1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Copyright (C) 1991, 1992  Linus Torvalds
4  *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
5  *  Copyright (C) 2011	Don Zickus Red Hat, Inc.
6  *
7  *  Pentium III FXSR, SSE support
8  *	Gareth Hughes <gareth@valinux.com>, May 2000
9  */
10 
11 /*
12  * Handle hardware traps and faults.
13  */
14 #include <linux/spinlock.h>
15 #include <linux/kprobes.h>
16 #include <linux/kdebug.h>
17 #include <linux/sched/debug.h>
18 #include <linux/nmi.h>
19 #include <linux/debugfs.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/ratelimit.h>
23 #include <linux/slab.h>
24 #include <linux/export.h>
25 #include <linux/atomic.h>
26 #include <linux/sched/clock.h>
27 
28 #include <asm/cpu_entry_area.h>
29 #include <asm/traps.h>
30 #include <asm/mach_traps.h>
31 #include <asm/nmi.h>
32 #include <asm/x86_init.h>
33 #include <asm/reboot.h>
34 #include <asm/cache.h>
35 #include <asm/nospec-branch.h>
36 #include <asm/microcode.h>
37 #include <asm/sev.h>
38 #include <asm/fred.h>
39 
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/nmi.h>
42 
43 /*
44  * An emergency handler can be set in any context including NMI
45  */
46 struct nmi_desc {
47 	raw_spinlock_t lock;
48 	nmi_handler_t emerg_handler;
49 	struct list_head head;
50 };
51 
52 static struct nmi_desc nmi_desc[NMI_MAX] =
53 {
54 	{
55 		.lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[0].lock),
56 		.head = LIST_HEAD_INIT(nmi_desc[0].head),
57 	},
58 	{
59 		.lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[1].lock),
60 		.head = LIST_HEAD_INIT(nmi_desc[1].head),
61 	},
62 	{
63 		.lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[2].lock),
64 		.head = LIST_HEAD_INIT(nmi_desc[2].head),
65 	},
66 	{
67 		.lock = __RAW_SPIN_LOCK_UNLOCKED(&nmi_desc[3].lock),
68 		.head = LIST_HEAD_INIT(nmi_desc[3].head),
69 	},
70 
71 };
72 
73 struct nmi_stats {
74 	unsigned int normal;
75 	unsigned int unknown;
76 	unsigned int external;
77 	unsigned int swallow;
78 	unsigned long recv_jiffies;
79 	unsigned long idt_seq;
80 	unsigned long idt_nmi_seq;
81 	unsigned long idt_ignored;
82 	atomic_long_t idt_calls;
83 	unsigned long idt_seq_snap;
84 	unsigned long idt_nmi_seq_snap;
85 	unsigned long idt_ignored_snap;
86 	long idt_calls_snap;
87 };
88 
89 static DEFINE_PER_CPU(struct nmi_stats, nmi_stats);
90 
91 static int ignore_nmis __read_mostly;
92 
93 int unknown_nmi_panic;
94 /*
95  * Prevent NMI reason port (0x61) being accessed simultaneously, can
96  * only be used in NMI handler.
97  */
98 static DEFINE_RAW_SPINLOCK(nmi_reason_lock);
99 
setup_unknown_nmi_panic(char * str)100 static int __init setup_unknown_nmi_panic(char *str)
101 {
102 	unknown_nmi_panic = 1;
103 	return 1;
104 }
105 __setup("unknown_nmi_panic", setup_unknown_nmi_panic);
106 
107 #define nmi_to_desc(type) (&nmi_desc[type])
108 
109 static u64 nmi_longest_ns = 1 * NSEC_PER_MSEC;
110 
nmi_warning_debugfs(void)111 static int __init nmi_warning_debugfs(void)
112 {
113 	debugfs_create_u64("nmi_longest_ns", 0644,
114 			arch_debugfs_dir, &nmi_longest_ns);
115 	return 0;
116 }
117 fs_initcall(nmi_warning_debugfs);
118 
nmi_check_duration(struct nmiaction * action,u64 duration)119 static void nmi_check_duration(struct nmiaction *action, u64 duration)
120 {
121 	int remainder_ns, decimal_msecs;
122 
123 	if (duration < nmi_longest_ns || duration < action->max_duration)
124 		return;
125 
126 	action->max_duration = duration;
127 
128 	remainder_ns = do_div(duration, (1000 * 1000));
129 	decimal_msecs = remainder_ns / 1000;
130 
131 	printk_ratelimited(KERN_INFO
132 		"INFO: NMI handler (%ps) took too long to run: %lld.%03d msecs\n",
133 		action->handler, duration, decimal_msecs);
134 }
135 
nmi_handle(unsigned int type,struct pt_regs * regs)136 static int nmi_handle(unsigned int type, struct pt_regs *regs)
137 {
138 	struct nmi_desc *desc = nmi_to_desc(type);
139 	nmi_handler_t ehandler;
140 	struct nmiaction *a;
141 	int handled=0;
142 
143 	/*
144 	 * Call the emergency handler, if set
145 	 *
146 	 * In the case of crash_nmi_callback() emergency handler, it will
147 	 * return in the case of the crashing CPU to enable it to complete
148 	 * other necessary crashing actions ASAP. Other handlers in the
149 	 * linked list won't need to be run.
150 	 */
151 	ehandler = desc->emerg_handler;
152 	if (ehandler)
153 		return ehandler(type, regs);
154 
155 	rcu_read_lock();
156 
157 	/*
158 	 * NMIs are edge-triggered, which means if you have enough
159 	 * of them concurrently, you can lose some because only one
160 	 * can be latched at any given time.  Walk the whole list
161 	 * to handle those situations.
162 	 */
163 	list_for_each_entry_rcu(a, &desc->head, list) {
164 		int thishandled;
165 		u64 delta;
166 
167 		delta = sched_clock();
168 		thishandled = a->handler(type, regs);
169 		handled += thishandled;
170 		delta = sched_clock() - delta;
171 		trace_nmi_handler(a->handler, (int)delta, thishandled);
172 
173 		nmi_check_duration(a, delta);
174 	}
175 
176 	rcu_read_unlock();
177 
178 	/* return total number of NMI events handled */
179 	return handled;
180 }
181 NOKPROBE_SYMBOL(nmi_handle);
182 
__register_nmi_handler(unsigned int type,struct nmiaction * action)183 int __register_nmi_handler(unsigned int type, struct nmiaction *action)
184 {
185 	struct nmi_desc *desc = nmi_to_desc(type);
186 	unsigned long flags;
187 
188 	if (WARN_ON_ONCE(!action->handler || !list_empty(&action->list)))
189 		return -EINVAL;
190 
191 	raw_spin_lock_irqsave(&desc->lock, flags);
192 
193 	/*
194 	 * Indicate if there are multiple registrations on the
195 	 * internal NMI handler call chains (SERR and IO_CHECK).
196 	 */
197 	WARN_ON_ONCE(type == NMI_SERR && !list_empty(&desc->head));
198 	WARN_ON_ONCE(type == NMI_IO_CHECK && !list_empty(&desc->head));
199 
200 	/*
201 	 * some handlers need to be executed first otherwise a fake
202 	 * event confuses some handlers (kdump uses this flag)
203 	 */
204 	if (action->flags & NMI_FLAG_FIRST)
205 		list_add_rcu(&action->list, &desc->head);
206 	else
207 		list_add_tail_rcu(&action->list, &desc->head);
208 
209 	raw_spin_unlock_irqrestore(&desc->lock, flags);
210 	return 0;
211 }
212 EXPORT_SYMBOL(__register_nmi_handler);
213 
unregister_nmi_handler(unsigned int type,const char * name)214 void unregister_nmi_handler(unsigned int type, const char *name)
215 {
216 	struct nmi_desc *desc = nmi_to_desc(type);
217 	struct nmiaction *n, *found = NULL;
218 	unsigned long flags;
219 
220 	raw_spin_lock_irqsave(&desc->lock, flags);
221 
222 	list_for_each_entry_rcu(n, &desc->head, list) {
223 		/*
224 		 * the name passed in to describe the nmi handler
225 		 * is used as the lookup key
226 		 */
227 		if (!strcmp(n->name, name)) {
228 			WARN(in_nmi(),
229 				"Trying to free NMI (%s) from NMI context!\n", n->name);
230 			list_del_rcu(&n->list);
231 			found = n;
232 			break;
233 		}
234 	}
235 
236 	raw_spin_unlock_irqrestore(&desc->lock, flags);
237 	if (found) {
238 		synchronize_rcu();
239 		INIT_LIST_HEAD(&found->list);
240 	}
241 }
242 EXPORT_SYMBOL_GPL(unregister_nmi_handler);
243 
244 /**
245  * set_emergency_nmi_handler - Set emergency handler
246  * @type:    NMI type
247  * @handler: the emergency handler to be stored
248  *
249  * Set an emergency NMI handler which, if set, will preempt all the other
250  * handlers in the linked list. If a NULL handler is passed in, it will clear
251  * it. It is expected that concurrent calls to this function will not happen
252  * or the system is screwed beyond repair.
253  */
set_emergency_nmi_handler(unsigned int type,nmi_handler_t handler)254 void set_emergency_nmi_handler(unsigned int type, nmi_handler_t handler)
255 {
256 	struct nmi_desc *desc = nmi_to_desc(type);
257 
258 	if (WARN_ON_ONCE(desc->emerg_handler == handler))
259 		return;
260 	desc->emerg_handler = handler;
261 
262 	/*
263 	 * Ensure the emergency handler is visible to other CPUs before
264 	 * function return
265 	 */
266 	smp_wmb();
267 }
268 
269 static void
pci_serr_error(unsigned char reason,struct pt_regs * regs)270 pci_serr_error(unsigned char reason, struct pt_regs *regs)
271 {
272 	/* check to see if anyone registered against these types of errors */
273 	if (nmi_handle(NMI_SERR, regs))
274 		return;
275 
276 	pr_emerg("NMI: PCI system error (SERR) for reason %02x on CPU %d.\n",
277 		 reason, smp_processor_id());
278 
279 	if (panic_on_unrecovered_nmi)
280 		nmi_panic(regs, "NMI: Not continuing");
281 
282 	pr_emerg("Dazed and confused, but trying to continue\n");
283 
284 	/* Clear and disable the PCI SERR error line. */
285 	reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_SERR;
286 	outb(reason, NMI_REASON_PORT);
287 }
288 NOKPROBE_SYMBOL(pci_serr_error);
289 
290 static void
io_check_error(unsigned char reason,struct pt_regs * regs)291 io_check_error(unsigned char reason, struct pt_regs *regs)
292 {
293 	unsigned long i;
294 
295 	/* check to see if anyone registered against these types of errors */
296 	if (nmi_handle(NMI_IO_CHECK, regs))
297 		return;
298 
299 	pr_emerg(
300 	"NMI: IOCK error (debug interrupt?) for reason %02x on CPU %d.\n",
301 		 reason, smp_processor_id());
302 	show_regs(regs);
303 
304 	if (panic_on_io_nmi) {
305 		nmi_panic(regs, "NMI IOCK error: Not continuing");
306 
307 		/*
308 		 * If we end up here, it means we have received an NMI while
309 		 * processing panic(). Simply return without delaying and
310 		 * re-enabling NMIs.
311 		 */
312 		return;
313 	}
314 
315 	/* Re-enable the IOCK line, wait for a few seconds */
316 	reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_IOCHK;
317 	outb(reason, NMI_REASON_PORT);
318 
319 	i = 20000;
320 	while (--i) {
321 		touch_nmi_watchdog();
322 		udelay(100);
323 	}
324 
325 	reason &= ~NMI_REASON_CLEAR_IOCHK;
326 	outb(reason, NMI_REASON_PORT);
327 }
328 NOKPROBE_SYMBOL(io_check_error);
329 
330 static void
unknown_nmi_error(unsigned char reason,struct pt_regs * regs)331 unknown_nmi_error(unsigned char reason, struct pt_regs *regs)
332 {
333 	int handled;
334 
335 	/*
336 	 * Use 'false' as back-to-back NMIs are dealt with one level up.
337 	 * Of course this makes having multiple 'unknown' handlers useless
338 	 * as only the first one is ever run (unless it can actually determine
339 	 * if it caused the NMI)
340 	 */
341 	handled = nmi_handle(NMI_UNKNOWN, regs);
342 	if (handled) {
343 		__this_cpu_add(nmi_stats.unknown, handled);
344 		return;
345 	}
346 
347 	__this_cpu_add(nmi_stats.unknown, 1);
348 
349 	pr_emerg_ratelimited("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
350 			     reason, smp_processor_id());
351 
352 	if (unknown_nmi_panic || panic_on_unrecovered_nmi)
353 		nmi_panic(regs, "NMI: Not continuing");
354 
355 	pr_emerg_ratelimited("Dazed and confused, but trying to continue\n");
356 }
357 NOKPROBE_SYMBOL(unknown_nmi_error);
358 
359 static DEFINE_PER_CPU(bool, swallow_nmi);
360 static DEFINE_PER_CPU(unsigned long, last_nmi_rip);
361 
default_do_nmi(struct pt_regs * regs)362 static noinstr void default_do_nmi(struct pt_regs *regs)
363 {
364 	unsigned char reason = 0;
365 	int handled;
366 	bool b2b = false;
367 
368 	/*
369 	 * CPU-specific NMI must be processed before non-CPU-specific
370 	 * NMI, otherwise we may lose it, because the CPU-specific
371 	 * NMI can not be detected/processed on other CPUs.
372 	 */
373 
374 	/*
375 	 * Back-to-back NMIs are interesting because they can either
376 	 * be two NMI or more than two NMIs (any thing over two is dropped
377 	 * due to NMI being edge-triggered).  If this is the second half
378 	 * of the back-to-back NMI, assume we dropped things and process
379 	 * more handlers.  Otherwise reset the 'swallow' NMI behaviour
380 	 */
381 	if (regs->ip == __this_cpu_read(last_nmi_rip))
382 		b2b = true;
383 	else
384 		__this_cpu_write(swallow_nmi, false);
385 
386 	__this_cpu_write(last_nmi_rip, regs->ip);
387 
388 	instrumentation_begin();
389 
390 	if (microcode_nmi_handler_enabled() && microcode_nmi_handler())
391 		goto out;
392 
393 	handled = nmi_handle(NMI_LOCAL, regs);
394 	__this_cpu_add(nmi_stats.normal, handled);
395 	if (handled) {
396 		/*
397 		 * There are cases when a NMI handler handles multiple
398 		 * events in the current NMI.  One of these events may
399 		 * be queued for in the next NMI.  Because the event is
400 		 * already handled, the next NMI will result in an unknown
401 		 * NMI.  Instead lets flag this for a potential NMI to
402 		 * swallow.
403 		 */
404 		if (handled > 1)
405 			__this_cpu_write(swallow_nmi, true);
406 		goto out;
407 	}
408 
409 	/*
410 	 * Non-CPU-specific NMI: NMI sources can be processed on any CPU.
411 	 *
412 	 * Another CPU may be processing panic routines while holding
413 	 * nmi_reason_lock. Check if the CPU issued the IPI for crash dumping,
414 	 * and if so, call its callback directly.  If there is no CPU preparing
415 	 * crash dump, we simply loop here.
416 	 */
417 	while (!raw_spin_trylock(&nmi_reason_lock)) {
418 		run_crash_ipi_callback(regs);
419 		cpu_relax();
420 	}
421 
422 	reason = x86_platform.get_nmi_reason();
423 
424 	if (reason & NMI_REASON_MASK) {
425 		if (reason & NMI_REASON_SERR)
426 			pci_serr_error(reason, regs);
427 		else if (reason & NMI_REASON_IOCHK)
428 			io_check_error(reason, regs);
429 #ifdef CONFIG_X86_32
430 		/*
431 		 * Reassert NMI in case it became active
432 		 * meanwhile as it's edge-triggered:
433 		 */
434 		reassert_nmi();
435 #endif
436 		__this_cpu_add(nmi_stats.external, 1);
437 		raw_spin_unlock(&nmi_reason_lock);
438 		goto out;
439 	}
440 	raw_spin_unlock(&nmi_reason_lock);
441 
442 	/*
443 	 * Only one NMI can be latched at a time.  To handle
444 	 * this we may process multiple nmi handlers at once to
445 	 * cover the case where an NMI is dropped.  The downside
446 	 * to this approach is we may process an NMI prematurely,
447 	 * while its real NMI is sitting latched.  This will cause
448 	 * an unknown NMI on the next run of the NMI processing.
449 	 *
450 	 * We tried to flag that condition above, by setting the
451 	 * swallow_nmi flag when we process more than one event.
452 	 * This condition is also only present on the second half
453 	 * of a back-to-back NMI, so we flag that condition too.
454 	 *
455 	 * If both are true, we assume we already processed this
456 	 * NMI previously and we swallow it.  Otherwise we reset
457 	 * the logic.
458 	 *
459 	 * There are scenarios where we may accidentally swallow
460 	 * a 'real' unknown NMI.  For example, while processing
461 	 * a perf NMI another perf NMI comes in along with a
462 	 * 'real' unknown NMI.  These two NMIs get combined into
463 	 * one (as described above).  When the next NMI gets
464 	 * processed, it will be flagged by perf as handled, but
465 	 * no one will know that there was a 'real' unknown NMI sent
466 	 * also.  As a result it gets swallowed.  Or if the first
467 	 * perf NMI returns two events handled then the second
468 	 * NMI will get eaten by the logic below, again losing a
469 	 * 'real' unknown NMI.  But this is the best we can do
470 	 * for now.
471 	 */
472 	if (b2b && __this_cpu_read(swallow_nmi))
473 		__this_cpu_add(nmi_stats.swallow, 1);
474 	else
475 		unknown_nmi_error(reason, regs);
476 
477 out:
478 	instrumentation_end();
479 }
480 
481 /*
482  * NMIs can page fault or hit breakpoints which will cause it to lose
483  * its NMI context with the CPU when the breakpoint or page fault does an IRET.
484  *
485  * As a result, NMIs can nest if NMIs get unmasked due an IRET during
486  * NMI processing.  On x86_64, the asm glue protects us from nested NMIs
487  * if the outer NMI came from kernel mode, but we can still nest if the
488  * outer NMI came from user mode.
489  *
490  * To handle these nested NMIs, we have three states:
491  *
492  *  1) not running
493  *  2) executing
494  *  3) latched
495  *
496  * When no NMI is in progress, it is in the "not running" state.
497  * When an NMI comes in, it goes into the "executing" state.
498  * Normally, if another NMI is triggered, it does not interrupt
499  * the running NMI and the HW will simply latch it so that when
500  * the first NMI finishes, it will restart the second NMI.
501  * (Note, the latch is binary, thus multiple NMIs triggering,
502  *  when one is running, are ignored. Only one NMI is restarted.)
503  *
504  * If an NMI executes an iret, another NMI can preempt it. We do not
505  * want to allow this new NMI to run, but we want to execute it when the
506  * first one finishes.  We set the state to "latched", and the exit of
507  * the first NMI will perform a dec_return, if the result is zero
508  * (NOT_RUNNING), then it will simply exit the NMI handler. If not, the
509  * dec_return would have set the state to NMI_EXECUTING (what we want it
510  * to be when we are running). In this case, we simply jump back to
511  * rerun the NMI handler again, and restart the 'latched' NMI.
512  *
513  * No trap (breakpoint or page fault) should be hit before nmi_restart,
514  * thus there is no race between the first check of state for NOT_RUNNING
515  * and setting it to NMI_EXECUTING. The HW will prevent nested NMIs
516  * at this point.
517  *
518  * In case the NMI takes a page fault, we need to save off the CR2
519  * because the NMI could have preempted another page fault and corrupt
520  * the CR2 that is about to be read. As nested NMIs must be restarted
521  * and they can not take breakpoints or page faults, the update of the
522  * CR2 must be done before converting the nmi state back to NOT_RUNNING.
523  * Otherwise, there would be a race of another nested NMI coming in
524  * after setting state to NOT_RUNNING but before updating the nmi_cr2.
525  */
526 enum nmi_states {
527 	NMI_NOT_RUNNING = 0,
528 	NMI_EXECUTING,
529 	NMI_LATCHED,
530 };
531 static DEFINE_PER_CPU(enum nmi_states, nmi_state);
532 static DEFINE_PER_CPU(unsigned long, nmi_cr2);
533 static DEFINE_PER_CPU(unsigned long, nmi_dr7);
534 
DEFINE_IDTENTRY_RAW(exc_nmi)535 DEFINE_IDTENTRY_RAW(exc_nmi)
536 {
537 	irqentry_state_t irq_state;
538 	struct nmi_stats *nsp = this_cpu_ptr(&nmi_stats);
539 
540 	/*
541 	 * Re-enable NMIs right here when running as an SEV-ES guest. This might
542 	 * cause nested NMIs, but those can be handled safely.
543 	 */
544 	sev_es_nmi_complete();
545 	if (IS_ENABLED(CONFIG_NMI_CHECK_CPU))
546 		raw_atomic_long_inc(&nsp->idt_calls);
547 
548 	if (arch_cpu_is_offline(smp_processor_id())) {
549 		if (microcode_nmi_handler_enabled())
550 			microcode_offline_nmi_handler();
551 		return;
552 	}
553 
554 	if (this_cpu_read(nmi_state) != NMI_NOT_RUNNING) {
555 		this_cpu_write(nmi_state, NMI_LATCHED);
556 		return;
557 	}
558 	this_cpu_write(nmi_state, NMI_EXECUTING);
559 	this_cpu_write(nmi_cr2, read_cr2());
560 
561 nmi_restart:
562 	if (IS_ENABLED(CONFIG_NMI_CHECK_CPU)) {
563 		WRITE_ONCE(nsp->idt_seq, nsp->idt_seq + 1);
564 		WARN_ON_ONCE(!(nsp->idt_seq & 0x1));
565 		WRITE_ONCE(nsp->recv_jiffies, jiffies);
566 	}
567 
568 	/*
569 	 * Needs to happen before DR7 is accessed, because the hypervisor can
570 	 * intercept DR7 reads/writes, turning those into #VC exceptions.
571 	 */
572 	sev_es_ist_enter(regs);
573 
574 	this_cpu_write(nmi_dr7, local_db_save());
575 
576 	irq_state = irqentry_nmi_enter(regs);
577 
578 	inc_irq_stat(__nmi_count);
579 
580 	if (IS_ENABLED(CONFIG_NMI_CHECK_CPU) && ignore_nmis) {
581 		WRITE_ONCE(nsp->idt_ignored, nsp->idt_ignored + 1);
582 	} else if (!ignore_nmis) {
583 		if (IS_ENABLED(CONFIG_NMI_CHECK_CPU)) {
584 			WRITE_ONCE(nsp->idt_nmi_seq, nsp->idt_nmi_seq + 1);
585 			WARN_ON_ONCE(!(nsp->idt_nmi_seq & 0x1));
586 		}
587 		default_do_nmi(regs);
588 		if (IS_ENABLED(CONFIG_NMI_CHECK_CPU)) {
589 			WRITE_ONCE(nsp->idt_nmi_seq, nsp->idt_nmi_seq + 1);
590 			WARN_ON_ONCE(nsp->idt_nmi_seq & 0x1);
591 		}
592 	}
593 
594 	irqentry_nmi_exit(regs, irq_state);
595 
596 	local_db_restore(this_cpu_read(nmi_dr7));
597 
598 	sev_es_ist_exit();
599 
600 	if (unlikely(this_cpu_read(nmi_cr2) != read_cr2()))
601 		write_cr2(this_cpu_read(nmi_cr2));
602 	if (IS_ENABLED(CONFIG_NMI_CHECK_CPU)) {
603 		WRITE_ONCE(nsp->idt_seq, nsp->idt_seq + 1);
604 		WARN_ON_ONCE(nsp->idt_seq & 0x1);
605 		WRITE_ONCE(nsp->recv_jiffies, jiffies);
606 	}
607 	if (this_cpu_dec_return(nmi_state))
608 		goto nmi_restart;
609 }
610 
611 #if IS_ENABLED(CONFIG_KVM_INTEL)
DEFINE_IDTENTRY_RAW(exc_nmi_kvm_vmx)612 DEFINE_IDTENTRY_RAW(exc_nmi_kvm_vmx)
613 {
614 	exc_nmi(regs);
615 }
616 #if IS_MODULE(CONFIG_KVM_INTEL)
617 EXPORT_SYMBOL_GPL(asm_exc_nmi_kvm_vmx);
618 #endif
619 #endif
620 
621 #ifdef CONFIG_NMI_CHECK_CPU
622 
623 static char *nmi_check_stall_msg[] = {
624 /*									*/
625 /* +--------- nmi_seq & 0x1: CPU is currently in NMI handler.		*/
626 /* | +------ cpu_is_offline(cpu)					*/
627 /* | | +--- nsp->idt_calls_snap != atomic_long_read(&nsp->idt_calls):	*/
628 /* | | |	NMI handler has been invoked.				*/
629 /* | | |								*/
630 /* V V V								*/
631 /* 0 0 0 */ "NMIs are not reaching exc_nmi() handler",
632 /* 0 0 1 */ "exc_nmi() handler is ignoring NMIs",
633 /* 0 1 0 */ "CPU is offline and NMIs are not reaching exc_nmi() handler",
634 /* 0 1 1 */ "CPU is offline and exc_nmi() handler is legitimately ignoring NMIs",
635 /* 1 0 0 */ "CPU is in exc_nmi() handler and no further NMIs are reaching handler",
636 /* 1 0 1 */ "CPU is in exc_nmi() handler which is legitimately ignoring NMIs",
637 /* 1 1 0 */ "CPU is offline in exc_nmi() handler and no more NMIs are reaching exc_nmi() handler",
638 /* 1 1 1 */ "CPU is offline in exc_nmi() handler which is legitimately ignoring NMIs",
639 };
640 
nmi_backtrace_stall_snap(const struct cpumask * btp)641 void nmi_backtrace_stall_snap(const struct cpumask *btp)
642 {
643 	int cpu;
644 	struct nmi_stats *nsp;
645 
646 	for_each_cpu(cpu, btp) {
647 		nsp = per_cpu_ptr(&nmi_stats, cpu);
648 		nsp->idt_seq_snap = READ_ONCE(nsp->idt_seq);
649 		nsp->idt_nmi_seq_snap = READ_ONCE(nsp->idt_nmi_seq);
650 		nsp->idt_ignored_snap = READ_ONCE(nsp->idt_ignored);
651 		nsp->idt_calls_snap = atomic_long_read(&nsp->idt_calls);
652 	}
653 }
654 
nmi_backtrace_stall_check(const struct cpumask * btp)655 void nmi_backtrace_stall_check(const struct cpumask *btp)
656 {
657 	int cpu;
658 	int idx;
659 	unsigned long nmi_seq;
660 	unsigned long j = jiffies;
661 	char *modp;
662 	char *msgp;
663 	char *msghp;
664 	struct nmi_stats *nsp;
665 
666 	for_each_cpu(cpu, btp) {
667 		nsp = per_cpu_ptr(&nmi_stats, cpu);
668 		modp = "";
669 		msghp = "";
670 		nmi_seq = READ_ONCE(nsp->idt_nmi_seq);
671 		if (nsp->idt_nmi_seq_snap + 1 == nmi_seq && (nmi_seq & 0x1)) {
672 			msgp = "CPU entered NMI handler function, but has not exited";
673 		} else if (nsp->idt_nmi_seq_snap == nmi_seq ||
674 			   nsp->idt_nmi_seq_snap + 1 == nmi_seq) {
675 			idx = ((nmi_seq & 0x1) << 2) |
676 			      (cpu_is_offline(cpu) << 1) |
677 			      (nsp->idt_calls_snap != atomic_long_read(&nsp->idt_calls));
678 			msgp = nmi_check_stall_msg[idx];
679 			if (nsp->idt_ignored_snap != READ_ONCE(nsp->idt_ignored) && (idx & 0x1))
680 				modp = ", but OK because ignore_nmis was set";
681 			if (nsp->idt_nmi_seq_snap + 1 == nmi_seq)
682 				msghp = " (CPU exited one NMI handler function)";
683 			else if (nmi_seq & 0x1)
684 				msghp = " (CPU currently in NMI handler function)";
685 			else
686 				msghp = " (CPU was never in an NMI handler function)";
687 		} else {
688 			msgp = "CPU is handling NMIs";
689 		}
690 		pr_alert("%s: CPU %d: %s%s%s\n", __func__, cpu, msgp, modp, msghp);
691 		pr_alert("%s: last activity: %lu jiffies ago.\n",
692 			 __func__, j - READ_ONCE(nsp->recv_jiffies));
693 	}
694 }
695 
696 #endif
697 
698 #ifdef CONFIG_X86_FRED
699 /*
700  * With FRED, CR2/DR6 is pushed to #PF/#DB stack frame during FRED
701  * event delivery, i.e., there is no problem of transient states.
702  * And NMI unblocking only happens when the stack frame indicates
703  * that so should happen.
704  *
705  * Thus, the NMI entry stub for FRED is really straightforward and
706  * as simple as most exception handlers. As such, #DB is allowed
707  * during NMI handling.
708  */
DEFINE_FREDENTRY_NMI(exc_nmi)709 DEFINE_FREDENTRY_NMI(exc_nmi)
710 {
711 	irqentry_state_t irq_state;
712 
713 	if (arch_cpu_is_offline(smp_processor_id())) {
714 		if (microcode_nmi_handler_enabled())
715 			microcode_offline_nmi_handler();
716 		return;
717 	}
718 
719 	/*
720 	 * Save CR2 for eventual restore to cover the case where the NMI
721 	 * hits the VMENTER/VMEXIT region where guest CR2 is life. This
722 	 * prevents guest state corruption in case that the NMI handler
723 	 * takes a page fault.
724 	 */
725 	this_cpu_write(nmi_cr2, read_cr2());
726 
727 	irq_state = irqentry_nmi_enter(regs);
728 
729 	inc_irq_stat(__nmi_count);
730 	default_do_nmi(regs);
731 
732 	irqentry_nmi_exit(regs, irq_state);
733 
734 	if (unlikely(this_cpu_read(nmi_cr2) != read_cr2()))
735 		write_cr2(this_cpu_read(nmi_cr2));
736 }
737 #endif
738 
stop_nmi(void)739 void stop_nmi(void)
740 {
741 	ignore_nmis++;
742 }
743 
restart_nmi(void)744 void restart_nmi(void)
745 {
746 	ignore_nmis--;
747 }
748 
749 /* reset the back-to-back NMI logic */
local_touch_nmi(void)750 void local_touch_nmi(void)
751 {
752 	__this_cpu_write(last_nmi_rip, 0);
753 }
754 EXPORT_SYMBOL_GPL(local_touch_nmi);
755