1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Resource Director Technology (RDT)
4 *
5 * Pseudo-locking support built on top of Cache Allocation Technology (CAT)
6 *
7 * Copyright (C) 2018 Intel Corporation
8 *
9 * Author: Reinette Chatre <reinette.chatre@intel.com>
10 */
11
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13
14 #include <linux/cpu.h>
15 #include <linux/cpumask.h>
16 #include <linux/debugfs.h>
17 #include <linux/kthread.h>
18 #include <linux/mman.h>
19 #include <linux/perf_event.h>
20 #include <linux/pm_qos.h>
21 #include <linux/slab.h>
22 #include <linux/uaccess.h>
23
24 #include <asm/cacheflush.h>
25 #include <asm/cpu_device_id.h>
26 #include <asm/resctrl.h>
27 #include <asm/perf_event.h>
28
29 #include "../../events/perf_event.h" /* For X86_CONFIG() */
30 #include "internal.h"
31
32 #define CREATE_TRACE_POINTS
33 #include "trace.h"
34
35 /*
36 * The bits needed to disable hardware prefetching varies based on the
37 * platform. During initialization we will discover which bits to use.
38 */
39 static u64 prefetch_disable_bits;
40
41 /*
42 * Major number assigned to and shared by all devices exposing
43 * pseudo-locked regions.
44 */
45 static unsigned int pseudo_lock_major;
46 static unsigned long pseudo_lock_minor_avail = GENMASK(MINORBITS, 0);
47
pseudo_lock_devnode(const struct device * dev,umode_t * mode)48 static char *pseudo_lock_devnode(const struct device *dev, umode_t *mode)
49 {
50 const struct rdtgroup *rdtgrp;
51
52 rdtgrp = dev_get_drvdata(dev);
53 if (mode)
54 *mode = 0600;
55 guard(mutex)(&rdtgroup_mutex);
56 return kasprintf(GFP_KERNEL, "pseudo_lock/%s", rdt_kn_name(rdtgrp->kn));
57 }
58
59 static const struct class pseudo_lock_class = {
60 .name = "pseudo_lock",
61 .devnode = pseudo_lock_devnode,
62 };
63
64 /**
65 * resctrl_arch_get_prefetch_disable_bits - prefetch disable bits of supported
66 * platforms
67 * @void: It takes no parameters.
68 *
69 * Capture the list of platforms that have been validated to support
70 * pseudo-locking. This includes testing to ensure pseudo-locked regions
71 * with low cache miss rates can be created under variety of load conditions
72 * as well as that these pseudo-locked regions can maintain their low cache
73 * miss rates under variety of load conditions for significant lengths of time.
74 *
75 * After a platform has been validated to support pseudo-locking its
76 * hardware prefetch disable bits are included here as they are documented
77 * in the SDM.
78 *
79 * When adding a platform here also add support for its cache events to
80 * resctrl_arch_measure_l*_residency()
81 *
82 * Return:
83 * If platform is supported, the bits to disable hardware prefetchers, 0
84 * if platform is not supported.
85 */
resctrl_arch_get_prefetch_disable_bits(void)86 u64 resctrl_arch_get_prefetch_disable_bits(void)
87 {
88 prefetch_disable_bits = 0;
89
90 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL ||
91 boot_cpu_data.x86 != 6)
92 return 0;
93
94 switch (boot_cpu_data.x86_vfm) {
95 case INTEL_BROADWELL_X:
96 /*
97 * SDM defines bits of MSR_MISC_FEATURE_CONTROL register
98 * as:
99 * 0 L2 Hardware Prefetcher Disable (R/W)
100 * 1 L2 Adjacent Cache Line Prefetcher Disable (R/W)
101 * 2 DCU Hardware Prefetcher Disable (R/W)
102 * 3 DCU IP Prefetcher Disable (R/W)
103 * 63:4 Reserved
104 */
105 prefetch_disable_bits = 0xF;
106 break;
107 case INTEL_ATOM_GOLDMONT:
108 case INTEL_ATOM_GOLDMONT_PLUS:
109 /*
110 * SDM defines bits of MSR_MISC_FEATURE_CONTROL register
111 * as:
112 * 0 L2 Hardware Prefetcher Disable (R/W)
113 * 1 Reserved
114 * 2 DCU Hardware Prefetcher Disable (R/W)
115 * 63:3 Reserved
116 */
117 prefetch_disable_bits = 0x5;
118 break;
119 }
120
121 return prefetch_disable_bits;
122 }
123
124 /**
125 * pseudo_lock_minor_get - Obtain available minor number
126 * @minor: Pointer to where new minor number will be stored
127 *
128 * A bitmask is used to track available minor numbers. Here the next free
129 * minor number is marked as unavailable and returned.
130 *
131 * Return: 0 on success, <0 on failure.
132 */
pseudo_lock_minor_get(unsigned int * minor)133 static int pseudo_lock_minor_get(unsigned int *minor)
134 {
135 unsigned long first_bit;
136
137 first_bit = find_first_bit(&pseudo_lock_minor_avail, MINORBITS);
138
139 if (first_bit == MINORBITS)
140 return -ENOSPC;
141
142 __clear_bit(first_bit, &pseudo_lock_minor_avail);
143 *minor = first_bit;
144
145 return 0;
146 }
147
148 /**
149 * pseudo_lock_minor_release - Return minor number to available
150 * @minor: The minor number made available
151 */
pseudo_lock_minor_release(unsigned int minor)152 static void pseudo_lock_minor_release(unsigned int minor)
153 {
154 __set_bit(minor, &pseudo_lock_minor_avail);
155 }
156
157 /**
158 * region_find_by_minor - Locate a pseudo-lock region by inode minor number
159 * @minor: The minor number of the device representing pseudo-locked region
160 *
161 * When the character device is accessed we need to determine which
162 * pseudo-locked region it belongs to. This is done by matching the minor
163 * number of the device to the pseudo-locked region it belongs.
164 *
165 * Minor numbers are assigned at the time a pseudo-locked region is associated
166 * with a cache instance.
167 *
168 * Return: On success return pointer to resource group owning the pseudo-locked
169 * region, NULL on failure.
170 */
region_find_by_minor(unsigned int minor)171 static struct rdtgroup *region_find_by_minor(unsigned int minor)
172 {
173 struct rdtgroup *rdtgrp, *rdtgrp_match = NULL;
174
175 list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) {
176 if (rdtgrp->plr && rdtgrp->plr->minor == minor) {
177 rdtgrp_match = rdtgrp;
178 break;
179 }
180 }
181 return rdtgrp_match;
182 }
183
184 /**
185 * struct pseudo_lock_pm_req - A power management QoS request list entry
186 * @list: Entry within the @pm_reqs list for a pseudo-locked region
187 * @req: PM QoS request
188 */
189 struct pseudo_lock_pm_req {
190 struct list_head list;
191 struct dev_pm_qos_request req;
192 };
193
pseudo_lock_cstates_relax(struct pseudo_lock_region * plr)194 static void pseudo_lock_cstates_relax(struct pseudo_lock_region *plr)
195 {
196 struct pseudo_lock_pm_req *pm_req, *next;
197
198 list_for_each_entry_safe(pm_req, next, &plr->pm_reqs, list) {
199 dev_pm_qos_remove_request(&pm_req->req);
200 list_del(&pm_req->list);
201 kfree(pm_req);
202 }
203 }
204
205 /**
206 * pseudo_lock_cstates_constrain - Restrict cores from entering C6
207 * @plr: Pseudo-locked region
208 *
209 * To prevent the cache from being affected by power management entering
210 * C6 has to be avoided. This is accomplished by requesting a latency
211 * requirement lower than lowest C6 exit latency of all supported
212 * platforms as found in the cpuidle state tables in the intel_idle driver.
213 * At this time it is possible to do so with a single latency requirement
214 * for all supported platforms.
215 *
216 * Since Goldmont is supported, which is affected by X86_BUG_MONITOR,
217 * the ACPI latencies need to be considered while keeping in mind that C2
218 * may be set to map to deeper sleep states. In this case the latency
219 * requirement needs to prevent entering C2 also.
220 *
221 * Return: 0 on success, <0 on failure
222 */
pseudo_lock_cstates_constrain(struct pseudo_lock_region * plr)223 static int pseudo_lock_cstates_constrain(struct pseudo_lock_region *plr)
224 {
225 struct pseudo_lock_pm_req *pm_req;
226 int cpu;
227 int ret;
228
229 for_each_cpu(cpu, &plr->d->hdr.cpu_mask) {
230 pm_req = kzalloc(sizeof(*pm_req), GFP_KERNEL);
231 if (!pm_req) {
232 rdt_last_cmd_puts("Failure to allocate memory for PM QoS\n");
233 ret = -ENOMEM;
234 goto out_err;
235 }
236 ret = dev_pm_qos_add_request(get_cpu_device(cpu),
237 &pm_req->req,
238 DEV_PM_QOS_RESUME_LATENCY,
239 30);
240 if (ret < 0) {
241 rdt_last_cmd_printf("Failed to add latency req CPU%d\n",
242 cpu);
243 kfree(pm_req);
244 ret = -1;
245 goto out_err;
246 }
247 list_add(&pm_req->list, &plr->pm_reqs);
248 }
249
250 return 0;
251
252 out_err:
253 pseudo_lock_cstates_relax(plr);
254 return ret;
255 }
256
257 /**
258 * pseudo_lock_region_clear - Reset pseudo-lock region data
259 * @plr: pseudo-lock region
260 *
261 * All content of the pseudo-locked region is reset - any memory allocated
262 * freed.
263 *
264 * Return: void
265 */
pseudo_lock_region_clear(struct pseudo_lock_region * plr)266 static void pseudo_lock_region_clear(struct pseudo_lock_region *plr)
267 {
268 plr->size = 0;
269 plr->line_size = 0;
270 kfree(plr->kmem);
271 plr->kmem = NULL;
272 plr->s = NULL;
273 if (plr->d)
274 plr->d->plr = NULL;
275 plr->d = NULL;
276 plr->cbm = 0;
277 plr->debugfs_dir = NULL;
278 }
279
280 /**
281 * pseudo_lock_region_init - Initialize pseudo-lock region information
282 * @plr: pseudo-lock region
283 *
284 * Called after user provided a schemata to be pseudo-locked. From the
285 * schemata the &struct pseudo_lock_region is on entry already initialized
286 * with the resource, domain, and capacity bitmask. Here the information
287 * required for pseudo-locking is deduced from this data and &struct
288 * pseudo_lock_region initialized further. This information includes:
289 * - size in bytes of the region to be pseudo-locked
290 * - cache line size to know the stride with which data needs to be accessed
291 * to be pseudo-locked
292 * - a cpu associated with the cache instance on which the pseudo-locking
293 * flow can be executed
294 *
295 * Return: 0 on success, <0 on failure. Descriptive error will be written
296 * to last_cmd_status buffer.
297 */
pseudo_lock_region_init(struct pseudo_lock_region * plr)298 static int pseudo_lock_region_init(struct pseudo_lock_region *plr)
299 {
300 enum resctrl_scope scope = plr->s->res->ctrl_scope;
301 struct cacheinfo *ci;
302 int ret;
303
304 if (WARN_ON_ONCE(scope != RESCTRL_L2_CACHE && scope != RESCTRL_L3_CACHE))
305 return -ENODEV;
306
307 /* Pick the first cpu we find that is associated with the cache. */
308 plr->cpu = cpumask_first(&plr->d->hdr.cpu_mask);
309
310 if (!cpu_online(plr->cpu)) {
311 rdt_last_cmd_printf("CPU %u associated with cache not online\n",
312 plr->cpu);
313 ret = -ENODEV;
314 goto out_region;
315 }
316
317 ci = get_cpu_cacheinfo_level(plr->cpu, scope);
318 if (ci) {
319 plr->line_size = ci->coherency_line_size;
320 plr->size = rdtgroup_cbm_to_size(plr->s->res, plr->d, plr->cbm);
321 return 0;
322 }
323
324 ret = -1;
325 rdt_last_cmd_puts("Unable to determine cache line size\n");
326 out_region:
327 pseudo_lock_region_clear(plr);
328 return ret;
329 }
330
331 /**
332 * pseudo_lock_init - Initialize a pseudo-lock region
333 * @rdtgrp: resource group to which new pseudo-locked region will belong
334 *
335 * A pseudo-locked region is associated with a resource group. When this
336 * association is created the pseudo-locked region is initialized. The
337 * details of the pseudo-locked region are not known at this time so only
338 * allocation is done and association established.
339 *
340 * Return: 0 on success, <0 on failure
341 */
pseudo_lock_init(struct rdtgroup * rdtgrp)342 static int pseudo_lock_init(struct rdtgroup *rdtgrp)
343 {
344 struct pseudo_lock_region *plr;
345
346 plr = kzalloc(sizeof(*plr), GFP_KERNEL);
347 if (!plr)
348 return -ENOMEM;
349
350 init_waitqueue_head(&plr->lock_thread_wq);
351 INIT_LIST_HEAD(&plr->pm_reqs);
352 rdtgrp->plr = plr;
353 return 0;
354 }
355
356 /**
357 * pseudo_lock_region_alloc - Allocate kernel memory that will be pseudo-locked
358 * @plr: pseudo-lock region
359 *
360 * Initialize the details required to set up the pseudo-locked region and
361 * allocate the contiguous memory that will be pseudo-locked to the cache.
362 *
363 * Return: 0 on success, <0 on failure. Descriptive error will be written
364 * to last_cmd_status buffer.
365 */
pseudo_lock_region_alloc(struct pseudo_lock_region * plr)366 static int pseudo_lock_region_alloc(struct pseudo_lock_region *plr)
367 {
368 int ret;
369
370 ret = pseudo_lock_region_init(plr);
371 if (ret < 0)
372 return ret;
373
374 /*
375 * We do not yet support contiguous regions larger than
376 * KMALLOC_MAX_SIZE.
377 */
378 if (plr->size > KMALLOC_MAX_SIZE) {
379 rdt_last_cmd_puts("Requested region exceeds maximum size\n");
380 ret = -E2BIG;
381 goto out_region;
382 }
383
384 plr->kmem = kzalloc(plr->size, GFP_KERNEL);
385 if (!plr->kmem) {
386 rdt_last_cmd_puts("Unable to allocate memory\n");
387 ret = -ENOMEM;
388 goto out_region;
389 }
390
391 ret = 0;
392 goto out;
393 out_region:
394 pseudo_lock_region_clear(plr);
395 out:
396 return ret;
397 }
398
399 /**
400 * pseudo_lock_free - Free a pseudo-locked region
401 * @rdtgrp: resource group to which pseudo-locked region belonged
402 *
403 * The pseudo-locked region's resources have already been released, or not
404 * yet created at this point. Now it can be freed and disassociated from the
405 * resource group.
406 *
407 * Return: void
408 */
pseudo_lock_free(struct rdtgroup * rdtgrp)409 static void pseudo_lock_free(struct rdtgroup *rdtgrp)
410 {
411 pseudo_lock_region_clear(rdtgrp->plr);
412 kfree(rdtgrp->plr);
413 rdtgrp->plr = NULL;
414 }
415
416 /**
417 * resctrl_arch_pseudo_lock_fn - Load kernel memory into cache
418 * @_plr: the pseudo-lock region descriptor
419 *
420 * This is the core pseudo-locking flow.
421 *
422 * First we ensure that the kernel memory cannot be found in the cache.
423 * Then, while taking care that there will be as little interference as
424 * possible, the memory to be loaded is accessed while core is running
425 * with class of service set to the bitmask of the pseudo-locked region.
426 * After this is complete no future CAT allocations will be allowed to
427 * overlap with this bitmask.
428 *
429 * Local register variables are utilized to ensure that the memory region
430 * to be locked is the only memory access made during the critical locking
431 * loop.
432 *
433 * Return: 0. Waiter on waitqueue will be woken on completion.
434 */
resctrl_arch_pseudo_lock_fn(void * _plr)435 int resctrl_arch_pseudo_lock_fn(void *_plr)
436 {
437 struct pseudo_lock_region *plr = _plr;
438 u32 rmid_p, closid_p;
439 unsigned long i;
440 u64 saved_msr;
441 #ifdef CONFIG_KASAN
442 /*
443 * The registers used for local register variables are also used
444 * when KASAN is active. When KASAN is active we use a regular
445 * variable to ensure we always use a valid pointer, but the cost
446 * is that this variable will enter the cache through evicting the
447 * memory we are trying to lock into the cache. Thus expect lower
448 * pseudo-locking success rate when KASAN is active.
449 */
450 unsigned int line_size;
451 unsigned int size;
452 void *mem_r;
453 #else
454 register unsigned int line_size asm("esi");
455 register unsigned int size asm("edi");
456 register void *mem_r asm(_ASM_BX);
457 #endif /* CONFIG_KASAN */
458
459 /*
460 * Make sure none of the allocated memory is cached. If it is we
461 * will get a cache hit in below loop from outside of pseudo-locked
462 * region.
463 * wbinvd (as opposed to clflush/clflushopt) is required to
464 * increase likelihood that allocated cache portion will be filled
465 * with associated memory.
466 */
467 wbinvd();
468
469 /*
470 * Always called with interrupts enabled. By disabling interrupts
471 * ensure that we will not be preempted during this critical section.
472 */
473 local_irq_disable();
474
475 /*
476 * Call wrmsr and rdmsr as directly as possible to avoid tracing
477 * clobbering local register variables or affecting cache accesses.
478 *
479 * Disable the hardware prefetcher so that when the end of the memory
480 * being pseudo-locked is reached the hardware will not read beyond
481 * the buffer and evict pseudo-locked memory read earlier from the
482 * cache.
483 */
484 saved_msr = __rdmsr(MSR_MISC_FEATURE_CONTROL);
485 __wrmsr(MSR_MISC_FEATURE_CONTROL, prefetch_disable_bits, 0x0);
486 closid_p = this_cpu_read(pqr_state.cur_closid);
487 rmid_p = this_cpu_read(pqr_state.cur_rmid);
488 mem_r = plr->kmem;
489 size = plr->size;
490 line_size = plr->line_size;
491 /*
492 * Critical section begin: start by writing the closid associated
493 * with the capacity bitmask of the cache region being
494 * pseudo-locked followed by reading of kernel memory to load it
495 * into the cache.
496 */
497 __wrmsr(MSR_IA32_PQR_ASSOC, rmid_p, plr->closid);
498
499 /*
500 * Cache was flushed earlier. Now access kernel memory to read it
501 * into cache region associated with just activated plr->closid.
502 * Loop over data twice:
503 * - In first loop the cache region is shared with the page walker
504 * as it populates the paging structure caches (including TLB).
505 * - In the second loop the paging structure caches are used and
506 * cache region is populated with the memory being referenced.
507 */
508 for (i = 0; i < size; i += PAGE_SIZE) {
509 /*
510 * Add a barrier to prevent speculative execution of this
511 * loop reading beyond the end of the buffer.
512 */
513 rmb();
514 asm volatile("mov (%0,%1,1), %%eax\n\t"
515 :
516 : "r" (mem_r), "r" (i)
517 : "%eax", "memory");
518 }
519 for (i = 0; i < size; i += line_size) {
520 /*
521 * Add a barrier to prevent speculative execution of this
522 * loop reading beyond the end of the buffer.
523 */
524 rmb();
525 asm volatile("mov (%0,%1,1), %%eax\n\t"
526 :
527 : "r" (mem_r), "r" (i)
528 : "%eax", "memory");
529 }
530 /*
531 * Critical section end: restore closid with capacity bitmask that
532 * does not overlap with pseudo-locked region.
533 */
534 __wrmsr(MSR_IA32_PQR_ASSOC, rmid_p, closid_p);
535
536 /* Re-enable the hardware prefetcher(s) */
537 wrmsrl(MSR_MISC_FEATURE_CONTROL, saved_msr);
538 local_irq_enable();
539
540 plr->thread_done = 1;
541 wake_up_interruptible(&plr->lock_thread_wq);
542 return 0;
543 }
544
545 /**
546 * rdtgroup_monitor_in_progress - Test if monitoring in progress
547 * @rdtgrp: resource group being queried
548 *
549 * Return: 1 if monitor groups have been created for this resource
550 * group, 0 otherwise.
551 */
rdtgroup_monitor_in_progress(struct rdtgroup * rdtgrp)552 static int rdtgroup_monitor_in_progress(struct rdtgroup *rdtgrp)
553 {
554 return !list_empty(&rdtgrp->mon.crdtgrp_list);
555 }
556
557 /**
558 * rdtgroup_locksetup_user_restrict - Restrict user access to group
559 * @rdtgrp: resource group needing access restricted
560 *
561 * A resource group used for cache pseudo-locking cannot have cpus or tasks
562 * assigned to it. This is communicated to the user by restricting access
563 * to all the files that can be used to make such changes.
564 *
565 * Permissions restored with rdtgroup_locksetup_user_restore()
566 *
567 * Return: 0 on success, <0 on failure. If a failure occurs during the
568 * restriction of access an attempt will be made to restore permissions but
569 * the state of the mode of these files will be uncertain when a failure
570 * occurs.
571 */
rdtgroup_locksetup_user_restrict(struct rdtgroup * rdtgrp)572 static int rdtgroup_locksetup_user_restrict(struct rdtgroup *rdtgrp)
573 {
574 int ret;
575
576 ret = rdtgroup_kn_mode_restrict(rdtgrp, "tasks");
577 if (ret)
578 return ret;
579
580 ret = rdtgroup_kn_mode_restrict(rdtgrp, "cpus");
581 if (ret)
582 goto err_tasks;
583
584 ret = rdtgroup_kn_mode_restrict(rdtgrp, "cpus_list");
585 if (ret)
586 goto err_cpus;
587
588 if (resctrl_arch_mon_capable()) {
589 ret = rdtgroup_kn_mode_restrict(rdtgrp, "mon_groups");
590 if (ret)
591 goto err_cpus_list;
592 }
593
594 ret = 0;
595 goto out;
596
597 err_cpus_list:
598 rdtgroup_kn_mode_restore(rdtgrp, "cpus_list", 0777);
599 err_cpus:
600 rdtgroup_kn_mode_restore(rdtgrp, "cpus", 0777);
601 err_tasks:
602 rdtgroup_kn_mode_restore(rdtgrp, "tasks", 0777);
603 out:
604 return ret;
605 }
606
607 /**
608 * rdtgroup_locksetup_user_restore - Restore user access to group
609 * @rdtgrp: resource group needing access restored
610 *
611 * Restore all file access previously removed using
612 * rdtgroup_locksetup_user_restrict()
613 *
614 * Return: 0 on success, <0 on failure. If a failure occurs during the
615 * restoration of access an attempt will be made to restrict permissions
616 * again but the state of the mode of these files will be uncertain when
617 * a failure occurs.
618 */
rdtgroup_locksetup_user_restore(struct rdtgroup * rdtgrp)619 static int rdtgroup_locksetup_user_restore(struct rdtgroup *rdtgrp)
620 {
621 int ret;
622
623 ret = rdtgroup_kn_mode_restore(rdtgrp, "tasks", 0777);
624 if (ret)
625 return ret;
626
627 ret = rdtgroup_kn_mode_restore(rdtgrp, "cpus", 0777);
628 if (ret)
629 goto err_tasks;
630
631 ret = rdtgroup_kn_mode_restore(rdtgrp, "cpus_list", 0777);
632 if (ret)
633 goto err_cpus;
634
635 if (resctrl_arch_mon_capable()) {
636 ret = rdtgroup_kn_mode_restore(rdtgrp, "mon_groups", 0777);
637 if (ret)
638 goto err_cpus_list;
639 }
640
641 ret = 0;
642 goto out;
643
644 err_cpus_list:
645 rdtgroup_kn_mode_restrict(rdtgrp, "cpus_list");
646 err_cpus:
647 rdtgroup_kn_mode_restrict(rdtgrp, "cpus");
648 err_tasks:
649 rdtgroup_kn_mode_restrict(rdtgrp, "tasks");
650 out:
651 return ret;
652 }
653
654 /**
655 * rdtgroup_locksetup_enter - Resource group enters locksetup mode
656 * @rdtgrp: resource group requested to enter locksetup mode
657 *
658 * A resource group enters locksetup mode to reflect that it would be used
659 * to represent a pseudo-locked region and is in the process of being set
660 * up to do so. A resource group used for a pseudo-locked region would
661 * lose the closid associated with it so we cannot allow it to have any
662 * tasks or cpus assigned nor permit tasks or cpus to be assigned in the
663 * future. Monitoring of a pseudo-locked region is not allowed either.
664 *
665 * The above and more restrictions on a pseudo-locked region are checked
666 * for and enforced before the resource group enters the locksetup mode.
667 *
668 * Returns: 0 if the resource group successfully entered locksetup mode, <0
669 * on failure. On failure the last_cmd_status buffer is updated with text to
670 * communicate details of failure to the user.
671 */
rdtgroup_locksetup_enter(struct rdtgroup * rdtgrp)672 int rdtgroup_locksetup_enter(struct rdtgroup *rdtgrp)
673 {
674 int ret;
675
676 /*
677 * The default resource group can neither be removed nor lose the
678 * default closid associated with it.
679 */
680 if (rdtgrp == &rdtgroup_default) {
681 rdt_last_cmd_puts("Cannot pseudo-lock default group\n");
682 return -EINVAL;
683 }
684
685 /*
686 * Cache Pseudo-locking not supported when CDP is enabled.
687 *
688 * Some things to consider if you would like to enable this
689 * support (using L3 CDP as example):
690 * - When CDP is enabled two separate resources are exposed,
691 * L3DATA and L3CODE, but they are actually on the same cache.
692 * The implication for pseudo-locking is that if a
693 * pseudo-locked region is created on a domain of one
694 * resource (eg. L3CODE), then a pseudo-locked region cannot
695 * be created on that same domain of the other resource
696 * (eg. L3DATA). This is because the creation of a
697 * pseudo-locked region involves a call to wbinvd that will
698 * affect all cache allocations on particular domain.
699 * - Considering the previous, it may be possible to only
700 * expose one of the CDP resources to pseudo-locking and
701 * hide the other. For example, we could consider to only
702 * expose L3DATA and since the L3 cache is unified it is
703 * still possible to place instructions there are execute it.
704 * - If only one region is exposed to pseudo-locking we should
705 * still keep in mind that availability of a portion of cache
706 * for pseudo-locking should take into account both resources.
707 * Similarly, if a pseudo-locked region is created in one
708 * resource, the portion of cache used by it should be made
709 * unavailable to all future allocations from both resources.
710 */
711 if (resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L3) ||
712 resctrl_arch_get_cdp_enabled(RDT_RESOURCE_L2)) {
713 rdt_last_cmd_puts("CDP enabled\n");
714 return -EINVAL;
715 }
716
717 /*
718 * Not knowing the bits to disable prefetching implies that this
719 * platform does not support Cache Pseudo-Locking.
720 */
721 if (resctrl_arch_get_prefetch_disable_bits() == 0) {
722 rdt_last_cmd_puts("Pseudo-locking not supported\n");
723 return -EINVAL;
724 }
725
726 if (rdtgroup_monitor_in_progress(rdtgrp)) {
727 rdt_last_cmd_puts("Monitoring in progress\n");
728 return -EINVAL;
729 }
730
731 if (rdtgroup_tasks_assigned(rdtgrp)) {
732 rdt_last_cmd_puts("Tasks assigned to resource group\n");
733 return -EINVAL;
734 }
735
736 if (!cpumask_empty(&rdtgrp->cpu_mask)) {
737 rdt_last_cmd_puts("CPUs assigned to resource group\n");
738 return -EINVAL;
739 }
740
741 if (rdtgroup_locksetup_user_restrict(rdtgrp)) {
742 rdt_last_cmd_puts("Unable to modify resctrl permissions\n");
743 return -EIO;
744 }
745
746 ret = pseudo_lock_init(rdtgrp);
747 if (ret) {
748 rdt_last_cmd_puts("Unable to init pseudo-lock region\n");
749 goto out_release;
750 }
751
752 /*
753 * If this system is capable of monitoring a rmid would have been
754 * allocated when the control group was created. This is not needed
755 * anymore when this group would be used for pseudo-locking. This
756 * is safe to call on platforms not capable of monitoring.
757 */
758 free_rmid(rdtgrp->closid, rdtgrp->mon.rmid);
759
760 ret = 0;
761 goto out;
762
763 out_release:
764 rdtgroup_locksetup_user_restore(rdtgrp);
765 out:
766 return ret;
767 }
768
769 /**
770 * rdtgroup_locksetup_exit - resource group exist locksetup mode
771 * @rdtgrp: resource group
772 *
773 * When a resource group exits locksetup mode the earlier restrictions are
774 * lifted.
775 *
776 * Return: 0 on success, <0 on failure
777 */
rdtgroup_locksetup_exit(struct rdtgroup * rdtgrp)778 int rdtgroup_locksetup_exit(struct rdtgroup *rdtgrp)
779 {
780 int ret;
781
782 if (resctrl_arch_mon_capable()) {
783 ret = alloc_rmid(rdtgrp->closid);
784 if (ret < 0) {
785 rdt_last_cmd_puts("Out of RMIDs\n");
786 return ret;
787 }
788 rdtgrp->mon.rmid = ret;
789 }
790
791 ret = rdtgroup_locksetup_user_restore(rdtgrp);
792 if (ret) {
793 free_rmid(rdtgrp->closid, rdtgrp->mon.rmid);
794 return ret;
795 }
796
797 pseudo_lock_free(rdtgrp);
798 return 0;
799 }
800
801 /**
802 * rdtgroup_cbm_overlaps_pseudo_locked - Test if CBM or portion is pseudo-locked
803 * @d: RDT domain
804 * @cbm: CBM to test
805 *
806 * @d represents a cache instance and @cbm a capacity bitmask that is
807 * considered for it. Determine if @cbm overlaps with any existing
808 * pseudo-locked region on @d.
809 *
810 * @cbm is unsigned long, even if only 32 bits are used, to make the
811 * bitmap functions work correctly.
812 *
813 * Return: true if @cbm overlaps with pseudo-locked region on @d, false
814 * otherwise.
815 */
rdtgroup_cbm_overlaps_pseudo_locked(struct rdt_ctrl_domain * d,unsigned long cbm)816 bool rdtgroup_cbm_overlaps_pseudo_locked(struct rdt_ctrl_domain *d, unsigned long cbm)
817 {
818 unsigned int cbm_len;
819 unsigned long cbm_b;
820
821 if (d->plr) {
822 cbm_len = d->plr->s->res->cache.cbm_len;
823 cbm_b = d->plr->cbm;
824 if (bitmap_intersects(&cbm, &cbm_b, cbm_len))
825 return true;
826 }
827 return false;
828 }
829
830 /**
831 * rdtgroup_pseudo_locked_in_hierarchy - Pseudo-locked region in cache hierarchy
832 * @d: RDT domain under test
833 *
834 * The setup of a pseudo-locked region affects all cache instances within
835 * the hierarchy of the region. It is thus essential to know if any
836 * pseudo-locked regions exist within a cache hierarchy to prevent any
837 * attempts to create new pseudo-locked regions in the same hierarchy.
838 *
839 * Return: true if a pseudo-locked region exists in the hierarchy of @d or
840 * if it is not possible to test due to memory allocation issue,
841 * false otherwise.
842 */
rdtgroup_pseudo_locked_in_hierarchy(struct rdt_ctrl_domain * d)843 bool rdtgroup_pseudo_locked_in_hierarchy(struct rdt_ctrl_domain *d)
844 {
845 struct rdt_ctrl_domain *d_i;
846 cpumask_var_t cpu_with_psl;
847 struct rdt_resource *r;
848 bool ret = false;
849
850 /* Walking r->domains, ensure it can't race with cpuhp */
851 lockdep_assert_cpus_held();
852
853 if (!zalloc_cpumask_var(&cpu_with_psl, GFP_KERNEL))
854 return true;
855
856 /*
857 * First determine which cpus have pseudo-locked regions
858 * associated with them.
859 */
860 for_each_alloc_capable_rdt_resource(r) {
861 list_for_each_entry(d_i, &r->ctrl_domains, hdr.list) {
862 if (d_i->plr)
863 cpumask_or(cpu_with_psl, cpu_with_psl,
864 &d_i->hdr.cpu_mask);
865 }
866 }
867
868 /*
869 * Next test if new pseudo-locked region would intersect with
870 * existing region.
871 */
872 if (cpumask_intersects(&d->hdr.cpu_mask, cpu_with_psl))
873 ret = true;
874
875 free_cpumask_var(cpu_with_psl);
876 return ret;
877 }
878
879 /**
880 * resctrl_arch_measure_cycles_lat_fn - Measure cycle latency to read
881 * pseudo-locked memory
882 * @_plr: pseudo-lock region to measure
883 *
884 * There is no deterministic way to test if a memory region is cached. One
885 * way is to measure how long it takes to read the memory, the speed of
886 * access is a good way to learn how close to the cpu the data was. Even
887 * more, if the prefetcher is disabled and the memory is read at a stride
888 * of half the cache line, then a cache miss will be easy to spot since the
889 * read of the first half would be significantly slower than the read of
890 * the second half.
891 *
892 * Return: 0. Waiter on waitqueue will be woken on completion.
893 */
resctrl_arch_measure_cycles_lat_fn(void * _plr)894 int resctrl_arch_measure_cycles_lat_fn(void *_plr)
895 {
896 struct pseudo_lock_region *plr = _plr;
897 u32 saved_low, saved_high;
898 unsigned long i;
899 u64 start, end;
900 void *mem_r;
901
902 local_irq_disable();
903 /*
904 * Disable hardware prefetchers.
905 */
906 rdmsr(MSR_MISC_FEATURE_CONTROL, saved_low, saved_high);
907 wrmsr(MSR_MISC_FEATURE_CONTROL, prefetch_disable_bits, 0x0);
908 mem_r = READ_ONCE(plr->kmem);
909 /*
910 * Dummy execute of the time measurement to load the needed
911 * instructions into the L1 instruction cache.
912 */
913 start = rdtsc_ordered();
914 for (i = 0; i < plr->size; i += 32) {
915 start = rdtsc_ordered();
916 asm volatile("mov (%0,%1,1), %%eax\n\t"
917 :
918 : "r" (mem_r), "r" (i)
919 : "%eax", "memory");
920 end = rdtsc_ordered();
921 trace_pseudo_lock_mem_latency((u32)(end - start));
922 }
923 wrmsr(MSR_MISC_FEATURE_CONTROL, saved_low, saved_high);
924 local_irq_enable();
925 plr->thread_done = 1;
926 wake_up_interruptible(&plr->lock_thread_wq);
927 return 0;
928 }
929
930 /*
931 * Create a perf_event_attr for the hit and miss perf events that will
932 * be used during the performance measurement. A perf_event maintains
933 * a pointer to its perf_event_attr so a unique attribute structure is
934 * created for each perf_event.
935 *
936 * The actual configuration of the event is set right before use in order
937 * to use the X86_CONFIG macro.
938 */
939 static struct perf_event_attr perf_miss_attr = {
940 .type = PERF_TYPE_RAW,
941 .size = sizeof(struct perf_event_attr),
942 .pinned = 1,
943 .disabled = 0,
944 .exclude_user = 1,
945 };
946
947 static struct perf_event_attr perf_hit_attr = {
948 .type = PERF_TYPE_RAW,
949 .size = sizeof(struct perf_event_attr),
950 .pinned = 1,
951 .disabled = 0,
952 .exclude_user = 1,
953 };
954
955 struct residency_counts {
956 u64 miss_before, hits_before;
957 u64 miss_after, hits_after;
958 };
959
measure_residency_fn(struct perf_event_attr * miss_attr,struct perf_event_attr * hit_attr,struct pseudo_lock_region * plr,struct residency_counts * counts)960 static int measure_residency_fn(struct perf_event_attr *miss_attr,
961 struct perf_event_attr *hit_attr,
962 struct pseudo_lock_region *plr,
963 struct residency_counts *counts)
964 {
965 u64 hits_before = 0, hits_after = 0, miss_before = 0, miss_after = 0;
966 struct perf_event *miss_event, *hit_event;
967 int hit_pmcnum, miss_pmcnum;
968 u32 saved_low, saved_high;
969 unsigned int line_size;
970 unsigned int size;
971 unsigned long i;
972 void *mem_r;
973 u64 tmp;
974
975 miss_event = perf_event_create_kernel_counter(miss_attr, plr->cpu,
976 NULL, NULL, NULL);
977 if (IS_ERR(miss_event))
978 goto out;
979
980 hit_event = perf_event_create_kernel_counter(hit_attr, plr->cpu,
981 NULL, NULL, NULL);
982 if (IS_ERR(hit_event))
983 goto out_miss;
984
985 local_irq_disable();
986 /*
987 * Check any possible error state of events used by performing
988 * one local read.
989 */
990 if (perf_event_read_local(miss_event, &tmp, NULL, NULL)) {
991 local_irq_enable();
992 goto out_hit;
993 }
994 if (perf_event_read_local(hit_event, &tmp, NULL, NULL)) {
995 local_irq_enable();
996 goto out_hit;
997 }
998
999 /*
1000 * Disable hardware prefetchers.
1001 */
1002 rdmsr(MSR_MISC_FEATURE_CONTROL, saved_low, saved_high);
1003 wrmsr(MSR_MISC_FEATURE_CONTROL, prefetch_disable_bits, 0x0);
1004
1005 /* Initialize rest of local variables */
1006 /*
1007 * Performance event has been validated right before this with
1008 * interrupts disabled - it is thus safe to read the counter index.
1009 */
1010 miss_pmcnum = x86_perf_rdpmc_index(miss_event);
1011 hit_pmcnum = x86_perf_rdpmc_index(hit_event);
1012 line_size = READ_ONCE(plr->line_size);
1013 mem_r = READ_ONCE(plr->kmem);
1014 size = READ_ONCE(plr->size);
1015
1016 /*
1017 * Read counter variables twice - first to load the instructions
1018 * used in L1 cache, second to capture accurate value that does not
1019 * include cache misses incurred because of instruction loads.
1020 */
1021 rdpmcl(hit_pmcnum, hits_before);
1022 rdpmcl(miss_pmcnum, miss_before);
1023 /*
1024 * From SDM: Performing back-to-back fast reads are not guaranteed
1025 * to be monotonic.
1026 * Use LFENCE to ensure all previous instructions are retired
1027 * before proceeding.
1028 */
1029 rmb();
1030 rdpmcl(hit_pmcnum, hits_before);
1031 rdpmcl(miss_pmcnum, miss_before);
1032 /*
1033 * Use LFENCE to ensure all previous instructions are retired
1034 * before proceeding.
1035 */
1036 rmb();
1037 for (i = 0; i < size; i += line_size) {
1038 /*
1039 * Add a barrier to prevent speculative execution of this
1040 * loop reading beyond the end of the buffer.
1041 */
1042 rmb();
1043 asm volatile("mov (%0,%1,1), %%eax\n\t"
1044 :
1045 : "r" (mem_r), "r" (i)
1046 : "%eax", "memory");
1047 }
1048 /*
1049 * Use LFENCE to ensure all previous instructions are retired
1050 * before proceeding.
1051 */
1052 rmb();
1053 rdpmcl(hit_pmcnum, hits_after);
1054 rdpmcl(miss_pmcnum, miss_after);
1055 /*
1056 * Use LFENCE to ensure all previous instructions are retired
1057 * before proceeding.
1058 */
1059 rmb();
1060 /* Re-enable hardware prefetchers */
1061 wrmsr(MSR_MISC_FEATURE_CONTROL, saved_low, saved_high);
1062 local_irq_enable();
1063 out_hit:
1064 perf_event_release_kernel(hit_event);
1065 out_miss:
1066 perf_event_release_kernel(miss_event);
1067 out:
1068 /*
1069 * All counts will be zero on failure.
1070 */
1071 counts->miss_before = miss_before;
1072 counts->hits_before = hits_before;
1073 counts->miss_after = miss_after;
1074 counts->hits_after = hits_after;
1075 return 0;
1076 }
1077
resctrl_arch_measure_l2_residency(void * _plr)1078 int resctrl_arch_measure_l2_residency(void *_plr)
1079 {
1080 struct pseudo_lock_region *plr = _plr;
1081 struct residency_counts counts = {0};
1082
1083 /*
1084 * Non-architectural event for the Goldmont Microarchitecture
1085 * from Intel x86 Architecture Software Developer Manual (SDM):
1086 * MEM_LOAD_UOPS_RETIRED D1H (event number)
1087 * Umask values:
1088 * L2_HIT 02H
1089 * L2_MISS 10H
1090 */
1091 switch (boot_cpu_data.x86_vfm) {
1092 case INTEL_ATOM_GOLDMONT:
1093 case INTEL_ATOM_GOLDMONT_PLUS:
1094 perf_miss_attr.config = X86_CONFIG(.event = 0xd1,
1095 .umask = 0x10);
1096 perf_hit_attr.config = X86_CONFIG(.event = 0xd1,
1097 .umask = 0x2);
1098 break;
1099 default:
1100 goto out;
1101 }
1102
1103 measure_residency_fn(&perf_miss_attr, &perf_hit_attr, plr, &counts);
1104 /*
1105 * If a failure prevented the measurements from succeeding
1106 * tracepoints will still be written and all counts will be zero.
1107 */
1108 trace_pseudo_lock_l2(counts.hits_after - counts.hits_before,
1109 counts.miss_after - counts.miss_before);
1110 out:
1111 plr->thread_done = 1;
1112 wake_up_interruptible(&plr->lock_thread_wq);
1113 return 0;
1114 }
1115
resctrl_arch_measure_l3_residency(void * _plr)1116 int resctrl_arch_measure_l3_residency(void *_plr)
1117 {
1118 struct pseudo_lock_region *plr = _plr;
1119 struct residency_counts counts = {0};
1120
1121 /*
1122 * On Broadwell Microarchitecture the MEM_LOAD_UOPS_RETIRED event
1123 * has two "no fix" errata associated with it: BDM35 and BDM100. On
1124 * this platform the following events are used instead:
1125 * LONGEST_LAT_CACHE 2EH (Documented in SDM)
1126 * REFERENCE 4FH
1127 * MISS 41H
1128 */
1129
1130 switch (boot_cpu_data.x86_vfm) {
1131 case INTEL_BROADWELL_X:
1132 /* On BDW the hit event counts references, not hits */
1133 perf_hit_attr.config = X86_CONFIG(.event = 0x2e,
1134 .umask = 0x4f);
1135 perf_miss_attr.config = X86_CONFIG(.event = 0x2e,
1136 .umask = 0x41);
1137 break;
1138 default:
1139 goto out;
1140 }
1141
1142 measure_residency_fn(&perf_miss_attr, &perf_hit_attr, plr, &counts);
1143 /*
1144 * If a failure prevented the measurements from succeeding
1145 * tracepoints will still be written and all counts will be zero.
1146 */
1147
1148 counts.miss_after -= counts.miss_before;
1149 if (boot_cpu_data.x86_vfm == INTEL_BROADWELL_X) {
1150 /*
1151 * On BDW references and misses are counted, need to adjust.
1152 * Sometimes the "hits" counter is a bit more than the
1153 * references, for example, x references but x + 1 hits.
1154 * To not report invalid hit values in this case we treat
1155 * that as misses equal to references.
1156 */
1157 /* First compute the number of cache references measured */
1158 counts.hits_after -= counts.hits_before;
1159 /* Next convert references to cache hits */
1160 counts.hits_after -= min(counts.miss_after, counts.hits_after);
1161 } else {
1162 counts.hits_after -= counts.hits_before;
1163 }
1164
1165 trace_pseudo_lock_l3(counts.hits_after, counts.miss_after);
1166 out:
1167 plr->thread_done = 1;
1168 wake_up_interruptible(&plr->lock_thread_wq);
1169 return 0;
1170 }
1171
1172 /**
1173 * pseudo_lock_measure_cycles - Trigger latency measure to pseudo-locked region
1174 * @rdtgrp: Resource group to which the pseudo-locked region belongs.
1175 * @sel: Selector of which measurement to perform on a pseudo-locked region.
1176 *
1177 * The measurement of latency to access a pseudo-locked region should be
1178 * done from a cpu that is associated with that pseudo-locked region.
1179 * Determine which cpu is associated with this region and start a thread on
1180 * that cpu to perform the measurement, wait for that thread to complete.
1181 *
1182 * Return: 0 on success, <0 on failure
1183 */
pseudo_lock_measure_cycles(struct rdtgroup * rdtgrp,int sel)1184 static int pseudo_lock_measure_cycles(struct rdtgroup *rdtgrp, int sel)
1185 {
1186 struct pseudo_lock_region *plr = rdtgrp->plr;
1187 struct task_struct *thread;
1188 unsigned int cpu;
1189 int ret = -1;
1190
1191 cpus_read_lock();
1192 mutex_lock(&rdtgroup_mutex);
1193
1194 if (rdtgrp->flags & RDT_DELETED) {
1195 ret = -ENODEV;
1196 goto out;
1197 }
1198
1199 if (!plr->d) {
1200 ret = -ENODEV;
1201 goto out;
1202 }
1203
1204 plr->thread_done = 0;
1205 cpu = cpumask_first(&plr->d->hdr.cpu_mask);
1206 if (!cpu_online(cpu)) {
1207 ret = -ENODEV;
1208 goto out;
1209 }
1210
1211 plr->cpu = cpu;
1212
1213 if (sel == 1)
1214 thread = kthread_run_on_cpu(resctrl_arch_measure_cycles_lat_fn,
1215 plr, cpu, "pseudo_lock_measure/%u");
1216 else if (sel == 2)
1217 thread = kthread_run_on_cpu(resctrl_arch_measure_l2_residency,
1218 plr, cpu, "pseudo_lock_measure/%u");
1219 else if (sel == 3)
1220 thread = kthread_run_on_cpu(resctrl_arch_measure_l3_residency,
1221 plr, cpu, "pseudo_lock_measure/%u");
1222 else
1223 goto out;
1224
1225 if (IS_ERR(thread)) {
1226 ret = PTR_ERR(thread);
1227 goto out;
1228 }
1229
1230 ret = wait_event_interruptible(plr->lock_thread_wq,
1231 plr->thread_done == 1);
1232 if (ret < 0)
1233 goto out;
1234
1235 ret = 0;
1236
1237 out:
1238 mutex_unlock(&rdtgroup_mutex);
1239 cpus_read_unlock();
1240 return ret;
1241 }
1242
pseudo_lock_measure_trigger(struct file * file,const char __user * user_buf,size_t count,loff_t * ppos)1243 static ssize_t pseudo_lock_measure_trigger(struct file *file,
1244 const char __user *user_buf,
1245 size_t count, loff_t *ppos)
1246 {
1247 struct rdtgroup *rdtgrp = file->private_data;
1248 size_t buf_size;
1249 char buf[32];
1250 int ret;
1251 int sel;
1252
1253 buf_size = min(count, (sizeof(buf) - 1));
1254 if (copy_from_user(buf, user_buf, buf_size))
1255 return -EFAULT;
1256
1257 buf[buf_size] = '\0';
1258 ret = kstrtoint(buf, 10, &sel);
1259 if (ret == 0) {
1260 if (sel != 1 && sel != 2 && sel != 3)
1261 return -EINVAL;
1262 ret = debugfs_file_get(file->f_path.dentry);
1263 if (ret)
1264 return ret;
1265 ret = pseudo_lock_measure_cycles(rdtgrp, sel);
1266 if (ret == 0)
1267 ret = count;
1268 debugfs_file_put(file->f_path.dentry);
1269 }
1270
1271 return ret;
1272 }
1273
1274 static const struct file_operations pseudo_measure_fops = {
1275 .write = pseudo_lock_measure_trigger,
1276 .open = simple_open,
1277 .llseek = default_llseek,
1278 };
1279
1280 /**
1281 * rdtgroup_pseudo_lock_create - Create a pseudo-locked region
1282 * @rdtgrp: resource group to which pseudo-lock region belongs
1283 *
1284 * Called when a resource group in the pseudo-locksetup mode receives a
1285 * valid schemata that should be pseudo-locked. Since the resource group is
1286 * in pseudo-locksetup mode the &struct pseudo_lock_region has already been
1287 * allocated and initialized with the essential information. If a failure
1288 * occurs the resource group remains in the pseudo-locksetup mode with the
1289 * &struct pseudo_lock_region associated with it, but cleared from all
1290 * information and ready for the user to re-attempt pseudo-locking by
1291 * writing the schemata again.
1292 *
1293 * Return: 0 if the pseudo-locked region was successfully pseudo-locked, <0
1294 * on failure. Descriptive error will be written to last_cmd_status buffer.
1295 */
rdtgroup_pseudo_lock_create(struct rdtgroup * rdtgrp)1296 int rdtgroup_pseudo_lock_create(struct rdtgroup *rdtgrp)
1297 {
1298 struct pseudo_lock_region *plr = rdtgrp->plr;
1299 struct task_struct *thread;
1300 unsigned int new_minor;
1301 struct device *dev;
1302 char *kn_name __free(kfree) = NULL;
1303 int ret;
1304
1305 ret = pseudo_lock_region_alloc(plr);
1306 if (ret < 0)
1307 return ret;
1308
1309 ret = pseudo_lock_cstates_constrain(plr);
1310 if (ret < 0) {
1311 ret = -EINVAL;
1312 goto out_region;
1313 }
1314 kn_name = kstrdup(rdt_kn_name(rdtgrp->kn), GFP_KERNEL);
1315 if (!kn_name) {
1316 ret = -ENOMEM;
1317 goto out_cstates;
1318 }
1319
1320 plr->thread_done = 0;
1321
1322 thread = kthread_run_on_cpu(resctrl_arch_pseudo_lock_fn, plr,
1323 plr->cpu, "pseudo_lock/%u");
1324 if (IS_ERR(thread)) {
1325 ret = PTR_ERR(thread);
1326 rdt_last_cmd_printf("Locking thread returned error %d\n", ret);
1327 goto out_cstates;
1328 }
1329
1330 ret = wait_event_interruptible(plr->lock_thread_wq,
1331 plr->thread_done == 1);
1332 if (ret < 0) {
1333 /*
1334 * If the thread does not get on the CPU for whatever
1335 * reason and the process which sets up the region is
1336 * interrupted then this will leave the thread in runnable
1337 * state and once it gets on the CPU it will dereference
1338 * the cleared, but not freed, plr struct resulting in an
1339 * empty pseudo-locking loop.
1340 */
1341 rdt_last_cmd_puts("Locking thread interrupted\n");
1342 goto out_cstates;
1343 }
1344
1345 ret = pseudo_lock_minor_get(&new_minor);
1346 if (ret < 0) {
1347 rdt_last_cmd_puts("Unable to obtain a new minor number\n");
1348 goto out_cstates;
1349 }
1350
1351 /*
1352 * Unlock access but do not release the reference. The
1353 * pseudo-locked region will still be here on return.
1354 *
1355 * The mutex has to be released temporarily to avoid a potential
1356 * deadlock with the mm->mmap_lock which is obtained in the
1357 * device_create() and debugfs_create_dir() callpath below as well as
1358 * before the mmap() callback is called.
1359 */
1360 mutex_unlock(&rdtgroup_mutex);
1361
1362 if (!IS_ERR_OR_NULL(debugfs_resctrl)) {
1363 plr->debugfs_dir = debugfs_create_dir(kn_name, debugfs_resctrl);
1364 if (!IS_ERR_OR_NULL(plr->debugfs_dir))
1365 debugfs_create_file("pseudo_lock_measure", 0200,
1366 plr->debugfs_dir, rdtgrp,
1367 &pseudo_measure_fops);
1368 }
1369
1370 dev = device_create(&pseudo_lock_class, NULL,
1371 MKDEV(pseudo_lock_major, new_minor),
1372 rdtgrp, "%s", kn_name);
1373
1374 mutex_lock(&rdtgroup_mutex);
1375
1376 if (IS_ERR(dev)) {
1377 ret = PTR_ERR(dev);
1378 rdt_last_cmd_printf("Failed to create character device: %d\n",
1379 ret);
1380 goto out_debugfs;
1381 }
1382
1383 /* We released the mutex - check if group was removed while we did so */
1384 if (rdtgrp->flags & RDT_DELETED) {
1385 ret = -ENODEV;
1386 goto out_device;
1387 }
1388
1389 plr->minor = new_minor;
1390
1391 rdtgrp->mode = RDT_MODE_PSEUDO_LOCKED;
1392 closid_free(rdtgrp->closid);
1393 rdtgroup_kn_mode_restore(rdtgrp, "cpus", 0444);
1394 rdtgroup_kn_mode_restore(rdtgrp, "cpus_list", 0444);
1395
1396 ret = 0;
1397 goto out;
1398
1399 out_device:
1400 device_destroy(&pseudo_lock_class, MKDEV(pseudo_lock_major, new_minor));
1401 out_debugfs:
1402 debugfs_remove_recursive(plr->debugfs_dir);
1403 pseudo_lock_minor_release(new_minor);
1404 out_cstates:
1405 pseudo_lock_cstates_relax(plr);
1406 out_region:
1407 pseudo_lock_region_clear(plr);
1408 out:
1409 return ret;
1410 }
1411
1412 /**
1413 * rdtgroup_pseudo_lock_remove - Remove a pseudo-locked region
1414 * @rdtgrp: resource group to which the pseudo-locked region belongs
1415 *
1416 * The removal of a pseudo-locked region can be initiated when the resource
1417 * group is removed from user space via a "rmdir" from userspace or the
1418 * unmount of the resctrl filesystem. On removal the resource group does
1419 * not go back to pseudo-locksetup mode before it is removed, instead it is
1420 * removed directly. There is thus asymmetry with the creation where the
1421 * &struct pseudo_lock_region is removed here while it was not created in
1422 * rdtgroup_pseudo_lock_create().
1423 *
1424 * Return: void
1425 */
rdtgroup_pseudo_lock_remove(struct rdtgroup * rdtgrp)1426 void rdtgroup_pseudo_lock_remove(struct rdtgroup *rdtgrp)
1427 {
1428 struct pseudo_lock_region *plr = rdtgrp->plr;
1429
1430 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1431 /*
1432 * Default group cannot be a pseudo-locked region so we can
1433 * free closid here.
1434 */
1435 closid_free(rdtgrp->closid);
1436 goto free;
1437 }
1438
1439 pseudo_lock_cstates_relax(plr);
1440 debugfs_remove_recursive(rdtgrp->plr->debugfs_dir);
1441 device_destroy(&pseudo_lock_class, MKDEV(pseudo_lock_major, plr->minor));
1442 pseudo_lock_minor_release(plr->minor);
1443
1444 free:
1445 pseudo_lock_free(rdtgrp);
1446 }
1447
pseudo_lock_dev_open(struct inode * inode,struct file * filp)1448 static int pseudo_lock_dev_open(struct inode *inode, struct file *filp)
1449 {
1450 struct rdtgroup *rdtgrp;
1451
1452 mutex_lock(&rdtgroup_mutex);
1453
1454 rdtgrp = region_find_by_minor(iminor(inode));
1455 if (!rdtgrp) {
1456 mutex_unlock(&rdtgroup_mutex);
1457 return -ENODEV;
1458 }
1459
1460 filp->private_data = rdtgrp;
1461 atomic_inc(&rdtgrp->waitcount);
1462 /* Perform a non-seekable open - llseek is not supported */
1463 filp->f_mode &= ~(FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE);
1464
1465 mutex_unlock(&rdtgroup_mutex);
1466
1467 return 0;
1468 }
1469
pseudo_lock_dev_release(struct inode * inode,struct file * filp)1470 static int pseudo_lock_dev_release(struct inode *inode, struct file *filp)
1471 {
1472 struct rdtgroup *rdtgrp;
1473
1474 mutex_lock(&rdtgroup_mutex);
1475 rdtgrp = filp->private_data;
1476 WARN_ON(!rdtgrp);
1477 if (!rdtgrp) {
1478 mutex_unlock(&rdtgroup_mutex);
1479 return -ENODEV;
1480 }
1481 filp->private_data = NULL;
1482 atomic_dec(&rdtgrp->waitcount);
1483 mutex_unlock(&rdtgroup_mutex);
1484 return 0;
1485 }
1486
pseudo_lock_dev_mremap(struct vm_area_struct * area)1487 static int pseudo_lock_dev_mremap(struct vm_area_struct *area)
1488 {
1489 /* Not supported */
1490 return -EINVAL;
1491 }
1492
1493 static const struct vm_operations_struct pseudo_mmap_ops = {
1494 .mremap = pseudo_lock_dev_mremap,
1495 };
1496
pseudo_lock_dev_mmap(struct file * filp,struct vm_area_struct * vma)1497 static int pseudo_lock_dev_mmap(struct file *filp, struct vm_area_struct *vma)
1498 {
1499 unsigned long vsize = vma->vm_end - vma->vm_start;
1500 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
1501 struct pseudo_lock_region *plr;
1502 struct rdtgroup *rdtgrp;
1503 unsigned long physical;
1504 unsigned long psize;
1505
1506 mutex_lock(&rdtgroup_mutex);
1507
1508 rdtgrp = filp->private_data;
1509 WARN_ON(!rdtgrp);
1510 if (!rdtgrp) {
1511 mutex_unlock(&rdtgroup_mutex);
1512 return -ENODEV;
1513 }
1514
1515 plr = rdtgrp->plr;
1516
1517 if (!plr->d) {
1518 mutex_unlock(&rdtgroup_mutex);
1519 return -ENODEV;
1520 }
1521
1522 /*
1523 * Task is required to run with affinity to the cpus associated
1524 * with the pseudo-locked region. If this is not the case the task
1525 * may be scheduled elsewhere and invalidate entries in the
1526 * pseudo-locked region.
1527 */
1528 if (!cpumask_subset(current->cpus_ptr, &plr->d->hdr.cpu_mask)) {
1529 mutex_unlock(&rdtgroup_mutex);
1530 return -EINVAL;
1531 }
1532
1533 physical = __pa(plr->kmem) >> PAGE_SHIFT;
1534 psize = plr->size - off;
1535
1536 if (off > plr->size) {
1537 mutex_unlock(&rdtgroup_mutex);
1538 return -ENOSPC;
1539 }
1540
1541 /*
1542 * Ensure changes are carried directly to the memory being mapped,
1543 * do not allow copy-on-write mapping.
1544 */
1545 if (!(vma->vm_flags & VM_SHARED)) {
1546 mutex_unlock(&rdtgroup_mutex);
1547 return -EINVAL;
1548 }
1549
1550 if (vsize > psize) {
1551 mutex_unlock(&rdtgroup_mutex);
1552 return -ENOSPC;
1553 }
1554
1555 memset(plr->kmem + off, 0, vsize);
1556
1557 if (remap_pfn_range(vma, vma->vm_start, physical + vma->vm_pgoff,
1558 vsize, vma->vm_page_prot)) {
1559 mutex_unlock(&rdtgroup_mutex);
1560 return -EAGAIN;
1561 }
1562 vma->vm_ops = &pseudo_mmap_ops;
1563 mutex_unlock(&rdtgroup_mutex);
1564 return 0;
1565 }
1566
1567 static const struct file_operations pseudo_lock_dev_fops = {
1568 .owner = THIS_MODULE,
1569 .read = NULL,
1570 .write = NULL,
1571 .open = pseudo_lock_dev_open,
1572 .release = pseudo_lock_dev_release,
1573 .mmap = pseudo_lock_dev_mmap,
1574 };
1575
rdt_pseudo_lock_init(void)1576 int rdt_pseudo_lock_init(void)
1577 {
1578 int ret;
1579
1580 ret = register_chrdev(0, "pseudo_lock", &pseudo_lock_dev_fops);
1581 if (ret < 0)
1582 return ret;
1583
1584 pseudo_lock_major = ret;
1585
1586 ret = class_register(&pseudo_lock_class);
1587 if (ret) {
1588 unregister_chrdev(pseudo_lock_major, "pseudo_lock");
1589 return ret;
1590 }
1591
1592 return 0;
1593 }
1594
rdt_pseudo_lock_release(void)1595 void rdt_pseudo_lock_release(void)
1596 {
1597 class_unregister(&pseudo_lock_class);
1598 unregister_chrdev(pseudo_lock_major, "pseudo_lock");
1599 pseudo_lock_major = 0;
1600 }
1601