 	internal->CLK1_CLK1_CURRENT_CNT = REG_READ(CLK1_CLK1_CURRENT_CNT);
253 	internal->CLK1_CLK1_BYPASS_CNTL = REG_READ(CLK1_CLK1_BYPASS_CNTL);
254 
255 	internal->CLK1_CLK2_CURRENT_CNT = REG_READ(CLK1_CLK2_CURRENT_CNT);
256 	internal->CLK1_CLK2_BYPASS_CNTL = REG_READ(CLK1_CLK2_BYPASS_CNTL);
257 
258 	internal->CLK1_CLK0_CURRENT_CNT = REG_READ(CLK1_CLK0_CURRENT_CNT);
259 	internal->CLK1_CLK0_BYPASS_CNTL = REG_READ(CLK1_CLK0_BYPASS_CNTL);
260 }
261 
262 /* This function collect raw clk register values */
rn_dump_clk_registers(struct clk_state_registers_and_bypass * regs_and_bypass,struct clk_mgr * clk_mgr_base,struct clk_log_info * log_info)263 static void rn_dump_clk_registers(struct clk_state_registers_and_bypass *regs_and_bypass,
264 		struct clk_mgr *clk_mgr_base, struct clk_log_info *log_info)
265 {
266 	struct rn_clk_internal internal = {0};
267 	char *bypass_clks[5] = {"0x0 DFS", "0x1 REFCLK", "0x2 ERROR", "0x3 400 FCH", "0x4 600 FCH"};
268 	unsigned int chars_printed = 0;
269 	unsigned int remaining_buffer = log_info->bufSize;
270 
271 	rn_dump_clk_registers_internal(&internal, clk_mgr_base);
272 
273 	regs_and_bypass->dcfclk = internal.CLK1_CLK3_CURRENT_CNT / 10;
274 	regs_and_bypass->dcf_deep_sleep_divider = internal.CLK1_CLK3_DS_CNTL / 10;
275 	regs_and_bypass->dcf_deep_sleep_allow = internal.CLK1_CLK3_ALLOW_DS;
276 	regs_and_bypass->dprefclk = internal.CLK1_CLK2_CURRENT_CNT / 10;
277 	regs_and_bypass->dispclk = internal.CLK1_CLK0_CURRENT_CNT / 10;
278 	regs_and_bypass->dppclk = internal.CLK1_CLK1_CURRENT_CNT / 10;
279 
280 	regs_and_bypass->dppclk_bypass = internal.CLK1_CLK1_BYPASS_CNTL & 0x0007;
281 	if (regs_and_bypass->dppclk_bypass < 0 || regs_and_bypass->dppclk_bypass > 4)
282 		regs_and_bypass->dppclk_bypass = 0;
283 	regs_and_bypass->dcfclk_bypass = internal.CLK1_CLK3_BYPASS_CNTL & 0x0007;
284 	if (regs_and_bypass->dcfclk_bypass < 0 || regs_and_bypass->dcfclk_bypass > 4)
285 		regs_and_bypass->dcfclk_bypass = 0;
286 	regs_and_bypass->dispclk_bypass = internal.CLK1_CLK0_BYPASS_CNTL & 0x0007;
287 	if (regs_and_bypass->dispclk_bypass < 0 || regs_and_bypass->dispclk_bypass > 4)
288 		regs_and_bypass->dispclk_bypass = 0;
289 	regs_and_bypass->dprefclk_bypass = internal.CLK1_CLK2_BYPASS_CNTL & 0x0007;
290 	if (regs_and_bypass->dprefclk_bypass < 0 || regs_and_bypass->dprefclk_bypass > 4)
291 		regs_and_bypass->dprefclk_bypass = 0;
292 
293 	if (log_info->enabled) {
294 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "clk_type,clk_value,deepsleep_cntl,deepsleep_allow,bypass\n");
295 		remaining_buffer -= chars_printed;
296 		*log_info->sum_chars_printed += chars_printed;
297 		log_info->pBuf += chars_printed;
298 
299 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "dcfclk,%d,%d,%d,%s\n",
300 			regs_and_bypass->dcfclk,
301 			regs_and_bypass->dcf_deep_sleep_divider,
302 			regs_and_bypass->dcf_deep_sleep_allow,
303 			bypass_clks[(int) regs_and_bypass->dcfclk_bypass]);
304 		remaining_buffer -= chars_printed;
305 		*log_info->sum_chars_printed += chars_printed;
306 		log_info->pBuf += chars_printed;
307 
308 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "dprefclk,%d,N/A,N/A,%s\n",
309 			regs_and_bypass->dprefclk,
310 			bypass_clks[(int) regs_and_bypass->dprefclk_bypass]);
311 		remaining_buffer -= chars_printed;
312 		*log_info->sum_chars_printed += chars_printed;
313 		log_info->pBuf += chars_printed;
314 
315 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "dispclk,%d,N/A,N/A,%s\n",
316 			regs_and_bypass->dispclk,
317 			bypass_clks[(int) regs_and_bypass->dispclk_bypass]);
318 		remaining_buffer -= chars_printed;
319 		*log_info->sum_chars_printed += chars_printed;
320 		log_info->pBuf += chars_printed;
321 
322 		//split
323 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "SPLIT\n");
324 		remaining_buffer -= chars_printed;
325 		*log_info->sum_chars_printed += chars_printed;
326 		log_info->pBuf += chars_printed;
327 
328 		// REGISTER VALUES
329 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "reg_name,value,clk_type\n");
330 		remaining_buffer -= chars_printed;
331 		*log_info->sum_chars_printed += chars_printed;
332 		log_info->pBuf += chars_printed;
333 
334 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_CURRENT_CNT,%d,dcfclk\n",
335 				internal.CLK1_CLK3_CURRENT_CNT);
336 		remaining_buffer -= chars_printed;
337 		*log_info->sum_chars_printed += chars_printed;
338 		log_info->pBuf += chars_printed;
339 
340 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_DS_CNTL,%d,dcf_deep_sleep_divider\n",
341 					internal.CLK1_CLK3_DS_CNTL);
342 		remaining_buffer -= chars_printed;
343 		*log_info->sum_chars_printed += chars_printed;
344 		log_info->pBuf += chars_printed;
345 
346 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_ALLOW_DS,%d,dcf_deep_sleep_allow\n",
347 					internal.CLK1_CLK3_ALLOW_DS);
348 		remaining_buffer -= chars_printed;
349 		*log_info->sum_chars_printed += chars_printed;
350 		log_info->pBuf += chars_printed;
351 
352 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK2_CURRENT_CNT,%d,dprefclk\n",
353 					internal.CLK1_CLK2_CURRENT_CNT);
354 		remaining_buffer -= chars_printed;
355 		*log_info->sum_chars_printed += chars_printed;
356 		log_info->pBuf += chars_printed;
357 
358 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK0_CURRENT_CNT,%d,dispclk\n",
359 					internal.CLK1_CLK0_CURRENT_CNT);
360 		remaining_buffer -= chars_printed;
361 		*log_info->sum_chars_printed += chars_printed;
362 		log_info->pBuf += chars_printed;
363 
364 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK1_CURRENT_CNT,%d,dppclk\n",
365 					internal.CLK1_CLK1_CURRENT_CNT);
366 		remaining_buffer -= chars_printed;
367 		*log_info->sum_chars_printed += chars_printed;
368 		log_info->pBuf += chars_printed;
369 
370 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_BYPASS_CNTL,%d,dcfclk_bypass\n",
371 					internal.CLK1_CLK3_BYPASS_CNTL);
372 		remaining_buffer -= chars_printed;
373 		*log_info->sum_chars_printed += chars_printed;
374 		log_info->pBuf += chars_printed;
375 
376 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK2_BYPASS_CNTL,%d,dprefclk_bypass\n",
377 					internal.CLK1_CLK2_BYPASS_CNTL);
378 		remaining_buffer -= chars_printed;
379 		*log_info->sum_chars_printed += chars_printed;
380 		log_info->pBuf += chars_printed;
381 
382 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK0_BYPASS_CNTL,%d,dispclk_bypass\n",
383 					internal.CLK1_CLK0_BYPASS_CNTL);
384 		remaining_buffer -= chars_printed;
385 		*log_info->sum_chars_printed += chars_printed;
386 		log_info->pBuf += chars_printed;
387 
388 		chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK1_BYPASS_CNTL,%d,dppclk_bypass\n",
389 					internal.CLK1_CLK1_BYPASS_CNTL);
390 		remaining_buffer -= chars_printed;
391 		*log_info->sum_chars_printed += chars_printed;
392 		log_info->pBuf += chars_printed;
393 	}
394 }
395 
396 /* This function produce translated logical clk state values*/
rn_get_clk_states(struct clk_mgr * clk_mgr_base,struct clk_states * s)397 void rn_get_clk_states(struct clk_mgr *clk_mgr_base, struct clk_states *s)
398 {
399 	struct clk_state_registers_and_bypass sb = { 0 };
400 	struct clk_log_info log_info = { 0 };
401 
402 	rn_dump_clk_registers(&sb, clk_mgr_base, &log_info);
403 
404 	s->dprefclk_khz = sb.dprefclk * 1000;
405 }
406 
rn_enable_pme_wa(struct clk_mgr * clk_mgr_base)407 void rn_enable_pme_wa(struct clk_mgr *clk_mgr_base)
408 {
409 	struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
410 
411 	rn_vbios_smu_enable_pme_wa(clk_mgr);
412 }
413 
rn_init_clocks(struct clk_mgr * clk_mgr)414 void rn_init_clocks(struct clk_mgr *clk_mgr)
415 {
416 	memset(&(clk_mgr->clks), 0, sizeof(struct dc_clocks));
417 	// Assumption is that boot state always supports pstate
418 	clk_mgr->clks.p_state_change_support = true;
419 	clk_mgr->clks.prev_p_state_change_support = true;
420 	clk_mgr->clks.pwr_state = DCN_PWR_STATE_UNKNOWN;
421 }
422 
build_watermark_ranges(struct clk_bw_params * bw_params,struct pp_smu_wm_range_sets * ranges)423 static void build_watermark_ranges(struct clk_bw_params *bw_params, struct pp_smu_wm_range_sets *ranges)
424 {
425 	int i, num_valid_sets;
426 
427 	num_valid_sets = 0;
428 
429 	for (i = 0; i < WM_SET_COUNT; i++) {
430 		/* skip empty entries, the smu array has no holes*/
431 		if (!bw_params->wm_table.entries[i].valid)
432 			continue;
433 
434 		ranges->reader_wm_sets[num_valid_sets].wm_inst = bw_params->wm_table.entries[i].wm_inst;
435 		ranges->reader_wm_sets[num_valid_sets].wm_type = bw_params->wm_table.entries[i].wm_type;
436 		/* We will not select WM based on fclk, so leave it as unconstrained */
437 		ranges->reader_wm_sets[num_valid_sets].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
438 		ranges->reader_wm_sets[num_valid_sets].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
439 		/* dcfclk wil be used to select WM*/
440 
441 		if (ranges->reader_wm_sets[num_valid_sets].wm_type == WM_TYPE_PSTATE_CHG) {
442 			if (i == 0)
443 				ranges->reader_wm_sets[num_valid_sets].min_drain_clk_mhz = 0;
444 			else {
445 				/* add 1 to make it non-overlapping with next lvl */
446 				ranges->reader_wm_sets[num_valid_sets].min_drain_clk_mhz = bw_params->clk_table.entries[i - 1].dcfclk_mhz + 1;
447 			}
448 			ranges->reader_wm_sets[num_valid_sets].max_drain_clk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz;
449 
450 		} else {
451 			/* unconstrained for memory retraining */
452 			ranges->reader_wm_sets[num_valid_sets].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
453 			ranges->reader_wm_sets[num_valid_sets].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
454 
455 			/* Modify previous watermark range to cover up to max */
456 			ranges->reader_wm_sets[num_valid_sets - 1].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
457 		}
458 		num_valid_sets++;
459 	}
460 
461 	ASSERT(num_valid_sets != 0); /* Must have at least one set of valid watermarks */
462 	ranges->num_reader_wm_sets = num_valid_sets;
463 
464 	/* modify the min and max to make sure we cover the whole range*/
465 	ranges->reader_wm_sets[0].min_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
466 	ranges->reader_wm_sets[0].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
467 	ranges->reader_wm_sets[ranges->num_reader_wm_sets - 1].max_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
468 	ranges->reader_wm_sets[ranges->num_reader_wm_sets - 1].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
469 
470 	/* This is for writeback only, does not matter currently as no writeback support*/
471 	ranges->num_writer_wm_sets = 1;
472 	ranges->writer_wm_sets[0].wm_inst = WM_A;
473 	ranges->writer_wm_sets[0].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
474 	ranges->writer_wm_sets[0].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
475 	ranges->writer_wm_sets[0].min_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
476 	ranges->writer_wm_sets[0].max_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
477 
478 }
479 
rn_notify_wm_ranges(struct clk_mgr * clk_mgr_base)480 static void rn_notify_wm_ranges(struct clk_mgr *clk_mgr_base)
481 {
482 	struct dc_debug_options *debug = &clk_mgr_base->ctx->dc->debug;
483 	struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
484 	struct pp_smu_funcs *pp_smu = clk_mgr->pp_smu;
485 
486 	if (!debug->disable_pplib_wm_range) {
487 		build_watermark_ranges(clk_mgr_base->bw_params, &clk_mgr_base->ranges);
488 
489 		/* Notify PP Lib/SMU which Watermarks to use for which clock ranges */
490 		if (pp_smu && pp_smu->rn_funcs.set_wm_ranges)
491 			pp_smu->rn_funcs.set_wm_ranges(&pp_smu->rn_funcs.pp_smu, &clk_mgr_base->ranges);
492 	}
493 
494 }
495 
rn_are_clock_states_equal(struct dc_clocks * a,struct dc_clocks * b)496 static bool rn_are_clock_states_equal(struct dc_clocks *a,
497 		struct dc_clocks *b)
498 {
499 	if (a->dispclk_khz != b->dispclk_khz)
500 		return false;
501 	else if (a->dppclk_khz != b->dppclk_khz)
502 		return false;
503 	else if (a->dcfclk_khz != b->dcfclk_khz)
504 		return false;
505 	else if (a->dcfclk_deep_sleep_khz != b->dcfclk_deep_sleep_khz)
506 		return false;
507 
508 	return true;
509 }
510 
511 
512 /* Notify clk_mgr of a change in link rate, update phyclk frequency if necessary */
rn_notify_link_rate_change(struct clk_mgr * clk_mgr_base,struct dc_link * link)513 static void rn_notify_link_rate_change(struct clk_mgr *clk_mgr_base, struct dc_link *link)
514 {
515 	struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
516 	unsigned int i, max_phyclk_req = 0;
517 
518 	clk_mgr->cur_phyclk_req_table[link->link_index] = link->cur_link_settings.link_rate * LINK_RATE_REF_FREQ_IN_KHZ;
519 
520 	for (i = 0; i < MAX_PIPES * 2; i++) {
521 		if (clk_mgr->cur_phyclk_req_table[i] > max_phyclk_req)
522 			max_phyclk_req = clk_mgr->cur_phyclk_req_table[i];
523 	}
524 
525 	if (max_phyclk_req != clk_mgr_base->clks.phyclk_khz) {
526 		clk_mgr_base->clks.phyclk_khz = max_phyclk_req;
527 		rn_vbios_smu_set_phyclk(clk_mgr, clk_mgr_base->clks.phyclk_khz);
528 	}
529 }
530 
531 static struct clk_mgr_funcs dcn21_funcs = {
532 	.get_dp_ref_clk_frequency = dce12_get_dp_ref_freq_khz,
533 	.update_clocks = rn_update_clocks,
534 	.init_clocks = rn_init_clocks,
535 	.enable_pme_wa = rn_enable_pme_wa,
536 	.are_clock_states_equal = rn_are_clock_states_equal,
537 	.set_low_power_state = rn_set_low_power_state,
538 	.notify_wm_ranges = rn_notify_wm_ranges,
539 	.notify_link_rate_change = rn_notify_link_rate_change,
540 };
541 
542 static struct clk_bw_params rn_bw_params = {
543 	.vram_type = Ddr4MemType,
544 	.num_channels = 1,
545 	.clk_table = {
546 		.entries = {
547 			{
548 				.voltage = 0,
549 				.dcfclk_mhz = 400,
550 				.fclk_mhz = 400,
551 				.memclk_mhz = 800,
552 				.socclk_mhz = 0,
553 			},
554 			{
555 				.voltage = 0,
556 				.dcfclk_mhz = 483,
557 				.fclk_mhz = 800,
558 				.memclk_mhz = 1600,
559 				.socclk_mhz = 0,
560 			},
561 			{
562 				.voltage = 0,
563 				.dcfclk_mhz = 602,
564 				.fclk_mhz = 1067,
565 				.memclk_mhz = 1067,
566 				.socclk_mhz = 0,
567 			},
568 			{
569 				.voltage = 0,
570 				.dcfclk_mhz = 738,
571 				.fclk_mhz = 1333,
572 				.memclk_mhz = 1600,
573 				.socclk_mhz = 0,
574 			},
575 		},
576 
577 		.num_entries = 4,
578 	},
579 
580 };
581 
582 static struct wm_table ddr4_wm_table_gs = {
583 	.entries = {
584 		{
585 			.wm_inst = WM_A,
586 			.wm_type = WM_TYPE_PSTATE_CHG,
587 			.pstate_latency_us = 11.72,
588 			.sr_exit_time_us = 6.09,
589 			.sr_enter_plus_exit_time_us = 7.14,
590 			.valid = true,
591 		},
592 		{
593 			.wm_inst = WM_B,
594 			.wm_type = WM_TYPE_PSTATE_CHG,
595 			.pstate_latency_us = 11.72,
596 			.sr_exit_time_us = 10.12,
597 			.sr_enter_plus_exit_time_us = 11.48,
598 			.valid = true,
599 		},
600 		{
601 			.wm_inst = WM_C,
602 			.wm_type = WM_TYPE_PSTATE_CHG,
603 			.pstate_latency_us = 11.72,
604 			.sr_exit_time_us = 10.12,
605 			.sr_enter_plus_exit_time_us = 11.48,
606 			.valid = true,
607 		},
608 		{
609 			.wm_inst = WM_D,
610 			.wm_type = WM_TYPE_PSTATE_CHG,
611 			.pstate_latency_us = 11.72,
612 			.sr_exit_time_us = 10.12,
613 			.sr_enter_plus_exit_time_us = 11.48,
614 			.valid = true,
615 		},
616 	}
617 };
618 
619 static struct wm_table lpddr4_wm_table_gs = {
620 	.entries = {
621 		{
622 			.wm_inst = WM_A,
623 			.wm_type = WM_TYPE_PSTATE_CHG,
624 			.pstate_latency_us = 11.65333,
625 			.sr_exit_time_us = 5.32,
626 			.sr_enter_plus_exit_time_us = 6.38,
627 			.valid = true,
628 		},
629 		{
630 			.wm_inst = WM_B,
631 			.wm_type = WM_TYPE_PSTATE_CHG,
632 			.pstate_latency_us = 11.65333,
633 			.sr_exit_time_us = 9.82,
634 			.sr_enter_plus_exit_time_us = 11.196,
635 			.valid = true,
636 		},
637 		{
638 			.wm_inst = WM_C,
639 			.wm_type = WM_TYPE_PSTATE_CHG,
640 			.pstate_latency_us = 11.65333,
641 			.sr_exit_time_us = 9.89,
642 			.sr_enter_plus_exit_time_us = 11.24,
643 			.valid = true,
644 		},
645 		{
646 			.wm_inst = WM_D,
647 			.wm_type = WM_TYPE_PSTATE_CHG,
648 			.pstate_latency_us = 11.65333,
649 			.sr_exit_time_us = 9.748,
650 			.sr_enter_plus_exit_time_us = 11.102,
651 			.valid = true,
652 		},
653 	}
654 };
655 
656 static struct wm_table lpddr4_wm_table_with_disabled_ppt = {
657 	.entries = {
658 		{
659 			.wm_inst = WM_A,
660 			.wm_type = WM_TYPE_PSTATE_CHG,
661 			.pstate_latency_us = 11.65333,
662 			.sr_exit_time_us = 8.32,
663 			.sr_enter_plus_exit_time_us = 9.38,
664 			.valid = true,
665 		},
666 		{
667 			.wm_inst = WM_B,
668 			.wm_type = WM_TYPE_PSTATE_CHG,
669 			.pstate_latency_us = 11.65333,
670 			.sr_exit_time_us = 9.82,
671 			.sr_enter_plus_exit_time_us = 11.196,
672 			.valid = true,
673 		},
674 		{
675 			.wm_inst = WM_C,
676 			.wm_type = WM_TYPE_PSTATE_CHG,
677 			.pstate_latency_us = 11.65333,
678 			.sr_exit_time_us = 9.89,
679 			.sr_enter_plus_exit_time_us = 11.24,
680 			.valid = true,
681 		},
682 		{
683 			.wm_inst = WM_D,
684 			.wm_type = WM_TYPE_PSTATE_CHG,
685 			.pstate_latency_us = 11.65333,
686 			.sr_exit_time_us = 9.748,
687 			.sr_enter_plus_exit_time_us = 11.102,
688 			.valid = true,
689 		},
690 	}
691 };
692 
693 static struct wm_table ddr4_wm_table_rn = {
694 	.entries = {
695 		{
696 			.wm_inst = WM_A,
697 			.wm_type = WM_TYPE_PSTATE_CHG,
698 			.pstate_latency_us = 11.72,
699 			.sr_exit_time_us = 9.09,
700 			.sr_enter_plus_exit_time_us = 10.14,
701 			.valid = true,
702 		},
703 		{
704 			.wm_inst = WM_B,
705 			.wm_type = WM_TYPE_PSTATE_CHG,
706 			.pstate_latency_us = 11.72,
707 			.sr_exit_time_us = 10.12,
708 			.sr_enter_plus_exit_time_us = 11.48,
709 			.valid = true,
710 		},
711 		{
712 			.wm_inst = WM_C,
713 			.wm_type = WM_TYPE_PSTATE_CHG,
714 			.pstate_latency_us = 11.72,
715 			.sr_exit_time_us = 10.12,
716 			.sr_enter_plus_exit_time_us = 11.48,
717 			.valid = true,
718 		},
719 		{
720 			.wm_inst = WM_D,
721 			.wm_type = WM_TYPE_PSTATE_CHG,
722 			.pstate_latency_us = 11.72,
723 			.sr_exit_time_us = 10.12,
724 			.sr_enter_plus_exit_time_us = 11.48,
725 			.valid = true,
726 		},
727 	}
728 };
729 
730 static struct wm_table lpddr4_wm_table_rn = {
731 	.entries = {
732 		{
733 			.wm_inst = WM_A,
734 			.wm_type = WM_TYPE_PSTATE_CHG,
735 			.pstate_latency_us = 11.65333,
736 			.sr_exit_time_us = 7.32,
737 			.sr_enter_plus_exit_time_us = 8.38,
738 			.valid = true,
739 		},
740 		{
741 			.wm_inst = WM_B,
742 			.wm_type = WM_TYPE_PSTATE_CHG,
743 			.pstate_latency_us = 11.65333,
744 			.sr_exit_time_us = 9.82,
745 			.sr_enter_plus_exit_time_us = 11.196,
746 			.valid = true,
747 		},
748 		{
749 			.wm_inst = WM_C,
750 			.wm_type = WM_TYPE_PSTATE_CHG,
751 			.pstate_latency_us = 11.65333,
752 			.sr_exit_time_us = 9.89,
753 			.sr_enter_plus_exit_time_us = 11.24,
754 			.valid = true,
755 		},
756 		{
757 			.wm_inst = WM_D,
758 			.wm_type = WM_TYPE_PSTATE_CHG,
759 			.pstate_latency_us = 11.65333,
760 			.sr_exit_time_us = 9.748,
761 			.sr_enter_plus_exit_time_us = 11.102,
762 			.valid = true,
763 		},
764 	}
765 };
766 
find_dcfclk_for_voltage(struct dpm_clocks * clock_table,unsigned int voltage)767 static unsigned int find_dcfclk_for_voltage(struct dpm_clocks *clock_table, unsigned int voltage)
768 {
769 	int i;
770 
771 	for (i = 0; i < PP_SMU_NUM_DCFCLK_DPM_LEVELS; i++) {
772 		if (clock_table->DcfClocks[i].Vol == voltage)
773 			return clock_table->DcfClocks[i].Freq;
774 	}
775 
776 	ASSERT(0);
777 	return 0;
778 }
779 
rn_clk_mgr_helper_populate_bw_params(struct clk_bw_params * bw_params,struct dpm_clocks * clock_table,struct integrated_info * bios_info)780 static void rn_clk_mgr_helper_populate_bw_params(struct clk_bw_params *bw_params, struct dpm_clocks *clock_table, struct integrated_info *bios_info)
781 {
782 	int i, j = 0;
783 
784 	j = -1;
785 
786 	ASSERT(PP_SMU_NUM_FCLK_DPM_LEVELS <= MAX_NUM_DPM_LVL);
787 
788 	/* Find lowest DPM, FCLK is filled in reverse order*/
789 
790 	for (i = PP_SMU_NUM_FCLK_DPM_LEVELS - 1; i >= 0; i--) {
791 		if (clock_table->FClocks[i].Freq != 0 && clock_table->FClocks[i].Vol != 0) {
792 			j = i;
793 			break;
794 		}
795 	}
796 
797 	if (j == -1) {
798 		/* clock table is all 0s, just use our own hardcode */
799 		ASSERT(0);
800 		return;
801 	}
802 
803 	bw_params->clk_table.num_entries = j + 1;
804 
805 	for (i = 0; i < bw_params->clk_table.num_entries; i++, j--) {
806 		bw_params->clk_table.entries[i].fclk_mhz = clock_table->FClocks[j].Freq;
807 		bw_params->clk_table.entries[i].memclk_mhz = clock_table->MemClocks[j].Freq;
808 		bw_params->clk_table.entries[i].voltage = clock_table->FClocks[j].Vol;
809 		bw_params->clk_table.entries[i].dcfclk_mhz = find_dcfclk_for_voltage(clock_table, clock_table->FClocks[j].Vol);
810 	}
811 
812 	bw_params->vram_type = bios_info->memory_type;
813 	bw_params->num_channels = bios_info->ma_channel_number;
814 
815 	for (i = 0; i < WM_SET_COUNT; i++) {
816 		bw_params->wm_table.entries[i].wm_inst = i;
817 
818 		if (i >= bw_params->clk_table.num_entries) {
819 			bw_params->wm_table.entries[i].valid = false;
820 			continue;
821 		}
822 
823 		bw_params->wm_table.entries[i].wm_type = WM_TYPE_PSTATE_CHG;
824 		bw_params->wm_table.entries[i].valid = true;
825 	}
826 
827 	if (bw_params->vram_type == LpDdr4MemType) {
828 		/*
829 		 * WM set D will be re-purposed for memory retraining
830 		 */
831 		bw_params->wm_table.entries[WM_D].pstate_latency_us = LPDDR_MEM_RETRAIN_LATENCY;
832 		bw_params->wm_table.entries[WM_D].wm_inst = WM_D;
833 		bw_params->wm_table.entries[WM_D].wm_type = WM_TYPE_RETRAINING;
834 		bw_params->wm_table.entries[WM_D].valid = true;
835 	}
836 
837 }
838 
rn_clk_mgr_construct(struct dc_context * ctx,struct clk_mgr_internal * clk_mgr,struct pp_smu_funcs * pp_smu,struct dccg * dccg)839 void rn_clk_mgr_construct(
840 		struct dc_context *ctx,
841 		struct clk_mgr_internal *clk_mgr,
842 		struct pp_smu_funcs *pp_smu,
843 		struct dccg *dccg)
844 {
845 	struct dc_debug_options *debug = &ctx->dc->debug;
846 	struct dpm_clocks clock_table = { 0 };
847 	enum pp_smu_status status = 0;
848 	int is_green_sardine = 0;
849 
850 #if defined(CONFIG_DRM_AMD_DC_DCN)
851 	is_green_sardine = ASICREV_IS_GREEN_SARDINE(ctx->asic_id.hw_internal_rev);
852 #endif
853 
854 	clk_mgr->base.ctx = ctx;
855 	clk_mgr->base.funcs = &dcn21_funcs;
856 
857 	clk_mgr->pp_smu = pp_smu;
858 
859 	clk_mgr->dccg = dccg;
860 	clk_mgr->dfs_bypass_disp_clk = 0;
861 
862 	clk_mgr->dprefclk_ss_percentage = 0;
863 	clk_mgr->dprefclk_ss_divider = 1000;
864 	clk_mgr->ss_on_dprefclk = false;
865 	clk_mgr->dfs_ref_freq_khz = 48000;
866 
867 	clk_mgr->smu_ver = rn_vbios_smu_get_smu_version(clk_mgr);
868 
869 	if (IS_FPGA_MAXIMUS_DC(ctx->dce_environment)) {
870 		dcn21_funcs.update_clocks = dcn2_update_clocks_fpga;
871 		clk_mgr->base.dentist_vco_freq_khz = 3600000;
872 	} else {
873 		struct clk_log_info log_info = {0};
874 
875 		clk_mgr->periodic_retraining_disabled = rn_vbios_smu_is_periodic_retraining_disabled(clk_mgr);
876 
877 		/* SMU Version 55.51.0 and up no longer have an issue
878 		 * that needs to limit minimum dispclk */
879 		if (clk_mgr->smu_ver >= SMU_VER_55_51_0)
880 			debug->min_disp_clk_khz = 0;
881 
882 		/* TODO: Check we get what we expect during bringup */
883 		clk_mgr->base.dentist_vco_freq_khz = get_vco_frequency_from_reg(clk_mgr);
884 
885 		/* in case we don't get a value from the register, use default */
886 		if (clk_mgr->base.dentist_vco_freq_khz == 0)
887 			clk_mgr->base.dentist_vco_freq_khz = 3600000;
888 
889 		if (ctx->dc_bios->integrated_info->memory_type == LpDdr4MemType) {
890 			if (clk_mgr->periodic_retraining_disabled) {
891 				rn_bw_params.wm_table = lpddr4_wm_table_with_disabled_ppt;
892 			} else {
893 				if (is_green_sardine)
894 					rn_bw_params.wm_table = lpddr4_wm_table_gs;
895 				else
896 					rn_bw_params.wm_table = lpddr4_wm_table_rn;
897 			}
898 		} else {
899 			if (is_green_sardine)
900 				rn_bw_params.wm_table = ddr4_wm_table_gs;
901 			else
902 				rn_bw_params.wm_table = ddr4_wm_table_rn;
903 		}
904 		/* Saved clocks configured at boot for debug purposes */
905 		rn_dump_clk_registers(&clk_mgr->base.boot_snapshot, &clk_mgr->base, &log_info);
906 	}
907 
908 	clk_mgr->base.dprefclk_khz = 600000;
909 	dce_clock_read_ss_info(clk_mgr);
910 
911 
912 	clk_mgr->base.bw_params = &rn_bw_params;
913 
914 	if (pp_smu && pp_smu->rn_funcs.get_dpm_clock_table) {
915 		status = pp_smu->rn_funcs.get_dpm_clock_table(&pp_smu->rn_funcs.pp_smu, &clock_table);
916 
917 		if (status == PP_SMU_RESULT_OK &&
918 		    ctx->dc_bios && ctx->dc_bios->integrated_info) {
919 			rn_clk_mgr_helper_populate_bw_params (clk_mgr->base.bw_params, &clock_table, ctx->dc_bios->integrated_info);
920 		}
921 	}
922 
923 	if (!IS_FPGA_MAXIMUS_DC(ctx->dce_environment) && clk_mgr->smu_ver >= 0x00371500) {
924 		/* enable powerfeatures when displaycount goes to 0 */
925 		rn_vbios_smu_enable_48mhz_tmdp_refclk_pwrdwn(clk_mgr, !debug->disable_48mhz_pwrdwn);
926 	}
927 }
928 
929