xref: /qemu/target/riscv/cpu_helper.c (revision ad63158bdb33dab5704ea1cf740d2ea0387175df)
1 /*
2  * RISC-V CPU helpers for qemu.
3  *
4  * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
5  * Copyright (c) 2017-2018 SiFive, Inc.
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2 or later, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  *
16  * You should have received a copy of the GNU General Public License along with
17  * this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/log.h"
22 #include "qemu/main-loop.h"
23 #include "cpu.h"
24 #include "internals.h"
25 #include "pmu.h"
26 #include "exec/cputlb.h"
27 #include "exec/page-protection.h"
28 #include "exec/target_page.h"
29 #include "system/memory.h"
30 #include "instmap.h"
31 #include "tcg/tcg-op.h"
32 #include "accel/tcg/cpu-ops.h"
33 #include "trace.h"
34 #include "semihosting/common-semi.h"
35 #include "exec/icount.h"
36 #include "cpu_bits.h"
37 #include "debug.h"
38 #include "pmp.h"
39 
riscv_env_mmu_index(CPURISCVState * env,bool ifetch)40 int riscv_env_mmu_index(CPURISCVState *env, bool ifetch)
41 {
42 #ifdef CONFIG_USER_ONLY
43     return 0;
44 #else
45     bool virt = env->virt_enabled;
46     int mode = env->priv;
47 
48     /* All priv -> mmu_idx mapping are here */
49     if (!ifetch) {
50         uint64_t status = env->mstatus;
51 
52         if (mode == PRV_M && get_field(status, MSTATUS_MPRV)) {
53             mode = get_field(env->mstatus, MSTATUS_MPP);
54             virt = get_field(env->mstatus, MSTATUS_MPV) &&
55                    (mode != PRV_M);
56             if (virt) {
57                 status = env->vsstatus;
58             }
59         }
60         if (mode == PRV_S && get_field(status, MSTATUS_SUM)) {
61             mode = MMUIdx_S_SUM;
62         }
63     }
64 
65     return mode | (virt ? MMU_2STAGE_BIT : 0);
66 #endif
67 }
68 
cpu_get_fcfien(CPURISCVState * env)69 bool cpu_get_fcfien(CPURISCVState *env)
70 {
71     /* no cfi extension, return false */
72     if (!env_archcpu(env)->cfg.ext_zicfilp) {
73         return false;
74     }
75 
76     switch (env->priv) {
77     case PRV_U:
78         if (riscv_has_ext(env, RVS)) {
79             return env->senvcfg & SENVCFG_LPE;
80         }
81         return env->menvcfg & MENVCFG_LPE;
82 #ifndef CONFIG_USER_ONLY
83     case PRV_S:
84         if (env->virt_enabled) {
85             return env->henvcfg & HENVCFG_LPE;
86         }
87         return env->menvcfg & MENVCFG_LPE;
88     case PRV_M:
89         return env->mseccfg & MSECCFG_MLPE;
90 #endif
91     default:
92         g_assert_not_reached();
93     }
94 }
95 
cpu_get_bcfien(CPURISCVState * env)96 bool cpu_get_bcfien(CPURISCVState *env)
97 {
98     /* no cfi extension, return false */
99     if (!env_archcpu(env)->cfg.ext_zicfiss) {
100         return false;
101     }
102 
103     switch (env->priv) {
104     case PRV_U:
105         /*
106          * If S is not implemented then shadow stack for U can't be turned on
107          * It is checked in `riscv_cpu_validate_set_extensions`, so no need to
108          * check here or assert here
109          */
110         return env->senvcfg & SENVCFG_SSE;
111 #ifndef CONFIG_USER_ONLY
112     case PRV_S:
113         if (env->virt_enabled) {
114             return env->henvcfg & HENVCFG_SSE;
115         }
116         return env->menvcfg & MENVCFG_SSE;
117     case PRV_M: /* M-mode shadow stack is always off */
118         return false;
119 #endif
120     default:
121         g_assert_not_reached();
122     }
123 }
124 
riscv_env_smode_dbltrp_enabled(CPURISCVState * env,bool virt)125 bool riscv_env_smode_dbltrp_enabled(CPURISCVState *env, bool virt)
126 {
127 #ifdef CONFIG_USER_ONLY
128     return false;
129 #else
130     if (virt) {
131         return (env->henvcfg & HENVCFG_DTE) != 0;
132     } else {
133         return (env->menvcfg & MENVCFG_DTE) != 0;
134     }
135 #endif
136 }
137 
riscv_pm_get_pmm(CPURISCVState * env)138 RISCVPmPmm riscv_pm_get_pmm(CPURISCVState *env)
139 {
140 #ifndef CONFIG_USER_ONLY
141     int priv_mode = cpu_address_mode(env);
142 
143     if (get_field(env->mstatus, MSTATUS_MPRV) &&
144         get_field(env->mstatus, MSTATUS_MXR)) {
145         return PMM_FIELD_DISABLED;
146     }
147 
148     /* Get current PMM field */
149     switch (priv_mode) {
150     case PRV_M:
151         if (riscv_cpu_cfg(env)->ext_smmpm) {
152             return get_field(env->mseccfg, MSECCFG_PMM);
153         }
154         break;
155     case PRV_S:
156         if (riscv_cpu_cfg(env)->ext_smnpm) {
157             if (get_field(env->mstatus, MSTATUS_MPV)) {
158                 return get_field(env->henvcfg, HENVCFG_PMM);
159             } else {
160                 return get_field(env->menvcfg, MENVCFG_PMM);
161             }
162         }
163         break;
164     case PRV_U:
165         if (riscv_has_ext(env, RVS)) {
166             if (riscv_cpu_cfg(env)->ext_ssnpm) {
167                 return get_field(env->senvcfg, SENVCFG_PMM);
168             }
169         } else {
170             if (riscv_cpu_cfg(env)->ext_smnpm) {
171                 return get_field(env->menvcfg, MENVCFG_PMM);
172             }
173         }
174         break;
175     default:
176         g_assert_not_reached();
177     }
178     return PMM_FIELD_DISABLED;
179 #else
180     return PMM_FIELD_DISABLED;
181 #endif
182 }
183 
riscv_pm_get_virt_pmm(CPURISCVState * env)184 RISCVPmPmm riscv_pm_get_virt_pmm(CPURISCVState *env)
185 {
186 #ifndef CONFIG_USER_ONLY
187     int priv_mode = cpu_address_mode(env);
188 
189     if (priv_mode == PRV_U) {
190         return get_field(env->hstatus, HSTATUS_HUPMM);
191     } else {
192         if (get_field(env->hstatus, HSTATUS_SPVP)) {
193             return get_field(env->henvcfg, HENVCFG_PMM);
194         } else {
195             return get_field(env->senvcfg, SENVCFG_PMM);
196         }
197     }
198 #else
199     return PMM_FIELD_DISABLED;
200 #endif
201 }
202 
riscv_cpu_virt_mem_enabled(CPURISCVState * env)203 bool riscv_cpu_virt_mem_enabled(CPURISCVState *env)
204 {
205 #ifndef CONFIG_USER_ONLY
206     int satp_mode = 0;
207     int priv_mode = cpu_address_mode(env);
208 
209     if (riscv_cpu_mxl(env) == MXL_RV32) {
210         satp_mode = get_field(env->satp, SATP32_MODE);
211     } else {
212         satp_mode = get_field(env->satp, SATP64_MODE);
213     }
214 
215     return ((satp_mode != VM_1_10_MBARE) && (priv_mode != PRV_M));
216 #else
217     return false;
218 #endif
219 }
220 
riscv_pm_get_pmlen(RISCVPmPmm pmm)221 uint32_t riscv_pm_get_pmlen(RISCVPmPmm pmm)
222 {
223     switch (pmm) {
224     case PMM_FIELD_DISABLED:
225         return 0;
226     case PMM_FIELD_PMLEN7:
227         return 7;
228     case PMM_FIELD_PMLEN16:
229         return 16;
230     default:
231         g_assert_not_reached();
232     }
233 }
234 
235 #ifndef CONFIG_USER_ONLY
236 
237 /*
238  * The HS-mode is allowed to configure priority only for the
239  * following VS-mode local interrupts:
240  *
241  * 0  (Reserved interrupt, reads as zero)
242  * 1  Supervisor software interrupt
243  * 4  (Reserved interrupt, reads as zero)
244  * 5  Supervisor timer interrupt
245  * 8  (Reserved interrupt, reads as zero)
246  * 13 (Reserved interrupt)
247  * 14 "
248  * 15 "
249  * 16 "
250  * 17 "
251  * 18 "
252  * 19 "
253  * 20 "
254  * 21 "
255  * 22 "
256  * 23 "
257  */
258 
259 static const int hviprio_index2irq[] = {
260     0, 1, 4, 5, 8, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 };
261 static const int hviprio_index2rdzero[] = {
262     1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
263 
riscv_cpu_hviprio_index2irq(int index,int * out_irq,int * out_rdzero)264 int riscv_cpu_hviprio_index2irq(int index, int *out_irq, int *out_rdzero)
265 {
266     if (index < 0 || ARRAY_SIZE(hviprio_index2irq) <= index) {
267         return -EINVAL;
268     }
269 
270     if (out_irq) {
271         *out_irq = hviprio_index2irq[index];
272     }
273 
274     if (out_rdzero) {
275         *out_rdzero = hviprio_index2rdzero[index];
276     }
277 
278     return 0;
279 }
280 
281 /*
282  * Default priorities of local interrupts are defined in the
283  * RISC-V Advanced Interrupt Architecture specification.
284  *
285  * ----------------------------------------------------------------
286  *  Default  |
287  *  Priority | Major Interrupt Numbers
288  * ----------------------------------------------------------------
289  *  Highest  | 47, 23, 46, 45, 22, 44,
290  *           | 43, 21, 42, 41, 20, 40
291  *           |
292  *           | 11 (0b),  3 (03),  7 (07)
293  *           |  9 (09),  1 (01),  5 (05)
294  *           | 12 (0c)
295  *           | 10 (0a),  2 (02),  6 (06)
296  *           |
297  *           | 39, 19, 38, 37, 18, 36,
298  *  Lowest   | 35, 17, 34, 33, 16, 32
299  * ----------------------------------------------------------------
300  */
301 static const uint8_t default_iprio[64] = {
302     /* Custom interrupts 48 to 63 */
303     [63] = IPRIO_MMAXIPRIO,
304     [62] = IPRIO_MMAXIPRIO,
305     [61] = IPRIO_MMAXIPRIO,
306     [60] = IPRIO_MMAXIPRIO,
307     [59] = IPRIO_MMAXIPRIO,
308     [58] = IPRIO_MMAXIPRIO,
309     [57] = IPRIO_MMAXIPRIO,
310     [56] = IPRIO_MMAXIPRIO,
311     [55] = IPRIO_MMAXIPRIO,
312     [54] = IPRIO_MMAXIPRIO,
313     [53] = IPRIO_MMAXIPRIO,
314     [52] = IPRIO_MMAXIPRIO,
315     [51] = IPRIO_MMAXIPRIO,
316     [50] = IPRIO_MMAXIPRIO,
317     [49] = IPRIO_MMAXIPRIO,
318     [48] = IPRIO_MMAXIPRIO,
319 
320     /* Custom interrupts 24 to 31 */
321     [31] = IPRIO_MMAXIPRIO,
322     [30] = IPRIO_MMAXIPRIO,
323     [29] = IPRIO_MMAXIPRIO,
324     [28] = IPRIO_MMAXIPRIO,
325     [27] = IPRIO_MMAXIPRIO,
326     [26] = IPRIO_MMAXIPRIO,
327     [25] = IPRIO_MMAXIPRIO,
328     [24] = IPRIO_MMAXIPRIO,
329 
330     [47] = IPRIO_DEFAULT_UPPER,
331     [23] = IPRIO_DEFAULT_UPPER + 1,
332     [46] = IPRIO_DEFAULT_UPPER + 2,
333     [45] = IPRIO_DEFAULT_UPPER + 3,
334     [22] = IPRIO_DEFAULT_UPPER + 4,
335     [44] = IPRIO_DEFAULT_UPPER + 5,
336 
337     [43] = IPRIO_DEFAULT_UPPER + 6,
338     [21] = IPRIO_DEFAULT_UPPER + 7,
339     [42] = IPRIO_DEFAULT_UPPER + 8,
340     [41] = IPRIO_DEFAULT_UPPER + 9,
341     [20] = IPRIO_DEFAULT_UPPER + 10,
342     [40] = IPRIO_DEFAULT_UPPER + 11,
343 
344     [11] = IPRIO_DEFAULT_M,
345     [3]  = IPRIO_DEFAULT_M + 1,
346     [7]  = IPRIO_DEFAULT_M + 2,
347 
348     [9]  = IPRIO_DEFAULT_S,
349     [1]  = IPRIO_DEFAULT_S + 1,
350     [5]  = IPRIO_DEFAULT_S + 2,
351 
352     [12] = IPRIO_DEFAULT_SGEXT,
353 
354     [10] = IPRIO_DEFAULT_VS,
355     [2]  = IPRIO_DEFAULT_VS + 1,
356     [6]  = IPRIO_DEFAULT_VS + 2,
357 
358     [39] = IPRIO_DEFAULT_LOWER,
359     [19] = IPRIO_DEFAULT_LOWER + 1,
360     [38] = IPRIO_DEFAULT_LOWER + 2,
361     [37] = IPRIO_DEFAULT_LOWER + 3,
362     [18] = IPRIO_DEFAULT_LOWER + 4,
363     [36] = IPRIO_DEFAULT_LOWER + 5,
364 
365     [35] = IPRIO_DEFAULT_LOWER + 6,
366     [17] = IPRIO_DEFAULT_LOWER + 7,
367     [34] = IPRIO_DEFAULT_LOWER + 8,
368     [33] = IPRIO_DEFAULT_LOWER + 9,
369     [16] = IPRIO_DEFAULT_LOWER + 10,
370     [32] = IPRIO_DEFAULT_LOWER + 11,
371 };
372 
riscv_cpu_default_priority(int irq)373 uint8_t riscv_cpu_default_priority(int irq)
374 {
375     if (irq < 0 || irq > 63) {
376         return IPRIO_MMAXIPRIO;
377     }
378 
379     return default_iprio[irq] ? default_iprio[irq] : IPRIO_MMAXIPRIO;
380 };
381 
riscv_cpu_pending_to_irq(CPURISCVState * env,int extirq,unsigned int extirq_def_prio,uint64_t pending,uint8_t * iprio)382 static int riscv_cpu_pending_to_irq(CPURISCVState *env,
383                                     int extirq, unsigned int extirq_def_prio,
384                                     uint64_t pending, uint8_t *iprio)
385 {
386     int irq, best_irq = RISCV_EXCP_NONE;
387     unsigned int prio, best_prio = UINT_MAX;
388 
389     if (!pending) {
390         return RISCV_EXCP_NONE;
391     }
392 
393     irq = ctz64(pending);
394     if (!((extirq == IRQ_M_EXT) ? riscv_cpu_cfg(env)->ext_smaia :
395                                   riscv_cpu_cfg(env)->ext_ssaia)) {
396         return irq;
397     }
398 
399     pending = pending >> irq;
400     while (pending) {
401         prio = iprio[irq];
402         if (!prio) {
403             if (irq == extirq) {
404                 prio = extirq_def_prio;
405             } else {
406                 prio = (riscv_cpu_default_priority(irq) < extirq_def_prio) ?
407                        1 : IPRIO_MMAXIPRIO;
408             }
409         }
410         if ((pending & 0x1) && (prio <= best_prio)) {
411             best_irq = irq;
412             best_prio = prio;
413         }
414         irq++;
415         pending = pending >> 1;
416     }
417 
418     return best_irq;
419 }
420 
421 /*
422  * Doesn't report interrupts inserted using mvip from M-mode firmware or
423  * using hvip bits 13:63 from HS-mode. Those are returned in
424  * riscv_cpu_sirq_pending() and riscv_cpu_vsirq_pending().
425  */
riscv_cpu_all_pending(CPURISCVState * env)426 uint64_t riscv_cpu_all_pending(CPURISCVState *env)
427 {
428     uint32_t gein = get_field(env->hstatus, HSTATUS_VGEIN);
429     uint64_t vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0;
430     uint64_t vstip = (env->vstime_irq) ? MIP_VSTIP : 0;
431 
432     return (env->mip | vsgein | vstip) & env->mie;
433 }
434 
riscv_cpu_mirq_pending(CPURISCVState * env)435 int riscv_cpu_mirq_pending(CPURISCVState *env)
436 {
437     uint64_t irqs = riscv_cpu_all_pending(env) & ~env->mideleg &
438                     ~(MIP_SGEIP | MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
439 
440     return riscv_cpu_pending_to_irq(env, IRQ_M_EXT, IPRIO_DEFAULT_M,
441                                     irqs, env->miprio);
442 }
443 
riscv_cpu_sirq_pending(CPURISCVState * env)444 int riscv_cpu_sirq_pending(CPURISCVState *env)
445 {
446     uint64_t irqs = riscv_cpu_all_pending(env) & env->mideleg &
447                     ~(MIP_VSSIP | MIP_VSTIP | MIP_VSEIP);
448     uint64_t irqs_f = env->mvip & env->mvien & ~env->mideleg & env->sie;
449 
450     return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
451                                     irqs | irqs_f, env->siprio);
452 }
453 
riscv_cpu_vsirq_pending(CPURISCVState * env)454 int riscv_cpu_vsirq_pending(CPURISCVState *env)
455 {
456     uint64_t irqs = riscv_cpu_all_pending(env) & env->mideleg & env->hideleg;
457     uint64_t irqs_f_vs = env->hvip & env->hvien & ~env->hideleg & env->vsie;
458     uint64_t vsbits;
459 
460     /* Bring VS-level bits to correct position */
461     vsbits = irqs & VS_MODE_INTERRUPTS;
462     irqs &= ~VS_MODE_INTERRUPTS;
463     irqs |= vsbits >> 1;
464 
465     return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
466                                     (irqs | irqs_f_vs), env->hviprio);
467 }
468 
riscv_cpu_local_irq_pending(CPURISCVState * env)469 static int riscv_cpu_local_irq_pending(CPURISCVState *env)
470 {
471     uint64_t irqs, pending, mie, hsie, vsie, irqs_f, irqs_f_vs;
472     uint64_t vsbits, irq_delegated;
473     int virq;
474 
475     /* Priority: RNMI > Other interrupt. */
476     if (riscv_cpu_cfg(env)->ext_smrnmi) {
477         /* If mnstatus.NMIE == 0, all interrupts are disabled. */
478         if (!get_field(env->mnstatus, MNSTATUS_NMIE)) {
479             return RISCV_EXCP_NONE;
480         }
481 
482         if (env->rnmip) {
483             return ctz64(env->rnmip); /* since non-zero */
484         }
485     }
486 
487     /* Determine interrupt enable state of all privilege modes */
488     if (env->virt_enabled) {
489         mie = 1;
490         hsie = 1;
491         vsie = (env->priv < PRV_S) ||
492                (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_SIE));
493     } else {
494         mie = (env->priv < PRV_M) ||
495               (env->priv == PRV_M && get_field(env->mstatus, MSTATUS_MIE));
496         hsie = (env->priv < PRV_S) ||
497                (env->priv == PRV_S && get_field(env->mstatus, MSTATUS_SIE));
498         vsie = 0;
499     }
500 
501     /* Determine all pending interrupts */
502     pending = riscv_cpu_all_pending(env);
503 
504     /* Check M-mode interrupts */
505     irqs = pending & ~env->mideleg & -mie;
506     if (irqs) {
507         return riscv_cpu_pending_to_irq(env, IRQ_M_EXT, IPRIO_DEFAULT_M,
508                                         irqs, env->miprio);
509     }
510 
511     /* Check for virtual S-mode interrupts. */
512     irqs_f = env->mvip & (env->mvien & ~env->mideleg) & env->sie;
513 
514     /* Check HS-mode interrupts */
515     irqs =  ((pending & env->mideleg & ~env->hideleg) | irqs_f) & -hsie;
516     if (irqs) {
517         return riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
518                                         irqs, env->siprio);
519     }
520 
521     /* Check for virtual VS-mode interrupts. */
522     irqs_f_vs = env->hvip & env->hvien & ~env->hideleg & env->vsie;
523 
524     /* Check VS-mode interrupts */
525     irq_delegated = pending & env->mideleg & env->hideleg;
526 
527     /* Bring VS-level bits to correct position */
528     vsbits = irq_delegated & VS_MODE_INTERRUPTS;
529     irq_delegated &= ~VS_MODE_INTERRUPTS;
530     irq_delegated |= vsbits >> 1;
531 
532     irqs = (irq_delegated | irqs_f_vs) & -vsie;
533     if (irqs) {
534         virq = riscv_cpu_pending_to_irq(env, IRQ_S_EXT, IPRIO_DEFAULT_S,
535                                         irqs, env->hviprio);
536         if (virq <= 0 || (virq > 12 && virq <= 63)) {
537             return virq;
538         } else {
539             return virq + 1;
540         }
541     }
542 
543     /* Indicate no pending interrupt */
544     return RISCV_EXCP_NONE;
545 }
546 
riscv_cpu_exec_interrupt(CPUState * cs,int interrupt_request)547 bool riscv_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
548 {
549     uint32_t mask = CPU_INTERRUPT_HARD | CPU_INTERRUPT_RNMI;
550 
551     if (interrupt_request & mask) {
552         RISCVCPU *cpu = RISCV_CPU(cs);
553         CPURISCVState *env = &cpu->env;
554         int interruptno = riscv_cpu_local_irq_pending(env);
555         if (interruptno >= 0) {
556             cs->exception_index = RISCV_EXCP_INT_FLAG | interruptno;
557             riscv_cpu_do_interrupt(cs);
558             return true;
559         }
560     }
561     return false;
562 }
563 
564 /* Return true is floating point support is currently enabled */
riscv_cpu_fp_enabled(CPURISCVState * env)565 bool riscv_cpu_fp_enabled(CPURISCVState *env)
566 {
567     if (env->mstatus & MSTATUS_FS) {
568         if (env->virt_enabled && !(env->mstatus_hs & MSTATUS_FS)) {
569             return false;
570         }
571         return true;
572     }
573 
574     return false;
575 }
576 
577 /* Return true is vector support is currently enabled */
riscv_cpu_vector_enabled(CPURISCVState * env)578 bool riscv_cpu_vector_enabled(CPURISCVState *env)
579 {
580     if (env->mstatus & MSTATUS_VS) {
581         if (env->virt_enabled && !(env->mstatus_hs & MSTATUS_VS)) {
582             return false;
583         }
584         return true;
585     }
586 
587     return false;
588 }
589 
riscv_cpu_swap_hypervisor_regs(CPURISCVState * env)590 void riscv_cpu_swap_hypervisor_regs(CPURISCVState *env)
591 {
592     uint64_t mstatus_mask = MSTATUS_MXR | MSTATUS_SUM |
593                             MSTATUS_SPP | MSTATUS_SPIE | MSTATUS_SIE |
594                             MSTATUS64_UXL | MSTATUS_VS;
595 
596     if (riscv_has_ext(env, RVF)) {
597         mstatus_mask |= MSTATUS_FS;
598     }
599     bool current_virt = env->virt_enabled;
600 
601     /*
602      * If zicfilp extension available and henvcfg.LPE = 1,
603      * then apply SPELP mask on mstatus
604      */
605     if (env_archcpu(env)->cfg.ext_zicfilp &&
606         get_field(env->henvcfg, HENVCFG_LPE)) {
607         mstatus_mask |= SSTATUS_SPELP;
608     }
609 
610     g_assert(riscv_has_ext(env, RVH));
611 
612     if (riscv_env_smode_dbltrp_enabled(env, current_virt)) {
613         mstatus_mask |= MSTATUS_SDT;
614     }
615 
616     if (current_virt) {
617         /* Current V=1 and we are about to change to V=0 */
618         env->vsstatus = env->mstatus & mstatus_mask;
619         env->mstatus &= ~mstatus_mask;
620         env->mstatus |= env->mstatus_hs;
621 
622         env->vstvec = env->stvec;
623         env->stvec = env->stvec_hs;
624 
625         env->vsscratch = env->sscratch;
626         env->sscratch = env->sscratch_hs;
627 
628         env->vsepc = env->sepc;
629         env->sepc = env->sepc_hs;
630 
631         env->vscause = env->scause;
632         env->scause = env->scause_hs;
633 
634         env->vstval = env->stval;
635         env->stval = env->stval_hs;
636 
637         env->vsatp = env->satp;
638         env->satp = env->satp_hs;
639     } else {
640         /* Current V=0 and we are about to change to V=1 */
641         env->mstatus_hs = env->mstatus & mstatus_mask;
642         env->mstatus &= ~mstatus_mask;
643         env->mstatus |= env->vsstatus;
644 
645         env->stvec_hs = env->stvec;
646         env->stvec = env->vstvec;
647 
648         env->sscratch_hs = env->sscratch;
649         env->sscratch = env->vsscratch;
650 
651         env->sepc_hs = env->sepc;
652         env->sepc = env->vsepc;
653 
654         env->scause_hs = env->scause;
655         env->scause = env->vscause;
656 
657         env->stval_hs = env->stval;
658         env->stval = env->vstval;
659 
660         env->satp_hs = env->satp;
661         env->satp = env->vsatp;
662     }
663 }
664 
riscv_cpu_get_geilen(CPURISCVState * env)665 target_ulong riscv_cpu_get_geilen(CPURISCVState *env)
666 {
667     if (!riscv_has_ext(env, RVH)) {
668         return 0;
669     }
670 
671     return env->geilen;
672 }
673 
riscv_cpu_set_geilen(CPURISCVState * env,target_ulong geilen)674 void riscv_cpu_set_geilen(CPURISCVState *env, target_ulong geilen)
675 {
676     if (!riscv_has_ext(env, RVH)) {
677         return;
678     }
679 
680     if (geilen > (TARGET_LONG_BITS - 1)) {
681         return;
682     }
683 
684     env->geilen = geilen;
685 }
686 
riscv_cpu_set_rnmi(RISCVCPU * cpu,uint32_t irq,bool level)687 void riscv_cpu_set_rnmi(RISCVCPU *cpu, uint32_t irq, bool level)
688 {
689     CPURISCVState *env = &cpu->env;
690     CPUState *cs = CPU(cpu);
691     bool release_lock = false;
692 
693     if (!bql_locked()) {
694         release_lock = true;
695         bql_lock();
696     }
697 
698     if (level) {
699         env->rnmip |= 1 << irq;
700         cpu_interrupt(cs, CPU_INTERRUPT_RNMI);
701     } else {
702         env->rnmip &= ~(1 << irq);
703         cpu_reset_interrupt(cs, CPU_INTERRUPT_RNMI);
704     }
705 
706     if (release_lock) {
707         bql_unlock();
708     }
709 }
710 
riscv_cpu_claim_interrupts(RISCVCPU * cpu,uint64_t interrupts)711 int riscv_cpu_claim_interrupts(RISCVCPU *cpu, uint64_t interrupts)
712 {
713     CPURISCVState *env = &cpu->env;
714     if (env->miclaim & interrupts) {
715         return -1;
716     } else {
717         env->miclaim |= interrupts;
718         return 0;
719     }
720 }
721 
riscv_cpu_interrupt(CPURISCVState * env)722 void riscv_cpu_interrupt(CPURISCVState *env)
723 {
724     uint64_t gein, vsgein = 0, vstip = 0, irqf = 0;
725     CPUState *cs = env_cpu(env);
726 
727     BQL_LOCK_GUARD();
728 
729     if (env->virt_enabled) {
730         gein = get_field(env->hstatus, HSTATUS_VGEIN);
731         vsgein = (env->hgeip & (1ULL << gein)) ? MIP_VSEIP : 0;
732         irqf = env->hvien & env->hvip & env->vsie;
733     } else {
734         irqf = env->mvien & env->mvip & env->sie;
735     }
736 
737     vstip = env->vstime_irq ? MIP_VSTIP : 0;
738 
739     if (env->mip | vsgein | vstip | irqf) {
740         cpu_interrupt(cs, CPU_INTERRUPT_HARD);
741     } else {
742         cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
743     }
744 }
745 
riscv_cpu_update_mip(CPURISCVState * env,uint64_t mask,uint64_t value)746 uint64_t riscv_cpu_update_mip(CPURISCVState *env, uint64_t mask, uint64_t value)
747 {
748     uint64_t old = env->mip;
749 
750     /* No need to update mip for VSTIP */
751     mask = ((mask == MIP_VSTIP) && env->vstime_irq) ? 0 : mask;
752 
753     BQL_LOCK_GUARD();
754 
755     env->mip = (env->mip & ~mask) | (value & mask);
756 
757     riscv_cpu_interrupt(env);
758 
759     return old;
760 }
761 
riscv_cpu_set_rdtime_fn(CPURISCVState * env,uint64_t (* fn)(void *),void * arg)762 void riscv_cpu_set_rdtime_fn(CPURISCVState *env, uint64_t (*fn)(void *),
763                              void *arg)
764 {
765     env->rdtime_fn = fn;
766     env->rdtime_fn_arg = arg;
767 }
768 
riscv_cpu_set_aia_ireg_rmw_fn(CPURISCVState * env,uint32_t priv,int (* rmw_fn)(void * arg,target_ulong reg,target_ulong * val,target_ulong new_val,target_ulong write_mask),void * rmw_fn_arg)769 void riscv_cpu_set_aia_ireg_rmw_fn(CPURISCVState *env, uint32_t priv,
770                                    int (*rmw_fn)(void *arg,
771                                                  target_ulong reg,
772                                                  target_ulong *val,
773                                                  target_ulong new_val,
774                                                  target_ulong write_mask),
775                                    void *rmw_fn_arg)
776 {
777     if (priv <= PRV_M) {
778         env->aia_ireg_rmw_fn[priv] = rmw_fn;
779         env->aia_ireg_rmw_fn_arg[priv] = rmw_fn_arg;
780     }
781 }
782 
riscv_ctr_freeze(CPURISCVState * env,uint64_t freeze_mask,bool virt)783 static void riscv_ctr_freeze(CPURISCVState *env, uint64_t freeze_mask,
784                              bool virt)
785 {
786     uint64_t ctl = virt ? env->vsctrctl : env->mctrctl;
787 
788     assert((freeze_mask & (~(XCTRCTL_BPFRZ | XCTRCTL_LCOFIFRZ))) == 0);
789 
790     if (ctl & freeze_mask) {
791         env->sctrstatus |= SCTRSTATUS_FROZEN;
792     }
793 }
794 
riscv_ctr_clear(CPURISCVState * env)795 void riscv_ctr_clear(CPURISCVState *env)
796 {
797     memset(env->ctr_src, 0x0, sizeof(env->ctr_src));
798     memset(env->ctr_dst, 0x0, sizeof(env->ctr_dst));
799     memset(env->ctr_data, 0x0, sizeof(env->ctr_data));
800 }
801 
riscv_ctr_priv_to_mask(target_ulong priv,bool virt)802 static uint64_t riscv_ctr_priv_to_mask(target_ulong priv, bool virt)
803 {
804     switch (priv) {
805     case PRV_M:
806         return MCTRCTL_M;
807     case PRV_S:
808         if (virt) {
809             return XCTRCTL_S;
810         }
811         return XCTRCTL_S;
812     case PRV_U:
813         if (virt) {
814             return XCTRCTL_U;
815         }
816         return XCTRCTL_U;
817     }
818 
819     g_assert_not_reached();
820 }
821 
riscv_ctr_get_control(CPURISCVState * env,target_long priv,bool virt)822 static uint64_t riscv_ctr_get_control(CPURISCVState *env, target_long priv,
823                                       bool virt)
824 {
825     switch (priv) {
826     case PRV_M:
827         return env->mctrctl;
828     case PRV_S:
829     case PRV_U:
830         if (virt) {
831             return env->vsctrctl;
832         }
833         return env->mctrctl;
834     }
835 
836     g_assert_not_reached();
837 }
838 
839 /*
840  * This function assumes that src privilege and target privilege are not same
841  * and src privilege is less than target privilege. This includes the virtual
842  * state as well.
843  */
riscv_ctr_check_xte(CPURISCVState * env,target_long src_prv,bool src_virt)844 static bool riscv_ctr_check_xte(CPURISCVState *env, target_long src_prv,
845                                 bool src_virt)
846 {
847     target_long tgt_prv = env->priv;
848     bool res = true;
849 
850     /*
851      * VS and U mode are same in terms of xTE bits required to record an
852      * external trap. See 6.1.2. External Traps, table 8 External Trap Enable
853      * Requirements. This changes VS to U to simplify the logic a bit.
854      */
855     if (src_virt && src_prv == PRV_S) {
856         src_prv = PRV_U;
857     } else if (env->virt_enabled && tgt_prv == PRV_S) {
858         tgt_prv = PRV_U;
859     }
860 
861     /* VU mode is an outlier here. */
862     if (src_virt && src_prv == PRV_U) {
863         res &= !!(env->vsctrctl & XCTRCTL_STE);
864     }
865 
866     switch (src_prv) {
867     case PRV_U:
868         if (tgt_prv == PRV_U) {
869             break;
870         }
871         res &= !!(env->mctrctl & XCTRCTL_STE);
872         /* fall-through */
873     case PRV_S:
874         if (tgt_prv == PRV_S) {
875             break;
876         }
877         res &= !!(env->mctrctl & MCTRCTL_MTE);
878         /* fall-through */
879     case PRV_M:
880         break;
881     }
882 
883     return res;
884 }
885 
886 /*
887  * Special cases for traps and trap returns:
888  *
889  * 1- Traps, and trap returns, between enabled modes are recorded as normal.
890  * 2- Traps from an inhibited mode to an enabled mode, and trap returns from an
891  * enabled mode back to an inhibited mode, are partially recorded.  In such
892  * cases, the PC from the inhibited mode (source PC for traps, and target PC
893  * for trap returns) is 0.
894  *
895  * 3- Trap returns from an inhibited mode to an enabled mode are not recorded.
896  * Traps from an enabled mode to an inhibited mode, known as external traps,
897  * receive special handling.
898  * By default external traps are not recorded, but a handshake mechanism exists
899  * to allow partial recording.  Software running in the target mode of the trap
900  * can opt-in to allowing CTR to record traps into that mode even when the mode
901  * is inhibited.  The MTE, STE, and VSTE bits allow M-mode, S-mode, and VS-mode,
902  * respectively, to opt-in. When an External Trap occurs, and xTE=1, such that
903  * x is the target privilege mode of the trap, will CTR record the trap. In such
904  * cases, the target PC is 0.
905  */
906 /*
907  * CTR arrays are implemented as circular buffers and new entry is stored at
908  * sctrstatus.WRPTR, but they are presented to software as moving circular
909  * buffers. Which means, software get's the illusion that whenever a new entry
910  * is added the whole buffer is moved by one place and the new entry is added at
911  * the start keeping new entry at idx 0 and older ones follow.
912  *
913  * Depth = 16.
914  *
915  * buffer [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [A] [B] [C] [D] [E] [F]
916  * WRPTR                                   W
917  * entry   7   6   5   4   3   2   1   0   F   E   D   C   B   A   9   8
918  *
919  * When a new entry is added:
920  * buffer [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [A] [B] [C] [D] [E] [F]
921  * WRPTR                                       W
922  * entry   8   7   6   5   4   3   2   1   0   F   E   D   C   B   A   9
923  *
924  * entry here denotes the logical entry number that software can access
925  * using ctrsource, ctrtarget and ctrdata registers. So xiselect 0x200
926  * will return entry 0 i-e buffer[8] and 0x201 will return entry 1 i-e
927  * buffer[7]. Here is how we convert entry to buffer idx.
928  *
929  *    entry = isel - CTR_ENTRIES_FIRST;
930  *    idx = (sctrstatus.WRPTR - entry - 1) & (depth - 1);
931  */
riscv_ctr_add_entry(CPURISCVState * env,target_long src,target_long dst,enum CTRType type,target_ulong src_priv,bool src_virt)932 void riscv_ctr_add_entry(CPURISCVState *env, target_long src, target_long dst,
933     enum CTRType type, target_ulong src_priv, bool src_virt)
934 {
935     bool tgt_virt = env->virt_enabled;
936     uint64_t src_mask = riscv_ctr_priv_to_mask(src_priv, src_virt);
937     uint64_t tgt_mask = riscv_ctr_priv_to_mask(env->priv, tgt_virt);
938     uint64_t src_ctrl = riscv_ctr_get_control(env, src_priv, src_virt);
939     uint64_t tgt_ctrl = riscv_ctr_get_control(env, env->priv, tgt_virt);
940     uint64_t depth, head;
941     bool ext_trap = false;
942 
943     /*
944      * Return immediately if both target and src recording is disabled or if
945      * CTR is in frozen state.
946      */
947     if ((!(src_ctrl & src_mask) && !(tgt_ctrl & tgt_mask)) ||
948         env->sctrstatus & SCTRSTATUS_FROZEN) {
949         return;
950     }
951 
952     /*
953      * With RAS Emul enabled, only allow Indirect, direct calls, Function
954      * returns and Co-routine swap types.
955      */
956     if (tgt_ctrl & XCTRCTL_RASEMU &&
957         type != CTRDATA_TYPE_INDIRECT_CALL &&
958         type != CTRDATA_TYPE_DIRECT_CALL &&
959         type != CTRDATA_TYPE_RETURN &&
960         type != CTRDATA_TYPE_CO_ROUTINE_SWAP) {
961         return;
962     }
963 
964     if (type == CTRDATA_TYPE_EXCEPTION || type == CTRDATA_TYPE_INTERRUPT) {
965         /* Case 2 for traps. */
966         if (!(src_ctrl & src_mask)) {
967             src = 0;
968         } else if (!(tgt_ctrl & tgt_mask)) {
969             /* Check if target priv-mode has allowed external trap recording. */
970             if (!riscv_ctr_check_xte(env, src_priv, src_virt)) {
971                 return;
972             }
973 
974             ext_trap = true;
975             dst = 0;
976         }
977     } else if (type == CTRDATA_TYPE_EXCEP_INT_RET) {
978         /*
979          * Case 3 for trap returns.  Trap returns from inhibited mode are not
980          * recorded.
981          */
982         if (!(src_ctrl & src_mask)) {
983             return;
984         }
985 
986         /* Case 2 for trap returns. */
987         if (!(tgt_ctrl & tgt_mask)) {
988             dst = 0;
989         }
990     }
991 
992     /* Ignore filters in case of RASEMU mode or External trap. */
993     if (!(tgt_ctrl & XCTRCTL_RASEMU) && !ext_trap) {
994         /*
995          * Check if the specific type is inhibited. Not taken branch filter is
996          * an enable bit and needs to be checked separatly.
997          */
998         bool check = tgt_ctrl & BIT_ULL(type + XCTRCTL_INH_START);
999         if ((type == CTRDATA_TYPE_NONTAKEN_BRANCH && !check) ||
1000             (type != CTRDATA_TYPE_NONTAKEN_BRANCH && check)) {
1001             return;
1002         }
1003     }
1004 
1005     head = get_field(env->sctrstatus, SCTRSTATUS_WRPTR_MASK);
1006 
1007     depth = 16 << get_field(env->sctrdepth, SCTRDEPTH_MASK);
1008     if (tgt_ctrl & XCTRCTL_RASEMU && type == CTRDATA_TYPE_RETURN) {
1009         head = (head - 1) & (depth - 1);
1010 
1011         env->ctr_src[head] &= ~CTRSOURCE_VALID;
1012         env->sctrstatus =
1013             set_field(env->sctrstatus, SCTRSTATUS_WRPTR_MASK, head);
1014         return;
1015     }
1016 
1017     /* In case of Co-routine SWAP we overwrite latest entry. */
1018     if (tgt_ctrl & XCTRCTL_RASEMU && type == CTRDATA_TYPE_CO_ROUTINE_SWAP) {
1019         head = (head - 1) & (depth - 1);
1020     }
1021 
1022     env->ctr_src[head] = src | CTRSOURCE_VALID;
1023     env->ctr_dst[head] = dst & ~CTRTARGET_MISP;
1024     env->ctr_data[head] = set_field(0, CTRDATA_TYPE_MASK, type);
1025 
1026     head = (head + 1) & (depth - 1);
1027 
1028     env->sctrstatus = set_field(env->sctrstatus, SCTRSTATUS_WRPTR_MASK, head);
1029 }
1030 
riscv_cpu_set_mode(CPURISCVState * env,target_ulong newpriv,bool virt_en)1031 void riscv_cpu_set_mode(CPURISCVState *env, target_ulong newpriv, bool virt_en)
1032 {
1033     g_assert(newpriv <= PRV_M && newpriv != PRV_RESERVED);
1034 
1035     if (newpriv != env->priv || env->virt_enabled != virt_en) {
1036         if (icount_enabled()) {
1037             riscv_itrigger_update_priv(env);
1038         }
1039 
1040         riscv_pmu_update_fixed_ctrs(env, newpriv, virt_en);
1041     }
1042 
1043     /* tlb_flush is unnecessary as mode is contained in mmu_idx */
1044     env->priv = newpriv;
1045     env->xl = cpu_recompute_xl(env);
1046 
1047     /*
1048      * Clear the load reservation - otherwise a reservation placed in one
1049      * context/process can be used by another, resulting in an SC succeeding
1050      * incorrectly. Version 2.2 of the ISA specification explicitly requires
1051      * this behaviour, while later revisions say that the kernel "should" use
1052      * an SC instruction to force the yielding of a load reservation on a
1053      * preemptive context switch. As a result, do both.
1054      */
1055     env->load_res = -1;
1056 
1057     if (riscv_has_ext(env, RVH)) {
1058         /* Flush the TLB on all virt mode changes. */
1059         if (env->virt_enabled != virt_en) {
1060             tlb_flush(env_cpu(env));
1061         }
1062 
1063         env->virt_enabled = virt_en;
1064         if (virt_en) {
1065             /*
1066              * The guest external interrupts from an interrupt controller are
1067              * delivered only when the Guest/VM is running (i.e. V=1). This
1068              * means any guest external interrupt which is triggered while the
1069              * Guest/VM is not running (i.e. V=0) will be missed on QEMU
1070              * resulting in guest with sluggish response to serial console
1071              * input and other I/O events.
1072              *
1073              * To solve this, we check and inject interrupt after setting V=1.
1074              */
1075             riscv_cpu_update_mip(env, 0, 0);
1076         }
1077     }
1078 }
1079 
1080 /*
1081  * get_physical_address_pmp - check PMP permission for this physical address
1082  *
1083  * Match the PMP region and check permission for this physical address and it's
1084  * TLB page. Returns 0 if the permission checking was successful
1085  *
1086  * @env: CPURISCVState
1087  * @prot: The returned protection attributes
1088  * @addr: The physical address to be checked permission
1089  * @access_type: The type of MMU access
1090  * @mode: Indicates current privilege level.
1091  */
get_physical_address_pmp(CPURISCVState * env,int * prot,hwaddr addr,int size,MMUAccessType access_type,int mode)1092 static int get_physical_address_pmp(CPURISCVState *env, int *prot, hwaddr addr,
1093                                     int size, MMUAccessType access_type,
1094                                     int mode)
1095 {
1096     pmp_priv_t pmp_priv;
1097     bool pmp_has_privs;
1098 
1099     if (!riscv_cpu_cfg(env)->pmp) {
1100         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
1101         return TRANSLATE_SUCCESS;
1102     }
1103 
1104     pmp_has_privs = pmp_hart_has_privs(env, addr, size, 1 << access_type,
1105                                        &pmp_priv, mode);
1106     if (!pmp_has_privs) {
1107         *prot = 0;
1108         return TRANSLATE_PMP_FAIL;
1109     }
1110 
1111     *prot = pmp_priv_to_page_prot(pmp_priv);
1112 
1113     return TRANSLATE_SUCCESS;
1114 }
1115 
1116 /* Returns 'true' if a svukte address check is needed */
do_svukte_check(CPURISCVState * env,bool first_stage,int mode,bool virt)1117 static bool do_svukte_check(CPURISCVState *env, bool first_stage,
1118                              int mode, bool virt)
1119 {
1120     /* Svukte extension depends on Sv39. */
1121     if (!(env_archcpu(env)->cfg.ext_svukte ||
1122         !first_stage ||
1123         VM_1_10_SV39 != get_field(env->satp, SATP64_MODE))) {
1124         return false;
1125     }
1126 
1127     /*
1128      * Check hstatus.HUKTE if the effective mode is switched to VU-mode by
1129      * executing HLV/HLVX/HSV in U-mode.
1130      * For other cases, check senvcfg.UKTE.
1131      */
1132     if (env->priv == PRV_U && !env->virt_enabled && virt) {
1133         if (!get_field(env->hstatus, HSTATUS_HUKTE)) {
1134             return false;
1135         }
1136     } else if (!get_field(env->senvcfg, SENVCFG_UKTE)) {
1137         return false;
1138     }
1139 
1140     /*
1141      * Svukte extension is qualified only in U or VU-mode.
1142      *
1143      * Effective mode can be switched to U or VU-mode by:
1144      *   - M-mode + mstatus.MPRV=1 + mstatus.MPP=U-mode.
1145      *   - Execute HLV/HLVX/HSV from HS-mode + hstatus.SPVP=0.
1146      *   - U-mode.
1147      *   - VU-mode.
1148      *   - Execute HLV/HLVX/HSV from U-mode + hstatus.HU=1.
1149      */
1150     if (mode != PRV_U) {
1151         return false;
1152     }
1153 
1154     return true;
1155 }
1156 
check_svukte_addr(CPURISCVState * env,vaddr addr)1157 static bool check_svukte_addr(CPURISCVState *env, vaddr addr)
1158 {
1159     /* svukte extension excludes RV32 */
1160     uint32_t sxlen = 32 * riscv_cpu_sxl(env);
1161     uint64_t high_bit = addr & (1UL << (sxlen - 1));
1162     return !high_bit;
1163 }
1164 
1165 /*
1166  * get_physical_address - get the physical address for this virtual address
1167  *
1168  * Do a page table walk to obtain the physical address corresponding to a
1169  * virtual address. Returns 0 if the translation was successful
1170  *
1171  * Adapted from Spike's mmu_t::translate and mmu_t::walk
1172  *
1173  * @env: CPURISCVState
1174  * @physical: This will be set to the calculated physical address
1175  * @prot: The returned protection attributes
1176  * @addr: The virtual address or guest physical address to be translated
1177  * @fault_pte_addr: If not NULL, this will be set to fault pte address
1178  *                  when a error occurs on pte address translation.
1179  *                  This will already be shifted to match htval.
1180  * @access_type: The type of MMU access
1181  * @mmu_idx: Indicates current privilege level
1182  * @first_stage: Are we in first stage translation?
1183  *               Second stage is used for hypervisor guest translation
1184  * @two_stage: Are we going to perform two stage translation
1185  * @is_debug: Is this access from a debugger or the monitor?
1186  */
get_physical_address(CPURISCVState * env,hwaddr * physical,int * ret_prot,vaddr addr,target_ulong * fault_pte_addr,int access_type,int mmu_idx,bool first_stage,bool two_stage,bool is_debug,bool is_probe)1187 static int get_physical_address(CPURISCVState *env, hwaddr *physical,
1188                                 int *ret_prot, vaddr addr,
1189                                 target_ulong *fault_pte_addr,
1190                                 int access_type, int mmu_idx,
1191                                 bool first_stage, bool two_stage,
1192                                 bool is_debug, bool is_probe)
1193 {
1194     /*
1195      * NOTE: the env->pc value visible here will not be
1196      * correct, but the value visible to the exception handler
1197      * (riscv_cpu_do_interrupt) is correct
1198      */
1199     MemTxResult res;
1200     MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED;
1201     int mode = mmuidx_priv(mmu_idx);
1202     bool virt = mmuidx_2stage(mmu_idx);
1203     bool use_background = false;
1204     hwaddr ppn;
1205     int napot_bits = 0;
1206     target_ulong napot_mask;
1207     bool is_sstack_idx = ((mmu_idx & MMU_IDX_SS_WRITE) == MMU_IDX_SS_WRITE);
1208     bool sstack_page = false;
1209 
1210     if (do_svukte_check(env, first_stage, mode, virt) &&
1211         !check_svukte_addr(env, addr)) {
1212         return TRANSLATE_FAIL;
1213     }
1214 
1215     /*
1216      * Check if we should use the background registers for the two
1217      * stage translation. We don't need to check if we actually need
1218      * two stage translation as that happened before this function
1219      * was called. Background registers will be used if the guest has
1220      * forced a two stage translation to be on (in HS or M mode).
1221      */
1222     if (!env->virt_enabled && two_stage) {
1223         use_background = true;
1224     }
1225 
1226     if (mode == PRV_M || !riscv_cpu_cfg(env)->mmu) {
1227         *physical = addr;
1228         *ret_prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
1229         return TRANSLATE_SUCCESS;
1230     }
1231 
1232     *ret_prot = 0;
1233 
1234     hwaddr base;
1235     int levels, ptidxbits, ptesize, vm, widened;
1236 
1237     if (first_stage == true) {
1238         if (use_background) {
1239             if (riscv_cpu_mxl(env) == MXL_RV32) {
1240                 base = (hwaddr)get_field(env->vsatp, SATP32_PPN) << PGSHIFT;
1241                 vm = get_field(env->vsatp, SATP32_MODE);
1242             } else {
1243                 base = (hwaddr)get_field(env->vsatp, SATP64_PPN) << PGSHIFT;
1244                 vm = get_field(env->vsatp, SATP64_MODE);
1245             }
1246         } else {
1247             if (riscv_cpu_mxl(env) == MXL_RV32) {
1248                 base = (hwaddr)get_field(env->satp, SATP32_PPN) << PGSHIFT;
1249                 vm = get_field(env->satp, SATP32_MODE);
1250             } else {
1251                 base = (hwaddr)get_field(env->satp, SATP64_PPN) << PGSHIFT;
1252                 vm = get_field(env->satp, SATP64_MODE);
1253             }
1254         }
1255         widened = 0;
1256     } else {
1257         if (riscv_cpu_mxl(env) == MXL_RV32) {
1258             base = (hwaddr)get_field(env->hgatp, SATP32_PPN) << PGSHIFT;
1259             vm = get_field(env->hgatp, SATP32_MODE);
1260         } else {
1261             base = (hwaddr)get_field(env->hgatp, SATP64_PPN) << PGSHIFT;
1262             vm = get_field(env->hgatp, SATP64_MODE);
1263         }
1264         widened = 2;
1265     }
1266 
1267     switch (vm) {
1268     case VM_1_10_SV32:
1269       levels = 2; ptidxbits = 10; ptesize = 4; break;
1270     case VM_1_10_SV39:
1271       levels = 3; ptidxbits = 9; ptesize = 8; break;
1272     case VM_1_10_SV48:
1273       levels = 4; ptidxbits = 9; ptesize = 8; break;
1274     case VM_1_10_SV57:
1275       levels = 5; ptidxbits = 9; ptesize = 8; break;
1276     case VM_1_10_MBARE:
1277         *physical = addr;
1278         *ret_prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
1279         return TRANSLATE_SUCCESS;
1280     default:
1281       g_assert_not_reached();
1282     }
1283 
1284     CPUState *cs = env_cpu(env);
1285     int va_bits = PGSHIFT + levels * ptidxbits + widened;
1286     int sxlen = 16 << riscv_cpu_sxl(env);
1287     int sxlen_bytes = sxlen / 8;
1288 
1289     if (first_stage == true) {
1290         target_ulong mask, masked_msbs;
1291 
1292         if (sxlen > (va_bits - 1)) {
1293             mask = (1L << (sxlen - (va_bits - 1))) - 1;
1294         } else {
1295             mask = 0;
1296         }
1297         masked_msbs = (addr >> (va_bits - 1)) & mask;
1298 
1299         if (masked_msbs != 0 && masked_msbs != mask) {
1300             return TRANSLATE_FAIL;
1301         }
1302     } else {
1303         if (vm != VM_1_10_SV32 && addr >> va_bits != 0) {
1304             return TRANSLATE_FAIL;
1305         }
1306     }
1307 
1308     bool pbmte = env->menvcfg & MENVCFG_PBMTE;
1309     bool svade = riscv_cpu_cfg(env)->ext_svade;
1310     bool svadu = riscv_cpu_cfg(env)->ext_svadu;
1311     bool adue = svadu ? env->menvcfg & MENVCFG_ADUE : !svade;
1312 
1313     if (first_stage && two_stage && env->virt_enabled) {
1314         pbmte = pbmte && (env->henvcfg & HENVCFG_PBMTE);
1315         adue = adue && (env->henvcfg & HENVCFG_ADUE);
1316     }
1317 
1318     int ptshift = (levels - 1) * ptidxbits;
1319     target_ulong pte;
1320     hwaddr pte_addr;
1321     int i;
1322 
1323  restart:
1324     for (i = 0; i < levels; i++, ptshift -= ptidxbits) {
1325         target_ulong idx;
1326         if (i == 0) {
1327             idx = (addr >> (PGSHIFT + ptshift)) &
1328                            ((1 << (ptidxbits + widened)) - 1);
1329         } else {
1330             idx = (addr >> (PGSHIFT + ptshift)) &
1331                            ((1 << ptidxbits) - 1);
1332         }
1333 
1334         /* check that physical address of PTE is legal */
1335 
1336         if (two_stage && first_stage) {
1337             int vbase_prot;
1338             hwaddr vbase;
1339 
1340             /* Do the second stage translation on the base PTE address. */
1341             int vbase_ret = get_physical_address(env, &vbase, &vbase_prot,
1342                                                  base, NULL, MMU_DATA_LOAD,
1343                                                  MMUIdx_U, false, true,
1344                                                  is_debug, false);
1345 
1346             if (vbase_ret != TRANSLATE_SUCCESS) {
1347                 if (fault_pte_addr) {
1348                     *fault_pte_addr = (base + idx * ptesize) >> 2;
1349                 }
1350                 return TRANSLATE_G_STAGE_FAIL;
1351             }
1352 
1353             pte_addr = vbase + idx * ptesize;
1354         } else {
1355             pte_addr = base + idx * ptesize;
1356         }
1357 
1358         int pmp_prot;
1359         int pmp_ret = get_physical_address_pmp(env, &pmp_prot, pte_addr,
1360                                                sxlen_bytes,
1361                                                MMU_DATA_LOAD, PRV_S);
1362         if (pmp_ret != TRANSLATE_SUCCESS) {
1363             return TRANSLATE_PMP_FAIL;
1364         }
1365 
1366         if (riscv_cpu_mxl(env) == MXL_RV32) {
1367             pte = address_space_ldl(cs->as, pte_addr, attrs, &res);
1368         } else {
1369             pte = address_space_ldq(cs->as, pte_addr, attrs, &res);
1370         }
1371 
1372         if (res != MEMTX_OK) {
1373             return TRANSLATE_FAIL;
1374         }
1375 
1376         if (riscv_cpu_sxl(env) == MXL_RV32) {
1377             ppn = pte >> PTE_PPN_SHIFT;
1378         } else {
1379             if (pte & PTE_RESERVED) {
1380                 qemu_log_mask(LOG_GUEST_ERROR, "%s: reserved bits set in PTE: "
1381                               "addr: 0x%" HWADDR_PRIx " pte: 0x" TARGET_FMT_lx "\n",
1382                               __func__, pte_addr, pte);
1383                 return TRANSLATE_FAIL;
1384             }
1385 
1386             if (!pbmte && (pte & PTE_PBMT)) {
1387                 /* Reserved without Svpbmt. */
1388                 qemu_log_mask(LOG_GUEST_ERROR, "%s: PBMT bits set in PTE, "
1389                               "and Svpbmt extension is disabled: "
1390                               "addr: 0x%" HWADDR_PRIx " pte: 0x" TARGET_FMT_lx "\n",
1391                               __func__, pte_addr, pte);
1392                 return TRANSLATE_FAIL;
1393             }
1394 
1395             if (!riscv_cpu_cfg(env)->ext_svnapot && (pte & PTE_N)) {
1396                 /* Reserved without Svnapot extension */
1397                 qemu_log_mask(LOG_GUEST_ERROR, "%s: N bit set in PTE, "
1398                               "and Svnapot extension is disabled: "
1399                               "addr: 0x%" HWADDR_PRIx " pte: 0x" TARGET_FMT_lx "\n",
1400                               __func__, pte_addr, pte);
1401                 return TRANSLATE_FAIL;
1402             }
1403 
1404             ppn = (pte & (target_ulong)PTE_PPN_MASK) >> PTE_PPN_SHIFT;
1405         }
1406 
1407         if (!(pte & PTE_V)) {
1408             /* Invalid PTE */
1409             return TRANSLATE_FAIL;
1410         }
1411 
1412         if (pte & (PTE_R | PTE_W | PTE_X)) {
1413             goto leaf;
1414         }
1415 
1416         if (pte & (PTE_D | PTE_A | PTE_U | PTE_ATTR)) {
1417             /* D, A, and U bits are reserved in non-leaf/inner PTEs */
1418             qemu_log_mask(LOG_GUEST_ERROR, "%s: D, A, or U bits set in non-leaf PTE: "
1419                           "addr: 0x%" HWADDR_PRIx " pte: 0x" TARGET_FMT_lx "\n",
1420                           __func__, pte_addr, pte);
1421             return TRANSLATE_FAIL;
1422         }
1423         /* Inner PTE, continue walking */
1424         base = ppn << PGSHIFT;
1425     }
1426 
1427     /* No leaf pte at any translation level. */
1428     return TRANSLATE_FAIL;
1429 
1430  leaf:
1431     if (ppn & ((1ULL << ptshift) - 1)) {
1432         /* Misaligned PPN */
1433         qemu_log_mask(LOG_GUEST_ERROR, "%s: PPN bits in PTE is misaligned: "
1434                       "addr: 0x%" HWADDR_PRIx " pte: 0x" TARGET_FMT_lx "\n",
1435                       __func__, pte_addr, pte);
1436         return TRANSLATE_FAIL;
1437     }
1438     if (!pbmte && (pte & PTE_PBMT)) {
1439         /* Reserved without Svpbmt. */
1440         qemu_log_mask(LOG_GUEST_ERROR, "%s: PBMT bits set in PTE, "
1441                       "and Svpbmt extension is disabled: "
1442                       "addr: 0x%" HWADDR_PRIx " pte: 0x" TARGET_FMT_lx "\n",
1443                       __func__, pte_addr, pte);
1444         return TRANSLATE_FAIL;
1445     }
1446 
1447     target_ulong rwx = pte & (PTE_R | PTE_W | PTE_X);
1448     /* Check for reserved combinations of RWX flags. */
1449     switch (rwx) {
1450     case PTE_W | PTE_X:
1451         return TRANSLATE_FAIL;
1452     case PTE_W:
1453         /* if bcfi enabled, PTE_W is not reserved and shadow stack page */
1454         if (cpu_get_bcfien(env) && first_stage) {
1455             sstack_page = true;
1456             /*
1457              * if ss index, read and write allowed. else if not a probe
1458              * then only read allowed
1459              */
1460             rwx = is_sstack_idx ? (PTE_R | PTE_W) : (is_probe ? 0 :  PTE_R);
1461             break;
1462         }
1463         return TRANSLATE_FAIL;
1464     case PTE_R:
1465         /*
1466          * no matter what's the `access_type`, shadow stack access to readonly
1467          * memory are always store page faults. During unwind, loads will be
1468          * promoted as store fault.
1469          */
1470         if (is_sstack_idx) {
1471             return TRANSLATE_FAIL;
1472         }
1473         break;
1474     }
1475 
1476     int prot = 0;
1477     if (rwx & PTE_R) {
1478         prot |= PAGE_READ;
1479     }
1480     if (rwx & PTE_W) {
1481         prot |= PAGE_WRITE;
1482     }
1483     if (rwx & PTE_X) {
1484         bool mxr = false;
1485 
1486         /*
1487          * Use mstatus for first stage or for the second stage without
1488          * virt_enabled (MPRV+MPV)
1489          */
1490         if (first_stage || !env->virt_enabled) {
1491             mxr = get_field(env->mstatus, MSTATUS_MXR);
1492         }
1493 
1494         /* MPRV+MPV case, check VSSTATUS */
1495         if (first_stage && two_stage && !env->virt_enabled) {
1496             mxr |= get_field(env->vsstatus, MSTATUS_MXR);
1497         }
1498 
1499         /*
1500          * Setting MXR at HS-level overrides both VS-stage and G-stage
1501          * execute-only permissions
1502          */
1503         if (env->virt_enabled) {
1504             mxr |= get_field(env->mstatus_hs, MSTATUS_MXR);
1505         }
1506 
1507         if (mxr) {
1508             prot |= PAGE_READ;
1509         }
1510         prot |= PAGE_EXEC;
1511     }
1512 
1513     if (pte & PTE_U) {
1514         if (mode != PRV_U) {
1515             if (!mmuidx_sum(mmu_idx)) {
1516                 return TRANSLATE_FAIL;
1517             }
1518             /* SUM allows only read+write, not execute. */
1519             prot &= PAGE_READ | PAGE_WRITE;
1520         }
1521     } else if (mode != PRV_S) {
1522         /* Supervisor PTE flags when not S mode */
1523         return TRANSLATE_FAIL;
1524     }
1525 
1526     if (!((prot >> access_type) & 1)) {
1527         /*
1528          * Access check failed, access check failures for shadow stack are
1529          * access faults.
1530          */
1531         return sstack_page ? TRANSLATE_PMP_FAIL : TRANSLATE_FAIL;
1532     }
1533 
1534     target_ulong updated_pte = pte;
1535 
1536     /*
1537      * If ADUE is enabled, set accessed and dirty bits.
1538      * Otherwise raise an exception if necessary.
1539      */
1540     if (adue) {
1541         updated_pte |= PTE_A | (access_type == MMU_DATA_STORE ? PTE_D : 0);
1542     } else if (!(pte & PTE_A) ||
1543                (access_type == MMU_DATA_STORE && !(pte & PTE_D))) {
1544         return TRANSLATE_FAIL;
1545     }
1546 
1547     /* Page table updates need to be atomic with MTTCG enabled */
1548     if (updated_pte != pte && !is_debug) {
1549         if (!adue) {
1550             return TRANSLATE_FAIL;
1551         }
1552 
1553         /*
1554          * - if accessed or dirty bits need updating, and the PTE is
1555          *   in RAM, then we do so atomically with a compare and swap.
1556          * - if the PTE is in IO space or ROM, then it can't be updated
1557          *   and we return TRANSLATE_FAIL.
1558          * - if the PTE changed by the time we went to update it, then
1559          *   it is no longer valid and we must re-walk the page table.
1560          */
1561         MemoryRegion *mr;
1562         hwaddr l = sxlen_bytes, addr1;
1563         mr = address_space_translate(cs->as, pte_addr, &addr1, &l,
1564                                      false, MEMTXATTRS_UNSPECIFIED);
1565         if (memory_region_is_ram(mr)) {
1566             target_ulong *pte_pa = qemu_map_ram_ptr(mr->ram_block, addr1);
1567             target_ulong old_pte;
1568             if (riscv_cpu_sxl(env) == MXL_RV32) {
1569                 old_pte = qatomic_cmpxchg((uint32_t *)pte_pa, cpu_to_le32(pte), cpu_to_le32(updated_pte));
1570                 old_pte = le32_to_cpu(old_pte);
1571             } else {
1572                 old_pte = qatomic_cmpxchg(pte_pa, cpu_to_le64(pte), cpu_to_le64(updated_pte));
1573                 old_pte = le64_to_cpu(old_pte);
1574             }
1575             if (old_pte != pte) {
1576                 goto restart;
1577             }
1578             pte = updated_pte;
1579         } else {
1580             /*
1581              * Misconfigured PTE in ROM (AD bits are not preset) or
1582              * PTE is in IO space and can't be updated atomically.
1583              */
1584             return TRANSLATE_FAIL;
1585         }
1586     }
1587 
1588     /* For superpage mappings, make a fake leaf PTE for the TLB's benefit. */
1589     target_ulong vpn = addr >> PGSHIFT;
1590 
1591     if (riscv_cpu_cfg(env)->ext_svnapot && (pte & PTE_N)) {
1592         napot_bits = ctzl(ppn) + 1;
1593         if ((i != (levels - 1)) || (napot_bits != 4)) {
1594             return TRANSLATE_FAIL;
1595         }
1596     }
1597 
1598     napot_mask = (1 << napot_bits) - 1;
1599     *physical = (((ppn & ~napot_mask) | (vpn & napot_mask) |
1600                   (vpn & (((target_ulong)1 << ptshift) - 1))
1601                  ) << PGSHIFT) | (addr & ~TARGET_PAGE_MASK);
1602 
1603     /*
1604      * Remove write permission unless this is a store, or the page is
1605      * already dirty, so that we TLB miss on later writes to update
1606      * the dirty bit.
1607      */
1608     if (access_type != MMU_DATA_STORE && !(pte & PTE_D)) {
1609         prot &= ~PAGE_WRITE;
1610     }
1611     *ret_prot = prot;
1612 
1613     return TRANSLATE_SUCCESS;
1614 }
1615 
raise_mmu_exception(CPURISCVState * env,target_ulong address,MMUAccessType access_type,bool pmp_violation,bool first_stage,bool two_stage,bool two_stage_indirect)1616 static void raise_mmu_exception(CPURISCVState *env, target_ulong address,
1617                                 MMUAccessType access_type, bool pmp_violation,
1618                                 bool first_stage, bool two_stage,
1619                                 bool two_stage_indirect)
1620 {
1621     CPUState *cs = env_cpu(env);
1622 
1623     switch (access_type) {
1624     case MMU_INST_FETCH:
1625         if (pmp_violation) {
1626             cs->exception_index = RISCV_EXCP_INST_ACCESS_FAULT;
1627         } else if (env->virt_enabled && !first_stage) {
1628             cs->exception_index = RISCV_EXCP_INST_GUEST_PAGE_FAULT;
1629         } else {
1630             cs->exception_index = RISCV_EXCP_INST_PAGE_FAULT;
1631         }
1632         break;
1633     case MMU_DATA_LOAD:
1634         if (pmp_violation) {
1635             cs->exception_index = RISCV_EXCP_LOAD_ACCESS_FAULT;
1636         } else if (two_stage && !first_stage) {
1637             cs->exception_index = RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT;
1638         } else {
1639             cs->exception_index = RISCV_EXCP_LOAD_PAGE_FAULT;
1640         }
1641         break;
1642     case MMU_DATA_STORE:
1643         if (pmp_violation) {
1644             cs->exception_index = RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
1645         } else if (two_stage && !first_stage) {
1646             cs->exception_index = RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT;
1647         } else {
1648             cs->exception_index = RISCV_EXCP_STORE_PAGE_FAULT;
1649         }
1650         break;
1651     default:
1652         g_assert_not_reached();
1653     }
1654     env->badaddr = address;
1655     env->two_stage_lookup = two_stage;
1656     env->two_stage_indirect_lookup = two_stage_indirect;
1657 }
1658 
riscv_cpu_get_phys_page_debug(CPUState * cs,vaddr addr)1659 hwaddr riscv_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
1660 {
1661     RISCVCPU *cpu = RISCV_CPU(cs);
1662     CPURISCVState *env = &cpu->env;
1663     hwaddr phys_addr;
1664     int prot;
1665     int mmu_idx = riscv_env_mmu_index(&cpu->env, false);
1666 
1667     if (get_physical_address(env, &phys_addr, &prot, addr, NULL, 0, mmu_idx,
1668                              true, env->virt_enabled, true, false)) {
1669         return -1;
1670     }
1671 
1672     if (env->virt_enabled) {
1673         if (get_physical_address(env, &phys_addr, &prot, phys_addr, NULL,
1674                                  0, MMUIdx_U, false, true, true, false)) {
1675             return -1;
1676         }
1677     }
1678 
1679     return phys_addr & TARGET_PAGE_MASK;
1680 }
1681 
riscv_cpu_do_transaction_failed(CPUState * cs,hwaddr physaddr,vaddr addr,unsigned size,MMUAccessType access_type,int mmu_idx,MemTxAttrs attrs,MemTxResult response,uintptr_t retaddr)1682 void riscv_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
1683                                      vaddr addr, unsigned size,
1684                                      MMUAccessType access_type,
1685                                      int mmu_idx, MemTxAttrs attrs,
1686                                      MemTxResult response, uintptr_t retaddr)
1687 {
1688     RISCVCPU *cpu = RISCV_CPU(cs);
1689     CPURISCVState *env = &cpu->env;
1690 
1691     if (access_type == MMU_DATA_STORE) {
1692         cs->exception_index = RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
1693     } else if (access_type == MMU_DATA_LOAD) {
1694         cs->exception_index = RISCV_EXCP_LOAD_ACCESS_FAULT;
1695     } else {
1696         cs->exception_index = RISCV_EXCP_INST_ACCESS_FAULT;
1697     }
1698 
1699     env->badaddr = addr;
1700     env->two_stage_lookup = mmuidx_2stage(mmu_idx);
1701     env->two_stage_indirect_lookup = false;
1702     cpu_loop_exit_restore(cs, retaddr);
1703 }
1704 
riscv_cpu_do_unaligned_access(CPUState * cs,vaddr addr,MMUAccessType access_type,int mmu_idx,uintptr_t retaddr)1705 void riscv_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
1706                                    MMUAccessType access_type, int mmu_idx,
1707                                    uintptr_t retaddr)
1708 {
1709     RISCVCPU *cpu = RISCV_CPU(cs);
1710     CPURISCVState *env = &cpu->env;
1711     switch (access_type) {
1712     case MMU_INST_FETCH:
1713         cs->exception_index = RISCV_EXCP_INST_ADDR_MIS;
1714         break;
1715     case MMU_DATA_LOAD:
1716         cs->exception_index = RISCV_EXCP_LOAD_ADDR_MIS;
1717         /* shadow stack mis aligned accesses are access faults */
1718         if (mmu_idx & MMU_IDX_SS_WRITE) {
1719             cs->exception_index = RISCV_EXCP_LOAD_ACCESS_FAULT;
1720         }
1721         break;
1722     case MMU_DATA_STORE:
1723         cs->exception_index = RISCV_EXCP_STORE_AMO_ADDR_MIS;
1724         /* shadow stack mis aligned accesses are access faults */
1725         if (mmu_idx & MMU_IDX_SS_WRITE) {
1726             cs->exception_index = RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
1727         }
1728         break;
1729     default:
1730         g_assert_not_reached();
1731     }
1732     env->badaddr = addr;
1733     env->two_stage_lookup = mmuidx_2stage(mmu_idx);
1734     env->two_stage_indirect_lookup = false;
1735     cpu_loop_exit_restore(cs, retaddr);
1736 }
1737 
1738 
pmu_tlb_fill_incr_ctr(RISCVCPU * cpu,MMUAccessType access_type)1739 static void pmu_tlb_fill_incr_ctr(RISCVCPU *cpu, MMUAccessType access_type)
1740 {
1741     enum riscv_pmu_event_idx pmu_event_type;
1742 
1743     switch (access_type) {
1744     case MMU_INST_FETCH:
1745         pmu_event_type = RISCV_PMU_EVENT_CACHE_ITLB_PREFETCH_MISS;
1746         break;
1747     case MMU_DATA_LOAD:
1748         pmu_event_type = RISCV_PMU_EVENT_CACHE_DTLB_READ_MISS;
1749         break;
1750     case MMU_DATA_STORE:
1751         pmu_event_type = RISCV_PMU_EVENT_CACHE_DTLB_WRITE_MISS;
1752         break;
1753     default:
1754         return;
1755     }
1756 
1757     riscv_pmu_incr_ctr(cpu, pmu_event_type);
1758 }
1759 
riscv_cpu_tlb_fill(CPUState * cs,vaddr address,int size,MMUAccessType access_type,int mmu_idx,bool probe,uintptr_t retaddr)1760 bool riscv_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
1761                         MMUAccessType access_type, int mmu_idx,
1762                         bool probe, uintptr_t retaddr)
1763 {
1764     RISCVCPU *cpu = RISCV_CPU(cs);
1765     CPURISCVState *env = &cpu->env;
1766     vaddr im_address;
1767     hwaddr pa = 0;
1768     int prot, prot2, prot_pmp;
1769     bool pmp_violation = false;
1770     bool first_stage_error = true;
1771     bool two_stage_lookup = mmuidx_2stage(mmu_idx);
1772     bool two_stage_indirect_error = false;
1773     int ret = TRANSLATE_FAIL;
1774     int mode = mmuidx_priv(mmu_idx);
1775     /* default TLB page size */
1776     hwaddr tlb_size = TARGET_PAGE_SIZE;
1777 
1778     env->guest_phys_fault_addr = 0;
1779 
1780     qemu_log_mask(CPU_LOG_MMU, "%s ad %" VADDR_PRIx " rw %d mmu_idx %d\n",
1781                   __func__, address, access_type, mmu_idx);
1782 
1783     pmu_tlb_fill_incr_ctr(cpu, access_type);
1784     if (two_stage_lookup) {
1785         /* Two stage lookup */
1786         ret = get_physical_address(env, &pa, &prot, address,
1787                                    &env->guest_phys_fault_addr, access_type,
1788                                    mmu_idx, true, true, false, probe);
1789 
1790         /*
1791          * A G-stage exception may be triggered during two state lookup.
1792          * And the env->guest_phys_fault_addr has already been set in
1793          * get_physical_address().
1794          */
1795         if (ret == TRANSLATE_G_STAGE_FAIL) {
1796             first_stage_error = false;
1797             two_stage_indirect_error = true;
1798         }
1799 
1800         qemu_log_mask(CPU_LOG_MMU,
1801                       "%s 1st-stage address=%" VADDR_PRIx " ret %d physical "
1802                       HWADDR_FMT_plx " prot %d\n",
1803                       __func__, address, ret, pa, prot);
1804 
1805         if (ret == TRANSLATE_SUCCESS) {
1806             /* Second stage lookup */
1807             im_address = pa;
1808 
1809             ret = get_physical_address(env, &pa, &prot2, im_address, NULL,
1810                                        access_type, MMUIdx_U, false, true,
1811                                        false, probe);
1812 
1813             qemu_log_mask(CPU_LOG_MMU,
1814                           "%s 2nd-stage address=%" VADDR_PRIx
1815                           " ret %d physical "
1816                           HWADDR_FMT_plx " prot %d\n",
1817                           __func__, im_address, ret, pa, prot2);
1818 
1819             prot &= prot2;
1820 
1821             if (ret == TRANSLATE_SUCCESS) {
1822                 ret = get_physical_address_pmp(env, &prot_pmp, pa,
1823                                                size, access_type, mode);
1824                 tlb_size = pmp_get_tlb_size(env, pa);
1825 
1826                 qemu_log_mask(CPU_LOG_MMU,
1827                               "%s PMP address=" HWADDR_FMT_plx " ret %d prot"
1828                               " %d tlb_size %" HWADDR_PRIu "\n",
1829                               __func__, pa, ret, prot_pmp, tlb_size);
1830 
1831                 prot &= prot_pmp;
1832             } else {
1833                 /*
1834                  * Guest physical address translation failed, this is a HS
1835                  * level exception
1836                  */
1837                 first_stage_error = false;
1838                 if (ret != TRANSLATE_PMP_FAIL) {
1839                     env->guest_phys_fault_addr = (im_address |
1840                                                   (address &
1841                                                    (TARGET_PAGE_SIZE - 1))) >> 2;
1842                 }
1843             }
1844         }
1845     } else {
1846         /* Single stage lookup */
1847         ret = get_physical_address(env, &pa, &prot, address, NULL,
1848                                    access_type, mmu_idx, true, false, false,
1849                                    probe);
1850 
1851         qemu_log_mask(CPU_LOG_MMU,
1852                       "%s address=%" VADDR_PRIx " ret %d physical "
1853                       HWADDR_FMT_plx " prot %d\n",
1854                       __func__, address, ret, pa, prot);
1855 
1856         if (ret == TRANSLATE_SUCCESS) {
1857             ret = get_physical_address_pmp(env, &prot_pmp, pa,
1858                                            size, access_type, mode);
1859             tlb_size = pmp_get_tlb_size(env, pa);
1860 
1861             qemu_log_mask(CPU_LOG_MMU,
1862                           "%s PMP address=" HWADDR_FMT_plx " ret %d prot"
1863                           " %d tlb_size %" HWADDR_PRIu "\n",
1864                           __func__, pa, ret, prot_pmp, tlb_size);
1865 
1866             prot &= prot_pmp;
1867         }
1868     }
1869 
1870     if (ret == TRANSLATE_PMP_FAIL) {
1871         pmp_violation = true;
1872     }
1873 
1874     if (ret == TRANSLATE_SUCCESS) {
1875         tlb_set_page(cs, address & ~(tlb_size - 1), pa & ~(tlb_size - 1),
1876                      prot, mmu_idx, tlb_size);
1877         return true;
1878     } else if (probe) {
1879         return false;
1880     } else {
1881         int wp_access = 0;
1882 
1883         if (access_type == MMU_DATA_LOAD) {
1884             wp_access |= BP_MEM_READ;
1885         } else if (access_type == MMU_DATA_STORE) {
1886             wp_access |= BP_MEM_WRITE;
1887         }
1888 
1889         /*
1890          * If a watchpoint isn't found for 'addr' this will
1891          * be a no-op and we'll resume the mmu_exception path.
1892          * Otherwise we'll throw a debug exception and execution
1893          * will continue elsewhere.
1894          */
1895         cpu_check_watchpoint(cs, address, size, MEMTXATTRS_UNSPECIFIED,
1896                              wp_access, retaddr);
1897 
1898         raise_mmu_exception(env, address, access_type, pmp_violation,
1899                             first_stage_error, two_stage_lookup,
1900                             two_stage_indirect_error);
1901         cpu_loop_exit_restore(cs, retaddr);
1902     }
1903 
1904     return true;
1905 }
1906 
riscv_transformed_insn(CPURISCVState * env,target_ulong insn,target_ulong taddr)1907 static target_ulong riscv_transformed_insn(CPURISCVState *env,
1908                                            target_ulong insn,
1909                                            target_ulong taddr)
1910 {
1911     target_ulong xinsn = 0;
1912     target_ulong access_rs1 = 0, access_imm = 0, access_size = 0;
1913 
1914     /*
1915      * Only Quadrant 0 and Quadrant 2 of RVC instruction space need to
1916      * be uncompressed. The Quadrant 1 of RVC instruction space need
1917      * not be transformed because these instructions won't generate
1918      * any load/store trap.
1919      */
1920 
1921     if ((insn & 0x3) != 0x3) {
1922         /* Transform 16bit instruction into 32bit instruction */
1923         switch (GET_C_OP(insn)) {
1924         case OPC_RISC_C_OP_QUAD0: /* Quadrant 0 */
1925             switch (GET_C_FUNC(insn)) {
1926             case OPC_RISC_C_FUNC_FLD_LQ:
1927                 if (riscv_cpu_xlen(env) != 128) { /* C.FLD (RV32/64) */
1928                     xinsn = OPC_RISC_FLD;
1929                     xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1930                     access_rs1 = GET_C_RS1S(insn);
1931                     access_imm = GET_C_LD_IMM(insn);
1932                     access_size = 8;
1933                 }
1934                 break;
1935             case OPC_RISC_C_FUNC_LW: /* C.LW */
1936                 xinsn = OPC_RISC_LW;
1937                 xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1938                 access_rs1 = GET_C_RS1S(insn);
1939                 access_imm = GET_C_LW_IMM(insn);
1940                 access_size = 4;
1941                 break;
1942             case OPC_RISC_C_FUNC_FLW_LD:
1943                 if (riscv_cpu_xlen(env) == 32) { /* C.FLW (RV32) */
1944                     xinsn = OPC_RISC_FLW;
1945                     xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1946                     access_rs1 = GET_C_RS1S(insn);
1947                     access_imm = GET_C_LW_IMM(insn);
1948                     access_size = 4;
1949                 } else { /* C.LD (RV64/RV128) */
1950                     xinsn = OPC_RISC_LD;
1951                     xinsn = SET_RD(xinsn, GET_C_RS2S(insn));
1952                     access_rs1 = GET_C_RS1S(insn);
1953                     access_imm = GET_C_LD_IMM(insn);
1954                     access_size = 8;
1955                 }
1956                 break;
1957             case OPC_RISC_C_FUNC_FSD_SQ:
1958                 if (riscv_cpu_xlen(env) != 128) { /* C.FSD (RV32/64) */
1959                     xinsn = OPC_RISC_FSD;
1960                     xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1961                     access_rs1 = GET_C_RS1S(insn);
1962                     access_imm = GET_C_SD_IMM(insn);
1963                     access_size = 8;
1964                 }
1965                 break;
1966             case OPC_RISC_C_FUNC_SW: /* C.SW */
1967                 xinsn = OPC_RISC_SW;
1968                 xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1969                 access_rs1 = GET_C_RS1S(insn);
1970                 access_imm = GET_C_SW_IMM(insn);
1971                 access_size = 4;
1972                 break;
1973             case OPC_RISC_C_FUNC_FSW_SD:
1974                 if (riscv_cpu_xlen(env) == 32) { /* C.FSW (RV32) */
1975                     xinsn = OPC_RISC_FSW;
1976                     xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1977                     access_rs1 = GET_C_RS1S(insn);
1978                     access_imm = GET_C_SW_IMM(insn);
1979                     access_size = 4;
1980                 } else { /* C.SD (RV64/RV128) */
1981                     xinsn = OPC_RISC_SD;
1982                     xinsn = SET_RS2(xinsn, GET_C_RS2S(insn));
1983                     access_rs1 = GET_C_RS1S(insn);
1984                     access_imm = GET_C_SD_IMM(insn);
1985                     access_size = 8;
1986                 }
1987                 break;
1988             default:
1989                 break;
1990             }
1991             break;
1992         case OPC_RISC_C_OP_QUAD2: /* Quadrant 2 */
1993             switch (GET_C_FUNC(insn)) {
1994             case OPC_RISC_C_FUNC_FLDSP_LQSP:
1995                 if (riscv_cpu_xlen(env) != 128) { /* C.FLDSP (RV32/64) */
1996                     xinsn = OPC_RISC_FLD;
1997                     xinsn = SET_RD(xinsn, GET_C_RD(insn));
1998                     access_rs1 = 2;
1999                     access_imm = GET_C_LDSP_IMM(insn);
2000                     access_size = 8;
2001                 }
2002                 break;
2003             case OPC_RISC_C_FUNC_LWSP: /* C.LWSP */
2004                 xinsn = OPC_RISC_LW;
2005                 xinsn = SET_RD(xinsn, GET_C_RD(insn));
2006                 access_rs1 = 2;
2007                 access_imm = GET_C_LWSP_IMM(insn);
2008                 access_size = 4;
2009                 break;
2010             case OPC_RISC_C_FUNC_FLWSP_LDSP:
2011                 if (riscv_cpu_xlen(env) == 32) { /* C.FLWSP (RV32) */
2012                     xinsn = OPC_RISC_FLW;
2013                     xinsn = SET_RD(xinsn, GET_C_RD(insn));
2014                     access_rs1 = 2;
2015                     access_imm = GET_C_LWSP_IMM(insn);
2016                     access_size = 4;
2017                 } else { /* C.LDSP (RV64/RV128) */
2018                     xinsn = OPC_RISC_LD;
2019                     xinsn = SET_RD(xinsn, GET_C_RD(insn));
2020                     access_rs1 = 2;
2021                     access_imm = GET_C_LDSP_IMM(insn);
2022                     access_size = 8;
2023                 }
2024                 break;
2025             case OPC_RISC_C_FUNC_FSDSP_SQSP:
2026                 if (riscv_cpu_xlen(env) != 128) { /* C.FSDSP (RV32/64) */
2027                     xinsn = OPC_RISC_FSD;
2028                     xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
2029                     access_rs1 = 2;
2030                     access_imm = GET_C_SDSP_IMM(insn);
2031                     access_size = 8;
2032                 }
2033                 break;
2034             case OPC_RISC_C_FUNC_SWSP: /* C.SWSP */
2035                 xinsn = OPC_RISC_SW;
2036                 xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
2037                 access_rs1 = 2;
2038                 access_imm = GET_C_SWSP_IMM(insn);
2039                 access_size = 4;
2040                 break;
2041             case 7:
2042                 if (riscv_cpu_xlen(env) == 32) { /* C.FSWSP (RV32) */
2043                     xinsn = OPC_RISC_FSW;
2044                     xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
2045                     access_rs1 = 2;
2046                     access_imm = GET_C_SWSP_IMM(insn);
2047                     access_size = 4;
2048                 } else { /* C.SDSP (RV64/RV128) */
2049                     xinsn = OPC_RISC_SD;
2050                     xinsn = SET_RS2(xinsn, GET_C_RS2(insn));
2051                     access_rs1 = 2;
2052                     access_imm = GET_C_SDSP_IMM(insn);
2053                     access_size = 8;
2054                 }
2055                 break;
2056             default:
2057                 break;
2058             }
2059             break;
2060         default:
2061             break;
2062         }
2063 
2064         /*
2065          * Clear Bit1 of transformed instruction to indicate that
2066          * original insruction was a 16bit instruction
2067          */
2068         xinsn &= ~((target_ulong)0x2);
2069     } else {
2070         /* Transform 32bit (or wider) instructions */
2071         switch (MASK_OP_MAJOR(insn)) {
2072         case OPC_RISC_ATOMIC:
2073             xinsn = insn;
2074             access_rs1 = GET_RS1(insn);
2075             access_size = 1 << GET_FUNCT3(insn);
2076             break;
2077         case OPC_RISC_LOAD:
2078         case OPC_RISC_FP_LOAD:
2079             xinsn = SET_I_IMM(insn, 0);
2080             access_rs1 = GET_RS1(insn);
2081             access_imm = GET_IMM(insn);
2082             access_size = 1 << GET_FUNCT3(insn);
2083             break;
2084         case OPC_RISC_STORE:
2085         case OPC_RISC_FP_STORE:
2086             xinsn = SET_S_IMM(insn, 0);
2087             access_rs1 = GET_RS1(insn);
2088             access_imm = GET_STORE_IMM(insn);
2089             access_size = 1 << GET_FUNCT3(insn);
2090             break;
2091         case OPC_RISC_SYSTEM:
2092             if (MASK_OP_SYSTEM(insn) == OPC_RISC_HLVHSV) {
2093                 xinsn = insn;
2094                 access_rs1 = GET_RS1(insn);
2095                 access_size = 1 << ((GET_FUNCT7(insn) >> 1) & 0x3);
2096                 access_size = 1 << access_size;
2097             }
2098             break;
2099         default:
2100             break;
2101         }
2102     }
2103 
2104     if (access_size) {
2105         xinsn = SET_RS1(xinsn, (taddr - (env->gpr[access_rs1] + access_imm)) &
2106                                (access_size - 1));
2107     }
2108 
2109     return xinsn;
2110 }
2111 
promote_load_fault(target_ulong orig_cause)2112 static target_ulong promote_load_fault(target_ulong orig_cause)
2113 {
2114     switch (orig_cause) {
2115     case RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT:
2116         return RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT;
2117 
2118     case RISCV_EXCP_LOAD_ACCESS_FAULT:
2119         return RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
2120 
2121     case RISCV_EXCP_LOAD_PAGE_FAULT:
2122         return RISCV_EXCP_STORE_PAGE_FAULT;
2123     }
2124 
2125     /* if no promotion, return original cause */
2126     return orig_cause;
2127 }
2128 
riscv_do_nmi(CPURISCVState * env,target_ulong cause,bool virt)2129 static void riscv_do_nmi(CPURISCVState *env, target_ulong cause, bool virt)
2130 {
2131     env->mnstatus = set_field(env->mnstatus, MNSTATUS_NMIE, false);
2132     env->mnstatus = set_field(env->mnstatus, MNSTATUS_MNPV, virt);
2133     env->mnstatus = set_field(env->mnstatus, MNSTATUS_MNPP, env->priv);
2134     env->mncause = cause;
2135     env->mnepc = env->pc;
2136     env->pc = env->rnmi_irqvec;
2137 
2138     if (cpu_get_fcfien(env)) {
2139         env->mnstatus = set_field(env->mnstatus, MNSTATUS_MNPELP, env->elp);
2140     }
2141 
2142     /* Trapping to M mode, virt is disabled */
2143     riscv_cpu_set_mode(env, PRV_M, false);
2144 }
2145 
2146 /*
2147  * Handle Traps
2148  *
2149  * Adapted from Spike's processor_t::take_trap.
2150  *
2151  */
riscv_cpu_do_interrupt(CPUState * cs)2152 void riscv_cpu_do_interrupt(CPUState *cs)
2153 {
2154     RISCVCPU *cpu = RISCV_CPU(cs);
2155     CPURISCVState *env = &cpu->env;
2156     bool virt = env->virt_enabled;
2157     bool write_gva = false;
2158     bool always_storeamo = (env->excp_uw2 & RISCV_UW2_ALWAYS_STORE_AMO);
2159     bool vsmode_exc;
2160     uint64_t s;
2161     int mode;
2162 
2163     /*
2164      * cs->exception is 32-bits wide unlike mcause which is XLEN-bits wide
2165      * so we mask off the MSB and separate into trap type and cause.
2166      */
2167     bool async = !!(cs->exception_index & RISCV_EXCP_INT_FLAG);
2168     target_ulong cause = cs->exception_index & RISCV_EXCP_INT_MASK;
2169     uint64_t deleg = async ? env->mideleg : env->medeleg;
2170     bool s_injected = env->mvip & (1ULL << cause) & env->mvien &&
2171         !(env->mip & (1ULL << cause));
2172     bool vs_injected = env->hvip & (1ULL << cause) & env->hvien &&
2173         !(env->mip & (1ULL << cause));
2174     bool smode_double_trap = false;
2175     uint64_t hdeleg = async ? env->hideleg : env->hedeleg;
2176     const bool prev_virt = env->virt_enabled;
2177     const target_ulong prev_priv = env->priv;
2178     target_ulong tval = 0;
2179     target_ulong tinst = 0;
2180     target_ulong htval = 0;
2181     target_ulong mtval2 = 0;
2182     target_ulong src;
2183     int sxlen = 0;
2184     int mxlen = 16 << riscv_cpu_mxl(env);
2185     bool nnmi_excep = false;
2186 
2187     if (cpu->cfg.ext_smrnmi && env->rnmip && async) {
2188         riscv_do_nmi(env, cause | ((target_ulong)1U << (mxlen - 1)),
2189                      env->virt_enabled);
2190         return;
2191     }
2192 
2193     if (!async) {
2194         /* set tval to badaddr for traps with address information */
2195         switch (cause) {
2196 #ifdef CONFIG_TCG
2197         case RISCV_EXCP_SEMIHOST:
2198             do_common_semihosting(cs);
2199             env->pc += 4;
2200             return;
2201 #endif
2202         case RISCV_EXCP_LOAD_GUEST_ACCESS_FAULT:
2203         case RISCV_EXCP_STORE_GUEST_AMO_ACCESS_FAULT:
2204         case RISCV_EXCP_LOAD_ADDR_MIS:
2205         case RISCV_EXCP_STORE_AMO_ADDR_MIS:
2206         case RISCV_EXCP_LOAD_ACCESS_FAULT:
2207         case RISCV_EXCP_STORE_AMO_ACCESS_FAULT:
2208         case RISCV_EXCP_LOAD_PAGE_FAULT:
2209         case RISCV_EXCP_STORE_PAGE_FAULT:
2210             if (always_storeamo) {
2211                 cause = promote_load_fault(cause);
2212             }
2213             write_gva = env->two_stage_lookup;
2214             tval = env->badaddr;
2215             if (env->two_stage_indirect_lookup) {
2216                 /*
2217                  * special pseudoinstruction for G-stage fault taken while
2218                  * doing VS-stage page table walk.
2219                  */
2220                 tinst = (riscv_cpu_xlen(env) == 32) ? 0x00002000 : 0x00003000;
2221             } else {
2222                 /*
2223                  * The "Addr. Offset" field in transformed instruction is
2224                  * non-zero only for misaligned access.
2225                  */
2226                 tinst = riscv_transformed_insn(env, env->bins, tval);
2227             }
2228             break;
2229         case RISCV_EXCP_INST_GUEST_PAGE_FAULT:
2230         case RISCV_EXCP_INST_ADDR_MIS:
2231         case RISCV_EXCP_INST_ACCESS_FAULT:
2232         case RISCV_EXCP_INST_PAGE_FAULT:
2233             write_gva = env->two_stage_lookup;
2234             tval = env->badaddr;
2235             if (env->two_stage_indirect_lookup) {
2236                 /*
2237                  * special pseudoinstruction for G-stage fault taken while
2238                  * doing VS-stage page table walk.
2239                  */
2240                 tinst = (riscv_cpu_xlen(env) == 32) ? 0x00002000 : 0x00003000;
2241             }
2242             break;
2243         case RISCV_EXCP_ILLEGAL_INST:
2244         case RISCV_EXCP_VIRT_INSTRUCTION_FAULT:
2245             tval = env->bins;
2246             break;
2247         case RISCV_EXCP_BREAKPOINT:
2248             tval = env->badaddr;
2249             if (cs->watchpoint_hit) {
2250                 tval = cs->watchpoint_hit->hitaddr;
2251                 cs->watchpoint_hit = NULL;
2252             }
2253             break;
2254         case RISCV_EXCP_SW_CHECK:
2255             tval = env->sw_check_code;
2256             break;
2257         default:
2258             break;
2259         }
2260         /* ecall is dispatched as one cause so translate based on mode */
2261         if (cause == RISCV_EXCP_U_ECALL) {
2262             assert(env->priv <= 3);
2263 
2264             if (env->priv == PRV_M) {
2265                 cause = RISCV_EXCP_M_ECALL;
2266             } else if (env->priv == PRV_S && env->virt_enabled) {
2267                 cause = RISCV_EXCP_VS_ECALL;
2268             } else if (env->priv == PRV_S && !env->virt_enabled) {
2269                 cause = RISCV_EXCP_S_ECALL;
2270             } else if (env->priv == PRV_U) {
2271                 cause = RISCV_EXCP_U_ECALL;
2272             }
2273         }
2274     }
2275 
2276     trace_riscv_trap(env->mhartid, async, cause, env->pc, tval,
2277                      riscv_cpu_get_trap_name(cause, async));
2278 
2279     qemu_log_mask(CPU_LOG_INT,
2280                   "%s: hart:"TARGET_FMT_ld", async:%d, cause:"TARGET_FMT_lx", "
2281                   "epc:0x"TARGET_FMT_lx", tval:0x"TARGET_FMT_lx", desc=%s\n",
2282                   __func__, env->mhartid, async, cause, env->pc, tval,
2283                   riscv_cpu_get_trap_name(cause, async));
2284 
2285     mode = env->priv <= PRV_S && cause < 64 &&
2286         (((deleg >> cause) & 1) || s_injected || vs_injected) ? PRV_S : PRV_M;
2287 
2288     vsmode_exc = env->virt_enabled && cause < 64 &&
2289         (((hdeleg >> cause) & 1) || vs_injected);
2290 
2291     /*
2292      * Check double trap condition only if already in S-mode and targeting
2293      * S-mode
2294      */
2295     if (cpu->cfg.ext_ssdbltrp && env->priv == PRV_S && mode == PRV_S) {
2296         bool dte = (env->menvcfg & MENVCFG_DTE) != 0;
2297         bool sdt = (env->mstatus & MSTATUS_SDT) != 0;
2298         /* In VS or HS */
2299         if (riscv_has_ext(env, RVH)) {
2300             if (vsmode_exc) {
2301                 /* VS -> VS, use henvcfg instead of menvcfg*/
2302                 dte = (env->henvcfg & HENVCFG_DTE) != 0;
2303             } else if (env->virt_enabled) {
2304                 /* VS -> HS, use mstatus_hs */
2305                 sdt = (env->mstatus_hs & MSTATUS_SDT) != 0;
2306             }
2307         }
2308         smode_double_trap = dte && sdt;
2309         if (smode_double_trap) {
2310             mode = PRV_M;
2311         }
2312     }
2313 
2314     if (mode == PRV_S) {
2315         /* handle the trap in S-mode */
2316         /* save elp status */
2317         if (cpu_get_fcfien(env)) {
2318             env->mstatus = set_field(env->mstatus, MSTATUS_SPELP, env->elp);
2319         }
2320 
2321         if (riscv_has_ext(env, RVH)) {
2322             if (vsmode_exc) {
2323                 /* Trap to VS mode */
2324                 /*
2325                  * See if we need to adjust cause. Yes if its VS mode interrupt
2326                  * no if hypervisor has delegated one of hs mode's interrupt
2327                  */
2328                 if (async && (cause == IRQ_VS_TIMER || cause == IRQ_VS_SOFT ||
2329                               cause == IRQ_VS_EXT)) {
2330                     cause = cause - 1;
2331                 }
2332                 write_gva = false;
2333             } else if (env->virt_enabled) {
2334                 /* Trap into HS mode, from virt */
2335                 riscv_cpu_swap_hypervisor_regs(env);
2336                 env->hstatus = set_field(env->hstatus, HSTATUS_SPVP,
2337                                          env->priv);
2338                 env->hstatus = set_field(env->hstatus, HSTATUS_SPV, true);
2339 
2340                 htval = env->guest_phys_fault_addr;
2341 
2342                 virt = false;
2343             } else {
2344                 /* Trap into HS mode */
2345                 env->hstatus = set_field(env->hstatus, HSTATUS_SPV, false);
2346                 htval = env->guest_phys_fault_addr;
2347             }
2348             env->hstatus = set_field(env->hstatus, HSTATUS_GVA, write_gva);
2349         }
2350 
2351         s = env->mstatus;
2352         s = set_field(s, MSTATUS_SPIE, get_field(s, MSTATUS_SIE));
2353         s = set_field(s, MSTATUS_SPP, env->priv);
2354         s = set_field(s, MSTATUS_SIE, 0);
2355         if (riscv_env_smode_dbltrp_enabled(env, virt)) {
2356             s = set_field(s, MSTATUS_SDT, 1);
2357         }
2358         env->mstatus = s;
2359         sxlen = 16 << riscv_cpu_sxl(env);
2360         env->scause = cause | ((target_ulong)async << (sxlen - 1));
2361         env->sepc = env->pc;
2362         env->stval = tval;
2363         env->htval = htval;
2364         env->htinst = tinst;
2365         env->pc = (env->stvec >> 2 << 2) +
2366                   ((async && (env->stvec & 3) == 1) ? cause * 4 : 0);
2367         riscv_cpu_set_mode(env, PRV_S, virt);
2368 
2369         src = env->sepc;
2370     } else {
2371         /*
2372          * If the hart encounters an exception while executing in M-mode
2373          * with the mnstatus.NMIE bit clear, the exception is an RNMI exception.
2374          */
2375         nnmi_excep = cpu->cfg.ext_smrnmi &&
2376                      !get_field(env->mnstatus, MNSTATUS_NMIE) &&
2377                      !async;
2378 
2379         /* handle the trap in M-mode */
2380         /* save elp status */
2381         if (cpu_get_fcfien(env)) {
2382             if (nnmi_excep) {
2383                 env->mnstatus = set_field(env->mnstatus, MNSTATUS_MNPELP,
2384                                           env->elp);
2385             } else {
2386                 env->mstatus = set_field(env->mstatus, MSTATUS_MPELP, env->elp);
2387             }
2388         }
2389 
2390         if (riscv_has_ext(env, RVH)) {
2391             if (env->virt_enabled) {
2392                 riscv_cpu_swap_hypervisor_regs(env);
2393             }
2394             env->mstatus = set_field(env->mstatus, MSTATUS_MPV,
2395                                      env->virt_enabled);
2396             if (env->virt_enabled && tval) {
2397                 env->mstatus = set_field(env->mstatus, MSTATUS_GVA, 1);
2398             }
2399 
2400             mtval2 = env->guest_phys_fault_addr;
2401 
2402             /* Trapping to M mode, virt is disabled */
2403             virt = false;
2404         }
2405         /*
2406          * If the hart encounters an exception while executing in M-mode,
2407          * with the mnstatus.NMIE bit clear, the program counter is set to
2408          * the RNMI exception trap handler address.
2409          */
2410         nnmi_excep = cpu->cfg.ext_smrnmi &&
2411                      !get_field(env->mnstatus, MNSTATUS_NMIE) &&
2412                      !async;
2413 
2414         s = env->mstatus;
2415         s = set_field(s, MSTATUS_MPIE, get_field(s, MSTATUS_MIE));
2416         s = set_field(s, MSTATUS_MPP, env->priv);
2417         s = set_field(s, MSTATUS_MIE, 0);
2418         if (cpu->cfg.ext_smdbltrp) {
2419             if (env->mstatus & MSTATUS_MDT) {
2420                 assert(env->priv == PRV_M);
2421                 if (!cpu->cfg.ext_smrnmi || nnmi_excep) {
2422                     cpu_abort(CPU(cpu), "M-mode double trap\n");
2423                 } else {
2424                     riscv_do_nmi(env, cause, false);
2425                     return;
2426                 }
2427             }
2428 
2429             s = set_field(s, MSTATUS_MDT, 1);
2430         }
2431         env->mstatus = s;
2432         env->mcause = cause | ((target_ulong)async << (mxlen - 1));
2433         if (smode_double_trap) {
2434             env->mtval2 = env->mcause;
2435             env->mcause = RISCV_EXCP_DOUBLE_TRAP;
2436         } else {
2437             env->mtval2 = mtval2;
2438         }
2439         env->mepc = env->pc;
2440         env->mtval = tval;
2441         env->mtinst = tinst;
2442 
2443         /*
2444          * For RNMI exception, program counter is set to the RNMI exception
2445          * trap handler address.
2446          */
2447         if (nnmi_excep) {
2448             env->pc = env->rnmi_excpvec;
2449         } else {
2450             env->pc = (env->mtvec >> 2 << 2) +
2451                       ((async && (env->mtvec & 3) == 1) ? cause * 4 : 0);
2452         }
2453         riscv_cpu_set_mode(env, PRV_M, virt);
2454         src = env->mepc;
2455     }
2456 
2457     if (riscv_cpu_cfg(env)->ext_smctr || riscv_cpu_cfg(env)->ext_ssctr) {
2458         if (async && cause == IRQ_PMU_OVF) {
2459             riscv_ctr_freeze(env, XCTRCTL_LCOFIFRZ, virt);
2460         } else if (!async && cause == RISCV_EXCP_BREAKPOINT) {
2461             riscv_ctr_freeze(env, XCTRCTL_BPFRZ, virt);
2462         }
2463 
2464         riscv_ctr_add_entry(env, src, env->pc,
2465                         async ? CTRDATA_TYPE_INTERRUPT : CTRDATA_TYPE_EXCEPTION,
2466                         prev_priv, prev_virt);
2467     }
2468 
2469     /*
2470      * Interrupt/exception/trap delivery is asynchronous event and as per
2471      * zicfilp spec CPU should clear up the ELP state. No harm in clearing
2472      * unconditionally.
2473      */
2474     env->elp = false;
2475 
2476     /*
2477      * NOTE: it is not necessary to yield load reservations here. It is only
2478      * necessary for an SC from "another hart" to cause a load reservation
2479      * to be yielded. Refer to the memory consistency model section of the
2480      * RISC-V ISA Specification.
2481      */
2482 
2483     env->two_stage_lookup = false;
2484     env->two_stage_indirect_lookup = false;
2485 }
2486 
2487 #endif /* !CONFIG_USER_ONLY */
2488