1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Resource Director Technology (RDT)
4  *
5  * Pseudo-locking support built on top of Cache Allocation Technology (CAT)
6  *
7  * Copyright (C) 2018 Intel Corporation
8  *
9  * Author: Reinette Chatre <reinette.chatre@intel.com>
10  */
11 
12 #define pr_fmt(fmt)	KBUILD_MODNAME ": " fmt
13 
14 #include <linux/cpu.h>
15 #include <linux/cpumask.h>
16 #include <linux/debugfs.h>
17 #include <linux/kthread.h>
18 #include <linux/mman.h>
19 #include <linux/perf_event.h>
20 #include <linux/pm_qos.h>
21 #include <linux/slab.h>
22 #include <linux/uaccess.h>
23 
24 #include <asm/cacheflush.h>
25 #include <asm/cpu_device_id.h>
26 #include <asm/resctrl.h>
27 #include <asm/perf_event.h>
28 
29 #include "../../events/perf_event.h" /* For X86_CONFIG() */
30 #include "internal.h"
31 
32 #define CREATE_TRACE_POINTS
33 #include "trace.h"
34 
35 /*
36  * The bits needed to disable hardware prefetching varies based on the
37  * platform. During initialization we will discover which bits to use.
38  */
39 static u64 prefetch_disable_bits;
40 
41 /*
42  * Major number assigned to and shared by all devices exposing
43  * pseudo-locked regions.
44  */
45 static unsigned int pseudo_lock_major;
46 static unsigned long pseudo_lock_minor_avail = GENMASK(MINORBITS, 0);
47 
pseudo_lock_devnode(const struct device * dev,umode_t * mode)48 static char *pseudo_lock_devnode(const struct device *dev, umode_t *mode)
49 {
50 	const struct rdtgroup *rdtgrp;
51 
52 	rdtgrp = dev_get_drvdata(dev);
53 	if (mode)
54 		*mode = 0600;
55 	guard(mutex)(&rdtgroup_mutex);
56 	return kasprintf(GFP_KERNEL, "pseudo_lock/%s", rdt_kn_name(rdtgrp->kn));
57 }
58 
59 static const struct class pseudo_lock_class = {
60 	.name = "pseudo_lock",
61 	.devnode = pseudo_lock_devnode,
62 };
63 
64 /**
65  * resctrl_arch_get_prefetch_disable_bits - prefetch disable bits of supported
66  *                                          platforms
67  * @void: It takes no parameters.
68  *
69  * Capture the list of platforms that have been validated to support
70  * pseudo-locking. This includes testing to ensure pseudo-locked regions
71  * with low cache miss rates can be created under variety of load conditions
72  * as well as that these pseudo-locked regions can maintain their low cache
73  * miss rates under variety of load conditions for significant lengths of time.
74  *
75  * After a platform has been validated to support pseudo-locking its
76  * hardware prefetch disable bits are included here as they are documented
77  * in the SDM.
78  *
79  * When adding a platform here also add support for its cache events to
80  * resctrl_arch_measure_l*_residency()
81  *
82  * Return:
83  * If platform is supported, the bits to disable hardware prefetchers, 0
84  * if platform is not supported.
85  */
resctrl_arch_get_prefetch_disable_bits(void)86 u64 resctrl_arch_get_prefetch_disable_bits(void)
87 {
88 	prefetch_disable_bits = 0;
89 
90 	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL ||
91 	    boot_cpu_data.x86 != 6)
92 		return 0;
93 
94 	switch (boot_cpu_data.x86_vfm) {
95 	case INTEL_BROADWELL_X:
96 		/*
97 		 * SDM defines bits of MSR_MISC_FEATURE_CONTROL register
98 		 * as:
99 		 * 0    L2 Hardware Prefetcher Disable (R/W)
100 		 * 1    L2 Adjacent Cache Line Prefetcher Disable (R/W)
101 		 * 2    DCU Hardware Prefetcher Disable (R/W)
102 		 * 3    DCU IP Prefetcher Disable (R/W)
103 		 * 63:4 Reserved
104 		 */
105 		prefetch_disable_bits = 0xF;
106 		break;
107 	case INTEL_ATOM_GOLDMONT:
108 	case INTEL_ATOM_GOLDMONT_PLUS:
109 		/*
110 		 * SDM defines bits of MSR_MISC_FEATURE_CONTROL register
111 		 * as:
112 		 * 0     L2 Hardware Prefetcher Disable (R/W)
113 		 * 1     Reserved
114 		 * 2     DCU Hardware Prefetcher Disable (R/W)
115 		 * 63:3  Reserved
116 		 */
117 		prefetch_disable_bits = 0x5;
118 		break;
119 	}
120 
121 	return prefetch_disable_bits;
122 }
123 
124 /**
125  * pseudo_lock_minor_get - Obtain available minor number
126  * @minor: Pointer to where new minor number will be stored
127  *
128  * A bitmask is used to track available minor numbers. Here the next free
129  * minor number is marked as unavailable and returned.
130  *
131  * Return: 0 on success, <0 on failure.
132  */
pseudo_lock_minor_get(unsigned int * minor)133 static int pseudo_lock_minor_get(unsigned int *minor)
134 {
135 	unsigned long first_bit;
136 
137 	first_bit = find_first_bit(&pseudo_lock_minor_avail, MINORBITS);
138 
139 	if (first_bit == MINORBITS)
140 		return -ENOSPC;
141 
142 	__clear_bit(first_bit, &pseudo_lock_minor_avail);
143 	*minor = first_bit;
144 
145 	return 0;
146 }
147 
148 /**
149  * pseudo_lock_minor_release - Return minor number to available
150  * @minor: The minor number made available
151  */
pseudo_lock_minor_release(unsigned int minor)152 static void pseudo_lock_minor_release(unsigned int minor)
153 {
154 	__set_bit(minor, &pseudo_lock_minor_avail);
155 }
156 
157 /**
158  * region_find_by_minor - Locate a pseudo-lock region by inode minor number
159  * @minor: The minor number of the device representing pseudo-locked region
160  *
161  * When the character device is accessed we need to determine which
162  * pseudo-locked region it belongs to. This is done by matching the minor
163  * number of the device to the pseudo-locked region it belongs.
164  *
165  * Minor numbers are assigned at the time a pseudo-locked region is associated
166  * with a cache instance.
167  *
168  * Return: On success return pointer to resource group owning the pseudo-locked
169  *         region, NULL on failure.
170  */
region_find_by_minor(unsigned int minor)171 static struct rdtgroup *region_find_by_minor(unsigned int minor)
172 {
173 	struct rdtgroup *rdtgrp, *rdtgrp_match = NULL;
174 
175 	list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) {
176 		if (rdtgrp->plr && rdtgrp->plr->minor == minor) {
177 			rdtgrp_match = rdtgrp;
178 			break;
179 		}
180 	}
181 	return rdtgrp_match;
182 }
183 
184 /**
185  * struct pseudo_lock_pm_req - A power management QoS request list entry
186  * @list:	Entry within the @pm_reqs list for a pseudo-locked region
187  * @req:	PM QoS request
188  */
189 struct pseudo_lock_pm_req {
190 	struct list_head list;
191 	struct dev_pm_qos_request req;
192 };
193 
pseudo_lock_cstates_relax(struct pseudo_lock_region * plr)194 static void pseudo_lock_cstates_relax(struct pseudo_lock_region *plr)
195 {
196 	struct pseudo_lock_pm_req *pm_req, *next;
197 
198 	list_for_each_entry_safe(pm_req, next, &plr->pm_reqs, list) {
199 		dev_pm_qos_remove_request(&pm_req->req);
200 		list_del(&pm_req->list);
201 		kfree(pm_req);
202 	}
203 }
204 
205 /**
206  * pseudo_lock_cstates_constrain - Restrict cores from entering C6
207  * @plr: Pseudo-locked region
208  *
209  * To prevent the cache from being affected by power management entering
210  * C6 has to be avoided. This is accomplished by requesting a latency
211  * requirement lower than lowest C6 exit latency of all supported
212  * platforms as found in the cpuidle state tables in the intel_idle driver.
213  * At this time it is possible to do so with a single latency requirement
214  * for all supported platforms.
215  *
216  * Since Goldmont is supported, which is affected by X86_BUG_MONITOR,
217  * the ACPI latencies need to be considered while keeping in mind that C2
218  * may be set to map to deeper sleep states. In this case the latency
219  * requirement needs to prevent entering C2 also.
220  *
221  * Return: 0 on success, <0 on failure
222  */
pseudo_lock_cstates_constrain(struct pseudo_lock_region * plr)223 static int pseudo_lock_cstates_constrain(struct pseudo_lock_region *plr)
224 {
225 	struct pseudo_lock_pm_req *pm_req;
226 	int cpu;
227 	int ret;
228 
229 	for_each_cpu(cpu, &plr->d->hdr.cpu_mask) {
230 		pm_req = kzalloc(sizeof(*pm_req), GFP_KERNEL);
231 		if (!pm_req) {
232 			rdt_last_cmd_puts("Failure to allocate memory for PM QoS\n");
233 			ret = -ENOMEM;
234 			goto out_err;
235 		}
236 		ret = dev_pm_qos_add_request(get_cpu_device(cpu),
237 					     &pm_req->req,
238 					     DEV_PM_QOS_RESUME_LATENCY,
239 					     30);
240 		if (ret < 0) {
241 			rdt_last_cmd_printf("Failed to add latency req CPU%d\n",
242 					    cpu);
243 			kfree(pm_req);
244 			ret = -1;
245 			goto out_err;
246 		}
247 		list_add(&pm_req->list, &plr->pm_reqs);
248 	}
249 
250 	return 0;
251 
252 out_err:
253 	pseudo_lock_cstates_relax(plr);
254 	return ret;
255 }
256 
257 /**
258  * pseudo_lock_region_clear - Reset pseudo-lock region data
259  * @plr: pseudo-lock region
260  *
261  * All content of the pseudo-locked region is reset - any memory allocated
262  * freed.
263  *
264  * Return: void
265  */
pseudo_lock_region_clear(struct pseudo_lock_region * plr)266 static void pseudo_lock_region_clear(struct pseudo_lock_region *plr)
267 {
268 	plr->size = 0;
269 	plr->line_size = 0;
270 	kfree(plr->kmem);
271 	plr->kmem = NULL;
272 	plr->s = NULL;
273 	if (plr->d)
274 		plr->d->plr = NULL;
275 	plr->d = NULL;
276 	plr->cbm = 0;
277 	plr->debugfs_dir = NULL;
278 }
279 
280 /**
281  * pseudo_lock_region_init - Initialize pseudo-lock region information
282  * @plr: pseudo-lock region
283  *
284  * Called after user provided a schemata to be pseudo-locked. From the
285  * schemata the &struct pseudo_lock_region is on entry already initialized
286  * with the resource, domain, and capacity bitmask. Here the information
287  * required for pseudo-locking is deduced from this data and &struct
288  * pseudo_lock_region initialized further. This information includes:
289  * - size in bytes of the region to be pseudo-locked
290  * - cache line size to know the stride with which data needs to be accessed
291  *   to be pseudo-locked
292  * - a cpu associated with the cache instance on which the pseudo-locking
293  *   flow can be executed
294  *
295  * Return: 0 on success, <0 on failure. Descriptive error will be written
296  * to last_cmd_status buffer.
297  */
pseudo_lock_region_init(struct pseudo_lock_region * plr)298 static int pseudo_lock_region_init(struct pseudo_lock_region *plr)
299 {
300 	enum resctrl_scope scope = plr->s->res->ctrl_scope;
301 	struct cacheinfo *ci;
302 	int ret;
303 
304 	if (WARN_ON_ONCE(scope != RESCTRL_L2_CACHE && scope != RESCTRL_L3_CACHE))
305 		return -ENODEV;
306 
307 	/* Pick the first cpu we find that is associated with the cache. */
308 	plr->cpu = cpumask_first(&plr->d->hdr.cpu_mask);
309 
310 	if (!cpu_online(plr->cpu)) {
311 		rdt_last_cmd_printf("CPU %u associated with cache not online\n",
312 				    plr->cpu);
313 		ret = -ENODEV;
314 		goto out_region;
315 	}
316 
317 	ci = get_cpu_cacheinfo_level(plr->cpu, scope);
318 	if (ci) {
319 		plr->line_size = ci->coherency_line_size;
320 		plr->size = rdtgroup_cbm_to_size(plr->s->res, plr->d, plr->cbm);
321 		return 0;
322 	}
323 
324 	ret = -1;
325 	rdt_last_cmd_puts("Unable to determine cache line size\n");
326 out_region:
327 	pseudo_lock_region_clear(plr);
328 	return ret;
329 }
330 
331 /**
332  * pseudo_lock_init - Initialize a pseudo-lock region
333  * @rdtgrp: resource group to which new pseudo-locked region will belong
334  *
335  * A pseudo-locked region is associated with a resource group. When this
336  * association is created the pseudo-locked region is initialized. The
337  * details of the pseudo-locked region are not known at this time so only
338  * allocation is done and association established.
339  *
340  * Return: 0 on success, <0 on failure
341  */
pseudo_lock_init(struct rdtgroup * rdtgrp)342 static int pseudo_lock_init(struct rdtgroup *rdtgrp)
343 {
344 	struct pseudo_lock_region *plr;
345 
346 	plr = kzalloc(sizeof(*plr), GFP_KERNEL);
347 	if (!plr)
348 		return -ENOMEM;
349 
350 	init_waitqueue_head(&plr->lock_thread_wq);
351 	INIT_LIST_HEAD(&plr->pm_reqs);
352 	rdtgrp->plr = plr;
353 	return 0;
354 }
355 
356 /**
357  * pseudo_lock_region_alloc - Allocate kernel memory that will be pseudo-locked
358  * @plr: pseudo-lock region
359  *
360  * Initialize the details required to set up the pseudo-locked region and
361  * allocate the contiguous memory that will be pseudo-locked to the cache.
362  *
363  * Return: 0 on success, <0 on failure.  Descriptive error will be written
364  * to last_cmd_status buffer.
365  */
pseudo_lock_region_alloc(struct pseudo_lock_region * plr)366 static int pseudo_lock_region_alloc(struct pseudo_lock_region *plr)
367 {
368 	int ret;
369 
370 	ret = pseudo_lock_region_init(plr);
371 	if (ret < 0)
372 		return ret;
373 
374 	/*
375 	 * We do not yet support contiguous regions larger than
376 	 * KMALLOC_MAX_SIZE.
377 	 */
378 	if (plr->size > KMALLOC_MAX_SIZE) {
379 		rdt_last_cmd_puts("Requested region exceeds maximum size\n");
380 		ret = -E2BIG;
381 		goto out_region;
382 	}
383 
384 	plr->kmem = kzalloc(plr->size, GFP_KERNEL);
385 	if (!plr->kmem) {
386 		rdt_last_cmd_puts("Unable to allocate memory\n");
387 		ret = -ENOMEM;
388 		goto out_region;
389 	}
390 
391 	ret = 0;
392 	goto out;
393 out_region:
394 	pseudo_lock_region_clear(plr);
395 out:
396 	return ret;
397 }
398 
399 /**
400  * pseudo_lock_free - Free a pseudo-locked region
401  * @rdtgrp: resource group to which pseudo-locked region belonged
402  *
403  * The pseudo-locked region's resources have already been released, or not
404  * yet created at this point. Now it can be freed and disassociated from the
405  * resource group.
406  *
407  * Return: void
408  */
pseudo_lock_free(struct rdtgroup * rdtgrp)409 static void pseudo_lock_free(struct rdtgroup *rdtgrp)
410 {
411 	pseudo_lock_region_clear(rdtgrp->plr);
412 	kfree(rdtgrp->plr);
413 	rdtgrp->plr = NULL;
414 }
415 
416 /**
417  * resctrl_arch_pseudo_lock_fn - Load kernel memory into cache
418  * @_plr: the pseudo-lock region descriptor
419  *
420  * This is the core pseudo-locking flow.
421  *
422  * First we ensure that the kernel memory cannot be found in the cache.
423  * Then, while taking care that there will be as little interference as
424  * possible, the memory to be loaded is accessed while core is running
425  * with class of service set to the bitmask of the pseudo-locked region.
426  * After this is complete no future CAT allocations will be allowed to
427  * overlap with this bitmask.
428  *
429  * Local register variables are utilized to ensure that the memory region
430  * to be locked is the only memory access made during the critical locking
431  * loop.
432  *
433  * Return: 0. Waiter on waitqueue will be woken on completion.
434  */
resctrl_arch_pseudo_lock_fn(void * _plr)435 int resctrl_arch_pseudo_lock_fn(void *_plr)
436 {
437 	struct pseudo_lock_region *plr = _plr;
438 	u32 rmid_p, closid_p;
439 	unsigned long i;
440 	u64 saved_msr;
441 #ifdef CONFIG_KASAN
442 	/*
443 	 * The registers used for local register variables are also used
444 	 * when KASAN is active. When KASAN is active we use a regular
445 	 * variable to ensure we always use a valid pointer, but the cost
446 	 * is that this variable will enter the cache through evicting the
447 	 * memory we are trying to lock into the cache. Thus expect lower
448 	 * pseudo-locking success rate when KASAN is active.
449 	 */
450 	unsigned int line_size;
451 	unsigned int size;
452 	void *mem_r;
453 #else
454 	register unsigned int line_size asm("esi");
455 	register unsigned int size asm("edi");
456 	register void *mem_r asm(_ASM_BX);
457 #endif /* CONFIG_KASAN */
458 
459 	/*
460 	 * Make sure none of the allocated memory is cached. If it is we
461 	 * will get a cache hit in below loop from outside of pseudo-locked
462 	 * region.
463 	 * wbinvd (as opposed to clflush/clflushopt) is required to
464 	 * increase likelihood that allocated cache portion will be filled
465 	 * with associated memory.
466 	 */
467 	wbinvd();
468 
469 	/*
470 	 * Always called with interrupts enabled. By disabling interrupts
471 	 * ensure that we will not be preempted during this critical section.
472 	 */
473 	local_irq_disable();
474 
475 	/*
476 	 * Call wrmsr and rdmsr as directly as possible to avoid tracing
477 	 * clobbering local register variables or affecting cache accesses.
478 	 *
479 	 * Disable the hardware prefetcher so that when the end of the memory
480 	 * being pseudo-locked is reached the hardware will not read beyond
481 	 * the buffer and evict pseudo-locked memory read earlier from the
482 	 * cache.
483 	 */
484 	saved_msr = __rdmsr(MSR_MISC_FEATURE_CONTROL);
485 	__wrmsr(MSR_MISC_FEATURE_CONTROL, prefetch_disable_bits, 0x0);
486 	closid_p = this_cpu_read(pqr_state.cur_closid);
487 	rmid_p = this_cpu_read(pqr_state.cur_rmid);
488 	mem_r = plr->kmem;
489 	size = plr->size;
490 	line_size = plr->line_size;
491 	/*
492 	 * Critical section begin: start by writing the closid associated
493 	 * with the capacity bitmask of the cache region being
494 	 * pseudo-locked followed by reading of kernel memory to load it
495 	 * into the cache.
496 	 */
497 	__wrmsr(MSR_IA32_PQR_ASSOC, rmid_p, plr->closid);
498 
499 	/*
500 	 * Cache was flushed earlier. Now access kernel memory to read it
501 	 * into cache region associated with just activated plr->closid.
502 	 * Loop over data twice:
503 	 * - In first loop the cache region is shared with the page walker
504 	 *   as it populates the paging structure caches (including TLB).
505 	 * - In the second loop the paging structure caches are used and
506 	 *   cache region is populated with the memory being referenced.
507 	 */
508 	for (i = 0; i < size; i += PAGE_SIZE) {
509 		/*
510 		 * Add a barrier to prevent speculative execution of this
511 		 * loop reading beyond the end of the buffer.
512 		 */
513 		rmb();
514 		asm volatile("mov (%0,%1,1), %%eax\n\t"
515 			:
516 			: "r" (mem_r), "r" (i)
517 			: "%eax", "memory");
518 	}
519 	for (i = 0; i < size; i += line_size) {
520 		/*
521 		 * Add a barrier to prevent speculative execution of this
522 		 * loop reading beyond the end of the buffer.
523 		 */
524 		rmb();
525 		asm volatile("mov (%0,%1,1), %%eax\n\t"
526 			:
527 			: "r" (mem_r), "r" (i)
528 			: "%eax", "memory");
529 	}
530 	/*
531 	 * Critical section end: restore closid with capacity bitmask that
532 	 * does not overlap with pseudo-locked region.
533 	 */
534 	__wrmsr(MSR_IA32_PQR_ASSOC, rmid_p, closid_p);
535 
536 	/* Re-enable the hardware prefetcher(s) */
537 	wrmsrl(MSR_MISC_FEATURE_CONTROL, saved_msr);
538 	local_irq_enable();
539 
540 	plr->thread_done = 1;
541 	wake_up_interruptible(&plr->lock_thread_wq);
542 	return 0;
543 }
544 
545 /**
546  * rdtgroup_monitor_in_progress - Test if monitoring in progress
547  * @rdtgrp: resource group being queried
548  *
549  * Return: 1 if monitor groups have been created for this resource
550  * group, 0 otherwise.
551  */
rdtgroup_monitor_in_progress(struct rdtgroup * rdtgrp)552 static int rdtgroup_monitor_in_progress(struct rdtgroup *rdtgrp)
553 {
554 	return !list_empty(&rdtgrp->mon.crdtgrp_list);
555 }
556 
557 /**
558  * rdtgroup_locksetup_user_restrict - Restrict user access to group
559  * @rdtgrp: resource group needing access restricted
560  *
561  * A resource group used for cache pseudo-locking cannot have cpus or tasks
562  * assigned to it. This is communicated to the user by restricting access
563  * to all the files that can be used to make such changes.
564  *
565  * Permissions restored with rdtgroup_locksetup_user_restore()
566  *
567  * Return: 0 on success, <0 on failure. If a failure occurs during the
568  * restriction of access an attempt will be made to restore permissions but
569  * the state of the mode of these files will be uncertain when a failure
570  * occurs.
571  */
rdtgroup_locksetup_user_restrict(struct rdtgroup * rdtgrp)572 static int rdtgroup_locksetup_user_restrict(struct rdtgroup *rdtgrp)
573 {
574 	int ret;
575 
576 	ret = rdtgroup_kn_mode_restrict(rdtgrp, "tasks");
577 	if (ret)
578 		return ret;
579 
580 	ret = rdtgroup_kn_mode_restrict(rdtgrp, "cpus");
581 	if (ret)
582 		goto err_tasks;
583 
584 	ret = rdtgroup_kn_mode_restrict(rdtgrp, "cpus_list");
585 	if (ret)
586 		goto err_cpus;
587 
588 	if (resctrl_arch_mon_capable()) {
589 		ret = rdtgroup_kn_mode_restrict(rdtgrp, "mon_groups");
590 		if (ret)
591 			goto err_cpus_list;
592 	}
593 
594 	ret = 0;
595 	goto out;
596 
597 err_cpus_list:
598 	rdtgroup_kn_mode_restore(rdtgrp, "cpus_list", 0777);
599 err_cpus:
600 	rdtgroup_kn_mode_restore(rdtgrp, "cpus", 0777);
601 err_tasks:
602 	rdtgroup_kn_mode_restore(rdtgrp, "tasks", 0777);
603 out:
604 	return ret;
605 }
606 
607 /**
608  * rdtgroup_locksetup_user_restore - Restore user access to group
609  * @rdtgrp: resource group needing access restored
610  *
611  * Restore all file access previously removed using
612  * rdtgroup_locksetup_user_restrict()
613  *
614  * Return: 0 on success, <0 on failure.  If a failure occurs during the
615  * restoration of access an attempt will be made to restrict permissions
616  * again but the state of the mode of these files will be uncertain when
617  * a failure occurs.
618  */
rdtgroup_locksetup_user_restore(struct rdtgroup * rdtgrp)619 static int rdtgroup_locksetup_user_restore(struct rdtgroup *rdtgrp)
620 {
621 	int ret;
622 
623 	ret = rdtgroup_kn_mode_restore(rdtgrp, "tasks", 0777);
624 	if (ret)
625 		return ret;
626 
627 	ret = rdtgroup_kn_mode_restore(rdtgrp, "cpus", 0777);
628 	if (ret)
629 		goto err_tasks;
630 
631 	ret = rdtgroup_kn_mode_restore(rdtgrp, "cpus_list", 0777);
632 	if (ret)
633 		goto err_cpus;
634 
635 	if (resctrl_arch_mon_capable()) {
636 		ret = rdtgroup_kn_mode_restore(rdtgrp, "mon_groups", 0777);
637 		if (ret)
638 			goto err_cpus_list;
639 	}
640 
641 	ret = 0;
642 	goto out;
643 
644 err_cpus_list:
645 	rdtgroup_kn_mode_restrict(rdtgrp, "cpus_list");
646 err_cpus:
647 	rdtgroup_kn_mode_restrict(rdtgrp, "cpus");
648 err_tasks:
649 	rdtgroup_kn_mode_restrict(rdtgrp, "tasks");
650 out:
651 	return ret;
652 }
653 
654 /**
655  * rdtgroup_locksetup_enter - Resource group enters locksetup mode
656  * @rdtgrp: resource group requested to enter locksetup mode
657  *
658  * A resource group enters locksetup mode to reflect that it would be used
659  * to represent a pseudo-locked region and is in the process of being set
660  * up to do so. A resource group used for a pseudo-locked region would
661  * lose the closid associated with it so we cannot allow it to have any
662  * tasks or cpus assigned nor permit tasks or cpus to be assigned in the
663  * future. Monitoring of a pseudo-locked region is not allowed either.
664  *
665  * The above and more restrictions on a pseudo-locked region are checked
666  * for and enforced before the resource group enters the locksetup mode.
667  *
668  * Returns: 0 if the resource group successfully entered locksetup mode, <0
669  * on failure. On failure the last_cmd_status buffer is updated with text to
670  * communicate details of failure to the user.
671  */
rdtgroup_locksetup_enter(struct rdtgroup * rdtgrp)672 int rdtgroup_locksetup_enter(struct rdtgroup *rdtgrp)
673 {
674 	int ret;
675 
676 	/*
677 	 * The default resource group can neither be removed nor lose the
678 	 * default closid associated with it.
679 	 */
680 	if (rdtgrp == &rdtgroup_default) {
681 		rdt_last_cmd_puts("Cannot pseudo-lock default group\n");
682 		return -EINVAL;
683 	}
684 
685 	/*
686 	 * Cache Pseudo-locking not supported when CDP is enabled.
687 	 *
688 	 * Some things to consider if you would like to enable this
689 	 * support (using L3 CDP as example):
690 	 * - When CDP is enabled two separate resources are exposed,
691 	 *   L3DATA and L3CODE, but they are actually on the same cache.
692 	 *   The implication for pseudo-locking is that if a
693 	 *   pseudo-locked region is created on a domain of one
694 	 *   resource (eg. L3CODE), then a pseudo-locked region cannot
695 	 *   be created on that same domain of the other resource
696 	 *   (eg. L3DATA). This is because the creation of a
697 	 *   pseudo-locked region involves a call to wbinvd that will
698 	 *   affect all cache allocations on particular domain.
699 	 * - Considering the previous, it may be possible to only
700 	 *   expose one of the CDP resources to pseudo-locking and
701 	 *   hide the other. For example, we could consider to only
702 	 *   expose L3DATA and since the L3 cache is unified it is
703 	 *   still possible to place instructions there are execute it.
704 	 * - If only one region is exposed to pseudo-locking we should
705 	 *   still keep in mind that availability of a portion of cache
706 	 *   for pseudo-locking should take into account both resources.
707 	 *   Similarly, if a pseudo-locked region is created in one
708 	 *   resource, the portion of cache used by it should be made
709 	 *   unavailable to all future allocations from both resources.
710 	 */
711 	if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L3) ||
712 	    resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L2)) {
713 		rdt_last_cmd_puts("CDP enabled\n");
714 		return -EINVAL;
715 	}
716 
717 	/*
718 	 * Not knowing the bits to disable prefetching implies that this
719 	 * platform does not support Cache Pseudo-Locking.
720 	 */
721 	if (resctrl_arch_get_prefetch_disable_bits() == 0) {
722 		rdt_last_cmd_puts("Pseudo-locking not supported\n");
723 		return -EINVAL;
724 	}
725 
726 	if (rdtgroup_monitor_in_progress(rdtgrp)) {
727 		rdt_last_cmd_puts("Monitoring in progress\n");
728 		return -EINVAL;
729 	}
730 
731 	if (rdtgroup_tasks_assigned(rdtgrp)) {
732 		rdt_last_cmd_puts("Tasks assigned to resource group\n");
733 		return -EINVAL;
734 	}
735 
736 	if (!cpumask_empty(&rdtgrp->cpu_mask)) {
737 		rdt_last_cmd_puts("CPUs assigned to resource group\n");
738 		return -EINVAL;
739 	}
740 
741 	if (rdtgroup_locksetup_user_restrict(rdtgrp)) {
742 		rdt_last_cmd_puts("Unable to modify resctrl permissions\n");
743 		return -EIO;
744 	}
745 
746 	ret = pseudo_lock_init(rdtgrp);
747 	if (ret) {
748 		rdt_last_cmd_puts("Unable to init pseudo-lock region\n");
749 		goto out_release;
750 	}
751 
752 	/*
753 	 * If this system is capable of monitoring a rmid would have been
754 	 * allocated when the control group was created. This is not needed
755 	 * anymore when this group would be used for pseudo-locking. This
756 	 * is safe to call on platforms not capable of monitoring.
757 	 */
758 	free_rmid(rdtgrp->closid, rdtgrp->mon.rmid);
759 
760 	ret = 0;
761 	goto out;
762 
763 out_release:
764 	rdtgroup_locksetup_user_restore(rdtgrp);
765 out:
766 	return ret;
767 }
768 
769 /**
770  * rdtgroup_locksetup_exit - resource group exist locksetup mode
771  * @rdtgrp: resource group
772  *
773  * When a resource group exits locksetup mode the earlier restrictions are
774  * lifted.
775  *
776  * Return: 0 on success, <0 on failure
777  */
rdtgroup_locksetup_exit(struct rdtgroup * rdtgrp)778 int rdtgroup_locksetup_exit(struct rdtgroup *rdtgrp)
779 {
780 	int ret;
781 
782 	if (resctrl_arch_mon_capable()) {
783 		ret = alloc_rmid(rdtgrp->closid);
784 		if (ret < 0) {
785 			rdt_last_cmd_puts("Out of RMIDs\n");
786 			return ret;
787 		}
788 		rdtgrp->mon.rmid = ret;
789 	}
790 
791 	ret = rdtgroup_locksetup_user_restore(rdtgrp);
792 	if (ret) {
793 		free_rmid(rdtgrp->closid, rdtgrp->mon.rmid);
794 		return ret;
795 	}
796 
797 	pseudo_lock_free(rdtgrp);
798 	return 0;
799 }
800 
801 /**
802  * rdtgroup_cbm_overlaps_pseudo_locked - Test if CBM or portion is pseudo-locked
803  * @d: RDT domain
804  * @cbm: CBM to test
805  *
806  * @d represents a cache instance and @cbm a capacity bitmask that is
807  * considered for it. Determine if @cbm overlaps with any existing
808  * pseudo-locked region on @d.
809  *
810  * @cbm is unsigned long, even if only 32 bits are used, to make the
811  * bitmap functions work correctly.
812  *
813  * Return: true if @cbm overlaps with pseudo-locked region on @d, false
814  * otherwise.
815  */
rdtgroup_cbm_overlaps_pseudo_locked(struct rdt_ctrl_domain * d,unsigned long cbm)816 bool rdtgroup_cbm_overlaps_pseudo_locked(struct rdt_ctrl_domain *d, unsigned long cbm)
817 {
818 	unsigned int cbm_len;
819 	unsigned long cbm_b;
820 
821 	if (d->plr) {
822 		cbm_len = d->plr->s->res->cache.cbm_len;
823 		cbm_b = d->plr->cbm;
824 		if (bitmap_intersects(&cbm, &cbm_b, cbm_len))
825 			return true;
826 	}
827 	return false;
828 }
829 
830 /**
831  * rdtgroup_pseudo_locked_in_hierarchy - Pseudo-locked region in cache hierarchy
832  * @d: RDT domain under test
833  *
834  * The setup of a pseudo-locked region affects all cache instances within
835  * the hierarchy of the region. It is thus essential to know if any
836  * pseudo-locked regions exist within a cache hierarchy to prevent any
837  * attempts to create new pseudo-locked regions in the same hierarchy.
838  *
839  * Return: true if a pseudo-locked region exists in the hierarchy of @d or
840  *         if it is not possible to test due to memory allocation issue,
841  *         false otherwise.
842  */
rdtgroup_pseudo_locked_in_hierarchy(struct rdt_ctrl_domain * d)843 bool rdtgroup_pseudo_locked_in_hierarchy(struct rdt_ctrl_domain *d)
844 {
845 	struct rdt_ctrl_domain *d_i;
846 	cpumask_var_t cpu_with_psl;
847 	struct rdt_resource *r;
848 	bool ret = false;
849 
850 	/* Walking r->domains, ensure it can't race with cpuhp */
851 	lockdep_assert_cpus_held();
852 
853 	if (!zalloc_cpumask_var(&cpu_with_psl, GFP_KERNEL))
854 		return true;
855 
856 	/*
857 	 * First determine which cpus have pseudo-locked regions
858 	 * associated with them.
859 	 */
860 	for_each_alloc_capable_rdt_resource(r) {
861 		list_for_each_entry(d_i, &r->ctrl_domains, hdr.list) {
862 			if (d_i->plr)
863 				cpumask_or(cpu_with_psl, cpu_with_psl,
864 					   &d_i->hdr.cpu_mask);
865 		}
866 	}
867 
868 	/*
869 	 * Next test if new pseudo-locked region would intersect with
870 	 * existing region.
871 	 */
872 	if (cpumask_intersects(&d->hdr.cpu_mask, cpu_with_psl))
873 		ret = true;
874 
875 	free_cpumask_var(cpu_with_psl);
876 	return ret;
877 }
878 
879 /**
880  * resctrl_arch_measure_cycles_lat_fn - Measure cycle latency to read
881  *                                      pseudo-locked memory
882  * @_plr: pseudo-lock region to measure
883  *
884  * There is no deterministic way to test if a memory region is cached. One
885  * way is to measure how long it takes to read the memory, the speed of
886  * access is a good way to learn how close to the cpu the data was. Even
887  * more, if the prefetcher is disabled and the memory is read at a stride
888  * of half the cache line, then a cache miss will be easy to spot since the
889  * read of the first half would be significantly slower than the read of
890  * the second half.
891  *
892  * Return: 0. Waiter on waitqueue will be woken on completion.
893  */
resctrl_arch_measure_cycles_lat_fn(void * _plr)894 int resctrl_arch_measure_cycles_lat_fn(void *_plr)
895 {
896 	struct pseudo_lock_region *plr = _plr;
897 	u32 saved_low, saved_high;
898 	unsigned long i;
899 	u64 start, end;
900 	void *mem_r;
901 
902 	local_irq_disable();
903 	/*
904 	 * Disable hardware prefetchers.
905 	 */
906 	rdmsr(MSR_MISC_FEATURE_CONTROL, saved_low, saved_high);
907 	wrmsr(MSR_MISC_FEATURE_CONTROL, prefetch_disable_bits, 0x0);
908 	mem_r = READ_ONCE(plr->kmem);
909 	/*
910 	 * Dummy execute of the time measurement to load the needed
911 	 * instructions into the L1 instruction cache.
912 	 */
913 	start = rdtsc_ordered();
914 	for (i = 0; i < plr->size; i += 32) {
915 		start = rdtsc_ordered();
916 		asm volatile("mov (%0,%1,1), %%eax\n\t"
917 			     :
918 			     : "r" (mem_r), "r" (i)
919 			     : "%eax", "memory");
920 		end = rdtsc_ordered();
921 		trace_pseudo_lock_mem_latency((u32)(end - start));
922 	}
923 	wrmsr(MSR_MISC_FEATURE_CONTROL, saved_low, saved_high);
924 	local_irq_enable();
925 	plr->thread_done = 1;
926 	wake_up_interruptible(&plr->lock_thread_wq);
927 	return 0;
928 }
929 
930 /*
931  * Create a perf_event_attr for the hit and miss perf events that will
932  * be used during the performance measurement. A perf_event maintains
933  * a pointer to its perf_event_attr so a unique attribute structure is
934  * created for each perf_event.
935  *
936  * The actual configuration of the event is set right before use in order
937  * to use the X86_CONFIG macro.
938  */
939 static struct perf_event_attr perf_miss_attr = {
940 	.type		= PERF_TYPE_RAW,
941 	.size		= sizeof(struct perf_event_attr),
942 	.pinned		= 1,
943 	.disabled	= 0,
944 	.exclude_user	= 1,
945 };
946 
947 static struct perf_event_attr perf_hit_attr = {
948 	.type		= PERF_TYPE_RAW,
949 	.size		= sizeof(struct perf_event_attr),
950 	.pinned		= 1,
951 	.disabled	= 0,
952 	.exclude_user	= 1,
953 };
954 
955 struct residency_counts {
956 	u64 miss_before, hits_before;
957 	u64 miss_after,  hits_after;
958 };
959 
measure_residency_fn(struct perf_event_attr * miss_attr,struct perf_event_attr * hit_attr,struct pseudo_lock_region * plr,struct residency_counts * counts)960 static int measure_residency_fn(struct perf_event_attr *miss_attr,
961 				struct perf_event_attr *hit_attr,
962 				struct pseudo_lock_region *plr,
963 				struct residency_counts *counts)
964 {
965 	u64 hits_before = 0, hits_after = 0, miss_before = 0, miss_after = 0;
966 	struct perf_event *miss_event, *hit_event;
967 	int hit_pmcnum, miss_pmcnum;
968 	u32 saved_low, saved_high;
969 	unsigned int line_size;
970 	unsigned int size;
971 	unsigned long i;
972 	void *mem_r;
973 	u64 tmp;
974 
975 	miss_event = perf_event_create_kernel_counter(miss_attr, plr->cpu,
976 						      NULL, NULL, NULL);
977 	if (IS_ERR(miss_event))
978 		goto out;
979 
980 	hit_event = perf_event_create_kernel_counter(hit_attr, plr->cpu,
981 						     NULL, NULL, NULL);
982 	if (IS_ERR(hit_event))
983 		goto out_miss;
984 
985 	local_irq_disable();
986 	/*
987 	 * Check any possible error state of events used by performing
988 	 * one local read.
989 	 */
990 	if (perf_event_read_local(miss_event, &tmp, NULL, NULL)) {
991 		local_irq_enable();
992 		goto out_hit;
993 	}
994 	if (perf_event_read_local(hit_event, &tmp, NULL, NULL)) {
995 		local_irq_enable();
996 		goto out_hit;
997 	}
998 
999 	/*
1000 	 * Disable hardware prefetchers.
1001 	 */
1002 	rdmsr(MSR_MISC_FEATURE_CONTROL, saved_low, saved_high);
1003 	wrmsr(MSR_MISC_FEATURE_CONTROL, prefetch_disable_bits, 0x0);
1004 
1005 	/* Initialize rest of local variables */
1006 	/*
1007 	 * Performance event has been validated right before this with
1008 	 * interrupts disabled - it is thus safe to read the counter index.
1009 	 */
1010 	miss_pmcnum = x86_perf_rdpmc_index(miss_event);
1011 	hit_pmcnum = x86_perf_rdpmc_index(hit_event);
1012 	line_size = READ_ONCE(plr->line_size);
1013 	mem_r = READ_ONCE(plr->kmem);
1014 	size = READ_ONCE(plr->size);
1015 
1016 	/*
1017 	 * Read counter variables twice - first to load the instructions
1018 	 * used in L1 cache, second to capture accurate value that does not
1019 	 * include cache misses incurred because of instruction loads.
1020 	 */
1021 	rdpmcl(hit_pmcnum, hits_before);
1022 	rdpmcl(miss_pmcnum, miss_before);
1023 	/*
1024 	 * From SDM: Performing back-to-back fast reads are not guaranteed
1025 	 * to be monotonic.
1026 	 * Use LFENCE to ensure all previous instructions are retired
1027 	 * before proceeding.
1028 	 */
1029 	rmb();
1030 	rdpmcl(hit_pmcnum, hits_before);
1031 	rdpmcl(miss_pmcnum, miss_before);
1032 	/*
1033 	 * Use LFENCE to ensure all previous instructions are retired
1034 	 * before proceeding.
1035 	 */
1036 	rmb();
1037 	for (i = 0; i < size; i += line_size) {
1038 		/*
1039 		 * Add a barrier to prevent speculative execution of this
1040 		 * loop reading beyond the end of the buffer.
1041 		 */
1042 		rmb();
1043 		asm volatile("mov (%0,%1,1), %%eax\n\t"
1044 			     :
1045 			     : "r" (mem_r), "r" (i)
1046 			     : "%eax", "memory");
1047 	}
1048 	/*
1049 	 * Use LFENCE to ensure all previous instructions are retired
1050 	 * before proceeding.
1051 	 */
1052 	rmb();
1053 	rdpmcl(hit_pmcnum, hits_after);
1054 	rdpmcl(miss_pmcnum, miss_after);
1055 	/*
1056 	 * Use LFENCE to ensure all previous instructions are retired
1057 	 * before proceeding.
1058 	 */
1059 	rmb();
1060 	/* Re-enable hardware prefetchers */
1061 	wrmsr(MSR_MISC_FEATURE_CONTROL, saved_low, saved_high);
1062 	local_irq_enable();
1063 out_hit:
1064 	perf_event_release_kernel(hit_event);
1065 out_miss:
1066 	perf_event_release_kernel(miss_event);
1067 out:
1068 	/*
1069 	 * All counts will be zero on failure.
1070 	 */
1071 	counts->miss_before = miss_before;
1072 	counts->hits_before = hits_before;
1073 	counts->miss_after  = miss_after;
1074 	counts->hits_after  = hits_after;
1075 	return 0;
1076 }
1077 
resctrl_arch_measure_l2_residency(void * _plr)1078 int resctrl_arch_measure_l2_residency(void *_plr)
1079 {
1080 	struct pseudo_lock_region *plr = _plr;
1081 	struct residency_counts counts = {0};
1082 
1083 	/*
1084 	 * Non-architectural event for the Goldmont Microarchitecture
1085 	 * from Intel x86 Architecture Software Developer Manual (SDM):
1086 	 * MEM_LOAD_UOPS_RETIRED D1H (event number)
1087 	 * Umask values:
1088 	 *     L2_HIT   02H
1089 	 *     L2_MISS  10H
1090 	 */
1091 	switch (boot_cpu_data.x86_vfm) {
1092 	case INTEL_ATOM_GOLDMONT:
1093 	case INTEL_ATOM_GOLDMONT_PLUS:
1094 		perf_miss_attr.config = X86_CONFIG(.event = 0xd1,
1095 						   .umask = 0x10);
1096 		perf_hit_attr.config = X86_CONFIG(.event = 0xd1,
1097 						  .umask = 0x2);
1098 		break;
1099 	default:
1100 		goto out;
1101 	}
1102 
1103 	measure_residency_fn(&perf_miss_attr, &perf_hit_attr, plr, &counts);
1104 	/*
1105 	 * If a failure prevented the measurements from succeeding
1106 	 * tracepoints will still be written and all counts will be zero.
1107 	 */
1108 	trace_pseudo_lock_l2(counts.hits_after - counts.hits_before,
1109 			     counts.miss_after - counts.miss_before);
1110 out:
1111 	plr->thread_done = 1;
1112 	wake_up_interruptible(&plr->lock_thread_wq);
1113 	return 0;
1114 }
1115 
resctrl_arch_measure_l3_residency(void * _plr)1116 int resctrl_arch_measure_l3_residency(void *_plr)
1117 {
1118 	struct pseudo_lock_region *plr = _plr;
1119 	struct residency_counts counts = {0};
1120 
1121 	/*
1122 	 * On Broadwell Microarchitecture the MEM_LOAD_UOPS_RETIRED event
1123 	 * has two "no fix" errata associated with it: BDM35 and BDM100. On
1124 	 * this platform the following events are used instead:
1125 	 * LONGEST_LAT_CACHE 2EH (Documented in SDM)
1126 	 *       REFERENCE 4FH
1127 	 *       MISS      41H
1128 	 */
1129 
1130 	switch (boot_cpu_data.x86_vfm) {
1131 	case INTEL_BROADWELL_X:
1132 		/* On BDW the hit event counts references, not hits */
1133 		perf_hit_attr.config = X86_CONFIG(.event = 0x2e,
1134 						  .umask = 0x4f);
1135 		perf_miss_attr.config = X86_CONFIG(.event = 0x2e,
1136 						   .umask = 0x41);
1137 		break;
1138 	default:
1139 		goto out;
1140 	}
1141 
1142 	measure_residency_fn(&perf_miss_attr, &perf_hit_attr, plr, &counts);
1143 	/*
1144 	 * If a failure prevented the measurements from succeeding
1145 	 * tracepoints will still be written and all counts will be zero.
1146 	 */
1147 
1148 	counts.miss_after -= counts.miss_before;
1149 	if (boot_cpu_data.x86_vfm == INTEL_BROADWELL_X) {
1150 		/*
1151 		 * On BDW references and misses are counted, need to adjust.
1152 		 * Sometimes the "hits" counter is a bit more than the
1153 		 * references, for example, x references but x + 1 hits.
1154 		 * To not report invalid hit values in this case we treat
1155 		 * that as misses equal to references.
1156 		 */
1157 		/* First compute the number of cache references measured */
1158 		counts.hits_after -= counts.hits_before;
1159 		/* Next convert references to cache hits */
1160 		counts.hits_after -= min(counts.miss_after, counts.hits_after);
1161 	} else {
1162 		counts.hits_after -= counts.hits_before;
1163 	}
1164 
1165 	trace_pseudo_lock_l3(counts.hits_after, counts.miss_after);
1166 out:
1167 	plr->thread_done = 1;
1168 	wake_up_interruptible(&plr->lock_thread_wq);
1169 	return 0;
1170 }
1171 
1172 /**
1173  * pseudo_lock_measure_cycles - Trigger latency measure to pseudo-locked region
1174  * @rdtgrp: Resource group to which the pseudo-locked region belongs.
1175  * @sel: Selector of which measurement to perform on a pseudo-locked region.
1176  *
1177  * The measurement of latency to access a pseudo-locked region should be
1178  * done from a cpu that is associated with that pseudo-locked region.
1179  * Determine which cpu is associated with this region and start a thread on
1180  * that cpu to perform the measurement, wait for that thread to complete.
1181  *
1182  * Return: 0 on success, <0 on failure
1183  */
pseudo_lock_measure_cycles(struct rdtgroup * rdtgrp,int sel)1184 static int pseudo_lock_measure_cycles(struct rdtgroup *rdtgrp, int sel)
1185 {
1186 	struct pseudo_lock_region *plr = rdtgrp->plr;
1187 	struct task_struct *thread;
1188 	unsigned int cpu;
1189 	int ret = -1;
1190 
1191 	cpus_read_lock();
1192 	mutex_lock(&rdtgroup_mutex);
1193 
1194 	if (rdtgrp->flags & RDT_DELETED) {
1195 		ret = -ENODEV;
1196 		goto out;
1197 	}
1198 
1199 	if (!plr->d) {
1200 		ret = -ENODEV;
1201 		goto out;
1202 	}
1203 
1204 	plr->thread_done = 0;
1205 	cpu = cpumask_first(&plr->d->hdr.cpu_mask);
1206 	if (!cpu_online(cpu)) {
1207 		ret = -ENODEV;
1208 		goto out;
1209 	}
1210 
1211 	plr->cpu = cpu;
1212 
1213 	if (sel == 1)
1214 		thread = kthread_run_on_cpu(resctrl_arch_measure_cycles_lat_fn,
1215 					    plr, cpu, "pseudo_lock_measure/%u");
1216 	else if (sel == 2)
1217 		thread = kthread_run_on_cpu(resctrl_arch_measure_l2_residency,
1218 					    plr, cpu, "pseudo_lock_measure/%u");
1219 	else if (sel == 3)
1220 		thread = kthread_run_on_cpu(resctrl_arch_measure_l3_residency,
1221 					    plr, cpu, "pseudo_lock_measure/%u");
1222 	else
1223 		goto out;
1224 
1225 	if (IS_ERR(thread)) {
1226 		ret = PTR_ERR(thread);
1227 		goto out;
1228 	}
1229 
1230 	ret = wait_event_interruptible(plr->lock_thread_wq,
1231 				       plr->thread_done == 1);
1232 	if (ret < 0)
1233 		goto out;
1234 
1235 	ret = 0;
1236 
1237 out:
1238 	mutex_unlock(&rdtgroup_mutex);
1239 	cpus_read_unlock();
1240 	return ret;
1241 }
1242 
pseudo_lock_measure_trigger(struct file * file,const char __user * user_buf,size_t count,loff_t * ppos)1243 static ssize_t pseudo_lock_measure_trigger(struct file *file,
1244 					   const char __user *user_buf,
1245 					   size_t count, loff_t *ppos)
1246 {
1247 	struct rdtgroup *rdtgrp = file->private_data;
1248 	size_t buf_size;
1249 	char buf[32];
1250 	int ret;
1251 	int sel;
1252 
1253 	buf_size = min(count, (sizeof(buf) - 1));
1254 	if (copy_from_user(buf, user_buf, buf_size))
1255 		return -EFAULT;
1256 
1257 	buf[buf_size] = '\0';
1258 	ret = kstrtoint(buf, 10, &sel);
1259 	if (ret == 0) {
1260 		if (sel != 1 && sel != 2 && sel != 3)
1261 			return -EINVAL;
1262 		ret = debugfs_file_get(file->f_path.dentry);
1263 		if (ret)
1264 			return ret;
1265 		ret = pseudo_lock_measure_cycles(rdtgrp, sel);
1266 		if (ret == 0)
1267 			ret = count;
1268 		debugfs_file_put(file->f_path.dentry);
1269 	}
1270 
1271 	return ret;
1272 }
1273 
1274 static const struct file_operations pseudo_measure_fops = {
1275 	.write = pseudo_lock_measure_trigger,
1276 	.open = simple_open,
1277 	.llseek = default_llseek,
1278 };
1279 
1280 /**
1281  * rdtgroup_pseudo_lock_create - Create a pseudo-locked region
1282  * @rdtgrp: resource group to which pseudo-lock region belongs
1283  *
1284  * Called when a resource group in the pseudo-locksetup mode receives a
1285  * valid schemata that should be pseudo-locked. Since the resource group is
1286  * in pseudo-locksetup mode the &struct pseudo_lock_region has already been
1287  * allocated and initialized with the essential information. If a failure
1288  * occurs the resource group remains in the pseudo-locksetup mode with the
1289  * &struct pseudo_lock_region associated with it, but cleared from all
1290  * information and ready for the user to re-attempt pseudo-locking by
1291  * writing the schemata again.
1292  *
1293  * Return: 0 if the pseudo-locked region was successfully pseudo-locked, <0
1294  * on failure. Descriptive error will be written to last_cmd_status buffer.
1295  */
rdtgroup_pseudo_lock_create(struct rdtgroup * rdtgrp)1296 int rdtgroup_pseudo_lock_create(struct rdtgroup *rdtgrp)
1297 {
1298 	struct pseudo_lock_region *plr = rdtgrp->plr;
1299 	struct task_struct *thread;
1300 	unsigned int new_minor;
1301 	struct device *dev;
1302 	char *kn_name __free(kfree) = NULL;
1303 	int ret;
1304 
1305 	ret = pseudo_lock_region_alloc(plr);
1306 	if (ret < 0)
1307 		return ret;
1308 
1309 	ret = pseudo_lock_cstates_constrain(plr);
1310 	if (ret < 0) {
1311 		ret = -EINVAL;
1312 		goto out_region;
1313 	}
1314 	kn_name = kstrdup(rdt_kn_name(rdtgrp->kn), GFP_KERNEL);
1315 	if (!kn_name) {
1316 		ret = -ENOMEM;
1317 		goto out_cstates;
1318 	}
1319 
1320 	plr->thread_done = 0;
1321 
1322 	thread = kthread_run_on_cpu(resctrl_arch_pseudo_lock_fn, plr,
1323 				    plr->cpu, "pseudo_lock/%u");
1324 	if (IS_ERR(thread)) {
1325 		ret = PTR_ERR(thread);
1326 		rdt_last_cmd_printf("Locking thread returned error %d\n", ret);
1327 		goto out_cstates;
1328 	}
1329 
1330 	ret = wait_event_interruptible(plr->lock_thread_wq,
1331 				       plr->thread_done == 1);
1332 	if (ret < 0) {
1333 		/*
1334 		 * If the thread does not get on the CPU for whatever
1335 		 * reason and the process which sets up the region is
1336 		 * interrupted then this will leave the thread in runnable
1337 		 * state and once it gets on the CPU it will dereference
1338 		 * the cleared, but not freed, plr struct resulting in an
1339 		 * empty pseudo-locking loop.
1340 		 */
1341 		rdt_last_cmd_puts("Locking thread interrupted\n");
1342 		goto out_cstates;
1343 	}
1344 
1345 	ret = pseudo_lock_minor_get(&new_minor);
1346 	if (ret < 0) {
1347 		rdt_last_cmd_puts("Unable to obtain a new minor number\n");
1348 		goto out_cstates;
1349 	}
1350 
1351 	/*
1352 	 * Unlock access but do not release the reference. The
1353 	 * pseudo-locked region will still be here on return.
1354 	 *
1355 	 * The mutex has to be released temporarily to avoid a potential
1356 	 * deadlock with the mm->mmap_lock which is obtained in the
1357 	 * device_create() and debugfs_create_dir() callpath below as well as
1358 	 * before the mmap() callback is called.
1359 	 */
1360 	mutex_unlock(&rdtgroup_mutex);
1361 
1362 	if (!IS_ERR_OR_NULL(debugfs_resctrl)) {
1363 		plr->debugfs_dir = debugfs_create_dir(kn_name, debugfs_resctrl);
1364 		if (!IS_ERR_OR_NULL(plr->debugfs_dir))
1365 			debugfs_create_file("pseudo_lock_measure", 0200,
1366 					    plr->debugfs_dir, rdtgrp,
1367 					    &pseudo_measure_fops);
1368 	}
1369 
1370 	dev = device_create(&pseudo_lock_class, NULL,
1371 			    MKDEV(pseudo_lock_major, new_minor),
1372 			    rdtgrp, "%s", kn_name);
1373 
1374 	mutex_lock(&rdtgroup_mutex);
1375 
1376 	if (IS_ERR(dev)) {
1377 		ret = PTR_ERR(dev);
1378 		rdt_last_cmd_printf("Failed to create character device: %d\n",
1379 				    ret);
1380 		goto out_debugfs;
1381 	}
1382 
1383 	/* We released the mutex - check if group was removed while we did so */
1384 	if (rdtgrp->flags & RDT_DELETED) {
1385 		ret = -ENODEV;
1386 		goto out_device;
1387 	}
1388 
1389 	plr->minor = new_minor;
1390 
1391 	rdtgrp->mode = RDT_MODE_PSEUDO_LOCKED;
1392 	closid_free(rdtgrp->closid);
1393 	rdtgroup_kn_mode_restore(rdtgrp, "cpus", 0444);
1394 	rdtgroup_kn_mode_restore(rdtgrp, "cpus_list", 0444);
1395 
1396 	ret = 0;
1397 	goto out;
1398 
1399 out_device:
1400 	device_destroy(&pseudo_lock_class, MKDEV(pseudo_lock_major, new_minor));
1401 out_debugfs:
1402 	debugfs_remove_recursive(plr->debugfs_dir);
1403 	pseudo_lock_minor_release(new_minor);
1404 out_cstates:
1405 	pseudo_lock_cstates_relax(plr);
1406 out_region:
1407 	pseudo_lock_region_clear(plr);
1408 out:
1409 	return ret;
1410 }
1411 
1412 /**
1413  * rdtgroup_pseudo_lock_remove - Remove a pseudo-locked region
1414  * @rdtgrp: resource group to which the pseudo-locked region belongs
1415  *
1416  * The removal of a pseudo-locked region can be initiated when the resource
1417  * group is removed from user space via a "rmdir" from userspace or the
1418  * unmount of the resctrl filesystem. On removal the resource group does
1419  * not go back to pseudo-locksetup mode before it is removed, instead it is
1420  * removed directly. There is thus asymmetry with the creation where the
1421  * &struct pseudo_lock_region is removed here while it was not created in
1422  * rdtgroup_pseudo_lock_create().
1423  *
1424  * Return: void
1425  */
rdtgroup_pseudo_lock_remove(struct rdtgroup * rdtgrp)1426 void rdtgroup_pseudo_lock_remove(struct rdtgroup *rdtgrp)
1427 {
1428 	struct pseudo_lock_region *plr = rdtgrp->plr;
1429 
1430 	if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1431 		/*
1432 		 * Default group cannot be a pseudo-locked region so we can
1433 		 * free closid here.
1434 		 */
1435 		closid_free(rdtgrp->closid);
1436 		goto free;
1437 	}
1438 
1439 	pseudo_lock_cstates_relax(plr);
1440 	debugfs_remove_recursive(rdtgrp->plr->debugfs_dir);
1441 	device_destroy(&pseudo_lock_class, MKDEV(pseudo_lock_major, plr->minor));
1442 	pseudo_lock_minor_release(plr->minor);
1443 
1444 free:
1445 	pseudo_lock_free(rdtgrp);
1446 }
1447 
pseudo_lock_dev_open(struct inode * inode,struct file * filp)1448 static int pseudo_lock_dev_open(struct inode *inode, struct file *filp)
1449 {
1450 	struct rdtgroup *rdtgrp;
1451 
1452 	mutex_lock(&rdtgroup_mutex);
1453 
1454 	rdtgrp = region_find_by_minor(iminor(inode));
1455 	if (!rdtgrp) {
1456 		mutex_unlock(&rdtgroup_mutex);
1457 		return -ENODEV;
1458 	}
1459 
1460 	filp->private_data = rdtgrp;
1461 	atomic_inc(&rdtgrp->waitcount);
1462 	/* Perform a non-seekable open - llseek is not supported */
1463 	filp->f_mode &= ~(FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE);
1464 
1465 	mutex_unlock(&rdtgroup_mutex);
1466 
1467 	return 0;
1468 }
1469 
pseudo_lock_dev_release(struct inode * inode,struct file * filp)1470 static int pseudo_lock_dev_release(struct inode *inode, struct file *filp)
1471 {
1472 	struct rdtgroup *rdtgrp;
1473 
1474 	mutex_lock(&rdtgroup_mutex);
1475 	rdtgrp = filp->private_data;
1476 	WARN_ON(!rdtgrp);
1477 	if (!rdtgrp) {
1478 		mutex_unlock(&rdtgroup_mutex);
1479 		return -ENODEV;
1480 	}
1481 	filp->private_data = NULL;
1482 	atomic_dec(&rdtgrp->waitcount);
1483 	mutex_unlock(&rdtgroup_mutex);
1484 	return 0;
1485 }
1486 
pseudo_lock_dev_mremap(struct vm_area_struct * area)1487 static int pseudo_lock_dev_mremap(struct vm_area_struct *area)
1488 {
1489 	/* Not supported */
1490 	return -EINVAL;
1491 }
1492 
1493 static const struct vm_operations_struct pseudo_mmap_ops = {
1494 	.mremap = pseudo_lock_dev_mremap,
1495 };
1496 
pseudo_lock_dev_mmap(struct file * filp,struct vm_area_struct * vma)1497 static int pseudo_lock_dev_mmap(struct file *filp, struct vm_area_struct *vma)
1498 {
1499 	unsigned long vsize = vma->vm_end - vma->vm_start;
1500 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
1501 	struct pseudo_lock_region *plr;
1502 	struct rdtgroup *rdtgrp;
1503 	unsigned long physical;
1504 	unsigned long psize;
1505 
1506 	mutex_lock(&rdtgroup_mutex);
1507 
1508 	rdtgrp = filp->private_data;
1509 	WARN_ON(!rdtgrp);
1510 	if (!rdtgrp) {
1511 		mutex_unlock(&rdtgroup_mutex);
1512 		return -ENODEV;
1513 	}
1514 
1515 	plr = rdtgrp->plr;
1516 
1517 	if (!plr->d) {
1518 		mutex_unlock(&rdtgroup_mutex);
1519 		return -ENODEV;
1520 	}
1521 
1522 	/*
1523 	 * Task is required to run with affinity to the cpus associated
1524 	 * with the pseudo-locked region. If this is not the case the task
1525 	 * may be scheduled elsewhere and invalidate entries in the
1526 	 * pseudo-locked region.
1527 	 */
1528 	if (!cpumask_subset(current->cpus_ptr, &plr->d->hdr.cpu_mask)) {
1529 		mutex_unlock(&rdtgroup_mutex);
1530 		return -EINVAL;
1531 	}
1532 
1533 	physical = __pa(plr->kmem) >> PAGE_SHIFT;
1534 	psize = plr->size - off;
1535 
1536 	if (off > plr->size) {
1537 		mutex_unlock(&rdtgroup_mutex);
1538 		return -ENOSPC;
1539 	}
1540 
1541 	/*
1542 	 * Ensure changes are carried directly to the memory being mapped,
1543 	 * do not allow copy-on-write mapping.
1544 	 */
1545 	if (!(vma->vm_flags & VM_SHARED)) {
1546 		mutex_unlock(&rdtgroup_mutex);
1547 		return -EINVAL;
1548 	}
1549 
1550 	if (vsize > psize) {
1551 		mutex_unlock(&rdtgroup_mutex);
1552 		return -ENOSPC;
1553 	}
1554 
1555 	memset(plr->kmem + off, 0, vsize);
1556 
1557 	if (remap_pfn_range(vma, vma->vm_start, physical + vma->vm_pgoff,
1558 			    vsize, vma->vm_page_prot)) {
1559 		mutex_unlock(&rdtgroup_mutex);
1560 		return -EAGAIN;
1561 	}
1562 	vma->vm_ops = &pseudo_mmap_ops;
1563 	mutex_unlock(&rdtgroup_mutex);
1564 	return 0;
1565 }
1566 
1567 static const struct file_operations pseudo_lock_dev_fops = {
1568 	.owner =	THIS_MODULE,
1569 	.read =		NULL,
1570 	.write =	NULL,
1571 	.open =		pseudo_lock_dev_open,
1572 	.release =	pseudo_lock_dev_release,
1573 	.mmap =		pseudo_lock_dev_mmap,
1574 };
1575 
rdt_pseudo_lock_init(void)1576 int rdt_pseudo_lock_init(void)
1577 {
1578 	int ret;
1579 
1580 	ret = register_chrdev(0, "pseudo_lock", &pseudo_lock_dev_fops);
1581 	if (ret < 0)
1582 		return ret;
1583 
1584 	pseudo_lock_major = ret;
1585 
1586 	ret = class_register(&pseudo_lock_class);
1587 	if (ret) {
1588 		unregister_chrdev(pseudo_lock_major, "pseudo_lock");
1589 		return ret;
1590 	}
1591 
1592 	return 0;
1593 }
1594 
rdt_pseudo_lock_release(void)1595 void rdt_pseudo_lock_release(void)
1596 {
1597 	class_unregister(&pseudo_lock_class);
1598 	unregister_chrdev(pseudo_lock_major, "pseudo_lock");
1599 	pseudo_lock_major = 0;
1600 }
1601