xref: /linux/drivers/base/regmap/regmap-irq.c (revision 21a1f198273806a20ef0c3c89721617c7dd76ece)
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // regmap based irq_chip
4 //
5 // Copyright 2011 Wolfson Microelectronics plc
6 //
7 // Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8 
9 #include <linux/array_size.h>
10 #include <linux/device.h>
11 #include <linux/export.h>
12 #include <linux/interrupt.h>
13 #include <linux/irq.h>
14 #include <linux/irqdomain.h>
15 #include <linux/overflow.h>
16 #include <linux/pm_runtime.h>
17 #include <linux/regmap.h>
18 #include <linux/slab.h>
19 
20 #include "internal.h"
21 
22 struct regmap_irq_chip_data {
23 	struct mutex lock;
24 	struct lock_class_key lock_key;
25 	struct irq_chip irq_chip;
26 
27 	struct regmap *map;
28 	const struct regmap_irq_chip *chip;
29 
30 	int irq_base;
31 	struct irq_domain *domain;
32 
33 	int irq;
34 	int wake_count;
35 
36 	void *status_reg_buf;
37 	unsigned int *main_status_buf;
38 	unsigned int *status_buf;
39 	unsigned int *prev_status_buf;
40 	unsigned int *mask_buf;
41 	unsigned int *mask_buf_def;
42 	unsigned int *wake_buf;
43 	unsigned int *type_buf;
44 	unsigned int *type_buf_def;
45 	unsigned int **config_buf;
46 
47 	unsigned int irq_reg_stride;
48 
49 	unsigned int (*get_irq_reg)(struct regmap_irq_chip_data *data,
50 				    unsigned int base, int index);
51 
52 	unsigned int clear_status:1;
53 };
54 
55 static inline const
irq_to_regmap_irq(struct regmap_irq_chip_data * data,int irq)56 struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data,
57 				     int irq)
58 {
59 	return &data->chip->irqs[irq];
60 }
61 
regmap_irq_can_bulk_read_status(struct regmap_irq_chip_data * data)62 static bool regmap_irq_can_bulk_read_status(struct regmap_irq_chip_data *data)
63 {
64 	struct regmap *map = data->map;
65 
66 	/*
67 	 * While possible that a user-defined ->get_irq_reg() callback might
68 	 * be linear enough to support bulk reads, most of the time it won't.
69 	 * Therefore only allow them if the default callback is being used.
70 	 */
71 	return data->irq_reg_stride == 1 && map->reg_stride == 1 &&
72 	       data->get_irq_reg == regmap_irq_get_irq_reg_linear &&
73 	       !map->use_single_read;
74 }
75 
regmap_irq_lock(struct irq_data * data)76 static void regmap_irq_lock(struct irq_data *data)
77 {
78 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
79 
80 	mutex_lock(&d->lock);
81 }
82 
regmap_irq_sync_unlock(struct irq_data * data)83 static void regmap_irq_sync_unlock(struct irq_data *data)
84 {
85 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
86 	struct regmap *map = d->map;
87 	int i, j, ret;
88 	u32 reg;
89 	u32 val;
90 
91 	if (d->chip->runtime_pm) {
92 		ret = pm_runtime_get_sync(map->dev);
93 		if (ret < 0)
94 			dev_err(map->dev, "IRQ sync failed to resume: %d\n",
95 				ret);
96 	}
97 
98 	if (d->clear_status) {
99 		for (i = 0; i < d->chip->num_regs; i++) {
100 			reg = d->get_irq_reg(d, d->chip->status_base, i);
101 
102 			ret = regmap_read(map, reg, &val);
103 			if (ret)
104 				dev_err(d->map->dev,
105 					"Failed to clear the interrupt status bits\n");
106 		}
107 
108 		d->clear_status = false;
109 	}
110 
111 	/*
112 	 * If there's been a change in the mask write it back to the
113 	 * hardware.  We rely on the use of the regmap core cache to
114 	 * suppress pointless writes.
115 	 */
116 	for (i = 0; i < d->chip->num_regs; i++) {
117 		if (d->chip->handle_mask_sync)
118 			d->chip->handle_mask_sync(i, d->mask_buf_def[i],
119 						  d->mask_buf[i],
120 						  d->chip->irq_drv_data);
121 
122 		if (d->chip->mask_base && !d->chip->handle_mask_sync) {
123 			reg = d->get_irq_reg(d, d->chip->mask_base, i);
124 			ret = regmap_update_bits(d->map, reg,
125 						 d->mask_buf_def[i],
126 						 d->mask_buf[i]);
127 			if (ret)
128 				dev_err(d->map->dev, "Failed to sync masks in %x\n", reg);
129 		}
130 
131 		if (d->chip->unmask_base && !d->chip->handle_mask_sync) {
132 			reg = d->get_irq_reg(d, d->chip->unmask_base, i);
133 			ret = regmap_update_bits(d->map, reg,
134 					d->mask_buf_def[i], ~d->mask_buf[i]);
135 			if (ret)
136 				dev_err(d->map->dev, "Failed to sync masks in %x\n",
137 					reg);
138 		}
139 
140 		reg = d->get_irq_reg(d, d->chip->wake_base, i);
141 		if (d->wake_buf) {
142 			if (d->chip->wake_invert)
143 				ret = regmap_update_bits(d->map, reg,
144 							 d->mask_buf_def[i],
145 							 ~d->wake_buf[i]);
146 			else
147 				ret = regmap_update_bits(d->map, reg,
148 							 d->mask_buf_def[i],
149 							 d->wake_buf[i]);
150 			if (ret != 0)
151 				dev_err(d->map->dev,
152 					"Failed to sync wakes in %x: %d\n",
153 					reg, ret);
154 		}
155 
156 		if (!d->chip->init_ack_masked)
157 			continue;
158 		/*
159 		 * Ack all the masked interrupts unconditionally,
160 		 * OR if there is masked interrupt which hasn't been Acked,
161 		 * it'll be ignored in irq handler, then may introduce irq storm
162 		 */
163 		if (d->mask_buf[i] && (d->chip->ack_base || d->chip->use_ack)) {
164 			reg = d->get_irq_reg(d, d->chip->ack_base, i);
165 
166 			/* some chips ack by write 0 */
167 			if (d->chip->ack_invert)
168 				ret = regmap_write(map, reg, ~d->mask_buf[i]);
169 			else
170 				ret = regmap_write(map, reg, d->mask_buf[i]);
171 			if (d->chip->clear_ack) {
172 				if (d->chip->ack_invert && !ret)
173 					ret = regmap_write(map, reg, UINT_MAX);
174 				else if (!ret)
175 					ret = regmap_write(map, reg, 0);
176 			}
177 			if (ret != 0)
178 				dev_err(d->map->dev, "Failed to ack 0x%x: %d\n",
179 					reg, ret);
180 		}
181 	}
182 
183 	for (i = 0; i < d->chip->num_config_bases; i++) {
184 		for (j = 0; j < d->chip->num_config_regs; j++) {
185 			reg = d->get_irq_reg(d, d->chip->config_base[i], j);
186 			ret = regmap_write(map, reg, d->config_buf[i][j]);
187 			if (ret)
188 				dev_err(d->map->dev,
189 					"Failed to write config %x: %d\n",
190 					reg, ret);
191 		}
192 	}
193 
194 	if (d->chip->runtime_pm)
195 		pm_runtime_put(map->dev);
196 
197 	/* If we've changed our wakeup count propagate it to the parent */
198 	if (d->wake_count < 0)
199 		for (i = d->wake_count; i < 0; i++)
200 			disable_irq_wake(d->irq);
201 	else if (d->wake_count > 0)
202 		for (i = 0; i < d->wake_count; i++)
203 			enable_irq_wake(d->irq);
204 
205 	d->wake_count = 0;
206 
207 	mutex_unlock(&d->lock);
208 }
209 
regmap_irq_enable(struct irq_data * data)210 static void regmap_irq_enable(struct irq_data *data)
211 {
212 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
213 	struct regmap *map = d->map;
214 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
215 	unsigned int reg = irq_data->reg_offset / map->reg_stride;
216 	unsigned int mask;
217 
218 	/*
219 	 * The type_in_mask flag means that the underlying hardware uses
220 	 * separate mask bits for each interrupt trigger type, but we want
221 	 * to have a single logical interrupt with a configurable type.
222 	 *
223 	 * If the interrupt we're enabling defines any supported types
224 	 * then instead of using the regular mask bits for this interrupt,
225 	 * use the value previously written to the type buffer at the
226 	 * corresponding offset in regmap_irq_set_type().
227 	 */
228 	if (d->chip->type_in_mask && irq_data->type.types_supported)
229 		mask = d->type_buf[reg] & irq_data->mask;
230 	else
231 		mask = irq_data->mask;
232 
233 	if (d->chip->clear_on_unmask)
234 		d->clear_status = true;
235 
236 	d->mask_buf[reg] &= ~mask;
237 }
238 
regmap_irq_disable(struct irq_data * data)239 static void regmap_irq_disable(struct irq_data *data)
240 {
241 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
242 	struct regmap *map = d->map;
243 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
244 
245 	d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask;
246 }
247 
regmap_irq_set_type(struct irq_data * data,unsigned int type)248 static int regmap_irq_set_type(struct irq_data *data, unsigned int type)
249 {
250 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
251 	struct regmap *map = d->map;
252 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
253 	int reg, ret;
254 	const struct regmap_irq_type *t = &irq_data->type;
255 
256 	if ((t->types_supported & type) != type)
257 		return 0;
258 
259 	reg = t->type_reg_offset / map->reg_stride;
260 
261 	if (d->chip->type_in_mask) {
262 		ret = regmap_irq_set_type_config_simple(&d->type_buf, type,
263 							irq_data, reg, d->chip->irq_drv_data);
264 		if (ret)
265 			return ret;
266 	}
267 
268 	if (d->chip->set_type_config) {
269 		ret = d->chip->set_type_config(d->config_buf, type, irq_data,
270 					       reg, d->chip->irq_drv_data);
271 		if (ret)
272 			return ret;
273 	}
274 
275 	return 0;
276 }
277 
regmap_irq_set_wake(struct irq_data * data,unsigned int on)278 static int regmap_irq_set_wake(struct irq_data *data, unsigned int on)
279 {
280 	struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
281 	struct regmap *map = d->map;
282 	const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
283 
284 	if (on) {
285 		if (d->wake_buf)
286 			d->wake_buf[irq_data->reg_offset / map->reg_stride]
287 				&= ~irq_data->mask;
288 		d->wake_count++;
289 	} else {
290 		if (d->wake_buf)
291 			d->wake_buf[irq_data->reg_offset / map->reg_stride]
292 				|= irq_data->mask;
293 		d->wake_count--;
294 	}
295 
296 	return 0;
297 }
298 
299 static const struct irq_chip regmap_irq_chip = {
300 	.irq_bus_lock		= regmap_irq_lock,
301 	.irq_bus_sync_unlock	= regmap_irq_sync_unlock,
302 	.irq_disable		= regmap_irq_disable,
303 	.irq_enable		= regmap_irq_enable,
304 	.irq_set_type		= regmap_irq_set_type,
305 	.irq_set_wake		= regmap_irq_set_wake,
306 };
307 
read_sub_irq_data(struct regmap_irq_chip_data * data,unsigned int b)308 static inline int read_sub_irq_data(struct regmap_irq_chip_data *data,
309 					   unsigned int b)
310 {
311 	const struct regmap_irq_chip *chip = data->chip;
312 	const struct regmap_irq_sub_irq_map *subreg;
313 	struct regmap *map = data->map;
314 	unsigned int reg;
315 	int i, ret = 0;
316 
317 	if (!chip->sub_reg_offsets) {
318 		reg = data->get_irq_reg(data, chip->status_base, b);
319 		ret = regmap_read(map, reg, &data->status_buf[b]);
320 	} else {
321 		/*
322 		 * Note we can't use ->get_irq_reg() here because the offsets
323 		 * in 'subreg' are *not* interchangeable with indices.
324 		 */
325 		subreg = &chip->sub_reg_offsets[b];
326 		for (i = 0; i < subreg->num_regs; i++) {
327 			unsigned int offset = subreg->offset[i];
328 			unsigned int index = offset / map->reg_stride;
329 
330 			ret = regmap_read(map, chip->status_base + offset,
331 					  &data->status_buf[index]);
332 			if (ret)
333 				break;
334 		}
335 	}
336 	return ret;
337 }
338 
read_irq_data(struct regmap_irq_chip_data * data)339 static int read_irq_data(struct regmap_irq_chip_data *data)
340 {
341 	const struct regmap_irq_chip *chip = data->chip;
342 	struct regmap *map = data->map;
343 	int ret, i;
344 	u32 reg;
345 
346 	/*
347 	 * Read only registers with active IRQs if the chip has 'main status
348 	 * register'. Else read in the statuses, using a single bulk read if
349 	 * possible in order to reduce the I/O overheads.
350 	 */
351 
352 	if (chip->no_status) {
353 		/* no status register so default to all active */
354 		memset32(data->status_buf, GENMASK(31, 0), chip->num_regs);
355 	} else if (chip->num_main_regs) {
356 		unsigned int max_main_bits;
357 
358 		max_main_bits = (chip->num_main_status_bits) ?
359 				 chip->num_main_status_bits : chip->num_regs;
360 		/* Clear the status buf as we don't read all status regs */
361 		memset32(data->status_buf, 0, chip->num_regs);
362 
363 		/* We could support bulk read for main status registers
364 		 * but I don't expect to see devices with really many main
365 		 * status registers so let's only support single reads for the
366 		 * sake of simplicity. and add bulk reads only if needed
367 		 */
368 		for (i = 0; i < chip->num_main_regs; i++) {
369 			reg = data->get_irq_reg(data, chip->main_status, i);
370 			ret = regmap_read(map, reg, &data->main_status_buf[i]);
371 			if (ret) {
372 				dev_err(map->dev, "Failed to read IRQ status %d\n", ret);
373 				return ret;
374 			}
375 		}
376 
377 		/* Read sub registers with active IRQs */
378 		for (i = 0; i < chip->num_main_regs; i++) {
379 			unsigned int b;
380 			const unsigned long mreg = data->main_status_buf[i];
381 
382 			for_each_set_bit(b, &mreg, map->format.val_bytes * 8) {
383 				if (i * map->format.val_bytes * 8 + b >
384 				    max_main_bits)
385 					break;
386 				ret = read_sub_irq_data(data, b);
387 
388 				if (ret != 0) {
389 					dev_err(map->dev, "Failed to read IRQ status %d\n", ret);
390 					return ret;
391 				}
392 			}
393 
394 		}
395 	} else if (regmap_irq_can_bulk_read_status(data)) {
396 
397 		u8 *buf8 = data->status_reg_buf;
398 		u16 *buf16 = data->status_reg_buf;
399 		u32 *buf32 = data->status_reg_buf;
400 
401 		BUG_ON(!data->status_reg_buf);
402 
403 		ret = regmap_bulk_read(map, chip->status_base,
404 				       data->status_reg_buf,
405 				       chip->num_regs);
406 		if (ret != 0) {
407 			dev_err(map->dev, "Failed to read IRQ status: %d\n", ret);
408 			return ret;
409 		}
410 
411 		for (i = 0; i < data->chip->num_regs; i++) {
412 			switch (map->format.val_bytes) {
413 			case 1:
414 				data->status_buf[i] = buf8[i];
415 				break;
416 			case 2:
417 				data->status_buf[i] = buf16[i];
418 				break;
419 			case 4:
420 				data->status_buf[i] = buf32[i];
421 				break;
422 			default:
423 				BUG();
424 				return -EIO;
425 			}
426 		}
427 
428 	} else {
429 		for (i = 0; i < data->chip->num_regs; i++) {
430 			unsigned int reg = data->get_irq_reg(data,
431 					data->chip->status_base, i);
432 			ret = regmap_read(map, reg, &data->status_buf[i]);
433 
434 			if (ret != 0) {
435 				dev_err(map->dev, "Failed to read IRQ status: %d\n", ret);
436 				return ret;
437 			}
438 		}
439 	}
440 
441 	if (chip->status_invert)
442 		for (i = 0; i < data->chip->num_regs; i++)
443 			data->status_buf[i] = ~data->status_buf[i];
444 
445 	return 0;
446 }
447 
regmap_irq_thread(int irq,void * d)448 static irqreturn_t regmap_irq_thread(int irq, void *d)
449 {
450 	struct regmap_irq_chip_data *data = d;
451 	const struct regmap_irq_chip *chip = data->chip;
452 	struct regmap *map = data->map;
453 	int ret, i;
454 	bool handled = false;
455 	u32 reg;
456 
457 	if (chip->handle_pre_irq)
458 		chip->handle_pre_irq(chip->irq_drv_data);
459 
460 	if (chip->runtime_pm) {
461 		ret = pm_runtime_get_sync(map->dev);
462 		if (ret < 0) {
463 			dev_err(map->dev, "IRQ thread failed to resume: %d\n", ret);
464 			goto exit;
465 		}
466 	}
467 
468 	ret = read_irq_data(data);
469 	if (ret < 0)
470 		goto exit;
471 
472 	if (chip->status_is_level) {
473 		for (i = 0; i < data->chip->num_regs; i++) {
474 			unsigned int val = data->status_buf[i];
475 
476 			data->status_buf[i] ^= data->prev_status_buf[i];
477 			data->prev_status_buf[i] = val;
478 		}
479 	}
480 
481 	/*
482 	 * Ignore masked IRQs and ack if we need to; we ack early so
483 	 * there is no race between handling and acknowledging the
484 	 * interrupt.  We assume that typically few of the interrupts
485 	 * will fire simultaneously so don't worry about overhead from
486 	 * doing a write per register.
487 	 */
488 	for (i = 0; i < data->chip->num_regs; i++) {
489 		data->status_buf[i] &= ~data->mask_buf[i];
490 
491 		if (data->status_buf[i] && (chip->ack_base || chip->use_ack)) {
492 			reg = data->get_irq_reg(data, data->chip->ack_base, i);
493 
494 			if (chip->ack_invert)
495 				ret = regmap_write(map, reg,
496 						~data->status_buf[i]);
497 			else
498 				ret = regmap_write(map, reg,
499 						data->status_buf[i]);
500 			if (chip->clear_ack) {
501 				if (chip->ack_invert && !ret)
502 					ret = regmap_write(map, reg, UINT_MAX);
503 				else if (!ret)
504 					ret = regmap_write(map, reg, 0);
505 			}
506 			if (ret != 0)
507 				dev_err(map->dev, "Failed to ack 0x%x: %d\n",
508 					reg, ret);
509 		}
510 	}
511 
512 	for (i = 0; i < chip->num_irqs; i++) {
513 		if (data->status_buf[chip->irqs[i].reg_offset /
514 				     map->reg_stride] & chip->irqs[i].mask) {
515 			handle_nested_irq(irq_find_mapping(data->domain, i));
516 			handled = true;
517 		}
518 	}
519 
520 exit:
521 	if (chip->handle_post_irq)
522 		chip->handle_post_irq(chip->irq_drv_data);
523 
524 	if (chip->runtime_pm)
525 		pm_runtime_put(map->dev);
526 
527 	if (handled)
528 		return IRQ_HANDLED;
529 	else
530 		return IRQ_NONE;
531 }
532 
533 static struct lock_class_key regmap_irq_lock_class;
534 static struct lock_class_key regmap_irq_request_class;
535 
regmap_irq_map(struct irq_domain * h,unsigned int virq,irq_hw_number_t hw)536 static int regmap_irq_map(struct irq_domain *h, unsigned int virq,
537 			  irq_hw_number_t hw)
538 {
539 	struct regmap_irq_chip_data *data = h->host_data;
540 
541 	irq_set_chip_data(virq, data);
542 	irq_set_lockdep_class(virq, &regmap_irq_lock_class, &regmap_irq_request_class);
543 	irq_set_chip(virq, &data->irq_chip);
544 	irq_set_nested_thread(virq, 1);
545 	irq_set_parent(virq, data->irq);
546 	irq_set_noprobe(virq);
547 
548 	return 0;
549 }
550 
551 static const struct irq_domain_ops regmap_domain_ops = {
552 	.map	= regmap_irq_map,
553 	.xlate	= irq_domain_xlate_onetwocell,
554 };
555 
556 /**
557  * regmap_irq_get_irq_reg_linear() - Linear IRQ register mapping callback.
558  * @data: Data for the &struct regmap_irq_chip
559  * @base: Base register
560  * @index: Register index
561  *
562  * Returns the register address corresponding to the given @base and @index
563  * by the formula ``base + index * regmap_stride * irq_reg_stride``.
564  */
regmap_irq_get_irq_reg_linear(struct regmap_irq_chip_data * data,unsigned int base,int index)565 unsigned int regmap_irq_get_irq_reg_linear(struct regmap_irq_chip_data *data,
566 					   unsigned int base, int index)
567 {
568 	struct regmap *map = data->map;
569 
570 	return base + index * map->reg_stride * data->irq_reg_stride;
571 }
572 EXPORT_SYMBOL_GPL(regmap_irq_get_irq_reg_linear);
573 
574 /**
575  * regmap_irq_set_type_config_simple() - Simple IRQ type configuration callback.
576  * @buf: Buffer containing configuration register values, this is a 2D array of
577  *       `num_config_bases` rows, each of `num_config_regs` elements.
578  * @type: The requested IRQ type.
579  * @irq_data: The IRQ being configured.
580  * @idx: Index of the irq's config registers within each array `buf[i]`
581  * @irq_drv_data: Driver specific IRQ data
582  *
583  * This is a &struct regmap_irq_chip->set_type_config callback suitable for
584  * chips with one config register. Register values are updated according to
585  * the &struct regmap_irq_type data associated with an IRQ.
586  */
regmap_irq_set_type_config_simple(unsigned int ** buf,unsigned int type,const struct regmap_irq * irq_data,int idx,void * irq_drv_data)587 int regmap_irq_set_type_config_simple(unsigned int **buf, unsigned int type,
588 				      const struct regmap_irq *irq_data,
589 				      int idx, void *irq_drv_data)
590 {
591 	const struct regmap_irq_type *t = &irq_data->type;
592 
593 	if (t->type_reg_mask)
594 		buf[0][idx] &= ~t->type_reg_mask;
595 	else
596 		buf[0][idx] &= ~(t->type_falling_val |
597 				 t->type_rising_val |
598 				 t->type_level_low_val |
599 				 t->type_level_high_val);
600 
601 	switch (type) {
602 	case IRQ_TYPE_EDGE_FALLING:
603 		buf[0][idx] |= t->type_falling_val;
604 		break;
605 
606 	case IRQ_TYPE_EDGE_RISING:
607 		buf[0][idx] |= t->type_rising_val;
608 		break;
609 
610 	case IRQ_TYPE_EDGE_BOTH:
611 		buf[0][idx] |= (t->type_falling_val |
612 				t->type_rising_val);
613 		break;
614 
615 	case IRQ_TYPE_LEVEL_HIGH:
616 		buf[0][idx] |= t->type_level_high_val;
617 		break;
618 
619 	case IRQ_TYPE_LEVEL_LOW:
620 		buf[0][idx] |= t->type_level_low_val;
621 		break;
622 
623 	default:
624 		return -EINVAL;
625 	}
626 
627 	return 0;
628 }
629 EXPORT_SYMBOL_GPL(regmap_irq_set_type_config_simple);
630 
regmap_irq_create_domain(struct fwnode_handle * fwnode,int irq_base,const struct regmap_irq_chip * chip,struct regmap_irq_chip_data * d)631 static int regmap_irq_create_domain(struct fwnode_handle *fwnode, int irq_base,
632 				    const struct regmap_irq_chip *chip,
633 				    struct regmap_irq_chip_data *d)
634 {
635 	struct irq_domain_info info = {
636 		.fwnode = fwnode,
637 		.size = chip->num_irqs,
638 		.hwirq_max = chip->num_irqs,
639 		.virq_base = irq_base,
640 		.ops = &regmap_domain_ops,
641 		.host_data = d,
642 		.name_suffix = chip->domain_suffix,
643 	};
644 
645 	d->domain = irq_domain_instantiate(&info);
646 	if (IS_ERR(d->domain)) {
647 		dev_err(d->map->dev, "Failed to create IRQ domain\n");
648 		return PTR_ERR(d->domain);
649 	}
650 
651 	return 0;
652 }
653 
654 
655 /**
656  * regmap_add_irq_chip_fwnode() - Use standard regmap IRQ controller handling
657  *
658  * @fwnode: The firmware node where the IRQ domain should be added to.
659  * @map: The regmap for the device.
660  * @irq: The IRQ the device uses to signal interrupts.
661  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
662  * @irq_base: Allocate at specific IRQ number if irq_base > 0.
663  * @chip: Configuration for the interrupt controller.
664  * @data: Runtime data structure for the controller, allocated on success.
665  *
666  * Returns 0 on success or an errno on failure.
667  *
668  * In order for this to be efficient the chip really should use a
669  * register cache.  The chip driver is responsible for restoring the
670  * register values used by the IRQ controller over suspend and resume.
671  */
regmap_add_irq_chip_fwnode(struct fwnode_handle * fwnode,struct regmap * map,int irq,int irq_flags,int irq_base,const struct regmap_irq_chip * chip,struct regmap_irq_chip_data ** data)672 int regmap_add_irq_chip_fwnode(struct fwnode_handle *fwnode,
673 			       struct regmap *map, int irq,
674 			       int irq_flags, int irq_base,
675 			       const struct regmap_irq_chip *chip,
676 			       struct regmap_irq_chip_data **data)
677 {
678 	struct regmap_irq_chip_data *d;
679 	int i;
680 	int ret = -ENOMEM;
681 	u32 reg;
682 
683 	if (chip->num_regs <= 0)
684 		return -EINVAL;
685 
686 	if (chip->clear_on_unmask && (chip->ack_base || chip->use_ack))
687 		return -EINVAL;
688 
689 	if (chip->mask_base && chip->unmask_base && !chip->mask_unmask_non_inverted)
690 		return -EINVAL;
691 
692 	for (i = 0; i < chip->num_irqs; i++) {
693 		if (chip->irqs[i].reg_offset % map->reg_stride)
694 			return -EINVAL;
695 		if (chip->irqs[i].reg_offset / map->reg_stride >=
696 		    chip->num_regs)
697 			return -EINVAL;
698 	}
699 
700 	if (irq_base) {
701 		irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0);
702 		if (irq_base < 0) {
703 			dev_warn(map->dev, "Failed to allocate IRQs: %d\n",
704 				 irq_base);
705 			return irq_base;
706 		}
707 	}
708 
709 	d = kzalloc(sizeof(*d), GFP_KERNEL);
710 	if (!d)
711 		return -ENOMEM;
712 
713 	if (chip->num_main_regs) {
714 		d->main_status_buf = kcalloc(chip->num_main_regs,
715 					     sizeof(*d->main_status_buf),
716 					     GFP_KERNEL);
717 
718 		if (!d->main_status_buf)
719 			goto err_alloc;
720 	}
721 
722 	d->status_buf = kcalloc(chip->num_regs, sizeof(*d->status_buf),
723 				GFP_KERNEL);
724 	if (!d->status_buf)
725 		goto err_alloc;
726 
727 	if (chip->status_is_level) {
728 		d->prev_status_buf = kcalloc(chip->num_regs, sizeof(*d->prev_status_buf),
729 					     GFP_KERNEL);
730 		if (!d->prev_status_buf)
731 			goto err_alloc;
732 	}
733 
734 	d->mask_buf = kcalloc(chip->num_regs, sizeof(*d->mask_buf),
735 			      GFP_KERNEL);
736 	if (!d->mask_buf)
737 		goto err_alloc;
738 
739 	d->mask_buf_def = kcalloc(chip->num_regs, sizeof(*d->mask_buf_def),
740 				  GFP_KERNEL);
741 	if (!d->mask_buf_def)
742 		goto err_alloc;
743 
744 	if (chip->wake_base) {
745 		d->wake_buf = kcalloc(chip->num_regs, sizeof(*d->wake_buf),
746 				      GFP_KERNEL);
747 		if (!d->wake_buf)
748 			goto err_alloc;
749 	}
750 
751 	if (chip->type_in_mask) {
752 		d->type_buf_def = kcalloc(chip->num_regs,
753 					  sizeof(*d->type_buf_def), GFP_KERNEL);
754 		if (!d->type_buf_def)
755 			goto err_alloc;
756 
757 		d->type_buf = kcalloc(chip->num_regs, sizeof(*d->type_buf), GFP_KERNEL);
758 		if (!d->type_buf)
759 			goto err_alloc;
760 	}
761 
762 	if (chip->num_config_bases && chip->num_config_regs) {
763 		/*
764 		 * Create config_buf[num_config_bases][num_config_regs]
765 		 */
766 		d->config_buf = kcalloc(chip->num_config_bases,
767 					sizeof(*d->config_buf), GFP_KERNEL);
768 		if (!d->config_buf)
769 			goto err_alloc;
770 
771 		for (i = 0; i < chip->num_config_bases; i++) {
772 			d->config_buf[i] = kcalloc(chip->num_config_regs,
773 						   sizeof(**d->config_buf),
774 						   GFP_KERNEL);
775 			if (!d->config_buf[i])
776 				goto err_alloc;
777 		}
778 	}
779 
780 	d->irq_chip = regmap_irq_chip;
781 	d->irq_chip.name = chip->name;
782 	d->irq = irq;
783 	d->map = map;
784 	d->chip = chip;
785 	d->irq_base = irq_base;
786 
787 	if (chip->irq_reg_stride)
788 		d->irq_reg_stride = chip->irq_reg_stride;
789 	else
790 		d->irq_reg_stride = 1;
791 
792 	if (chip->get_irq_reg)
793 		d->get_irq_reg = chip->get_irq_reg;
794 	else
795 		d->get_irq_reg = regmap_irq_get_irq_reg_linear;
796 
797 	if (regmap_irq_can_bulk_read_status(d)) {
798 		d->status_reg_buf = kmalloc_array(chip->num_regs,
799 						  map->format.val_bytes,
800 						  GFP_KERNEL);
801 		if (!d->status_reg_buf)
802 			goto err_alloc;
803 	}
804 
805 	/*
806 	 * If one regmap-irq is the parent of another then we'll try
807 	 * to lock the child with the parent locked, use an explicit
808 	 * lock_key so lockdep can figure out what's going on.
809 	 */
810 	lockdep_register_key(&d->lock_key);
811 	mutex_init_with_key(&d->lock, &d->lock_key);
812 
813 	for (i = 0; i < chip->num_irqs; i++)
814 		d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride]
815 			|= chip->irqs[i].mask;
816 
817 	/* Mask all the interrupts by default */
818 	for (i = 0; i < chip->num_regs; i++) {
819 		d->mask_buf[i] = d->mask_buf_def[i];
820 
821 		if (chip->handle_mask_sync) {
822 			ret = chip->handle_mask_sync(i, d->mask_buf_def[i],
823 						     d->mask_buf[i],
824 						     chip->irq_drv_data);
825 			if (ret)
826 				goto err_mutex;
827 		}
828 
829 		if (chip->mask_base && !chip->handle_mask_sync) {
830 			reg = d->get_irq_reg(d, chip->mask_base, i);
831 			ret = regmap_update_bits(d->map, reg,
832 						 d->mask_buf_def[i],
833 						 d->mask_buf[i]);
834 			if (ret) {
835 				dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
836 					reg, ret);
837 				goto err_mutex;
838 			}
839 		}
840 
841 		if (chip->unmask_base && !chip->handle_mask_sync) {
842 			reg = d->get_irq_reg(d, chip->unmask_base, i);
843 			ret = regmap_update_bits(d->map, reg,
844 					d->mask_buf_def[i], ~d->mask_buf[i]);
845 			if (ret) {
846 				dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
847 					reg, ret);
848 				goto err_mutex;
849 			}
850 		}
851 
852 		if (!chip->init_ack_masked)
853 			continue;
854 
855 		/* Ack masked but set interrupts */
856 		if (d->chip->no_status) {
857 			/* no status register so default to all active */
858 			d->status_buf[i] = UINT_MAX;
859 		} else {
860 			reg = d->get_irq_reg(d, d->chip->status_base, i);
861 			ret = regmap_read(map, reg, &d->status_buf[i]);
862 			if (ret != 0) {
863 				dev_err(map->dev, "Failed to read IRQ status: %d\n",
864 					ret);
865 				goto err_mutex;
866 			}
867 		}
868 
869 		if (chip->status_invert)
870 			d->status_buf[i] = ~d->status_buf[i];
871 
872 		if (d->status_buf[i] && (chip->ack_base || chip->use_ack)) {
873 			reg = d->get_irq_reg(d, d->chip->ack_base, i);
874 			if (chip->ack_invert)
875 				ret = regmap_write(map, reg,
876 					~(d->status_buf[i] & d->mask_buf[i]));
877 			else
878 				ret = regmap_write(map, reg,
879 					d->status_buf[i] & d->mask_buf[i]);
880 			if (chip->clear_ack) {
881 				if (chip->ack_invert && !ret)
882 					ret = regmap_write(map, reg, UINT_MAX);
883 				else if (!ret)
884 					ret = regmap_write(map, reg, 0);
885 			}
886 			if (ret != 0) {
887 				dev_err(map->dev, "Failed to ack 0x%x: %d\n",
888 					reg, ret);
889 				goto err_mutex;
890 			}
891 		}
892 	}
893 
894 	/* Wake is disabled by default */
895 	if (d->wake_buf) {
896 		for (i = 0; i < chip->num_regs; i++) {
897 			d->wake_buf[i] = d->mask_buf_def[i];
898 			reg = d->get_irq_reg(d, d->chip->wake_base, i);
899 
900 			if (chip->wake_invert)
901 				ret = regmap_update_bits(d->map, reg,
902 							 d->mask_buf_def[i],
903 							 0);
904 			else
905 				ret = regmap_update_bits(d->map, reg,
906 							 d->mask_buf_def[i],
907 							 d->wake_buf[i]);
908 			if (ret != 0) {
909 				dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
910 					reg, ret);
911 				goto err_mutex;
912 			}
913 		}
914 	}
915 
916 	/* Store current levels */
917 	if (chip->status_is_level) {
918 		ret = read_irq_data(d);
919 		if (ret < 0)
920 			goto err_mutex;
921 
922 		memcpy(d->prev_status_buf, d->status_buf,
923 		       array_size(d->chip->num_regs, sizeof(d->prev_status_buf[0])));
924 	}
925 
926 	ret = regmap_irq_create_domain(fwnode, irq_base, chip, d);
927 	if (ret)
928 		goto err_mutex;
929 
930 	ret = request_threaded_irq(irq, NULL, regmap_irq_thread,
931 				   irq_flags | IRQF_ONESHOT,
932 				   chip->name, d);
933 	if (ret != 0) {
934 		dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n",
935 			irq, chip->name, ret);
936 		goto err_domain;
937 	}
938 
939 	*data = d;
940 
941 	return 0;
942 
943 err_domain:
944 	/* Should really dispose of the domain but... */
945 err_mutex:
946 	mutex_destroy(&d->lock);
947 	lockdep_unregister_key(&d->lock_key);
948 err_alloc:
949 	kfree(d->type_buf);
950 	kfree(d->type_buf_def);
951 	kfree(d->wake_buf);
952 	kfree(d->mask_buf_def);
953 	kfree(d->mask_buf);
954 	kfree(d->main_status_buf);
955 	kfree(d->status_buf);
956 	kfree(d->prev_status_buf);
957 	kfree(d->status_reg_buf);
958 	if (d->config_buf) {
959 		for (i = 0; i < chip->num_config_bases; i++)
960 			kfree(d->config_buf[i]);
961 		kfree(d->config_buf);
962 	}
963 	kfree(d);
964 	return ret;
965 }
966 EXPORT_SYMBOL_GPL(regmap_add_irq_chip_fwnode);
967 
968 /**
969  * regmap_add_irq_chip() - Use standard regmap IRQ controller handling
970  *
971  * @map: The regmap for the device.
972  * @irq: The IRQ the device uses to signal interrupts.
973  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
974  * @irq_base: Allocate at specific IRQ number if irq_base > 0.
975  * @chip: Configuration for the interrupt controller.
976  * @data: Runtime data structure for the controller, allocated on success.
977  *
978  * Returns 0 on success or an errno on failure.
979  *
980  * This is the same as regmap_add_irq_chip_fwnode, except that the firmware
981  * node of the regmap is used.
982  */
regmap_add_irq_chip(struct regmap * map,int irq,int irq_flags,int irq_base,const struct regmap_irq_chip * chip,struct regmap_irq_chip_data ** data)983 int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags,
984 			int irq_base, const struct regmap_irq_chip *chip,
985 			struct regmap_irq_chip_data **data)
986 {
987 	return regmap_add_irq_chip_fwnode(dev_fwnode(map->dev), map, irq,
988 					  irq_flags, irq_base, chip, data);
989 }
990 EXPORT_SYMBOL_GPL(regmap_add_irq_chip);
991 
992 /**
993  * regmap_del_irq_chip() - Stop interrupt handling for a regmap IRQ chip
994  *
995  * @irq: Primary IRQ for the device
996  * @d: &regmap_irq_chip_data allocated by regmap_add_irq_chip()
997  *
998  * This function also disposes of all mapped IRQs on the chip.
999  */
regmap_del_irq_chip(int irq,struct regmap_irq_chip_data * d)1000 void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d)
1001 {
1002 	unsigned int virq;
1003 	int i, hwirq;
1004 
1005 	if (!d)
1006 		return;
1007 
1008 	free_irq(irq, d);
1009 
1010 	/* Dispose all virtual irq from irq domain before removing it */
1011 	for (hwirq = 0; hwirq < d->chip->num_irqs; hwirq++) {
1012 		/* Ignore hwirq if holes in the IRQ list */
1013 		if (!d->chip->irqs[hwirq].mask)
1014 			continue;
1015 
1016 		/*
1017 		 * Find the virtual irq of hwirq on chip and if it is
1018 		 * there then dispose it
1019 		 */
1020 		virq = irq_find_mapping(d->domain, hwirq);
1021 		if (virq)
1022 			irq_dispose_mapping(virq);
1023 	}
1024 
1025 	irq_domain_remove(d->domain);
1026 	kfree(d->type_buf);
1027 	kfree(d->type_buf_def);
1028 	kfree(d->wake_buf);
1029 	kfree(d->mask_buf_def);
1030 	kfree(d->mask_buf);
1031 	kfree(d->main_status_buf);
1032 	kfree(d->status_reg_buf);
1033 	kfree(d->status_buf);
1034 	kfree(d->prev_status_buf);
1035 	if (d->config_buf) {
1036 		for (i = 0; i < d->chip->num_config_bases; i++)
1037 			kfree(d->config_buf[i]);
1038 		kfree(d->config_buf);
1039 	}
1040 	mutex_destroy(&d->lock);
1041 	lockdep_unregister_key(&d->lock_key);
1042 	kfree(d);
1043 }
1044 EXPORT_SYMBOL_GPL(regmap_del_irq_chip);
1045 
devm_regmap_irq_chip_release(struct device * dev,void * res)1046 static void devm_regmap_irq_chip_release(struct device *dev, void *res)
1047 {
1048 	struct regmap_irq_chip_data *d = *(struct regmap_irq_chip_data **)res;
1049 
1050 	regmap_del_irq_chip(d->irq, d);
1051 }
1052 
devm_regmap_irq_chip_match(struct device * dev,void * res,void * data)1053 static int devm_regmap_irq_chip_match(struct device *dev, void *res, void *data)
1054 
1055 {
1056 	struct regmap_irq_chip_data **r = res;
1057 
1058 	if (!r || !*r) {
1059 		WARN_ON(!r || !*r);
1060 		return 0;
1061 	}
1062 	return *r == data;
1063 }
1064 
1065 /**
1066  * devm_regmap_add_irq_chip_fwnode() - Resource managed regmap_add_irq_chip_fwnode()
1067  *
1068  * @dev: The device pointer on which irq_chip belongs to.
1069  * @fwnode: The firmware node where the IRQ domain should be added to.
1070  * @map: The regmap for the device.
1071  * @irq: The IRQ the device uses to signal interrupts
1072  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
1073  * @irq_base: Allocate at specific IRQ number if irq_base > 0.
1074  * @chip: Configuration for the interrupt controller.
1075  * @data: Runtime data structure for the controller, allocated on success
1076  *
1077  * Returns 0 on success or an errno on failure.
1078  *
1079  * The &regmap_irq_chip_data will be automatically released when the device is
1080  * unbound.
1081  */
devm_regmap_add_irq_chip_fwnode(struct device * dev,struct fwnode_handle * fwnode,struct regmap * map,int irq,int irq_flags,int irq_base,const struct regmap_irq_chip * chip,struct regmap_irq_chip_data ** data)1082 int devm_regmap_add_irq_chip_fwnode(struct device *dev,
1083 				    struct fwnode_handle *fwnode,
1084 				    struct regmap *map, int irq,
1085 				    int irq_flags, int irq_base,
1086 				    const struct regmap_irq_chip *chip,
1087 				    struct regmap_irq_chip_data **data)
1088 {
1089 	struct regmap_irq_chip_data **ptr, *d;
1090 	int ret;
1091 
1092 	ptr = devres_alloc(devm_regmap_irq_chip_release, sizeof(*ptr),
1093 			   GFP_KERNEL);
1094 	if (!ptr)
1095 		return -ENOMEM;
1096 
1097 	ret = regmap_add_irq_chip_fwnode(fwnode, map, irq, irq_flags, irq_base,
1098 					 chip, &d);
1099 	if (ret < 0) {
1100 		devres_free(ptr);
1101 		return ret;
1102 	}
1103 
1104 	*ptr = d;
1105 	devres_add(dev, ptr);
1106 	*data = d;
1107 	return 0;
1108 }
1109 EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip_fwnode);
1110 
1111 /**
1112  * devm_regmap_add_irq_chip() - Resource managed regmap_add_irq_chip()
1113  *
1114  * @dev: The device pointer on which irq_chip belongs to.
1115  * @map: The regmap for the device.
1116  * @irq: The IRQ the device uses to signal interrupts
1117  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
1118  * @irq_base: Allocate at specific IRQ number if irq_base > 0.
1119  * @chip: Configuration for the interrupt controller.
1120  * @data: Runtime data structure for the controller, allocated on success
1121  *
1122  * Returns 0 on success or an errno on failure.
1123  *
1124  * The &regmap_irq_chip_data will be automatically released when the device is
1125  * unbound.
1126  */
devm_regmap_add_irq_chip(struct device * dev,struct regmap * map,int irq,int irq_flags,int irq_base,const struct regmap_irq_chip * chip,struct regmap_irq_chip_data ** data)1127 int devm_regmap_add_irq_chip(struct device *dev, struct regmap *map, int irq,
1128 			     int irq_flags, int irq_base,
1129 			     const struct regmap_irq_chip *chip,
1130 			     struct regmap_irq_chip_data **data)
1131 {
1132 	return devm_regmap_add_irq_chip_fwnode(dev, dev_fwnode(map->dev), map,
1133 					       irq, irq_flags, irq_base, chip,
1134 					       data);
1135 }
1136 EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip);
1137 
1138 /**
1139  * devm_regmap_del_irq_chip() - Resource managed regmap_del_irq_chip()
1140  *
1141  * @dev: Device for which the resource was allocated.
1142  * @irq: Primary IRQ for the device.
1143  * @data: &regmap_irq_chip_data allocated by regmap_add_irq_chip().
1144  *
1145  * A resource managed version of regmap_del_irq_chip().
1146  */
devm_regmap_del_irq_chip(struct device * dev,int irq,struct regmap_irq_chip_data * data)1147 void devm_regmap_del_irq_chip(struct device *dev, int irq,
1148 			      struct regmap_irq_chip_data *data)
1149 {
1150 	int rc;
1151 
1152 	WARN_ON(irq != data->irq);
1153 	rc = devres_release(dev, devm_regmap_irq_chip_release,
1154 			    devm_regmap_irq_chip_match, data);
1155 
1156 	if (rc != 0)
1157 		WARN_ON(rc);
1158 }
1159 EXPORT_SYMBOL_GPL(devm_regmap_del_irq_chip);
1160 
1161 /**
1162  * regmap_irq_chip_get_base() - Retrieve interrupt base for a regmap IRQ chip
1163  *
1164  * @data: regmap irq controller to operate on.
1165  *
1166  * Useful for drivers to request their own IRQs.
1167  */
regmap_irq_chip_get_base(struct regmap_irq_chip_data * data)1168 int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data)
1169 {
1170 	WARN_ON(!data->irq_base);
1171 	return data->irq_base;
1172 }
1173 EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base);
1174 
1175 /**
1176  * regmap_irq_get_virq() - Map an interrupt on a chip to a virtual IRQ
1177  *
1178  * @data: regmap irq controller to operate on.
1179  * @irq: index of the interrupt requested in the chip IRQs.
1180  *
1181  * Useful for drivers to request their own IRQs.
1182  */
regmap_irq_get_virq(struct regmap_irq_chip_data * data,int irq)1183 int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq)
1184 {
1185 	/* Handle holes in the IRQ list */
1186 	if (!data->chip->irqs[irq].mask)
1187 		return -EINVAL;
1188 
1189 	return irq_create_mapping(data->domain, irq);
1190 }
1191 EXPORT_SYMBOL_GPL(regmap_irq_get_virq);
1192 
1193 /**
1194  * regmap_irq_get_domain() - Retrieve the irq_domain for the chip
1195  *
1196  * @data: regmap_irq controller to operate on.
1197  *
1198  * Useful for drivers to request their own IRQs and for integration
1199  * with subsystems.  For ease of integration NULL is accepted as a
1200  * domain, allowing devices to just call this even if no domain is
1201  * allocated.
1202  */
regmap_irq_get_domain(struct regmap_irq_chip_data * data)1203 struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data)
1204 {
1205 	if (data)
1206 		return data->domain;
1207 	else
1208 		return NULL;
1209 }
1210 EXPORT_SYMBOL_GPL(regmap_irq_get_domain);
1211