xref: /linux/drivers/gpu/drm/amd/amdkfd/kfd_device_queue_manager.c (revision ffe8ac927d935d7d4a0bd9ac94afd705df79982b)
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3  * Copyright 2014-2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  *
23  */
24 
25 #include <linux/ratelimit.h>
26 #include <linux/printk.h>
27 #include <linux/slab.h>
28 #include <linux/list.h>
29 #include <linux/types.h>
30 #include <linux/bitops.h>
31 #include <linux/sched.h>
32 #include "kfd_priv.h"
33 #include "kfd_device_queue_manager.h"
34 #include "kfd_mqd_manager.h"
35 #include "cik_regs.h"
36 #include "kfd_kernel_queue.h"
37 #include "amdgpu_amdkfd.h"
38 #include "amdgpu_reset.h"
39 #include "amdgpu_sdma.h"
40 #include "mes_v11_api_def.h"
41 #include "kfd_debug.h"
42 
43 /* Size of the per-pipe EOP queue */
44 #define CIK_HPD_EOP_BYTES_LOG2 11
45 #define CIK_HPD_EOP_BYTES (1U << CIK_HPD_EOP_BYTES_LOG2)
46 /* See unmap_queues_cpsch() */
47 #define USE_DEFAULT_GRACE_PERIOD 0xffffffff
48 
49 static int set_pasid_vmid_mapping(struct device_queue_manager *dqm,
50 				  u32 pasid, unsigned int vmid);
51 
52 static int execute_queues_cpsch(struct device_queue_manager *dqm,
53 				enum kfd_unmap_queues_filter filter,
54 				uint32_t filter_param,
55 				uint32_t grace_period);
56 static int unmap_queues_cpsch(struct device_queue_manager *dqm,
57 				enum kfd_unmap_queues_filter filter,
58 				uint32_t filter_param,
59 				uint32_t grace_period,
60 				bool reset);
61 
62 static int map_queues_cpsch(struct device_queue_manager *dqm);
63 
64 static void deallocate_sdma_queue(struct device_queue_manager *dqm,
65 				struct queue *q);
66 
67 static inline void deallocate_hqd(struct device_queue_manager *dqm,
68 				struct queue *q);
69 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q);
70 static int allocate_sdma_queue(struct device_queue_manager *dqm,
71 				struct queue *q, const uint32_t *restore_sdma_id);
72 
73 static int reset_queues_on_hws_hang(struct device_queue_manager *dqm, bool is_sdma);
74 
75 static inline
get_mqd_type_from_queue_type(enum kfd_queue_type type)76 enum KFD_MQD_TYPE get_mqd_type_from_queue_type(enum kfd_queue_type type)
77 {
78 	if (type == KFD_QUEUE_TYPE_SDMA || type == KFD_QUEUE_TYPE_SDMA_XGMI)
79 		return KFD_MQD_TYPE_SDMA;
80 	return KFD_MQD_TYPE_CP;
81 }
82 
is_pipe_enabled(struct device_queue_manager * dqm,int mec,int pipe)83 static bool is_pipe_enabled(struct device_queue_manager *dqm, int mec, int pipe)
84 {
85 	int i;
86 	int pipe_offset = (mec * dqm->dev->kfd->shared_resources.num_pipe_per_mec
87 		+ pipe) * dqm->dev->kfd->shared_resources.num_queue_per_pipe;
88 
89 	/* queue is available for KFD usage if bit is 1 */
90 	for (i = 0; i <  dqm->dev->kfd->shared_resources.num_queue_per_pipe; ++i)
91 		if (test_bit(pipe_offset + i,
92 			      dqm->dev->kfd->shared_resources.cp_queue_bitmap))
93 			return true;
94 	return false;
95 }
96 
get_cp_queues_num(struct device_queue_manager * dqm)97 unsigned int get_cp_queues_num(struct device_queue_manager *dqm)
98 {
99 	return bitmap_weight(dqm->dev->kfd->shared_resources.cp_queue_bitmap,
100 				AMDGPU_MAX_QUEUES);
101 }
102 
get_queues_per_pipe(struct device_queue_manager * dqm)103 unsigned int get_queues_per_pipe(struct device_queue_manager *dqm)
104 {
105 	return dqm->dev->kfd->shared_resources.num_queue_per_pipe;
106 }
107 
get_pipes_per_mec(struct device_queue_manager * dqm)108 unsigned int get_pipes_per_mec(struct device_queue_manager *dqm)
109 {
110 	return dqm->dev->kfd->shared_resources.num_pipe_per_mec;
111 }
112 
get_num_all_sdma_engines(struct device_queue_manager * dqm)113 static unsigned int get_num_all_sdma_engines(struct device_queue_manager *dqm)
114 {
115 	return kfd_get_num_sdma_engines(dqm->dev) +
116 		kfd_get_num_xgmi_sdma_engines(dqm->dev);
117 }
118 
get_num_sdma_queues(struct device_queue_manager * dqm)119 unsigned int get_num_sdma_queues(struct device_queue_manager *dqm)
120 {
121 	return kfd_get_num_sdma_engines(dqm->dev) *
122 		dqm->dev->kfd->device_info.num_sdma_queues_per_engine;
123 }
124 
get_num_xgmi_sdma_queues(struct device_queue_manager * dqm)125 unsigned int get_num_xgmi_sdma_queues(struct device_queue_manager *dqm)
126 {
127 	return kfd_get_num_xgmi_sdma_engines(dqm->dev) *
128 		dqm->dev->kfd->device_info.num_sdma_queues_per_engine;
129 }
130 
init_sdma_bitmaps(struct device_queue_manager * dqm)131 static void init_sdma_bitmaps(struct device_queue_manager *dqm)
132 {
133 	bitmap_zero(dqm->sdma_bitmap, KFD_MAX_SDMA_QUEUES);
134 	bitmap_set(dqm->sdma_bitmap, 0, get_num_sdma_queues(dqm));
135 
136 	bitmap_zero(dqm->xgmi_sdma_bitmap, KFD_MAX_SDMA_QUEUES);
137 	bitmap_set(dqm->xgmi_sdma_bitmap, 0, get_num_xgmi_sdma_queues(dqm));
138 
139 	/* Mask out the reserved queues */
140 	bitmap_andnot(dqm->sdma_bitmap, dqm->sdma_bitmap,
141 		      dqm->dev->kfd->device_info.reserved_sdma_queues_bitmap,
142 		      KFD_MAX_SDMA_QUEUES);
143 }
144 
program_sh_mem_settings(struct device_queue_manager * dqm,struct qcm_process_device * qpd)145 void program_sh_mem_settings(struct device_queue_manager *dqm,
146 					struct qcm_process_device *qpd)
147 {
148 	uint32_t xcc_mask = dqm->dev->xcc_mask;
149 	int xcc_id;
150 
151 	for_each_inst(xcc_id, xcc_mask)
152 		dqm->dev->kfd2kgd->program_sh_mem_settings(
153 			dqm->dev->adev, qpd->vmid, qpd->sh_mem_config,
154 			qpd->sh_mem_ape1_base, qpd->sh_mem_ape1_limit,
155 			qpd->sh_mem_bases, xcc_id);
156 }
157 
kfd_hws_hang(struct device_queue_manager * dqm)158 static void kfd_hws_hang(struct device_queue_manager *dqm)
159 {
160 	struct device_process_node *cur;
161 	struct qcm_process_device *qpd;
162 	struct queue *q;
163 
164 	/* Mark all device queues as reset. */
165 	list_for_each_entry(cur, &dqm->queues, list) {
166 		qpd = cur->qpd;
167 		list_for_each_entry(q, &qpd->queues_list, list) {
168 			struct kfd_process_device *pdd = qpd_to_pdd(qpd);
169 
170 			pdd->has_reset_queue = true;
171 		}
172 	}
173 
174 	/*
175 	 * Issue a GPU reset if HWS is unresponsive
176 	 */
177 	amdgpu_amdkfd_gpu_reset(dqm->dev->adev);
178 }
179 
convert_to_mes_queue_type(int queue_type)180 static int convert_to_mes_queue_type(int queue_type)
181 {
182 	int mes_queue_type;
183 
184 	switch (queue_type) {
185 	case KFD_QUEUE_TYPE_COMPUTE:
186 		mes_queue_type = MES_QUEUE_TYPE_COMPUTE;
187 		break;
188 	case KFD_QUEUE_TYPE_SDMA:
189 		mes_queue_type = MES_QUEUE_TYPE_SDMA;
190 		break;
191 	default:
192 		WARN(1, "Invalid queue type %d", queue_type);
193 		mes_queue_type = -EINVAL;
194 		break;
195 	}
196 
197 	return mes_queue_type;
198 }
199 
add_queue_mes(struct device_queue_manager * dqm,struct queue * q,struct qcm_process_device * qpd)200 static int add_queue_mes(struct device_queue_manager *dqm, struct queue *q,
201 			 struct qcm_process_device *qpd)
202 {
203 	struct amdgpu_device *adev = (struct amdgpu_device *)dqm->dev->adev;
204 	struct kfd_process_device *pdd = qpd_to_pdd(qpd);
205 	struct mes_add_queue_input queue_input;
206 	int r, queue_type;
207 	uint64_t wptr_addr_off;
208 
209 	if (!dqm->sched_running || dqm->sched_halt)
210 		return 0;
211 	if (!down_read_trylock(&adev->reset_domain->sem))
212 		return -EIO;
213 
214 	memset(&queue_input, 0x0, sizeof(struct mes_add_queue_input));
215 	queue_input.process_id = pdd->pasid;
216 	queue_input.page_table_base_addr =  qpd->page_table_base;
217 	queue_input.process_va_start = 0;
218 	queue_input.process_va_end = adev->vm_manager.max_pfn - 1;
219 	/* MES unit for quantum is 100ns */
220 	queue_input.process_quantum = KFD_MES_PROCESS_QUANTUM;  /* Equivalent to 10ms. */
221 	queue_input.process_context_addr = pdd->proc_ctx_gpu_addr;
222 	queue_input.gang_quantum = KFD_MES_GANG_QUANTUM; /* Equivalent to 1ms */
223 	queue_input.gang_context_addr = q->gang_ctx_gpu_addr;
224 	queue_input.inprocess_gang_priority = q->properties.priority;
225 	queue_input.gang_global_priority_level =
226 					AMDGPU_MES_PRIORITY_LEVEL_NORMAL;
227 	queue_input.doorbell_offset = q->properties.doorbell_off;
228 	queue_input.mqd_addr = q->gart_mqd_addr;
229 	queue_input.wptr_addr = (uint64_t)q->properties.write_ptr;
230 
231 	wptr_addr_off = (uint64_t)q->properties.write_ptr & (PAGE_SIZE - 1);
232 	queue_input.wptr_mc_addr = amdgpu_bo_gpu_offset(q->properties.wptr_bo) + wptr_addr_off;
233 
234 	queue_input.is_kfd_process = 1;
235 	queue_input.is_aql_queue = (q->properties.format == KFD_QUEUE_FORMAT_AQL);
236 	queue_input.queue_size = q->properties.queue_size >> 2;
237 
238 	queue_input.paging = false;
239 	queue_input.tba_addr = qpd->tba_addr;
240 	queue_input.tma_addr = qpd->tma_addr;
241 	queue_input.trap_en = !kfd_dbg_has_cwsr_workaround(q->device);
242 	queue_input.skip_process_ctx_clear =
243 		qpd->pqm->process->runtime_info.runtime_state == DEBUG_RUNTIME_STATE_ENABLED &&
244 						(qpd->pqm->process->debug_trap_enabled ||
245 						 kfd_dbg_has_ttmps_always_setup(q->device));
246 
247 	queue_type = convert_to_mes_queue_type(q->properties.type);
248 	if (queue_type < 0) {
249 		dev_err(adev->dev, "Queue type not supported with MES, queue:%d\n",
250 			q->properties.type);
251 		up_read(&adev->reset_domain->sem);
252 		return -EINVAL;
253 	}
254 	queue_input.queue_type = (uint32_t)queue_type;
255 
256 	queue_input.exclusively_scheduled = q->properties.is_gws;
257 
258 	amdgpu_mes_lock(&adev->mes);
259 	r = adev->mes.funcs->add_hw_queue(&adev->mes, &queue_input);
260 	amdgpu_mes_unlock(&adev->mes);
261 	up_read(&adev->reset_domain->sem);
262 	if (r) {
263 		dev_err(adev->dev, "failed to add hardware queue to MES, doorbell=0x%x\n",
264 			q->properties.doorbell_off);
265 		dev_err(adev->dev, "MES might be in unrecoverable state, issue a GPU reset\n");
266 		kfd_hws_hang(dqm);
267 	}
268 
269 	return r;
270 }
271 
remove_queue_mes(struct device_queue_manager * dqm,struct queue * q,struct qcm_process_device * qpd)272 static int remove_queue_mes(struct device_queue_manager *dqm, struct queue *q,
273 			struct qcm_process_device *qpd)
274 {
275 	struct amdgpu_device *adev = (struct amdgpu_device *)dqm->dev->adev;
276 	int r;
277 	struct mes_remove_queue_input queue_input;
278 
279 	if (!dqm->sched_running || dqm->sched_halt)
280 		return 0;
281 	if (!down_read_trylock(&adev->reset_domain->sem))
282 		return -EIO;
283 
284 	memset(&queue_input, 0x0, sizeof(struct mes_remove_queue_input));
285 	queue_input.doorbell_offset = q->properties.doorbell_off;
286 	queue_input.gang_context_addr = q->gang_ctx_gpu_addr;
287 
288 	amdgpu_mes_lock(&adev->mes);
289 	r = adev->mes.funcs->remove_hw_queue(&adev->mes, &queue_input);
290 	amdgpu_mes_unlock(&adev->mes);
291 	up_read(&adev->reset_domain->sem);
292 
293 	if (r) {
294 		dev_err(adev->dev, "failed to remove hardware queue from MES, doorbell=0x%x\n",
295 			q->properties.doorbell_off);
296 		dev_err(adev->dev, "MES might be in unrecoverable state, issue a GPU reset\n");
297 		kfd_hws_hang(dqm);
298 	}
299 
300 	return r;
301 }
302 
remove_all_kfd_queues_mes(struct device_queue_manager * dqm)303 static int remove_all_kfd_queues_mes(struct device_queue_manager *dqm)
304 {
305 	struct device_process_node *cur;
306 	struct device *dev = dqm->dev->adev->dev;
307 	struct qcm_process_device *qpd;
308 	struct queue *q;
309 	int retval = 0;
310 
311 	list_for_each_entry(cur, &dqm->queues, list) {
312 		qpd = cur->qpd;
313 		list_for_each_entry(q, &qpd->queues_list, list) {
314 			if (q->properties.is_active) {
315 				retval = remove_queue_mes(dqm, q, qpd);
316 				if (retval) {
317 					dev_err(dev, "%s: Failed to remove queue %d for dev %d",
318 						__func__,
319 						q->properties.queue_id,
320 						dqm->dev->id);
321 					return retval;
322 				}
323 			}
324 		}
325 	}
326 
327 	return retval;
328 }
329 
add_all_kfd_queues_mes(struct device_queue_manager * dqm)330 static int add_all_kfd_queues_mes(struct device_queue_manager *dqm)
331 {
332 	struct device_process_node *cur;
333 	struct device *dev = dqm->dev->adev->dev;
334 	struct qcm_process_device *qpd;
335 	struct queue *q;
336 	int retval = 0;
337 
338 	list_for_each_entry(cur, &dqm->queues, list) {
339 		qpd = cur->qpd;
340 		list_for_each_entry(q, &qpd->queues_list, list) {
341 			if (!q->properties.is_active)
342 				continue;
343 			retval = add_queue_mes(dqm, q, qpd);
344 			if (retval) {
345 				dev_err(dev, "%s: Failed to add queue %d for dev %d",
346 					__func__,
347 					q->properties.queue_id,
348 					dqm->dev->id);
349 				return retval;
350 			}
351 		}
352 	}
353 
354 	return retval;
355 }
356 
suspend_all_queues_mes(struct device_queue_manager * dqm)357 static int suspend_all_queues_mes(struct device_queue_manager *dqm)
358 {
359 	struct amdgpu_device *adev = (struct amdgpu_device *)dqm->dev->adev;
360 	int r = 0;
361 
362 	if (!down_read_trylock(&adev->reset_domain->sem))
363 		return -EIO;
364 
365 	r = amdgpu_mes_suspend(adev);
366 	up_read(&adev->reset_domain->sem);
367 
368 	if (r) {
369 		dev_err(adev->dev, "failed to suspend gangs from MES\n");
370 		dev_err(adev->dev, "MES might be in unrecoverable state, issue a GPU reset\n");
371 		kfd_hws_hang(dqm);
372 	}
373 
374 	return r;
375 }
376 
resume_all_queues_mes(struct device_queue_manager * dqm)377 static int resume_all_queues_mes(struct device_queue_manager *dqm)
378 {
379 	struct amdgpu_device *adev = (struct amdgpu_device *)dqm->dev->adev;
380 	int r = 0;
381 
382 	if (!down_read_trylock(&adev->reset_domain->sem))
383 		return -EIO;
384 
385 	r = amdgpu_mes_resume(adev);
386 	up_read(&adev->reset_domain->sem);
387 
388 	if (r) {
389 		dev_err(adev->dev, "failed to resume gangs from MES\n");
390 		dev_err(adev->dev, "MES might be in unrecoverable state, issue a GPU reset\n");
391 		kfd_hws_hang(dqm);
392 	}
393 
394 	return r;
395 }
396 
increment_queue_count(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)397 static void increment_queue_count(struct device_queue_manager *dqm,
398 				  struct qcm_process_device *qpd,
399 				  struct queue *q)
400 {
401 	dqm->active_queue_count++;
402 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
403 	    q->properties.type == KFD_QUEUE_TYPE_DIQ)
404 		dqm->active_cp_queue_count++;
405 
406 	if (q->properties.is_gws) {
407 		dqm->gws_queue_count++;
408 		qpd->mapped_gws_queue = true;
409 	}
410 }
411 
decrement_queue_count(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)412 static void decrement_queue_count(struct device_queue_manager *dqm,
413 				  struct qcm_process_device *qpd,
414 				  struct queue *q)
415 {
416 	dqm->active_queue_count--;
417 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
418 	    q->properties.type == KFD_QUEUE_TYPE_DIQ)
419 		dqm->active_cp_queue_count--;
420 
421 	if (q->properties.is_gws) {
422 		dqm->gws_queue_count--;
423 		qpd->mapped_gws_queue = false;
424 	}
425 }
426 
427 /*
428  * Allocate a doorbell ID to this queue.
429  * If doorbell_id is passed in, make sure requested ID is valid then allocate it.
430  */
allocate_doorbell(struct qcm_process_device * qpd,struct queue * q,uint32_t const * restore_id)431 static int allocate_doorbell(struct qcm_process_device *qpd,
432 			     struct queue *q,
433 			     uint32_t const *restore_id)
434 {
435 	struct kfd_node *dev = qpd->dqm->dev;
436 
437 	if (!KFD_IS_SOC15(dev)) {
438 		/* On pre-SOC15 chips we need to use the queue ID to
439 		 * preserve the user mode ABI.
440 		 */
441 
442 		if (restore_id && *restore_id != q->properties.queue_id)
443 			return -EINVAL;
444 
445 		q->doorbell_id = q->properties.queue_id;
446 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
447 			q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
448 		/* For SDMA queues on SOC15 with 8-byte doorbell, use static
449 		 * doorbell assignments based on the engine and queue id.
450 		 * The doobell index distance between RLC (2*i) and (2*i+1)
451 		 * for a SDMA engine is 512.
452 		 */
453 
454 		uint32_t *idx_offset = dev->kfd->shared_resources.sdma_doorbell_idx;
455 
456 		/*
457 		 * q->properties.sdma_engine_id corresponds to the virtual
458 		 * sdma engine number. However, for doorbell allocation,
459 		 * we need the physical sdma engine id in order to get the
460 		 * correct doorbell offset.
461 		 */
462 		uint32_t valid_id = idx_offset[qpd->dqm->dev->node_id *
463 					       get_num_all_sdma_engines(qpd->dqm) +
464 					       q->properties.sdma_engine_id]
465 						+ (q->properties.sdma_queue_id & 1)
466 						* KFD_QUEUE_DOORBELL_MIRROR_OFFSET
467 						+ (q->properties.sdma_queue_id >> 1);
468 
469 		if (restore_id && *restore_id != valid_id)
470 			return -EINVAL;
471 		q->doorbell_id = valid_id;
472 	} else {
473 		/* For CP queues on SOC15 */
474 		if (restore_id) {
475 			/* make sure that ID is free  */
476 			if (__test_and_set_bit(*restore_id, qpd->doorbell_bitmap))
477 				return -EINVAL;
478 
479 			q->doorbell_id = *restore_id;
480 		} else {
481 			/* or reserve a free doorbell ID */
482 			unsigned int found;
483 
484 			found = find_first_zero_bit(qpd->doorbell_bitmap,
485 						    KFD_MAX_NUM_OF_QUEUES_PER_PROCESS);
486 			if (found >= KFD_MAX_NUM_OF_QUEUES_PER_PROCESS) {
487 				pr_debug("No doorbells available");
488 				return -EBUSY;
489 			}
490 			set_bit(found, qpd->doorbell_bitmap);
491 			q->doorbell_id = found;
492 		}
493 	}
494 
495 	q->properties.doorbell_off = amdgpu_doorbell_index_on_bar(dev->adev,
496 								  qpd->proc_doorbells,
497 								  q->doorbell_id,
498 								  dev->kfd->device_info.doorbell_size);
499 	return 0;
500 }
501 
deallocate_doorbell(struct qcm_process_device * qpd,struct queue * q)502 static void deallocate_doorbell(struct qcm_process_device *qpd,
503 				struct queue *q)
504 {
505 	unsigned int old;
506 	struct kfd_node *dev = qpd->dqm->dev;
507 
508 	if (!KFD_IS_SOC15(dev) ||
509 	    q->properties.type == KFD_QUEUE_TYPE_SDMA ||
510 	    q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
511 		return;
512 
513 	old = test_and_clear_bit(q->doorbell_id, qpd->doorbell_bitmap);
514 	WARN_ON(!old);
515 }
516 
program_trap_handler_settings(struct device_queue_manager * dqm,struct qcm_process_device * qpd)517 static void program_trap_handler_settings(struct device_queue_manager *dqm,
518 				struct qcm_process_device *qpd)
519 {
520 	uint32_t xcc_mask = dqm->dev->xcc_mask;
521 	int xcc_id;
522 
523 	if (dqm->dev->kfd2kgd->program_trap_handler_settings)
524 		for_each_inst(xcc_id, xcc_mask)
525 			dqm->dev->kfd2kgd->program_trap_handler_settings(
526 				dqm->dev->adev, qpd->vmid, qpd->tba_addr,
527 				qpd->tma_addr, xcc_id);
528 }
529 
allocate_vmid(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)530 static int allocate_vmid(struct device_queue_manager *dqm,
531 			struct qcm_process_device *qpd,
532 			struct queue *q)
533 {
534 	struct kfd_process_device *pdd = qpd_to_pdd(qpd);
535 	struct device *dev = dqm->dev->adev->dev;
536 	int allocated_vmid = -1, i;
537 
538 	for (i = dqm->dev->vm_info.first_vmid_kfd;
539 			i <= dqm->dev->vm_info.last_vmid_kfd; i++) {
540 		if (!dqm->vmid_pasid[i]) {
541 			allocated_vmid = i;
542 			break;
543 		}
544 	}
545 
546 	if (allocated_vmid < 0) {
547 		dev_err(dev, "no more vmid to allocate\n");
548 		return -ENOSPC;
549 	}
550 
551 	pr_debug("vmid allocated: %d\n", allocated_vmid);
552 
553 	dqm->vmid_pasid[allocated_vmid] = pdd->pasid;
554 
555 	set_pasid_vmid_mapping(dqm, pdd->pasid, allocated_vmid);
556 
557 	qpd->vmid = allocated_vmid;
558 	q->properties.vmid = allocated_vmid;
559 
560 	program_sh_mem_settings(dqm, qpd);
561 
562 	if (KFD_IS_SOC15(dqm->dev) && dqm->dev->kfd->cwsr_enabled)
563 		program_trap_handler_settings(dqm, qpd);
564 
565 	/* qpd->page_table_base is set earlier when register_process()
566 	 * is called, i.e. when the first queue is created.
567 	 */
568 	dqm->dev->kfd2kgd->set_vm_context_page_table_base(dqm->dev->adev,
569 			qpd->vmid,
570 			qpd->page_table_base);
571 	/* invalidate the VM context after pasid and vmid mapping is set up */
572 	kfd_flush_tlb(qpd_to_pdd(qpd), TLB_FLUSH_LEGACY);
573 
574 	if (dqm->dev->kfd2kgd->set_scratch_backing_va)
575 		dqm->dev->kfd2kgd->set_scratch_backing_va(dqm->dev->adev,
576 				qpd->sh_hidden_private_base, qpd->vmid);
577 
578 	return 0;
579 }
580 
flush_texture_cache_nocpsch(struct kfd_node * kdev,struct qcm_process_device * qpd)581 static int flush_texture_cache_nocpsch(struct kfd_node *kdev,
582 				struct qcm_process_device *qpd)
583 {
584 	const struct packet_manager_funcs *pmf = qpd->dqm->packet_mgr.pmf;
585 	int ret;
586 
587 	if (!qpd->ib_kaddr)
588 		return -ENOMEM;
589 
590 	ret = pmf->release_mem(qpd->ib_base, (uint32_t *)qpd->ib_kaddr);
591 	if (ret)
592 		return ret;
593 
594 	return amdgpu_amdkfd_submit_ib(kdev->adev, KGD_ENGINE_MEC1, qpd->vmid,
595 				qpd->ib_base, (uint32_t *)qpd->ib_kaddr,
596 				pmf->release_mem_size / sizeof(uint32_t));
597 }
598 
deallocate_vmid(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)599 static void deallocate_vmid(struct device_queue_manager *dqm,
600 				struct qcm_process_device *qpd,
601 				struct queue *q)
602 {
603 	struct device *dev = dqm->dev->adev->dev;
604 
605 	/* On GFX v7, CP doesn't flush TC at dequeue */
606 	if (q->device->adev->asic_type == CHIP_HAWAII)
607 		if (flush_texture_cache_nocpsch(q->device, qpd))
608 			dev_err(dev, "Failed to flush TC\n");
609 
610 	kfd_flush_tlb(qpd_to_pdd(qpd), TLB_FLUSH_LEGACY);
611 
612 	/* Release the vmid mapping */
613 	set_pasid_vmid_mapping(dqm, 0, qpd->vmid);
614 	dqm->vmid_pasid[qpd->vmid] = 0;
615 
616 	qpd->vmid = 0;
617 	q->properties.vmid = 0;
618 }
619 
create_queue_nocpsch(struct device_queue_manager * dqm,struct queue * q,struct qcm_process_device * qpd,const struct kfd_criu_queue_priv_data * qd,const void * restore_mqd,const void * restore_ctl_stack)620 static int create_queue_nocpsch(struct device_queue_manager *dqm,
621 				struct queue *q,
622 				struct qcm_process_device *qpd,
623 				const struct kfd_criu_queue_priv_data *qd,
624 				const void *restore_mqd, const void *restore_ctl_stack)
625 {
626 	struct mqd_manager *mqd_mgr;
627 	int retval;
628 
629 	dqm_lock(dqm);
630 
631 	if (dqm->total_queue_count >= max_num_of_queues_per_device) {
632 		pr_warn("Can't create new usermode queue because %d queues were already created\n",
633 				dqm->total_queue_count);
634 		retval = -EPERM;
635 		goto out_unlock;
636 	}
637 
638 	if (list_empty(&qpd->queues_list)) {
639 		retval = allocate_vmid(dqm, qpd, q);
640 		if (retval)
641 			goto out_unlock;
642 	}
643 	q->properties.vmid = qpd->vmid;
644 	/*
645 	 * Eviction state logic: mark all queues as evicted, even ones
646 	 * not currently active. Restoring inactive queues later only
647 	 * updates the is_evicted flag but is a no-op otherwise.
648 	 */
649 	q->properties.is_evicted = !!qpd->evicted;
650 
651 	q->properties.tba_addr = qpd->tba_addr;
652 	q->properties.tma_addr = qpd->tma_addr;
653 
654 	mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
655 			q->properties.type)];
656 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) {
657 		retval = allocate_hqd(dqm, q);
658 		if (retval)
659 			goto deallocate_vmid;
660 		pr_debug("Loading mqd to hqd on pipe %d, queue %d\n",
661 			q->pipe, q->queue);
662 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
663 		q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
664 		retval = allocate_sdma_queue(dqm, q, qd ? &qd->sdma_id : NULL);
665 		if (retval)
666 			goto deallocate_vmid;
667 		dqm->asic_ops.init_sdma_vm(dqm, q, qpd);
668 	}
669 
670 	retval = allocate_doorbell(qpd, q, qd ? &qd->doorbell_id : NULL);
671 	if (retval)
672 		goto out_deallocate_hqd;
673 
674 	/* Temporarily release dqm lock to avoid a circular lock dependency */
675 	dqm_unlock(dqm);
676 	q->mqd_mem_obj = mqd_mgr->allocate_mqd(mqd_mgr->dev, &q->properties);
677 	dqm_lock(dqm);
678 
679 	if (!q->mqd_mem_obj) {
680 		retval = -ENOMEM;
681 		goto out_deallocate_doorbell;
682 	}
683 
684 	if (qd)
685 		mqd_mgr->restore_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj, &q->gart_mqd_addr,
686 				     &q->properties, restore_mqd, restore_ctl_stack,
687 				     qd->ctl_stack_size);
688 	else
689 		mqd_mgr->init_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj,
690 					&q->gart_mqd_addr, &q->properties);
691 
692 	if (q->properties.is_active) {
693 		if (!dqm->sched_running) {
694 			WARN_ONCE(1, "Load non-HWS mqd while stopped\n");
695 			goto add_queue_to_list;
696 		}
697 
698 		if (WARN(q->process->mm != current->mm,
699 					"should only run in user thread"))
700 			retval = -EFAULT;
701 		else
702 			retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe,
703 					q->queue, &q->properties, current->mm);
704 		if (retval)
705 			goto out_free_mqd;
706 	}
707 
708 add_queue_to_list:
709 	list_add(&q->list, &qpd->queues_list);
710 	qpd->queue_count++;
711 	if (q->properties.is_active)
712 		increment_queue_count(dqm, qpd, q);
713 
714 	/*
715 	 * Unconditionally increment this counter, regardless of the queue's
716 	 * type or whether the queue is active.
717 	 */
718 	dqm->total_queue_count++;
719 	pr_debug("Total of %d queues are accountable so far\n",
720 			dqm->total_queue_count);
721 	goto out_unlock;
722 
723 out_free_mqd:
724 	mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
725 out_deallocate_doorbell:
726 	deallocate_doorbell(qpd, q);
727 out_deallocate_hqd:
728 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE)
729 		deallocate_hqd(dqm, q);
730 	else if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
731 		q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
732 		deallocate_sdma_queue(dqm, q);
733 deallocate_vmid:
734 	if (list_empty(&qpd->queues_list))
735 		deallocate_vmid(dqm, qpd, q);
736 out_unlock:
737 	dqm_unlock(dqm);
738 	return retval;
739 }
740 
allocate_hqd(struct device_queue_manager * dqm,struct queue * q)741 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q)
742 {
743 	bool set;
744 	int pipe, bit, i;
745 
746 	set = false;
747 
748 	for (pipe = dqm->next_pipe_to_allocate, i = 0;
749 			i < get_pipes_per_mec(dqm);
750 			pipe = ((pipe + 1) % get_pipes_per_mec(dqm)), ++i) {
751 
752 		if (!is_pipe_enabled(dqm, 0, pipe))
753 			continue;
754 
755 		if (dqm->allocated_queues[pipe] != 0) {
756 			bit = ffs(dqm->allocated_queues[pipe]) - 1;
757 			dqm->allocated_queues[pipe] &= ~(1 << bit);
758 			q->pipe = pipe;
759 			q->queue = bit;
760 			set = true;
761 			break;
762 		}
763 	}
764 
765 	if (!set)
766 		return -EBUSY;
767 
768 	pr_debug("hqd slot - pipe %d, queue %d\n", q->pipe, q->queue);
769 	/* horizontal hqd allocation */
770 	dqm->next_pipe_to_allocate = (pipe + 1) % get_pipes_per_mec(dqm);
771 
772 	return 0;
773 }
774 
deallocate_hqd(struct device_queue_manager * dqm,struct queue * q)775 static inline void deallocate_hqd(struct device_queue_manager *dqm,
776 				struct queue *q)
777 {
778 	dqm->allocated_queues[q->pipe] |= (1 << q->queue);
779 }
780 
781 #define SQ_IND_CMD_CMD_KILL		0x00000003
782 #define SQ_IND_CMD_MODE_BROADCAST	0x00000001
783 
dbgdev_wave_reset_wavefronts(struct kfd_node * dev,struct kfd_process * p)784 static int dbgdev_wave_reset_wavefronts(struct kfd_node *dev, struct kfd_process *p)
785 {
786 	int status = 0;
787 	unsigned int vmid;
788 	uint16_t queried_pasid;
789 	union SQ_CMD_BITS reg_sq_cmd;
790 	union GRBM_GFX_INDEX_BITS reg_gfx_index;
791 	struct kfd_process_device *pdd;
792 	int first_vmid_to_scan = dev->vm_info.first_vmid_kfd;
793 	int last_vmid_to_scan = dev->vm_info.last_vmid_kfd;
794 	uint32_t xcc_mask = dev->xcc_mask;
795 	int xcc_id;
796 
797 	reg_sq_cmd.u32All = 0;
798 	reg_gfx_index.u32All = 0;
799 
800 	pr_debug("Killing all process wavefronts\n");
801 
802 	if (!dev->kfd2kgd->get_atc_vmid_pasid_mapping_info) {
803 		dev_err(dev->adev->dev, "no vmid pasid mapping supported\n");
804 		return -EOPNOTSUPP;
805 	}
806 
807 	/* taking the VMID for that process on the safe way using PDD */
808 	pdd = kfd_get_process_device_data(dev, p);
809 	if (!pdd)
810 		return -EFAULT;
811 
812 	/* Scan all registers in the range ATC_VMID8_PASID_MAPPING ..
813 	 * ATC_VMID15_PASID_MAPPING
814 	 * to check which VMID the current process is mapped to.
815 	 */
816 
817 	for (vmid = first_vmid_to_scan; vmid <= last_vmid_to_scan; vmid++) {
818 		status = dev->kfd2kgd->get_atc_vmid_pasid_mapping_info
819 				(dev->adev, vmid, &queried_pasid);
820 
821 		if (status && queried_pasid == pdd->pasid) {
822 			pr_debug("Killing wave fronts of vmid %d and process pid %d\n",
823 					vmid, p->lead_thread->pid);
824 			break;
825 		}
826 	}
827 
828 	if (vmid > last_vmid_to_scan) {
829 		dev_err(dev->adev->dev, "Didn't find vmid for process pid %d\n",
830 				p->lead_thread->pid);
831 		return -EFAULT;
832 	}
833 
834 	reg_gfx_index.bits.sh_broadcast_writes = 1;
835 	reg_gfx_index.bits.se_broadcast_writes = 1;
836 	reg_gfx_index.bits.instance_broadcast_writes = 1;
837 	reg_sq_cmd.bits.mode = SQ_IND_CMD_MODE_BROADCAST;
838 	reg_sq_cmd.bits.cmd = SQ_IND_CMD_CMD_KILL;
839 	reg_sq_cmd.bits.vm_id = vmid;
840 
841 	for_each_inst(xcc_id, xcc_mask)
842 		dev->kfd2kgd->wave_control_execute(
843 			dev->adev, reg_gfx_index.u32All,
844 			reg_sq_cmd.u32All, xcc_id);
845 
846 	return 0;
847 }
848 
849 /* Access to DQM has to be locked before calling destroy_queue_nocpsch_locked
850  * to avoid asynchronized access
851  */
destroy_queue_nocpsch_locked(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)852 static int destroy_queue_nocpsch_locked(struct device_queue_manager *dqm,
853 				struct qcm_process_device *qpd,
854 				struct queue *q)
855 {
856 	int retval;
857 	struct mqd_manager *mqd_mgr;
858 
859 	mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
860 			q->properties.type)];
861 
862 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE)
863 		deallocate_hqd(dqm, q);
864 	else if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
865 		deallocate_sdma_queue(dqm, q);
866 	else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
867 		deallocate_sdma_queue(dqm, q);
868 	else {
869 		pr_debug("q->properties.type %d is invalid\n",
870 				q->properties.type);
871 		return -EINVAL;
872 	}
873 	dqm->total_queue_count--;
874 
875 	deallocate_doorbell(qpd, q);
876 
877 	if (!dqm->sched_running) {
878 		WARN_ONCE(1, "Destroy non-HWS queue while stopped\n");
879 		return 0;
880 	}
881 
882 	retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
883 				KFD_PREEMPT_TYPE_WAVEFRONT_RESET,
884 				KFD_UNMAP_LATENCY_MS,
885 				q->pipe, q->queue);
886 	if (retval == -ETIME)
887 		qpd->reset_wavefronts = true;
888 
889 	list_del(&q->list);
890 	if (list_empty(&qpd->queues_list)) {
891 		if (qpd->reset_wavefronts) {
892 			pr_warn("Resetting wave fronts (nocpsch) on dev %p\n",
893 					dqm->dev);
894 			/* dbgdev_wave_reset_wavefronts has to be called before
895 			 * deallocate_vmid(), i.e. when vmid is still in use.
896 			 */
897 			dbgdev_wave_reset_wavefronts(dqm->dev,
898 					qpd->pqm->process);
899 			qpd->reset_wavefronts = false;
900 		}
901 
902 		deallocate_vmid(dqm, qpd, q);
903 	}
904 	qpd->queue_count--;
905 	if (q->properties.is_active)
906 		decrement_queue_count(dqm, qpd, q);
907 
908 	return retval;
909 }
910 
destroy_queue_nocpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)911 static int destroy_queue_nocpsch(struct device_queue_manager *dqm,
912 				struct qcm_process_device *qpd,
913 				struct queue *q)
914 {
915 	int retval;
916 	uint64_t sdma_val = 0;
917 	struct device *dev = dqm->dev->adev->dev;
918 	struct kfd_process_device *pdd = qpd_to_pdd(qpd);
919 	struct mqd_manager *mqd_mgr =
920 		dqm->mqd_mgrs[get_mqd_type_from_queue_type(q->properties.type)];
921 
922 	/* Get the SDMA queue stats */
923 	if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) ||
924 	    (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
925 		retval = read_sdma_queue_counter((uint64_t __user *)q->properties.read_ptr,
926 							&sdma_val);
927 		if (retval)
928 			dev_err(dev, "Failed to read SDMA queue counter for queue: %d\n",
929 				q->properties.queue_id);
930 	}
931 
932 	dqm_lock(dqm);
933 	retval = destroy_queue_nocpsch_locked(dqm, qpd, q);
934 	if (!retval)
935 		pdd->sdma_past_activity_counter += sdma_val;
936 	dqm_unlock(dqm);
937 
938 	mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
939 
940 	return retval;
941 }
942 
update_queue(struct device_queue_manager * dqm,struct queue * q,struct mqd_update_info * minfo)943 static int update_queue(struct device_queue_manager *dqm, struct queue *q,
944 			struct mqd_update_info *minfo)
945 {
946 	int retval = 0;
947 	struct device *dev = dqm->dev->adev->dev;
948 	struct mqd_manager *mqd_mgr;
949 	struct kfd_process_device *pdd;
950 	bool prev_active = false;
951 
952 	dqm_lock(dqm);
953 	pdd = kfd_get_process_device_data(q->device, q->process);
954 	if (!pdd) {
955 		retval = -ENODEV;
956 		goto out_unlock;
957 	}
958 	mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
959 			q->properties.type)];
960 
961 	/* Save previous activity state for counters */
962 	prev_active = q->properties.is_active;
963 
964 	/* Make sure the queue is unmapped before updating the MQD */
965 	if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) {
966 		if (!dqm->dev->kfd->shared_resources.enable_mes)
967 			retval = unmap_queues_cpsch(dqm,
968 						    KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD, false);
969 		else if (prev_active)
970 			retval = remove_queue_mes(dqm, q, &pdd->qpd);
971 
972 		/* queue is reset so inaccessable  */
973 		if (pdd->has_reset_queue) {
974 			retval = -EACCES;
975 			goto out_unlock;
976 		}
977 
978 		if (retval) {
979 			dev_err(dev, "unmap queue failed\n");
980 			goto out_unlock;
981 		}
982 	} else if (prev_active &&
983 		   (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
984 		    q->properties.type == KFD_QUEUE_TYPE_SDMA ||
985 		    q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
986 
987 		if (!dqm->sched_running) {
988 			WARN_ONCE(1, "Update non-HWS queue while stopped\n");
989 			goto out_unlock;
990 		}
991 
992 		retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
993 				(dqm->dev->kfd->cwsr_enabled ?
994 				 KFD_PREEMPT_TYPE_WAVEFRONT_SAVE :
995 				 KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN),
996 				KFD_UNMAP_LATENCY_MS, q->pipe, q->queue);
997 		if (retval) {
998 			dev_err(dev, "destroy mqd failed\n");
999 			goto out_unlock;
1000 		}
1001 	}
1002 
1003 	mqd_mgr->update_mqd(mqd_mgr, q->mqd, &q->properties, minfo);
1004 
1005 	/*
1006 	 * check active state vs. the previous state and modify
1007 	 * counter accordingly. map_queues_cpsch uses the
1008 	 * dqm->active_queue_count to determine whether a new runlist must be
1009 	 * uploaded.
1010 	 */
1011 	if (q->properties.is_active && !prev_active) {
1012 		increment_queue_count(dqm, &pdd->qpd, q);
1013 	} else if (!q->properties.is_active && prev_active) {
1014 		decrement_queue_count(dqm, &pdd->qpd, q);
1015 	} else if (q->gws && !q->properties.is_gws) {
1016 		if (q->properties.is_active) {
1017 			dqm->gws_queue_count++;
1018 			pdd->qpd.mapped_gws_queue = true;
1019 		}
1020 		q->properties.is_gws = true;
1021 	} else if (!q->gws && q->properties.is_gws) {
1022 		if (q->properties.is_active) {
1023 			dqm->gws_queue_count--;
1024 			pdd->qpd.mapped_gws_queue = false;
1025 		}
1026 		q->properties.is_gws = false;
1027 	}
1028 
1029 	if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) {
1030 		if (!dqm->dev->kfd->shared_resources.enable_mes)
1031 			retval = map_queues_cpsch(dqm);
1032 		else if (q->properties.is_active)
1033 			retval = add_queue_mes(dqm, q, &pdd->qpd);
1034 	} else if (q->properties.is_active &&
1035 		 (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
1036 		  q->properties.type == KFD_QUEUE_TYPE_SDMA ||
1037 		  q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
1038 		if (WARN(q->process->mm != current->mm,
1039 			 "should only run in user thread"))
1040 			retval = -EFAULT;
1041 		else
1042 			retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd,
1043 						   q->pipe, q->queue,
1044 						   &q->properties, current->mm);
1045 	}
1046 
1047 out_unlock:
1048 	dqm_unlock(dqm);
1049 	return retval;
1050 }
1051 
1052 /* suspend_single_queue does not lock the dqm like the
1053  * evict_process_queues_cpsch or evict_process_queues_nocpsch. You should
1054  * lock the dqm before calling, and unlock after calling.
1055  *
1056  * The reason we don't lock the dqm is because this function may be
1057  * called on multiple queues in a loop, so rather than locking/unlocking
1058  * multiple times, we will just keep the dqm locked for all of the calls.
1059  */
suspend_single_queue(struct device_queue_manager * dqm,struct kfd_process_device * pdd,struct queue * q)1060 static int suspend_single_queue(struct device_queue_manager *dqm,
1061 				      struct kfd_process_device *pdd,
1062 				      struct queue *q)
1063 {
1064 	bool is_new;
1065 
1066 	if (q->properties.is_suspended)
1067 		return 0;
1068 
1069 	pr_debug("Suspending process pid %d queue [%i]\n",
1070 			pdd->process->lead_thread->pid,
1071 			q->properties.queue_id);
1072 
1073 	is_new = q->properties.exception_status & KFD_EC_MASK(EC_QUEUE_NEW);
1074 
1075 	if (is_new || q->properties.is_being_destroyed) {
1076 		pr_debug("Suspend: skip %s queue id %i\n",
1077 				is_new ? "new" : "destroyed",
1078 				q->properties.queue_id);
1079 		return -EBUSY;
1080 	}
1081 
1082 	q->properties.is_suspended = true;
1083 	if (q->properties.is_active) {
1084 		if (dqm->dev->kfd->shared_resources.enable_mes) {
1085 			int r = remove_queue_mes(dqm, q, &pdd->qpd);
1086 
1087 			if (r)
1088 				return r;
1089 		}
1090 
1091 		decrement_queue_count(dqm, &pdd->qpd, q);
1092 		q->properties.is_active = false;
1093 	}
1094 
1095 	return 0;
1096 }
1097 
1098 /* resume_single_queue does not lock the dqm like the functions
1099  * restore_process_queues_cpsch or restore_process_queues_nocpsch. You should
1100  * lock the dqm before calling, and unlock after calling.
1101  *
1102  * The reason we don't lock the dqm is because this function may be
1103  * called on multiple queues in a loop, so rather than locking/unlocking
1104  * multiple times, we will just keep the dqm locked for all of the calls.
1105  */
resume_single_queue(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)1106 static int resume_single_queue(struct device_queue_manager *dqm,
1107 				      struct qcm_process_device *qpd,
1108 				      struct queue *q)
1109 {
1110 	struct kfd_process_device *pdd;
1111 
1112 	if (!q->properties.is_suspended)
1113 		return 0;
1114 
1115 	pdd = qpd_to_pdd(qpd);
1116 
1117 	pr_debug("Restoring from suspend process pid %d queue [%i]\n",
1118 			    pdd->process->lead_thread->pid,
1119 			    q->properties.queue_id);
1120 
1121 	q->properties.is_suspended = false;
1122 
1123 	if (QUEUE_IS_ACTIVE(q->properties)) {
1124 		if (dqm->dev->kfd->shared_resources.enable_mes) {
1125 			int r = add_queue_mes(dqm, q, &pdd->qpd);
1126 
1127 			if (r)
1128 				return r;
1129 		}
1130 
1131 		q->properties.is_active = true;
1132 		increment_queue_count(dqm, qpd, q);
1133 	}
1134 
1135 	return 0;
1136 }
1137 
evict_process_queues_nocpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)1138 static int evict_process_queues_nocpsch(struct device_queue_manager *dqm,
1139 					struct qcm_process_device *qpd)
1140 {
1141 	struct queue *q;
1142 	struct mqd_manager *mqd_mgr;
1143 	struct kfd_process_device *pdd;
1144 	int retval, ret = 0;
1145 
1146 	dqm_lock(dqm);
1147 	if (qpd->evicted++ > 0) /* already evicted, do nothing */
1148 		goto out;
1149 
1150 	pdd = qpd_to_pdd(qpd);
1151 	pr_debug_ratelimited("Evicting process pid %d queues\n",
1152 			    pdd->process->lead_thread->pid);
1153 
1154 	pdd->last_evict_timestamp = get_jiffies_64();
1155 	/* Mark all queues as evicted. Deactivate all active queues on
1156 	 * the qpd.
1157 	 */
1158 	list_for_each_entry(q, &qpd->queues_list, list) {
1159 		q->properties.is_evicted = true;
1160 		if (!q->properties.is_active)
1161 			continue;
1162 
1163 		mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
1164 				q->properties.type)];
1165 		q->properties.is_active = false;
1166 		decrement_queue_count(dqm, qpd, q);
1167 
1168 		if (WARN_ONCE(!dqm->sched_running, "Evict when stopped\n"))
1169 			continue;
1170 
1171 		retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
1172 				(dqm->dev->kfd->cwsr_enabled ?
1173 				 KFD_PREEMPT_TYPE_WAVEFRONT_SAVE :
1174 				 KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN),
1175 				KFD_UNMAP_LATENCY_MS, q->pipe, q->queue);
1176 		if (retval && !ret)
1177 			/* Return the first error, but keep going to
1178 			 * maintain a consistent eviction state
1179 			 */
1180 			ret = retval;
1181 	}
1182 
1183 out:
1184 	dqm_unlock(dqm);
1185 	return ret;
1186 }
1187 
evict_process_queues_cpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)1188 static int evict_process_queues_cpsch(struct device_queue_manager *dqm,
1189 				      struct qcm_process_device *qpd)
1190 {
1191 	struct queue *q;
1192 	struct device *dev = dqm->dev->adev->dev;
1193 	struct kfd_process_device *pdd;
1194 	int retval = 0;
1195 
1196 	dqm_lock(dqm);
1197 	if (qpd->evicted++ > 0) /* already evicted, do nothing */
1198 		goto out;
1199 
1200 	pdd = qpd_to_pdd(qpd);
1201 
1202 	/* The debugger creates processes that temporarily have not acquired
1203 	 * all VMs for all devices and has no VMs itself.
1204 	 * Skip queue eviction on process eviction.
1205 	 */
1206 	if (!pdd->drm_priv)
1207 		goto out;
1208 
1209 	pr_debug_ratelimited("Evicting process pid %d queues\n",
1210 			    pdd->process->lead_thread->pid);
1211 
1212 	/* Mark all queues as evicted. Deactivate all active queues on
1213 	 * the qpd.
1214 	 */
1215 	list_for_each_entry(q, &qpd->queues_list, list) {
1216 		q->properties.is_evicted = true;
1217 		if (!q->properties.is_active)
1218 			continue;
1219 
1220 		q->properties.is_active = false;
1221 		decrement_queue_count(dqm, qpd, q);
1222 
1223 		if (dqm->dev->kfd->shared_resources.enable_mes) {
1224 			int err;
1225 
1226 			err = remove_queue_mes(dqm, q, qpd);
1227 			if (err) {
1228 				dev_err(dev, "Failed to evict queue %d\n",
1229 					q->properties.queue_id);
1230 				retval = err;
1231 			}
1232 		}
1233 	}
1234 	pdd->last_evict_timestamp = get_jiffies_64();
1235 	if (!dqm->dev->kfd->shared_resources.enable_mes)
1236 		retval = execute_queues_cpsch(dqm,
1237 					      qpd->is_debug ?
1238 					      KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES :
1239 					      KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0,
1240 					      USE_DEFAULT_GRACE_PERIOD);
1241 
1242 out:
1243 	dqm_unlock(dqm);
1244 	return retval;
1245 }
1246 
restore_process_queues_nocpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)1247 static int restore_process_queues_nocpsch(struct device_queue_manager *dqm,
1248 					  struct qcm_process_device *qpd)
1249 {
1250 	struct mm_struct *mm = NULL;
1251 	struct queue *q;
1252 	struct mqd_manager *mqd_mgr;
1253 	struct kfd_process_device *pdd;
1254 	uint64_t pd_base;
1255 	uint64_t eviction_duration;
1256 	int retval, ret = 0;
1257 
1258 	pdd = qpd_to_pdd(qpd);
1259 	/* Retrieve PD base */
1260 	pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv);
1261 
1262 	dqm_lock(dqm);
1263 	if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */
1264 		goto out;
1265 	if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */
1266 		qpd->evicted--;
1267 		goto out;
1268 	}
1269 
1270 	pr_debug_ratelimited("Restoring process pid %d queues\n",
1271 			    pdd->process->lead_thread->pid);
1272 
1273 	/* Update PD Base in QPD */
1274 	qpd->page_table_base = pd_base;
1275 	pr_debug("Updated PD address to 0x%llx\n", pd_base);
1276 
1277 	if (!list_empty(&qpd->queues_list)) {
1278 		dqm->dev->kfd2kgd->set_vm_context_page_table_base(
1279 				dqm->dev->adev,
1280 				qpd->vmid,
1281 				qpd->page_table_base);
1282 		kfd_flush_tlb(pdd, TLB_FLUSH_LEGACY);
1283 	}
1284 
1285 	/* Take a safe reference to the mm_struct, which may otherwise
1286 	 * disappear even while the kfd_process is still referenced.
1287 	 */
1288 	mm = get_task_mm(pdd->process->lead_thread);
1289 	if (!mm) {
1290 		ret = -EFAULT;
1291 		goto out;
1292 	}
1293 
1294 	/* Remove the eviction flags. Activate queues that are not
1295 	 * inactive for other reasons.
1296 	 */
1297 	list_for_each_entry(q, &qpd->queues_list, list) {
1298 		q->properties.is_evicted = false;
1299 		if (!QUEUE_IS_ACTIVE(q->properties))
1300 			continue;
1301 
1302 		mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
1303 				q->properties.type)];
1304 		q->properties.is_active = true;
1305 		increment_queue_count(dqm, qpd, q);
1306 
1307 		if (WARN_ONCE(!dqm->sched_running, "Restore when stopped\n"))
1308 			continue;
1309 
1310 		retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe,
1311 				       q->queue, &q->properties, mm);
1312 		if (retval && !ret)
1313 			/* Return the first error, but keep going to
1314 			 * maintain a consistent eviction state
1315 			 */
1316 			ret = retval;
1317 	}
1318 	qpd->evicted = 0;
1319 	eviction_duration = get_jiffies_64() - pdd->last_evict_timestamp;
1320 	atomic64_add(eviction_duration, &pdd->evict_duration_counter);
1321 out:
1322 	if (mm)
1323 		mmput(mm);
1324 	dqm_unlock(dqm);
1325 	return ret;
1326 }
1327 
restore_process_queues_cpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)1328 static int restore_process_queues_cpsch(struct device_queue_manager *dqm,
1329 					struct qcm_process_device *qpd)
1330 {
1331 	struct queue *q;
1332 	struct device *dev = dqm->dev->adev->dev;
1333 	struct kfd_process_device *pdd;
1334 	uint64_t eviction_duration;
1335 	int retval = 0;
1336 
1337 	pdd = qpd_to_pdd(qpd);
1338 
1339 	dqm_lock(dqm);
1340 	if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */
1341 		goto out;
1342 	if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */
1343 		qpd->evicted--;
1344 		goto out;
1345 	}
1346 
1347 	/* The debugger creates processes that temporarily have not acquired
1348 	 * all VMs for all devices and has no VMs itself.
1349 	 * Skip queue restore on process restore.
1350 	 */
1351 	if (!pdd->drm_priv)
1352 		goto vm_not_acquired;
1353 
1354 	pr_debug_ratelimited("Restoring process pid %d queues\n",
1355 			    pdd->process->lead_thread->pid);
1356 
1357 	/* Update PD Base in QPD */
1358 	qpd->page_table_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv);
1359 	pr_debug("Updated PD address to 0x%llx\n", qpd->page_table_base);
1360 
1361 	/* activate all active queues on the qpd */
1362 	list_for_each_entry(q, &qpd->queues_list, list) {
1363 		q->properties.is_evicted = false;
1364 		if (!QUEUE_IS_ACTIVE(q->properties))
1365 			continue;
1366 
1367 		q->properties.is_active = true;
1368 		increment_queue_count(dqm, &pdd->qpd, q);
1369 
1370 		if (dqm->dev->kfd->shared_resources.enable_mes) {
1371 			retval = add_queue_mes(dqm, q, qpd);
1372 			if (retval) {
1373 				dev_err(dev, "Failed to restore queue %d\n",
1374 					q->properties.queue_id);
1375 				goto out;
1376 			}
1377 		}
1378 	}
1379 	if (!dqm->dev->kfd->shared_resources.enable_mes)
1380 		retval = execute_queues_cpsch(dqm,
1381 					      KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD);
1382 	eviction_duration = get_jiffies_64() - pdd->last_evict_timestamp;
1383 	atomic64_add(eviction_duration, &pdd->evict_duration_counter);
1384 vm_not_acquired:
1385 	qpd->evicted = 0;
1386 out:
1387 	dqm_unlock(dqm);
1388 	return retval;
1389 }
1390 
register_process(struct device_queue_manager * dqm,struct qcm_process_device * qpd)1391 static int register_process(struct device_queue_manager *dqm,
1392 					struct qcm_process_device *qpd)
1393 {
1394 	struct device_process_node *n;
1395 	struct kfd_process_device *pdd;
1396 	uint64_t pd_base;
1397 	int retval;
1398 
1399 	n = kzalloc(sizeof(*n), GFP_KERNEL);
1400 	if (!n)
1401 		return -ENOMEM;
1402 
1403 	n->qpd = qpd;
1404 
1405 	pdd = qpd_to_pdd(qpd);
1406 	/* Retrieve PD base */
1407 	pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv);
1408 
1409 	dqm_lock(dqm);
1410 	list_add(&n->list, &dqm->queues);
1411 
1412 	/* Update PD Base in QPD */
1413 	qpd->page_table_base = pd_base;
1414 	pr_debug("Updated PD address to 0x%llx\n", pd_base);
1415 
1416 	retval = dqm->asic_ops.update_qpd(dqm, qpd);
1417 
1418 	dqm->processes_count++;
1419 
1420 	dqm_unlock(dqm);
1421 
1422 	/* Outside the DQM lock because under the DQM lock we can't do
1423 	 * reclaim or take other locks that others hold while reclaiming.
1424 	 */
1425 	kfd_inc_compute_active(dqm->dev);
1426 
1427 	return retval;
1428 }
1429 
unregister_process(struct device_queue_manager * dqm,struct qcm_process_device * qpd)1430 static int unregister_process(struct device_queue_manager *dqm,
1431 					struct qcm_process_device *qpd)
1432 {
1433 	int retval;
1434 	struct device_process_node *cur, *next;
1435 
1436 	pr_debug("qpd->queues_list is %s\n",
1437 			list_empty(&qpd->queues_list) ? "empty" : "not empty");
1438 
1439 	retval = 0;
1440 	dqm_lock(dqm);
1441 
1442 	list_for_each_entry_safe(cur, next, &dqm->queues, list) {
1443 		if (qpd == cur->qpd) {
1444 			list_del(&cur->list);
1445 			kfree(cur);
1446 			dqm->processes_count--;
1447 			goto out;
1448 		}
1449 	}
1450 	/* qpd not found in dqm list */
1451 	retval = 1;
1452 out:
1453 	dqm_unlock(dqm);
1454 
1455 	/* Outside the DQM lock because under the DQM lock we can't do
1456 	 * reclaim or take other locks that others hold while reclaiming.
1457 	 */
1458 	if (!retval)
1459 		kfd_dec_compute_active(dqm->dev);
1460 
1461 	return retval;
1462 }
1463 
1464 static int
set_pasid_vmid_mapping(struct device_queue_manager * dqm,u32 pasid,unsigned int vmid)1465 set_pasid_vmid_mapping(struct device_queue_manager *dqm, u32 pasid,
1466 			unsigned int vmid)
1467 {
1468 	uint32_t xcc_mask = dqm->dev->xcc_mask;
1469 	int xcc_id, ret;
1470 
1471 	for_each_inst(xcc_id, xcc_mask) {
1472 		ret = dqm->dev->kfd2kgd->set_pasid_vmid_mapping(
1473 			dqm->dev->adev, pasid, vmid, xcc_id);
1474 		if (ret)
1475 			break;
1476 	}
1477 
1478 	return ret;
1479 }
1480 
init_interrupts(struct device_queue_manager * dqm)1481 static void init_interrupts(struct device_queue_manager *dqm)
1482 {
1483 	uint32_t xcc_mask = dqm->dev->xcc_mask;
1484 	unsigned int i, xcc_id;
1485 
1486 	for_each_inst(xcc_id, xcc_mask) {
1487 		for (i = 0 ; i < get_pipes_per_mec(dqm) ; i++) {
1488 			if (is_pipe_enabled(dqm, 0, i)) {
1489 				dqm->dev->kfd2kgd->init_interrupts(
1490 					dqm->dev->adev, i, xcc_id);
1491 			}
1492 		}
1493 	}
1494 }
1495 
initialize_nocpsch(struct device_queue_manager * dqm)1496 static int initialize_nocpsch(struct device_queue_manager *dqm)
1497 {
1498 	int pipe, queue;
1499 
1500 	pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm));
1501 
1502 	dqm->allocated_queues = kcalloc(get_pipes_per_mec(dqm),
1503 					sizeof(unsigned int), GFP_KERNEL);
1504 	if (!dqm->allocated_queues)
1505 		return -ENOMEM;
1506 
1507 	mutex_init(&dqm->lock_hidden);
1508 	INIT_LIST_HEAD(&dqm->queues);
1509 	dqm->active_queue_count = dqm->next_pipe_to_allocate = 0;
1510 	dqm->active_cp_queue_count = 0;
1511 	dqm->gws_queue_count = 0;
1512 
1513 	for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) {
1514 		int pipe_offset = pipe * get_queues_per_pipe(dqm);
1515 
1516 		for (queue = 0; queue < get_queues_per_pipe(dqm); queue++)
1517 			if (test_bit(pipe_offset + queue,
1518 				     dqm->dev->kfd->shared_resources.cp_queue_bitmap))
1519 				dqm->allocated_queues[pipe] |= 1 << queue;
1520 	}
1521 
1522 	memset(dqm->vmid_pasid, 0, sizeof(dqm->vmid_pasid));
1523 
1524 	init_sdma_bitmaps(dqm);
1525 
1526 	return 0;
1527 }
1528 
uninitialize(struct device_queue_manager * dqm)1529 static void uninitialize(struct device_queue_manager *dqm)
1530 {
1531 	int i;
1532 
1533 	WARN_ON(dqm->active_queue_count > 0 || dqm->processes_count > 0);
1534 
1535 	kfree(dqm->allocated_queues);
1536 	for (i = 0 ; i < KFD_MQD_TYPE_MAX ; i++)
1537 		kfree(dqm->mqd_mgrs[i]);
1538 	mutex_destroy(&dqm->lock_hidden);
1539 }
1540 
start_nocpsch(struct device_queue_manager * dqm)1541 static int start_nocpsch(struct device_queue_manager *dqm)
1542 {
1543 	int r = 0;
1544 
1545 	pr_info("SW scheduler is used");
1546 	init_interrupts(dqm);
1547 
1548 	if (dqm->dev->adev->asic_type == CHIP_HAWAII)
1549 		r = pm_init(&dqm->packet_mgr, dqm);
1550 	if (!r)
1551 		dqm->sched_running = true;
1552 
1553 	return r;
1554 }
1555 
stop_nocpsch(struct device_queue_manager * dqm)1556 static int stop_nocpsch(struct device_queue_manager *dqm)
1557 {
1558 	dqm_lock(dqm);
1559 	if (!dqm->sched_running) {
1560 		dqm_unlock(dqm);
1561 		return 0;
1562 	}
1563 
1564 	if (dqm->dev->adev->asic_type == CHIP_HAWAII)
1565 		pm_uninit(&dqm->packet_mgr);
1566 	dqm->sched_running = false;
1567 	dqm_unlock(dqm);
1568 
1569 	return 0;
1570 }
1571 
allocate_sdma_queue(struct device_queue_manager * dqm,struct queue * q,const uint32_t * restore_sdma_id)1572 static int allocate_sdma_queue(struct device_queue_manager *dqm,
1573 				struct queue *q, const uint32_t *restore_sdma_id)
1574 {
1575 	struct device *dev = dqm->dev->adev->dev;
1576 	int bit;
1577 
1578 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
1579 		if (bitmap_empty(dqm->sdma_bitmap, get_num_sdma_queues(dqm))) {
1580 			dev_warn(dev, "No more SDMA queue to allocate (%d total queues)\n",
1581 				 get_num_sdma_queues(dqm));
1582 			return -ENOMEM;
1583 		}
1584 
1585 		if (restore_sdma_id) {
1586 			/* Re-use existing sdma_id */
1587 			if (!test_bit(*restore_sdma_id, dqm->sdma_bitmap)) {
1588 				dev_err(dev, "SDMA queue already in use\n");
1589 				return -EBUSY;
1590 			}
1591 			clear_bit(*restore_sdma_id, dqm->sdma_bitmap);
1592 			q->sdma_id = *restore_sdma_id;
1593 		} else {
1594 			/* Find first available sdma_id */
1595 			bit = find_first_bit(dqm->sdma_bitmap,
1596 					     get_num_sdma_queues(dqm));
1597 			clear_bit(bit, dqm->sdma_bitmap);
1598 			q->sdma_id = bit;
1599 		}
1600 
1601 		q->properties.sdma_engine_id =
1602 			q->sdma_id % kfd_get_num_sdma_engines(dqm->dev);
1603 		q->properties.sdma_queue_id = q->sdma_id /
1604 				kfd_get_num_sdma_engines(dqm->dev);
1605 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
1606 		if (bitmap_empty(dqm->xgmi_sdma_bitmap, get_num_xgmi_sdma_queues(dqm))) {
1607 			dev_warn(dev, "No more XGMI SDMA queue to allocate (%d total queues)\n",
1608 				 get_num_xgmi_sdma_queues(dqm));
1609 			return -ENOMEM;
1610 		}
1611 		if (restore_sdma_id) {
1612 			/* Re-use existing sdma_id */
1613 			if (!test_bit(*restore_sdma_id, dqm->xgmi_sdma_bitmap)) {
1614 				dev_err(dev, "SDMA queue already in use\n");
1615 				return -EBUSY;
1616 			}
1617 			clear_bit(*restore_sdma_id, dqm->xgmi_sdma_bitmap);
1618 			q->sdma_id = *restore_sdma_id;
1619 		} else {
1620 			bit = find_first_bit(dqm->xgmi_sdma_bitmap,
1621 					     get_num_xgmi_sdma_queues(dqm));
1622 			clear_bit(bit, dqm->xgmi_sdma_bitmap);
1623 			q->sdma_id = bit;
1624 		}
1625 		/* sdma_engine_id is sdma id including
1626 		 * both PCIe-optimized SDMAs and XGMI-
1627 		 * optimized SDMAs. The calculation below
1628 		 * assumes the first N engines are always
1629 		 * PCIe-optimized ones
1630 		 */
1631 		q->properties.sdma_engine_id =
1632 			kfd_get_num_sdma_engines(dqm->dev) +
1633 			q->sdma_id % kfd_get_num_xgmi_sdma_engines(dqm->dev);
1634 		q->properties.sdma_queue_id = q->sdma_id /
1635 			kfd_get_num_xgmi_sdma_engines(dqm->dev);
1636 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_BY_ENG_ID) {
1637 		int i, num_queues, num_engines, eng_offset = 0, start_engine;
1638 		bool free_bit_found = false, is_xgmi = false;
1639 
1640 		if (q->properties.sdma_engine_id < kfd_get_num_sdma_engines(dqm->dev)) {
1641 			num_queues = get_num_sdma_queues(dqm);
1642 			num_engines = kfd_get_num_sdma_engines(dqm->dev);
1643 			q->properties.type = KFD_QUEUE_TYPE_SDMA;
1644 		} else {
1645 			num_queues = get_num_xgmi_sdma_queues(dqm);
1646 			num_engines = kfd_get_num_xgmi_sdma_engines(dqm->dev);
1647 			eng_offset = kfd_get_num_sdma_engines(dqm->dev);
1648 			q->properties.type = KFD_QUEUE_TYPE_SDMA_XGMI;
1649 			is_xgmi = true;
1650 		}
1651 
1652 		/* Scan available bit based on target engine ID. */
1653 		start_engine = q->properties.sdma_engine_id - eng_offset;
1654 		for (i = start_engine; i < num_queues; i += num_engines) {
1655 
1656 			if (!test_bit(i, is_xgmi ? dqm->xgmi_sdma_bitmap : dqm->sdma_bitmap))
1657 				continue;
1658 
1659 			clear_bit(i, is_xgmi ? dqm->xgmi_sdma_bitmap : dqm->sdma_bitmap);
1660 			q->sdma_id = i;
1661 			q->properties.sdma_queue_id = q->sdma_id / num_engines;
1662 			free_bit_found = true;
1663 			break;
1664 		}
1665 
1666 		if (!free_bit_found) {
1667 			dev_warn(dev, "No more SDMA queue to allocate for target ID %i (%d total queues)\n",
1668 				 q->properties.sdma_engine_id, num_queues);
1669 			return -ENOMEM;
1670 		}
1671 	}
1672 
1673 	pr_debug("SDMA engine id: %d\n", q->properties.sdma_engine_id);
1674 	pr_debug("SDMA queue id: %d\n", q->properties.sdma_queue_id);
1675 
1676 	return 0;
1677 }
1678 
deallocate_sdma_queue(struct device_queue_manager * dqm,struct queue * q)1679 static void deallocate_sdma_queue(struct device_queue_manager *dqm,
1680 				struct queue *q)
1681 {
1682 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
1683 		if (q->sdma_id >= get_num_sdma_queues(dqm))
1684 			return;
1685 		set_bit(q->sdma_id, dqm->sdma_bitmap);
1686 	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
1687 		if (q->sdma_id >= get_num_xgmi_sdma_queues(dqm))
1688 			return;
1689 		set_bit(q->sdma_id, dqm->xgmi_sdma_bitmap);
1690 	}
1691 }
1692 
1693 /*
1694  * Device Queue Manager implementation for cp scheduler
1695  */
1696 
set_sched_resources(struct device_queue_manager * dqm)1697 static int set_sched_resources(struct device_queue_manager *dqm)
1698 {
1699 	int i, mec;
1700 	struct scheduling_resources res;
1701 	struct device *dev = dqm->dev->adev->dev;
1702 
1703 	res.vmid_mask = dqm->dev->compute_vmid_bitmap;
1704 
1705 	res.queue_mask = 0;
1706 	for (i = 0; i < AMDGPU_MAX_QUEUES; ++i) {
1707 		mec = (i / dqm->dev->kfd->shared_resources.num_queue_per_pipe)
1708 			/ dqm->dev->kfd->shared_resources.num_pipe_per_mec;
1709 
1710 		if (!test_bit(i, dqm->dev->kfd->shared_resources.cp_queue_bitmap))
1711 			continue;
1712 
1713 		/* only acquire queues from the first MEC */
1714 		if (mec > 0)
1715 			continue;
1716 
1717 		/* This situation may be hit in the future if a new HW
1718 		 * generation exposes more than 64 queues. If so, the
1719 		 * definition of res.queue_mask needs updating
1720 		 */
1721 		if (WARN_ON(i >= (sizeof(res.queue_mask)*8))) {
1722 			dev_err(dev, "Invalid queue enabled by amdgpu: %d\n", i);
1723 			break;
1724 		}
1725 
1726 		res.queue_mask |= 1ull
1727 			<< amdgpu_queue_mask_bit_to_set_resource_bit(
1728 				dqm->dev->adev, i);
1729 	}
1730 	res.gws_mask = ~0ull;
1731 	res.oac_mask = res.gds_heap_base = res.gds_heap_size = 0;
1732 
1733 	pr_debug("Scheduling resources:\n"
1734 			"vmid mask: 0x%8X\n"
1735 			"queue mask: 0x%8llX\n",
1736 			res.vmid_mask, res.queue_mask);
1737 
1738 	return pm_send_set_resources(&dqm->packet_mgr, &res);
1739 }
1740 
initialize_cpsch(struct device_queue_manager * dqm)1741 static int initialize_cpsch(struct device_queue_manager *dqm)
1742 {
1743 	pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm));
1744 
1745 	mutex_init(&dqm->lock_hidden);
1746 	INIT_LIST_HEAD(&dqm->queues);
1747 	dqm->active_queue_count = dqm->processes_count = 0;
1748 	dqm->active_cp_queue_count = 0;
1749 	dqm->gws_queue_count = 0;
1750 	dqm->active_runlist = false;
1751 	dqm->trap_debug_vmid = 0;
1752 
1753 	init_sdma_bitmaps(dqm);
1754 
1755 	update_dqm_wait_times(dqm);
1756 	return 0;
1757 }
1758 
1759 /* halt_cpsch:
1760  * Unmap queues so the schedule doesn't continue remaining jobs in the queue.
1761  * Then set dqm->sched_halt so queues don't map to runlist until unhalt_cpsch
1762  * is called.
1763  */
halt_cpsch(struct device_queue_manager * dqm)1764 static int halt_cpsch(struct device_queue_manager *dqm)
1765 {
1766 	int ret = 0;
1767 
1768 	dqm_lock(dqm);
1769 	if (!dqm->sched_running) {
1770 		dqm_unlock(dqm);
1771 		return 0;
1772 	}
1773 
1774 	WARN_ONCE(dqm->sched_halt, "Scheduling is already on halt\n");
1775 
1776 	if (!dqm->is_hws_hang) {
1777 		if (!dqm->dev->kfd->shared_resources.enable_mes)
1778 			ret = unmap_queues_cpsch(dqm,
1779 						 KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0,
1780 				USE_DEFAULT_GRACE_PERIOD, false);
1781 		else
1782 			ret = remove_all_kfd_queues_mes(dqm);
1783 	}
1784 	dqm->sched_halt = true;
1785 	dqm_unlock(dqm);
1786 
1787 	return ret;
1788 }
1789 
1790 /* unhalt_cpsch
1791  * Unset dqm->sched_halt and map queues back to runlist
1792  */
unhalt_cpsch(struct device_queue_manager * dqm)1793 static int unhalt_cpsch(struct device_queue_manager *dqm)
1794 {
1795 	int ret = 0;
1796 
1797 	dqm_lock(dqm);
1798 	if (!dqm->sched_running || !dqm->sched_halt) {
1799 		WARN_ONCE(!dqm->sched_halt, "Scheduling is not on halt.\n");
1800 		dqm_unlock(dqm);
1801 		return 0;
1802 	}
1803 	dqm->sched_halt = false;
1804 	if (!dqm->dev->kfd->shared_resources.enable_mes)
1805 		ret = execute_queues_cpsch(dqm,
1806 					   KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES,
1807 			0, USE_DEFAULT_GRACE_PERIOD);
1808 	else
1809 		ret = add_all_kfd_queues_mes(dqm);
1810 
1811 	dqm_unlock(dqm);
1812 
1813 	return ret;
1814 }
1815 
start_cpsch(struct device_queue_manager * dqm)1816 static int start_cpsch(struct device_queue_manager *dqm)
1817 {
1818 	struct device *dev = dqm->dev->adev->dev;
1819 	int retval, num_hw_queue_slots;
1820 
1821 	retval = 0;
1822 
1823 	dqm_lock(dqm);
1824 
1825 	if (!dqm->dev->kfd->shared_resources.enable_mes) {
1826 		retval = pm_init(&dqm->packet_mgr, dqm);
1827 		if (retval)
1828 			goto fail_packet_manager_init;
1829 
1830 		retval = set_sched_resources(dqm);
1831 		if (retval)
1832 			goto fail_set_sched_resources;
1833 	}
1834 	pr_debug("Allocating fence memory\n");
1835 
1836 	/* allocate fence memory on the gart */
1837 	retval = kfd_gtt_sa_allocate(dqm->dev, sizeof(*dqm->fence_addr),
1838 					&dqm->fence_mem);
1839 
1840 	if (retval)
1841 		goto fail_allocate_vidmem;
1842 
1843 	dqm->fence_addr = (uint64_t *)dqm->fence_mem->cpu_ptr;
1844 	dqm->fence_gpu_addr = dqm->fence_mem->gpu_addr;
1845 
1846 	init_interrupts(dqm);
1847 
1848 	/* clear hang status when driver try to start the hw scheduler */
1849 	dqm->sched_running = true;
1850 
1851 	if (!dqm->dev->kfd->shared_resources.enable_mes) {
1852 		if (pm_config_dequeue_wait_counts(&dqm->packet_mgr,
1853 				KFD_DEQUEUE_WAIT_INIT, 0 /* unused */))
1854 			dev_err(dev, "Setting optimized dequeue wait failed. Using default values\n");
1855 		execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD);
1856 	}
1857 
1858 	/* setup per-queue reset detection buffer  */
1859 	num_hw_queue_slots =  dqm->dev->kfd->shared_resources.num_queue_per_pipe *
1860 			      dqm->dev->kfd->shared_resources.num_pipe_per_mec *
1861 			      NUM_XCC(dqm->dev->xcc_mask);
1862 
1863 	dqm->detect_hang_info_size = num_hw_queue_slots * sizeof(struct dqm_detect_hang_info);
1864 	dqm->detect_hang_info = kzalloc(dqm->detect_hang_info_size, GFP_KERNEL);
1865 
1866 	if (!dqm->detect_hang_info) {
1867 		retval = -ENOMEM;
1868 		goto fail_detect_hang_buffer;
1869 	}
1870 
1871 	dqm_unlock(dqm);
1872 
1873 	return 0;
1874 fail_detect_hang_buffer:
1875 	kfd_gtt_sa_free(dqm->dev, dqm->fence_mem);
1876 fail_allocate_vidmem:
1877 fail_set_sched_resources:
1878 	if (!dqm->dev->kfd->shared_resources.enable_mes)
1879 		pm_uninit(&dqm->packet_mgr);
1880 fail_packet_manager_init:
1881 	dqm_unlock(dqm);
1882 	return retval;
1883 }
1884 
stop_cpsch(struct device_queue_manager * dqm)1885 static int stop_cpsch(struct device_queue_manager *dqm)
1886 {
1887 	dqm_lock(dqm);
1888 	if (!dqm->sched_running) {
1889 		dqm_unlock(dqm);
1890 		return 0;
1891 	}
1892 
1893 	if (!dqm->dev->kfd->shared_resources.enable_mes)
1894 		unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD, false);
1895 	else
1896 		remove_all_kfd_queues_mes(dqm);
1897 
1898 	dqm->sched_running = false;
1899 
1900 	if (!dqm->dev->kfd->shared_resources.enable_mes)
1901 		pm_release_ib(&dqm->packet_mgr);
1902 
1903 	kfd_gtt_sa_free(dqm->dev, dqm->fence_mem);
1904 	if (!dqm->dev->kfd->shared_resources.enable_mes)
1905 		pm_uninit(&dqm->packet_mgr);
1906 	kfree(dqm->detect_hang_info);
1907 	dqm->detect_hang_info = NULL;
1908 	dqm_unlock(dqm);
1909 
1910 	return 0;
1911 }
1912 
create_kernel_queue_cpsch(struct device_queue_manager * dqm,struct kernel_queue * kq,struct qcm_process_device * qpd)1913 static int create_kernel_queue_cpsch(struct device_queue_manager *dqm,
1914 					struct kernel_queue *kq,
1915 					struct qcm_process_device *qpd)
1916 {
1917 	dqm_lock(dqm);
1918 	if (dqm->total_queue_count >= max_num_of_queues_per_device) {
1919 		pr_warn("Can't create new kernel queue because %d queues were already created\n",
1920 				dqm->total_queue_count);
1921 		dqm_unlock(dqm);
1922 		return -EPERM;
1923 	}
1924 
1925 	/*
1926 	 * Unconditionally increment this counter, regardless of the queue's
1927 	 * type or whether the queue is active.
1928 	 */
1929 	dqm->total_queue_count++;
1930 	pr_debug("Total of %d queues are accountable so far\n",
1931 			dqm->total_queue_count);
1932 
1933 	list_add(&kq->list, &qpd->priv_queue_list);
1934 	increment_queue_count(dqm, qpd, kq->queue);
1935 	qpd->is_debug = true;
1936 	execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0,
1937 			USE_DEFAULT_GRACE_PERIOD);
1938 	dqm_unlock(dqm);
1939 
1940 	return 0;
1941 }
1942 
destroy_kernel_queue_cpsch(struct device_queue_manager * dqm,struct kernel_queue * kq,struct qcm_process_device * qpd)1943 static void destroy_kernel_queue_cpsch(struct device_queue_manager *dqm,
1944 					struct kernel_queue *kq,
1945 					struct qcm_process_device *qpd)
1946 {
1947 	dqm_lock(dqm);
1948 	list_del(&kq->list);
1949 	decrement_queue_count(dqm, qpd, kq->queue);
1950 	qpd->is_debug = false;
1951 	execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0,
1952 			USE_DEFAULT_GRACE_PERIOD);
1953 	/*
1954 	 * Unconditionally decrement this counter, regardless of the queue's
1955 	 * type.
1956 	 */
1957 	dqm->total_queue_count--;
1958 	pr_debug("Total of %d queues are accountable so far\n",
1959 			dqm->total_queue_count);
1960 	dqm_unlock(dqm);
1961 }
1962 
create_queue_cpsch(struct device_queue_manager * dqm,struct queue * q,struct qcm_process_device * qpd,const struct kfd_criu_queue_priv_data * qd,const void * restore_mqd,const void * restore_ctl_stack)1963 static int create_queue_cpsch(struct device_queue_manager *dqm, struct queue *q,
1964 			struct qcm_process_device *qpd,
1965 			const struct kfd_criu_queue_priv_data *qd,
1966 			const void *restore_mqd, const void *restore_ctl_stack)
1967 {
1968 	int retval;
1969 	struct mqd_manager *mqd_mgr;
1970 
1971 	if (dqm->total_queue_count >= max_num_of_queues_per_device) {
1972 		pr_warn("Can't create new usermode queue because %d queues were already created\n",
1973 				dqm->total_queue_count);
1974 		retval = -EPERM;
1975 		goto out;
1976 	}
1977 
1978 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
1979 		q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI ||
1980 		q->properties.type == KFD_QUEUE_TYPE_SDMA_BY_ENG_ID) {
1981 		dqm_lock(dqm);
1982 		retval = allocate_sdma_queue(dqm, q, qd ? &qd->sdma_id : NULL);
1983 		dqm_unlock(dqm);
1984 		if (retval)
1985 			goto out;
1986 	}
1987 
1988 	retval = allocate_doorbell(qpd, q, qd ? &qd->doorbell_id : NULL);
1989 	if (retval)
1990 		goto out_deallocate_sdma_queue;
1991 
1992 	mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
1993 			q->properties.type)];
1994 
1995 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
1996 		q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
1997 		dqm->asic_ops.init_sdma_vm(dqm, q, qpd);
1998 	q->properties.tba_addr = qpd->tba_addr;
1999 	q->properties.tma_addr = qpd->tma_addr;
2000 	q->mqd_mem_obj = mqd_mgr->allocate_mqd(mqd_mgr->dev, &q->properties);
2001 	if (!q->mqd_mem_obj) {
2002 		retval = -ENOMEM;
2003 		goto out_deallocate_doorbell;
2004 	}
2005 
2006 	dqm_lock(dqm);
2007 	/*
2008 	 * Eviction state logic: mark all queues as evicted, even ones
2009 	 * not currently active. Restoring inactive queues later only
2010 	 * updates the is_evicted flag but is a no-op otherwise.
2011 	 */
2012 	q->properties.is_evicted = !!qpd->evicted;
2013 	q->properties.is_dbg_wa = qpd->pqm->process->debug_trap_enabled &&
2014 				  kfd_dbg_has_cwsr_workaround(q->device);
2015 
2016 	if (qd)
2017 		mqd_mgr->restore_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj, &q->gart_mqd_addr,
2018 				     &q->properties, restore_mqd, restore_ctl_stack,
2019 				     qd->ctl_stack_size);
2020 	else
2021 		mqd_mgr->init_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj,
2022 					&q->gart_mqd_addr, &q->properties);
2023 
2024 	list_add(&q->list, &qpd->queues_list);
2025 	qpd->queue_count++;
2026 
2027 	if (q->properties.is_active) {
2028 		increment_queue_count(dqm, qpd, q);
2029 
2030 		if (!dqm->dev->kfd->shared_resources.enable_mes)
2031 			retval = execute_queues_cpsch(dqm,
2032 					KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, USE_DEFAULT_GRACE_PERIOD);
2033 		else
2034 			retval = add_queue_mes(dqm, q, qpd);
2035 		if (retval)
2036 			goto cleanup_queue;
2037 	}
2038 
2039 	/*
2040 	 * Unconditionally increment this counter, regardless of the queue's
2041 	 * type or whether the queue is active.
2042 	 */
2043 	dqm->total_queue_count++;
2044 
2045 	pr_debug("Total of %d queues are accountable so far\n",
2046 			dqm->total_queue_count);
2047 
2048 	dqm_unlock(dqm);
2049 	return retval;
2050 
2051 cleanup_queue:
2052 	qpd->queue_count--;
2053 	list_del(&q->list);
2054 	if (q->properties.is_active)
2055 		decrement_queue_count(dqm, qpd, q);
2056 	mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
2057 	dqm_unlock(dqm);
2058 out_deallocate_doorbell:
2059 	deallocate_doorbell(qpd, q);
2060 out_deallocate_sdma_queue:
2061 	if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
2062 		q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
2063 		dqm_lock(dqm);
2064 		deallocate_sdma_queue(dqm, q);
2065 		dqm_unlock(dqm);
2066 	}
2067 out:
2068 	return retval;
2069 }
2070 
amdkfd_fence_wait_timeout(struct device_queue_manager * dqm,uint64_t fence_value,unsigned int timeout_ms)2071 int amdkfd_fence_wait_timeout(struct device_queue_manager *dqm,
2072 			      uint64_t fence_value,
2073 			      unsigned int timeout_ms)
2074 {
2075 	unsigned long end_jiffies = msecs_to_jiffies(timeout_ms) + jiffies;
2076 	struct device *dev = dqm->dev->adev->dev;
2077 	uint64_t *fence_addr = dqm->fence_addr;
2078 
2079 	while (*fence_addr != fence_value) {
2080 		/* Fatal err detected, this response won't come */
2081 		if (amdgpu_amdkfd_is_fed(dqm->dev->adev))
2082 			return -EIO;
2083 
2084 		if (time_after(jiffies, end_jiffies)) {
2085 			dev_err(dev, "qcm fence wait loop timeout expired\n");
2086 			/* In HWS case, this is used to halt the driver thread
2087 			 * in order not to mess up CP states before doing
2088 			 * scandumps for FW debugging.
2089 			 */
2090 			while (halt_if_hws_hang)
2091 				schedule();
2092 
2093 			return -ETIME;
2094 		}
2095 		schedule();
2096 	}
2097 
2098 	return 0;
2099 }
2100 
2101 /* dqm->lock mutex has to be locked before calling this function */
map_queues_cpsch(struct device_queue_manager * dqm)2102 static int map_queues_cpsch(struct device_queue_manager *dqm)
2103 {
2104 	struct device *dev = dqm->dev->adev->dev;
2105 	int retval;
2106 
2107 	if (!dqm->sched_running || dqm->sched_halt)
2108 		return 0;
2109 	if (dqm->active_queue_count <= 0 || dqm->processes_count <= 0)
2110 		return 0;
2111 	if (dqm->active_runlist)
2112 		return 0;
2113 
2114 	retval = pm_send_runlist(&dqm->packet_mgr, &dqm->queues);
2115 	pr_debug("%s sent runlist\n", __func__);
2116 	if (retval) {
2117 		dev_err(dev, "failed to execute runlist\n");
2118 		return retval;
2119 	}
2120 	dqm->active_runlist = true;
2121 
2122 	return retval;
2123 }
2124 
set_queue_as_reset(struct device_queue_manager * dqm,struct queue * q,struct qcm_process_device * qpd)2125 static void set_queue_as_reset(struct device_queue_manager *dqm, struct queue *q,
2126 			       struct qcm_process_device *qpd)
2127 {
2128 	struct kfd_process_device *pdd = qpd_to_pdd(qpd);
2129 
2130 	dev_err(dqm->dev->adev->dev, "queue id 0x%0x at pasid %d is reset\n",
2131 		q->properties.queue_id, pdd->process->lead_thread->pid);
2132 
2133 	pdd->has_reset_queue = true;
2134 	if (q->properties.is_active) {
2135 		q->properties.is_active = false;
2136 		decrement_queue_count(dqm, qpd, q);
2137 	}
2138 }
2139 
detect_queue_hang(struct device_queue_manager * dqm)2140 static int detect_queue_hang(struct device_queue_manager *dqm)
2141 {
2142 	int i;
2143 
2144 	/* detect should be used only in dqm locked queue reset */
2145 	if (WARN_ON(dqm->detect_hang_count > 0))
2146 		return 0;
2147 
2148 	memset(dqm->detect_hang_info, 0, dqm->detect_hang_info_size);
2149 
2150 	for (i = 0; i < AMDGPU_MAX_QUEUES; ++i) {
2151 		uint32_t mec, pipe, queue;
2152 		int xcc_id;
2153 
2154 		mec = (i / dqm->dev->kfd->shared_resources.num_queue_per_pipe)
2155 			/ dqm->dev->kfd->shared_resources.num_pipe_per_mec;
2156 
2157 		if (mec || !test_bit(i, dqm->dev->kfd->shared_resources.cp_queue_bitmap))
2158 			continue;
2159 
2160 		amdgpu_queue_mask_bit_to_mec_queue(dqm->dev->adev, i, &mec, &pipe, &queue);
2161 
2162 		for_each_inst(xcc_id, dqm->dev->xcc_mask) {
2163 			uint64_t queue_addr = dqm->dev->kfd2kgd->hqd_get_pq_addr(
2164 						dqm->dev->adev, pipe, queue, xcc_id);
2165 			struct dqm_detect_hang_info hang_info;
2166 
2167 			if (!queue_addr)
2168 				continue;
2169 
2170 			hang_info.pipe_id = pipe;
2171 			hang_info.queue_id = queue;
2172 			hang_info.xcc_id = xcc_id;
2173 			hang_info.queue_address = queue_addr;
2174 
2175 			dqm->detect_hang_info[dqm->detect_hang_count] = hang_info;
2176 			dqm->detect_hang_count++;
2177 		}
2178 	}
2179 
2180 	return dqm->detect_hang_count;
2181 }
2182 
find_queue_by_address(struct device_queue_manager * dqm,uint64_t queue_address)2183 static struct queue *find_queue_by_address(struct device_queue_manager *dqm, uint64_t queue_address)
2184 {
2185 	struct device_process_node *cur;
2186 	struct qcm_process_device *qpd;
2187 	struct queue *q;
2188 
2189 	list_for_each_entry(cur, &dqm->queues, list) {
2190 		qpd = cur->qpd;
2191 		list_for_each_entry(q, &qpd->queues_list, list) {
2192 			if (queue_address == q->properties.queue_address)
2193 				return q;
2194 		}
2195 	}
2196 
2197 	return NULL;
2198 }
2199 
reset_hung_queues(struct device_queue_manager * dqm)2200 static int reset_hung_queues(struct device_queue_manager *dqm)
2201 {
2202 	int r = 0, reset_count = 0, i;
2203 
2204 	if (!dqm->detect_hang_info || dqm->is_hws_hang)
2205 		return -EIO;
2206 
2207 	/* assume dqm locked. */
2208 	if (!detect_queue_hang(dqm))
2209 		return -ENOTRECOVERABLE;
2210 
2211 	for (i = 0; i < dqm->detect_hang_count; i++) {
2212 		struct dqm_detect_hang_info hang_info = dqm->detect_hang_info[i];
2213 		struct queue *q = find_queue_by_address(dqm, hang_info.queue_address);
2214 		struct kfd_process_device *pdd;
2215 		uint64_t queue_addr = 0;
2216 
2217 		if (!q) {
2218 			r = -ENOTRECOVERABLE;
2219 			goto reset_fail;
2220 		}
2221 
2222 		pdd = kfd_get_process_device_data(dqm->dev, q->process);
2223 		if (!pdd) {
2224 			r = -ENOTRECOVERABLE;
2225 			goto reset_fail;
2226 		}
2227 
2228 		queue_addr = dqm->dev->kfd2kgd->hqd_reset(dqm->dev->adev,
2229 				hang_info.pipe_id, hang_info.queue_id, hang_info.xcc_id,
2230 				KFD_UNMAP_LATENCY_MS);
2231 
2232 		/* either reset failed or we reset an unexpected queue. */
2233 		if (queue_addr != q->properties.queue_address) {
2234 			r = -ENOTRECOVERABLE;
2235 			goto reset_fail;
2236 		}
2237 
2238 		set_queue_as_reset(dqm, q, &pdd->qpd);
2239 		reset_count++;
2240 	}
2241 
2242 	if (reset_count == dqm->detect_hang_count)
2243 		kfd_signal_reset_event(dqm->dev);
2244 	else
2245 		r = -ENOTRECOVERABLE;
2246 
2247 reset_fail:
2248 	dqm->detect_hang_count = 0;
2249 
2250 	return r;
2251 }
2252 
sdma_has_hang(struct device_queue_manager * dqm)2253 static bool sdma_has_hang(struct device_queue_manager *dqm)
2254 {
2255 	int engine_start = dqm->dev->node_id * get_num_all_sdma_engines(dqm);
2256 	int engine_end = engine_start + get_num_all_sdma_engines(dqm);
2257 	int num_queues_per_eng =  dqm->dev->kfd->device_info.num_sdma_queues_per_engine;
2258 	int i, j;
2259 
2260 	for (i = engine_start; i < engine_end; i++) {
2261 		for (j = 0; j < num_queues_per_eng; j++) {
2262 			if (!dqm->dev->kfd2kgd->hqd_sdma_get_doorbell(dqm->dev->adev, i, j))
2263 				continue;
2264 
2265 			return true;
2266 		}
2267 	}
2268 
2269 	return false;
2270 }
2271 
set_sdma_queue_as_reset(struct device_queue_manager * dqm,uint32_t doorbell_off)2272 static bool set_sdma_queue_as_reset(struct device_queue_manager *dqm,
2273 				    uint32_t doorbell_off)
2274 {
2275 	struct device_process_node *cur;
2276 	struct qcm_process_device *qpd;
2277 	struct queue *q;
2278 
2279 	list_for_each_entry(cur, &dqm->queues, list) {
2280 		qpd = cur->qpd;
2281 		list_for_each_entry(q, &qpd->queues_list, list) {
2282 			if ((q->properties.type == KFD_QUEUE_TYPE_SDMA ||
2283 			     q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) &&
2284 			     q->properties.doorbell_off == doorbell_off) {
2285 				set_queue_as_reset(dqm, q, qpd);
2286 				return true;
2287 			}
2288 		}
2289 	}
2290 
2291 	return false;
2292 }
2293 
reset_hung_queues_sdma(struct device_queue_manager * dqm)2294 static int reset_hung_queues_sdma(struct device_queue_manager *dqm)
2295 {
2296 	int engine_start = dqm->dev->node_id * get_num_all_sdma_engines(dqm);
2297 	int engine_end = engine_start + get_num_all_sdma_engines(dqm);
2298 	int num_queues_per_eng =  dqm->dev->kfd->device_info.num_sdma_queues_per_engine;
2299 	int r = 0, i, j;
2300 
2301 	if (dqm->is_hws_hang)
2302 		return -EIO;
2303 
2304 	/* Scan for hung HW queues and reset engine. */
2305 	dqm->detect_hang_count = 0;
2306 	for (i = engine_start; i < engine_end; i++) {
2307 		for (j = 0; j < num_queues_per_eng; j++) {
2308 			uint32_t doorbell_off =
2309 				dqm->dev->kfd2kgd->hqd_sdma_get_doorbell(dqm->dev->adev, i, j);
2310 
2311 			if (!doorbell_off)
2312 				continue;
2313 
2314 			/* Reset engine and check. */
2315 			if (amdgpu_sdma_reset_engine(dqm->dev->adev, i, false) ||
2316 			    dqm->dev->kfd2kgd->hqd_sdma_get_doorbell(dqm->dev->adev, i, j) ||
2317 			    !set_sdma_queue_as_reset(dqm, doorbell_off)) {
2318 				r = -ENOTRECOVERABLE;
2319 				goto reset_fail;
2320 			}
2321 
2322 			/* Should only expect one queue active per engine */
2323 			dqm->detect_hang_count++;
2324 			break;
2325 		}
2326 	}
2327 
2328 	/* Signal process reset */
2329 	if (dqm->detect_hang_count)
2330 		kfd_signal_reset_event(dqm->dev);
2331 	else
2332 		r = -ENOTRECOVERABLE;
2333 
2334 reset_fail:
2335 	dqm->detect_hang_count = 0;
2336 
2337 	return r;
2338 }
2339 
reset_queues_on_hws_hang(struct device_queue_manager * dqm,bool is_sdma)2340 static int reset_queues_on_hws_hang(struct device_queue_manager *dqm, bool is_sdma)
2341 {
2342 	struct amdgpu_device *adev = dqm->dev->adev;
2343 
2344 	while (halt_if_hws_hang)
2345 		schedule();
2346 
2347 	if (adev->debug_disable_gpu_ring_reset) {
2348 		dev_info_once(adev->dev,
2349 			      "%s queue hung, but ring reset disabled",
2350 			      is_sdma ? "sdma" : "compute");
2351 
2352 		return -EPERM;
2353 	}
2354 	if (!amdgpu_gpu_recovery)
2355 		return -ENOTRECOVERABLE;
2356 
2357 	return is_sdma ? reset_hung_queues_sdma(dqm) : reset_hung_queues(dqm);
2358 }
2359 
2360 /* dqm->lock mutex has to be locked before calling this function
2361  *
2362  * @grace_period: If USE_DEFAULT_GRACE_PERIOD then default wait time
2363  *   for context switch latency. Lower values are used by debugger
2364  *   since context switching are triggered at high frequency.
2365  *   This is configured by setting CP_IQ_WAIT_TIME2.SCH_WAVE
2366  *
2367  */
unmap_queues_cpsch(struct device_queue_manager * dqm,enum kfd_unmap_queues_filter filter,uint32_t filter_param,uint32_t grace_period,bool reset)2368 static int unmap_queues_cpsch(struct device_queue_manager *dqm,
2369 				enum kfd_unmap_queues_filter filter,
2370 				uint32_t filter_param,
2371 				uint32_t grace_period,
2372 				bool reset)
2373 {
2374 	struct device *dev = dqm->dev->adev->dev;
2375 	struct mqd_manager *mqd_mgr;
2376 	int retval;
2377 
2378 	if (!dqm->sched_running)
2379 		return 0;
2380 	if (!dqm->active_runlist)
2381 		return 0;
2382 	if (!down_read_trylock(&dqm->dev->adev->reset_domain->sem))
2383 		return -EIO;
2384 
2385 	if (grace_period != USE_DEFAULT_GRACE_PERIOD) {
2386 		retval = pm_config_dequeue_wait_counts(&dqm->packet_mgr,
2387 				KFD_DEQUEUE_WAIT_SET_SCH_WAVE, grace_period);
2388 		if (retval)
2389 			goto out;
2390 	}
2391 
2392 	retval = pm_send_unmap_queue(&dqm->packet_mgr, filter, filter_param, reset);
2393 	if (retval)
2394 		goto out;
2395 
2396 	*dqm->fence_addr = KFD_FENCE_INIT;
2397 	mb();
2398 	pm_send_query_status(&dqm->packet_mgr, dqm->fence_gpu_addr,
2399 				KFD_FENCE_COMPLETED);
2400 	/* should be timed out */
2401 	retval = amdkfd_fence_wait_timeout(dqm, KFD_FENCE_COMPLETED,
2402 					   queue_preemption_timeout_ms);
2403 	if (retval) {
2404 		dev_err(dev, "The cp might be in an unrecoverable state due to an unsuccessful queues preemption\n");
2405 		kfd_hws_hang(dqm);
2406 		goto out;
2407 	}
2408 
2409 	/* In the current MEC firmware implementation, if compute queue
2410 	 * doesn't response to the preemption request in time, HIQ will
2411 	 * abandon the unmap request without returning any timeout error
2412 	 * to driver. Instead, MEC firmware will log the doorbell of the
2413 	 * unresponding compute queue to HIQ.MQD.queue_doorbell_id fields.
2414 	 * To make sure the queue unmap was successful, driver need to
2415 	 * check those fields
2416 	 */
2417 	mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_HIQ];
2418 	if (mqd_mgr->check_preemption_failed(mqd_mgr, dqm->packet_mgr.priv_queue->queue->mqd) &&
2419 	    reset_queues_on_hws_hang(dqm, false))
2420 		goto reset_fail;
2421 
2422 	/* Check for SDMA hang and attempt SDMA reset */
2423 	if (sdma_has_hang(dqm) && reset_queues_on_hws_hang(dqm, true))
2424 		goto reset_fail;
2425 
2426 	/* We need to reset the grace period value for this device */
2427 	if (grace_period != USE_DEFAULT_GRACE_PERIOD) {
2428 		if (pm_config_dequeue_wait_counts(&dqm->packet_mgr,
2429 				KFD_DEQUEUE_WAIT_RESET, 0 /* unused */))
2430 			dev_err(dev, "Failed to reset grace period\n");
2431 	}
2432 
2433 	pm_release_ib(&dqm->packet_mgr);
2434 	dqm->active_runlist = false;
2435 out:
2436 	up_read(&dqm->dev->adev->reset_domain->sem);
2437 	return retval;
2438 
2439 reset_fail:
2440 	dqm->is_hws_hang = true;
2441 	kfd_hws_hang(dqm);
2442 	up_read(&dqm->dev->adev->reset_domain->sem);
2443 	return -ETIME;
2444 }
2445 
2446 /* only for compute queue */
reset_queues_cpsch(struct device_queue_manager * dqm,uint16_t pasid)2447 static int reset_queues_cpsch(struct device_queue_manager *dqm, uint16_t pasid)
2448 {
2449 	int retval;
2450 
2451 	dqm_lock(dqm);
2452 
2453 	retval = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_BY_PASID,
2454 			pasid, USE_DEFAULT_GRACE_PERIOD, true);
2455 
2456 	dqm_unlock(dqm);
2457 	return retval;
2458 }
2459 
2460 /* dqm->lock mutex has to be locked before calling this function */
execute_queues_cpsch(struct device_queue_manager * dqm,enum kfd_unmap_queues_filter filter,uint32_t filter_param,uint32_t grace_period)2461 static int execute_queues_cpsch(struct device_queue_manager *dqm,
2462 				enum kfd_unmap_queues_filter filter,
2463 				uint32_t filter_param,
2464 				uint32_t grace_period)
2465 {
2466 	int retval;
2467 
2468 	if (!down_read_trylock(&dqm->dev->adev->reset_domain->sem))
2469 		return -EIO;
2470 	retval = unmap_queues_cpsch(dqm, filter, filter_param, grace_period, false);
2471 	if (!retval)
2472 		retval = map_queues_cpsch(dqm);
2473 	up_read(&dqm->dev->adev->reset_domain->sem);
2474 	return retval;
2475 }
2476 
wait_on_destroy_queue(struct device_queue_manager * dqm,struct queue * q)2477 static int wait_on_destroy_queue(struct device_queue_manager *dqm,
2478 				 struct queue *q)
2479 {
2480 	struct kfd_process_device *pdd = kfd_get_process_device_data(q->device,
2481 								q->process);
2482 	int ret = 0;
2483 
2484 	if (WARN_ON(!pdd))
2485 		return ret;
2486 
2487 	if (pdd->qpd.is_debug)
2488 		return ret;
2489 
2490 	q->properties.is_being_destroyed = true;
2491 
2492 	if (pdd->process->debug_trap_enabled && q->properties.is_suspended) {
2493 		dqm_unlock(dqm);
2494 		mutex_unlock(&q->process->mutex);
2495 		ret = wait_event_interruptible(dqm->destroy_wait,
2496 						!q->properties.is_suspended);
2497 
2498 		mutex_lock(&q->process->mutex);
2499 		dqm_lock(dqm);
2500 	}
2501 
2502 	return ret;
2503 }
2504 
destroy_queue_cpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)2505 static int destroy_queue_cpsch(struct device_queue_manager *dqm,
2506 				struct qcm_process_device *qpd,
2507 				struct queue *q)
2508 {
2509 	int retval;
2510 	struct mqd_manager *mqd_mgr;
2511 	uint64_t sdma_val = 0;
2512 	struct kfd_process_device *pdd = qpd_to_pdd(qpd);
2513 	struct device *dev = dqm->dev->adev->dev;
2514 
2515 	/* Get the SDMA queue stats */
2516 	if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) ||
2517 	    (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
2518 		retval = read_sdma_queue_counter((uint64_t __user *)q->properties.read_ptr,
2519 							&sdma_val);
2520 		if (retval)
2521 			dev_err(dev, "Failed to read SDMA queue counter for queue: %d\n",
2522 				q->properties.queue_id);
2523 	}
2524 
2525 	/* remove queue from list to prevent rescheduling after preemption */
2526 	dqm_lock(dqm);
2527 
2528 	retval = wait_on_destroy_queue(dqm, q);
2529 
2530 	if (retval) {
2531 		dqm_unlock(dqm);
2532 		return retval;
2533 	}
2534 
2535 	if (qpd->is_debug) {
2536 		/*
2537 		 * error, currently we do not allow to destroy a queue
2538 		 * of a currently debugged process
2539 		 */
2540 		retval = -EBUSY;
2541 		goto failed_try_destroy_debugged_queue;
2542 
2543 	}
2544 
2545 	mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
2546 			q->properties.type)];
2547 
2548 	deallocate_doorbell(qpd, q);
2549 
2550 	if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) ||
2551 	    (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
2552 		deallocate_sdma_queue(dqm, q);
2553 		pdd->sdma_past_activity_counter += sdma_val;
2554 	}
2555 
2556 	if (q->properties.is_active) {
2557 		decrement_queue_count(dqm, qpd, q);
2558 		q->properties.is_active = false;
2559 		if (!dqm->dev->kfd->shared_resources.enable_mes) {
2560 			retval = execute_queues_cpsch(dqm,
2561 						      KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0,
2562 						      USE_DEFAULT_GRACE_PERIOD);
2563 			if (retval == -ETIME)
2564 				qpd->reset_wavefronts = true;
2565 		} else {
2566 			retval = remove_queue_mes(dqm, q, qpd);
2567 		}
2568 	}
2569 	list_del(&q->list);
2570 	qpd->queue_count--;
2571 
2572 	/*
2573 	 * Unconditionally decrement this counter, regardless of the queue's
2574 	 * type
2575 	 */
2576 	dqm->total_queue_count--;
2577 	pr_debug("Total of %d queues are accountable so far\n",
2578 			dqm->total_queue_count);
2579 
2580 	dqm_unlock(dqm);
2581 
2582 	/*
2583 	 * Do free_mqd and raise delete event after dqm_unlock(dqm) to avoid
2584 	 * circular locking
2585 	 */
2586 	kfd_dbg_ev_raise(KFD_EC_MASK(EC_DEVICE_QUEUE_DELETE),
2587 				qpd->pqm->process, q->device,
2588 				-1, false, NULL, 0);
2589 
2590 	mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
2591 
2592 	return retval;
2593 
2594 failed_try_destroy_debugged_queue:
2595 
2596 	dqm_unlock(dqm);
2597 	return retval;
2598 }
2599 
set_cache_memory_policy(struct device_queue_manager * dqm,struct qcm_process_device * qpd,enum cache_policy default_policy,enum cache_policy alternate_policy,void __user * alternate_aperture_base,uint64_t alternate_aperture_size,u32 misc_process_properties)2600 static bool set_cache_memory_policy(struct device_queue_manager *dqm,
2601 				   struct qcm_process_device *qpd,
2602 				   enum cache_policy default_policy,
2603 				   enum cache_policy alternate_policy,
2604 				   void __user *alternate_aperture_base,
2605 				   uint64_t alternate_aperture_size,
2606 				   u32 misc_process_properties)
2607 {
2608 	bool retval = true;
2609 
2610 	if (!dqm->asic_ops.set_cache_memory_policy)
2611 		return retval;
2612 
2613 	dqm_lock(dqm);
2614 
2615 	retval = dqm->asic_ops.set_cache_memory_policy(
2616 			dqm,
2617 			qpd,
2618 			default_policy,
2619 			alternate_policy,
2620 			alternate_aperture_base,
2621 			alternate_aperture_size,
2622 			misc_process_properties);
2623 
2624 	if (retval)
2625 		goto out;
2626 
2627 	if ((dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) && (qpd->vmid != 0))
2628 		program_sh_mem_settings(dqm, qpd);
2629 
2630 	pr_debug("sh_mem_config: 0x%x, ape1_base: 0x%x, ape1_limit: 0x%x\n",
2631 		qpd->sh_mem_config, qpd->sh_mem_ape1_base,
2632 		qpd->sh_mem_ape1_limit);
2633 
2634 out:
2635 	dqm_unlock(dqm);
2636 	return retval;
2637 }
2638 
process_termination_nocpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)2639 static int process_termination_nocpsch(struct device_queue_manager *dqm,
2640 		struct qcm_process_device *qpd)
2641 {
2642 	struct queue *q;
2643 	struct device_process_node *cur, *next_dpn;
2644 	int retval = 0;
2645 	bool found = false;
2646 
2647 	dqm_lock(dqm);
2648 
2649 	/* Clear all user mode queues */
2650 	while (!list_empty(&qpd->queues_list)) {
2651 		struct mqd_manager *mqd_mgr;
2652 		int ret;
2653 
2654 		q = list_first_entry(&qpd->queues_list, struct queue, list);
2655 		mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
2656 				q->properties.type)];
2657 		ret = destroy_queue_nocpsch_locked(dqm, qpd, q);
2658 		if (ret)
2659 			retval = ret;
2660 		dqm_unlock(dqm);
2661 		mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
2662 		dqm_lock(dqm);
2663 	}
2664 
2665 	/* Unregister process */
2666 	list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) {
2667 		if (qpd == cur->qpd) {
2668 			list_del(&cur->list);
2669 			kfree(cur);
2670 			dqm->processes_count--;
2671 			found = true;
2672 			break;
2673 		}
2674 	}
2675 
2676 	dqm_unlock(dqm);
2677 
2678 	/* Outside the DQM lock because under the DQM lock we can't do
2679 	 * reclaim or take other locks that others hold while reclaiming.
2680 	 */
2681 	if (found)
2682 		kfd_dec_compute_active(dqm->dev);
2683 
2684 	return retval;
2685 }
2686 
get_wave_state(struct device_queue_manager * dqm,struct queue * q,void __user * ctl_stack,u32 * ctl_stack_used_size,u32 * save_area_used_size)2687 static int get_wave_state(struct device_queue_manager *dqm,
2688 			  struct queue *q,
2689 			  void __user *ctl_stack,
2690 			  u32 *ctl_stack_used_size,
2691 			  u32 *save_area_used_size)
2692 {
2693 	struct mqd_manager *mqd_mgr;
2694 
2695 	dqm_lock(dqm);
2696 
2697 	mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_CP];
2698 
2699 	if (q->properties.type != KFD_QUEUE_TYPE_COMPUTE ||
2700 	    q->properties.is_active || !q->device->kfd->cwsr_enabled ||
2701 	    !mqd_mgr->get_wave_state) {
2702 		dqm_unlock(dqm);
2703 		return -EINVAL;
2704 	}
2705 
2706 	dqm_unlock(dqm);
2707 
2708 	/*
2709 	 * get_wave_state is outside the dqm lock to prevent circular locking
2710 	 * and the queue should be protected against destruction by the process
2711 	 * lock.
2712 	 */
2713 	return mqd_mgr->get_wave_state(mqd_mgr, q->mqd, &q->properties,
2714 			ctl_stack, ctl_stack_used_size, save_area_used_size);
2715 }
2716 
get_queue_checkpoint_info(struct device_queue_manager * dqm,const struct queue * q,u32 * mqd_size,u32 * ctl_stack_size)2717 static void get_queue_checkpoint_info(struct device_queue_manager *dqm,
2718 			const struct queue *q,
2719 			u32 *mqd_size,
2720 			u32 *ctl_stack_size)
2721 {
2722 	struct mqd_manager *mqd_mgr;
2723 	enum KFD_MQD_TYPE mqd_type =
2724 			get_mqd_type_from_queue_type(q->properties.type);
2725 
2726 	dqm_lock(dqm);
2727 	mqd_mgr = dqm->mqd_mgrs[mqd_type];
2728 	*mqd_size = mqd_mgr->mqd_size * NUM_XCC(mqd_mgr->dev->xcc_mask);
2729 	*ctl_stack_size = 0;
2730 
2731 	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE && mqd_mgr->get_checkpoint_info)
2732 		mqd_mgr->get_checkpoint_info(mqd_mgr, q->mqd, ctl_stack_size);
2733 
2734 	dqm_unlock(dqm);
2735 }
2736 
checkpoint_mqd(struct device_queue_manager * dqm,const struct queue * q,void * mqd,void * ctl_stack)2737 static int checkpoint_mqd(struct device_queue_manager *dqm,
2738 			  const struct queue *q,
2739 			  void *mqd,
2740 			  void *ctl_stack)
2741 {
2742 	struct mqd_manager *mqd_mgr;
2743 	int r = 0;
2744 	enum KFD_MQD_TYPE mqd_type =
2745 			get_mqd_type_from_queue_type(q->properties.type);
2746 
2747 	dqm_lock(dqm);
2748 
2749 	if (q->properties.is_active || !q->device->kfd->cwsr_enabled) {
2750 		r = -EINVAL;
2751 		goto dqm_unlock;
2752 	}
2753 
2754 	mqd_mgr = dqm->mqd_mgrs[mqd_type];
2755 	if (!mqd_mgr->checkpoint_mqd) {
2756 		r = -EOPNOTSUPP;
2757 		goto dqm_unlock;
2758 	}
2759 
2760 	mqd_mgr->checkpoint_mqd(mqd_mgr, q->mqd, mqd, ctl_stack);
2761 
2762 dqm_unlock:
2763 	dqm_unlock(dqm);
2764 	return r;
2765 }
2766 
process_termination_cpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)2767 static int process_termination_cpsch(struct device_queue_manager *dqm,
2768 		struct qcm_process_device *qpd)
2769 {
2770 	int retval;
2771 	struct queue *q;
2772 	struct device *dev = dqm->dev->adev->dev;
2773 	struct kernel_queue *kq, *kq_next;
2774 	struct mqd_manager *mqd_mgr;
2775 	struct device_process_node *cur, *next_dpn;
2776 	enum kfd_unmap_queues_filter filter =
2777 		KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES;
2778 	bool found = false;
2779 
2780 	retval = 0;
2781 
2782 	dqm_lock(dqm);
2783 
2784 	/* Clean all kernel queues */
2785 	list_for_each_entry_safe(kq, kq_next, &qpd->priv_queue_list, list) {
2786 		list_del(&kq->list);
2787 		decrement_queue_count(dqm, qpd, kq->queue);
2788 		qpd->is_debug = false;
2789 		dqm->total_queue_count--;
2790 		filter = KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES;
2791 	}
2792 
2793 	/* Clear all user mode queues */
2794 	list_for_each_entry(q, &qpd->queues_list, list) {
2795 		if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
2796 			deallocate_sdma_queue(dqm, q);
2797 		else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
2798 			deallocate_sdma_queue(dqm, q);
2799 
2800 		if (q->properties.is_active) {
2801 			decrement_queue_count(dqm, qpd, q);
2802 
2803 			if (dqm->dev->kfd->shared_resources.enable_mes) {
2804 				retval = remove_queue_mes(dqm, q, qpd);
2805 				if (retval)
2806 					dev_err(dev, "Failed to remove queue %d\n",
2807 						q->properties.queue_id);
2808 			}
2809 		}
2810 
2811 		dqm->total_queue_count--;
2812 	}
2813 
2814 	/* Unregister process */
2815 	list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) {
2816 		if (qpd == cur->qpd) {
2817 			list_del(&cur->list);
2818 			kfree(cur);
2819 			dqm->processes_count--;
2820 			found = true;
2821 			break;
2822 		}
2823 	}
2824 
2825 	if (!dqm->dev->kfd->shared_resources.enable_mes)
2826 		retval = execute_queues_cpsch(dqm, filter, 0, USE_DEFAULT_GRACE_PERIOD);
2827 
2828 	if ((retval || qpd->reset_wavefronts) &&
2829 	    down_read_trylock(&dqm->dev->adev->reset_domain->sem)) {
2830 		pr_warn("Resetting wave fronts (cpsch) on dev %p\n", dqm->dev);
2831 		dbgdev_wave_reset_wavefronts(dqm->dev, qpd->pqm->process);
2832 		qpd->reset_wavefronts = false;
2833 		up_read(&dqm->dev->adev->reset_domain->sem);
2834 	}
2835 
2836 	/* Lastly, free mqd resources.
2837 	 * Do free_mqd() after dqm_unlock to avoid circular locking.
2838 	 */
2839 	while (!list_empty(&qpd->queues_list)) {
2840 		q = list_first_entry(&qpd->queues_list, struct queue, list);
2841 		mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
2842 				q->properties.type)];
2843 		list_del(&q->list);
2844 		qpd->queue_count--;
2845 		dqm_unlock(dqm);
2846 		mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
2847 		dqm_lock(dqm);
2848 	}
2849 	dqm_unlock(dqm);
2850 
2851 	/* Outside the DQM lock because under the DQM lock we can't do
2852 	 * reclaim or take other locks that others hold while reclaiming.
2853 	 */
2854 	if (found)
2855 		kfd_dec_compute_active(dqm->dev);
2856 
2857 	return retval;
2858 }
2859 
init_mqd_managers(struct device_queue_manager * dqm)2860 static int init_mqd_managers(struct device_queue_manager *dqm)
2861 {
2862 	int i, j;
2863 	struct device *dev = dqm->dev->adev->dev;
2864 	struct mqd_manager *mqd_mgr;
2865 
2866 	for (i = 0; i < KFD_MQD_TYPE_MAX; i++) {
2867 		mqd_mgr = dqm->asic_ops.mqd_manager_init(i, dqm->dev);
2868 		if (!mqd_mgr) {
2869 			dev_err(dev, "mqd manager [%d] initialization failed\n", i);
2870 			goto out_free;
2871 		}
2872 		dqm->mqd_mgrs[i] = mqd_mgr;
2873 	}
2874 
2875 	return 0;
2876 
2877 out_free:
2878 	for (j = 0; j < i; j++) {
2879 		kfree(dqm->mqd_mgrs[j]);
2880 		dqm->mqd_mgrs[j] = NULL;
2881 	}
2882 
2883 	return -ENOMEM;
2884 }
2885 
2886 /* Allocate one hiq mqd (HWS) and all SDMA mqd in a continuous trunk*/
allocate_hiq_sdma_mqd(struct device_queue_manager * dqm)2887 static int allocate_hiq_sdma_mqd(struct device_queue_manager *dqm)
2888 {
2889 	int retval;
2890 	struct kfd_node *dev = dqm->dev;
2891 	struct kfd_mem_obj *mem_obj = &dqm->hiq_sdma_mqd;
2892 	uint32_t size = dqm->mqd_mgrs[KFD_MQD_TYPE_SDMA]->mqd_size *
2893 		get_num_all_sdma_engines(dqm) *
2894 		dev->kfd->device_info.num_sdma_queues_per_engine +
2895 		(dqm->mqd_mgrs[KFD_MQD_TYPE_HIQ]->mqd_size *
2896 		NUM_XCC(dqm->dev->xcc_mask));
2897 
2898 	retval = amdgpu_amdkfd_alloc_gtt_mem(dev->adev, size,
2899 		&(mem_obj->gtt_mem), &(mem_obj->gpu_addr),
2900 		(void *)&(mem_obj->cpu_ptr), false);
2901 
2902 	return retval;
2903 }
2904 
device_queue_manager_init(struct kfd_node * dev)2905 struct device_queue_manager *device_queue_manager_init(struct kfd_node *dev)
2906 {
2907 	struct device_queue_manager *dqm;
2908 
2909 	pr_debug("Loading device queue manager\n");
2910 
2911 	dqm = kzalloc(sizeof(*dqm), GFP_KERNEL);
2912 	if (!dqm)
2913 		return NULL;
2914 
2915 	switch (dev->adev->asic_type) {
2916 	/* HWS is not available on Hawaii. */
2917 	case CHIP_HAWAII:
2918 	/* HWS depends on CWSR for timely dequeue. CWSR is not
2919 	 * available on Tonga.
2920 	 *
2921 	 * FIXME: This argument also applies to Kaveri.
2922 	 */
2923 	case CHIP_TONGA:
2924 		dqm->sched_policy = KFD_SCHED_POLICY_NO_HWS;
2925 		break;
2926 	default:
2927 		dqm->sched_policy = sched_policy;
2928 		break;
2929 	}
2930 
2931 	dqm->dev = dev;
2932 	switch (dqm->sched_policy) {
2933 	case KFD_SCHED_POLICY_HWS:
2934 	case KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION:
2935 		/* initialize dqm for cp scheduling */
2936 		dqm->ops.create_queue = create_queue_cpsch;
2937 		dqm->ops.initialize = initialize_cpsch;
2938 		dqm->ops.start = start_cpsch;
2939 		dqm->ops.stop = stop_cpsch;
2940 		dqm->ops.halt = halt_cpsch;
2941 		dqm->ops.unhalt = unhalt_cpsch;
2942 		dqm->ops.destroy_queue = destroy_queue_cpsch;
2943 		dqm->ops.update_queue = update_queue;
2944 		dqm->ops.register_process = register_process;
2945 		dqm->ops.unregister_process = unregister_process;
2946 		dqm->ops.uninitialize = uninitialize;
2947 		dqm->ops.create_kernel_queue = create_kernel_queue_cpsch;
2948 		dqm->ops.destroy_kernel_queue = destroy_kernel_queue_cpsch;
2949 		dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
2950 		dqm->ops.process_termination = process_termination_cpsch;
2951 		dqm->ops.evict_process_queues = evict_process_queues_cpsch;
2952 		dqm->ops.restore_process_queues = restore_process_queues_cpsch;
2953 		dqm->ops.get_wave_state = get_wave_state;
2954 		dqm->ops.reset_queues = reset_queues_cpsch;
2955 		dqm->ops.get_queue_checkpoint_info = get_queue_checkpoint_info;
2956 		dqm->ops.checkpoint_mqd = checkpoint_mqd;
2957 		break;
2958 	case KFD_SCHED_POLICY_NO_HWS:
2959 		/* initialize dqm for no cp scheduling */
2960 		dqm->ops.start = start_nocpsch;
2961 		dqm->ops.stop = stop_nocpsch;
2962 		dqm->ops.create_queue = create_queue_nocpsch;
2963 		dqm->ops.destroy_queue = destroy_queue_nocpsch;
2964 		dqm->ops.update_queue = update_queue;
2965 		dqm->ops.register_process = register_process;
2966 		dqm->ops.unregister_process = unregister_process;
2967 		dqm->ops.initialize = initialize_nocpsch;
2968 		dqm->ops.uninitialize = uninitialize;
2969 		dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
2970 		dqm->ops.process_termination = process_termination_nocpsch;
2971 		dqm->ops.evict_process_queues = evict_process_queues_nocpsch;
2972 		dqm->ops.restore_process_queues =
2973 			restore_process_queues_nocpsch;
2974 		dqm->ops.get_wave_state = get_wave_state;
2975 		dqm->ops.get_queue_checkpoint_info = get_queue_checkpoint_info;
2976 		dqm->ops.checkpoint_mqd = checkpoint_mqd;
2977 		break;
2978 	default:
2979 		dev_err(dev->adev->dev, "Invalid scheduling policy %d\n", dqm->sched_policy);
2980 		goto out_free;
2981 	}
2982 
2983 	switch (dev->adev->asic_type) {
2984 	case CHIP_KAVERI:
2985 	case CHIP_HAWAII:
2986 		device_queue_manager_init_cik(&dqm->asic_ops);
2987 		break;
2988 
2989 	case CHIP_CARRIZO:
2990 	case CHIP_TONGA:
2991 	case CHIP_FIJI:
2992 	case CHIP_POLARIS10:
2993 	case CHIP_POLARIS11:
2994 	case CHIP_POLARIS12:
2995 	case CHIP_VEGAM:
2996 		device_queue_manager_init_vi(&dqm->asic_ops);
2997 		break;
2998 
2999 	default:
3000 		if (KFD_GC_VERSION(dev) >= IP_VERSION(12, 0, 0))
3001 			device_queue_manager_init_v12(&dqm->asic_ops);
3002 		else if (KFD_GC_VERSION(dev) >= IP_VERSION(11, 0, 0))
3003 			device_queue_manager_init_v11(&dqm->asic_ops);
3004 		else if (KFD_GC_VERSION(dev) >= IP_VERSION(10, 1, 1))
3005 			device_queue_manager_init_v10(&dqm->asic_ops);
3006 		else if (KFD_GC_VERSION(dev) >= IP_VERSION(9, 0, 1))
3007 			device_queue_manager_init_v9(&dqm->asic_ops);
3008 		else {
3009 			WARN(1, "Unexpected ASIC family %u",
3010 			     dev->adev->asic_type);
3011 			goto out_free;
3012 		}
3013 	}
3014 
3015 	if (init_mqd_managers(dqm))
3016 		goto out_free;
3017 
3018 	if (!dev->kfd->shared_resources.enable_mes && allocate_hiq_sdma_mqd(dqm)) {
3019 		dev_err(dev->adev->dev, "Failed to allocate hiq sdma mqd trunk buffer\n");
3020 		goto out_free;
3021 	}
3022 
3023 	if (!dqm->ops.initialize(dqm)) {
3024 		init_waitqueue_head(&dqm->destroy_wait);
3025 		return dqm;
3026 	}
3027 
3028 out_free:
3029 	kfree(dqm);
3030 	return NULL;
3031 }
3032 
deallocate_hiq_sdma_mqd(struct kfd_node * dev,struct kfd_mem_obj * mqd)3033 static void deallocate_hiq_sdma_mqd(struct kfd_node *dev,
3034 				    struct kfd_mem_obj *mqd)
3035 {
3036 	WARN(!mqd, "No hiq sdma mqd trunk to free");
3037 
3038 	amdgpu_amdkfd_free_gtt_mem(dev->adev, &mqd->gtt_mem);
3039 }
3040 
device_queue_manager_uninit(struct device_queue_manager * dqm)3041 void device_queue_manager_uninit(struct device_queue_manager *dqm)
3042 {
3043 	dqm->ops.stop(dqm);
3044 	dqm->ops.uninitialize(dqm);
3045 	if (!dqm->dev->kfd->shared_resources.enable_mes)
3046 		deallocate_hiq_sdma_mqd(dqm->dev, &dqm->hiq_sdma_mqd);
3047 	kfree(dqm);
3048 }
3049 
kfd_dqm_suspend_bad_queue_mes(struct kfd_node * knode,u32 pasid,u32 doorbell_id)3050 int kfd_dqm_suspend_bad_queue_mes(struct kfd_node *knode, u32 pasid, u32 doorbell_id)
3051 {
3052 	struct kfd_process_device *pdd = NULL;
3053 	struct kfd_process *p = kfd_lookup_process_by_pasid(pasid, &pdd);
3054 	struct device_queue_manager *dqm = knode->dqm;
3055 	struct device *dev = dqm->dev->adev->dev;
3056 	struct qcm_process_device *qpd;
3057 	struct queue *q = NULL;
3058 	int ret = 0;
3059 
3060 	if (!pdd)
3061 		return -EINVAL;
3062 
3063 	dqm_lock(dqm);
3064 
3065 	if (pdd) {
3066 		qpd = &pdd->qpd;
3067 
3068 		list_for_each_entry(q, &qpd->queues_list, list) {
3069 			if (q->doorbell_id == doorbell_id && q->properties.is_active) {
3070 				ret = suspend_all_queues_mes(dqm);
3071 				if (ret) {
3072 					dev_err(dev, "Suspending all queues failed");
3073 					goto out;
3074 				}
3075 
3076 				q->properties.is_evicted = true;
3077 				q->properties.is_active = false;
3078 				decrement_queue_count(dqm, qpd, q);
3079 
3080 				ret = remove_queue_mes(dqm, q, qpd);
3081 				if (ret) {
3082 					dev_err(dev, "Removing bad queue failed");
3083 					goto out;
3084 				}
3085 
3086 				ret = resume_all_queues_mes(dqm);
3087 				if (ret)
3088 					dev_err(dev, "Resuming all queues failed");
3089 
3090 				break;
3091 			}
3092 		}
3093 	}
3094 
3095 out:
3096 	dqm_unlock(dqm);
3097 	kfd_unref_process(p);
3098 	return ret;
3099 }
3100 
kfd_dqm_evict_pasid_mes(struct device_queue_manager * dqm,struct qcm_process_device * qpd)3101 static int kfd_dqm_evict_pasid_mes(struct device_queue_manager *dqm,
3102 				   struct qcm_process_device *qpd)
3103 {
3104 	struct device *dev = dqm->dev->adev->dev;
3105 	int ret = 0;
3106 
3107 	/* Check if process is already evicted */
3108 	dqm_lock(dqm);
3109 	if (qpd->evicted) {
3110 		/* Increment the evicted count to make sure the
3111 		 * process stays evicted before its terminated.
3112 		 */
3113 		qpd->evicted++;
3114 		dqm_unlock(dqm);
3115 		goto out;
3116 	}
3117 	dqm_unlock(dqm);
3118 
3119 	ret = suspend_all_queues_mes(dqm);
3120 	if (ret) {
3121 		dev_err(dev, "Suspending all queues failed");
3122 		goto out;
3123 	}
3124 
3125 	ret = dqm->ops.evict_process_queues(dqm, qpd);
3126 	if (ret) {
3127 		dev_err(dev, "Evicting process queues failed");
3128 		goto out;
3129 	}
3130 
3131 	ret = resume_all_queues_mes(dqm);
3132 	if (ret)
3133 		dev_err(dev, "Resuming all queues failed");
3134 
3135 out:
3136 	return ret;
3137 }
3138 
kfd_evict_process_device(struct kfd_process_device * pdd)3139 int kfd_evict_process_device(struct kfd_process_device *pdd)
3140 {
3141 	struct device_queue_manager *dqm;
3142 	struct kfd_process *p;
3143 	int ret = 0;
3144 
3145 	p = pdd->process;
3146 	dqm = pdd->dev->dqm;
3147 
3148 	WARN(debug_evictions, "Evicting pid %d", p->lead_thread->pid);
3149 
3150 	if (dqm->dev->kfd->shared_resources.enable_mes)
3151 		ret = kfd_dqm_evict_pasid_mes(dqm, &pdd->qpd);
3152 	else
3153 		ret = dqm->ops.evict_process_queues(dqm, &pdd->qpd);
3154 
3155 	return ret;
3156 }
3157 
reserve_debug_trap_vmid(struct device_queue_manager * dqm,struct qcm_process_device * qpd)3158 int reserve_debug_trap_vmid(struct device_queue_manager *dqm,
3159 				struct qcm_process_device *qpd)
3160 {
3161 	int r;
3162 	struct device *dev = dqm->dev->adev->dev;
3163 	int updated_vmid_mask;
3164 
3165 	if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
3166 		dev_err(dev, "Unsupported on sched_policy: %i\n", dqm->sched_policy);
3167 		return -EINVAL;
3168 	}
3169 
3170 	dqm_lock(dqm);
3171 
3172 	if (dqm->trap_debug_vmid != 0) {
3173 		dev_err(dev, "Trap debug id already reserved\n");
3174 		r = -EBUSY;
3175 		goto out_unlock;
3176 	}
3177 
3178 	r = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0,
3179 			USE_DEFAULT_GRACE_PERIOD, false);
3180 	if (r)
3181 		goto out_unlock;
3182 
3183 	updated_vmid_mask = dqm->dev->kfd->shared_resources.compute_vmid_bitmap;
3184 	updated_vmid_mask &= ~(1 << dqm->dev->vm_info.last_vmid_kfd);
3185 
3186 	dqm->dev->kfd->shared_resources.compute_vmid_bitmap = updated_vmid_mask;
3187 	dqm->trap_debug_vmid = dqm->dev->vm_info.last_vmid_kfd;
3188 	r = set_sched_resources(dqm);
3189 	if (r)
3190 		goto out_unlock;
3191 
3192 	r = map_queues_cpsch(dqm);
3193 	if (r)
3194 		goto out_unlock;
3195 
3196 	pr_debug("Reserved VMID for trap debug: %i\n", dqm->trap_debug_vmid);
3197 
3198 out_unlock:
3199 	dqm_unlock(dqm);
3200 	return r;
3201 }
3202 
3203 /*
3204  * Releases vmid for the trap debugger
3205  */
release_debug_trap_vmid(struct device_queue_manager * dqm,struct qcm_process_device * qpd)3206 int release_debug_trap_vmid(struct device_queue_manager *dqm,
3207 			struct qcm_process_device *qpd)
3208 {
3209 	struct device *dev = dqm->dev->adev->dev;
3210 	int r;
3211 	int updated_vmid_mask;
3212 	uint32_t trap_debug_vmid;
3213 
3214 	if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
3215 		dev_err(dev, "Unsupported on sched_policy: %i\n", dqm->sched_policy);
3216 		return -EINVAL;
3217 	}
3218 
3219 	dqm_lock(dqm);
3220 	trap_debug_vmid = dqm->trap_debug_vmid;
3221 	if (dqm->trap_debug_vmid == 0) {
3222 		dev_err(dev, "Trap debug id is not reserved\n");
3223 		r = -EINVAL;
3224 		goto out_unlock;
3225 	}
3226 
3227 	r = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0,
3228 			USE_DEFAULT_GRACE_PERIOD, false);
3229 	if (r)
3230 		goto out_unlock;
3231 
3232 	updated_vmid_mask = dqm->dev->kfd->shared_resources.compute_vmid_bitmap;
3233 	updated_vmid_mask |= (1 << dqm->dev->vm_info.last_vmid_kfd);
3234 
3235 	dqm->dev->kfd->shared_resources.compute_vmid_bitmap = updated_vmid_mask;
3236 	dqm->trap_debug_vmid = 0;
3237 	r = set_sched_resources(dqm);
3238 	if (r)
3239 		goto out_unlock;
3240 
3241 	r = map_queues_cpsch(dqm);
3242 	if (r)
3243 		goto out_unlock;
3244 
3245 	pr_debug("Released VMID for trap debug: %i\n", trap_debug_vmid);
3246 
3247 out_unlock:
3248 	dqm_unlock(dqm);
3249 	return r;
3250 }
3251 
3252 #define QUEUE_NOT_FOUND		-1
3253 /* invalidate queue operation in array */
q_array_invalidate(uint32_t num_queues,uint32_t * queue_ids)3254 static void q_array_invalidate(uint32_t num_queues, uint32_t *queue_ids)
3255 {
3256 	int i;
3257 
3258 	for (i = 0; i < num_queues; i++)
3259 		queue_ids[i] |= KFD_DBG_QUEUE_INVALID_MASK;
3260 }
3261 
3262 /* find queue index in array */
q_array_get_index(unsigned int queue_id,uint32_t num_queues,uint32_t * queue_ids)3263 static int q_array_get_index(unsigned int queue_id,
3264 		uint32_t num_queues,
3265 		uint32_t *queue_ids)
3266 {
3267 	int i;
3268 
3269 	for (i = 0; i < num_queues; i++)
3270 		if (queue_id == (queue_ids[i] & ~KFD_DBG_QUEUE_INVALID_MASK))
3271 			return i;
3272 
3273 	return QUEUE_NOT_FOUND;
3274 }
3275 
3276 struct copy_context_work_handler_workarea {
3277 	struct work_struct copy_context_work;
3278 	struct kfd_process *p;
3279 };
3280 
copy_context_work_handler(struct work_struct * work)3281 static void copy_context_work_handler(struct work_struct *work)
3282 {
3283 	struct copy_context_work_handler_workarea *workarea;
3284 	struct mqd_manager *mqd_mgr;
3285 	struct queue *q;
3286 	struct mm_struct *mm;
3287 	struct kfd_process *p;
3288 	uint32_t tmp_ctl_stack_used_size, tmp_save_area_used_size;
3289 	int i;
3290 
3291 	workarea = container_of(work,
3292 			struct copy_context_work_handler_workarea,
3293 			copy_context_work);
3294 
3295 	p = workarea->p;
3296 	mm = get_task_mm(p->lead_thread);
3297 
3298 	if (!mm)
3299 		return;
3300 
3301 	kthread_use_mm(mm);
3302 	for (i = 0; i < p->n_pdds; i++) {
3303 		struct kfd_process_device *pdd = p->pdds[i];
3304 		struct device_queue_manager *dqm = pdd->dev->dqm;
3305 		struct qcm_process_device *qpd = &pdd->qpd;
3306 
3307 		list_for_each_entry(q, &qpd->queues_list, list) {
3308 			if (q->properties.type != KFD_QUEUE_TYPE_COMPUTE)
3309 				continue;
3310 
3311 			mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_CP];
3312 
3313 			/* We ignore the return value from get_wave_state
3314 			 * because
3315 			 * i) right now, it always returns 0, and
3316 			 * ii) if we hit an error, we would continue to the
3317 			 *      next queue anyway.
3318 			 */
3319 			mqd_mgr->get_wave_state(mqd_mgr,
3320 					q->mqd,
3321 					&q->properties,
3322 					(void __user *)	q->properties.ctx_save_restore_area_address,
3323 					&tmp_ctl_stack_used_size,
3324 					&tmp_save_area_used_size);
3325 		}
3326 	}
3327 	kthread_unuse_mm(mm);
3328 	mmput(mm);
3329 }
3330 
get_queue_ids(uint32_t num_queues,uint32_t * usr_queue_id_array)3331 static uint32_t *get_queue_ids(uint32_t num_queues, uint32_t *usr_queue_id_array)
3332 {
3333 	size_t array_size = num_queues * sizeof(uint32_t);
3334 
3335 	if (!usr_queue_id_array)
3336 		return NULL;
3337 
3338 	return memdup_user(usr_queue_id_array, array_size);
3339 }
3340 
resume_queues(struct kfd_process * p,uint32_t num_queues,uint32_t * usr_queue_id_array)3341 int resume_queues(struct kfd_process *p,
3342 		uint32_t num_queues,
3343 		uint32_t *usr_queue_id_array)
3344 {
3345 	uint32_t *queue_ids = NULL;
3346 	int total_resumed = 0;
3347 	int i;
3348 
3349 	if (usr_queue_id_array) {
3350 		queue_ids = get_queue_ids(num_queues, usr_queue_id_array);
3351 
3352 		if (IS_ERR(queue_ids))
3353 			return PTR_ERR(queue_ids);
3354 
3355 		/* mask all queues as invalid.  unmask per successful request */
3356 		q_array_invalidate(num_queues, queue_ids);
3357 	}
3358 
3359 	for (i = 0; i < p->n_pdds; i++) {
3360 		struct kfd_process_device *pdd = p->pdds[i];
3361 		struct device_queue_manager *dqm = pdd->dev->dqm;
3362 		struct device *dev = dqm->dev->adev->dev;
3363 		struct qcm_process_device *qpd = &pdd->qpd;
3364 		struct queue *q;
3365 		int r, per_device_resumed = 0;
3366 
3367 		dqm_lock(dqm);
3368 
3369 		/* unmask queues that resume or already resumed as valid */
3370 		list_for_each_entry(q, &qpd->queues_list, list) {
3371 			int q_idx = QUEUE_NOT_FOUND;
3372 
3373 			if (queue_ids)
3374 				q_idx = q_array_get_index(
3375 						q->properties.queue_id,
3376 						num_queues,
3377 						queue_ids);
3378 
3379 			if (!queue_ids || q_idx != QUEUE_NOT_FOUND) {
3380 				int err = resume_single_queue(dqm, &pdd->qpd, q);
3381 
3382 				if (queue_ids) {
3383 					if (!err) {
3384 						queue_ids[q_idx] &=
3385 							~KFD_DBG_QUEUE_INVALID_MASK;
3386 					} else {
3387 						queue_ids[q_idx] |=
3388 							KFD_DBG_QUEUE_ERROR_MASK;
3389 						break;
3390 					}
3391 				}
3392 
3393 				if (dqm->dev->kfd->shared_resources.enable_mes) {
3394 					wake_up_all(&dqm->destroy_wait);
3395 					if (!err)
3396 						total_resumed++;
3397 				} else {
3398 					per_device_resumed++;
3399 				}
3400 			}
3401 		}
3402 
3403 		if (!per_device_resumed) {
3404 			dqm_unlock(dqm);
3405 			continue;
3406 		}
3407 
3408 		r = execute_queues_cpsch(dqm,
3409 					KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES,
3410 					0,
3411 					USE_DEFAULT_GRACE_PERIOD);
3412 		if (r) {
3413 			dev_err(dev, "Failed to resume process queues\n");
3414 			if (queue_ids) {
3415 				list_for_each_entry(q, &qpd->queues_list, list) {
3416 					int q_idx = q_array_get_index(
3417 							q->properties.queue_id,
3418 							num_queues,
3419 							queue_ids);
3420 
3421 					/* mask queue as error on resume fail */
3422 					if (q_idx != QUEUE_NOT_FOUND)
3423 						queue_ids[q_idx] |=
3424 							KFD_DBG_QUEUE_ERROR_MASK;
3425 				}
3426 			}
3427 		} else {
3428 			wake_up_all(&dqm->destroy_wait);
3429 			total_resumed += per_device_resumed;
3430 		}
3431 
3432 		dqm_unlock(dqm);
3433 	}
3434 
3435 	if (queue_ids) {
3436 		if (copy_to_user((void __user *)usr_queue_id_array, queue_ids,
3437 				num_queues * sizeof(uint32_t)))
3438 			pr_err("copy_to_user failed on queue resume\n");
3439 
3440 		kfree(queue_ids);
3441 	}
3442 
3443 	return total_resumed;
3444 }
3445 
suspend_queues(struct kfd_process * p,uint32_t num_queues,uint32_t grace_period,uint64_t exception_clear_mask,uint32_t * usr_queue_id_array)3446 int suspend_queues(struct kfd_process *p,
3447 			uint32_t num_queues,
3448 			uint32_t grace_period,
3449 			uint64_t exception_clear_mask,
3450 			uint32_t *usr_queue_id_array)
3451 {
3452 	uint32_t *queue_ids = get_queue_ids(num_queues, usr_queue_id_array);
3453 	int total_suspended = 0;
3454 	int i;
3455 
3456 	if (IS_ERR(queue_ids))
3457 		return PTR_ERR(queue_ids);
3458 
3459 	/* mask all queues as invalid.  umask on successful request */
3460 	q_array_invalidate(num_queues, queue_ids);
3461 
3462 	for (i = 0; i < p->n_pdds; i++) {
3463 		struct kfd_process_device *pdd = p->pdds[i];
3464 		struct device_queue_manager *dqm = pdd->dev->dqm;
3465 		struct device *dev = dqm->dev->adev->dev;
3466 		struct qcm_process_device *qpd = &pdd->qpd;
3467 		struct queue *q;
3468 		int r, per_device_suspended = 0;
3469 
3470 		mutex_lock(&p->event_mutex);
3471 		dqm_lock(dqm);
3472 
3473 		/* unmask queues that suspend or already suspended */
3474 		list_for_each_entry(q, &qpd->queues_list, list) {
3475 			int q_idx = q_array_get_index(q->properties.queue_id,
3476 							num_queues,
3477 							queue_ids);
3478 
3479 			if (q_idx != QUEUE_NOT_FOUND) {
3480 				int err = suspend_single_queue(dqm, pdd, q);
3481 				bool is_mes = dqm->dev->kfd->shared_resources.enable_mes;
3482 
3483 				if (!err) {
3484 					queue_ids[q_idx] &= ~KFD_DBG_QUEUE_INVALID_MASK;
3485 					if (exception_clear_mask && is_mes)
3486 						q->properties.exception_status &=
3487 							~exception_clear_mask;
3488 
3489 					if (is_mes)
3490 						total_suspended++;
3491 					else
3492 						per_device_suspended++;
3493 				} else if (err != -EBUSY) {
3494 					r = err;
3495 					queue_ids[q_idx] |= KFD_DBG_QUEUE_ERROR_MASK;
3496 					break;
3497 				}
3498 			}
3499 		}
3500 
3501 		if (!per_device_suspended) {
3502 			dqm_unlock(dqm);
3503 			mutex_unlock(&p->event_mutex);
3504 			if (total_suspended)
3505 				amdgpu_amdkfd_debug_mem_fence(dqm->dev->adev);
3506 			continue;
3507 		}
3508 
3509 		r = execute_queues_cpsch(dqm,
3510 			KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0,
3511 			grace_period);
3512 
3513 		if (r)
3514 			dev_err(dev, "Failed to suspend process queues.\n");
3515 		else
3516 			total_suspended += per_device_suspended;
3517 
3518 		list_for_each_entry(q, &qpd->queues_list, list) {
3519 			int q_idx = q_array_get_index(q->properties.queue_id,
3520 						num_queues, queue_ids);
3521 
3522 			if (q_idx == QUEUE_NOT_FOUND)
3523 				continue;
3524 
3525 			/* mask queue as error on suspend fail */
3526 			if (r)
3527 				queue_ids[q_idx] |= KFD_DBG_QUEUE_ERROR_MASK;
3528 			else if (exception_clear_mask)
3529 				q->properties.exception_status &=
3530 							~exception_clear_mask;
3531 		}
3532 
3533 		dqm_unlock(dqm);
3534 		mutex_unlock(&p->event_mutex);
3535 		amdgpu_device_flush_hdp(dqm->dev->adev, NULL);
3536 	}
3537 
3538 	if (total_suspended) {
3539 		struct copy_context_work_handler_workarea copy_context_worker;
3540 
3541 		INIT_WORK_ONSTACK(
3542 				&copy_context_worker.copy_context_work,
3543 				copy_context_work_handler);
3544 
3545 		copy_context_worker.p = p;
3546 
3547 		schedule_work(&copy_context_worker.copy_context_work);
3548 
3549 
3550 		flush_work(&copy_context_worker.copy_context_work);
3551 		destroy_work_on_stack(&copy_context_worker.copy_context_work);
3552 	}
3553 
3554 	if (copy_to_user((void __user *)usr_queue_id_array, queue_ids,
3555 			num_queues * sizeof(uint32_t)))
3556 		pr_err("copy_to_user failed on queue suspend\n");
3557 
3558 	kfree(queue_ids);
3559 
3560 	return total_suspended;
3561 }
3562 
set_queue_type_for_user(struct queue_properties * q_props)3563 static uint32_t set_queue_type_for_user(struct queue_properties *q_props)
3564 {
3565 	switch (q_props->type) {
3566 	case KFD_QUEUE_TYPE_COMPUTE:
3567 		return q_props->format == KFD_QUEUE_FORMAT_PM4
3568 					? KFD_IOC_QUEUE_TYPE_COMPUTE
3569 					: KFD_IOC_QUEUE_TYPE_COMPUTE_AQL;
3570 	case KFD_QUEUE_TYPE_SDMA:
3571 		return KFD_IOC_QUEUE_TYPE_SDMA;
3572 	case KFD_QUEUE_TYPE_SDMA_XGMI:
3573 		return KFD_IOC_QUEUE_TYPE_SDMA_XGMI;
3574 	default:
3575 		WARN_ONCE(true, "queue type not recognized!");
3576 		return 0xffffffff;
3577 	};
3578 }
3579 
set_queue_snapshot_entry(struct queue * q,uint64_t exception_clear_mask,struct kfd_queue_snapshot_entry * qss_entry)3580 void set_queue_snapshot_entry(struct queue *q,
3581 			      uint64_t exception_clear_mask,
3582 			      struct kfd_queue_snapshot_entry *qss_entry)
3583 {
3584 	qss_entry->ring_base_address = q->properties.queue_address;
3585 	qss_entry->write_pointer_address = (uint64_t)q->properties.write_ptr;
3586 	qss_entry->read_pointer_address = (uint64_t)q->properties.read_ptr;
3587 	qss_entry->ctx_save_restore_address =
3588 				q->properties.ctx_save_restore_area_address;
3589 	qss_entry->ctx_save_restore_area_size =
3590 				q->properties.ctx_save_restore_area_size;
3591 	qss_entry->exception_status = q->properties.exception_status;
3592 	qss_entry->queue_id = q->properties.queue_id;
3593 	qss_entry->gpu_id = q->device->id;
3594 	qss_entry->ring_size = (uint32_t)q->properties.queue_size;
3595 	qss_entry->queue_type = set_queue_type_for_user(&q->properties);
3596 	q->properties.exception_status &= ~exception_clear_mask;
3597 }
3598 
debug_lock_and_unmap(struct device_queue_manager * dqm)3599 int debug_lock_and_unmap(struct device_queue_manager *dqm)
3600 {
3601 	struct device *dev = dqm->dev->adev->dev;
3602 	int r;
3603 
3604 	if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
3605 		dev_err(dev, "Unsupported on sched_policy: %i\n", dqm->sched_policy);
3606 		return -EINVAL;
3607 	}
3608 
3609 	if (!kfd_dbg_is_per_vmid_supported(dqm->dev))
3610 		return 0;
3611 
3612 	dqm_lock(dqm);
3613 
3614 	r = unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0, 0, false);
3615 	if (r)
3616 		dqm_unlock(dqm);
3617 
3618 	return r;
3619 }
3620 
debug_map_and_unlock(struct device_queue_manager * dqm)3621 int debug_map_and_unlock(struct device_queue_manager *dqm)
3622 {
3623 	struct device *dev = dqm->dev->adev->dev;
3624 	int r;
3625 
3626 	if (dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
3627 		dev_err(dev, "Unsupported on sched_policy: %i\n", dqm->sched_policy);
3628 		return -EINVAL;
3629 	}
3630 
3631 	if (!kfd_dbg_is_per_vmid_supported(dqm->dev))
3632 		return 0;
3633 
3634 	r = map_queues_cpsch(dqm);
3635 
3636 	dqm_unlock(dqm);
3637 
3638 	return r;
3639 }
3640 
debug_refresh_runlist(struct device_queue_manager * dqm)3641 int debug_refresh_runlist(struct device_queue_manager *dqm)
3642 {
3643 	int r = debug_lock_and_unmap(dqm);
3644 
3645 	if (r)
3646 		return r;
3647 
3648 	return debug_map_and_unlock(dqm);
3649 }
3650 
kfd_dqm_is_queue_in_process(struct device_queue_manager * dqm,struct qcm_process_device * qpd,int doorbell_off,u32 * queue_format)3651 bool kfd_dqm_is_queue_in_process(struct device_queue_manager *dqm,
3652 				 struct qcm_process_device *qpd,
3653 				 int doorbell_off, u32 *queue_format)
3654 {
3655 	struct queue *q;
3656 	bool r = false;
3657 
3658 	if (!queue_format)
3659 		return r;
3660 
3661 	dqm_lock(dqm);
3662 
3663 	list_for_each_entry(q, &qpd->queues_list, list) {
3664 		if (q->properties.doorbell_off == doorbell_off) {
3665 			*queue_format = q->properties.format;
3666 			r = true;
3667 			goto out;
3668 		}
3669 	}
3670 
3671 out:
3672 	dqm_unlock(dqm);
3673 	return r;
3674 }
3675 #if defined(CONFIG_DEBUG_FS)
3676 
seq_reg_dump(struct seq_file * m,uint32_t (* dump)[2],uint32_t n_regs)3677 static void seq_reg_dump(struct seq_file *m,
3678 			 uint32_t (*dump)[2], uint32_t n_regs)
3679 {
3680 	uint32_t i, count;
3681 
3682 	for (i = 0, count = 0; i < n_regs; i++) {
3683 		if (count == 0 ||
3684 		    dump[i-1][0] + sizeof(uint32_t) != dump[i][0]) {
3685 			seq_printf(m, "%s    %08x: %08x",
3686 				   i ? "\n" : "",
3687 				   dump[i][0], dump[i][1]);
3688 			count = 7;
3689 		} else {
3690 			seq_printf(m, " %08x", dump[i][1]);
3691 			count--;
3692 		}
3693 	}
3694 
3695 	seq_puts(m, "\n");
3696 }
3697 
dqm_debugfs_hqds(struct seq_file * m,void * data)3698 int dqm_debugfs_hqds(struct seq_file *m, void *data)
3699 {
3700 	struct device_queue_manager *dqm = data;
3701 	uint32_t xcc_mask = dqm->dev->xcc_mask;
3702 	uint32_t (*dump)[2], n_regs;
3703 	int pipe, queue;
3704 	int r = 0, xcc_id;
3705 	uint32_t sdma_engine_start;
3706 
3707 	if (!dqm->sched_running) {
3708 		seq_puts(m, " Device is stopped\n");
3709 		return 0;
3710 	}
3711 
3712 	for_each_inst(xcc_id, xcc_mask) {
3713 		r = dqm->dev->kfd2kgd->hqd_dump(dqm->dev->adev,
3714 						KFD_CIK_HIQ_PIPE,
3715 						KFD_CIK_HIQ_QUEUE, &dump,
3716 						&n_regs, xcc_id);
3717 		if (!r) {
3718 			seq_printf(
3719 				m,
3720 				"   Inst %d, HIQ on MEC %d Pipe %d Queue %d\n",
3721 				xcc_id,
3722 				KFD_CIK_HIQ_PIPE / get_pipes_per_mec(dqm) + 1,
3723 				KFD_CIK_HIQ_PIPE % get_pipes_per_mec(dqm),
3724 				KFD_CIK_HIQ_QUEUE);
3725 			seq_reg_dump(m, dump, n_regs);
3726 
3727 			kfree(dump);
3728 		}
3729 
3730 		for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) {
3731 			int pipe_offset = pipe * get_queues_per_pipe(dqm);
3732 
3733 			for (queue = 0; queue < get_queues_per_pipe(dqm); queue++) {
3734 				if (!test_bit(pipe_offset + queue,
3735 				      dqm->dev->kfd->shared_resources.cp_queue_bitmap))
3736 					continue;
3737 
3738 				r = dqm->dev->kfd2kgd->hqd_dump(dqm->dev->adev,
3739 								pipe, queue,
3740 								&dump, &n_regs,
3741 								xcc_id);
3742 				if (r)
3743 					break;
3744 
3745 				seq_printf(m,
3746 					   " Inst %d,  CP Pipe %d, Queue %d\n",
3747 					   xcc_id, pipe, queue);
3748 				seq_reg_dump(m, dump, n_regs);
3749 
3750 				kfree(dump);
3751 			}
3752 		}
3753 	}
3754 
3755 	sdma_engine_start = dqm->dev->node_id * get_num_all_sdma_engines(dqm);
3756 	for (pipe = sdma_engine_start;
3757 	     pipe < (sdma_engine_start + get_num_all_sdma_engines(dqm));
3758 	     pipe++) {
3759 		for (queue = 0;
3760 		     queue < dqm->dev->kfd->device_info.num_sdma_queues_per_engine;
3761 		     queue++) {
3762 			r = dqm->dev->kfd2kgd->hqd_sdma_dump(
3763 				dqm->dev->adev, pipe, queue, &dump, &n_regs);
3764 			if (r)
3765 				break;
3766 
3767 			seq_printf(m, "  SDMA Engine %d, RLC %d\n",
3768 				  pipe, queue);
3769 			seq_reg_dump(m, dump, n_regs);
3770 
3771 			kfree(dump);
3772 		}
3773 	}
3774 
3775 	return r;
3776 }
3777 
dqm_debugfs_hang_hws(struct device_queue_manager * dqm)3778 int dqm_debugfs_hang_hws(struct device_queue_manager *dqm)
3779 {
3780 	int r = 0;
3781 
3782 	dqm_lock(dqm);
3783 	r = pm_debugfs_hang_hws(&dqm->packet_mgr);
3784 	if (r) {
3785 		dqm_unlock(dqm);
3786 		return r;
3787 	}
3788 	dqm->active_runlist = true;
3789 	r = execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES,
3790 				0, USE_DEFAULT_GRACE_PERIOD);
3791 	dqm_unlock(dqm);
3792 
3793 	return r;
3794 }
3795 
3796 #endif
3797