1 /*
2 * Copyright 2012-15 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: AMD
23 *
24 */
25
26 #include "dm_services.h"
27
28 #include "resource.h"
29 #include "include/irq_service_interface.h"
30 #include "link_encoder.h"
31 #include "stream_encoder.h"
32 #include "opp.h"
33 #include "timing_generator.h"
34 #include "transform.h"
35 #include "dccg.h"
36 #include "dchubbub.h"
37 #include "dpp.h"
38 #include "core_types.h"
39 #include "set_mode_types.h"
40 #include "virtual/virtual_stream_encoder.h"
41 #include "dpcd_defs.h"
42 #include "link_enc_cfg.h"
43 #include "link.h"
44 #include "clk_mgr.h"
45 #include "dc_state_priv.h"
46 #include "virtual/virtual_link_hwss.h"
47 #include "link/hwss/link_hwss_dio.h"
48 #include "link/hwss/link_hwss_dpia.h"
49 #include "link/hwss/link_hwss_hpo_dp.h"
50 #include "link/hwss/link_hwss_dio_fixed_vs_pe_retimer.h"
51 #include "link/hwss/link_hwss_hpo_fixed_vs_pe_retimer_dp.h"
52
53 #if defined(CONFIG_DRM_AMD_DC_SI)
54 #include "dce60/dce60_resource.h"
55 #endif
56 #include "dce80/dce80_resource.h"
57 #include "dce100/dce100_resource.h"
58 #include "dce110/dce110_resource.h"
59 #include "dce112/dce112_resource.h"
60 #include "dce120/dce120_resource.h"
61 #include "dcn10/dcn10_resource.h"
62 #include "dcn20/dcn20_resource.h"
63 #include "dcn21/dcn21_resource.h"
64 #include "dcn201/dcn201_resource.h"
65 #include "dcn30/dcn30_resource.h"
66 #include "dcn301/dcn301_resource.h"
67 #include "dcn302/dcn302_resource.h"
68 #include "dcn303/dcn303_resource.h"
69 #include "dcn31/dcn31_resource.h"
70 #include "dcn314/dcn314_resource.h"
71 #include "dcn315/dcn315_resource.h"
72 #include "dcn316/dcn316_resource.h"
73 #include "dcn32/dcn32_resource.h"
74 #include "dcn321/dcn321_resource.h"
75 #include "dcn35/dcn35_resource.h"
76
77 #define VISUAL_CONFIRM_BASE_DEFAULT 3
78 #define VISUAL_CONFIRM_BASE_MIN 1
79 #define VISUAL_CONFIRM_BASE_MAX 10
80 /* we choose 240 because it is a common denominator of common v addressable
81 * such as 2160, 1440, 1200, 960. So we take 1/240 portion of v addressable as
82 * the visual confirm dpp offset height. So visual confirm height can stay
83 * relatively the same independent from timing used.
84 */
85 #define VISUAL_CONFIRM_DPP_OFFSET_DENO 240
86
87 #define DC_LOGGER \
88 dc->ctx->logger
89 #define DC_LOGGER_INIT(logger)
90
91 #include "dml2/dml2_wrapper.h"
92
93 #define UNABLE_TO_SPLIT -1
94
resource_parse_asic_id(struct hw_asic_id asic_id)95 enum dce_version resource_parse_asic_id(struct hw_asic_id asic_id)
96 {
97 enum dce_version dc_version = DCE_VERSION_UNKNOWN;
98
99 switch (asic_id.chip_family) {
100
101 #if defined(CONFIG_DRM_AMD_DC_SI)
102 case FAMILY_SI:
103 if (ASIC_REV_IS_TAHITI_P(asic_id.hw_internal_rev) ||
104 ASIC_REV_IS_PITCAIRN_PM(asic_id.hw_internal_rev) ||
105 ASIC_REV_IS_CAPEVERDE_M(asic_id.hw_internal_rev))
106 dc_version = DCE_VERSION_6_0;
107 else if (ASIC_REV_IS_OLAND_M(asic_id.hw_internal_rev))
108 dc_version = DCE_VERSION_6_4;
109 else
110 dc_version = DCE_VERSION_6_1;
111 break;
112 #endif
113 case FAMILY_CI:
114 dc_version = DCE_VERSION_8_0;
115 break;
116 case FAMILY_KV:
117 if (ASIC_REV_IS_KALINDI(asic_id.hw_internal_rev) ||
118 ASIC_REV_IS_BHAVANI(asic_id.hw_internal_rev) ||
119 ASIC_REV_IS_GODAVARI(asic_id.hw_internal_rev))
120 dc_version = DCE_VERSION_8_3;
121 else
122 dc_version = DCE_VERSION_8_1;
123 break;
124 case FAMILY_CZ:
125 dc_version = DCE_VERSION_11_0;
126 break;
127
128 case FAMILY_VI:
129 if (ASIC_REV_IS_TONGA_P(asic_id.hw_internal_rev) ||
130 ASIC_REV_IS_FIJI_P(asic_id.hw_internal_rev)) {
131 dc_version = DCE_VERSION_10_0;
132 break;
133 }
134 if (ASIC_REV_IS_POLARIS10_P(asic_id.hw_internal_rev) ||
135 ASIC_REV_IS_POLARIS11_M(asic_id.hw_internal_rev) ||
136 ASIC_REV_IS_POLARIS12_V(asic_id.hw_internal_rev)) {
137 dc_version = DCE_VERSION_11_2;
138 }
139 if (ASIC_REV_IS_VEGAM(asic_id.hw_internal_rev))
140 dc_version = DCE_VERSION_11_22;
141 break;
142 case FAMILY_AI:
143 if (ASICREV_IS_VEGA20_P(asic_id.hw_internal_rev))
144 dc_version = DCE_VERSION_12_1;
145 else
146 dc_version = DCE_VERSION_12_0;
147 break;
148 case FAMILY_RV:
149 dc_version = DCN_VERSION_1_0;
150 if (ASICREV_IS_RAVEN2(asic_id.hw_internal_rev))
151 dc_version = DCN_VERSION_1_01;
152 if (ASICREV_IS_RENOIR(asic_id.hw_internal_rev))
153 dc_version = DCN_VERSION_2_1;
154 if (ASICREV_IS_GREEN_SARDINE(asic_id.hw_internal_rev))
155 dc_version = DCN_VERSION_2_1;
156 break;
157
158 case FAMILY_NV:
159 dc_version = DCN_VERSION_2_0;
160 if (asic_id.chip_id == DEVICE_ID_NV_13FE || asic_id.chip_id == DEVICE_ID_NV_143F) {
161 dc_version = DCN_VERSION_2_01;
162 break;
163 }
164 if (ASICREV_IS_SIENNA_CICHLID_P(asic_id.hw_internal_rev))
165 dc_version = DCN_VERSION_3_0;
166 if (ASICREV_IS_DIMGREY_CAVEFISH_P(asic_id.hw_internal_rev))
167 dc_version = DCN_VERSION_3_02;
168 if (ASICREV_IS_BEIGE_GOBY_P(asic_id.hw_internal_rev))
169 dc_version = DCN_VERSION_3_03;
170 break;
171
172 case FAMILY_VGH:
173 dc_version = DCN_VERSION_3_01;
174 break;
175
176 case FAMILY_YELLOW_CARP:
177 if (ASICREV_IS_YELLOW_CARP(asic_id.hw_internal_rev))
178 dc_version = DCN_VERSION_3_1;
179 break;
180 case AMDGPU_FAMILY_GC_10_3_6:
181 if (ASICREV_IS_GC_10_3_6(asic_id.hw_internal_rev))
182 dc_version = DCN_VERSION_3_15;
183 break;
184 case AMDGPU_FAMILY_GC_10_3_7:
185 if (ASICREV_IS_GC_10_3_7(asic_id.hw_internal_rev))
186 dc_version = DCN_VERSION_3_16;
187 break;
188 case AMDGPU_FAMILY_GC_11_0_0:
189 dc_version = DCN_VERSION_3_2;
190 if (ASICREV_IS_GC_11_0_2(asic_id.hw_internal_rev))
191 dc_version = DCN_VERSION_3_21;
192 break;
193 case AMDGPU_FAMILY_GC_11_0_1:
194 dc_version = DCN_VERSION_3_14;
195 break;
196 case AMDGPU_FAMILY_GC_11_5_0:
197 dc_version = DCN_VERSION_3_5;
198 break;
199 default:
200 dc_version = DCE_VERSION_UNKNOWN;
201 break;
202 }
203 return dc_version;
204 }
205
dc_create_resource_pool(struct dc * dc,const struct dc_init_data * init_data,enum dce_version dc_version)206 struct resource_pool *dc_create_resource_pool(struct dc *dc,
207 const struct dc_init_data *init_data,
208 enum dce_version dc_version)
209 {
210 struct resource_pool *res_pool = NULL;
211
212 switch (dc_version) {
213 #if defined(CONFIG_DRM_AMD_DC_SI)
214 case DCE_VERSION_6_0:
215 res_pool = dce60_create_resource_pool(
216 init_data->num_virtual_links, dc);
217 break;
218 case DCE_VERSION_6_1:
219 res_pool = dce61_create_resource_pool(
220 init_data->num_virtual_links, dc);
221 break;
222 case DCE_VERSION_6_4:
223 res_pool = dce64_create_resource_pool(
224 init_data->num_virtual_links, dc);
225 break;
226 #endif
227 case DCE_VERSION_8_0:
228 res_pool = dce80_create_resource_pool(
229 init_data->num_virtual_links, dc);
230 break;
231 case DCE_VERSION_8_1:
232 res_pool = dce81_create_resource_pool(
233 init_data->num_virtual_links, dc);
234 break;
235 case DCE_VERSION_8_3:
236 res_pool = dce83_create_resource_pool(
237 init_data->num_virtual_links, dc);
238 break;
239 case DCE_VERSION_10_0:
240 res_pool = dce100_create_resource_pool(
241 init_data->num_virtual_links, dc);
242 break;
243 case DCE_VERSION_11_0:
244 res_pool = dce110_create_resource_pool(
245 init_data->num_virtual_links, dc,
246 init_data->asic_id);
247 break;
248 case DCE_VERSION_11_2:
249 case DCE_VERSION_11_22:
250 res_pool = dce112_create_resource_pool(
251 init_data->num_virtual_links, dc);
252 break;
253 case DCE_VERSION_12_0:
254 case DCE_VERSION_12_1:
255 res_pool = dce120_create_resource_pool(
256 init_data->num_virtual_links, dc);
257 break;
258
259 #if defined(CONFIG_DRM_AMD_DC_FP)
260 case DCN_VERSION_1_0:
261 case DCN_VERSION_1_01:
262 res_pool = dcn10_create_resource_pool(init_data, dc);
263 break;
264 case DCN_VERSION_2_0:
265 res_pool = dcn20_create_resource_pool(init_data, dc);
266 break;
267 case DCN_VERSION_2_1:
268 res_pool = dcn21_create_resource_pool(init_data, dc);
269 break;
270 case DCN_VERSION_2_01:
271 res_pool = dcn201_create_resource_pool(init_data, dc);
272 break;
273 case DCN_VERSION_3_0:
274 res_pool = dcn30_create_resource_pool(init_data, dc);
275 break;
276 case DCN_VERSION_3_01:
277 res_pool = dcn301_create_resource_pool(init_data, dc);
278 break;
279 case DCN_VERSION_3_02:
280 res_pool = dcn302_create_resource_pool(init_data, dc);
281 break;
282 case DCN_VERSION_3_03:
283 res_pool = dcn303_create_resource_pool(init_data, dc);
284 break;
285 case DCN_VERSION_3_1:
286 res_pool = dcn31_create_resource_pool(init_data, dc);
287 break;
288 case DCN_VERSION_3_14:
289 res_pool = dcn314_create_resource_pool(init_data, dc);
290 break;
291 case DCN_VERSION_3_15:
292 res_pool = dcn315_create_resource_pool(init_data, dc);
293 break;
294 case DCN_VERSION_3_16:
295 res_pool = dcn316_create_resource_pool(init_data, dc);
296 break;
297 case DCN_VERSION_3_2:
298 res_pool = dcn32_create_resource_pool(init_data, dc);
299 break;
300 case DCN_VERSION_3_21:
301 res_pool = dcn321_create_resource_pool(init_data, dc);
302 break;
303 case DCN_VERSION_3_5:
304 res_pool = dcn35_create_resource_pool(init_data, dc);
305 break;
306 #endif /* CONFIG_DRM_AMD_DC_FP */
307 default:
308 break;
309 }
310
311 if (res_pool != NULL) {
312 if (dc->ctx->dc_bios->fw_info_valid) {
313 res_pool->ref_clocks.xtalin_clock_inKhz =
314 dc->ctx->dc_bios->fw_info.pll_info.crystal_frequency;
315 /* initialize with firmware data first, no all
316 * ASIC have DCCG SW component. FPGA or
317 * simulation need initialization of
318 * dccg_ref_clock_inKhz, dchub_ref_clock_inKhz
319 * with xtalin_clock_inKhz
320 */
321 res_pool->ref_clocks.dccg_ref_clock_inKhz =
322 res_pool->ref_clocks.xtalin_clock_inKhz;
323 res_pool->ref_clocks.dchub_ref_clock_inKhz =
324 res_pool->ref_clocks.xtalin_clock_inKhz;
325 if (dc->debug.using_dml2)
326 if (res_pool->hubbub && res_pool->hubbub->funcs->get_dchub_ref_freq)
327 res_pool->hubbub->funcs->get_dchub_ref_freq(res_pool->hubbub,
328 res_pool->ref_clocks.dccg_ref_clock_inKhz,
329 &res_pool->ref_clocks.dchub_ref_clock_inKhz);
330 } else
331 ASSERT_CRITICAL(false);
332 }
333
334 return res_pool;
335 }
336
dc_destroy_resource_pool(struct dc * dc)337 void dc_destroy_resource_pool(struct dc *dc)
338 {
339 if (dc) {
340 if (dc->res_pool)
341 dc->res_pool->funcs->destroy(&dc->res_pool);
342
343 kfree(dc->hwseq);
344 }
345 }
346
update_num_audio(const struct resource_straps * straps,unsigned int * num_audio,struct audio_support * aud_support)347 static void update_num_audio(
348 const struct resource_straps *straps,
349 unsigned int *num_audio,
350 struct audio_support *aud_support)
351 {
352 aud_support->dp_audio = true;
353 aud_support->hdmi_audio_native = false;
354 aud_support->hdmi_audio_on_dongle = false;
355
356 if (straps->hdmi_disable == 0) {
357 if (straps->dc_pinstraps_audio & 0x2) {
358 aud_support->hdmi_audio_on_dongle = true;
359 aud_support->hdmi_audio_native = true;
360 }
361 }
362
363 switch (straps->audio_stream_number) {
364 case 0: /* multi streams supported */
365 break;
366 case 1: /* multi streams not supported */
367 *num_audio = 1;
368 break;
369 default:
370 DC_ERR("DC: unexpected audio fuse!\n");
371 }
372 }
373
resource_construct(unsigned int num_virtual_links,struct dc * dc,struct resource_pool * pool,const struct resource_create_funcs * create_funcs)374 bool resource_construct(
375 unsigned int num_virtual_links,
376 struct dc *dc,
377 struct resource_pool *pool,
378 const struct resource_create_funcs *create_funcs)
379 {
380 struct dc_context *ctx = dc->ctx;
381 const struct resource_caps *caps = pool->res_cap;
382 int i;
383 unsigned int num_audio = caps->num_audio;
384 struct resource_straps straps = {0};
385
386 if (create_funcs->read_dce_straps)
387 create_funcs->read_dce_straps(dc->ctx, &straps);
388
389 pool->audio_count = 0;
390 if (create_funcs->create_audio) {
391 /* find the total number of streams available via the
392 * AZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_CONFIGURATION_DEFAULT
393 * registers (one for each pin) starting from pin 1
394 * up to the max number of audio pins.
395 * We stop on the first pin where
396 * PORT_CONNECTIVITY == 1 (as instructed by HW team).
397 */
398 update_num_audio(&straps, &num_audio, &pool->audio_support);
399 for (i = 0; i < caps->num_audio; i++) {
400 struct audio *aud = create_funcs->create_audio(ctx, i);
401
402 if (aud == NULL) {
403 DC_ERR("DC: failed to create audio!\n");
404 return false;
405 }
406 if (!aud->funcs->endpoint_valid(aud)) {
407 aud->funcs->destroy(&aud);
408 break;
409 }
410 pool->audios[i] = aud;
411 pool->audio_count++;
412 }
413 }
414
415 pool->stream_enc_count = 0;
416 if (create_funcs->create_stream_encoder) {
417 for (i = 0; i < caps->num_stream_encoder; i++) {
418 pool->stream_enc[i] = create_funcs->create_stream_encoder(i, ctx);
419 if (pool->stream_enc[i] == NULL)
420 DC_ERR("DC: failed to create stream_encoder!\n");
421 pool->stream_enc_count++;
422 }
423 }
424
425 pool->hpo_dp_stream_enc_count = 0;
426 if (create_funcs->create_hpo_dp_stream_encoder) {
427 for (i = 0; i < caps->num_hpo_dp_stream_encoder; i++) {
428 pool->hpo_dp_stream_enc[i] = create_funcs->create_hpo_dp_stream_encoder(i+ENGINE_ID_HPO_DP_0, ctx);
429 if (pool->hpo_dp_stream_enc[i] == NULL)
430 DC_ERR("DC: failed to create HPO DP stream encoder!\n");
431 pool->hpo_dp_stream_enc_count++;
432
433 }
434 }
435
436 pool->hpo_dp_link_enc_count = 0;
437 if (create_funcs->create_hpo_dp_link_encoder) {
438 for (i = 0; i < caps->num_hpo_dp_link_encoder; i++) {
439 pool->hpo_dp_link_enc[i] = create_funcs->create_hpo_dp_link_encoder(i, ctx);
440 if (pool->hpo_dp_link_enc[i] == NULL)
441 DC_ERR("DC: failed to create HPO DP link encoder!\n");
442 pool->hpo_dp_link_enc_count++;
443 }
444 }
445
446 for (i = 0; i < caps->num_mpc_3dlut; i++) {
447 pool->mpc_lut[i] = dc_create_3dlut_func();
448 if (pool->mpc_lut[i] == NULL)
449 DC_ERR("DC: failed to create MPC 3dlut!\n");
450 pool->mpc_shaper[i] = dc_create_transfer_func();
451 if (pool->mpc_shaper[i] == NULL)
452 DC_ERR("DC: failed to create MPC shaper!\n");
453 }
454
455 dc->caps.dynamic_audio = false;
456 if (pool->audio_count < pool->stream_enc_count) {
457 dc->caps.dynamic_audio = true;
458 }
459 for (i = 0; i < num_virtual_links; i++) {
460 pool->stream_enc[pool->stream_enc_count] =
461 virtual_stream_encoder_create(
462 ctx, ctx->dc_bios);
463 if (pool->stream_enc[pool->stream_enc_count] == NULL) {
464 DC_ERR("DC: failed to create stream_encoder!\n");
465 return false;
466 }
467 pool->stream_enc_count++;
468 }
469
470 dc->hwseq = create_funcs->create_hwseq(ctx);
471
472 return true;
473 }
find_matching_clock_source(const struct resource_pool * pool,struct clock_source * clock_source)474 static int find_matching_clock_source(
475 const struct resource_pool *pool,
476 struct clock_source *clock_source)
477 {
478
479 int i;
480
481 for (i = 0; i < pool->clk_src_count; i++) {
482 if (pool->clock_sources[i] == clock_source)
483 return i;
484 }
485 return -1;
486 }
487
resource_unreference_clock_source(struct resource_context * res_ctx,const struct resource_pool * pool,struct clock_source * clock_source)488 void resource_unreference_clock_source(
489 struct resource_context *res_ctx,
490 const struct resource_pool *pool,
491 struct clock_source *clock_source)
492 {
493 int i = find_matching_clock_source(pool, clock_source);
494
495 if (i > -1)
496 res_ctx->clock_source_ref_count[i]--;
497
498 if (pool->dp_clock_source == clock_source)
499 res_ctx->dp_clock_source_ref_count--;
500 }
501
resource_reference_clock_source(struct resource_context * res_ctx,const struct resource_pool * pool,struct clock_source * clock_source)502 void resource_reference_clock_source(
503 struct resource_context *res_ctx,
504 const struct resource_pool *pool,
505 struct clock_source *clock_source)
506 {
507 int i = find_matching_clock_source(pool, clock_source);
508
509 if (i > -1)
510 res_ctx->clock_source_ref_count[i]++;
511
512 if (pool->dp_clock_source == clock_source)
513 res_ctx->dp_clock_source_ref_count++;
514 }
515
resource_get_clock_source_reference(struct resource_context * res_ctx,const struct resource_pool * pool,struct clock_source * clock_source)516 int resource_get_clock_source_reference(
517 struct resource_context *res_ctx,
518 const struct resource_pool *pool,
519 struct clock_source *clock_source)
520 {
521 int i = find_matching_clock_source(pool, clock_source);
522
523 if (i > -1)
524 return res_ctx->clock_source_ref_count[i];
525
526 if (pool->dp_clock_source == clock_source)
527 return res_ctx->dp_clock_source_ref_count;
528
529 return -1;
530 }
531
resource_are_vblanks_synchronizable(struct dc_stream_state * stream1,struct dc_stream_state * stream2)532 bool resource_are_vblanks_synchronizable(
533 struct dc_stream_state *stream1,
534 struct dc_stream_state *stream2)
535 {
536 uint32_t base60_refresh_rates[] = {10, 20, 5};
537 uint8_t i;
538 uint8_t rr_count = ARRAY_SIZE(base60_refresh_rates);
539 uint64_t frame_time_diff;
540
541 if (stream1->ctx->dc->config.vblank_alignment_dto_params &&
542 stream1->ctx->dc->config.vblank_alignment_max_frame_time_diff > 0 &&
543 dc_is_dp_signal(stream1->signal) &&
544 dc_is_dp_signal(stream2->signal) &&
545 false == stream1->has_non_synchronizable_pclk &&
546 false == stream2->has_non_synchronizable_pclk &&
547 stream1->timing.flags.VBLANK_SYNCHRONIZABLE &&
548 stream2->timing.flags.VBLANK_SYNCHRONIZABLE) {
549 /* disable refresh rates higher than 60Hz for now */
550 if (stream1->timing.pix_clk_100hz*100/stream1->timing.h_total/
551 stream1->timing.v_total > 60)
552 return false;
553 if (stream2->timing.pix_clk_100hz*100/stream2->timing.h_total/
554 stream2->timing.v_total > 60)
555 return false;
556 frame_time_diff = (uint64_t)10000 *
557 stream1->timing.h_total *
558 stream1->timing.v_total *
559 stream2->timing.pix_clk_100hz;
560 frame_time_diff = div_u64(frame_time_diff, stream1->timing.pix_clk_100hz);
561 frame_time_diff = div_u64(frame_time_diff, stream2->timing.h_total);
562 frame_time_diff = div_u64(frame_time_diff, stream2->timing.v_total);
563 for (i = 0; i < rr_count; i++) {
564 int64_t diff = (int64_t)div_u64(frame_time_diff * base60_refresh_rates[i], 10) - 10000;
565
566 if (diff < 0)
567 diff = -diff;
568 if (diff < stream1->ctx->dc->config.vblank_alignment_max_frame_time_diff)
569 return true;
570 }
571 }
572 return false;
573 }
574
resource_are_streams_timing_synchronizable(struct dc_stream_state * stream1,struct dc_stream_state * stream2)575 bool resource_are_streams_timing_synchronizable(
576 struct dc_stream_state *stream1,
577 struct dc_stream_state *stream2)
578 {
579 if (stream1->timing.h_total != stream2->timing.h_total)
580 return false;
581
582 if (stream1->timing.v_total != stream2->timing.v_total)
583 return false;
584
585 if (stream1->timing.h_addressable
586 != stream2->timing.h_addressable)
587 return false;
588
589 if (stream1->timing.v_addressable
590 != stream2->timing.v_addressable)
591 return false;
592
593 if (stream1->timing.v_front_porch
594 != stream2->timing.v_front_porch)
595 return false;
596
597 if (stream1->timing.pix_clk_100hz
598 != stream2->timing.pix_clk_100hz)
599 return false;
600
601 if (stream1->clamping.c_depth != stream2->clamping.c_depth)
602 return false;
603
604 if (stream1->phy_pix_clk != stream2->phy_pix_clk
605 && (!dc_is_dp_signal(stream1->signal)
606 || !dc_is_dp_signal(stream2->signal)))
607 return false;
608
609 if (stream1->view_format != stream2->view_format)
610 return false;
611
612 if (stream1->ignore_msa_timing_param || stream2->ignore_msa_timing_param)
613 return false;
614
615 return true;
616 }
is_dp_and_hdmi_sharable(struct dc_stream_state * stream1,struct dc_stream_state * stream2)617 static bool is_dp_and_hdmi_sharable(
618 struct dc_stream_state *stream1,
619 struct dc_stream_state *stream2)
620 {
621 if (stream1->ctx->dc->caps.disable_dp_clk_share)
622 return false;
623
624 if (stream1->clamping.c_depth != COLOR_DEPTH_888 ||
625 stream2->clamping.c_depth != COLOR_DEPTH_888)
626 return false;
627
628 return true;
629
630 }
631
is_sharable_clk_src(const struct pipe_ctx * pipe_with_clk_src,const struct pipe_ctx * pipe)632 static bool is_sharable_clk_src(
633 const struct pipe_ctx *pipe_with_clk_src,
634 const struct pipe_ctx *pipe)
635 {
636 if (pipe_with_clk_src->clock_source == NULL)
637 return false;
638
639 if (pipe_with_clk_src->stream->signal == SIGNAL_TYPE_VIRTUAL)
640 return false;
641
642 if (dc_is_dp_signal(pipe_with_clk_src->stream->signal) ||
643 (dc_is_dp_signal(pipe->stream->signal) &&
644 !is_dp_and_hdmi_sharable(pipe_with_clk_src->stream,
645 pipe->stream)))
646 return false;
647
648 if (dc_is_hdmi_signal(pipe_with_clk_src->stream->signal)
649 && dc_is_dual_link_signal(pipe->stream->signal))
650 return false;
651
652 if (dc_is_hdmi_signal(pipe->stream->signal)
653 && dc_is_dual_link_signal(pipe_with_clk_src->stream->signal))
654 return false;
655
656 if (!resource_are_streams_timing_synchronizable(
657 pipe_with_clk_src->stream, pipe->stream))
658 return false;
659
660 return true;
661 }
662
resource_find_used_clk_src_for_sharing(struct resource_context * res_ctx,struct pipe_ctx * pipe_ctx)663 struct clock_source *resource_find_used_clk_src_for_sharing(
664 struct resource_context *res_ctx,
665 struct pipe_ctx *pipe_ctx)
666 {
667 int i;
668
669 for (i = 0; i < MAX_PIPES; i++) {
670 if (is_sharable_clk_src(&res_ctx->pipe_ctx[i], pipe_ctx))
671 return res_ctx->pipe_ctx[i].clock_source;
672 }
673
674 return NULL;
675 }
676
convert_pixel_format_to_dalsurface(enum surface_pixel_format surface_pixel_format)677 static enum pixel_format convert_pixel_format_to_dalsurface(
678 enum surface_pixel_format surface_pixel_format)
679 {
680 enum pixel_format dal_pixel_format = PIXEL_FORMAT_UNKNOWN;
681
682 switch (surface_pixel_format) {
683 case SURFACE_PIXEL_FORMAT_GRPH_PALETA_256_COLORS:
684 dal_pixel_format = PIXEL_FORMAT_INDEX8;
685 break;
686 case SURFACE_PIXEL_FORMAT_GRPH_ARGB1555:
687 dal_pixel_format = PIXEL_FORMAT_RGB565;
688 break;
689 case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
690 dal_pixel_format = PIXEL_FORMAT_RGB565;
691 break;
692 case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
693 dal_pixel_format = PIXEL_FORMAT_ARGB8888;
694 break;
695 case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
696 dal_pixel_format = PIXEL_FORMAT_ARGB8888;
697 break;
698 case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
699 dal_pixel_format = PIXEL_FORMAT_ARGB2101010;
700 break;
701 case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
702 dal_pixel_format = PIXEL_FORMAT_ARGB2101010;
703 break;
704 case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010_XR_BIAS:
705 dal_pixel_format = PIXEL_FORMAT_ARGB2101010_XRBIAS;
706 break;
707 case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
708 case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616F:
709 dal_pixel_format = PIXEL_FORMAT_FP16;
710 break;
711 case SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr:
712 case SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb:
713 dal_pixel_format = PIXEL_FORMAT_420BPP8;
714 break;
715 case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCbCr:
716 case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCrCb:
717 dal_pixel_format = PIXEL_FORMAT_420BPP10;
718 break;
719 case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
720 case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616:
721 default:
722 dal_pixel_format = PIXEL_FORMAT_UNKNOWN;
723 break;
724 }
725 return dal_pixel_format;
726 }
727
get_vp_scan_direction(enum dc_rotation_angle rotation,bool horizontal_mirror,bool * orthogonal_rotation,bool * flip_vert_scan_dir,bool * flip_horz_scan_dir)728 static inline void get_vp_scan_direction(
729 enum dc_rotation_angle rotation,
730 bool horizontal_mirror,
731 bool *orthogonal_rotation,
732 bool *flip_vert_scan_dir,
733 bool *flip_horz_scan_dir)
734 {
735 *orthogonal_rotation = false;
736 *flip_vert_scan_dir = false;
737 *flip_horz_scan_dir = false;
738 if (rotation == ROTATION_ANGLE_180) {
739 *flip_vert_scan_dir = true;
740 *flip_horz_scan_dir = true;
741 } else if (rotation == ROTATION_ANGLE_90) {
742 *orthogonal_rotation = true;
743 *flip_horz_scan_dir = true;
744 } else if (rotation == ROTATION_ANGLE_270) {
745 *orthogonal_rotation = true;
746 *flip_vert_scan_dir = true;
747 }
748
749 if (horizontal_mirror)
750 *flip_horz_scan_dir = !*flip_horz_scan_dir;
751 }
752
753 /*
754 * This is a preliminary vp size calculation to allow us to check taps support.
755 * The result is completely overridden afterwards.
756 */
calculate_viewport_size(struct pipe_ctx * pipe_ctx)757 static void calculate_viewport_size(struct pipe_ctx *pipe_ctx)
758 {
759 struct scaler_data *data = &pipe_ctx->plane_res.scl_data;
760
761 data->viewport.width = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.horz, data->recout.width));
762 data->viewport.height = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.vert, data->recout.height));
763 data->viewport_c.width = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.horz_c, data->recout.width));
764 data->viewport_c.height = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.vert_c, data->recout.height));
765 if (pipe_ctx->plane_state->rotation == ROTATION_ANGLE_90 ||
766 pipe_ctx->plane_state->rotation == ROTATION_ANGLE_270) {
767 swap(data->viewport.width, data->viewport.height);
768 swap(data->viewport_c.width, data->viewport_c.height);
769 }
770 }
771
intersect_rec(const struct rect * r0,const struct rect * r1)772 static struct rect intersect_rec(const struct rect *r0, const struct rect *r1)
773 {
774 struct rect rec;
775 int r0_x_end = r0->x + r0->width;
776 int r1_x_end = r1->x + r1->width;
777 int r0_y_end = r0->y + r0->height;
778 int r1_y_end = r1->y + r1->height;
779
780 rec.x = r0->x > r1->x ? r0->x : r1->x;
781 rec.width = r0_x_end > r1_x_end ? r1_x_end - rec.x : r0_x_end - rec.x;
782 rec.y = r0->y > r1->y ? r0->y : r1->y;
783 rec.height = r0_y_end > r1_y_end ? r1_y_end - rec.y : r0_y_end - rec.y;
784
785 /* in case that there is no intersection */
786 if (rec.width < 0 || rec.height < 0)
787 memset(&rec, 0, sizeof(rec));
788
789 return rec;
790 }
791
shift_rec(const struct rect * rec_in,int x,int y)792 static struct rect shift_rec(const struct rect *rec_in, int x, int y)
793 {
794 struct rect rec_out = *rec_in;
795
796 rec_out.x += x;
797 rec_out.y += y;
798
799 return rec_out;
800 }
801
calculate_odm_slice_in_timing_active(struct pipe_ctx * pipe_ctx)802 static struct rect calculate_odm_slice_in_timing_active(struct pipe_ctx *pipe_ctx)
803 {
804 const struct dc_stream_state *stream = pipe_ctx->stream;
805 int odm_slice_count = resource_get_odm_slice_count(pipe_ctx);
806 int odm_slice_idx = resource_get_odm_slice_index(pipe_ctx);
807 bool is_last_odm_slice = (odm_slice_idx + 1) == odm_slice_count;
808 int h_active = stream->timing.h_addressable +
809 stream->timing.h_border_left +
810 stream->timing.h_border_right;
811 int odm_slice_width = h_active / odm_slice_count;
812 struct rect odm_rec;
813
814 odm_rec.x = odm_slice_width * odm_slice_idx;
815 odm_rec.width = is_last_odm_slice ?
816 /* last slice width is the reminder of h_active */
817 h_active - odm_slice_width * (odm_slice_count - 1) :
818 /* odm slice width is the floor of h_active / count */
819 odm_slice_width;
820 odm_rec.y = 0;
821 odm_rec.height = stream->timing.v_addressable +
822 stream->timing.v_border_bottom +
823 stream->timing.v_border_top;
824
825 return odm_rec;
826 }
827
calculate_plane_rec_in_timing_active(struct pipe_ctx * pipe_ctx,const struct rect * rec_in)828 static struct rect calculate_plane_rec_in_timing_active(
829 struct pipe_ctx *pipe_ctx,
830 const struct rect *rec_in)
831 {
832 /*
833 * The following diagram shows an example where we map a 1920x1200
834 * desktop to a 2560x1440 timing with a plane rect in the middle
835 * of the screen. To map a plane rect from Stream Source to Timing
836 * Active space, we first multiply stream scaling ratios (i.e 2304/1920
837 * horizontal and 1440/1200 vertical) to the plane's x and y, then
838 * we add stream destination offsets (i.e 128 horizontal, 0 vertical).
839 * This will give us a plane rect's position in Timing Active. However
840 * we have to remove the fractional. The rule is that we find left/right
841 * and top/bottom positions and round the value to the adjacent integer.
842 *
843 * Stream Source Space
844 * ------------
845 * __________________________________________________
846 * |Stream Source (1920 x 1200) ^ |
847 * | y |
848 * | <------- w --------|> |
849 * | __________________V |
850 * |<-- x -->|Plane//////////////| ^ |
851 * | |(pre scale)////////| | |
852 * | |///////////////////| | |
853 * | |///////////////////| h |
854 * | |///////////////////| | |
855 * | |///////////////////| | |
856 * | |///////////////////| V |
857 * | |
858 * | |
859 * |__________________________________________________|
860 *
861 *
862 * Timing Active Space
863 * ---------------------------------
864 *
865 * Timing Active (2560 x 1440)
866 * __________________________________________________
867 * |*****| Stteam Destination (2304 x 1440) |*****|
868 * |*****| |*****|
869 * |<128>| |*****|
870 * |*****| __________________ |*****|
871 * |*****| |Plane/////////////| |*****|
872 * |*****| |(post scale)//////| |*****|
873 * |*****| |//////////////////| |*****|
874 * |*****| |//////////////////| |*****|
875 * |*****| |//////////////////| |*****|
876 * |*****| |//////////////////| |*****|
877 * |*****| |*****|
878 * |*****| |*****|
879 * |*****| |*****|
880 * |*****|______________________________________|*****|
881 *
882 * So the resulting formulas are shown below:
883 *
884 * recout_x = 128 + round(plane_x * 2304 / 1920)
885 * recout_w = 128 + round((plane_x + plane_w) * 2304 / 1920) - recout_x
886 * recout_y = 0 + round(plane_y * 1440 / 1280)
887 * recout_h = 0 + round((plane_y + plane_h) * 1440 / 1200) - recout_y
888 *
889 * NOTE: fixed point division is not error free. To reduce errors
890 * introduced by fixed point division, we divide only after
891 * multiplication is complete.
892 */
893 const struct dc_stream_state *stream = pipe_ctx->stream;
894 struct rect rec_out = {0};
895 struct fixed31_32 temp;
896
897 temp = dc_fixpt_from_fraction(rec_in->x * stream->dst.width,
898 stream->src.width);
899 rec_out.x = stream->dst.x + dc_fixpt_round(temp);
900
901 temp = dc_fixpt_from_fraction(
902 (rec_in->x + rec_in->width) * stream->dst.width,
903 stream->src.width);
904 rec_out.width = stream->dst.x + dc_fixpt_round(temp) - rec_out.x;
905
906 temp = dc_fixpt_from_fraction(rec_in->y * stream->dst.height,
907 stream->src.height);
908 rec_out.y = stream->dst.y + dc_fixpt_round(temp);
909
910 temp = dc_fixpt_from_fraction(
911 (rec_in->y + rec_in->height) * stream->dst.height,
912 stream->src.height);
913 rec_out.height = stream->dst.y + dc_fixpt_round(temp) - rec_out.y;
914
915 return rec_out;
916 }
917
calculate_mpc_slice_in_timing_active(struct pipe_ctx * pipe_ctx,struct rect * plane_clip_rec)918 static struct rect calculate_mpc_slice_in_timing_active(
919 struct pipe_ctx *pipe_ctx,
920 struct rect *plane_clip_rec)
921 {
922 const struct dc_stream_state *stream = pipe_ctx->stream;
923 int mpc_slice_count = resource_get_mpc_slice_count(pipe_ctx);
924 int mpc_slice_idx = resource_get_mpc_slice_index(pipe_ctx);
925 int epimo = mpc_slice_count - plane_clip_rec->width % mpc_slice_count - 1;
926 struct rect mpc_rec;
927
928 mpc_rec.width = plane_clip_rec->width / mpc_slice_count;
929 mpc_rec.x = plane_clip_rec->x + mpc_rec.width * mpc_slice_idx;
930 mpc_rec.height = plane_clip_rec->height;
931 mpc_rec.y = plane_clip_rec->y;
932 ASSERT(mpc_slice_count == 1 ||
933 stream->view_format != VIEW_3D_FORMAT_SIDE_BY_SIDE ||
934 mpc_rec.width % 2 == 0);
935
936 /* extra pixels in the division remainder need to go to pipes after
937 * the extra pixel index minus one(epimo) defined here as:
938 */
939 if (mpc_slice_idx > epimo) {
940 mpc_rec.x += mpc_slice_idx - epimo - 1;
941 mpc_rec.width += 1;
942 }
943
944 if (stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM) {
945 ASSERT(mpc_rec.height % 2 == 0);
946 mpc_rec.height /= 2;
947 }
948 return mpc_rec;
949 }
950
adjust_recout_for_visual_confirm(struct rect * recout,struct pipe_ctx * pipe_ctx)951 static void adjust_recout_for_visual_confirm(struct rect *recout,
952 struct pipe_ctx *pipe_ctx)
953 {
954 struct dc *dc = pipe_ctx->stream->ctx->dc;
955 int dpp_offset, base_offset;
956
957 if (dc->debug.visual_confirm == VISUAL_CONFIRM_DISABLE || !pipe_ctx->plane_res.dpp)
958 return;
959
960 dpp_offset = pipe_ctx->stream->timing.v_addressable / VISUAL_CONFIRM_DPP_OFFSET_DENO;
961 dpp_offset *= pipe_ctx->plane_res.dpp->inst;
962
963 if ((dc->debug.visual_confirm_rect_height >= VISUAL_CONFIRM_BASE_MIN) &&
964 dc->debug.visual_confirm_rect_height <= VISUAL_CONFIRM_BASE_MAX)
965 base_offset = dc->debug.visual_confirm_rect_height;
966 else
967 base_offset = VISUAL_CONFIRM_BASE_DEFAULT;
968
969 recout->height -= base_offset;
970 recout->height -= dpp_offset;
971 }
972
973 /*
974 * The function maps a plane clip from Stream Source Space to ODM Slice Space
975 * and calculates the rec of the overlapping area of MPC slice of the plane
976 * clip, ODM slice associated with the pipe context and stream destination rec.
977 */
calculate_recout(struct pipe_ctx * pipe_ctx)978 static void calculate_recout(struct pipe_ctx *pipe_ctx)
979 {
980 /*
981 * A plane clip represents the desired plane size and position in Stream
982 * Source Space. Stream Source is the destination where all planes are
983 * blended (i.e. positioned, scaled and overlaid). It is a canvas where
984 * all planes associated with the current stream are drawn together.
985 * After Stream Source is completed, we will further scale and
986 * reposition the entire canvas of the stream source to Stream
987 * Destination in Timing Active Space. This could be due to display
988 * overscan adjustment where we will need to rescale and reposition all
989 * the planes so they can fit into a TV with overscan or downscale
990 * upscale features such as GPU scaling or VSR.
991 *
992 * This two step blending is a virtual procedure in software. In
993 * hardware there is no such thing as Stream Source. all planes are
994 * blended once in Timing Active Space. Software virtualizes a Stream
995 * Source space to decouple the math complicity so scaling param
996 * calculation focuses on one step at a time.
997 *
998 * In the following two diagrams, user applied 10% overscan adjustment
999 * so the Stream Source needs to be scaled down a little before mapping
1000 * to Timing Active Space. As a result the Plane Clip is also scaled
1001 * down by the same ratio, Plane Clip position (i.e. x and y) with
1002 * respect to Stream Source is also scaled down. To map it in Timing
1003 * Active Space additional x and y offsets from Stream Destination are
1004 * added to Plane Clip as well.
1005 *
1006 * Stream Source Space
1007 * ------------
1008 * __________________________________________________
1009 * |Stream Source (3840 x 2160) ^ |
1010 * | y |
1011 * | | |
1012 * | __________________V |
1013 * |<-- x -->|Plane Clip/////////| |
1014 * | |(pre scale)////////| |
1015 * | |///////////////////| |
1016 * | |///////////////////| |
1017 * | |///////////////////| |
1018 * | |///////////////////| |
1019 * | |///////////////////| |
1020 * | |
1021 * | |
1022 * |__________________________________________________|
1023 *
1024 *
1025 * Timing Active Space (3840 x 2160)
1026 * ---------------------------------
1027 *
1028 * Timing Active
1029 * __________________________________________________
1030 * | y_____________________________________________ |
1031 * |x |Stream Destination (3456 x 1944) | |
1032 * | | | |
1033 * | | __________________ | |
1034 * | | |Plane Clip////////| | |
1035 * | | |(post scale)//////| | |
1036 * | | |//////////////////| | |
1037 * | | |//////////////////| | |
1038 * | | |//////////////////| | |
1039 * | | |//////////////////| | |
1040 * | | | |
1041 * | | | |
1042 * | |____________________________________________| |
1043 * |__________________________________________________|
1044 *
1045 *
1046 * In Timing Active Space a plane clip could be further sliced into
1047 * pieces called MPC slices. Each Pipe Context is responsible for
1048 * processing only one MPC slice so the plane processing workload can be
1049 * distributed to multiple DPP Pipes. MPC slices could be blended
1050 * together to a single ODM slice. Each ODM slice is responsible for
1051 * processing a portion of Timing Active divided horizontally so the
1052 * output pixel processing workload can be distributed to multiple OPP
1053 * pipes. All ODM slices are mapped together in ODM block so all MPC
1054 * slices belong to different ODM slices could be pieced together to
1055 * form a single image in Timing Active. MPC slices must belong to
1056 * single ODM slice. If an MPC slice goes across ODM slice boundary, it
1057 * needs to be divided into two MPC slices one for each ODM slice.
1058 *
1059 * In the following diagram the output pixel processing workload is
1060 * divided horizontally into two ODM slices one for each OPP blend tree.
1061 * OPP0 blend tree is responsible for processing left half of Timing
1062 * Active, while OPP2 blend tree is responsible for processing right
1063 * half.
1064 *
1065 * The plane has two MPC slices. However since the right MPC slice goes
1066 * across ODM boundary, two DPP pipes are needed one for each OPP blend
1067 * tree. (i.e. DPP1 for OPP0 blend tree and DPP2 for OPP2 blend tree).
1068 *
1069 * Assuming that we have a Pipe Context associated with OPP0 and DPP1
1070 * working on processing the plane in the diagram. We want to know the
1071 * width and height of the shaded rectangle and its relative position
1072 * with respect to the ODM slice0. This is called the recout of the pipe
1073 * context.
1074 *
1075 * Planes can be at arbitrary size and position and there could be an
1076 * arbitrary number of MPC and ODM slices. The algorithm needs to take
1077 * all scenarios into account.
1078 *
1079 * Timing Active Space (3840 x 2160)
1080 * ---------------------------------
1081 *
1082 * Timing Active
1083 * __________________________________________________
1084 * |OPP0(ODM slice0)^ |OPP2(ODM slice1) |
1085 * | y | |
1086 * | | <- w -> |
1087 * | _____V________|____ |
1088 * | |DPP0 ^ |DPP1 |DPP2| |
1089 * |<------ x |-----|->|/////| | |
1090 * | | | |/////| | |
1091 * | | h |/////| | |
1092 * | | | |/////| | |
1093 * | |_____V__|/////|____| |
1094 * | | |
1095 * | | |
1096 * | | |
1097 * |_________________________|________________________|
1098 *
1099 *
1100 */
1101 struct rect plane_clip;
1102 struct rect mpc_slice_of_plane_clip;
1103 struct rect odm_slice;
1104 struct rect overlapping_area;
1105
1106 plane_clip = calculate_plane_rec_in_timing_active(pipe_ctx,
1107 &pipe_ctx->plane_state->clip_rect);
1108 /* guard plane clip from drawing beyond stream dst here */
1109 plane_clip = intersect_rec(&plane_clip,
1110 &pipe_ctx->stream->dst);
1111 mpc_slice_of_plane_clip = calculate_mpc_slice_in_timing_active(
1112 pipe_ctx, &plane_clip);
1113 odm_slice = calculate_odm_slice_in_timing_active(pipe_ctx);
1114 overlapping_area = intersect_rec(&mpc_slice_of_plane_clip, &odm_slice);
1115 if (overlapping_area.height > 0 &&
1116 overlapping_area.width > 0) {
1117 /* shift the overlapping area so it is with respect to current
1118 * ODM slice's position
1119 */
1120 pipe_ctx->plane_res.scl_data.recout = shift_rec(
1121 &overlapping_area,
1122 -odm_slice.x, -odm_slice.y);
1123 adjust_recout_for_visual_confirm(
1124 &pipe_ctx->plane_res.scl_data.recout,
1125 pipe_ctx);
1126 } else {
1127 /* if there is no overlap, zero recout */
1128 memset(&pipe_ctx->plane_res.scl_data.recout, 0,
1129 sizeof(struct rect));
1130 }
1131
1132 }
1133
calculate_scaling_ratios(struct pipe_ctx * pipe_ctx)1134 static void calculate_scaling_ratios(struct pipe_ctx *pipe_ctx)
1135 {
1136 const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
1137 const struct dc_stream_state *stream = pipe_ctx->stream;
1138 struct rect surf_src = plane_state->src_rect;
1139 const int in_w = stream->src.width;
1140 const int in_h = stream->src.height;
1141 const int out_w = stream->dst.width;
1142 const int out_h = stream->dst.height;
1143
1144 /*Swap surf_src height and width since scaling ratios are in recout rotation*/
1145 if (pipe_ctx->plane_state->rotation == ROTATION_ANGLE_90 ||
1146 pipe_ctx->plane_state->rotation == ROTATION_ANGLE_270)
1147 swap(surf_src.height, surf_src.width);
1148
1149 pipe_ctx->plane_res.scl_data.ratios.horz = dc_fixpt_from_fraction(
1150 surf_src.width,
1151 plane_state->dst_rect.width);
1152 pipe_ctx->plane_res.scl_data.ratios.vert = dc_fixpt_from_fraction(
1153 surf_src.height,
1154 plane_state->dst_rect.height);
1155
1156 if (stream->view_format == VIEW_3D_FORMAT_SIDE_BY_SIDE)
1157 pipe_ctx->plane_res.scl_data.ratios.horz.value *= 2;
1158 else if (stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM)
1159 pipe_ctx->plane_res.scl_data.ratios.vert.value *= 2;
1160
1161 pipe_ctx->plane_res.scl_data.ratios.vert.value = div64_s64(
1162 pipe_ctx->plane_res.scl_data.ratios.vert.value * in_h, out_h);
1163 pipe_ctx->plane_res.scl_data.ratios.horz.value = div64_s64(
1164 pipe_ctx->plane_res.scl_data.ratios.horz.value * in_w, out_w);
1165
1166 pipe_ctx->plane_res.scl_data.ratios.horz_c = pipe_ctx->plane_res.scl_data.ratios.horz;
1167 pipe_ctx->plane_res.scl_data.ratios.vert_c = pipe_ctx->plane_res.scl_data.ratios.vert;
1168
1169 if (pipe_ctx->plane_res.scl_data.format == PIXEL_FORMAT_420BPP8
1170 || pipe_ctx->plane_res.scl_data.format == PIXEL_FORMAT_420BPP10) {
1171 pipe_ctx->plane_res.scl_data.ratios.horz_c.value /= 2;
1172 pipe_ctx->plane_res.scl_data.ratios.vert_c.value /= 2;
1173 }
1174 pipe_ctx->plane_res.scl_data.ratios.horz = dc_fixpt_truncate(
1175 pipe_ctx->plane_res.scl_data.ratios.horz, 19);
1176 pipe_ctx->plane_res.scl_data.ratios.vert = dc_fixpt_truncate(
1177 pipe_ctx->plane_res.scl_data.ratios.vert, 19);
1178 pipe_ctx->plane_res.scl_data.ratios.horz_c = dc_fixpt_truncate(
1179 pipe_ctx->plane_res.scl_data.ratios.horz_c, 19);
1180 pipe_ctx->plane_res.scl_data.ratios.vert_c = dc_fixpt_truncate(
1181 pipe_ctx->plane_res.scl_data.ratios.vert_c, 19);
1182 }
1183
1184
1185 /*
1186 * We completely calculate vp offset, size and inits here based entirely on scaling
1187 * ratios and recout for pixel perfect pipe combine.
1188 */
calculate_init_and_vp(bool flip_scan_dir,int recout_offset_within_recout_full,int recout_size,int src_size,int taps,struct fixed31_32 ratio,struct fixed31_32 * init,int * vp_offset,int * vp_size)1189 static void calculate_init_and_vp(
1190 bool flip_scan_dir,
1191 int recout_offset_within_recout_full,
1192 int recout_size,
1193 int src_size,
1194 int taps,
1195 struct fixed31_32 ratio,
1196 struct fixed31_32 *init,
1197 int *vp_offset,
1198 int *vp_size)
1199 {
1200 struct fixed31_32 temp;
1201 int int_part;
1202
1203 /*
1204 * First of the taps starts sampling pixel number <init_int_part> corresponding to recout
1205 * pixel 1. Next recout pixel samples int part of <init + scaling ratio> and so on.
1206 * All following calculations are based on this logic.
1207 *
1208 * Init calculated according to formula:
1209 * init = (scaling_ratio + number_of_taps + 1) / 2
1210 * init_bot = init + scaling_ratio
1211 * to get pixel perfect combine add the fraction from calculating vp offset
1212 */
1213 temp = dc_fixpt_mul_int(ratio, recout_offset_within_recout_full);
1214 *vp_offset = dc_fixpt_floor(temp);
1215 temp.value &= 0xffffffff;
1216 *init = dc_fixpt_truncate(dc_fixpt_add(dc_fixpt_div_int(
1217 dc_fixpt_add_int(ratio, taps + 1), 2), temp), 19);
1218 /*
1219 * If viewport has non 0 offset and there are more taps than covered by init then
1220 * we should decrease the offset and increase init so we are never sampling
1221 * outside of viewport.
1222 */
1223 int_part = dc_fixpt_floor(*init);
1224 if (int_part < taps) {
1225 int_part = taps - int_part;
1226 if (int_part > *vp_offset)
1227 int_part = *vp_offset;
1228 *vp_offset -= int_part;
1229 *init = dc_fixpt_add_int(*init, int_part);
1230 }
1231 /*
1232 * If taps are sampling outside of viewport at end of recout and there are more pixels
1233 * available in the surface we should increase the viewport size, regardless set vp to
1234 * only what is used.
1235 */
1236 temp = dc_fixpt_add(*init, dc_fixpt_mul_int(ratio, recout_size - 1));
1237 *vp_size = dc_fixpt_floor(temp);
1238 if (*vp_size + *vp_offset > src_size)
1239 *vp_size = src_size - *vp_offset;
1240
1241 /* We did all the math assuming we are scanning same direction as display does,
1242 * however mirror/rotation changes how vp scans vs how it is offset. If scan direction
1243 * is flipped we simply need to calculate offset from the other side of plane.
1244 * Note that outside of viewport all scaling hardware works in recout space.
1245 */
1246 if (flip_scan_dir)
1247 *vp_offset = src_size - *vp_offset - *vp_size;
1248 }
1249
calculate_inits_and_viewports(struct pipe_ctx * pipe_ctx)1250 static void calculate_inits_and_viewports(struct pipe_ctx *pipe_ctx)
1251 {
1252 const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
1253 struct scaler_data *data = &pipe_ctx->plane_res.scl_data;
1254 struct rect src = plane_state->src_rect;
1255 struct rect recout_dst_in_active_timing;
1256 struct rect recout_clip_in_active_timing;
1257 struct rect recout_clip_in_recout_dst;
1258 struct rect overlap_in_active_timing;
1259 struct rect odm_slice = calculate_odm_slice_in_timing_active(pipe_ctx);
1260 int vpc_div = (data->format == PIXEL_FORMAT_420BPP8
1261 || data->format == PIXEL_FORMAT_420BPP10) ? 2 : 1;
1262 bool orthogonal_rotation, flip_vert_scan_dir, flip_horz_scan_dir;
1263
1264 recout_clip_in_active_timing = shift_rec(
1265 &data->recout, odm_slice.x, odm_slice.y);
1266 recout_dst_in_active_timing = calculate_plane_rec_in_timing_active(
1267 pipe_ctx, &plane_state->dst_rect);
1268 overlap_in_active_timing = intersect_rec(&recout_clip_in_active_timing,
1269 &recout_dst_in_active_timing);
1270 if (overlap_in_active_timing.width > 0 &&
1271 overlap_in_active_timing.height > 0)
1272 recout_clip_in_recout_dst = shift_rec(&overlap_in_active_timing,
1273 -recout_dst_in_active_timing.x,
1274 -recout_dst_in_active_timing.y);
1275 else
1276 memset(&recout_clip_in_recout_dst, 0, sizeof(struct rect));
1277
1278 /*
1279 * Work in recout rotation since that requires less transformations
1280 */
1281 get_vp_scan_direction(
1282 plane_state->rotation,
1283 plane_state->horizontal_mirror,
1284 &orthogonal_rotation,
1285 &flip_vert_scan_dir,
1286 &flip_horz_scan_dir);
1287
1288 if (orthogonal_rotation) {
1289 swap(src.width, src.height);
1290 swap(flip_vert_scan_dir, flip_horz_scan_dir);
1291 }
1292
1293 calculate_init_and_vp(
1294 flip_horz_scan_dir,
1295 recout_clip_in_recout_dst.x,
1296 data->recout.width,
1297 src.width,
1298 data->taps.h_taps,
1299 data->ratios.horz,
1300 &data->inits.h,
1301 &data->viewport.x,
1302 &data->viewport.width);
1303 calculate_init_and_vp(
1304 flip_horz_scan_dir,
1305 recout_clip_in_recout_dst.x,
1306 data->recout.width,
1307 src.width / vpc_div,
1308 data->taps.h_taps_c,
1309 data->ratios.horz_c,
1310 &data->inits.h_c,
1311 &data->viewport_c.x,
1312 &data->viewport_c.width);
1313 calculate_init_and_vp(
1314 flip_vert_scan_dir,
1315 recout_clip_in_recout_dst.y,
1316 data->recout.height,
1317 src.height,
1318 data->taps.v_taps,
1319 data->ratios.vert,
1320 &data->inits.v,
1321 &data->viewport.y,
1322 &data->viewport.height);
1323 calculate_init_and_vp(
1324 flip_vert_scan_dir,
1325 recout_clip_in_recout_dst.y,
1326 data->recout.height,
1327 src.height / vpc_div,
1328 data->taps.v_taps_c,
1329 data->ratios.vert_c,
1330 &data->inits.v_c,
1331 &data->viewport_c.y,
1332 &data->viewport_c.height);
1333 if (orthogonal_rotation) {
1334 swap(data->viewport.x, data->viewport.y);
1335 swap(data->viewport.width, data->viewport.height);
1336 swap(data->viewport_c.x, data->viewport_c.y);
1337 swap(data->viewport_c.width, data->viewport_c.height);
1338 }
1339 data->viewport.x += src.x;
1340 data->viewport.y += src.y;
1341 ASSERT(src.x % vpc_div == 0 && src.y % vpc_div == 0);
1342 data->viewport_c.x += src.x / vpc_div;
1343 data->viewport_c.y += src.y / vpc_div;
1344 }
1345
is_subvp_high_refresh_candidate(struct dc_stream_state * stream)1346 static bool is_subvp_high_refresh_candidate(struct dc_stream_state *stream)
1347 {
1348 uint32_t refresh_rate;
1349 struct dc *dc = stream->ctx->dc;
1350
1351 refresh_rate = (stream->timing.pix_clk_100hz * (uint64_t)100 +
1352 stream->timing.v_total * stream->timing.h_total - (uint64_t)1);
1353 refresh_rate = div_u64(refresh_rate, stream->timing.v_total);
1354 refresh_rate = div_u64(refresh_rate, stream->timing.h_total);
1355
1356 /* If there's any stream that fits the SubVP high refresh criteria,
1357 * we must return true. This is because cursor updates are asynchronous
1358 * with full updates, so we could transition into a SubVP config and
1359 * remain in HW cursor mode if there's no cursor update which will
1360 * then cause corruption.
1361 */
1362 if ((refresh_rate >= 120 && refresh_rate <= 175 &&
1363 stream->timing.v_addressable >= 1080 &&
1364 stream->timing.v_addressable <= 2160) &&
1365 (dc->current_state->stream_count > 1 ||
1366 (dc->current_state->stream_count == 1 && !stream->allow_freesync)))
1367 return true;
1368
1369 return false;
1370 }
1371
convert_dp_to_controller_test_pattern(enum dp_test_pattern test_pattern)1372 static enum controller_dp_test_pattern convert_dp_to_controller_test_pattern(
1373 enum dp_test_pattern test_pattern)
1374 {
1375 enum controller_dp_test_pattern controller_test_pattern;
1376
1377 switch (test_pattern) {
1378 case DP_TEST_PATTERN_COLOR_SQUARES:
1379 controller_test_pattern =
1380 CONTROLLER_DP_TEST_PATTERN_COLORSQUARES;
1381 break;
1382 case DP_TEST_PATTERN_COLOR_SQUARES_CEA:
1383 controller_test_pattern =
1384 CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA;
1385 break;
1386 case DP_TEST_PATTERN_VERTICAL_BARS:
1387 controller_test_pattern =
1388 CONTROLLER_DP_TEST_PATTERN_VERTICALBARS;
1389 break;
1390 case DP_TEST_PATTERN_HORIZONTAL_BARS:
1391 controller_test_pattern =
1392 CONTROLLER_DP_TEST_PATTERN_HORIZONTALBARS;
1393 break;
1394 case DP_TEST_PATTERN_COLOR_RAMP:
1395 controller_test_pattern =
1396 CONTROLLER_DP_TEST_PATTERN_COLORRAMP;
1397 break;
1398 default:
1399 controller_test_pattern =
1400 CONTROLLER_DP_TEST_PATTERN_VIDEOMODE;
1401 break;
1402 }
1403
1404 return controller_test_pattern;
1405 }
1406
convert_dp_to_controller_color_space(enum dp_test_pattern_color_space color_space)1407 static enum controller_dp_color_space convert_dp_to_controller_color_space(
1408 enum dp_test_pattern_color_space color_space)
1409 {
1410 enum controller_dp_color_space controller_color_space;
1411
1412 switch (color_space) {
1413 case DP_TEST_PATTERN_COLOR_SPACE_RGB:
1414 controller_color_space = CONTROLLER_DP_COLOR_SPACE_RGB;
1415 break;
1416 case DP_TEST_PATTERN_COLOR_SPACE_YCBCR601:
1417 controller_color_space = CONTROLLER_DP_COLOR_SPACE_YCBCR601;
1418 break;
1419 case DP_TEST_PATTERN_COLOR_SPACE_YCBCR709:
1420 controller_color_space = CONTROLLER_DP_COLOR_SPACE_YCBCR709;
1421 break;
1422 case DP_TEST_PATTERN_COLOR_SPACE_UNDEFINED:
1423 default:
1424 controller_color_space = CONTROLLER_DP_COLOR_SPACE_UDEFINED;
1425 break;
1426 }
1427
1428 return controller_color_space;
1429 }
1430
resource_build_test_pattern_params(struct resource_context * res_ctx,struct pipe_ctx * otg_master)1431 void resource_build_test_pattern_params(struct resource_context *res_ctx,
1432 struct pipe_ctx *otg_master)
1433 {
1434 int odm_slice_width, last_odm_slice_width, offset = 0;
1435 struct pipe_ctx *opp_heads[MAX_PIPES];
1436 struct test_pattern_params *params;
1437 int odm_cnt = 1;
1438 enum controller_dp_test_pattern controller_test_pattern;
1439 enum controller_dp_color_space controller_color_space;
1440 enum dc_color_depth color_depth = otg_master->stream->timing.display_color_depth;
1441 int h_active = otg_master->stream->timing.h_addressable +
1442 otg_master->stream->timing.h_border_left +
1443 otg_master->stream->timing.h_border_right;
1444 int v_active = otg_master->stream->timing.v_addressable +
1445 otg_master->stream->timing.v_border_bottom +
1446 otg_master->stream->timing.v_border_top;
1447 int i;
1448
1449 controller_test_pattern = convert_dp_to_controller_test_pattern(
1450 otg_master->stream->test_pattern.type);
1451 controller_color_space = convert_dp_to_controller_color_space(
1452 otg_master->stream->test_pattern.color_space);
1453
1454 odm_cnt = resource_get_opp_heads_for_otg_master(otg_master, res_ctx, opp_heads);
1455
1456 odm_slice_width = h_active / odm_cnt;
1457 last_odm_slice_width = h_active - odm_slice_width * (odm_cnt - 1);
1458
1459 for (i = 0; i < odm_cnt; i++) {
1460 params = &opp_heads[i]->stream_res.test_pattern_params;
1461 params->test_pattern = controller_test_pattern;
1462 params->color_space = controller_color_space;
1463 params->color_depth = color_depth;
1464 params->height = v_active;
1465 params->offset = offset;
1466
1467 if (i < odm_cnt - 1)
1468 params->width = odm_slice_width;
1469 else
1470 params->width = last_odm_slice_width;
1471
1472 offset += odm_slice_width;
1473 }
1474 }
1475
resource_build_scaling_params(struct pipe_ctx * pipe_ctx)1476 bool resource_build_scaling_params(struct pipe_ctx *pipe_ctx)
1477 {
1478 const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
1479 struct dc_crtc_timing *timing = &pipe_ctx->stream->timing;
1480 const struct rect odm_slice_rec = calculate_odm_slice_in_timing_active(pipe_ctx);
1481 bool res = false;
1482 DC_LOGGER_INIT(pipe_ctx->stream->ctx->logger);
1483
1484 /* Invalid input */
1485 if (!plane_state->dst_rect.width ||
1486 !plane_state->dst_rect.height ||
1487 !plane_state->src_rect.width ||
1488 !plane_state->src_rect.height) {
1489 ASSERT(0);
1490 return false;
1491 }
1492
1493 pipe_ctx->plane_res.scl_data.format = convert_pixel_format_to_dalsurface(
1494 pipe_ctx->plane_state->format);
1495
1496 /* Timing borders are part of vactive that we are also supposed to skip in addition
1497 * to any stream dst offset. Since dm logic assumes dst is in addressable
1498 * space we need to add the left and top borders to dst offsets temporarily.
1499 * TODO: fix in DM, stream dst is supposed to be in vactive
1500 */
1501 pipe_ctx->stream->dst.x += timing->h_border_left;
1502 pipe_ctx->stream->dst.y += timing->v_border_top;
1503
1504 /* Calculate H and V active size */
1505 pipe_ctx->plane_res.scl_data.h_active = odm_slice_rec.width;
1506 pipe_ctx->plane_res.scl_data.v_active = odm_slice_rec.height;
1507
1508 /* depends on h_active */
1509 calculate_recout(pipe_ctx);
1510 /* depends on pixel format */
1511 calculate_scaling_ratios(pipe_ctx);
1512 /* depends on scaling ratios and recout, does not calculate offset yet */
1513 calculate_viewport_size(pipe_ctx);
1514
1515 /*
1516 * LB calculations depend on vp size, h/v_active and scaling ratios
1517 * Setting line buffer pixel depth to 24bpp yields banding
1518 * on certain displays, such as the Sharp 4k. 36bpp is needed
1519 * to support SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616 and
1520 * SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616 with actual > 10 bpc
1521 * precision on DCN display engines, but apparently not for DCE, as
1522 * far as testing on DCE-11.2 and DCE-8 showed. Various DCE parts have
1523 * problems: Carrizo with DCE_VERSION_11_0 does not like 36 bpp lb depth,
1524 * neither do DCE-8 at 4k resolution, or DCE-11.2 (broken identify pixel
1525 * passthrough). Therefore only use 36 bpp on DCN where it is actually needed.
1526 */
1527 if (plane_state->ctx->dce_version > DCE_VERSION_MAX)
1528 pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_36BPP;
1529 else
1530 pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_30BPP;
1531
1532 pipe_ctx->plane_res.scl_data.lb_params.alpha_en = plane_state->per_pixel_alpha;
1533
1534 if (pipe_ctx->plane_res.xfm != NULL)
1535 res = pipe_ctx->plane_res.xfm->funcs->transform_get_optimal_number_of_taps(
1536 pipe_ctx->plane_res.xfm, &pipe_ctx->plane_res.scl_data, &plane_state->scaling_quality);
1537
1538 if (pipe_ctx->plane_res.dpp != NULL)
1539 res = pipe_ctx->plane_res.dpp->funcs->dpp_get_optimal_number_of_taps(
1540 pipe_ctx->plane_res.dpp, &pipe_ctx->plane_res.scl_data, &plane_state->scaling_quality);
1541
1542
1543 if (!res) {
1544 /* Try 24 bpp linebuffer */
1545 pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_24BPP;
1546
1547 if (pipe_ctx->plane_res.xfm != NULL)
1548 res = pipe_ctx->plane_res.xfm->funcs->transform_get_optimal_number_of_taps(
1549 pipe_ctx->plane_res.xfm,
1550 &pipe_ctx->plane_res.scl_data,
1551 &plane_state->scaling_quality);
1552
1553 if (pipe_ctx->plane_res.dpp != NULL)
1554 res = pipe_ctx->plane_res.dpp->funcs->dpp_get_optimal_number_of_taps(
1555 pipe_ctx->plane_res.dpp,
1556 &pipe_ctx->plane_res.scl_data,
1557 &plane_state->scaling_quality);
1558 }
1559
1560 /*
1561 * Depends on recout, scaling ratios, h_active and taps
1562 * May need to re-check lb size after this in some obscure scenario
1563 */
1564 if (res)
1565 calculate_inits_and_viewports(pipe_ctx);
1566
1567 /*
1568 * Handle side by side and top bottom 3d recout offsets after vp calculation
1569 * since 3d is special and needs to calculate vp as if there is no recout offset
1570 * This may break with rotation, good thing we aren't mixing hw rotation and 3d
1571 */
1572 if (pipe_ctx->top_pipe && pipe_ctx->top_pipe->plane_state == plane_state) {
1573 ASSERT(plane_state->rotation == ROTATION_ANGLE_0 ||
1574 (pipe_ctx->stream->view_format != VIEW_3D_FORMAT_TOP_AND_BOTTOM &&
1575 pipe_ctx->stream->view_format != VIEW_3D_FORMAT_SIDE_BY_SIDE));
1576 if (pipe_ctx->stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM)
1577 pipe_ctx->plane_res.scl_data.recout.y += pipe_ctx->plane_res.scl_data.recout.height;
1578 else if (pipe_ctx->stream->view_format == VIEW_3D_FORMAT_SIDE_BY_SIDE)
1579 pipe_ctx->plane_res.scl_data.recout.x += pipe_ctx->plane_res.scl_data.recout.width;
1580 }
1581
1582 /* Clamp minimum viewport size */
1583 if (pipe_ctx->plane_res.scl_data.viewport.height < MIN_VIEWPORT_SIZE)
1584 pipe_ctx->plane_res.scl_data.viewport.height = MIN_VIEWPORT_SIZE;
1585 if (pipe_ctx->plane_res.scl_data.viewport.width < MIN_VIEWPORT_SIZE)
1586 pipe_ctx->plane_res.scl_data.viewport.width = MIN_VIEWPORT_SIZE;
1587
1588
1589 DC_LOG_SCALER("%s pipe %d:\nViewport: height:%d width:%d x:%d y:%d Recout: height:%d width:%d x:%d y:%d HACTIVE:%d VACTIVE:%d\n"
1590 "src_rect: height:%d width:%d x:%d y:%d dst_rect: height:%d width:%d x:%d y:%d clip_rect: height:%d width:%d x:%d y:%d\n",
1591 __func__,
1592 pipe_ctx->pipe_idx,
1593 pipe_ctx->plane_res.scl_data.viewport.height,
1594 pipe_ctx->plane_res.scl_data.viewport.width,
1595 pipe_ctx->plane_res.scl_data.viewport.x,
1596 pipe_ctx->plane_res.scl_data.viewport.y,
1597 pipe_ctx->plane_res.scl_data.recout.height,
1598 pipe_ctx->plane_res.scl_data.recout.width,
1599 pipe_ctx->plane_res.scl_data.recout.x,
1600 pipe_ctx->plane_res.scl_data.recout.y,
1601 pipe_ctx->plane_res.scl_data.h_active,
1602 pipe_ctx->plane_res.scl_data.v_active,
1603 plane_state->src_rect.height,
1604 plane_state->src_rect.width,
1605 plane_state->src_rect.x,
1606 plane_state->src_rect.y,
1607 plane_state->dst_rect.height,
1608 plane_state->dst_rect.width,
1609 plane_state->dst_rect.x,
1610 plane_state->dst_rect.y,
1611 plane_state->clip_rect.height,
1612 plane_state->clip_rect.width,
1613 plane_state->clip_rect.x,
1614 plane_state->clip_rect.y);
1615
1616 pipe_ctx->stream->dst.x -= timing->h_border_left;
1617 pipe_ctx->stream->dst.y -= timing->v_border_top;
1618
1619 return res;
1620 }
1621
1622
resource_build_scaling_params_for_context(const struct dc * dc,struct dc_state * context)1623 enum dc_status resource_build_scaling_params_for_context(
1624 const struct dc *dc,
1625 struct dc_state *context)
1626 {
1627 int i;
1628
1629 for (i = 0; i < MAX_PIPES; i++) {
1630 if (context->res_ctx.pipe_ctx[i].plane_state != NULL &&
1631 context->res_ctx.pipe_ctx[i].stream != NULL)
1632 if (!resource_build_scaling_params(&context->res_ctx.pipe_ctx[i]))
1633 return DC_FAIL_SCALING;
1634 }
1635
1636 return DC_OK;
1637 }
1638
resource_find_free_secondary_pipe_legacy(struct resource_context * res_ctx,const struct resource_pool * pool,const struct pipe_ctx * primary_pipe)1639 struct pipe_ctx *resource_find_free_secondary_pipe_legacy(
1640 struct resource_context *res_ctx,
1641 const struct resource_pool *pool,
1642 const struct pipe_ctx *primary_pipe)
1643 {
1644 int i;
1645 struct pipe_ctx *secondary_pipe = NULL;
1646
1647 /*
1648 * We add a preferred pipe mapping to avoid the chance that
1649 * MPCCs already in use will need to be reassigned to other trees.
1650 * For example, if we went with the strict, assign backwards logic:
1651 *
1652 * (State 1)
1653 * Display A on, no surface, top pipe = 0
1654 * Display B on, no surface, top pipe = 1
1655 *
1656 * (State 2)
1657 * Display A on, no surface, top pipe = 0
1658 * Display B on, surface enable, top pipe = 1, bottom pipe = 5
1659 *
1660 * (State 3)
1661 * Display A on, surface enable, top pipe = 0, bottom pipe = 5
1662 * Display B on, surface enable, top pipe = 1, bottom pipe = 4
1663 *
1664 * The state 2->3 transition requires remapping MPCC 5 from display B
1665 * to display A.
1666 *
1667 * However, with the preferred pipe logic, state 2 would look like:
1668 *
1669 * (State 2)
1670 * Display A on, no surface, top pipe = 0
1671 * Display B on, surface enable, top pipe = 1, bottom pipe = 4
1672 *
1673 * This would then cause 2->3 to not require remapping any MPCCs.
1674 */
1675 if (primary_pipe) {
1676 int preferred_pipe_idx = (pool->pipe_count - 1) - primary_pipe->pipe_idx;
1677 if (res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) {
1678 secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx];
1679 secondary_pipe->pipe_idx = preferred_pipe_idx;
1680 }
1681 }
1682
1683 /*
1684 * search backwards for the second pipe to keep pipe
1685 * assignment more consistent
1686 */
1687 if (!secondary_pipe)
1688 for (i = pool->pipe_count - 1; i >= 0; i--) {
1689 if (res_ctx->pipe_ctx[i].stream == NULL) {
1690 secondary_pipe = &res_ctx->pipe_ctx[i];
1691 secondary_pipe->pipe_idx = i;
1692 break;
1693 }
1694 }
1695
1696 return secondary_pipe;
1697 }
1698
resource_find_free_pipe_used_as_sec_opp_head_by_cur_otg_master(const struct resource_context * cur_res_ctx,struct resource_context * new_res_ctx,const struct pipe_ctx * cur_otg_master)1699 int resource_find_free_pipe_used_as_sec_opp_head_by_cur_otg_master(
1700 const struct resource_context *cur_res_ctx,
1701 struct resource_context *new_res_ctx,
1702 const struct pipe_ctx *cur_otg_master)
1703 {
1704 const struct pipe_ctx *cur_sec_opp_head = cur_otg_master->next_odm_pipe;
1705 struct pipe_ctx *new_pipe;
1706 int free_pipe_idx = FREE_PIPE_INDEX_NOT_FOUND;
1707
1708 while (cur_sec_opp_head) {
1709 new_pipe = &new_res_ctx->pipe_ctx[cur_sec_opp_head->pipe_idx];
1710 if (resource_is_pipe_type(new_pipe, FREE_PIPE)) {
1711 free_pipe_idx = cur_sec_opp_head->pipe_idx;
1712 break;
1713 }
1714 cur_sec_opp_head = cur_sec_opp_head->next_odm_pipe;
1715 }
1716
1717 return free_pipe_idx;
1718 }
1719
resource_find_free_pipe_used_in_cur_mpc_blending_tree(const struct resource_context * cur_res_ctx,struct resource_context * new_res_ctx,const struct pipe_ctx * cur_opp_head)1720 int resource_find_free_pipe_used_in_cur_mpc_blending_tree(
1721 const struct resource_context *cur_res_ctx,
1722 struct resource_context *new_res_ctx,
1723 const struct pipe_ctx *cur_opp_head)
1724 {
1725 const struct pipe_ctx *cur_sec_dpp = cur_opp_head->bottom_pipe;
1726 struct pipe_ctx *new_pipe;
1727 int free_pipe_idx = FREE_PIPE_INDEX_NOT_FOUND;
1728
1729 while (cur_sec_dpp) {
1730 /* find a free pipe used in current opp blend tree,
1731 * this is to avoid MPO pipe switching to different opp blending
1732 * tree
1733 */
1734 new_pipe = &new_res_ctx->pipe_ctx[cur_sec_dpp->pipe_idx];
1735 if (resource_is_pipe_type(new_pipe, FREE_PIPE)) {
1736 free_pipe_idx = cur_sec_dpp->pipe_idx;
1737 break;
1738 }
1739 cur_sec_dpp = cur_sec_dpp->bottom_pipe;
1740 }
1741
1742 return free_pipe_idx;
1743 }
1744
recource_find_free_pipe_not_used_in_cur_res_ctx(const struct resource_context * cur_res_ctx,struct resource_context * new_res_ctx,const struct resource_pool * pool)1745 int recource_find_free_pipe_not_used_in_cur_res_ctx(
1746 const struct resource_context *cur_res_ctx,
1747 struct resource_context *new_res_ctx,
1748 const struct resource_pool *pool)
1749 {
1750 int free_pipe_idx = FREE_PIPE_INDEX_NOT_FOUND;
1751 const struct pipe_ctx *new_pipe, *cur_pipe;
1752 int i;
1753
1754 for (i = 0; i < pool->pipe_count; i++) {
1755 cur_pipe = &cur_res_ctx->pipe_ctx[i];
1756 new_pipe = &new_res_ctx->pipe_ctx[i];
1757
1758 if (resource_is_pipe_type(cur_pipe, FREE_PIPE) &&
1759 resource_is_pipe_type(new_pipe, FREE_PIPE)) {
1760 free_pipe_idx = i;
1761 break;
1762 }
1763 }
1764
1765 return free_pipe_idx;
1766 }
1767
recource_find_free_pipe_used_as_otg_master_in_cur_res_ctx(const struct resource_context * cur_res_ctx,struct resource_context * new_res_ctx,const struct resource_pool * pool)1768 int recource_find_free_pipe_used_as_otg_master_in_cur_res_ctx(
1769 const struct resource_context *cur_res_ctx,
1770 struct resource_context *new_res_ctx,
1771 const struct resource_pool *pool)
1772 {
1773 int free_pipe_idx = FREE_PIPE_INDEX_NOT_FOUND;
1774 const struct pipe_ctx *new_pipe, *cur_pipe;
1775 int i;
1776
1777 for (i = 0; i < pool->pipe_count; i++) {
1778 cur_pipe = &cur_res_ctx->pipe_ctx[i];
1779 new_pipe = &new_res_ctx->pipe_ctx[i];
1780
1781 if (resource_is_pipe_type(cur_pipe, OTG_MASTER) &&
1782 resource_is_pipe_type(new_pipe, FREE_PIPE)) {
1783 free_pipe_idx = i;
1784 break;
1785 }
1786 }
1787
1788 return free_pipe_idx;
1789 }
1790
resource_find_free_pipe_used_as_cur_sec_dpp_in_mpcc_combine(const struct resource_context * cur_res_ctx,struct resource_context * new_res_ctx,const struct resource_pool * pool)1791 int resource_find_free_pipe_used_as_cur_sec_dpp_in_mpcc_combine(
1792 const struct resource_context *cur_res_ctx,
1793 struct resource_context *new_res_ctx,
1794 const struct resource_pool *pool)
1795 {
1796 int free_pipe_idx = FREE_PIPE_INDEX_NOT_FOUND;
1797 const struct pipe_ctx *new_pipe, *cur_pipe;
1798 int i;
1799
1800 for (i = 0; i < pool->pipe_count; i++) {
1801 cur_pipe = &cur_res_ctx->pipe_ctx[i];
1802 new_pipe = &new_res_ctx->pipe_ctx[i];
1803
1804 if (resource_is_pipe_type(cur_pipe, DPP_PIPE) &&
1805 !resource_is_pipe_type(cur_pipe, OPP_HEAD) &&
1806 resource_get_mpc_slice_index(cur_pipe) > 0 &&
1807 resource_is_pipe_type(new_pipe, FREE_PIPE)) {
1808 free_pipe_idx = i;
1809 break;
1810 }
1811 }
1812
1813 return free_pipe_idx;
1814 }
1815
resource_find_any_free_pipe(struct resource_context * new_res_ctx,const struct resource_pool * pool)1816 int resource_find_any_free_pipe(struct resource_context *new_res_ctx,
1817 const struct resource_pool *pool)
1818 {
1819 int free_pipe_idx = FREE_PIPE_INDEX_NOT_FOUND;
1820 const struct pipe_ctx *new_pipe;
1821 int i;
1822
1823 for (i = 0; i < pool->pipe_count; i++) {
1824 new_pipe = &new_res_ctx->pipe_ctx[i];
1825
1826 if (resource_is_pipe_type(new_pipe, FREE_PIPE)) {
1827 free_pipe_idx = i;
1828 break;
1829 }
1830 }
1831
1832 return free_pipe_idx;
1833 }
1834
resource_is_pipe_type(const struct pipe_ctx * pipe_ctx,enum pipe_type type)1835 bool resource_is_pipe_type(const struct pipe_ctx *pipe_ctx, enum pipe_type type)
1836 {
1837 #ifdef DBG
1838 if (pipe_ctx->stream == NULL) {
1839 /* a free pipe with dangling states */
1840 ASSERT(!pipe_ctx->plane_state);
1841 ASSERT(!pipe_ctx->prev_odm_pipe);
1842 ASSERT(!pipe_ctx->next_odm_pipe);
1843 ASSERT(!pipe_ctx->top_pipe);
1844 ASSERT(!pipe_ctx->bottom_pipe);
1845 } else if (pipe_ctx->top_pipe) {
1846 /* a secondary DPP pipe must be signed to a plane */
1847 ASSERT(pipe_ctx->plane_state)
1848 }
1849 /* Add more checks here to prevent corrupted pipe ctx. It is very hard
1850 * to debug this issue afterwards because we can't pinpoint the code
1851 * location causing inconsistent pipe context states.
1852 */
1853 #endif
1854 switch (type) {
1855 case OTG_MASTER:
1856 return !pipe_ctx->prev_odm_pipe &&
1857 !pipe_ctx->top_pipe &&
1858 pipe_ctx->stream;
1859 case OPP_HEAD:
1860 return !pipe_ctx->top_pipe && pipe_ctx->stream;
1861 case DPP_PIPE:
1862 return pipe_ctx->plane_state && pipe_ctx->stream;
1863 case FREE_PIPE:
1864 return !pipe_ctx->plane_state && !pipe_ctx->stream;
1865 default:
1866 return false;
1867 }
1868 }
1869
resource_get_otg_master_for_stream(struct resource_context * res_ctx,const struct dc_stream_state * stream)1870 struct pipe_ctx *resource_get_otg_master_for_stream(
1871 struct resource_context *res_ctx,
1872 const struct dc_stream_state *stream)
1873 {
1874 int i;
1875
1876 for (i = 0; i < MAX_PIPES; i++) {
1877 if (res_ctx->pipe_ctx[i].stream == stream &&
1878 resource_is_pipe_type(&res_ctx->pipe_ctx[i], OTG_MASTER))
1879 return &res_ctx->pipe_ctx[i];
1880 }
1881 return NULL;
1882 }
1883
resource_get_opp_heads_for_otg_master(const struct pipe_ctx * otg_master,struct resource_context * res_ctx,struct pipe_ctx * opp_heads[MAX_PIPES])1884 int resource_get_opp_heads_for_otg_master(const struct pipe_ctx *otg_master,
1885 struct resource_context *res_ctx,
1886 struct pipe_ctx *opp_heads[MAX_PIPES])
1887 {
1888 struct pipe_ctx *opp_head = &res_ctx->pipe_ctx[otg_master->pipe_idx];
1889 int i = 0;
1890
1891 if (!resource_is_pipe_type(otg_master, OTG_MASTER)) {
1892 ASSERT(0);
1893 return 0;
1894 }
1895 while (opp_head) {
1896 ASSERT(i < MAX_PIPES);
1897 opp_heads[i++] = opp_head;
1898 opp_head = opp_head->next_odm_pipe;
1899 }
1900 return i;
1901 }
1902
resource_get_dpp_pipes_for_opp_head(const struct pipe_ctx * opp_head,struct resource_context * res_ctx,struct pipe_ctx * dpp_pipes[MAX_PIPES])1903 int resource_get_dpp_pipes_for_opp_head(const struct pipe_ctx *opp_head,
1904 struct resource_context *res_ctx,
1905 struct pipe_ctx *dpp_pipes[MAX_PIPES])
1906 {
1907 struct pipe_ctx *pipe = &res_ctx->pipe_ctx[opp_head->pipe_idx];
1908 int i = 0;
1909
1910 if (!resource_is_pipe_type(opp_head, OPP_HEAD)) {
1911 ASSERT(0);
1912 return 0;
1913 }
1914 while (pipe && resource_is_pipe_type(pipe, DPP_PIPE)) {
1915 ASSERT(i < MAX_PIPES);
1916 dpp_pipes[i++] = pipe;
1917 pipe = pipe->bottom_pipe;
1918 }
1919 return i;
1920 }
1921
resource_get_dpp_pipes_for_plane(const struct dc_plane_state * plane,struct resource_context * res_ctx,struct pipe_ctx * dpp_pipes[MAX_PIPES])1922 int resource_get_dpp_pipes_for_plane(const struct dc_plane_state *plane,
1923 struct resource_context *res_ctx,
1924 struct pipe_ctx *dpp_pipes[MAX_PIPES])
1925 {
1926 int i = 0, j;
1927 struct pipe_ctx *pipe;
1928
1929 for (j = 0; j < MAX_PIPES; j++) {
1930 pipe = &res_ctx->pipe_ctx[j];
1931 if (pipe->plane_state == plane && pipe->prev_odm_pipe == NULL) {
1932 if (resource_is_pipe_type(pipe, OPP_HEAD) ||
1933 pipe->top_pipe->plane_state != plane)
1934 break;
1935 }
1936 }
1937
1938 if (j < MAX_PIPES) {
1939 if (pipe->next_odm_pipe)
1940 while (pipe) {
1941 dpp_pipes[i++] = pipe;
1942 pipe = pipe->next_odm_pipe;
1943 }
1944 else
1945 while (pipe && pipe->plane_state == plane) {
1946 dpp_pipes[i++] = pipe;
1947 pipe = pipe->bottom_pipe;
1948 }
1949 }
1950 return i;
1951 }
1952
resource_get_otg_master(const struct pipe_ctx * pipe_ctx)1953 struct pipe_ctx *resource_get_otg_master(const struct pipe_ctx *pipe_ctx)
1954 {
1955 struct pipe_ctx *otg_master = resource_get_opp_head(pipe_ctx);
1956
1957 while (otg_master->prev_odm_pipe)
1958 otg_master = otg_master->prev_odm_pipe;
1959 return otg_master;
1960 }
1961
resource_get_opp_head(const struct pipe_ctx * pipe_ctx)1962 struct pipe_ctx *resource_get_opp_head(const struct pipe_ctx *pipe_ctx)
1963 {
1964 struct pipe_ctx *opp_head = (struct pipe_ctx *) pipe_ctx;
1965
1966 ASSERT(!resource_is_pipe_type(opp_head, FREE_PIPE));
1967 while (opp_head->top_pipe)
1968 opp_head = opp_head->top_pipe;
1969 return opp_head;
1970 }
1971
resource_get_primary_dpp_pipe(const struct pipe_ctx * dpp_pipe)1972 struct pipe_ctx *resource_get_primary_dpp_pipe(const struct pipe_ctx *dpp_pipe)
1973 {
1974 struct pipe_ctx *pri_dpp_pipe = (struct pipe_ctx *) dpp_pipe;
1975
1976 ASSERT(resource_is_pipe_type(dpp_pipe, DPP_PIPE));
1977 while (pri_dpp_pipe->prev_odm_pipe)
1978 pri_dpp_pipe = pri_dpp_pipe->prev_odm_pipe;
1979 while (pri_dpp_pipe->top_pipe &&
1980 pri_dpp_pipe->top_pipe->plane_state == pri_dpp_pipe->plane_state)
1981 pri_dpp_pipe = pri_dpp_pipe->top_pipe;
1982 return pri_dpp_pipe;
1983 }
1984
1985
resource_get_mpc_slice_index(const struct pipe_ctx * pipe_ctx)1986 int resource_get_mpc_slice_index(const struct pipe_ctx *pipe_ctx)
1987 {
1988 struct pipe_ctx *split_pipe = pipe_ctx->top_pipe;
1989 int index = 0;
1990
1991 while (split_pipe && split_pipe->plane_state == pipe_ctx->plane_state) {
1992 index++;
1993 split_pipe = split_pipe->top_pipe;
1994 }
1995
1996 return index;
1997 }
1998
resource_get_mpc_slice_count(const struct pipe_ctx * pipe)1999 int resource_get_mpc_slice_count(const struct pipe_ctx *pipe)
2000 {
2001 int mpc_split_count = 1;
2002 const struct pipe_ctx *other_pipe = pipe->bottom_pipe;
2003
2004 while (other_pipe && other_pipe->plane_state == pipe->plane_state) {
2005 mpc_split_count++;
2006 other_pipe = other_pipe->bottom_pipe;
2007 }
2008 other_pipe = pipe->top_pipe;
2009 while (other_pipe && other_pipe->plane_state == pipe->plane_state) {
2010 mpc_split_count++;
2011 other_pipe = other_pipe->top_pipe;
2012 }
2013
2014 return mpc_split_count;
2015 }
2016
resource_get_odm_slice_count(const struct pipe_ctx * pipe)2017 int resource_get_odm_slice_count(const struct pipe_ctx *pipe)
2018 {
2019 int odm_split_count = 1;
2020
2021 pipe = resource_get_otg_master(pipe);
2022
2023 while (pipe->next_odm_pipe) {
2024 odm_split_count++;
2025 pipe = pipe->next_odm_pipe;
2026 }
2027 return odm_split_count;
2028 }
2029
resource_get_odm_slice_index(const struct pipe_ctx * pipe_ctx)2030 int resource_get_odm_slice_index(const struct pipe_ctx *pipe_ctx)
2031 {
2032 int index = 0;
2033
2034 pipe_ctx = resource_get_opp_head(pipe_ctx);
2035 if (!pipe_ctx)
2036 return 0;
2037
2038 while (pipe_ctx->prev_odm_pipe) {
2039 index++;
2040 pipe_ctx = pipe_ctx->prev_odm_pipe;
2041 }
2042
2043 return index;
2044 }
2045
resource_is_pipe_topology_changed(const struct dc_state * state_a,const struct dc_state * state_b)2046 bool resource_is_pipe_topology_changed(const struct dc_state *state_a,
2047 const struct dc_state *state_b)
2048 {
2049 int i;
2050 const struct pipe_ctx *pipe_a, *pipe_b;
2051
2052 if (state_a->stream_count != state_b->stream_count)
2053 return true;
2054
2055 for (i = 0; i < MAX_PIPES; i++) {
2056 pipe_a = &state_a->res_ctx.pipe_ctx[i];
2057 pipe_b = &state_b->res_ctx.pipe_ctx[i];
2058
2059 if (pipe_a->stream && !pipe_b->stream)
2060 return true;
2061 else if (!pipe_a->stream && pipe_b->stream)
2062 return true;
2063
2064 if (pipe_a->plane_state && !pipe_b->plane_state)
2065 return true;
2066 else if (!pipe_a->plane_state && pipe_b->plane_state)
2067 return true;
2068
2069 if (pipe_a->bottom_pipe && pipe_b->bottom_pipe) {
2070 if (pipe_a->bottom_pipe->pipe_idx != pipe_b->bottom_pipe->pipe_idx)
2071 return true;
2072 if ((pipe_a->bottom_pipe->plane_state == pipe_a->plane_state) &&
2073 (pipe_b->bottom_pipe->plane_state != pipe_b->plane_state))
2074 return true;
2075 else if ((pipe_a->bottom_pipe->plane_state != pipe_a->plane_state) &&
2076 (pipe_b->bottom_pipe->plane_state == pipe_b->plane_state))
2077 return true;
2078 } else if (pipe_a->bottom_pipe || pipe_b->bottom_pipe) {
2079 return true;
2080 }
2081
2082 if (pipe_a->next_odm_pipe && pipe_b->next_odm_pipe) {
2083 if (pipe_a->next_odm_pipe->pipe_idx != pipe_b->next_odm_pipe->pipe_idx)
2084 return true;
2085 } else if (pipe_a->next_odm_pipe || pipe_b->next_odm_pipe) {
2086 return true;
2087 }
2088 }
2089 return false;
2090 }
2091
resource_is_odm_topology_changed(const struct pipe_ctx * otg_master_a,const struct pipe_ctx * otg_master_b)2092 bool resource_is_odm_topology_changed(const struct pipe_ctx *otg_master_a,
2093 const struct pipe_ctx *otg_master_b)
2094 {
2095 const struct pipe_ctx *opp_head_a = otg_master_a;
2096 const struct pipe_ctx *opp_head_b = otg_master_b;
2097
2098 if (!resource_is_pipe_type(otg_master_a, OTG_MASTER) ||
2099 !resource_is_pipe_type(otg_master_b, OTG_MASTER))
2100 return true;
2101
2102 while (opp_head_a && opp_head_b) {
2103 if (opp_head_a->stream_res.opp != opp_head_b->stream_res.opp)
2104 return true;
2105 if ((opp_head_a->next_odm_pipe && !opp_head_b->next_odm_pipe) ||
2106 (!opp_head_a->next_odm_pipe && opp_head_b->next_odm_pipe))
2107 return true;
2108 opp_head_a = opp_head_a->next_odm_pipe;
2109 opp_head_b = opp_head_b->next_odm_pipe;
2110 }
2111
2112 return false;
2113 }
2114
2115 /*
2116 * Sample log:
2117 * pipe topology update
2118 * ________________________
2119 * | plane0 slice0 stream0|
2120 * |DPP0----OPP0----OTG0----| <--- case 0 (OTG master pipe with plane)
2121 * | plane1 | | |
2122 * |DPP1----| | | <--- case 5 (DPP pipe not in last slice)
2123 * | plane0 slice1 | |
2124 * |DPP2----OPP2----| | <--- case 2 (OPP head pipe with plane)
2125 * | plane1 | |
2126 * |DPP3----| | <--- case 4 (DPP pipe in last slice)
2127 * | slice0 stream1|
2128 * |DPG4----OPP4----OTG4----| <--- case 1 (OTG master pipe without plane)
2129 * | slice1 | |
2130 * |DPG5----OPP5----| | <--- case 3 (OPP head pipe without plane)
2131 * |________________________|
2132 */
2133
resource_log_pipe(struct dc * dc,struct pipe_ctx * pipe,int stream_idx,int slice_idx,int plane_idx,int slice_count,bool is_primary)2134 static void resource_log_pipe(struct dc *dc, struct pipe_ctx *pipe,
2135 int stream_idx, int slice_idx, int plane_idx, int slice_count,
2136 bool is_primary)
2137 {
2138 DC_LOGGER_INIT(dc->ctx->logger);
2139
2140 if (slice_idx == 0 && plane_idx == 0 && is_primary) {
2141 /* case 0 (OTG master pipe with plane) */
2142 DC_LOG_DC(" | plane%d slice%d stream%d|",
2143 plane_idx, slice_idx, stream_idx);
2144 DC_LOG_DC(" |DPP%d----OPP%d----OTG%d----|",
2145 pipe->plane_res.dpp->inst,
2146 pipe->stream_res.opp->inst,
2147 pipe->stream_res.tg->inst);
2148 } else if (slice_idx == 0 && plane_idx == -1) {
2149 /* case 1 (OTG master pipe without plane) */
2150 DC_LOG_DC(" | slice%d stream%d|",
2151 slice_idx, stream_idx);
2152 DC_LOG_DC(" |DPG%d----OPP%d----OTG%d----|",
2153 pipe->stream_res.opp->inst,
2154 pipe->stream_res.opp->inst,
2155 pipe->stream_res.tg->inst);
2156 } else if (slice_idx != 0 && plane_idx == 0 && is_primary) {
2157 /* case 2 (OPP head pipe with plane) */
2158 DC_LOG_DC(" | plane%d slice%d | |",
2159 plane_idx, slice_idx);
2160 DC_LOG_DC(" |DPP%d----OPP%d----| |",
2161 pipe->plane_res.dpp->inst,
2162 pipe->stream_res.opp->inst);
2163 } else if (slice_idx != 0 && plane_idx == -1) {
2164 /* case 3 (OPP head pipe without plane) */
2165 DC_LOG_DC(" | slice%d | |", slice_idx);
2166 DC_LOG_DC(" |DPG%d----OPP%d----| |",
2167 pipe->plane_res.dpp->inst,
2168 pipe->stream_res.opp->inst);
2169 } else if (slice_idx == slice_count - 1) {
2170 /* case 4 (DPP pipe in last slice) */
2171 DC_LOG_DC(" | plane%d | |", plane_idx);
2172 DC_LOG_DC(" |DPP%d----| |",
2173 pipe->plane_res.dpp->inst);
2174 } else {
2175 /* case 5 (DPP pipe not in last slice) */
2176 DC_LOG_DC(" | plane%d | | |", plane_idx);
2177 DC_LOG_DC(" |DPP%d----| | |",
2178 pipe->plane_res.dpp->inst);
2179 }
2180 }
2181
resource_log_pipe_topology_update(struct dc * dc,struct dc_state * state)2182 void resource_log_pipe_topology_update(struct dc *dc, struct dc_state *state)
2183 {
2184 struct pipe_ctx *otg_master;
2185 struct pipe_ctx *opp_heads[MAX_PIPES];
2186 struct pipe_ctx *dpp_pipes[MAX_PIPES];
2187
2188 int stream_idx, slice_idx, dpp_idx, plane_idx, slice_count, dpp_count;
2189 bool is_primary;
2190 DC_LOGGER_INIT(dc->ctx->logger);
2191
2192 DC_LOG_DC(" pipe topology update");
2193 DC_LOG_DC(" ________________________");
2194 for (stream_idx = 0; stream_idx < state->stream_count; stream_idx++) {
2195 otg_master = resource_get_otg_master_for_stream(
2196 &state->res_ctx, state->streams[stream_idx]);
2197 if (!otg_master || otg_master->stream_res.tg == NULL) {
2198 DC_LOG_DC("topology update: otg_master NULL stream_idx %d!\n", stream_idx);
2199 return;
2200 }
2201 slice_count = resource_get_opp_heads_for_otg_master(otg_master,
2202 &state->res_ctx, opp_heads);
2203 for (slice_idx = 0; slice_idx < slice_count; slice_idx++) {
2204 plane_idx = -1;
2205 if (opp_heads[slice_idx]->plane_state) {
2206 dpp_count = resource_get_dpp_pipes_for_opp_head(
2207 opp_heads[slice_idx],
2208 &state->res_ctx,
2209 dpp_pipes);
2210 for (dpp_idx = 0; dpp_idx < dpp_count; dpp_idx++) {
2211 is_primary = !dpp_pipes[dpp_idx]->top_pipe ||
2212 dpp_pipes[dpp_idx]->top_pipe->plane_state != dpp_pipes[dpp_idx]->plane_state;
2213 if (is_primary)
2214 plane_idx++;
2215 resource_log_pipe(dc, dpp_pipes[dpp_idx],
2216 stream_idx, slice_idx,
2217 plane_idx, slice_count,
2218 is_primary);
2219 }
2220 } else {
2221 resource_log_pipe(dc, opp_heads[slice_idx],
2222 stream_idx, slice_idx, plane_idx,
2223 slice_count, true);
2224 }
2225
2226 }
2227 }
2228 DC_LOG_DC(" |________________________|\n");
2229 }
2230
get_tail_pipe(struct pipe_ctx * head_pipe)2231 static struct pipe_ctx *get_tail_pipe(
2232 struct pipe_ctx *head_pipe)
2233 {
2234 struct pipe_ctx *tail_pipe = head_pipe->bottom_pipe;
2235
2236 while (tail_pipe) {
2237 head_pipe = tail_pipe;
2238 tail_pipe = tail_pipe->bottom_pipe;
2239 }
2240
2241 return head_pipe;
2242 }
2243
get_last_opp_head(struct pipe_ctx * opp_head)2244 static struct pipe_ctx *get_last_opp_head(
2245 struct pipe_ctx *opp_head)
2246 {
2247 ASSERT(resource_is_pipe_type(opp_head, OPP_HEAD));
2248 while (opp_head->next_odm_pipe)
2249 opp_head = opp_head->next_odm_pipe;
2250 return opp_head;
2251 }
2252
get_last_dpp_pipe_in_mpcc_combine(struct pipe_ctx * dpp_pipe)2253 static struct pipe_ctx *get_last_dpp_pipe_in_mpcc_combine(
2254 struct pipe_ctx *dpp_pipe)
2255 {
2256 ASSERT(resource_is_pipe_type(dpp_pipe, DPP_PIPE));
2257 while (dpp_pipe->bottom_pipe &&
2258 dpp_pipe->plane_state == dpp_pipe->bottom_pipe->plane_state)
2259 dpp_pipe = dpp_pipe->bottom_pipe;
2260 return dpp_pipe;
2261 }
2262
update_pipe_params_after_odm_slice_count_change(struct pipe_ctx * otg_master,struct dc_state * context,const struct resource_pool * pool)2263 static bool update_pipe_params_after_odm_slice_count_change(
2264 struct pipe_ctx *otg_master,
2265 struct dc_state *context,
2266 const struct resource_pool *pool)
2267 {
2268 int i;
2269 struct pipe_ctx *pipe;
2270 bool result = true;
2271
2272 for (i = 0; i < pool->pipe_count && result; i++) {
2273 pipe = &context->res_ctx.pipe_ctx[i];
2274 if (pipe->stream == otg_master->stream && pipe->plane_state)
2275 result = resource_build_scaling_params(pipe);
2276 }
2277
2278 if (pool->funcs->build_pipe_pix_clk_params)
2279 pool->funcs->build_pipe_pix_clk_params(otg_master);
2280 return result;
2281 }
2282
update_pipe_params_after_mpc_slice_count_change(const struct dc_plane_state * plane,struct dc_state * context,const struct resource_pool * pool)2283 static bool update_pipe_params_after_mpc_slice_count_change(
2284 const struct dc_plane_state *plane,
2285 struct dc_state *context,
2286 const struct resource_pool *pool)
2287 {
2288 int i;
2289 struct pipe_ctx *pipe;
2290 bool result = true;
2291
2292 for (i = 0; i < pool->pipe_count && result; i++) {
2293 pipe = &context->res_ctx.pipe_ctx[i];
2294 if (pipe->plane_state == plane)
2295 result = resource_build_scaling_params(pipe);
2296 }
2297 return result;
2298 }
2299
acquire_first_split_pipe(struct resource_context * res_ctx,const struct resource_pool * pool,struct dc_stream_state * stream)2300 static int acquire_first_split_pipe(
2301 struct resource_context *res_ctx,
2302 const struct resource_pool *pool,
2303 struct dc_stream_state *stream)
2304 {
2305 int i;
2306
2307 for (i = 0; i < pool->pipe_count; i++) {
2308 struct pipe_ctx *split_pipe = &res_ctx->pipe_ctx[i];
2309
2310 if (split_pipe->top_pipe &&
2311 split_pipe->top_pipe->plane_state == split_pipe->plane_state) {
2312 split_pipe->top_pipe->bottom_pipe = split_pipe->bottom_pipe;
2313 if (split_pipe->bottom_pipe)
2314 split_pipe->bottom_pipe->top_pipe = split_pipe->top_pipe;
2315
2316 if (split_pipe->top_pipe->plane_state)
2317 resource_build_scaling_params(split_pipe->top_pipe);
2318
2319 memset(split_pipe, 0, sizeof(*split_pipe));
2320 split_pipe->stream_res.tg = pool->timing_generators[i];
2321 split_pipe->plane_res.hubp = pool->hubps[i];
2322 split_pipe->plane_res.ipp = pool->ipps[i];
2323 split_pipe->plane_res.dpp = pool->dpps[i];
2324 split_pipe->stream_res.opp = pool->opps[i];
2325 split_pipe->plane_res.mpcc_inst = pool->dpps[i]->inst;
2326 split_pipe->pipe_idx = i;
2327
2328 split_pipe->stream = stream;
2329 return i;
2330 }
2331 }
2332 return FREE_PIPE_INDEX_NOT_FOUND;
2333 }
2334
update_stream_engine_usage(struct resource_context * res_ctx,const struct resource_pool * pool,struct stream_encoder * stream_enc,bool acquired)2335 static void update_stream_engine_usage(
2336 struct resource_context *res_ctx,
2337 const struct resource_pool *pool,
2338 struct stream_encoder *stream_enc,
2339 bool acquired)
2340 {
2341 int i;
2342
2343 for (i = 0; i < pool->stream_enc_count; i++) {
2344 if (pool->stream_enc[i] == stream_enc)
2345 res_ctx->is_stream_enc_acquired[i] = acquired;
2346 }
2347 }
2348
update_hpo_dp_stream_engine_usage(struct resource_context * res_ctx,const struct resource_pool * pool,struct hpo_dp_stream_encoder * hpo_dp_stream_enc,bool acquired)2349 static void update_hpo_dp_stream_engine_usage(
2350 struct resource_context *res_ctx,
2351 const struct resource_pool *pool,
2352 struct hpo_dp_stream_encoder *hpo_dp_stream_enc,
2353 bool acquired)
2354 {
2355 int i;
2356
2357 for (i = 0; i < pool->hpo_dp_stream_enc_count; i++) {
2358 if (pool->hpo_dp_stream_enc[i] == hpo_dp_stream_enc)
2359 res_ctx->is_hpo_dp_stream_enc_acquired[i] = acquired;
2360 }
2361 }
2362
find_acquired_hpo_dp_link_enc_for_link(const struct resource_context * res_ctx,const struct dc_link * link)2363 static inline int find_acquired_hpo_dp_link_enc_for_link(
2364 const struct resource_context *res_ctx,
2365 const struct dc_link *link)
2366 {
2367 int i;
2368
2369 for (i = 0; i < ARRAY_SIZE(res_ctx->hpo_dp_link_enc_to_link_idx); i++)
2370 if (res_ctx->hpo_dp_link_enc_ref_cnts[i] > 0 &&
2371 res_ctx->hpo_dp_link_enc_to_link_idx[i] == link->link_index)
2372 return i;
2373
2374 return -1;
2375 }
2376
find_free_hpo_dp_link_enc(const struct resource_context * res_ctx,const struct resource_pool * pool)2377 static inline int find_free_hpo_dp_link_enc(const struct resource_context *res_ctx,
2378 const struct resource_pool *pool)
2379 {
2380 int i;
2381
2382 for (i = 0; i < ARRAY_SIZE(res_ctx->hpo_dp_link_enc_ref_cnts); i++)
2383 if (res_ctx->hpo_dp_link_enc_ref_cnts[i] == 0)
2384 break;
2385
2386 return (i < ARRAY_SIZE(res_ctx->hpo_dp_link_enc_ref_cnts) &&
2387 i < pool->hpo_dp_link_enc_count) ? i : -1;
2388 }
2389
acquire_hpo_dp_link_enc(struct resource_context * res_ctx,unsigned int link_index,int enc_index)2390 static inline void acquire_hpo_dp_link_enc(
2391 struct resource_context *res_ctx,
2392 unsigned int link_index,
2393 int enc_index)
2394 {
2395 res_ctx->hpo_dp_link_enc_to_link_idx[enc_index] = link_index;
2396 res_ctx->hpo_dp_link_enc_ref_cnts[enc_index] = 1;
2397 }
2398
retain_hpo_dp_link_enc(struct resource_context * res_ctx,int enc_index)2399 static inline void retain_hpo_dp_link_enc(
2400 struct resource_context *res_ctx,
2401 int enc_index)
2402 {
2403 res_ctx->hpo_dp_link_enc_ref_cnts[enc_index]++;
2404 }
2405
release_hpo_dp_link_enc(struct resource_context * res_ctx,int enc_index)2406 static inline void release_hpo_dp_link_enc(
2407 struct resource_context *res_ctx,
2408 int enc_index)
2409 {
2410 ASSERT(res_ctx->hpo_dp_link_enc_ref_cnts[enc_index] > 0);
2411 res_ctx->hpo_dp_link_enc_ref_cnts[enc_index]--;
2412 }
2413
add_hpo_dp_link_enc_to_ctx(struct resource_context * res_ctx,const struct resource_pool * pool,struct pipe_ctx * pipe_ctx,struct dc_stream_state * stream)2414 static bool add_hpo_dp_link_enc_to_ctx(struct resource_context *res_ctx,
2415 const struct resource_pool *pool,
2416 struct pipe_ctx *pipe_ctx,
2417 struct dc_stream_state *stream)
2418 {
2419 int enc_index;
2420
2421 enc_index = find_acquired_hpo_dp_link_enc_for_link(res_ctx, stream->link);
2422
2423 if (enc_index >= 0) {
2424 retain_hpo_dp_link_enc(res_ctx, enc_index);
2425 } else {
2426 enc_index = find_free_hpo_dp_link_enc(res_ctx, pool);
2427 if (enc_index >= 0)
2428 acquire_hpo_dp_link_enc(res_ctx, stream->link->link_index, enc_index);
2429 }
2430
2431 if (enc_index >= 0)
2432 pipe_ctx->link_res.hpo_dp_link_enc = pool->hpo_dp_link_enc[enc_index];
2433
2434 return pipe_ctx->link_res.hpo_dp_link_enc != NULL;
2435 }
2436
remove_hpo_dp_link_enc_from_ctx(struct resource_context * res_ctx,struct pipe_ctx * pipe_ctx,struct dc_stream_state * stream)2437 static void remove_hpo_dp_link_enc_from_ctx(struct resource_context *res_ctx,
2438 struct pipe_ctx *pipe_ctx,
2439 struct dc_stream_state *stream)
2440 {
2441 int enc_index;
2442
2443 enc_index = find_acquired_hpo_dp_link_enc_for_link(res_ctx, stream->link);
2444
2445 if (enc_index >= 0) {
2446 release_hpo_dp_link_enc(res_ctx, enc_index);
2447 pipe_ctx->link_res.hpo_dp_link_enc = NULL;
2448 }
2449 }
2450
resource_add_otg_master_for_stream_output(struct dc_state * new_ctx,const struct resource_pool * pool,struct dc_stream_state * stream)2451 enum dc_status resource_add_otg_master_for_stream_output(struct dc_state *new_ctx,
2452 const struct resource_pool *pool,
2453 struct dc_stream_state *stream)
2454 {
2455 struct dc *dc = stream->ctx->dc;
2456
2457 return dc->res_pool->funcs->add_stream_to_ctx(dc, new_ctx, stream);
2458 }
2459
resource_remove_otg_master_for_stream_output(struct dc_state * context,const struct resource_pool * pool,struct dc_stream_state * stream)2460 void resource_remove_otg_master_for_stream_output(struct dc_state *context,
2461 const struct resource_pool *pool,
2462 struct dc_stream_state *stream)
2463 {
2464 struct pipe_ctx *otg_master = resource_get_otg_master_for_stream(
2465 &context->res_ctx, stream);
2466
2467 if (!otg_master)
2468 return;
2469
2470 ASSERT(resource_get_odm_slice_count(otg_master) == 1);
2471 ASSERT(otg_master->plane_state == NULL);
2472 ASSERT(otg_master->stream_res.stream_enc);
2473 update_stream_engine_usage(
2474 &context->res_ctx,
2475 pool,
2476 otg_master->stream_res.stream_enc,
2477 false);
2478
2479 if (stream->ctx->dc->link_srv->dp_is_128b_132b_signal(otg_master)) {
2480 update_hpo_dp_stream_engine_usage(
2481 &context->res_ctx, pool,
2482 otg_master->stream_res.hpo_dp_stream_enc,
2483 false);
2484 remove_hpo_dp_link_enc_from_ctx(
2485 &context->res_ctx, otg_master, stream);
2486 }
2487 if (otg_master->stream_res.audio)
2488 update_audio_usage(
2489 &context->res_ctx,
2490 pool,
2491 otg_master->stream_res.audio,
2492 false);
2493
2494 resource_unreference_clock_source(&context->res_ctx,
2495 pool,
2496 otg_master->clock_source);
2497
2498 if (pool->funcs->remove_stream_from_ctx)
2499 pool->funcs->remove_stream_from_ctx(
2500 stream->ctx->dc, context, stream);
2501 memset(otg_master, 0, sizeof(*otg_master));
2502 }
2503
2504 /* For each OPP head of an OTG master, add top plane at plane index 0.
2505 *
2506 * In the following example, the stream has 2 ODM slices without a top plane.
2507 * By adding a plane 0 to OPP heads, we are configuring our hardware to render
2508 * plane 0 by using each OPP head's DPP.
2509 *
2510 * Inter-pipe Relation (Before Adding Plane)
2511 * __________________________________________________
2512 * |PIPE IDX| DPP PIPES | OPP HEADS | OTG MASTER |
2513 * | | | slice 0 | |
2514 * | 0 | |blank ----ODM----------- |
2515 * | | | slice 1 | | |
2516 * | 1 | |blank ---- | |
2517 * |________|_______________|___________|_____________|
2518 *
2519 * Inter-pipe Relation (After Adding Plane)
2520 * __________________________________________________
2521 * |PIPE IDX| DPP PIPES | OPP HEADS | OTG MASTER |
2522 * | | plane 0 | slice 0 | |
2523 * | 0 | -------------------------ODM----------- |
2524 * | | plane 0 | slice 1 | | |
2525 * | 1 | ------------------------- | |
2526 * |________|_______________|___________|_____________|
2527 */
add_plane_to_opp_head_pipes(struct pipe_ctx * otg_master_pipe,struct dc_plane_state * plane_state,struct dc_state * context)2528 static bool add_plane_to_opp_head_pipes(struct pipe_ctx *otg_master_pipe,
2529 struct dc_plane_state *plane_state,
2530 struct dc_state *context)
2531 {
2532 struct pipe_ctx *opp_head_pipe = otg_master_pipe;
2533
2534 while (opp_head_pipe) {
2535 if (opp_head_pipe->plane_state) {
2536 ASSERT(0);
2537 return false;
2538 }
2539 opp_head_pipe->plane_state = plane_state;
2540 opp_head_pipe = opp_head_pipe->next_odm_pipe;
2541 }
2542
2543 return true;
2544 }
2545
2546 /* For each OPP head of an OTG master, acquire a secondary DPP pipe and add
2547 * the plane. So the plane is added to all ODM slices associated with the OTG
2548 * master pipe in the bottom layer.
2549 *
2550 * In the following example, the stream has 2 ODM slices and a top plane 0.
2551 * By acquiring secondary DPP pipes and adding a plane 1, we are configuring our
2552 * hardware to render the plane 1 by acquiring a new pipe for each ODM slice and
2553 * render plane 1 using new pipes' DPP in the Z axis below plane 0.
2554 *
2555 * Inter-pipe Relation (Before Adding Plane)
2556 * __________________________________________________
2557 * |PIPE IDX| DPP PIPES | OPP HEADS | OTG MASTER |
2558 * | | plane 0 | slice 0 | |
2559 * | 0 | -------------------------ODM----------- |
2560 * | | plane 0 | slice 1 | | |
2561 * | 1 | ------------------------- | |
2562 * |________|_______________|___________|_____________|
2563 *
2564 * Inter-pipe Relation (After Acquiring and Adding Plane)
2565 * __________________________________________________
2566 * |PIPE IDX| DPP PIPES | OPP HEADS | OTG MASTER |
2567 * | | plane 0 | slice 0 | |
2568 * | 0 | -------------MPC---------ODM----------- |
2569 * | | plane 1 | | | | |
2570 * | 2 | ------------- | | | |
2571 * | | plane 0 | slice 1 | | |
2572 * | 1 | -------------MPC--------- | |
2573 * | | plane 1 | | | |
2574 * | 3 | ------------- | | |
2575 * |________|_______________|___________|_____________|
2576 */
acquire_secondary_dpp_pipes_and_add_plane(struct pipe_ctx * otg_master_pipe,struct dc_plane_state * plane_state,struct dc_state * new_ctx,struct dc_state * cur_ctx,struct resource_pool * pool)2577 static bool acquire_secondary_dpp_pipes_and_add_plane(
2578 struct pipe_ctx *otg_master_pipe,
2579 struct dc_plane_state *plane_state,
2580 struct dc_state *new_ctx,
2581 struct dc_state *cur_ctx,
2582 struct resource_pool *pool)
2583 {
2584 struct pipe_ctx *opp_head_pipe, *sec_pipe, *tail_pipe;
2585
2586 if (!pool->funcs->acquire_free_pipe_as_secondary_dpp_pipe) {
2587 ASSERT(0);
2588 return false;
2589 }
2590
2591 opp_head_pipe = otg_master_pipe;
2592 while (opp_head_pipe) {
2593 sec_pipe = pool->funcs->acquire_free_pipe_as_secondary_dpp_pipe(
2594 cur_ctx,
2595 new_ctx,
2596 pool,
2597 opp_head_pipe);
2598 if (!sec_pipe) {
2599 /* try tearing down MPCC combine */
2600 int pipe_idx = acquire_first_split_pipe(
2601 &new_ctx->res_ctx, pool,
2602 otg_master_pipe->stream);
2603
2604 if (pipe_idx >= 0)
2605 sec_pipe = &new_ctx->res_ctx.pipe_ctx[pipe_idx];
2606 }
2607
2608 if (!sec_pipe)
2609 return false;
2610
2611 sec_pipe->plane_state = plane_state;
2612
2613 /* establish pipe relationship */
2614 tail_pipe = get_tail_pipe(opp_head_pipe);
2615 tail_pipe->bottom_pipe = sec_pipe;
2616 sec_pipe->top_pipe = tail_pipe;
2617 sec_pipe->bottom_pipe = NULL;
2618 if (tail_pipe->prev_odm_pipe) {
2619 ASSERT(tail_pipe->prev_odm_pipe->bottom_pipe);
2620 sec_pipe->prev_odm_pipe = tail_pipe->prev_odm_pipe->bottom_pipe;
2621 tail_pipe->prev_odm_pipe->bottom_pipe->next_odm_pipe = sec_pipe;
2622 } else {
2623 sec_pipe->prev_odm_pipe = NULL;
2624 }
2625
2626 opp_head_pipe = opp_head_pipe->next_odm_pipe;
2627 }
2628 return true;
2629 }
2630
resource_append_dpp_pipes_for_plane_composition(struct dc_state * new_ctx,struct dc_state * cur_ctx,struct resource_pool * pool,struct pipe_ctx * otg_master_pipe,struct dc_plane_state * plane_state)2631 bool resource_append_dpp_pipes_for_plane_composition(
2632 struct dc_state *new_ctx,
2633 struct dc_state *cur_ctx,
2634 struct resource_pool *pool,
2635 struct pipe_ctx *otg_master_pipe,
2636 struct dc_plane_state *plane_state)
2637 {
2638 if (otg_master_pipe->plane_state == NULL)
2639 return add_plane_to_opp_head_pipes(otg_master_pipe,
2640 plane_state, new_ctx);
2641 else
2642 return acquire_secondary_dpp_pipes_and_add_plane(
2643 otg_master_pipe, plane_state, new_ctx,
2644 cur_ctx, pool);
2645 }
2646
resource_remove_dpp_pipes_for_plane_composition(struct dc_state * context,const struct resource_pool * pool,const struct dc_plane_state * plane_state)2647 void resource_remove_dpp_pipes_for_plane_composition(
2648 struct dc_state *context,
2649 const struct resource_pool *pool,
2650 const struct dc_plane_state *plane_state)
2651 {
2652 int i;
2653 for (i = pool->pipe_count - 1; i >= 0; i--) {
2654 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2655
2656 if (pipe_ctx->plane_state == plane_state) {
2657 if (pipe_ctx->top_pipe)
2658 pipe_ctx->top_pipe->bottom_pipe = pipe_ctx->bottom_pipe;
2659
2660 /* Second condition is to avoid setting NULL to top pipe
2661 * of tail pipe making it look like head pipe in subsequent
2662 * deletes
2663 */
2664 if (pipe_ctx->bottom_pipe && pipe_ctx->top_pipe)
2665 pipe_ctx->bottom_pipe->top_pipe = pipe_ctx->top_pipe;
2666
2667 /*
2668 * For head pipe detach surfaces from pipe for tail
2669 * pipe just zero it out
2670 */
2671 if (!pipe_ctx->top_pipe)
2672 pipe_ctx->plane_state = NULL;
2673 else
2674 memset(pipe_ctx, 0, sizeof(*pipe_ctx));
2675 }
2676 }
2677 }
2678
2679 /*
2680 * Increase ODM slice count by 1 by acquiring pipes and adding a new ODM slice
2681 * at the last index.
2682 * return - true if a new ODM slice is added and required pipes are acquired.
2683 * false if new_ctx is no longer a valid state after new ODM slice is added.
2684 *
2685 * This is achieved by duplicating MPC blending tree from previous ODM slice.
2686 * In the following example, we have a single MPC tree and 1 ODM slice 0. We
2687 * want to add a new odm slice by duplicating the MPC blending tree and add
2688 * ODM slice 1.
2689 *
2690 * Inter-pipe Relation (Before Acquiring and Adding ODM Slice)
2691 * __________________________________________________
2692 * |PIPE IDX| DPP PIPES | OPP HEADS | OTG MASTER |
2693 * | | plane 0 | slice 0 | |
2694 * | 0 | -------------MPC---------ODM----------- |
2695 * | | plane 1 | | | |
2696 * | 1 | ------------- | | |
2697 * |________|_______________|___________|_____________|
2698 *
2699 * Inter-pipe Relation (After Acquiring and Adding ODM Slice)
2700 * __________________________________________________
2701 * |PIPE IDX| DPP PIPES | OPP HEADS | OTG MASTER |
2702 * | | plane 0 | slice 0 | |
2703 * | 0 | -------------MPC---------ODM----------- |
2704 * | | plane 1 | | | | |
2705 * | 1 | ------------- | | | |
2706 * | | plane 0 | slice 1 | | |
2707 * | 2 | -------------MPC--------- | |
2708 * | | plane 1 | | | |
2709 * | 3 | ------------- | | |
2710 * |________|_______________|___________|_____________|
2711 */
acquire_pipes_and_add_odm_slice(struct pipe_ctx * otg_master_pipe,struct dc_state * new_ctx,const struct dc_state * cur_ctx,const struct resource_pool * pool)2712 static bool acquire_pipes_and_add_odm_slice(
2713 struct pipe_ctx *otg_master_pipe,
2714 struct dc_state *new_ctx,
2715 const struct dc_state *cur_ctx,
2716 const struct resource_pool *pool)
2717 {
2718 struct pipe_ctx *last_opp_head = get_last_opp_head(otg_master_pipe);
2719 struct pipe_ctx *new_opp_head;
2720 struct pipe_ctx *last_top_dpp_pipe, *last_bottom_dpp_pipe,
2721 *new_top_dpp_pipe, *new_bottom_dpp_pipe;
2722
2723 if (!pool->funcs->acquire_free_pipe_as_secondary_opp_head) {
2724 ASSERT(0);
2725 return false;
2726 }
2727 new_opp_head = pool->funcs->acquire_free_pipe_as_secondary_opp_head(
2728 cur_ctx, new_ctx, pool,
2729 otg_master_pipe);
2730 if (!new_opp_head)
2731 return false;
2732
2733 last_opp_head->next_odm_pipe = new_opp_head;
2734 new_opp_head->prev_odm_pipe = last_opp_head;
2735 new_opp_head->next_odm_pipe = NULL;
2736 new_opp_head->plane_state = last_opp_head->plane_state;
2737 last_top_dpp_pipe = last_opp_head;
2738 new_top_dpp_pipe = new_opp_head;
2739
2740 while (last_top_dpp_pipe->bottom_pipe) {
2741 last_bottom_dpp_pipe = last_top_dpp_pipe->bottom_pipe;
2742 new_bottom_dpp_pipe = pool->funcs->acquire_free_pipe_as_secondary_dpp_pipe(
2743 cur_ctx, new_ctx, pool,
2744 new_opp_head);
2745 if (!new_bottom_dpp_pipe)
2746 return false;
2747
2748 new_bottom_dpp_pipe->plane_state = last_bottom_dpp_pipe->plane_state;
2749 new_top_dpp_pipe->bottom_pipe = new_bottom_dpp_pipe;
2750 new_bottom_dpp_pipe->top_pipe = new_top_dpp_pipe;
2751 last_bottom_dpp_pipe->next_odm_pipe = new_bottom_dpp_pipe;
2752 new_bottom_dpp_pipe->prev_odm_pipe = last_bottom_dpp_pipe;
2753 new_bottom_dpp_pipe->next_odm_pipe = NULL;
2754 last_top_dpp_pipe = last_bottom_dpp_pipe;
2755 }
2756
2757 return true;
2758 }
2759
2760 /*
2761 * Decrease ODM slice count by 1 by releasing pipes and removing the ODM slice
2762 * at the last index.
2763 * return - true if the last ODM slice is removed and related pipes are
2764 * released. false if there is no removable ODM slice.
2765 *
2766 * In the following example, we have 2 MPC trees and ODM slice 0 and slice 1.
2767 * We want to remove the last ODM i.e slice 1. We are releasing secondary DPP
2768 * pipe 3 and OPP head pipe 2.
2769 *
2770 * Inter-pipe Relation (Before Releasing and Removing ODM Slice)
2771 * __________________________________________________
2772 * |PIPE IDX| DPP PIPES | OPP HEADS | OTG MASTER |
2773 * | | plane 0 | slice 0 | |
2774 * | 0 | -------------MPC---------ODM----------- |
2775 * | | plane 1 | | | | |
2776 * | 1 | ------------- | | | |
2777 * | | plane 0 | slice 1 | | |
2778 * | 2 | -------------MPC--------- | |
2779 * | | plane 1 | | | |
2780 * | 3 | ------------- | | |
2781 * |________|_______________|___________|_____________|
2782 *
2783 * Inter-pipe Relation (After Releasing and Removing ODM Slice)
2784 * __________________________________________________
2785 * |PIPE IDX| DPP PIPES | OPP HEADS | OTG MASTER |
2786 * | | plane 0 | slice 0 | |
2787 * | 0 | -------------MPC---------ODM----------- |
2788 * | | plane 1 | | | |
2789 * | 1 | ------------- | | |
2790 * |________|_______________|___________|_____________|
2791 */
release_pipes_and_remove_odm_slice(struct pipe_ctx * otg_master_pipe,struct dc_state * context,const struct resource_pool * pool)2792 static bool release_pipes_and_remove_odm_slice(
2793 struct pipe_ctx *otg_master_pipe,
2794 struct dc_state *context,
2795 const struct resource_pool *pool)
2796 {
2797 struct pipe_ctx *last_opp_head = get_last_opp_head(otg_master_pipe);
2798 struct pipe_ctx *tail_pipe = get_tail_pipe(last_opp_head);
2799
2800 if (!pool->funcs->release_pipe) {
2801 ASSERT(0);
2802 return false;
2803 }
2804
2805 if (resource_is_pipe_type(last_opp_head, OTG_MASTER))
2806 return false;
2807
2808 while (tail_pipe->top_pipe) {
2809 tail_pipe->prev_odm_pipe->next_odm_pipe = NULL;
2810 tail_pipe = tail_pipe->top_pipe;
2811 pool->funcs->release_pipe(context, tail_pipe->bottom_pipe, pool);
2812 tail_pipe->bottom_pipe = NULL;
2813 }
2814 last_opp_head->prev_odm_pipe->next_odm_pipe = NULL;
2815 pool->funcs->release_pipe(context, last_opp_head, pool);
2816
2817 return true;
2818 }
2819
2820 /*
2821 * Increase MPC slice count by 1 by acquiring a new DPP pipe and add it as the
2822 * last MPC slice of the plane associated with dpp_pipe.
2823 *
2824 * return - true if a new MPC slice is added and required pipes are acquired.
2825 * false if new_ctx is no longer a valid state after new MPC slice is added.
2826 *
2827 * In the following example, we add a new MPC slice for plane 0 into the
2828 * new_ctx. To do so we pass pipe 0 as dpp_pipe. The function acquires a new DPP
2829 * pipe 2 for plane 0 as the bottom most pipe for plane 0.
2830 *
2831 * Inter-pipe Relation (Before Acquiring and Adding MPC Slice)
2832 * __________________________________________________
2833 * |PIPE IDX| DPP PIPES | OPP HEADS | OTG MASTER |
2834 * | | plane 0 | | |
2835 * | 0 | -------------MPC----------------------- |
2836 * | | plane 1 | | | |
2837 * | 1 | ------------- | | |
2838 * |________|_______________|___________|_____________|
2839 *
2840 * Inter-pipe Relation (After Acquiring and Adding MPC Slice)
2841 * __________________________________________________
2842 * |PIPE IDX| DPP PIPES | OPP HEADS | OTG MASTER |
2843 * | | plane 0 | | |
2844 * | 0 | -------------MPC----------------------- |
2845 * | | plane 0 | | | |
2846 * | 2 | ------------- | | |
2847 * | | plane 1 | | | |
2848 * | 1 | ------------- | | |
2849 * |________|_______________|___________|_____________|
2850 */
acquire_dpp_pipe_and_add_mpc_slice(struct pipe_ctx * dpp_pipe,struct dc_state * new_ctx,const struct dc_state * cur_ctx,const struct resource_pool * pool)2851 static bool acquire_dpp_pipe_and_add_mpc_slice(
2852 struct pipe_ctx *dpp_pipe,
2853 struct dc_state *new_ctx,
2854 const struct dc_state *cur_ctx,
2855 const struct resource_pool *pool)
2856 {
2857 struct pipe_ctx *last_dpp_pipe =
2858 get_last_dpp_pipe_in_mpcc_combine(dpp_pipe);
2859 struct pipe_ctx *opp_head = resource_get_opp_head(dpp_pipe);
2860 struct pipe_ctx *new_dpp_pipe;
2861
2862 if (!pool->funcs->acquire_free_pipe_as_secondary_dpp_pipe) {
2863 ASSERT(0);
2864 return false;
2865 }
2866 new_dpp_pipe = pool->funcs->acquire_free_pipe_as_secondary_dpp_pipe(
2867 cur_ctx, new_ctx, pool, opp_head);
2868 if (!new_dpp_pipe || resource_get_odm_slice_count(dpp_pipe) > 1)
2869 return false;
2870
2871 new_dpp_pipe->bottom_pipe = last_dpp_pipe->bottom_pipe;
2872 if (new_dpp_pipe->bottom_pipe)
2873 new_dpp_pipe->bottom_pipe->top_pipe = new_dpp_pipe;
2874 new_dpp_pipe->top_pipe = last_dpp_pipe;
2875 last_dpp_pipe->bottom_pipe = new_dpp_pipe;
2876 new_dpp_pipe->plane_state = last_dpp_pipe->plane_state;
2877
2878 return true;
2879 }
2880
2881 /*
2882 * Reduce MPC slice count by 1 by releasing the bottom DPP pipe in MPCC combine
2883 * with dpp_pipe and removing last MPC slice of the plane associated with
2884 * dpp_pipe.
2885 *
2886 * return - true if the last MPC slice of the plane associated with dpp_pipe is
2887 * removed and last DPP pipe in MPCC combine with dpp_pipe is released.
2888 * false if there is no removable MPC slice.
2889 *
2890 * In the following example, we remove an MPC slice for plane 0 from the
2891 * context. To do so we pass pipe 0 as dpp_pipe. The function releases pipe 1 as
2892 * it is the last pipe for plane 0.
2893 *
2894 * Inter-pipe Relation (Before Releasing and Removing MPC Slice)
2895 * __________________________________________________
2896 * |PIPE IDX| DPP PIPES | OPP HEADS | OTG MASTER |
2897 * | | plane 0 | | |
2898 * | 0 | -------------MPC----------------------- |
2899 * | | plane 0 | | | |
2900 * | 1 | ------------- | | |
2901 * | | plane 1 | | | |
2902 * | 2 | ------------- | | |
2903 * |________|_______________|___________|_____________|
2904 *
2905 * Inter-pipe Relation (After Releasing and Removing MPC Slice)
2906 * __________________________________________________
2907 * |PIPE IDX| DPP PIPES | OPP HEADS | OTG MASTER |
2908 * | | plane 0 | | |
2909 * | 0 | -------------MPC----------------------- |
2910 * | | plane 1 | | | |
2911 * | 2 | ------------- | | |
2912 * |________|_______________|___________|_____________|
2913 */
release_dpp_pipe_and_remove_mpc_slice(struct pipe_ctx * dpp_pipe,struct dc_state * context,const struct resource_pool * pool)2914 static bool release_dpp_pipe_and_remove_mpc_slice(
2915 struct pipe_ctx *dpp_pipe,
2916 struct dc_state *context,
2917 const struct resource_pool *pool)
2918 {
2919 struct pipe_ctx *last_dpp_pipe =
2920 get_last_dpp_pipe_in_mpcc_combine(dpp_pipe);
2921
2922 if (!pool->funcs->release_pipe) {
2923 ASSERT(0);
2924 return false;
2925 }
2926
2927 if (resource_is_pipe_type(last_dpp_pipe, OPP_HEAD) ||
2928 resource_get_odm_slice_count(dpp_pipe) > 1)
2929 return false;
2930
2931 last_dpp_pipe->top_pipe->bottom_pipe = last_dpp_pipe->bottom_pipe;
2932 if (last_dpp_pipe->bottom_pipe)
2933 last_dpp_pipe->bottom_pipe->top_pipe = last_dpp_pipe->top_pipe;
2934 pool->funcs->release_pipe(context, last_dpp_pipe, pool);
2935
2936 return true;
2937 }
2938
resource_update_pipes_for_stream_with_slice_count(struct dc_state * new_ctx,const struct dc_state * cur_ctx,const struct resource_pool * pool,const struct dc_stream_state * stream,int new_slice_count)2939 bool resource_update_pipes_for_stream_with_slice_count(
2940 struct dc_state *new_ctx,
2941 const struct dc_state *cur_ctx,
2942 const struct resource_pool *pool,
2943 const struct dc_stream_state *stream,
2944 int new_slice_count)
2945 {
2946 int i;
2947 struct pipe_ctx *otg_master = resource_get_otg_master_for_stream(
2948 &new_ctx->res_ctx, stream);
2949 int cur_slice_count = resource_get_odm_slice_count(otg_master);
2950 bool result = true;
2951
2952 if (new_slice_count == cur_slice_count)
2953 return result;
2954
2955 if (new_slice_count > cur_slice_count)
2956 for (i = 0; i < new_slice_count - cur_slice_count && result; i++)
2957 result = acquire_pipes_and_add_odm_slice(
2958 otg_master, new_ctx, cur_ctx, pool);
2959 else
2960 for (i = 0; i < cur_slice_count - new_slice_count && result; i++)
2961 result = release_pipes_and_remove_odm_slice(
2962 otg_master, new_ctx, pool);
2963 if (result)
2964 result = update_pipe_params_after_odm_slice_count_change(
2965 otg_master, new_ctx, pool);
2966 return result;
2967 }
2968
resource_update_pipes_for_plane_with_slice_count(struct dc_state * new_ctx,const struct dc_state * cur_ctx,const struct resource_pool * pool,const struct dc_plane_state * plane,int new_slice_count)2969 bool resource_update_pipes_for_plane_with_slice_count(
2970 struct dc_state *new_ctx,
2971 const struct dc_state *cur_ctx,
2972 const struct resource_pool *pool,
2973 const struct dc_plane_state *plane,
2974 int new_slice_count)
2975 {
2976 int i;
2977 int dpp_pipe_count;
2978 int cur_slice_count;
2979 struct pipe_ctx *dpp_pipes[MAX_PIPES];
2980 bool result = true;
2981
2982 dpp_pipe_count = resource_get_dpp_pipes_for_plane(plane,
2983 &new_ctx->res_ctx, dpp_pipes);
2984 ASSERT(dpp_pipe_count > 0);
2985 cur_slice_count = resource_get_mpc_slice_count(dpp_pipes[0]);
2986
2987 if (new_slice_count == cur_slice_count)
2988 return result;
2989
2990 if (new_slice_count > cur_slice_count)
2991 for (i = 0; i < new_slice_count - cur_slice_count && result; i++)
2992 result = acquire_dpp_pipe_and_add_mpc_slice(
2993 dpp_pipes[0], new_ctx, cur_ctx, pool);
2994 else
2995 for (i = 0; i < cur_slice_count - new_slice_count && result; i++)
2996 result = release_dpp_pipe_and_remove_mpc_slice(
2997 dpp_pipes[0], new_ctx, pool);
2998 if (result)
2999 result = update_pipe_params_after_mpc_slice_count_change(
3000 dpp_pipes[0]->plane_state, new_ctx, pool);
3001 return result;
3002 }
3003
dc_is_timing_changed(struct dc_stream_state * cur_stream,struct dc_stream_state * new_stream)3004 bool dc_is_timing_changed(struct dc_stream_state *cur_stream,
3005 struct dc_stream_state *new_stream)
3006 {
3007 if (cur_stream == NULL)
3008 return true;
3009
3010 /* If output color space is changed, need to reprogram info frames */
3011 if (cur_stream->output_color_space != new_stream->output_color_space)
3012 return true;
3013
3014 return memcmp(
3015 &cur_stream->timing,
3016 &new_stream->timing,
3017 sizeof(struct dc_crtc_timing)) != 0;
3018 }
3019
are_stream_backends_same(struct dc_stream_state * stream_a,struct dc_stream_state * stream_b)3020 static bool are_stream_backends_same(
3021 struct dc_stream_state *stream_a, struct dc_stream_state *stream_b)
3022 {
3023 if (stream_a == stream_b)
3024 return true;
3025
3026 if (stream_a == NULL || stream_b == NULL)
3027 return false;
3028
3029 if (dc_is_timing_changed(stream_a, stream_b))
3030 return false;
3031
3032 if (stream_a->signal != stream_b->signal)
3033 return false;
3034
3035 if (stream_a->dpms_off != stream_b->dpms_off)
3036 return false;
3037
3038 return true;
3039 }
3040
3041 /*
3042 * dc_is_stream_unchanged() - Compare two stream states for equivalence.
3043 *
3044 * Checks if there a difference between the two states
3045 * that would require a mode change.
3046 *
3047 * Does not compare cursor position or attributes.
3048 */
dc_is_stream_unchanged(struct dc_stream_state * old_stream,struct dc_stream_state * stream)3049 bool dc_is_stream_unchanged(
3050 struct dc_stream_state *old_stream, struct dc_stream_state *stream)
3051 {
3052
3053 if (!are_stream_backends_same(old_stream, stream))
3054 return false;
3055
3056 if (old_stream->ignore_msa_timing_param != stream->ignore_msa_timing_param)
3057 return false;
3058
3059 /*compare audio info*/
3060 if (memcmp(&old_stream->audio_info, &stream->audio_info, sizeof(stream->audio_info)) != 0)
3061 return false;
3062
3063 return true;
3064 }
3065
3066 /*
3067 * dc_is_stream_scaling_unchanged() - Compare scaling rectangles of two streams.
3068 */
dc_is_stream_scaling_unchanged(struct dc_stream_state * old_stream,struct dc_stream_state * stream)3069 bool dc_is_stream_scaling_unchanged(struct dc_stream_state *old_stream,
3070 struct dc_stream_state *stream)
3071 {
3072 if (old_stream == stream)
3073 return true;
3074
3075 if (old_stream == NULL || stream == NULL)
3076 return false;
3077
3078 if (memcmp(&old_stream->src,
3079 &stream->src,
3080 sizeof(struct rect)) != 0)
3081 return false;
3082
3083 if (memcmp(&old_stream->dst,
3084 &stream->dst,
3085 sizeof(struct rect)) != 0)
3086 return false;
3087
3088 return true;
3089 }
3090
3091 /* TODO: release audio object */
update_audio_usage(struct resource_context * res_ctx,const struct resource_pool * pool,struct audio * audio,bool acquired)3092 void update_audio_usage(
3093 struct resource_context *res_ctx,
3094 const struct resource_pool *pool,
3095 struct audio *audio,
3096 bool acquired)
3097 {
3098 int i;
3099 for (i = 0; i < pool->audio_count; i++) {
3100 if (pool->audios[i] == audio)
3101 res_ctx->is_audio_acquired[i] = acquired;
3102 }
3103 }
3104
find_first_free_match_hpo_dp_stream_enc_for_link(struct resource_context * res_ctx,const struct resource_pool * pool,struct dc_stream_state * stream)3105 static struct hpo_dp_stream_encoder *find_first_free_match_hpo_dp_stream_enc_for_link(
3106 struct resource_context *res_ctx,
3107 const struct resource_pool *pool,
3108 struct dc_stream_state *stream)
3109 {
3110 int i;
3111
3112 for (i = 0; i < pool->hpo_dp_stream_enc_count; i++) {
3113 if (!res_ctx->is_hpo_dp_stream_enc_acquired[i] &&
3114 pool->hpo_dp_stream_enc[i]) {
3115
3116 return pool->hpo_dp_stream_enc[i];
3117 }
3118 }
3119
3120 return NULL;
3121 }
3122
find_first_free_audio(struct resource_context * res_ctx,const struct resource_pool * pool,enum engine_id id,enum dce_version dc_version)3123 static struct audio *find_first_free_audio(
3124 struct resource_context *res_ctx,
3125 const struct resource_pool *pool,
3126 enum engine_id id,
3127 enum dce_version dc_version)
3128 {
3129 int i, available_audio_count;
3130
3131 available_audio_count = pool->audio_count;
3132
3133 for (i = 0; i < available_audio_count; i++) {
3134 if ((res_ctx->is_audio_acquired[i] == false) && (res_ctx->is_stream_enc_acquired[i] == true)) {
3135 /*we have enough audio endpoint, find the matching inst*/
3136 if (id != i)
3137 continue;
3138 return pool->audios[i];
3139 }
3140 }
3141
3142 /* use engine id to find free audio */
3143 if ((id < available_audio_count) && (res_ctx->is_audio_acquired[id] == false)) {
3144 return pool->audios[id];
3145 }
3146 /*not found the matching one, first come first serve*/
3147 for (i = 0; i < available_audio_count; i++) {
3148 if (res_ctx->is_audio_acquired[i] == false) {
3149 return pool->audios[i];
3150 }
3151 }
3152 return NULL;
3153 }
3154
find_pll_sharable_stream(struct dc_stream_state * stream_needs_pll,struct dc_state * context)3155 static struct dc_stream_state *find_pll_sharable_stream(
3156 struct dc_stream_state *stream_needs_pll,
3157 struct dc_state *context)
3158 {
3159 int i;
3160
3161 for (i = 0; i < context->stream_count; i++) {
3162 struct dc_stream_state *stream_has_pll = context->streams[i];
3163
3164 /* We are looking for non dp, non virtual stream */
3165 if (resource_are_streams_timing_synchronizable(
3166 stream_needs_pll, stream_has_pll)
3167 && !dc_is_dp_signal(stream_has_pll->signal)
3168 && stream_has_pll->link->connector_signal
3169 != SIGNAL_TYPE_VIRTUAL)
3170 return stream_has_pll;
3171
3172 }
3173
3174 return NULL;
3175 }
3176
get_norm_pix_clk(const struct dc_crtc_timing * timing)3177 static int get_norm_pix_clk(const struct dc_crtc_timing *timing)
3178 {
3179 uint32_t pix_clk = timing->pix_clk_100hz;
3180 uint32_t normalized_pix_clk = pix_clk;
3181
3182 if (timing->pixel_encoding == PIXEL_ENCODING_YCBCR420)
3183 pix_clk /= 2;
3184 if (timing->pixel_encoding != PIXEL_ENCODING_YCBCR422) {
3185 switch (timing->display_color_depth) {
3186 case COLOR_DEPTH_666:
3187 case COLOR_DEPTH_888:
3188 normalized_pix_clk = pix_clk;
3189 break;
3190 case COLOR_DEPTH_101010:
3191 normalized_pix_clk = (pix_clk * 30) / 24;
3192 break;
3193 case COLOR_DEPTH_121212:
3194 normalized_pix_clk = (pix_clk * 36) / 24;
3195 break;
3196 case COLOR_DEPTH_161616:
3197 normalized_pix_clk = (pix_clk * 48) / 24;
3198 break;
3199 default:
3200 ASSERT(0);
3201 break;
3202 }
3203 }
3204 return normalized_pix_clk;
3205 }
3206
calculate_phy_pix_clks(struct dc_stream_state * stream)3207 static void calculate_phy_pix_clks(struct dc_stream_state *stream)
3208 {
3209 /* update actual pixel clock on all streams */
3210 if (dc_is_hdmi_signal(stream->signal))
3211 stream->phy_pix_clk = get_norm_pix_clk(
3212 &stream->timing) / 10;
3213 else
3214 stream->phy_pix_clk =
3215 stream->timing.pix_clk_100hz / 10;
3216
3217 if (stream->timing.timing_3d_format == TIMING_3D_FORMAT_HW_FRAME_PACKING)
3218 stream->phy_pix_clk *= 2;
3219 }
3220
acquire_resource_from_hw_enabled_state(struct resource_context * res_ctx,const struct resource_pool * pool,struct dc_stream_state * stream)3221 static int acquire_resource_from_hw_enabled_state(
3222 struct resource_context *res_ctx,
3223 const struct resource_pool *pool,
3224 struct dc_stream_state *stream)
3225 {
3226 struct dc_link *link = stream->link;
3227 unsigned int i, inst, tg_inst = 0;
3228 uint32_t numPipes = 1;
3229 uint32_t id_src[4] = {0};
3230
3231 /* Check for enabled DIG to identify enabled display */
3232 if (!link->link_enc->funcs->is_dig_enabled(link->link_enc))
3233 return -1;
3234
3235 inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
3236
3237 if (inst == ENGINE_ID_UNKNOWN)
3238 return -1;
3239
3240 for (i = 0; i < pool->stream_enc_count; i++) {
3241 if (pool->stream_enc[i]->id == inst) {
3242 tg_inst = pool->stream_enc[i]->funcs->dig_source_otg(
3243 pool->stream_enc[i]);
3244 break;
3245 }
3246 }
3247
3248 // tg_inst not found
3249 if (i == pool->stream_enc_count)
3250 return -1;
3251
3252 if (tg_inst >= pool->timing_generator_count)
3253 return -1;
3254
3255 if (!res_ctx->pipe_ctx[tg_inst].stream) {
3256 struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[tg_inst];
3257
3258 pipe_ctx->stream_res.tg = pool->timing_generators[tg_inst];
3259 id_src[0] = tg_inst;
3260
3261 if (pipe_ctx->stream_res.tg->funcs->get_optc_source)
3262 pipe_ctx->stream_res.tg->funcs->get_optc_source(pipe_ctx->stream_res.tg,
3263 &numPipes, &id_src[0], &id_src[1]);
3264
3265 if (id_src[0] == 0xf && id_src[1] == 0xf) {
3266 id_src[0] = tg_inst;
3267 numPipes = 1;
3268 }
3269
3270 for (i = 0; i < numPipes; i++) {
3271 //Check if src id invalid
3272 if (id_src[i] == 0xf)
3273 return -1;
3274
3275 pipe_ctx = &res_ctx->pipe_ctx[id_src[i]];
3276
3277 pipe_ctx->stream_res.tg = pool->timing_generators[tg_inst];
3278 pipe_ctx->plane_res.mi = pool->mis[id_src[i]];
3279 pipe_ctx->plane_res.hubp = pool->hubps[id_src[i]];
3280 pipe_ctx->plane_res.ipp = pool->ipps[id_src[i]];
3281 pipe_ctx->plane_res.xfm = pool->transforms[id_src[i]];
3282 pipe_ctx->plane_res.dpp = pool->dpps[id_src[i]];
3283 pipe_ctx->stream_res.opp = pool->opps[id_src[i]];
3284
3285 if (pool->dpps[id_src[i]]) {
3286 pipe_ctx->plane_res.mpcc_inst = pool->dpps[id_src[i]]->inst;
3287
3288 if (pool->mpc->funcs->read_mpcc_state) {
3289 struct mpcc_state s = {0};
3290
3291 pool->mpc->funcs->read_mpcc_state(pool->mpc, pipe_ctx->plane_res.mpcc_inst, &s);
3292
3293 if (s.dpp_id < MAX_MPCC)
3294 pool->mpc->mpcc_array[pipe_ctx->plane_res.mpcc_inst].dpp_id =
3295 s.dpp_id;
3296
3297 if (s.bot_mpcc_id < MAX_MPCC)
3298 pool->mpc->mpcc_array[pipe_ctx->plane_res.mpcc_inst].mpcc_bot =
3299 &pool->mpc->mpcc_array[s.bot_mpcc_id];
3300
3301 if (s.opp_id < MAX_OPP)
3302 pipe_ctx->stream_res.opp->mpc_tree_params.opp_id = s.opp_id;
3303 }
3304 }
3305 pipe_ctx->pipe_idx = id_src[i];
3306
3307 if (id_src[i] >= pool->timing_generator_count) {
3308 id_src[i] = pool->timing_generator_count - 1;
3309
3310 pipe_ctx->stream_res.tg = pool->timing_generators[id_src[i]];
3311 pipe_ctx->stream_res.opp = pool->opps[id_src[i]];
3312 }
3313
3314 pipe_ctx->stream = stream;
3315 }
3316
3317 if (numPipes == 2) {
3318 stream->apply_boot_odm_mode = dm_odm_combine_policy_2to1;
3319 res_ctx->pipe_ctx[id_src[0]].next_odm_pipe = &res_ctx->pipe_ctx[id_src[1]];
3320 res_ctx->pipe_ctx[id_src[0]].prev_odm_pipe = NULL;
3321 res_ctx->pipe_ctx[id_src[1]].next_odm_pipe = NULL;
3322 res_ctx->pipe_ctx[id_src[1]].prev_odm_pipe = &res_ctx->pipe_ctx[id_src[0]];
3323 } else
3324 stream->apply_boot_odm_mode = dm_odm_combine_mode_disabled;
3325
3326 return id_src[0];
3327 }
3328
3329 return -1;
3330 }
3331
mark_seamless_boot_stream(const struct dc * dc,struct dc_stream_state * stream)3332 static void mark_seamless_boot_stream(
3333 const struct dc *dc,
3334 struct dc_stream_state *stream)
3335 {
3336 struct dc_bios *dcb = dc->ctx->dc_bios;
3337
3338 if (dc->config.allow_seamless_boot_optimization &&
3339 !dcb->funcs->is_accelerated_mode(dcb)) {
3340 if (dc_validate_boot_timing(dc, stream->sink, &stream->timing))
3341 stream->apply_seamless_boot_optimization = true;
3342 }
3343 }
3344
3345 /*
3346 * Acquire a pipe as OTG master and assign to the stream in new dc context.
3347 * return - true if OTG master pipe is acquired and new dc context is updated.
3348 * false if it fails to acquire an OTG master pipe for this stream.
3349 *
3350 * In the example below, we acquired pipe 0 as OTG master pipe for the stream.
3351 * After the function its Inter-pipe Relation is represented by the diagram
3352 * below.
3353 *
3354 * Inter-pipe Relation
3355 * __________________________________________________
3356 * |PIPE IDX| DPP PIPES | OPP HEADS | OTG MASTER |
3357 * | | | | |
3358 * | 0 | |blank ------------------ |
3359 * |________|_______________|___________|_____________|
3360 */
acquire_otg_master_pipe_for_stream(const struct dc_state * cur_ctx,struct dc_state * new_ctx,const struct resource_pool * pool,struct dc_stream_state * stream)3361 static bool acquire_otg_master_pipe_for_stream(
3362 const struct dc_state *cur_ctx,
3363 struct dc_state *new_ctx,
3364 const struct resource_pool *pool,
3365 struct dc_stream_state *stream)
3366 {
3367 /* TODO: Move this function to DCN specific resource file and acquire
3368 * DSC resource here. The reason is that the function should have the
3369 * same level of responsibility as when we acquire secondary OPP head.
3370 * We acquire DSC when we acquire secondary OPP head, so we should
3371 * acquire DSC when we acquire OTG master.
3372 */
3373 int pipe_idx;
3374 struct pipe_ctx *pipe_ctx = NULL;
3375
3376 /*
3377 * Upper level code is responsible to optimize unnecessary addition and
3378 * removal for unchanged streams. So unchanged stream will keep the same
3379 * OTG master instance allocated. When current stream is removed and a
3380 * new stream is added, we want to reuse the OTG instance made available
3381 * by the removed stream first. If not found, we try to avoid of using
3382 * any free pipes already used in current context as this could tear
3383 * down exiting ODM/MPC/MPO configuration unnecessarily.
3384 */
3385 pipe_idx = recource_find_free_pipe_used_as_otg_master_in_cur_res_ctx(
3386 &cur_ctx->res_ctx, &new_ctx->res_ctx, pool);
3387 if (pipe_idx == FREE_PIPE_INDEX_NOT_FOUND)
3388 pipe_idx = recource_find_free_pipe_not_used_in_cur_res_ctx(
3389 &cur_ctx->res_ctx, &new_ctx->res_ctx, pool);
3390 if (pipe_idx == FREE_PIPE_INDEX_NOT_FOUND)
3391 pipe_idx = resource_find_any_free_pipe(&new_ctx->res_ctx, pool);
3392 if (pipe_idx != FREE_PIPE_INDEX_NOT_FOUND) {
3393 pipe_ctx = &new_ctx->res_ctx.pipe_ctx[pipe_idx];
3394 memset(pipe_ctx, 0, sizeof(*pipe_ctx));
3395 pipe_ctx->pipe_idx = pipe_idx;
3396 pipe_ctx->stream_res.tg = pool->timing_generators[pipe_idx];
3397 pipe_ctx->plane_res.mi = pool->mis[pipe_idx];
3398 pipe_ctx->plane_res.hubp = pool->hubps[pipe_idx];
3399 pipe_ctx->plane_res.ipp = pool->ipps[pipe_idx];
3400 pipe_ctx->plane_res.xfm = pool->transforms[pipe_idx];
3401 pipe_ctx->plane_res.dpp = pool->dpps[pipe_idx];
3402 pipe_ctx->stream_res.opp = pool->opps[pipe_idx];
3403 if (pool->dpps[pipe_idx])
3404 pipe_ctx->plane_res.mpcc_inst = pool->dpps[pipe_idx]->inst;
3405
3406 if (pipe_idx >= pool->timing_generator_count) {
3407 int tg_inst = pool->timing_generator_count - 1;
3408
3409 pipe_ctx->stream_res.tg = pool->timing_generators[tg_inst];
3410 pipe_ctx->stream_res.opp = pool->opps[tg_inst];
3411 }
3412
3413 pipe_ctx->stream = stream;
3414 } else {
3415 pipe_idx = acquire_first_split_pipe(&new_ctx->res_ctx, pool, stream);
3416 }
3417
3418 return pipe_idx != FREE_PIPE_INDEX_NOT_FOUND;
3419 }
3420
resource_map_pool_resources(const struct dc * dc,struct dc_state * context,struct dc_stream_state * stream)3421 enum dc_status resource_map_pool_resources(
3422 const struct dc *dc,
3423 struct dc_state *context,
3424 struct dc_stream_state *stream)
3425 {
3426 const struct resource_pool *pool = dc->res_pool;
3427 int i;
3428 struct dc_context *dc_ctx = dc->ctx;
3429 struct pipe_ctx *pipe_ctx = NULL;
3430 int pipe_idx = -1;
3431 bool acquired = false;
3432
3433 calculate_phy_pix_clks(stream);
3434
3435 mark_seamless_boot_stream(dc, stream);
3436
3437 if (stream->apply_seamless_boot_optimization) {
3438 pipe_idx = acquire_resource_from_hw_enabled_state(
3439 &context->res_ctx,
3440 pool,
3441 stream);
3442 if (pipe_idx < 0)
3443 /* hw resource was assigned to other stream */
3444 stream->apply_seamless_boot_optimization = false;
3445 else
3446 acquired = true;
3447 }
3448
3449 if (!acquired)
3450 /* acquire new resources */
3451 acquired = acquire_otg_master_pipe_for_stream(dc->current_state,
3452 context, pool, stream);
3453
3454 pipe_ctx = resource_get_otg_master_for_stream(&context->res_ctx, stream);
3455
3456 if (!pipe_ctx || pipe_ctx->stream_res.tg == NULL)
3457 return DC_NO_CONTROLLER_RESOURCE;
3458
3459 pipe_ctx->stream_res.stream_enc =
3460 dc->res_pool->funcs->find_first_free_match_stream_enc_for_link(
3461 &context->res_ctx, pool, stream);
3462
3463 if (!pipe_ctx->stream_res.stream_enc)
3464 return DC_NO_STREAM_ENC_RESOURCE;
3465
3466 update_stream_engine_usage(
3467 &context->res_ctx, pool,
3468 pipe_ctx->stream_res.stream_enc,
3469 true);
3470
3471 /* Allocate DP HPO Stream Encoder based on signal, hw capabilities
3472 * and link settings
3473 */
3474 if (dc_is_dp_signal(stream->signal)) {
3475 if (!dc->link_srv->dp_decide_link_settings(stream, &pipe_ctx->link_config.dp_link_settings))
3476 return DC_FAIL_DP_LINK_BANDWIDTH;
3477 if (dc->link_srv->dp_get_encoding_format(
3478 &pipe_ctx->link_config.dp_link_settings) == DP_128b_132b_ENCODING) {
3479 pipe_ctx->stream_res.hpo_dp_stream_enc =
3480 find_first_free_match_hpo_dp_stream_enc_for_link(
3481 &context->res_ctx, pool, stream);
3482
3483 if (!pipe_ctx->stream_res.hpo_dp_stream_enc)
3484 return DC_NO_STREAM_ENC_RESOURCE;
3485
3486 update_hpo_dp_stream_engine_usage(
3487 &context->res_ctx, pool,
3488 pipe_ctx->stream_res.hpo_dp_stream_enc,
3489 true);
3490 if (!add_hpo_dp_link_enc_to_ctx(&context->res_ctx, pool, pipe_ctx, stream))
3491 return DC_NO_LINK_ENC_RESOURCE;
3492 }
3493 }
3494
3495 /* TODO: Add check if ASIC support and EDID audio */
3496 if (!stream->converter_disable_audio &&
3497 dc_is_audio_capable_signal(pipe_ctx->stream->signal) &&
3498 stream->audio_info.mode_count && stream->audio_info.flags.all) {
3499 pipe_ctx->stream_res.audio = find_first_free_audio(
3500 &context->res_ctx, pool, pipe_ctx->stream_res.stream_enc->id, dc_ctx->dce_version);
3501
3502 /*
3503 * Audio assigned in order first come first get.
3504 * There are asics which has number of audio
3505 * resources less then number of pipes
3506 */
3507 if (pipe_ctx->stream_res.audio)
3508 update_audio_usage(&context->res_ctx, pool,
3509 pipe_ctx->stream_res.audio, true);
3510 }
3511
3512 /* Add ABM to the resource if on EDP */
3513 if (pipe_ctx->stream && dc_is_embedded_signal(pipe_ctx->stream->signal)) {
3514 if (pool->abm)
3515 pipe_ctx->stream_res.abm = pool->abm;
3516 else
3517 pipe_ctx->stream_res.abm = pool->multiple_abms[pipe_ctx->stream_res.tg->inst];
3518 }
3519
3520 for (i = 0; i < context->stream_count; i++)
3521 if (context->streams[i] == stream) {
3522 context->stream_status[i].primary_otg_inst = pipe_ctx->stream_res.tg->inst;
3523 context->stream_status[i].stream_enc_inst = pipe_ctx->stream_res.stream_enc->stream_enc_inst;
3524 context->stream_status[i].audio_inst =
3525 pipe_ctx->stream_res.audio ? pipe_ctx->stream_res.audio->inst : -1;
3526
3527 return DC_OK;
3528 }
3529
3530 DC_ERROR("Stream %p not found in new ctx!\n", stream);
3531 return DC_ERROR_UNEXPECTED;
3532 }
3533
dc_resource_is_dsc_encoding_supported(const struct dc * dc)3534 bool dc_resource_is_dsc_encoding_supported(const struct dc *dc)
3535 {
3536 if (dc->res_pool == NULL)
3537 return false;
3538
3539 return dc->res_pool->res_cap->num_dsc > 0;
3540 }
3541
planes_changed_for_existing_stream(struct dc_state * context,struct dc_stream_state * stream,const struct dc_validation_set set[],int set_count)3542 static bool planes_changed_for_existing_stream(struct dc_state *context,
3543 struct dc_stream_state *stream,
3544 const struct dc_validation_set set[],
3545 int set_count)
3546 {
3547 int i, j;
3548 struct dc_stream_status *stream_status = NULL;
3549
3550 for (i = 0; i < context->stream_count; i++) {
3551 if (context->streams[i] == stream) {
3552 stream_status = &context->stream_status[i];
3553 break;
3554 }
3555 }
3556
3557 if (!stream_status)
3558 ASSERT(0);
3559
3560 for (i = 0; i < set_count; i++)
3561 if (set[i].stream == stream)
3562 break;
3563
3564 if (i == set_count)
3565 ASSERT(0);
3566
3567 if (set[i].plane_count != stream_status->plane_count)
3568 return true;
3569
3570 for (j = 0; j < set[i].plane_count; j++)
3571 if (set[i].plane_states[j] != stream_status->plane_states[j])
3572 return true;
3573
3574 return false;
3575 }
3576
add_all_planes_for_stream(const struct dc * dc,struct dc_stream_state * stream,const struct dc_validation_set set[],int set_count,struct dc_state * state)3577 static bool add_all_planes_for_stream(
3578 const struct dc *dc,
3579 struct dc_stream_state *stream,
3580 const struct dc_validation_set set[],
3581 int set_count,
3582 struct dc_state *state)
3583 {
3584 int i, j;
3585
3586 for (i = 0; i < set_count; i++)
3587 if (set[i].stream == stream)
3588 break;
3589
3590 if (i == set_count) {
3591 dm_error("Stream %p not found in set!\n", stream);
3592 return false;
3593 }
3594
3595 for (j = 0; j < set[i].plane_count; j++)
3596 if (!dc_state_add_plane(dc, stream, set[i].plane_states[j], state))
3597 return false;
3598
3599 return true;
3600 }
3601
3602 /**
3603 * dc_validate_with_context - Validate and update the potential new stream in the context object
3604 *
3605 * @dc: Used to get the current state status
3606 * @set: An array of dc_validation_set with all the current streams reference
3607 * @set_count: Total of streams
3608 * @context: New context
3609 * @fast_validate: Enable or disable fast validation
3610 *
3611 * This function updates the potential new stream in the context object. It
3612 * creates multiple lists for the add, remove, and unchanged streams. In
3613 * particular, if the unchanged streams have a plane that changed, it is
3614 * necessary to remove all planes from the unchanged streams. In summary, this
3615 * function is responsible for validating the new context.
3616 *
3617 * Return:
3618 * In case of success, return DC_OK (1), otherwise, return a DC error.
3619 */
dc_validate_with_context(struct dc * dc,const struct dc_validation_set set[],int set_count,struct dc_state * context,bool fast_validate)3620 enum dc_status dc_validate_with_context(struct dc *dc,
3621 const struct dc_validation_set set[],
3622 int set_count,
3623 struct dc_state *context,
3624 bool fast_validate)
3625 {
3626 struct dc_stream_state *unchanged_streams[MAX_PIPES] = { 0 };
3627 struct dc_stream_state *del_streams[MAX_PIPES] = { 0 };
3628 struct dc_stream_state *add_streams[MAX_PIPES] = { 0 };
3629 int old_stream_count = context->stream_count;
3630 enum dc_status res = DC_ERROR_UNEXPECTED;
3631 int unchanged_streams_count = 0;
3632 int del_streams_count = 0;
3633 int add_streams_count = 0;
3634 bool found = false;
3635 int i, j, k;
3636
3637 DC_LOGGER_INIT(dc->ctx->logger);
3638
3639 /* First build a list of streams to be remove from current context */
3640 for (i = 0; i < old_stream_count; i++) {
3641 struct dc_stream_state *stream = context->streams[i];
3642
3643 for (j = 0; j < set_count; j++) {
3644 if (stream == set[j].stream) {
3645 found = true;
3646 break;
3647 }
3648 }
3649
3650 if (!found)
3651 del_streams[del_streams_count++] = stream;
3652
3653 found = false;
3654 }
3655
3656 /* Second, build a list of new streams */
3657 for (i = 0; i < set_count; i++) {
3658 struct dc_stream_state *stream = set[i].stream;
3659
3660 for (j = 0; j < old_stream_count; j++) {
3661 if (stream == context->streams[j]) {
3662 found = true;
3663 break;
3664 }
3665 }
3666
3667 if (!found)
3668 add_streams[add_streams_count++] = stream;
3669
3670 found = false;
3671 }
3672
3673 /* Build a list of unchanged streams which is necessary for handling
3674 * planes change such as added, removed, and updated.
3675 */
3676 for (i = 0; i < set_count; i++) {
3677 /* Check if stream is part of the delete list */
3678 for (j = 0; j < del_streams_count; j++) {
3679 if (set[i].stream == del_streams[j]) {
3680 found = true;
3681 break;
3682 }
3683 }
3684
3685 if (!found) {
3686 /* Check if stream is part of the add list */
3687 for (j = 0; j < add_streams_count; j++) {
3688 if (set[i].stream == add_streams[j]) {
3689 found = true;
3690 break;
3691 }
3692 }
3693 }
3694
3695 if (!found)
3696 unchanged_streams[unchanged_streams_count++] = set[i].stream;
3697
3698 found = false;
3699 }
3700
3701 /* Remove all planes for unchanged streams if planes changed */
3702 for (i = 0; i < unchanged_streams_count; i++) {
3703 if (planes_changed_for_existing_stream(context,
3704 unchanged_streams[i],
3705 set,
3706 set_count)) {
3707
3708 if (!dc_state_rem_all_planes_for_stream(dc,
3709 unchanged_streams[i],
3710 context)) {
3711 res = DC_FAIL_DETACH_SURFACES;
3712 goto fail;
3713 }
3714 }
3715 }
3716
3717 /* Remove all planes for removed streams and then remove the streams */
3718 for (i = 0; i < del_streams_count; i++) {
3719 /* Need to cpy the dwb data from the old stream in order to efc to work */
3720 if (del_streams[i]->num_wb_info > 0) {
3721 for (j = 0; j < add_streams_count; j++) {
3722 if (del_streams[i]->sink == add_streams[j]->sink) {
3723 add_streams[j]->num_wb_info = del_streams[i]->num_wb_info;
3724 for (k = 0; k < del_streams[i]->num_wb_info; k++)
3725 add_streams[j]->writeback_info[k] = del_streams[i]->writeback_info[k];
3726 }
3727 }
3728 }
3729
3730 if (dc_state_get_stream_subvp_type(context, del_streams[i]) == SUBVP_PHANTOM) {
3731 /* remove phantoms specifically */
3732 if (!dc_state_rem_all_phantom_planes_for_stream(dc, del_streams[i], context, true)) {
3733 res = DC_FAIL_DETACH_SURFACES;
3734 goto fail;
3735 }
3736
3737 res = dc_state_remove_phantom_stream(dc, context, del_streams[i]);
3738 dc_state_release_phantom_stream(dc, context, del_streams[i]);
3739 } else {
3740 if (!dc_state_rem_all_planes_for_stream(dc, del_streams[i], context)) {
3741 res = DC_FAIL_DETACH_SURFACES;
3742 goto fail;
3743 }
3744
3745 res = dc_state_remove_stream(dc, context, del_streams[i]);
3746 }
3747
3748 if (res != DC_OK)
3749 goto fail;
3750 }
3751
3752 /* Swap seamless boot stream to pipe 0 (if needed) to ensure pipe_ctx
3753 * matches. This may change in the future if seamless_boot_stream can be
3754 * multiple.
3755 */
3756 for (i = 0; i < add_streams_count; i++) {
3757 mark_seamless_boot_stream(dc, add_streams[i]);
3758 if (add_streams[i]->apply_seamless_boot_optimization && i != 0) {
3759 struct dc_stream_state *temp = add_streams[0];
3760
3761 add_streams[0] = add_streams[i];
3762 add_streams[i] = temp;
3763 break;
3764 }
3765 }
3766
3767 /* Add new streams and then add all planes for the new stream */
3768 for (i = 0; i < add_streams_count; i++) {
3769 calculate_phy_pix_clks(add_streams[i]);
3770 res = dc_state_add_stream(dc, context, add_streams[i]);
3771 if (res != DC_OK)
3772 goto fail;
3773
3774 if (!add_all_planes_for_stream(dc, add_streams[i], set, set_count, context)) {
3775 res = DC_FAIL_ATTACH_SURFACES;
3776 goto fail;
3777 }
3778 }
3779
3780 /* Add all planes for unchanged streams if planes changed */
3781 for (i = 0; i < unchanged_streams_count; i++) {
3782 if (planes_changed_for_existing_stream(context,
3783 unchanged_streams[i],
3784 set,
3785 set_count)) {
3786 if (!add_all_planes_for_stream(dc, unchanged_streams[i], set, set_count, context)) {
3787 res = DC_FAIL_ATTACH_SURFACES;
3788 goto fail;
3789 }
3790 }
3791 }
3792
3793 res = dc_validate_global_state(dc, context, fast_validate);
3794
3795 fail:
3796 if (res != DC_OK)
3797 DC_LOG_WARNING("%s:resource validation failed, dc_status:%d\n",
3798 __func__,
3799 res);
3800
3801 return res;
3802 }
3803
3804 /**
3805 * dc_validate_global_state() - Determine if hardware can support a given state
3806 *
3807 * @dc: dc struct for this driver
3808 * @new_ctx: state to be validated
3809 * @fast_validate: set to true if only yes/no to support matters
3810 *
3811 * Checks hardware resource availability and bandwidth requirement.
3812 *
3813 * Return:
3814 * DC_OK if the result can be programmed. Otherwise, an error code.
3815 */
dc_validate_global_state(struct dc * dc,struct dc_state * new_ctx,bool fast_validate)3816 enum dc_status dc_validate_global_state(
3817 struct dc *dc,
3818 struct dc_state *new_ctx,
3819 bool fast_validate)
3820 {
3821 enum dc_status result = DC_ERROR_UNEXPECTED;
3822 int i, j;
3823
3824 if (!new_ctx)
3825 return DC_ERROR_UNEXPECTED;
3826
3827 if (dc->res_pool->funcs->validate_global) {
3828 result = dc->res_pool->funcs->validate_global(dc, new_ctx);
3829 if (result != DC_OK)
3830 return result;
3831 }
3832
3833 for (i = 0; i < new_ctx->stream_count; i++) {
3834 struct dc_stream_state *stream = new_ctx->streams[i];
3835
3836 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3837 struct pipe_ctx *pipe_ctx = &new_ctx->res_ctx.pipe_ctx[j];
3838
3839 if (pipe_ctx->stream != stream)
3840 continue;
3841
3842 if (dc->res_pool->funcs->patch_unknown_plane_state &&
3843 pipe_ctx->plane_state &&
3844 pipe_ctx->plane_state->tiling_info.gfx9.swizzle == DC_SW_UNKNOWN) {
3845 result = dc->res_pool->funcs->patch_unknown_plane_state(pipe_ctx->plane_state);
3846 if (result != DC_OK)
3847 return result;
3848 }
3849
3850 /* Switch to dp clock source only if there is
3851 * no non dp stream that shares the same timing
3852 * with the dp stream.
3853 */
3854 if (dc_is_dp_signal(pipe_ctx->stream->signal) &&
3855 !find_pll_sharable_stream(stream, new_ctx)) {
3856
3857 resource_unreference_clock_source(
3858 &new_ctx->res_ctx,
3859 dc->res_pool,
3860 pipe_ctx->clock_source);
3861
3862 pipe_ctx->clock_source = dc->res_pool->dp_clock_source;
3863 resource_reference_clock_source(
3864 &new_ctx->res_ctx,
3865 dc->res_pool,
3866 pipe_ctx->clock_source);
3867 }
3868 }
3869 }
3870
3871 result = resource_build_scaling_params_for_context(dc, new_ctx);
3872
3873 if (result == DC_OK)
3874 if (!dc->res_pool->funcs->validate_bandwidth(dc, new_ctx, fast_validate))
3875 result = DC_FAIL_BANDWIDTH_VALIDATE;
3876
3877 /*
3878 * Only update link encoder to stream assignment after bandwidth validation passed.
3879 * TODO: Split out assignment and validation.
3880 */
3881 if (result == DC_OK && dc->res_pool->funcs->link_encs_assign && fast_validate == false)
3882 dc->res_pool->funcs->link_encs_assign(
3883 dc, new_ctx, new_ctx->streams, new_ctx->stream_count);
3884
3885 return result;
3886 }
3887
patch_gamut_packet_checksum(struct dc_info_packet * gamut_packet)3888 static void patch_gamut_packet_checksum(
3889 struct dc_info_packet *gamut_packet)
3890 {
3891 /* For gamut we recalc checksum */
3892 if (gamut_packet->valid) {
3893 uint8_t chk_sum = 0;
3894 uint8_t *ptr;
3895 uint8_t i;
3896
3897 /*start of the Gamut data. */
3898 ptr = &gamut_packet->sb[3];
3899
3900 for (i = 0; i <= gamut_packet->sb[1]; i++)
3901 chk_sum += ptr[i];
3902
3903 gamut_packet->sb[2] = (uint8_t) (0x100 - chk_sum);
3904 }
3905 }
3906
set_avi_info_frame(struct dc_info_packet * info_packet,struct pipe_ctx * pipe_ctx)3907 static void set_avi_info_frame(
3908 struct dc_info_packet *info_packet,
3909 struct pipe_ctx *pipe_ctx)
3910 {
3911 struct dc_stream_state *stream = pipe_ctx->stream;
3912 enum dc_color_space color_space = COLOR_SPACE_UNKNOWN;
3913 uint32_t pixel_encoding = 0;
3914 enum scanning_type scan_type = SCANNING_TYPE_NODATA;
3915 enum dc_aspect_ratio aspect = ASPECT_RATIO_NO_DATA;
3916 uint8_t *check_sum = NULL;
3917 uint8_t byte_index = 0;
3918 union hdmi_info_packet hdmi_info;
3919 unsigned int vic = pipe_ctx->stream->timing.vic;
3920 unsigned int rid = pipe_ctx->stream->timing.rid;
3921 unsigned int fr_ind = pipe_ctx->stream->timing.fr_index;
3922 enum dc_timing_3d_format format;
3923
3924 memset(&hdmi_info, 0, sizeof(union hdmi_info_packet));
3925
3926 color_space = pipe_ctx->stream->output_color_space;
3927 if (color_space == COLOR_SPACE_UNKNOWN)
3928 color_space = (stream->timing.pixel_encoding == PIXEL_ENCODING_RGB) ?
3929 COLOR_SPACE_SRGB:COLOR_SPACE_YCBCR709;
3930
3931 /* Initialize header */
3932 hdmi_info.bits.header.info_frame_type = HDMI_INFOFRAME_TYPE_AVI;
3933 /* InfoFrameVersion_3 is defined by CEA861F (Section 6.4), but shall
3934 * not be used in HDMI 2.0 (Section 10.1) */
3935 hdmi_info.bits.header.version = 2;
3936 hdmi_info.bits.header.length = HDMI_AVI_INFOFRAME_SIZE;
3937
3938 /*
3939 * IDO-defined (Y2,Y1,Y0 = 1,1,1) shall not be used by devices built
3940 * according to HDMI 2.0 spec (Section 10.1)
3941 */
3942
3943 switch (stream->timing.pixel_encoding) {
3944 case PIXEL_ENCODING_YCBCR422:
3945 pixel_encoding = 1;
3946 break;
3947
3948 case PIXEL_ENCODING_YCBCR444:
3949 pixel_encoding = 2;
3950 break;
3951 case PIXEL_ENCODING_YCBCR420:
3952 pixel_encoding = 3;
3953 break;
3954
3955 case PIXEL_ENCODING_RGB:
3956 default:
3957 pixel_encoding = 0;
3958 }
3959
3960 /* Y0_Y1_Y2 : The pixel encoding */
3961 /* H14b AVI InfoFrame has extension on Y-field from 2 bits to 3 bits */
3962 hdmi_info.bits.Y0_Y1_Y2 = pixel_encoding;
3963
3964 /* A0 = 1 Active Format Information valid */
3965 hdmi_info.bits.A0 = ACTIVE_FORMAT_VALID;
3966
3967 /* B0, B1 = 3; Bar info data is valid */
3968 hdmi_info.bits.B0_B1 = BAR_INFO_BOTH_VALID;
3969
3970 hdmi_info.bits.SC0_SC1 = PICTURE_SCALING_UNIFORM;
3971
3972 /* S0, S1 : Underscan / Overscan */
3973 /* TODO: un-hardcode scan type */
3974 scan_type = SCANNING_TYPE_UNDERSCAN;
3975 hdmi_info.bits.S0_S1 = scan_type;
3976
3977 /* C0, C1 : Colorimetry */
3978 switch (color_space) {
3979 case COLOR_SPACE_YCBCR709:
3980 case COLOR_SPACE_YCBCR709_LIMITED:
3981 hdmi_info.bits.C0_C1 = COLORIMETRY_ITU709;
3982 break;
3983 case COLOR_SPACE_YCBCR601:
3984 case COLOR_SPACE_YCBCR601_LIMITED:
3985 hdmi_info.bits.C0_C1 = COLORIMETRY_ITU601;
3986 break;
3987 case COLOR_SPACE_2020_RGB_FULLRANGE:
3988 case COLOR_SPACE_2020_RGB_LIMITEDRANGE:
3989 case COLOR_SPACE_2020_YCBCR:
3990 hdmi_info.bits.EC0_EC2 = COLORIMETRYEX_BT2020RGBYCBCR;
3991 hdmi_info.bits.C0_C1 = COLORIMETRY_EXTENDED;
3992 break;
3993 case COLOR_SPACE_ADOBERGB:
3994 hdmi_info.bits.EC0_EC2 = COLORIMETRYEX_ADOBERGB;
3995 hdmi_info.bits.C0_C1 = COLORIMETRY_EXTENDED;
3996 break;
3997 case COLOR_SPACE_SRGB:
3998 default:
3999 hdmi_info.bits.C0_C1 = COLORIMETRY_NO_DATA;
4000 break;
4001 }
4002
4003 if (pixel_encoding && color_space == COLOR_SPACE_2020_YCBCR &&
4004 stream->out_transfer_func->tf == TRANSFER_FUNCTION_GAMMA22) {
4005 hdmi_info.bits.EC0_EC2 = 0;
4006 hdmi_info.bits.C0_C1 = COLORIMETRY_ITU709;
4007 }
4008
4009 /* TODO: un-hardcode aspect ratio */
4010 aspect = stream->timing.aspect_ratio;
4011
4012 switch (aspect) {
4013 case ASPECT_RATIO_4_3:
4014 case ASPECT_RATIO_16_9:
4015 hdmi_info.bits.M0_M1 = aspect;
4016 break;
4017
4018 case ASPECT_RATIO_NO_DATA:
4019 case ASPECT_RATIO_64_27:
4020 case ASPECT_RATIO_256_135:
4021 default:
4022 hdmi_info.bits.M0_M1 = 0;
4023 }
4024
4025 /* Active Format Aspect ratio - same as Picture Aspect Ratio. */
4026 hdmi_info.bits.R0_R3 = ACTIVE_FORMAT_ASPECT_RATIO_SAME_AS_PICTURE;
4027
4028 switch (stream->content_type) {
4029 case DISPLAY_CONTENT_TYPE_NO_DATA:
4030 hdmi_info.bits.CN0_CN1 = 0;
4031 hdmi_info.bits.ITC = 1;
4032 break;
4033 case DISPLAY_CONTENT_TYPE_GRAPHICS:
4034 hdmi_info.bits.CN0_CN1 = 0;
4035 hdmi_info.bits.ITC = 1;
4036 break;
4037 case DISPLAY_CONTENT_TYPE_PHOTO:
4038 hdmi_info.bits.CN0_CN1 = 1;
4039 hdmi_info.bits.ITC = 1;
4040 break;
4041 case DISPLAY_CONTENT_TYPE_CINEMA:
4042 hdmi_info.bits.CN0_CN1 = 2;
4043 hdmi_info.bits.ITC = 1;
4044 break;
4045 case DISPLAY_CONTENT_TYPE_GAME:
4046 hdmi_info.bits.CN0_CN1 = 3;
4047 hdmi_info.bits.ITC = 1;
4048 break;
4049 }
4050
4051 if (stream->qs_bit == 1) {
4052 if (color_space == COLOR_SPACE_SRGB ||
4053 color_space == COLOR_SPACE_2020_RGB_FULLRANGE)
4054 hdmi_info.bits.Q0_Q1 = RGB_QUANTIZATION_FULL_RANGE;
4055 else if (color_space == COLOR_SPACE_SRGB_LIMITED ||
4056 color_space == COLOR_SPACE_2020_RGB_LIMITEDRANGE)
4057 hdmi_info.bits.Q0_Q1 = RGB_QUANTIZATION_LIMITED_RANGE;
4058 else
4059 hdmi_info.bits.Q0_Q1 = RGB_QUANTIZATION_DEFAULT_RANGE;
4060 } else
4061 hdmi_info.bits.Q0_Q1 = RGB_QUANTIZATION_DEFAULT_RANGE;
4062
4063 /* TODO : We should handle YCC quantization */
4064 /* but we do not have matrix calculation */
4065 hdmi_info.bits.YQ0_YQ1 = YYC_QUANTIZATION_LIMITED_RANGE;
4066
4067 ///VIC
4068 if (pipe_ctx->stream->timing.hdmi_vic != 0)
4069 vic = 0;
4070 format = stream->timing.timing_3d_format;
4071 /*todo, add 3DStereo support*/
4072 if (format != TIMING_3D_FORMAT_NONE) {
4073 // Based on HDMI specs hdmi vic needs to be converted to cea vic when 3D is enabled
4074 switch (pipe_ctx->stream->timing.hdmi_vic) {
4075 case 1:
4076 vic = 95;
4077 break;
4078 case 2:
4079 vic = 94;
4080 break;
4081 case 3:
4082 vic = 93;
4083 break;
4084 case 4:
4085 vic = 98;
4086 break;
4087 default:
4088 break;
4089 }
4090 }
4091 /* If VIC >= 128, the Source shall use AVI InfoFrame Version 3*/
4092 hdmi_info.bits.VIC0_VIC7 = vic;
4093 if (vic >= 128)
4094 hdmi_info.bits.header.version = 3;
4095 /* If (C1, C0)=(1, 1) and (EC2, EC1, EC0)=(1, 1, 1),
4096 * the Source shall use 20 AVI InfoFrame Version 4
4097 */
4098 if (hdmi_info.bits.C0_C1 == COLORIMETRY_EXTENDED &&
4099 hdmi_info.bits.EC0_EC2 == COLORIMETRYEX_RESERVED) {
4100 hdmi_info.bits.header.version = 4;
4101 hdmi_info.bits.header.length = 14;
4102 }
4103
4104 if (rid != 0 && fr_ind != 0) {
4105 hdmi_info.bits.header.version = 5;
4106 hdmi_info.bits.header.length = 15;
4107
4108 hdmi_info.bits.FR0_FR3 = fr_ind & 0xF;
4109 hdmi_info.bits.FR4 = (fr_ind >> 4) & 0x1;
4110 hdmi_info.bits.RID0_RID5 = rid;
4111 }
4112
4113 /* pixel repetition
4114 * PR0 - PR3 start from 0 whereas pHwPathMode->mode.timing.flags.pixel
4115 * repetition start from 1 */
4116 hdmi_info.bits.PR0_PR3 = 0;
4117
4118 /* Bar Info
4119 * barTop: Line Number of End of Top Bar.
4120 * barBottom: Line Number of Start of Bottom Bar.
4121 * barLeft: Pixel Number of End of Left Bar.
4122 * barRight: Pixel Number of Start of Right Bar. */
4123 hdmi_info.bits.bar_top = stream->timing.v_border_top;
4124 hdmi_info.bits.bar_bottom = (stream->timing.v_total
4125 - stream->timing.v_border_bottom + 1);
4126 hdmi_info.bits.bar_left = stream->timing.h_border_left;
4127 hdmi_info.bits.bar_right = (stream->timing.h_total
4128 - stream->timing.h_border_right + 1);
4129
4130 /* Additional Colorimetry Extension
4131 * Used in conduction with C0-C1 and EC0-EC2
4132 * 0 = DCI-P3 RGB (D65)
4133 * 1 = DCI-P3 RGB (theater)
4134 */
4135 hdmi_info.bits.ACE0_ACE3 = 0;
4136
4137 /* check_sum - Calculate AFMT_AVI_INFO0 ~ AFMT_AVI_INFO3 */
4138 check_sum = &hdmi_info.packet_raw_data.sb[0];
4139
4140 *check_sum = HDMI_INFOFRAME_TYPE_AVI + hdmi_info.bits.header.length + hdmi_info.bits.header.version;
4141
4142 for (byte_index = 1; byte_index <= hdmi_info.bits.header.length; byte_index++)
4143 *check_sum += hdmi_info.packet_raw_data.sb[byte_index];
4144
4145 /* one byte complement */
4146 *check_sum = (uint8_t) (0x100 - *check_sum);
4147
4148 /* Store in hw_path_mode */
4149 info_packet->hb0 = hdmi_info.packet_raw_data.hb0;
4150 info_packet->hb1 = hdmi_info.packet_raw_data.hb1;
4151 info_packet->hb2 = hdmi_info.packet_raw_data.hb2;
4152
4153 for (byte_index = 0; byte_index < sizeof(hdmi_info.packet_raw_data.sb); byte_index++)
4154 info_packet->sb[byte_index] = hdmi_info.packet_raw_data.sb[byte_index];
4155
4156 info_packet->valid = true;
4157 }
4158
set_vendor_info_packet(struct dc_info_packet * info_packet,struct dc_stream_state * stream)4159 static void set_vendor_info_packet(
4160 struct dc_info_packet *info_packet,
4161 struct dc_stream_state *stream)
4162 {
4163 /* SPD info packet for FreeSync */
4164
4165 /* Check if Freesync is supported. Return if false. If true,
4166 * set the corresponding bit in the info packet
4167 */
4168 if (!stream->vsp_infopacket.valid)
4169 return;
4170
4171 *info_packet = stream->vsp_infopacket;
4172 }
4173
set_spd_info_packet(struct dc_info_packet * info_packet,struct dc_stream_state * stream)4174 static void set_spd_info_packet(
4175 struct dc_info_packet *info_packet,
4176 struct dc_stream_state *stream)
4177 {
4178 /* SPD info packet for FreeSync */
4179
4180 /* Check if Freesync is supported. Return if false. If true,
4181 * set the corresponding bit in the info packet
4182 */
4183 if (!stream->vrr_infopacket.valid)
4184 return;
4185
4186 *info_packet = stream->vrr_infopacket;
4187 }
4188
set_hdr_static_info_packet(struct dc_info_packet * info_packet,struct dc_stream_state * stream)4189 static void set_hdr_static_info_packet(
4190 struct dc_info_packet *info_packet,
4191 struct dc_stream_state *stream)
4192 {
4193 /* HDR Static Metadata info packet for HDR10 */
4194
4195 if (!stream->hdr_static_metadata.valid ||
4196 stream->use_dynamic_meta)
4197 return;
4198
4199 *info_packet = stream->hdr_static_metadata;
4200 }
4201
set_vsc_info_packet(struct dc_info_packet * info_packet,struct dc_stream_state * stream)4202 static void set_vsc_info_packet(
4203 struct dc_info_packet *info_packet,
4204 struct dc_stream_state *stream)
4205 {
4206 if (!stream->vsc_infopacket.valid)
4207 return;
4208
4209 *info_packet = stream->vsc_infopacket;
4210 }
set_hfvs_info_packet(struct dc_info_packet * info_packet,struct dc_stream_state * stream)4211 static void set_hfvs_info_packet(
4212 struct dc_info_packet *info_packet,
4213 struct dc_stream_state *stream)
4214 {
4215 if (!stream->hfvsif_infopacket.valid)
4216 return;
4217
4218 *info_packet = stream->hfvsif_infopacket;
4219 }
4220
adaptive_sync_override_dp_info_packets_sdp_line_num(const struct dc_crtc_timing * timing,struct enc_sdp_line_num * sdp_line_num,struct _vcs_dpi_display_pipe_dest_params_st * pipe_dlg_param)4221 static void adaptive_sync_override_dp_info_packets_sdp_line_num(
4222 const struct dc_crtc_timing *timing,
4223 struct enc_sdp_line_num *sdp_line_num,
4224 struct _vcs_dpi_display_pipe_dest_params_st *pipe_dlg_param)
4225 {
4226 uint32_t asic_blank_start = 0;
4227 uint32_t asic_blank_end = 0;
4228 uint32_t v_update = 0;
4229
4230 const struct dc_crtc_timing *tg = timing;
4231
4232 /* blank_start = frame end - front porch */
4233 asic_blank_start = tg->v_total - tg->v_front_porch;
4234
4235 /* blank_end = blank_start - active */
4236 asic_blank_end = (asic_blank_start - tg->v_border_bottom -
4237 tg->v_addressable - tg->v_border_top);
4238
4239 if (pipe_dlg_param->vstartup_start > asic_blank_end) {
4240 v_update = (tg->v_total - (pipe_dlg_param->vstartup_start - asic_blank_end));
4241 sdp_line_num->adaptive_sync_line_num_valid = true;
4242 sdp_line_num->adaptive_sync_line_num = (tg->v_total - v_update - 1);
4243 } else {
4244 sdp_line_num->adaptive_sync_line_num_valid = false;
4245 sdp_line_num->adaptive_sync_line_num = 0;
4246 }
4247 }
4248
set_adaptive_sync_info_packet(struct dc_info_packet * info_packet,const struct dc_stream_state * stream,struct encoder_info_frame * info_frame,struct _vcs_dpi_display_pipe_dest_params_st * pipe_dlg_param)4249 static void set_adaptive_sync_info_packet(
4250 struct dc_info_packet *info_packet,
4251 const struct dc_stream_state *stream,
4252 struct encoder_info_frame *info_frame,
4253 struct _vcs_dpi_display_pipe_dest_params_st *pipe_dlg_param)
4254 {
4255 if (!stream->adaptive_sync_infopacket.valid)
4256 return;
4257
4258 adaptive_sync_override_dp_info_packets_sdp_line_num(
4259 &stream->timing,
4260 &info_frame->sdp_line_num,
4261 pipe_dlg_param);
4262
4263 *info_packet = stream->adaptive_sync_infopacket;
4264 }
4265
set_vtem_info_packet(struct dc_info_packet * info_packet,struct dc_stream_state * stream)4266 static void set_vtem_info_packet(
4267 struct dc_info_packet *info_packet,
4268 struct dc_stream_state *stream)
4269 {
4270 if (!stream->vtem_infopacket.valid)
4271 return;
4272
4273 *info_packet = stream->vtem_infopacket;
4274 }
4275
dc_resource_find_first_free_pll(struct resource_context * res_ctx,const struct resource_pool * pool)4276 struct clock_source *dc_resource_find_first_free_pll(
4277 struct resource_context *res_ctx,
4278 const struct resource_pool *pool)
4279 {
4280 int i;
4281
4282 for (i = 0; i < pool->clk_src_count; ++i) {
4283 if (res_ctx->clock_source_ref_count[i] == 0)
4284 return pool->clock_sources[i];
4285 }
4286
4287 return NULL;
4288 }
4289
resource_build_info_frame(struct pipe_ctx * pipe_ctx)4290 void resource_build_info_frame(struct pipe_ctx *pipe_ctx)
4291 {
4292 enum signal_type signal = SIGNAL_TYPE_NONE;
4293 struct encoder_info_frame *info = &pipe_ctx->stream_res.encoder_info_frame;
4294
4295 /* default all packets to invalid */
4296 info->avi.valid = false;
4297 info->gamut.valid = false;
4298 info->vendor.valid = false;
4299 info->spd.valid = false;
4300 info->hdrsmd.valid = false;
4301 info->vsc.valid = false;
4302 info->hfvsif.valid = false;
4303 info->vtem.valid = false;
4304 info->adaptive_sync.valid = false;
4305 signal = pipe_ctx->stream->signal;
4306
4307 /* HDMi and DP have different info packets*/
4308 if (dc_is_hdmi_signal(signal)) {
4309 set_avi_info_frame(&info->avi, pipe_ctx);
4310
4311 set_vendor_info_packet(&info->vendor, pipe_ctx->stream);
4312 set_hfvs_info_packet(&info->hfvsif, pipe_ctx->stream);
4313 set_vtem_info_packet(&info->vtem, pipe_ctx->stream);
4314
4315 set_spd_info_packet(&info->spd, pipe_ctx->stream);
4316
4317 set_hdr_static_info_packet(&info->hdrsmd, pipe_ctx->stream);
4318
4319 } else if (dc_is_dp_signal(signal)) {
4320 set_vsc_info_packet(&info->vsc, pipe_ctx->stream);
4321
4322 set_spd_info_packet(&info->spd, pipe_ctx->stream);
4323
4324 set_hdr_static_info_packet(&info->hdrsmd, pipe_ctx->stream);
4325 set_adaptive_sync_info_packet(&info->adaptive_sync,
4326 pipe_ctx->stream,
4327 info,
4328 &pipe_ctx->pipe_dlg_param);
4329 }
4330
4331 patch_gamut_packet_checksum(&info->gamut);
4332 }
4333
resource_map_clock_resources(const struct dc * dc,struct dc_state * context,struct dc_stream_state * stream)4334 enum dc_status resource_map_clock_resources(
4335 const struct dc *dc,
4336 struct dc_state *context,
4337 struct dc_stream_state *stream)
4338 {
4339 /* acquire new resources */
4340 const struct resource_pool *pool = dc->res_pool;
4341 struct pipe_ctx *pipe_ctx = resource_get_otg_master_for_stream(
4342 &context->res_ctx, stream);
4343
4344 if (!pipe_ctx)
4345 return DC_ERROR_UNEXPECTED;
4346
4347 if (dc_is_dp_signal(pipe_ctx->stream->signal)
4348 || pipe_ctx->stream->signal == SIGNAL_TYPE_VIRTUAL)
4349 pipe_ctx->clock_source = pool->dp_clock_source;
4350 else {
4351 pipe_ctx->clock_source = NULL;
4352
4353 if (!dc->config.disable_disp_pll_sharing)
4354 pipe_ctx->clock_source = resource_find_used_clk_src_for_sharing(
4355 &context->res_ctx,
4356 pipe_ctx);
4357
4358 if (pipe_ctx->clock_source == NULL)
4359 pipe_ctx->clock_source =
4360 dc_resource_find_first_free_pll(
4361 &context->res_ctx,
4362 pool);
4363 }
4364
4365 if (pipe_ctx->clock_source == NULL)
4366 return DC_NO_CLOCK_SOURCE_RESOURCE;
4367
4368 resource_reference_clock_source(
4369 &context->res_ctx, pool,
4370 pipe_ctx->clock_source);
4371
4372 return DC_OK;
4373 }
4374
4375 /*
4376 * Note: We need to disable output if clock sources change,
4377 * since bios does optimization and doesn't apply if changing
4378 * PHY when not already disabled.
4379 */
pipe_need_reprogram(struct pipe_ctx * pipe_ctx_old,struct pipe_ctx * pipe_ctx)4380 bool pipe_need_reprogram(
4381 struct pipe_ctx *pipe_ctx_old,
4382 struct pipe_ctx *pipe_ctx)
4383 {
4384 if (!pipe_ctx_old->stream)
4385 return false;
4386
4387 if (pipe_ctx_old->stream->sink != pipe_ctx->stream->sink)
4388 return true;
4389
4390 if (pipe_ctx_old->stream->signal != pipe_ctx->stream->signal)
4391 return true;
4392
4393 if (pipe_ctx_old->stream_res.audio != pipe_ctx->stream_res.audio)
4394 return true;
4395
4396 if (pipe_ctx_old->clock_source != pipe_ctx->clock_source
4397 && pipe_ctx_old->stream != pipe_ctx->stream)
4398 return true;
4399
4400 if (pipe_ctx_old->stream_res.stream_enc != pipe_ctx->stream_res.stream_enc)
4401 return true;
4402
4403 if (dc_is_timing_changed(pipe_ctx_old->stream, pipe_ctx->stream))
4404 return true;
4405
4406 if (pipe_ctx_old->stream->dpms_off != pipe_ctx->stream->dpms_off)
4407 return true;
4408
4409 if (false == pipe_ctx_old->stream->link->link_state_valid &&
4410 false == pipe_ctx_old->stream->dpms_off)
4411 return true;
4412
4413 if (pipe_ctx_old->stream_res.dsc != pipe_ctx->stream_res.dsc)
4414 return true;
4415
4416 if (pipe_ctx_old->stream_res.hpo_dp_stream_enc != pipe_ctx->stream_res.hpo_dp_stream_enc)
4417 return true;
4418 if (pipe_ctx_old->link_res.hpo_dp_link_enc != pipe_ctx->link_res.hpo_dp_link_enc)
4419 return true;
4420
4421 /* DIG link encoder resource assignment for stream changed. */
4422 if (pipe_ctx_old->stream->ctx->dc->res_pool->funcs->link_encs_assign) {
4423 bool need_reprogram = false;
4424 struct dc *dc = pipe_ctx_old->stream->ctx->dc;
4425 struct link_encoder *link_enc_prev =
4426 link_enc_cfg_get_link_enc_used_by_stream_current(dc, pipe_ctx_old->stream);
4427
4428 if (link_enc_prev != pipe_ctx->stream->link_enc)
4429 need_reprogram = true;
4430
4431 return need_reprogram;
4432 }
4433
4434 return false;
4435 }
4436
resource_build_bit_depth_reduction_params(struct dc_stream_state * stream,struct bit_depth_reduction_params * fmt_bit_depth)4437 void resource_build_bit_depth_reduction_params(struct dc_stream_state *stream,
4438 struct bit_depth_reduction_params *fmt_bit_depth)
4439 {
4440 enum dc_dither_option option = stream->dither_option;
4441 enum dc_pixel_encoding pixel_encoding =
4442 stream->timing.pixel_encoding;
4443
4444 memset(fmt_bit_depth, 0, sizeof(*fmt_bit_depth));
4445
4446 if (option == DITHER_OPTION_DEFAULT) {
4447 switch (stream->timing.display_color_depth) {
4448 case COLOR_DEPTH_666:
4449 option = DITHER_OPTION_SPATIAL6;
4450 break;
4451 case COLOR_DEPTH_888:
4452 option = DITHER_OPTION_SPATIAL8;
4453 break;
4454 case COLOR_DEPTH_101010:
4455 option = DITHER_OPTION_TRUN10;
4456 break;
4457 default:
4458 option = DITHER_OPTION_DISABLE;
4459 }
4460 }
4461
4462 if (option == DITHER_OPTION_DISABLE)
4463 return;
4464
4465 if (option == DITHER_OPTION_TRUN6) {
4466 fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
4467 fmt_bit_depth->flags.TRUNCATE_DEPTH = 0;
4468 } else if (option == DITHER_OPTION_TRUN8 ||
4469 option == DITHER_OPTION_TRUN8_SPATIAL6 ||
4470 option == DITHER_OPTION_TRUN8_FM6) {
4471 fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
4472 fmt_bit_depth->flags.TRUNCATE_DEPTH = 1;
4473 } else if (option == DITHER_OPTION_TRUN10 ||
4474 option == DITHER_OPTION_TRUN10_SPATIAL6 ||
4475 option == DITHER_OPTION_TRUN10_SPATIAL8 ||
4476 option == DITHER_OPTION_TRUN10_FM8 ||
4477 option == DITHER_OPTION_TRUN10_FM6 ||
4478 option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
4479 fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
4480 fmt_bit_depth->flags.TRUNCATE_DEPTH = 2;
4481 if (option == DITHER_OPTION_TRUN10)
4482 fmt_bit_depth->flags.TRUNCATE_MODE = 1;
4483 }
4484
4485 /* special case - Formatter can only reduce by 4 bits at most.
4486 * When reducing from 12 to 6 bits,
4487 * HW recommends we use trunc with round mode
4488 * (if we did nothing, trunc to 10 bits would be used)
4489 * note that any 12->10 bit reduction is ignored prior to DCE8,
4490 * as the input was 10 bits.
4491 */
4492 if (option == DITHER_OPTION_SPATIAL6_FRAME_RANDOM ||
4493 option == DITHER_OPTION_SPATIAL6 ||
4494 option == DITHER_OPTION_FM6) {
4495 fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
4496 fmt_bit_depth->flags.TRUNCATE_DEPTH = 2;
4497 fmt_bit_depth->flags.TRUNCATE_MODE = 1;
4498 }
4499
4500 /* spatial dither
4501 * note that spatial modes 1-3 are never used
4502 */
4503 if (option == DITHER_OPTION_SPATIAL6_FRAME_RANDOM ||
4504 option == DITHER_OPTION_SPATIAL6 ||
4505 option == DITHER_OPTION_TRUN10_SPATIAL6 ||
4506 option == DITHER_OPTION_TRUN8_SPATIAL6) {
4507 fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
4508 fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 0;
4509 fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
4510 fmt_bit_depth->flags.RGB_RANDOM =
4511 (pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
4512 } else if (option == DITHER_OPTION_SPATIAL8_FRAME_RANDOM ||
4513 option == DITHER_OPTION_SPATIAL8 ||
4514 option == DITHER_OPTION_SPATIAL8_FM6 ||
4515 option == DITHER_OPTION_TRUN10_SPATIAL8 ||
4516 option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
4517 fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
4518 fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 1;
4519 fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
4520 fmt_bit_depth->flags.RGB_RANDOM =
4521 (pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
4522 } else if (option == DITHER_OPTION_SPATIAL10_FRAME_RANDOM ||
4523 option == DITHER_OPTION_SPATIAL10 ||
4524 option == DITHER_OPTION_SPATIAL10_FM8 ||
4525 option == DITHER_OPTION_SPATIAL10_FM6) {
4526 fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
4527 fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 2;
4528 fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
4529 fmt_bit_depth->flags.RGB_RANDOM =
4530 (pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
4531 }
4532
4533 if (option == DITHER_OPTION_SPATIAL6 ||
4534 option == DITHER_OPTION_SPATIAL8 ||
4535 option == DITHER_OPTION_SPATIAL10) {
4536 fmt_bit_depth->flags.FRAME_RANDOM = 0;
4537 } else {
4538 fmt_bit_depth->flags.FRAME_RANDOM = 1;
4539 }
4540
4541 //////////////////////
4542 //// temporal dither
4543 //////////////////////
4544 if (option == DITHER_OPTION_FM6 ||
4545 option == DITHER_OPTION_SPATIAL8_FM6 ||
4546 option == DITHER_OPTION_SPATIAL10_FM6 ||
4547 option == DITHER_OPTION_TRUN10_FM6 ||
4548 option == DITHER_OPTION_TRUN8_FM6 ||
4549 option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
4550 fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
4551 fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 0;
4552 } else if (option == DITHER_OPTION_FM8 ||
4553 option == DITHER_OPTION_SPATIAL10_FM8 ||
4554 option == DITHER_OPTION_TRUN10_FM8) {
4555 fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
4556 fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 1;
4557 } else if (option == DITHER_OPTION_FM10) {
4558 fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
4559 fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 2;
4560 }
4561
4562 fmt_bit_depth->pixel_encoding = pixel_encoding;
4563 }
4564
dc_validate_stream(struct dc * dc,struct dc_stream_state * stream)4565 enum dc_status dc_validate_stream(struct dc *dc, struct dc_stream_state *stream)
4566 {
4567 struct dc_link *link = stream->link;
4568 struct timing_generator *tg = dc->res_pool->timing_generators[0];
4569 enum dc_status res = DC_OK;
4570
4571 calculate_phy_pix_clks(stream);
4572
4573 if (!tg->funcs->validate_timing(tg, &stream->timing))
4574 res = DC_FAIL_CONTROLLER_VALIDATE;
4575
4576 if (res == DC_OK) {
4577 if (link->ep_type == DISPLAY_ENDPOINT_PHY &&
4578 !link->link_enc->funcs->validate_output_with_stream(
4579 link->link_enc, stream))
4580 res = DC_FAIL_ENC_VALIDATE;
4581 }
4582
4583 /* TODO: validate audio ASIC caps, encoder */
4584
4585 if (res == DC_OK)
4586 res = dc->link_srv->validate_mode_timing(stream,
4587 link,
4588 &stream->timing);
4589
4590 return res;
4591 }
4592
dc_validate_plane(struct dc * dc,const struct dc_plane_state * plane_state)4593 enum dc_status dc_validate_plane(struct dc *dc, const struct dc_plane_state *plane_state)
4594 {
4595 enum dc_status res = DC_OK;
4596
4597 /* check if surface has invalid dimensions */
4598 if (plane_state->src_rect.width == 0 || plane_state->src_rect.height == 0 ||
4599 plane_state->dst_rect.width == 0 || plane_state->dst_rect.height == 0)
4600 return DC_FAIL_SURFACE_VALIDATE;
4601
4602 /* TODO For now validates pixel format only */
4603 if (dc->res_pool->funcs->validate_plane)
4604 return dc->res_pool->funcs->validate_plane(plane_state, &dc->caps);
4605
4606 return res;
4607 }
4608
resource_pixel_format_to_bpp(enum surface_pixel_format format)4609 unsigned int resource_pixel_format_to_bpp(enum surface_pixel_format format)
4610 {
4611 switch (format) {
4612 case SURFACE_PIXEL_FORMAT_GRPH_PALETA_256_COLORS:
4613 return 8;
4614 case SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr:
4615 case SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb:
4616 return 12;
4617 case SURFACE_PIXEL_FORMAT_GRPH_ARGB1555:
4618 case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
4619 case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCbCr:
4620 case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCrCb:
4621 return 16;
4622 case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
4623 case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
4624 case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
4625 case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
4626 case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010_XR_BIAS:
4627 case SURFACE_PIXEL_FORMAT_GRPH_RGBE:
4628 case SURFACE_PIXEL_FORMAT_GRPH_RGBE_ALPHA:
4629 return 32;
4630 case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
4631 case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616:
4632 case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616F:
4633 case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
4634 return 64;
4635 default:
4636 ASSERT_CRITICAL(false);
4637 return -1;
4638 }
4639 }
get_max_audio_sample_rate(struct audio_mode * modes)4640 static unsigned int get_max_audio_sample_rate(struct audio_mode *modes)
4641 {
4642 if (modes) {
4643 if (modes->sample_rates.rate.RATE_192)
4644 return 192000;
4645 if (modes->sample_rates.rate.RATE_176_4)
4646 return 176400;
4647 if (modes->sample_rates.rate.RATE_96)
4648 return 96000;
4649 if (modes->sample_rates.rate.RATE_88_2)
4650 return 88200;
4651 if (modes->sample_rates.rate.RATE_48)
4652 return 48000;
4653 if (modes->sample_rates.rate.RATE_44_1)
4654 return 44100;
4655 if (modes->sample_rates.rate.RATE_32)
4656 return 32000;
4657 }
4658 /*original logic when no audio info*/
4659 return 441000;
4660 }
4661
get_audio_check(struct audio_info * aud_modes,struct audio_check * audio_chk)4662 void get_audio_check(struct audio_info *aud_modes,
4663 struct audio_check *audio_chk)
4664 {
4665 unsigned int i;
4666 unsigned int max_sample_rate = 0;
4667
4668 if (aud_modes) {
4669 audio_chk->audio_packet_type = 0x2;/*audio sample packet AP = .25 for layout0, 1 for layout1*/
4670
4671 audio_chk->max_audiosample_rate = 0;
4672 for (i = 0; i < aud_modes->mode_count; i++) {
4673 max_sample_rate = get_max_audio_sample_rate(&aud_modes->modes[i]);
4674 if (audio_chk->max_audiosample_rate < max_sample_rate)
4675 audio_chk->max_audiosample_rate = max_sample_rate;
4676 /*dts takes the same as type 2: AP = 0.25*/
4677 }
4678 /*check which one take more bandwidth*/
4679 if (audio_chk->max_audiosample_rate > 192000)
4680 audio_chk->audio_packet_type = 0x9;/*AP =1*/
4681 audio_chk->acat = 0;/*not support*/
4682 }
4683 }
4684
get_temp_hpo_dp_link_enc(const struct resource_context * res_ctx,const struct resource_pool * const pool,const struct dc_link * link)4685 static struct hpo_dp_link_encoder *get_temp_hpo_dp_link_enc(
4686 const struct resource_context *res_ctx,
4687 const struct resource_pool *const pool,
4688 const struct dc_link *link)
4689 {
4690 struct hpo_dp_link_encoder *hpo_dp_link_enc = NULL;
4691 int enc_index;
4692
4693 enc_index = find_acquired_hpo_dp_link_enc_for_link(res_ctx, link);
4694
4695 if (enc_index < 0)
4696 enc_index = find_free_hpo_dp_link_enc(res_ctx, pool);
4697
4698 if (enc_index >= 0)
4699 hpo_dp_link_enc = pool->hpo_dp_link_enc[enc_index];
4700
4701 return hpo_dp_link_enc;
4702 }
4703
get_temp_dp_link_res(struct dc_link * link,struct link_resource * link_res,struct dc_link_settings * link_settings)4704 bool get_temp_dp_link_res(struct dc_link *link,
4705 struct link_resource *link_res,
4706 struct dc_link_settings *link_settings)
4707 {
4708 const struct dc *dc = link->dc;
4709 const struct resource_context *res_ctx = &dc->current_state->res_ctx;
4710
4711 memset(link_res, 0, sizeof(*link_res));
4712
4713 if (dc->link_srv->dp_get_encoding_format(link_settings) == DP_128b_132b_ENCODING) {
4714 link_res->hpo_dp_link_enc = get_temp_hpo_dp_link_enc(res_ctx,
4715 dc->res_pool, link);
4716 if (!link_res->hpo_dp_link_enc)
4717 return false;
4718 }
4719 return true;
4720 }
4721
reset_syncd_pipes_from_disabled_pipes(struct dc * dc,struct dc_state * context)4722 void reset_syncd_pipes_from_disabled_pipes(struct dc *dc,
4723 struct dc_state *context)
4724 {
4725 int i, j;
4726 struct pipe_ctx *pipe_ctx_old, *pipe_ctx, *pipe_ctx_syncd;
4727
4728 /* If pipe backend is reset, need to reset pipe syncd status */
4729 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4730 pipe_ctx_old = &dc->current_state->res_ctx.pipe_ctx[i];
4731 pipe_ctx = &context->res_ctx.pipe_ctx[i];
4732
4733 if (!resource_is_pipe_type(pipe_ctx_old, OTG_MASTER))
4734 continue;
4735
4736 if (!pipe_ctx->stream ||
4737 pipe_need_reprogram(pipe_ctx_old, pipe_ctx)) {
4738
4739 /* Reset all the syncd pipes from the disabled pipe */
4740 for (j = 0; j < dc->res_pool->pipe_count; j++) {
4741 pipe_ctx_syncd = &context->res_ctx.pipe_ctx[j];
4742 if ((GET_PIPE_SYNCD_FROM_PIPE(pipe_ctx_syncd) == pipe_ctx_old->pipe_idx) ||
4743 !IS_PIPE_SYNCD_VALID(pipe_ctx_syncd))
4744 SET_PIPE_SYNCD_TO_PIPE(pipe_ctx_syncd, j);
4745 }
4746 }
4747 }
4748 }
4749
check_syncd_pipes_for_disabled_master_pipe(struct dc * dc,struct dc_state * context,uint8_t disabled_master_pipe_idx)4750 void check_syncd_pipes_for_disabled_master_pipe(struct dc *dc,
4751 struct dc_state *context,
4752 uint8_t disabled_master_pipe_idx)
4753 {
4754 int i;
4755 struct pipe_ctx *pipe_ctx, *pipe_ctx_check;
4756
4757 pipe_ctx = &context->res_ctx.pipe_ctx[disabled_master_pipe_idx];
4758 if ((GET_PIPE_SYNCD_FROM_PIPE(pipe_ctx) != disabled_master_pipe_idx) ||
4759 !IS_PIPE_SYNCD_VALID(pipe_ctx))
4760 SET_PIPE_SYNCD_TO_PIPE(pipe_ctx, disabled_master_pipe_idx);
4761
4762 /* for the pipe disabled, check if any slave pipe exists and assert */
4763 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4764 pipe_ctx_check = &context->res_ctx.pipe_ctx[i];
4765
4766 if ((GET_PIPE_SYNCD_FROM_PIPE(pipe_ctx_check) == disabled_master_pipe_idx) &&
4767 IS_PIPE_SYNCD_VALID(pipe_ctx_check) && (i != disabled_master_pipe_idx)) {
4768 struct pipe_ctx *first_pipe = pipe_ctx_check;
4769
4770 while (first_pipe->prev_odm_pipe)
4771 first_pipe = first_pipe->prev_odm_pipe;
4772 /* When ODM combine is enabled, this case is expected. If the disabled pipe
4773 * is part of the ODM tree, then we should not print an error.
4774 * */
4775 if (first_pipe->pipe_idx == disabled_master_pipe_idx)
4776 continue;
4777
4778 DC_ERR("DC: Failure: pipe_idx[%d] syncd with disabled master pipe_idx[%d]\n",
4779 i, disabled_master_pipe_idx);
4780 }
4781 }
4782 }
4783
reset_sync_context_for_pipe(const struct dc * dc,struct dc_state * context,uint8_t pipe_idx)4784 void reset_sync_context_for_pipe(const struct dc *dc,
4785 struct dc_state *context,
4786 uint8_t pipe_idx)
4787 {
4788 int i;
4789 struct pipe_ctx *pipe_ctx_reset;
4790
4791 /* reset the otg sync context for the pipe and its slave pipes if any */
4792 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4793 pipe_ctx_reset = &context->res_ctx.pipe_ctx[i];
4794
4795 if (((GET_PIPE_SYNCD_FROM_PIPE(pipe_ctx_reset) == pipe_idx) &&
4796 IS_PIPE_SYNCD_VALID(pipe_ctx_reset)) || (i == pipe_idx))
4797 SET_PIPE_SYNCD_TO_PIPE(pipe_ctx_reset, i);
4798 }
4799 }
4800
resource_transmitter_to_phy_idx(const struct dc * dc,enum transmitter transmitter)4801 uint8_t resource_transmitter_to_phy_idx(const struct dc *dc, enum transmitter transmitter)
4802 {
4803 /* TODO - get transmitter to phy idx mapping from DMUB */
4804 uint8_t phy_idx = transmitter - TRANSMITTER_UNIPHY_A;
4805
4806 if (dc->ctx->dce_version == DCN_VERSION_3_1 &&
4807 dc->ctx->asic_id.hw_internal_rev == YELLOW_CARP_B0) {
4808 switch (transmitter) {
4809 case TRANSMITTER_UNIPHY_A:
4810 phy_idx = 0;
4811 break;
4812 case TRANSMITTER_UNIPHY_B:
4813 phy_idx = 1;
4814 break;
4815 case TRANSMITTER_UNIPHY_C:
4816 phy_idx = 5;
4817 break;
4818 case TRANSMITTER_UNIPHY_D:
4819 phy_idx = 6;
4820 break;
4821 case TRANSMITTER_UNIPHY_E:
4822 phy_idx = 4;
4823 break;
4824 default:
4825 phy_idx = 0;
4826 break;
4827 }
4828 }
4829
4830 return phy_idx;
4831 }
4832
get_link_hwss(const struct dc_link * link,const struct link_resource * link_res)4833 const struct link_hwss *get_link_hwss(const struct dc_link *link,
4834 const struct link_resource *link_res)
4835 {
4836 /* Link_hwss is only accessible by getter function instead of accessing
4837 * by pointers in dc with the intent to protect against breaking polymorphism.
4838 */
4839 if (can_use_hpo_dp_link_hwss(link, link_res))
4840 /* TODO: some assumes that if decided link settings is 128b/132b
4841 * channel coding format hpo_dp_link_enc should be used.
4842 * Others believe that if hpo_dp_link_enc is available in link
4843 * resource then hpo_dp_link_enc must be used. This bound between
4844 * hpo_dp_link_enc != NULL and decided link settings is loosely coupled
4845 * with a premise that both hpo_dp_link_enc pointer and decided link
4846 * settings are determined based on single policy function like
4847 * "decide_link_settings" from upper layer. This "convention"
4848 * cannot be maintained and enforced at current level.
4849 * Therefore a refactor is due so we can enforce a strong bound
4850 * between those two parameters at this level.
4851 *
4852 * To put it simple, we want to make enforcement at low level so that
4853 * we will not return link hwss if caller plans to do 8b/10b
4854 * with an hpo encoder. Or we can return a very dummy one that doesn't
4855 * do work for all functions
4856 */
4857 return (requires_fixed_vs_pe_retimer_hpo_link_hwss(link) ?
4858 get_hpo_fixed_vs_pe_retimer_dp_link_hwss() : get_hpo_dp_link_hwss());
4859 else if (can_use_dpia_link_hwss(link, link_res))
4860 return get_dpia_link_hwss();
4861 else if (can_use_dio_link_hwss(link, link_res))
4862 return (requires_fixed_vs_pe_retimer_dio_link_hwss(link)) ?
4863 get_dio_fixed_vs_pe_retimer_link_hwss() : get_dio_link_hwss();
4864 else
4865 return get_virtual_link_hwss();
4866 }
4867
is_h_timing_divisible_by_2(struct dc_stream_state * stream)4868 bool is_h_timing_divisible_by_2(struct dc_stream_state *stream)
4869 {
4870 bool divisible = false;
4871 uint16_t h_blank_start = 0;
4872 uint16_t h_blank_end = 0;
4873
4874 if (stream) {
4875 h_blank_start = stream->timing.h_total - stream->timing.h_front_porch;
4876 h_blank_end = h_blank_start - stream->timing.h_addressable;
4877
4878 /* HTOTAL, Hblank start/end, and Hsync start/end all must be
4879 * divisible by 2 in order for the horizontal timing params
4880 * to be considered divisible by 2. Hsync start is always 0.
4881 */
4882 divisible = (stream->timing.h_total % 2 == 0) &&
4883 (h_blank_start % 2 == 0) &&
4884 (h_blank_end % 2 == 0) &&
4885 (stream->timing.h_sync_width % 2 == 0);
4886 }
4887 return divisible;
4888 }
4889
4890 /* This interface is deprecated for new DCNs. It is replaced by the following
4891 * new interfaces. These two interfaces encapsulate pipe selection priority
4892 * with DCN specific minimum hardware transition optimization algorithm. With
4893 * the new interfaces caller no longer needs to know the implementation detail
4894 * of a pipe topology.
4895 *
4896 * resource_update_pipes_with_odm_slice_count
4897 * resource_update_pipes_with_mpc_slice_count
4898 *
4899 */
dc_resource_acquire_secondary_pipe_for_mpc_odm_legacy(const struct dc * dc,struct dc_state * state,struct pipe_ctx * pri_pipe,struct pipe_ctx * sec_pipe,bool odm)4900 bool dc_resource_acquire_secondary_pipe_for_mpc_odm_legacy(
4901 const struct dc *dc,
4902 struct dc_state *state,
4903 struct pipe_ctx *pri_pipe,
4904 struct pipe_ctx *sec_pipe,
4905 bool odm)
4906 {
4907 int pipe_idx = sec_pipe->pipe_idx;
4908 struct pipe_ctx *sec_top, *sec_bottom, *sec_next, *sec_prev;
4909 const struct resource_pool *pool = dc->res_pool;
4910
4911 sec_top = sec_pipe->top_pipe;
4912 sec_bottom = sec_pipe->bottom_pipe;
4913 sec_next = sec_pipe->next_odm_pipe;
4914 sec_prev = sec_pipe->prev_odm_pipe;
4915
4916 if (pri_pipe == NULL)
4917 return false;
4918
4919 *sec_pipe = *pri_pipe;
4920
4921 sec_pipe->top_pipe = sec_top;
4922 sec_pipe->bottom_pipe = sec_bottom;
4923 sec_pipe->next_odm_pipe = sec_next;
4924 sec_pipe->prev_odm_pipe = sec_prev;
4925
4926 sec_pipe->pipe_idx = pipe_idx;
4927 sec_pipe->plane_res.mi = pool->mis[pipe_idx];
4928 sec_pipe->plane_res.hubp = pool->hubps[pipe_idx];
4929 sec_pipe->plane_res.ipp = pool->ipps[pipe_idx];
4930 sec_pipe->plane_res.xfm = pool->transforms[pipe_idx];
4931 sec_pipe->plane_res.dpp = pool->dpps[pipe_idx];
4932 sec_pipe->plane_res.mpcc_inst = pool->dpps[pipe_idx]->inst;
4933 sec_pipe->stream_res.dsc = NULL;
4934 if (odm) {
4935 if (!sec_pipe->top_pipe)
4936 sec_pipe->stream_res.opp = pool->opps[pipe_idx];
4937 else
4938 sec_pipe->stream_res.opp = sec_pipe->top_pipe->stream_res.opp;
4939 if (sec_pipe->stream->timing.flags.DSC == 1) {
4940 #if defined(CONFIG_DRM_AMD_DC_FP)
4941 dcn20_acquire_dsc(dc, &state->res_ctx, &sec_pipe->stream_res.dsc, pipe_idx);
4942 #endif
4943 ASSERT(sec_pipe->stream_res.dsc);
4944 if (sec_pipe->stream_res.dsc == NULL)
4945 return false;
4946 }
4947 #if defined(CONFIG_DRM_AMD_DC_FP)
4948 dcn20_build_mapped_resource(dc, state, sec_pipe->stream);
4949 #endif
4950 }
4951
4952 return true;
4953 }
4954
update_dp_encoder_resources_for_test_harness(const struct dc * dc,struct dc_state * context,struct pipe_ctx * pipe_ctx)4955 enum dc_status update_dp_encoder_resources_for_test_harness(const struct dc *dc,
4956 struct dc_state *context,
4957 struct pipe_ctx *pipe_ctx)
4958 {
4959 if (dc->link_srv->dp_get_encoding_format(&pipe_ctx->link_config.dp_link_settings) == DP_128b_132b_ENCODING) {
4960 if (pipe_ctx->stream_res.hpo_dp_stream_enc == NULL) {
4961 pipe_ctx->stream_res.hpo_dp_stream_enc =
4962 find_first_free_match_hpo_dp_stream_enc_for_link(
4963 &context->res_ctx, dc->res_pool, pipe_ctx->stream);
4964
4965 if (!pipe_ctx->stream_res.hpo_dp_stream_enc)
4966 return DC_NO_STREAM_ENC_RESOURCE;
4967
4968 update_hpo_dp_stream_engine_usage(
4969 &context->res_ctx, dc->res_pool,
4970 pipe_ctx->stream_res.hpo_dp_stream_enc,
4971 true);
4972 }
4973
4974 if (pipe_ctx->link_res.hpo_dp_link_enc == NULL) {
4975 if (!add_hpo_dp_link_enc_to_ctx(&context->res_ctx, dc->res_pool, pipe_ctx, pipe_ctx->stream))
4976 return DC_NO_LINK_ENC_RESOURCE;
4977 }
4978 } else {
4979 if (pipe_ctx->stream_res.hpo_dp_stream_enc) {
4980 update_hpo_dp_stream_engine_usage(
4981 &context->res_ctx, dc->res_pool,
4982 pipe_ctx->stream_res.hpo_dp_stream_enc,
4983 false);
4984 pipe_ctx->stream_res.hpo_dp_stream_enc = NULL;
4985 }
4986 if (pipe_ctx->link_res.hpo_dp_link_enc)
4987 remove_hpo_dp_link_enc_from_ctx(&context->res_ctx, pipe_ctx, pipe_ctx->stream);
4988 }
4989
4990 return DC_OK;
4991 }
4992
check_subvp_sw_cursor_fallback_req(const struct dc * dc,struct dc_stream_state * stream)4993 bool check_subvp_sw_cursor_fallback_req(const struct dc *dc, struct dc_stream_state *stream)
4994 {
4995 if (!dc->debug.disable_subvp_high_refresh && is_subvp_high_refresh_candidate(stream))
4996 return true;
4997 if (dc->current_state->stream_count == 1 && stream->timing.v_addressable >= 2880 &&
4998 ((stream->timing.pix_clk_100hz * 100) / stream->timing.v_total / stream->timing.h_total) < 120)
4999 return true;
5000 else if (dc->current_state->stream_count > 1 && stream->timing.v_addressable >= 1080 &&
5001 ((stream->timing.pix_clk_100hz * 100) / stream->timing.v_total / stream->timing.h_total) < 120)
5002 return true;
5003
5004 return false;
5005 }
5006