1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // regmap based irq_chip
4 //
5 // Copyright 2011 Wolfson Microelectronics plc
6 //
7 // Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8
9 #include <linux/array_size.h>
10 #include <linux/device.h>
11 #include <linux/export.h>
12 #include <linux/interrupt.h>
13 #include <linux/irq.h>
14 #include <linux/irqdomain.h>
15 #include <linux/overflow.h>
16 #include <linux/pm_runtime.h>
17 #include <linux/regmap.h>
18 #include <linux/slab.h>
19
20 #include "internal.h"
21
22 struct regmap_irq_chip_data {
23 struct mutex lock;
24 struct lock_class_key lock_key;
25 struct irq_chip irq_chip;
26
27 struct regmap *map;
28 const struct regmap_irq_chip *chip;
29
30 int irq_base;
31 struct irq_domain *domain;
32
33 int irq;
34 int wake_count;
35
36 void *status_reg_buf;
37 unsigned int *main_status_buf;
38 unsigned int *status_buf;
39 unsigned int *prev_status_buf;
40 unsigned int *mask_buf;
41 unsigned int *mask_buf_def;
42 unsigned int *wake_buf;
43 unsigned int *type_buf;
44 unsigned int *type_buf_def;
45 unsigned int **config_buf;
46
47 unsigned int irq_reg_stride;
48
49 unsigned int (*get_irq_reg)(struct regmap_irq_chip_data *data,
50 unsigned int base, int index);
51
52 unsigned int clear_status:1;
53 };
54
55 static inline const
irq_to_regmap_irq(struct regmap_irq_chip_data * data,int irq)56 struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data,
57 int irq)
58 {
59 return &data->chip->irqs[irq];
60 }
61
regmap_irq_can_bulk_read_status(struct regmap_irq_chip_data * data)62 static bool regmap_irq_can_bulk_read_status(struct regmap_irq_chip_data *data)
63 {
64 struct regmap *map = data->map;
65
66 /*
67 * While possible that a user-defined ->get_irq_reg() callback might
68 * be linear enough to support bulk reads, most of the time it won't.
69 * Therefore only allow them if the default callback is being used.
70 */
71 return data->irq_reg_stride == 1 && map->reg_stride == 1 &&
72 data->get_irq_reg == regmap_irq_get_irq_reg_linear &&
73 !map->use_single_read;
74 }
75
regmap_irq_lock(struct irq_data * data)76 static void regmap_irq_lock(struct irq_data *data)
77 {
78 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
79
80 mutex_lock(&d->lock);
81 }
82
regmap_irq_sync_unlock(struct irq_data * data)83 static void regmap_irq_sync_unlock(struct irq_data *data)
84 {
85 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
86 struct regmap *map = d->map;
87 int i, j, ret;
88 u32 reg;
89 u32 val;
90
91 if (d->chip->runtime_pm) {
92 ret = pm_runtime_get_sync(map->dev);
93 if (ret < 0)
94 dev_err(map->dev, "IRQ sync failed to resume: %d\n",
95 ret);
96 }
97
98 if (d->clear_status) {
99 for (i = 0; i < d->chip->num_regs; i++) {
100 reg = d->get_irq_reg(d, d->chip->status_base, i);
101
102 ret = regmap_read(map, reg, &val);
103 if (ret)
104 dev_err(d->map->dev,
105 "Failed to clear the interrupt status bits\n");
106 }
107
108 d->clear_status = false;
109 }
110
111 /*
112 * If there's been a change in the mask write it back to the
113 * hardware. We rely on the use of the regmap core cache to
114 * suppress pointless writes.
115 */
116 for (i = 0; i < d->chip->num_regs; i++) {
117 if (d->chip->handle_mask_sync)
118 d->chip->handle_mask_sync(i, d->mask_buf_def[i],
119 d->mask_buf[i],
120 d->chip->irq_drv_data);
121
122 if (d->chip->mask_base && !d->chip->handle_mask_sync) {
123 reg = d->get_irq_reg(d, d->chip->mask_base, i);
124 ret = regmap_update_bits(d->map, reg,
125 d->mask_buf_def[i],
126 d->mask_buf[i]);
127 if (ret)
128 dev_err(d->map->dev, "Failed to sync masks in %x\n", reg);
129 }
130
131 if (d->chip->unmask_base && !d->chip->handle_mask_sync) {
132 reg = d->get_irq_reg(d, d->chip->unmask_base, i);
133 ret = regmap_update_bits(d->map, reg,
134 d->mask_buf_def[i], ~d->mask_buf[i]);
135 if (ret)
136 dev_err(d->map->dev, "Failed to sync masks in %x\n",
137 reg);
138 }
139
140 reg = d->get_irq_reg(d, d->chip->wake_base, i);
141 if (d->wake_buf) {
142 if (d->chip->wake_invert)
143 ret = regmap_update_bits(d->map, reg,
144 d->mask_buf_def[i],
145 ~d->wake_buf[i]);
146 else
147 ret = regmap_update_bits(d->map, reg,
148 d->mask_buf_def[i],
149 d->wake_buf[i]);
150 if (ret != 0)
151 dev_err(d->map->dev,
152 "Failed to sync wakes in %x: %d\n",
153 reg, ret);
154 }
155
156 if (!d->chip->init_ack_masked)
157 continue;
158 /*
159 * Ack all the masked interrupts unconditionally,
160 * OR if there is masked interrupt which hasn't been Acked,
161 * it'll be ignored in irq handler, then may introduce irq storm
162 */
163 if (d->mask_buf[i] && (d->chip->ack_base || d->chip->use_ack)) {
164 reg = d->get_irq_reg(d, d->chip->ack_base, i);
165
166 /* some chips ack by write 0 */
167 if (d->chip->ack_invert)
168 ret = regmap_write(map, reg, ~d->mask_buf[i]);
169 else
170 ret = regmap_write(map, reg, d->mask_buf[i]);
171 if (d->chip->clear_ack) {
172 if (d->chip->ack_invert && !ret)
173 ret = regmap_write(map, reg, UINT_MAX);
174 else if (!ret)
175 ret = regmap_write(map, reg, 0);
176 }
177 if (ret != 0)
178 dev_err(d->map->dev, "Failed to ack 0x%x: %d\n",
179 reg, ret);
180 }
181 }
182
183 for (i = 0; i < d->chip->num_config_bases; i++) {
184 for (j = 0; j < d->chip->num_config_regs; j++) {
185 reg = d->get_irq_reg(d, d->chip->config_base[i], j);
186 ret = regmap_write(map, reg, d->config_buf[i][j]);
187 if (ret)
188 dev_err(d->map->dev,
189 "Failed to write config %x: %d\n",
190 reg, ret);
191 }
192 }
193
194 if (d->chip->runtime_pm)
195 pm_runtime_put(map->dev);
196
197 /* If we've changed our wakeup count propagate it to the parent */
198 if (d->wake_count < 0)
199 for (i = d->wake_count; i < 0; i++)
200 disable_irq_wake(d->irq);
201 else if (d->wake_count > 0)
202 for (i = 0; i < d->wake_count; i++)
203 enable_irq_wake(d->irq);
204
205 d->wake_count = 0;
206
207 mutex_unlock(&d->lock);
208 }
209
regmap_irq_enable(struct irq_data * data)210 static void regmap_irq_enable(struct irq_data *data)
211 {
212 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
213 struct regmap *map = d->map;
214 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
215 unsigned int reg = irq_data->reg_offset / map->reg_stride;
216 unsigned int mask;
217
218 /*
219 * The type_in_mask flag means that the underlying hardware uses
220 * separate mask bits for each interrupt trigger type, but we want
221 * to have a single logical interrupt with a configurable type.
222 *
223 * If the interrupt we're enabling defines any supported types
224 * then instead of using the regular mask bits for this interrupt,
225 * use the value previously written to the type buffer at the
226 * corresponding offset in regmap_irq_set_type().
227 */
228 if (d->chip->type_in_mask && irq_data->type.types_supported)
229 mask = d->type_buf[reg] & irq_data->mask;
230 else
231 mask = irq_data->mask;
232
233 if (d->chip->clear_on_unmask)
234 d->clear_status = true;
235
236 d->mask_buf[reg] &= ~mask;
237 }
238
regmap_irq_disable(struct irq_data * data)239 static void regmap_irq_disable(struct irq_data *data)
240 {
241 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
242 struct regmap *map = d->map;
243 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
244
245 d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask;
246 }
247
regmap_irq_set_type(struct irq_data * data,unsigned int type)248 static int regmap_irq_set_type(struct irq_data *data, unsigned int type)
249 {
250 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
251 struct regmap *map = d->map;
252 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
253 int reg, ret;
254 const struct regmap_irq_type *t = &irq_data->type;
255
256 if ((t->types_supported & type) != type)
257 return 0;
258
259 reg = t->type_reg_offset / map->reg_stride;
260
261 if (d->chip->type_in_mask) {
262 ret = regmap_irq_set_type_config_simple(&d->type_buf, type,
263 irq_data, reg, d->chip->irq_drv_data);
264 if (ret)
265 return ret;
266 }
267
268 if (d->chip->set_type_config) {
269 ret = d->chip->set_type_config(d->config_buf, type, irq_data,
270 reg, d->chip->irq_drv_data);
271 if (ret)
272 return ret;
273 }
274
275 return 0;
276 }
277
regmap_irq_set_wake(struct irq_data * data,unsigned int on)278 static int regmap_irq_set_wake(struct irq_data *data, unsigned int on)
279 {
280 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
281 struct regmap *map = d->map;
282 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
283
284 if (on) {
285 if (d->wake_buf)
286 d->wake_buf[irq_data->reg_offset / map->reg_stride]
287 &= ~irq_data->mask;
288 d->wake_count++;
289 } else {
290 if (d->wake_buf)
291 d->wake_buf[irq_data->reg_offset / map->reg_stride]
292 |= irq_data->mask;
293 d->wake_count--;
294 }
295
296 return 0;
297 }
298
299 static const struct irq_chip regmap_irq_chip = {
300 .irq_bus_lock = regmap_irq_lock,
301 .irq_bus_sync_unlock = regmap_irq_sync_unlock,
302 .irq_disable = regmap_irq_disable,
303 .irq_enable = regmap_irq_enable,
304 .irq_set_type = regmap_irq_set_type,
305 .irq_set_wake = regmap_irq_set_wake,
306 };
307
read_sub_irq_data(struct regmap_irq_chip_data * data,unsigned int b)308 static inline int read_sub_irq_data(struct regmap_irq_chip_data *data,
309 unsigned int b)
310 {
311 const struct regmap_irq_chip *chip = data->chip;
312 const struct regmap_irq_sub_irq_map *subreg;
313 struct regmap *map = data->map;
314 unsigned int reg;
315 int i, ret = 0;
316
317 if (!chip->sub_reg_offsets) {
318 reg = data->get_irq_reg(data, chip->status_base, b);
319 ret = regmap_read(map, reg, &data->status_buf[b]);
320 } else {
321 /*
322 * Note we can't use ->get_irq_reg() here because the offsets
323 * in 'subreg' are *not* interchangeable with indices.
324 */
325 subreg = &chip->sub_reg_offsets[b];
326 for (i = 0; i < subreg->num_regs; i++) {
327 unsigned int offset = subreg->offset[i];
328 unsigned int index = offset / map->reg_stride;
329
330 ret = regmap_read(map, chip->status_base + offset,
331 &data->status_buf[index]);
332 if (ret)
333 break;
334 }
335 }
336 return ret;
337 }
338
read_irq_data(struct regmap_irq_chip_data * data)339 static int read_irq_data(struct regmap_irq_chip_data *data)
340 {
341 const struct regmap_irq_chip *chip = data->chip;
342 struct regmap *map = data->map;
343 int ret, i;
344 u32 reg;
345
346 /*
347 * Read only registers with active IRQs if the chip has 'main status
348 * register'. Else read in the statuses, using a single bulk read if
349 * possible in order to reduce the I/O overheads.
350 */
351
352 if (chip->no_status) {
353 /* no status register so default to all active */
354 memset32(data->status_buf, GENMASK(31, 0), chip->num_regs);
355 } else if (chip->num_main_regs) {
356 unsigned int max_main_bits;
357
358 max_main_bits = (chip->num_main_status_bits) ?
359 chip->num_main_status_bits : chip->num_regs;
360 /* Clear the status buf as we don't read all status regs */
361 memset32(data->status_buf, 0, chip->num_regs);
362
363 /* We could support bulk read for main status registers
364 * but I don't expect to see devices with really many main
365 * status registers so let's only support single reads for the
366 * sake of simplicity. and add bulk reads only if needed
367 */
368 for (i = 0; i < chip->num_main_regs; i++) {
369 reg = data->get_irq_reg(data, chip->main_status, i);
370 ret = regmap_read(map, reg, &data->main_status_buf[i]);
371 if (ret) {
372 dev_err(map->dev, "Failed to read IRQ status %d\n", ret);
373 return ret;
374 }
375 }
376
377 /* Read sub registers with active IRQs */
378 for (i = 0; i < chip->num_main_regs; i++) {
379 unsigned int b;
380 const unsigned long mreg = data->main_status_buf[i];
381
382 for_each_set_bit(b, &mreg, map->format.val_bytes * 8) {
383 if (i * map->format.val_bytes * 8 + b >
384 max_main_bits)
385 break;
386 ret = read_sub_irq_data(data, b);
387
388 if (ret != 0) {
389 dev_err(map->dev, "Failed to read IRQ status %d\n", ret);
390 return ret;
391 }
392 }
393
394 }
395 } else if (regmap_irq_can_bulk_read_status(data)) {
396
397 u8 *buf8 = data->status_reg_buf;
398 u16 *buf16 = data->status_reg_buf;
399 u32 *buf32 = data->status_reg_buf;
400
401 BUG_ON(!data->status_reg_buf);
402
403 ret = regmap_bulk_read(map, chip->status_base,
404 data->status_reg_buf,
405 chip->num_regs);
406 if (ret != 0) {
407 dev_err(map->dev, "Failed to read IRQ status: %d\n", ret);
408 return ret;
409 }
410
411 for (i = 0; i < data->chip->num_regs; i++) {
412 switch (map->format.val_bytes) {
413 case 1:
414 data->status_buf[i] = buf8[i];
415 break;
416 case 2:
417 data->status_buf[i] = buf16[i];
418 break;
419 case 4:
420 data->status_buf[i] = buf32[i];
421 break;
422 default:
423 BUG();
424 return -EIO;
425 }
426 }
427
428 } else {
429 for (i = 0; i < data->chip->num_regs; i++) {
430 unsigned int reg = data->get_irq_reg(data,
431 data->chip->status_base, i);
432 ret = regmap_read(map, reg, &data->status_buf[i]);
433
434 if (ret != 0) {
435 dev_err(map->dev, "Failed to read IRQ status: %d\n", ret);
436 return ret;
437 }
438 }
439 }
440
441 if (chip->status_invert)
442 for (i = 0; i < data->chip->num_regs; i++)
443 data->status_buf[i] = ~data->status_buf[i];
444
445 return 0;
446 }
447
regmap_irq_thread(int irq,void * d)448 static irqreturn_t regmap_irq_thread(int irq, void *d)
449 {
450 struct regmap_irq_chip_data *data = d;
451 const struct regmap_irq_chip *chip = data->chip;
452 struct regmap *map = data->map;
453 int ret, i;
454 bool handled = false;
455 u32 reg;
456
457 if (chip->handle_pre_irq)
458 chip->handle_pre_irq(chip->irq_drv_data);
459
460 if (chip->runtime_pm) {
461 ret = pm_runtime_get_sync(map->dev);
462 if (ret < 0) {
463 dev_err(map->dev, "IRQ thread failed to resume: %d\n", ret);
464 goto exit;
465 }
466 }
467
468 ret = read_irq_data(data);
469 if (ret < 0)
470 goto exit;
471
472 if (chip->status_is_level) {
473 for (i = 0; i < data->chip->num_regs; i++) {
474 unsigned int val = data->status_buf[i];
475
476 data->status_buf[i] ^= data->prev_status_buf[i];
477 data->prev_status_buf[i] = val;
478 }
479 }
480
481 /*
482 * Ignore masked IRQs and ack if we need to; we ack early so
483 * there is no race between handling and acknowledging the
484 * interrupt. We assume that typically few of the interrupts
485 * will fire simultaneously so don't worry about overhead from
486 * doing a write per register.
487 */
488 for (i = 0; i < data->chip->num_regs; i++) {
489 data->status_buf[i] &= ~data->mask_buf[i];
490
491 if (data->status_buf[i] && (chip->ack_base || chip->use_ack)) {
492 reg = data->get_irq_reg(data, data->chip->ack_base, i);
493
494 if (chip->ack_invert)
495 ret = regmap_write(map, reg,
496 ~data->status_buf[i]);
497 else
498 ret = regmap_write(map, reg,
499 data->status_buf[i]);
500 if (chip->clear_ack) {
501 if (chip->ack_invert && !ret)
502 ret = regmap_write(map, reg, UINT_MAX);
503 else if (!ret)
504 ret = regmap_write(map, reg, 0);
505 }
506 if (ret != 0)
507 dev_err(map->dev, "Failed to ack 0x%x: %d\n",
508 reg, ret);
509 }
510 }
511
512 for (i = 0; i < chip->num_irqs; i++) {
513 if (data->status_buf[chip->irqs[i].reg_offset /
514 map->reg_stride] & chip->irqs[i].mask) {
515 handle_nested_irq(irq_find_mapping(data->domain, i));
516 handled = true;
517 }
518 }
519
520 exit:
521 if (chip->handle_post_irq)
522 chip->handle_post_irq(chip->irq_drv_data);
523
524 if (chip->runtime_pm)
525 pm_runtime_put(map->dev);
526
527 if (handled)
528 return IRQ_HANDLED;
529 else
530 return IRQ_NONE;
531 }
532
533 static struct lock_class_key regmap_irq_lock_class;
534 static struct lock_class_key regmap_irq_request_class;
535
regmap_irq_map(struct irq_domain * h,unsigned int virq,irq_hw_number_t hw)536 static int regmap_irq_map(struct irq_domain *h, unsigned int virq,
537 irq_hw_number_t hw)
538 {
539 struct regmap_irq_chip_data *data = h->host_data;
540
541 irq_set_chip_data(virq, data);
542 irq_set_lockdep_class(virq, ®map_irq_lock_class, ®map_irq_request_class);
543 irq_set_chip(virq, &data->irq_chip);
544 irq_set_nested_thread(virq, 1);
545 irq_set_parent(virq, data->irq);
546 irq_set_noprobe(virq);
547
548 return 0;
549 }
550
551 static const struct irq_domain_ops regmap_domain_ops = {
552 .map = regmap_irq_map,
553 .xlate = irq_domain_xlate_onetwocell,
554 };
555
556 /**
557 * regmap_irq_get_irq_reg_linear() - Linear IRQ register mapping callback.
558 * @data: Data for the &struct regmap_irq_chip
559 * @base: Base register
560 * @index: Register index
561 *
562 * Returns the register address corresponding to the given @base and @index
563 * by the formula ``base + index * regmap_stride * irq_reg_stride``.
564 */
regmap_irq_get_irq_reg_linear(struct regmap_irq_chip_data * data,unsigned int base,int index)565 unsigned int regmap_irq_get_irq_reg_linear(struct regmap_irq_chip_data *data,
566 unsigned int base, int index)
567 {
568 struct regmap *map = data->map;
569
570 return base + index * map->reg_stride * data->irq_reg_stride;
571 }
572 EXPORT_SYMBOL_GPL(regmap_irq_get_irq_reg_linear);
573
574 /**
575 * regmap_irq_set_type_config_simple() - Simple IRQ type configuration callback.
576 * @buf: Buffer containing configuration register values, this is a 2D array of
577 * `num_config_bases` rows, each of `num_config_regs` elements.
578 * @type: The requested IRQ type.
579 * @irq_data: The IRQ being configured.
580 * @idx: Index of the irq's config registers within each array `buf[i]`
581 * @irq_drv_data: Driver specific IRQ data
582 *
583 * This is a &struct regmap_irq_chip->set_type_config callback suitable for
584 * chips with one config register. Register values are updated according to
585 * the &struct regmap_irq_type data associated with an IRQ.
586 */
regmap_irq_set_type_config_simple(unsigned int ** buf,unsigned int type,const struct regmap_irq * irq_data,int idx,void * irq_drv_data)587 int regmap_irq_set_type_config_simple(unsigned int **buf, unsigned int type,
588 const struct regmap_irq *irq_data,
589 int idx, void *irq_drv_data)
590 {
591 const struct regmap_irq_type *t = &irq_data->type;
592
593 if (t->type_reg_mask)
594 buf[0][idx] &= ~t->type_reg_mask;
595 else
596 buf[0][idx] &= ~(t->type_falling_val |
597 t->type_rising_val |
598 t->type_level_low_val |
599 t->type_level_high_val);
600
601 switch (type) {
602 case IRQ_TYPE_EDGE_FALLING:
603 buf[0][idx] |= t->type_falling_val;
604 break;
605
606 case IRQ_TYPE_EDGE_RISING:
607 buf[0][idx] |= t->type_rising_val;
608 break;
609
610 case IRQ_TYPE_EDGE_BOTH:
611 buf[0][idx] |= (t->type_falling_val |
612 t->type_rising_val);
613 break;
614
615 case IRQ_TYPE_LEVEL_HIGH:
616 buf[0][idx] |= t->type_level_high_val;
617 break;
618
619 case IRQ_TYPE_LEVEL_LOW:
620 buf[0][idx] |= t->type_level_low_val;
621 break;
622
623 default:
624 return -EINVAL;
625 }
626
627 return 0;
628 }
629 EXPORT_SYMBOL_GPL(regmap_irq_set_type_config_simple);
630
regmap_irq_create_domain(struct fwnode_handle * fwnode,int irq_base,const struct regmap_irq_chip * chip,struct regmap_irq_chip_data * d)631 static int regmap_irq_create_domain(struct fwnode_handle *fwnode, int irq_base,
632 const struct regmap_irq_chip *chip,
633 struct regmap_irq_chip_data *d)
634 {
635 struct irq_domain_info info = {
636 .fwnode = fwnode,
637 .size = chip->num_irqs,
638 .hwirq_max = chip->num_irqs,
639 .virq_base = irq_base,
640 .ops = ®map_domain_ops,
641 .host_data = d,
642 .name_suffix = chip->domain_suffix,
643 };
644
645 d->domain = irq_domain_instantiate(&info);
646 if (IS_ERR(d->domain)) {
647 dev_err(d->map->dev, "Failed to create IRQ domain\n");
648 return PTR_ERR(d->domain);
649 }
650
651 return 0;
652 }
653
654
655 /**
656 * regmap_add_irq_chip_fwnode() - Use standard regmap IRQ controller handling
657 *
658 * @fwnode: The firmware node where the IRQ domain should be added to.
659 * @map: The regmap for the device.
660 * @irq: The IRQ the device uses to signal interrupts.
661 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
662 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
663 * @chip: Configuration for the interrupt controller.
664 * @data: Runtime data structure for the controller, allocated on success.
665 *
666 * Returns 0 on success or an errno on failure.
667 *
668 * In order for this to be efficient the chip really should use a
669 * register cache. The chip driver is responsible for restoring the
670 * register values used by the IRQ controller over suspend and resume.
671 */
regmap_add_irq_chip_fwnode(struct fwnode_handle * fwnode,struct regmap * map,int irq,int irq_flags,int irq_base,const struct regmap_irq_chip * chip,struct regmap_irq_chip_data ** data)672 int regmap_add_irq_chip_fwnode(struct fwnode_handle *fwnode,
673 struct regmap *map, int irq,
674 int irq_flags, int irq_base,
675 const struct regmap_irq_chip *chip,
676 struct regmap_irq_chip_data **data)
677 {
678 struct regmap_irq_chip_data *d;
679 int i;
680 int ret = -ENOMEM;
681 u32 reg;
682
683 if (chip->num_regs <= 0)
684 return -EINVAL;
685
686 if (chip->clear_on_unmask && (chip->ack_base || chip->use_ack))
687 return -EINVAL;
688
689 if (chip->mask_base && chip->unmask_base && !chip->mask_unmask_non_inverted)
690 return -EINVAL;
691
692 for (i = 0; i < chip->num_irqs; i++) {
693 if (chip->irqs[i].reg_offset % map->reg_stride)
694 return -EINVAL;
695 if (chip->irqs[i].reg_offset / map->reg_stride >=
696 chip->num_regs)
697 return -EINVAL;
698 }
699
700 if (irq_base) {
701 irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0);
702 if (irq_base < 0) {
703 dev_warn(map->dev, "Failed to allocate IRQs: %d\n",
704 irq_base);
705 return irq_base;
706 }
707 }
708
709 d = kzalloc(sizeof(*d), GFP_KERNEL);
710 if (!d)
711 return -ENOMEM;
712
713 if (chip->num_main_regs) {
714 d->main_status_buf = kcalloc(chip->num_main_regs,
715 sizeof(*d->main_status_buf),
716 GFP_KERNEL);
717
718 if (!d->main_status_buf)
719 goto err_alloc;
720 }
721
722 d->status_buf = kcalloc(chip->num_regs, sizeof(*d->status_buf),
723 GFP_KERNEL);
724 if (!d->status_buf)
725 goto err_alloc;
726
727 if (chip->status_is_level) {
728 d->prev_status_buf = kcalloc(chip->num_regs, sizeof(*d->prev_status_buf),
729 GFP_KERNEL);
730 if (!d->prev_status_buf)
731 goto err_alloc;
732 }
733
734 d->mask_buf = kcalloc(chip->num_regs, sizeof(*d->mask_buf),
735 GFP_KERNEL);
736 if (!d->mask_buf)
737 goto err_alloc;
738
739 d->mask_buf_def = kcalloc(chip->num_regs, sizeof(*d->mask_buf_def),
740 GFP_KERNEL);
741 if (!d->mask_buf_def)
742 goto err_alloc;
743
744 if (chip->wake_base) {
745 d->wake_buf = kcalloc(chip->num_regs, sizeof(*d->wake_buf),
746 GFP_KERNEL);
747 if (!d->wake_buf)
748 goto err_alloc;
749 }
750
751 if (chip->type_in_mask) {
752 d->type_buf_def = kcalloc(chip->num_regs,
753 sizeof(*d->type_buf_def), GFP_KERNEL);
754 if (!d->type_buf_def)
755 goto err_alloc;
756
757 d->type_buf = kcalloc(chip->num_regs, sizeof(*d->type_buf), GFP_KERNEL);
758 if (!d->type_buf)
759 goto err_alloc;
760 }
761
762 if (chip->num_config_bases && chip->num_config_regs) {
763 /*
764 * Create config_buf[num_config_bases][num_config_regs]
765 */
766 d->config_buf = kcalloc(chip->num_config_bases,
767 sizeof(*d->config_buf), GFP_KERNEL);
768 if (!d->config_buf)
769 goto err_alloc;
770
771 for (i = 0; i < chip->num_config_bases; i++) {
772 d->config_buf[i] = kcalloc(chip->num_config_regs,
773 sizeof(**d->config_buf),
774 GFP_KERNEL);
775 if (!d->config_buf[i])
776 goto err_alloc;
777 }
778 }
779
780 d->irq_chip = regmap_irq_chip;
781 d->irq_chip.name = chip->name;
782 d->irq = irq;
783 d->map = map;
784 d->chip = chip;
785 d->irq_base = irq_base;
786
787 if (chip->irq_reg_stride)
788 d->irq_reg_stride = chip->irq_reg_stride;
789 else
790 d->irq_reg_stride = 1;
791
792 if (chip->get_irq_reg)
793 d->get_irq_reg = chip->get_irq_reg;
794 else
795 d->get_irq_reg = regmap_irq_get_irq_reg_linear;
796
797 if (regmap_irq_can_bulk_read_status(d)) {
798 d->status_reg_buf = kmalloc_array(chip->num_regs,
799 map->format.val_bytes,
800 GFP_KERNEL);
801 if (!d->status_reg_buf)
802 goto err_alloc;
803 }
804
805 /*
806 * If one regmap-irq is the parent of another then we'll try
807 * to lock the child with the parent locked, use an explicit
808 * lock_key so lockdep can figure out what's going on.
809 */
810 lockdep_register_key(&d->lock_key);
811 mutex_init_with_key(&d->lock, &d->lock_key);
812
813 for (i = 0; i < chip->num_irqs; i++)
814 d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride]
815 |= chip->irqs[i].mask;
816
817 /* Mask all the interrupts by default */
818 for (i = 0; i < chip->num_regs; i++) {
819 d->mask_buf[i] = d->mask_buf_def[i];
820
821 if (chip->handle_mask_sync) {
822 ret = chip->handle_mask_sync(i, d->mask_buf_def[i],
823 d->mask_buf[i],
824 chip->irq_drv_data);
825 if (ret)
826 goto err_mutex;
827 }
828
829 if (chip->mask_base && !chip->handle_mask_sync) {
830 reg = d->get_irq_reg(d, chip->mask_base, i);
831 ret = regmap_update_bits(d->map, reg,
832 d->mask_buf_def[i],
833 d->mask_buf[i]);
834 if (ret) {
835 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
836 reg, ret);
837 goto err_mutex;
838 }
839 }
840
841 if (chip->unmask_base && !chip->handle_mask_sync) {
842 reg = d->get_irq_reg(d, chip->unmask_base, i);
843 ret = regmap_update_bits(d->map, reg,
844 d->mask_buf_def[i], ~d->mask_buf[i]);
845 if (ret) {
846 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
847 reg, ret);
848 goto err_mutex;
849 }
850 }
851
852 if (!chip->init_ack_masked)
853 continue;
854
855 /* Ack masked but set interrupts */
856 if (d->chip->no_status) {
857 /* no status register so default to all active */
858 d->status_buf[i] = UINT_MAX;
859 } else {
860 reg = d->get_irq_reg(d, d->chip->status_base, i);
861 ret = regmap_read(map, reg, &d->status_buf[i]);
862 if (ret != 0) {
863 dev_err(map->dev, "Failed to read IRQ status: %d\n",
864 ret);
865 goto err_mutex;
866 }
867 }
868
869 if (chip->status_invert)
870 d->status_buf[i] = ~d->status_buf[i];
871
872 if (d->status_buf[i] && (chip->ack_base || chip->use_ack)) {
873 reg = d->get_irq_reg(d, d->chip->ack_base, i);
874 if (chip->ack_invert)
875 ret = regmap_write(map, reg,
876 ~(d->status_buf[i] & d->mask_buf[i]));
877 else
878 ret = regmap_write(map, reg,
879 d->status_buf[i] & d->mask_buf[i]);
880 if (chip->clear_ack) {
881 if (chip->ack_invert && !ret)
882 ret = regmap_write(map, reg, UINT_MAX);
883 else if (!ret)
884 ret = regmap_write(map, reg, 0);
885 }
886 if (ret != 0) {
887 dev_err(map->dev, "Failed to ack 0x%x: %d\n",
888 reg, ret);
889 goto err_mutex;
890 }
891 }
892 }
893
894 /* Wake is disabled by default */
895 if (d->wake_buf) {
896 for (i = 0; i < chip->num_regs; i++) {
897 d->wake_buf[i] = d->mask_buf_def[i];
898 reg = d->get_irq_reg(d, d->chip->wake_base, i);
899
900 if (chip->wake_invert)
901 ret = regmap_update_bits(d->map, reg,
902 d->mask_buf_def[i],
903 0);
904 else
905 ret = regmap_update_bits(d->map, reg,
906 d->mask_buf_def[i],
907 d->wake_buf[i]);
908 if (ret != 0) {
909 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
910 reg, ret);
911 goto err_mutex;
912 }
913 }
914 }
915
916 /* Store current levels */
917 if (chip->status_is_level) {
918 ret = read_irq_data(d);
919 if (ret < 0)
920 goto err_mutex;
921
922 memcpy(d->prev_status_buf, d->status_buf,
923 array_size(d->chip->num_regs, sizeof(d->prev_status_buf[0])));
924 }
925
926 ret = regmap_irq_create_domain(fwnode, irq_base, chip, d);
927 if (ret)
928 goto err_mutex;
929
930 ret = request_threaded_irq(irq, NULL, regmap_irq_thread,
931 irq_flags | IRQF_ONESHOT,
932 chip->name, d);
933 if (ret != 0) {
934 dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n",
935 irq, chip->name, ret);
936 goto err_domain;
937 }
938
939 *data = d;
940
941 return 0;
942
943 err_domain:
944 /* Should really dispose of the domain but... */
945 err_mutex:
946 mutex_destroy(&d->lock);
947 lockdep_unregister_key(&d->lock_key);
948 err_alloc:
949 kfree(d->type_buf);
950 kfree(d->type_buf_def);
951 kfree(d->wake_buf);
952 kfree(d->mask_buf_def);
953 kfree(d->mask_buf);
954 kfree(d->main_status_buf);
955 kfree(d->status_buf);
956 kfree(d->prev_status_buf);
957 kfree(d->status_reg_buf);
958 if (d->config_buf) {
959 for (i = 0; i < chip->num_config_bases; i++)
960 kfree(d->config_buf[i]);
961 kfree(d->config_buf);
962 }
963 kfree(d);
964 return ret;
965 }
966 EXPORT_SYMBOL_GPL(regmap_add_irq_chip_fwnode);
967
968 /**
969 * regmap_add_irq_chip() - Use standard regmap IRQ controller handling
970 *
971 * @map: The regmap for the device.
972 * @irq: The IRQ the device uses to signal interrupts.
973 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
974 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
975 * @chip: Configuration for the interrupt controller.
976 * @data: Runtime data structure for the controller, allocated on success.
977 *
978 * Returns 0 on success or an errno on failure.
979 *
980 * This is the same as regmap_add_irq_chip_fwnode, except that the firmware
981 * node of the regmap is used.
982 */
regmap_add_irq_chip(struct regmap * map,int irq,int irq_flags,int irq_base,const struct regmap_irq_chip * chip,struct regmap_irq_chip_data ** data)983 int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags,
984 int irq_base, const struct regmap_irq_chip *chip,
985 struct regmap_irq_chip_data **data)
986 {
987 return regmap_add_irq_chip_fwnode(dev_fwnode(map->dev), map, irq,
988 irq_flags, irq_base, chip, data);
989 }
990 EXPORT_SYMBOL_GPL(regmap_add_irq_chip);
991
992 /**
993 * regmap_del_irq_chip() - Stop interrupt handling for a regmap IRQ chip
994 *
995 * @irq: Primary IRQ for the device
996 * @d: ®map_irq_chip_data allocated by regmap_add_irq_chip()
997 *
998 * This function also disposes of all mapped IRQs on the chip.
999 */
regmap_del_irq_chip(int irq,struct regmap_irq_chip_data * d)1000 void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d)
1001 {
1002 unsigned int virq;
1003 int i, hwirq;
1004
1005 if (!d)
1006 return;
1007
1008 free_irq(irq, d);
1009
1010 /* Dispose all virtual irq from irq domain before removing it */
1011 for (hwirq = 0; hwirq < d->chip->num_irqs; hwirq++) {
1012 /* Ignore hwirq if holes in the IRQ list */
1013 if (!d->chip->irqs[hwirq].mask)
1014 continue;
1015
1016 /*
1017 * Find the virtual irq of hwirq on chip and if it is
1018 * there then dispose it
1019 */
1020 virq = irq_find_mapping(d->domain, hwirq);
1021 if (virq)
1022 irq_dispose_mapping(virq);
1023 }
1024
1025 irq_domain_remove(d->domain);
1026 kfree(d->type_buf);
1027 kfree(d->type_buf_def);
1028 kfree(d->wake_buf);
1029 kfree(d->mask_buf_def);
1030 kfree(d->mask_buf);
1031 kfree(d->main_status_buf);
1032 kfree(d->status_reg_buf);
1033 kfree(d->status_buf);
1034 kfree(d->prev_status_buf);
1035 if (d->config_buf) {
1036 for (i = 0; i < d->chip->num_config_bases; i++)
1037 kfree(d->config_buf[i]);
1038 kfree(d->config_buf);
1039 }
1040 mutex_destroy(&d->lock);
1041 lockdep_unregister_key(&d->lock_key);
1042 kfree(d);
1043 }
1044 EXPORT_SYMBOL_GPL(regmap_del_irq_chip);
1045
devm_regmap_irq_chip_release(struct device * dev,void * res)1046 static void devm_regmap_irq_chip_release(struct device *dev, void *res)
1047 {
1048 struct regmap_irq_chip_data *d = *(struct regmap_irq_chip_data **)res;
1049
1050 regmap_del_irq_chip(d->irq, d);
1051 }
1052
devm_regmap_irq_chip_match(struct device * dev,void * res,void * data)1053 static int devm_regmap_irq_chip_match(struct device *dev, void *res, void *data)
1054
1055 {
1056 struct regmap_irq_chip_data **r = res;
1057
1058 if (!r || !*r) {
1059 WARN_ON(!r || !*r);
1060 return 0;
1061 }
1062 return *r == data;
1063 }
1064
1065 /**
1066 * devm_regmap_add_irq_chip_fwnode() - Resource managed regmap_add_irq_chip_fwnode()
1067 *
1068 * @dev: The device pointer on which irq_chip belongs to.
1069 * @fwnode: The firmware node where the IRQ domain should be added to.
1070 * @map: The regmap for the device.
1071 * @irq: The IRQ the device uses to signal interrupts
1072 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
1073 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
1074 * @chip: Configuration for the interrupt controller.
1075 * @data: Runtime data structure for the controller, allocated on success
1076 *
1077 * Returns 0 on success or an errno on failure.
1078 *
1079 * The ®map_irq_chip_data will be automatically released when the device is
1080 * unbound.
1081 */
devm_regmap_add_irq_chip_fwnode(struct device * dev,struct fwnode_handle * fwnode,struct regmap * map,int irq,int irq_flags,int irq_base,const struct regmap_irq_chip * chip,struct regmap_irq_chip_data ** data)1082 int devm_regmap_add_irq_chip_fwnode(struct device *dev,
1083 struct fwnode_handle *fwnode,
1084 struct regmap *map, int irq,
1085 int irq_flags, int irq_base,
1086 const struct regmap_irq_chip *chip,
1087 struct regmap_irq_chip_data **data)
1088 {
1089 struct regmap_irq_chip_data **ptr, *d;
1090 int ret;
1091
1092 ptr = devres_alloc(devm_regmap_irq_chip_release, sizeof(*ptr),
1093 GFP_KERNEL);
1094 if (!ptr)
1095 return -ENOMEM;
1096
1097 ret = regmap_add_irq_chip_fwnode(fwnode, map, irq, irq_flags, irq_base,
1098 chip, &d);
1099 if (ret < 0) {
1100 devres_free(ptr);
1101 return ret;
1102 }
1103
1104 *ptr = d;
1105 devres_add(dev, ptr);
1106 *data = d;
1107 return 0;
1108 }
1109 EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip_fwnode);
1110
1111 /**
1112 * devm_regmap_add_irq_chip() - Resource managed regmap_add_irq_chip()
1113 *
1114 * @dev: The device pointer on which irq_chip belongs to.
1115 * @map: The regmap for the device.
1116 * @irq: The IRQ the device uses to signal interrupts
1117 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
1118 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
1119 * @chip: Configuration for the interrupt controller.
1120 * @data: Runtime data structure for the controller, allocated on success
1121 *
1122 * Returns 0 on success or an errno on failure.
1123 *
1124 * The ®map_irq_chip_data will be automatically released when the device is
1125 * unbound.
1126 */
devm_regmap_add_irq_chip(struct device * dev,struct regmap * map,int irq,int irq_flags,int irq_base,const struct regmap_irq_chip * chip,struct regmap_irq_chip_data ** data)1127 int devm_regmap_add_irq_chip(struct device *dev, struct regmap *map, int irq,
1128 int irq_flags, int irq_base,
1129 const struct regmap_irq_chip *chip,
1130 struct regmap_irq_chip_data **data)
1131 {
1132 return devm_regmap_add_irq_chip_fwnode(dev, dev_fwnode(map->dev), map,
1133 irq, irq_flags, irq_base, chip,
1134 data);
1135 }
1136 EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip);
1137
1138 /**
1139 * devm_regmap_del_irq_chip() - Resource managed regmap_del_irq_chip()
1140 *
1141 * @dev: Device for which the resource was allocated.
1142 * @irq: Primary IRQ for the device.
1143 * @data: ®map_irq_chip_data allocated by regmap_add_irq_chip().
1144 *
1145 * A resource managed version of regmap_del_irq_chip().
1146 */
devm_regmap_del_irq_chip(struct device * dev,int irq,struct regmap_irq_chip_data * data)1147 void devm_regmap_del_irq_chip(struct device *dev, int irq,
1148 struct regmap_irq_chip_data *data)
1149 {
1150 int rc;
1151
1152 WARN_ON(irq != data->irq);
1153 rc = devres_release(dev, devm_regmap_irq_chip_release,
1154 devm_regmap_irq_chip_match, data);
1155
1156 if (rc != 0)
1157 WARN_ON(rc);
1158 }
1159 EXPORT_SYMBOL_GPL(devm_regmap_del_irq_chip);
1160
1161 /**
1162 * regmap_irq_chip_get_base() - Retrieve interrupt base for a regmap IRQ chip
1163 *
1164 * @data: regmap irq controller to operate on.
1165 *
1166 * Useful for drivers to request their own IRQs.
1167 */
regmap_irq_chip_get_base(struct regmap_irq_chip_data * data)1168 int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data)
1169 {
1170 WARN_ON(!data->irq_base);
1171 return data->irq_base;
1172 }
1173 EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base);
1174
1175 /**
1176 * regmap_irq_get_virq() - Map an interrupt on a chip to a virtual IRQ
1177 *
1178 * @data: regmap irq controller to operate on.
1179 * @irq: index of the interrupt requested in the chip IRQs.
1180 *
1181 * Useful for drivers to request their own IRQs.
1182 */
regmap_irq_get_virq(struct regmap_irq_chip_data * data,int irq)1183 int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq)
1184 {
1185 /* Handle holes in the IRQ list */
1186 if (!data->chip->irqs[irq].mask)
1187 return -EINVAL;
1188
1189 return irq_create_mapping(data->domain, irq);
1190 }
1191 EXPORT_SYMBOL_GPL(regmap_irq_get_virq);
1192
1193 /**
1194 * regmap_irq_get_domain() - Retrieve the irq_domain for the chip
1195 *
1196 * @data: regmap_irq controller to operate on.
1197 *
1198 * Useful for drivers to request their own IRQs and for integration
1199 * with subsystems. For ease of integration NULL is accepted as a
1200 * domain, allowing devices to just call this even if no domain is
1201 * allocated.
1202 */
regmap_irq_get_domain(struct regmap_irq_chip_data * data)1203 struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data)
1204 {
1205 if (data)
1206 return data->domain;
1207 else
1208 return NULL;
1209 }
1210 EXPORT_SYMBOL_GPL(regmap_irq_get_domain);
1211