1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
4 *
5 * Swap reorganised 29.12.95, Stephen Tweedie.
6 * kswapd added: 7.1.96 sct
7 * Removed kswapd_ctl limits, and swap out as many pages as needed
8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
9 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
10 * Multiqueue VM started 5.8.00, Rik van Riel.
11 */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/mm.h>
16 #include <linux/sched/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h> /* for buffer_heads_over_limit */
30 #include <linux/mm_inline.h>
31 #include <linux/backing-dev.h>
32 #include <linux/rmap.h>
33 #include <linux/topology.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/compaction.h>
37 #include <linux/notifier.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/migrate.h>
43 #include <linux/delayacct.h>
44 #include <linux/sysctl.h>
45 #include <linux/memory-tiers.h>
46 #include <linux/oom.h>
47 #include <linux/pagevec.h>
48 #include <linux/prefetch.h>
49 #include <linux/printk.h>
50 #include <linux/dax.h>
51 #include <linux/psi.h>
52 #include <linux/pagewalk.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/ctype.h>
55 #include <linux/debugfs.h>
56 #include <linux/khugepaged.h>
57 #include <linux/rculist_nulls.h>
58 #include <linux/random.h>
59 #include <linux/mmu_notifier.h>
60 #include <linux/parser.h>
61
62 #include <asm/tlbflush.h>
63 #include <asm/div64.h>
64
65 #include <linux/swapops.h>
66 #include <linux/balloon_compaction.h>
67 #include <linux/sched/sysctl.h>
68
69 #include "internal.h"
70 #include "swap.h"
71
72 #define CREATE_TRACE_POINTS
73 #include <trace/events/vmscan.h>
74
75 struct scan_control {
76 /* How many pages shrink_list() should reclaim */
77 unsigned long nr_to_reclaim;
78
79 /*
80 * Nodemask of nodes allowed by the caller. If NULL, all nodes
81 * are scanned.
82 */
83 nodemask_t *nodemask;
84
85 /*
86 * The memory cgroup that hit its limit and as a result is the
87 * primary target of this reclaim invocation.
88 */
89 struct mem_cgroup *target_mem_cgroup;
90
91 /*
92 * Scan pressure balancing between anon and file LRUs
93 */
94 unsigned long anon_cost;
95 unsigned long file_cost;
96
97 /* Swappiness value for proactive reclaim. Always use sc_swappiness()! */
98 int *proactive_swappiness;
99
100 /* Can active folios be deactivated as part of reclaim? */
101 #define DEACTIVATE_ANON 1
102 #define DEACTIVATE_FILE 2
103 unsigned int may_deactivate:2;
104 unsigned int force_deactivate:1;
105 unsigned int skipped_deactivate:1;
106
107 /* Writepage batching in laptop mode; RECLAIM_WRITE */
108 unsigned int may_writepage:1;
109
110 /* Can mapped folios be reclaimed? */
111 unsigned int may_unmap:1;
112
113 /* Can folios be swapped as part of reclaim? */
114 unsigned int may_swap:1;
115
116 /* Not allow cache_trim_mode to be turned on as part of reclaim? */
117 unsigned int no_cache_trim_mode:1;
118
119 /* Has cache_trim_mode failed at least once? */
120 unsigned int cache_trim_mode_failed:1;
121
122 /* Proactive reclaim invoked by userspace */
123 unsigned int proactive:1;
124
125 /*
126 * Cgroup memory below memory.low is protected as long as we
127 * don't threaten to OOM. If any cgroup is reclaimed at
128 * reduced force or passed over entirely due to its memory.low
129 * setting (memcg_low_skipped), and nothing is reclaimed as a
130 * result, then go back for one more cycle that reclaims the protected
131 * memory (memcg_low_reclaim) to avert OOM.
132 */
133 unsigned int memcg_low_reclaim:1;
134 unsigned int memcg_low_skipped:1;
135
136 /* Shared cgroup tree walk failed, rescan the whole tree */
137 unsigned int memcg_full_walk:1;
138
139 unsigned int hibernation_mode:1;
140
141 /* One of the zones is ready for compaction */
142 unsigned int compaction_ready:1;
143
144 /* There is easily reclaimable cold cache in the current node */
145 unsigned int cache_trim_mode:1;
146
147 /* The file folios on the current node are dangerously low */
148 unsigned int file_is_tiny:1;
149
150 /* Always discard instead of demoting to lower tier memory */
151 unsigned int no_demotion:1;
152
153 /* Allocation order */
154 s8 order;
155
156 /* Scan (total_size >> priority) pages at once */
157 s8 priority;
158
159 /* The highest zone to isolate folios for reclaim from */
160 s8 reclaim_idx;
161
162 /* This context's GFP mask */
163 gfp_t gfp_mask;
164
165 /* Incremented by the number of inactive pages that were scanned */
166 unsigned long nr_scanned;
167
168 /* Number of pages freed so far during a call to shrink_zones() */
169 unsigned long nr_reclaimed;
170
171 struct {
172 unsigned int dirty;
173 unsigned int unqueued_dirty;
174 unsigned int congested;
175 unsigned int writeback;
176 unsigned int immediate;
177 unsigned int file_taken;
178 unsigned int taken;
179 } nr;
180
181 /* for recording the reclaimed slab by now */
182 struct reclaim_state reclaim_state;
183 };
184
185 #ifdef ARCH_HAS_PREFETCHW
186 #define prefetchw_prev_lru_folio(_folio, _base, _field) \
187 do { \
188 if ((_folio)->lru.prev != _base) { \
189 struct folio *prev; \
190 \
191 prev = lru_to_folio(&(_folio->lru)); \
192 prefetchw(&prev->_field); \
193 } \
194 } while (0)
195 #else
196 #define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0)
197 #endif
198
199 /*
200 * From 0 .. MAX_SWAPPINESS. Higher means more swappy.
201 */
202 int vm_swappiness = 60;
203
204 #ifdef CONFIG_MEMCG
205
206 /* Returns true for reclaim through cgroup limits or cgroup interfaces. */
cgroup_reclaim(struct scan_control * sc)207 static bool cgroup_reclaim(struct scan_control *sc)
208 {
209 return sc->target_mem_cgroup;
210 }
211
212 /*
213 * Returns true for reclaim on the root cgroup. This is true for direct
214 * allocator reclaim and reclaim through cgroup interfaces on the root cgroup.
215 */
root_reclaim(struct scan_control * sc)216 static bool root_reclaim(struct scan_control *sc)
217 {
218 return !sc->target_mem_cgroup || mem_cgroup_is_root(sc->target_mem_cgroup);
219 }
220
221 /**
222 * writeback_throttling_sane - is the usual dirty throttling mechanism available?
223 * @sc: scan_control in question
224 *
225 * The normal page dirty throttling mechanism in balance_dirty_pages() is
226 * completely broken with the legacy memcg and direct stalling in
227 * shrink_folio_list() is used for throttling instead, which lacks all the
228 * niceties such as fairness, adaptive pausing, bandwidth proportional
229 * allocation and configurability.
230 *
231 * This function tests whether the vmscan currently in progress can assume
232 * that the normal dirty throttling mechanism is operational.
233 */
writeback_throttling_sane(struct scan_control * sc)234 static bool writeback_throttling_sane(struct scan_control *sc)
235 {
236 if (!cgroup_reclaim(sc))
237 return true;
238 #ifdef CONFIG_CGROUP_WRITEBACK
239 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
240 return true;
241 #endif
242 return false;
243 }
244
sc_swappiness(struct scan_control * sc,struct mem_cgroup * memcg)245 static int sc_swappiness(struct scan_control *sc, struct mem_cgroup *memcg)
246 {
247 if (sc->proactive && sc->proactive_swappiness)
248 return *sc->proactive_swappiness;
249 return mem_cgroup_swappiness(memcg);
250 }
251 #else
cgroup_reclaim(struct scan_control * sc)252 static bool cgroup_reclaim(struct scan_control *sc)
253 {
254 return false;
255 }
256
root_reclaim(struct scan_control * sc)257 static bool root_reclaim(struct scan_control *sc)
258 {
259 return true;
260 }
261
writeback_throttling_sane(struct scan_control * sc)262 static bool writeback_throttling_sane(struct scan_control *sc)
263 {
264 return true;
265 }
266
sc_swappiness(struct scan_control * sc,struct mem_cgroup * memcg)267 static int sc_swappiness(struct scan_control *sc, struct mem_cgroup *memcg)
268 {
269 return READ_ONCE(vm_swappiness);
270 }
271 #endif
272
273 /* for_each_managed_zone_pgdat - helper macro to iterate over all managed zones in a pgdat up to
274 * and including the specified highidx
275 * @zone: The current zone in the iterator
276 * @pgdat: The pgdat which node_zones are being iterated
277 * @idx: The index variable
278 * @highidx: The index of the highest zone to return
279 *
280 * This macro iterates through all managed zones up to and including the specified highidx.
281 * The zone iterator enters an invalid state after macro call and must be reinitialized
282 * before it can be used again.
283 */
284 #define for_each_managed_zone_pgdat(zone, pgdat, idx, highidx) \
285 for ((idx) = 0, (zone) = (pgdat)->node_zones; \
286 (idx) <= (highidx); \
287 (idx)++, (zone)++) \
288 if (!managed_zone(zone)) \
289 continue; \
290 else
291
set_task_reclaim_state(struct task_struct * task,struct reclaim_state * rs)292 static void set_task_reclaim_state(struct task_struct *task,
293 struct reclaim_state *rs)
294 {
295 /* Check for an overwrite */
296 WARN_ON_ONCE(rs && task->reclaim_state);
297
298 /* Check for the nulling of an already-nulled member */
299 WARN_ON_ONCE(!rs && !task->reclaim_state);
300
301 task->reclaim_state = rs;
302 }
303
304 /*
305 * flush_reclaim_state(): add pages reclaimed outside of LRU-based reclaim to
306 * scan_control->nr_reclaimed.
307 */
flush_reclaim_state(struct scan_control * sc)308 static void flush_reclaim_state(struct scan_control *sc)
309 {
310 /*
311 * Currently, reclaim_state->reclaimed includes three types of pages
312 * freed outside of vmscan:
313 * (1) Slab pages.
314 * (2) Clean file pages from pruned inodes (on highmem systems).
315 * (3) XFS freed buffer pages.
316 *
317 * For all of these cases, we cannot universally link the pages to a
318 * single memcg. For example, a memcg-aware shrinker can free one object
319 * charged to the target memcg, causing an entire page to be freed.
320 * If we count the entire page as reclaimed from the memcg, we end up
321 * overestimating the reclaimed amount (potentially under-reclaiming).
322 *
323 * Only count such pages for global reclaim to prevent under-reclaiming
324 * from the target memcg; preventing unnecessary retries during memcg
325 * charging and false positives from proactive reclaim.
326 *
327 * For uncommon cases where the freed pages were actually mostly
328 * charged to the target memcg, we end up underestimating the reclaimed
329 * amount. This should be fine. The freed pages will be uncharged
330 * anyway, even if they are not counted here properly, and we will be
331 * able to make forward progress in charging (which is usually in a
332 * retry loop).
333 *
334 * We can go one step further, and report the uncharged objcg pages in
335 * memcg reclaim, to make reporting more accurate and reduce
336 * underestimation, but it's probably not worth the complexity for now.
337 */
338 if (current->reclaim_state && root_reclaim(sc)) {
339 sc->nr_reclaimed += current->reclaim_state->reclaimed;
340 current->reclaim_state->reclaimed = 0;
341 }
342 }
343
can_demote(int nid,struct scan_control * sc,struct mem_cgroup * memcg)344 static bool can_demote(int nid, struct scan_control *sc,
345 struct mem_cgroup *memcg)
346 {
347 int demotion_nid;
348
349 if (!numa_demotion_enabled)
350 return false;
351 if (sc && sc->no_demotion)
352 return false;
353
354 demotion_nid = next_demotion_node(nid);
355 if (demotion_nid == NUMA_NO_NODE)
356 return false;
357
358 /* If demotion node isn't in the cgroup's mems_allowed, fall back */
359 return mem_cgroup_node_allowed(memcg, demotion_nid);
360 }
361
can_reclaim_anon_pages(struct mem_cgroup * memcg,int nid,struct scan_control * sc)362 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
363 int nid,
364 struct scan_control *sc)
365 {
366 if (memcg == NULL) {
367 /*
368 * For non-memcg reclaim, is there
369 * space in any swap device?
370 */
371 if (get_nr_swap_pages() > 0)
372 return true;
373 } else {
374 /* Is the memcg below its swap limit? */
375 if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
376 return true;
377 }
378
379 /*
380 * The page can not be swapped.
381 *
382 * Can it be reclaimed from this node via demotion?
383 */
384 return can_demote(nid, sc, memcg);
385 }
386
387 /*
388 * This misses isolated folios which are not accounted for to save counters.
389 * As the data only determines if reclaim or compaction continues, it is
390 * not expected that isolated folios will be a dominating factor.
391 */
zone_reclaimable_pages(struct zone * zone)392 unsigned long zone_reclaimable_pages(struct zone *zone)
393 {
394 unsigned long nr;
395
396 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
397 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
398 if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
399 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
400 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
401 /*
402 * If there are no reclaimable file-backed or anonymous pages,
403 * ensure zones with sufficient free pages are not skipped.
404 * This prevents zones like DMA32 from being ignored in reclaim
405 * scenarios where they can still help alleviate memory pressure.
406 */
407 if (nr == 0)
408 nr = zone_page_state_snapshot(zone, NR_FREE_PAGES);
409 return nr;
410 }
411
412 /**
413 * lruvec_lru_size - Returns the number of pages on the given LRU list.
414 * @lruvec: lru vector
415 * @lru: lru to use
416 * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list)
417 */
lruvec_lru_size(struct lruvec * lruvec,enum lru_list lru,int zone_idx)418 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
419 int zone_idx)
420 {
421 unsigned long size = 0;
422 int zid;
423 struct zone *zone;
424
425 for_each_managed_zone_pgdat(zone, lruvec_pgdat(lruvec), zid, zone_idx) {
426 if (!mem_cgroup_disabled())
427 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
428 else
429 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
430 }
431 return size;
432 }
433
drop_slab_node(int nid)434 static unsigned long drop_slab_node(int nid)
435 {
436 unsigned long freed = 0;
437 struct mem_cgroup *memcg = NULL;
438
439 memcg = mem_cgroup_iter(NULL, NULL, NULL);
440 do {
441 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
442 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
443
444 return freed;
445 }
446
drop_slab(void)447 void drop_slab(void)
448 {
449 int nid;
450 int shift = 0;
451 unsigned long freed;
452
453 do {
454 freed = 0;
455 for_each_online_node(nid) {
456 if (fatal_signal_pending(current))
457 return;
458
459 freed += drop_slab_node(nid);
460 }
461 } while ((freed >> shift++) > 1);
462 }
463
464 #define CHECK_RECLAIMER_OFFSET(type) \
465 do { \
466 BUILD_BUG_ON(PGSTEAL_##type - PGSTEAL_KSWAPD != \
467 PGDEMOTE_##type - PGDEMOTE_KSWAPD); \
468 BUILD_BUG_ON(PGSTEAL_##type - PGSTEAL_KSWAPD != \
469 PGSCAN_##type - PGSCAN_KSWAPD); \
470 } while (0)
471
reclaimer_offset(struct scan_control * sc)472 static int reclaimer_offset(struct scan_control *sc)
473 {
474 CHECK_RECLAIMER_OFFSET(DIRECT);
475 CHECK_RECLAIMER_OFFSET(KHUGEPAGED);
476 CHECK_RECLAIMER_OFFSET(PROACTIVE);
477
478 if (current_is_kswapd())
479 return 0;
480 if (current_is_khugepaged())
481 return PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD;
482 if (sc->proactive)
483 return PGSTEAL_PROACTIVE - PGSTEAL_KSWAPD;
484 return PGSTEAL_DIRECT - PGSTEAL_KSWAPD;
485 }
486
is_page_cache_freeable(struct folio * folio)487 static inline int is_page_cache_freeable(struct folio *folio)
488 {
489 /*
490 * A freeable page cache folio is referenced only by the caller
491 * that isolated the folio, the page cache and optional filesystem
492 * private data at folio->private.
493 */
494 return folio_ref_count(folio) - folio_test_private(folio) ==
495 1 + folio_nr_pages(folio);
496 }
497
498 /*
499 * We detected a synchronous write error writing a folio out. Probably
500 * -ENOSPC. We need to propagate that into the address_space for a subsequent
501 * fsync(), msync() or close().
502 *
503 * The tricky part is that after writepage we cannot touch the mapping: nothing
504 * prevents it from being freed up. But we have a ref on the folio and once
505 * that folio is locked, the mapping is pinned.
506 *
507 * We're allowed to run sleeping folio_lock() here because we know the caller has
508 * __GFP_FS.
509 */
handle_write_error(struct address_space * mapping,struct folio * folio,int error)510 static void handle_write_error(struct address_space *mapping,
511 struct folio *folio, int error)
512 {
513 folio_lock(folio);
514 if (folio_mapping(folio) == mapping)
515 mapping_set_error(mapping, error);
516 folio_unlock(folio);
517 }
518
skip_throttle_noprogress(pg_data_t * pgdat)519 static bool skip_throttle_noprogress(pg_data_t *pgdat)
520 {
521 int reclaimable = 0, write_pending = 0;
522 int i;
523 struct zone *zone;
524 /*
525 * If kswapd is disabled, reschedule if necessary but do not
526 * throttle as the system is likely near OOM.
527 */
528 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
529 return true;
530
531 /*
532 * If there are a lot of dirty/writeback folios then do not
533 * throttle as throttling will occur when the folios cycle
534 * towards the end of the LRU if still under writeback.
535 */
536 for_each_managed_zone_pgdat(zone, pgdat, i, MAX_NR_ZONES - 1) {
537 reclaimable += zone_reclaimable_pages(zone);
538 write_pending += zone_page_state_snapshot(zone,
539 NR_ZONE_WRITE_PENDING);
540 }
541 if (2 * write_pending <= reclaimable)
542 return true;
543
544 return false;
545 }
546
reclaim_throttle(pg_data_t * pgdat,enum vmscan_throttle_state reason)547 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
548 {
549 wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
550 long timeout, ret;
551 DEFINE_WAIT(wait);
552
553 /*
554 * Do not throttle user workers, kthreads other than kswapd or
555 * workqueues. They may be required for reclaim to make
556 * forward progress (e.g. journalling workqueues or kthreads).
557 */
558 if (!current_is_kswapd() &&
559 current->flags & (PF_USER_WORKER|PF_KTHREAD)) {
560 cond_resched();
561 return;
562 }
563
564 /*
565 * These figures are pulled out of thin air.
566 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
567 * parallel reclaimers which is a short-lived event so the timeout is
568 * short. Failing to make progress or waiting on writeback are
569 * potentially long-lived events so use a longer timeout. This is shaky
570 * logic as a failure to make progress could be due to anything from
571 * writeback to a slow device to excessive referenced folios at the tail
572 * of the inactive LRU.
573 */
574 switch(reason) {
575 case VMSCAN_THROTTLE_WRITEBACK:
576 timeout = HZ/10;
577
578 if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) {
579 WRITE_ONCE(pgdat->nr_reclaim_start,
580 node_page_state(pgdat, NR_THROTTLED_WRITTEN));
581 }
582
583 break;
584 case VMSCAN_THROTTLE_CONGESTED:
585 fallthrough;
586 case VMSCAN_THROTTLE_NOPROGRESS:
587 if (skip_throttle_noprogress(pgdat)) {
588 cond_resched();
589 return;
590 }
591
592 timeout = 1;
593
594 break;
595 case VMSCAN_THROTTLE_ISOLATED:
596 timeout = HZ/50;
597 break;
598 default:
599 WARN_ON_ONCE(1);
600 timeout = HZ;
601 break;
602 }
603
604 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
605 ret = schedule_timeout(timeout);
606 finish_wait(wqh, &wait);
607
608 if (reason == VMSCAN_THROTTLE_WRITEBACK)
609 atomic_dec(&pgdat->nr_writeback_throttled);
610
611 trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout),
612 jiffies_to_usecs(timeout - ret),
613 reason);
614 }
615
616 /*
617 * Account for folios written if tasks are throttled waiting on dirty
618 * folios to clean. If enough folios have been cleaned since throttling
619 * started then wakeup the throttled tasks.
620 */
__acct_reclaim_writeback(pg_data_t * pgdat,struct folio * folio,int nr_throttled)621 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
622 int nr_throttled)
623 {
624 unsigned long nr_written;
625
626 node_stat_add_folio(folio, NR_THROTTLED_WRITTEN);
627
628 /*
629 * This is an inaccurate read as the per-cpu deltas may not
630 * be synchronised. However, given that the system is
631 * writeback throttled, it is not worth taking the penalty
632 * of getting an accurate count. At worst, the throttle
633 * timeout guarantees forward progress.
634 */
635 nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) -
636 READ_ONCE(pgdat->nr_reclaim_start);
637
638 if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
639 wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
640 }
641
642 /* possible outcome of pageout() */
643 typedef enum {
644 /* failed to write folio out, folio is locked */
645 PAGE_KEEP,
646 /* move folio to the active list, folio is locked */
647 PAGE_ACTIVATE,
648 /* folio has been sent to the disk successfully, folio is unlocked */
649 PAGE_SUCCESS,
650 /* folio is clean and locked */
651 PAGE_CLEAN,
652 } pageout_t;
653
writeout(struct folio * folio,struct address_space * mapping,struct swap_iocb ** plug,struct list_head * folio_list)654 static pageout_t writeout(struct folio *folio, struct address_space *mapping,
655 struct swap_iocb **plug, struct list_head *folio_list)
656 {
657 int res;
658
659 folio_set_reclaim(folio);
660
661 /*
662 * The large shmem folio can be split if CONFIG_THP_SWAP is not enabled
663 * or we failed to allocate contiguous swap entries, in which case
664 * the split out folios get added back to folio_list.
665 */
666 if (shmem_mapping(mapping))
667 res = shmem_writeout(folio, plug, folio_list);
668 else
669 res = swap_writeout(folio, plug);
670
671 if (res < 0)
672 handle_write_error(mapping, folio, res);
673 if (res == AOP_WRITEPAGE_ACTIVATE) {
674 folio_clear_reclaim(folio);
675 return PAGE_ACTIVATE;
676 }
677
678 /* synchronous write? */
679 if (!folio_test_writeback(folio))
680 folio_clear_reclaim(folio);
681
682 trace_mm_vmscan_write_folio(folio);
683 node_stat_add_folio(folio, NR_VMSCAN_WRITE);
684 return PAGE_SUCCESS;
685 }
686
687 /*
688 * pageout is called by shrink_folio_list() for each dirty folio.
689 */
pageout(struct folio * folio,struct address_space * mapping,struct swap_iocb ** plug,struct list_head * folio_list)690 static pageout_t pageout(struct folio *folio, struct address_space *mapping,
691 struct swap_iocb **plug, struct list_head *folio_list)
692 {
693 /*
694 * We no longer attempt to writeback filesystem folios here, other
695 * than tmpfs/shmem. That's taken care of in page-writeback.
696 * If we find a dirty filesystem folio at the end of the LRU list,
697 * typically that means the filesystem is saturating the storage
698 * with contiguous writes and telling it to write a folio here
699 * would only make the situation worse by injecting an element
700 * of random access.
701 *
702 * If the folio is swapcache, write it back even if that would
703 * block, for some throttling. This happens by accident, because
704 * swap_backing_dev_info is bust: it doesn't reflect the
705 * congestion state of the swapdevs. Easy to fix, if needed.
706 */
707 if (!is_page_cache_freeable(folio))
708 return PAGE_KEEP;
709 if (!mapping) {
710 /*
711 * Some data journaling orphaned folios can have
712 * folio->mapping == NULL while being dirty with clean buffers.
713 */
714 if (folio_test_private(folio)) {
715 if (try_to_free_buffers(folio)) {
716 folio_clear_dirty(folio);
717 pr_info("%s: orphaned folio\n", __func__);
718 return PAGE_CLEAN;
719 }
720 }
721 return PAGE_KEEP;
722 }
723
724 if (!shmem_mapping(mapping) && !folio_test_anon(folio))
725 return PAGE_ACTIVATE;
726 if (!folio_clear_dirty_for_io(folio))
727 return PAGE_CLEAN;
728 return writeout(folio, mapping, plug, folio_list);
729 }
730
731 /*
732 * Same as remove_mapping, but if the folio is removed from the mapping, it
733 * gets returned with a refcount of 0.
734 */
__remove_mapping(struct address_space * mapping,struct folio * folio,bool reclaimed,struct mem_cgroup * target_memcg)735 static int __remove_mapping(struct address_space *mapping, struct folio *folio,
736 bool reclaimed, struct mem_cgroup *target_memcg)
737 {
738 int refcount;
739 void *shadow = NULL;
740
741 BUG_ON(!folio_test_locked(folio));
742 BUG_ON(mapping != folio_mapping(folio));
743
744 if (!folio_test_swapcache(folio))
745 spin_lock(&mapping->host->i_lock);
746 xa_lock_irq(&mapping->i_pages);
747 /*
748 * The non racy check for a busy folio.
749 *
750 * Must be careful with the order of the tests. When someone has
751 * a ref to the folio, it may be possible that they dirty it then
752 * drop the reference. So if the dirty flag is tested before the
753 * refcount here, then the following race may occur:
754 *
755 * get_user_pages(&page);
756 * [user mapping goes away]
757 * write_to(page);
758 * !folio_test_dirty(folio) [good]
759 * folio_set_dirty(folio);
760 * folio_put(folio);
761 * !refcount(folio) [good, discard it]
762 *
763 * [oops, our write_to data is lost]
764 *
765 * Reversing the order of the tests ensures such a situation cannot
766 * escape unnoticed. The smp_rmb is needed to ensure the folio->flags
767 * load is not satisfied before that of folio->_refcount.
768 *
769 * Note that if the dirty flag is always set via folio_mark_dirty,
770 * and thus under the i_pages lock, then this ordering is not required.
771 */
772 refcount = 1 + folio_nr_pages(folio);
773 if (!folio_ref_freeze(folio, refcount))
774 goto cannot_free;
775 /* note: atomic_cmpxchg in folio_ref_freeze provides the smp_rmb */
776 if (unlikely(folio_test_dirty(folio))) {
777 folio_ref_unfreeze(folio, refcount);
778 goto cannot_free;
779 }
780
781 if (folio_test_swapcache(folio)) {
782 swp_entry_t swap = folio->swap;
783
784 if (reclaimed && !mapping_exiting(mapping))
785 shadow = workingset_eviction(folio, target_memcg);
786 __delete_from_swap_cache(folio, swap, shadow);
787 memcg1_swapout(folio, swap);
788 xa_unlock_irq(&mapping->i_pages);
789 put_swap_folio(folio, swap);
790 } else {
791 void (*free_folio)(struct folio *);
792
793 free_folio = mapping->a_ops->free_folio;
794 /*
795 * Remember a shadow entry for reclaimed file cache in
796 * order to detect refaults, thus thrashing, later on.
797 *
798 * But don't store shadows in an address space that is
799 * already exiting. This is not just an optimization,
800 * inode reclaim needs to empty out the radix tree or
801 * the nodes are lost. Don't plant shadows behind its
802 * back.
803 *
804 * We also don't store shadows for DAX mappings because the
805 * only page cache folios found in these are zero pages
806 * covering holes, and because we don't want to mix DAX
807 * exceptional entries and shadow exceptional entries in the
808 * same address_space.
809 */
810 if (reclaimed && folio_is_file_lru(folio) &&
811 !mapping_exiting(mapping) && !dax_mapping(mapping))
812 shadow = workingset_eviction(folio, target_memcg);
813 __filemap_remove_folio(folio, shadow);
814 xa_unlock_irq(&mapping->i_pages);
815 if (mapping_shrinkable(mapping))
816 inode_add_lru(mapping->host);
817 spin_unlock(&mapping->host->i_lock);
818
819 if (free_folio)
820 free_folio(folio);
821 }
822
823 return 1;
824
825 cannot_free:
826 xa_unlock_irq(&mapping->i_pages);
827 if (!folio_test_swapcache(folio))
828 spin_unlock(&mapping->host->i_lock);
829 return 0;
830 }
831
832 /**
833 * remove_mapping() - Attempt to remove a folio from its mapping.
834 * @mapping: The address space.
835 * @folio: The folio to remove.
836 *
837 * If the folio is dirty, under writeback or if someone else has a ref
838 * on it, removal will fail.
839 * Return: The number of pages removed from the mapping. 0 if the folio
840 * could not be removed.
841 * Context: The caller should have a single refcount on the folio and
842 * hold its lock.
843 */
remove_mapping(struct address_space * mapping,struct folio * folio)844 long remove_mapping(struct address_space *mapping, struct folio *folio)
845 {
846 if (__remove_mapping(mapping, folio, false, NULL)) {
847 /*
848 * Unfreezing the refcount with 1 effectively
849 * drops the pagecache ref for us without requiring another
850 * atomic operation.
851 */
852 folio_ref_unfreeze(folio, 1);
853 return folio_nr_pages(folio);
854 }
855 return 0;
856 }
857
858 /**
859 * folio_putback_lru - Put previously isolated folio onto appropriate LRU list.
860 * @folio: Folio to be returned to an LRU list.
861 *
862 * Add previously isolated @folio to appropriate LRU list.
863 * The folio may still be unevictable for other reasons.
864 *
865 * Context: lru_lock must not be held, interrupts must be enabled.
866 */
folio_putback_lru(struct folio * folio)867 void folio_putback_lru(struct folio *folio)
868 {
869 folio_add_lru(folio);
870 folio_put(folio); /* drop ref from isolate */
871 }
872
873 enum folio_references {
874 FOLIOREF_RECLAIM,
875 FOLIOREF_RECLAIM_CLEAN,
876 FOLIOREF_KEEP,
877 FOLIOREF_ACTIVATE,
878 };
879
880 #ifdef CONFIG_LRU_GEN
881 /*
882 * Only used on a mapped folio in the eviction (rmap walk) path, where promotion
883 * needs to be done by taking the folio off the LRU list and then adding it back
884 * with PG_active set. In contrast, the aging (page table walk) path uses
885 * folio_update_gen().
886 */
lru_gen_set_refs(struct folio * folio)887 static bool lru_gen_set_refs(struct folio *folio)
888 {
889 /* see the comment on LRU_REFS_FLAGS */
890 if (!folio_test_referenced(folio) && !folio_test_workingset(folio)) {
891 set_mask_bits(&folio->flags, LRU_REFS_MASK, BIT(PG_referenced));
892 return false;
893 }
894
895 set_mask_bits(&folio->flags, LRU_REFS_FLAGS, BIT(PG_workingset));
896 return true;
897 }
898 #else
lru_gen_set_refs(struct folio * folio)899 static bool lru_gen_set_refs(struct folio *folio)
900 {
901 return false;
902 }
903 #endif /* CONFIG_LRU_GEN */
904
folio_check_references(struct folio * folio,struct scan_control * sc)905 static enum folio_references folio_check_references(struct folio *folio,
906 struct scan_control *sc)
907 {
908 int referenced_ptes, referenced_folio;
909 vm_flags_t vm_flags;
910
911 referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup,
912 &vm_flags);
913
914 /*
915 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma.
916 * Let the folio, now marked Mlocked, be moved to the unevictable list.
917 */
918 if (vm_flags & VM_LOCKED)
919 return FOLIOREF_ACTIVATE;
920
921 /*
922 * There are two cases to consider.
923 * 1) Rmap lock contention: rotate.
924 * 2) Skip the non-shared swapbacked folio mapped solely by
925 * the exiting or OOM-reaped process.
926 */
927 if (referenced_ptes == -1)
928 return FOLIOREF_KEEP;
929
930 if (lru_gen_enabled()) {
931 if (!referenced_ptes)
932 return FOLIOREF_RECLAIM;
933
934 return lru_gen_set_refs(folio) ? FOLIOREF_ACTIVATE : FOLIOREF_KEEP;
935 }
936
937 referenced_folio = folio_test_clear_referenced(folio);
938
939 if (referenced_ptes) {
940 /*
941 * All mapped folios start out with page table
942 * references from the instantiating fault, so we need
943 * to look twice if a mapped file/anon folio is used more
944 * than once.
945 *
946 * Mark it and spare it for another trip around the
947 * inactive list. Another page table reference will
948 * lead to its activation.
949 *
950 * Note: the mark is set for activated folios as well
951 * so that recently deactivated but used folios are
952 * quickly recovered.
953 */
954 folio_set_referenced(folio);
955
956 if (referenced_folio || referenced_ptes > 1)
957 return FOLIOREF_ACTIVATE;
958
959 /*
960 * Activate file-backed executable folios after first usage.
961 */
962 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio))
963 return FOLIOREF_ACTIVATE;
964
965 return FOLIOREF_KEEP;
966 }
967
968 /* Reclaim if clean, defer dirty folios to writeback */
969 if (referenced_folio && folio_is_file_lru(folio))
970 return FOLIOREF_RECLAIM_CLEAN;
971
972 return FOLIOREF_RECLAIM;
973 }
974
975 /* Check if a folio is dirty or under writeback */
folio_check_dirty_writeback(struct folio * folio,bool * dirty,bool * writeback)976 static void folio_check_dirty_writeback(struct folio *folio,
977 bool *dirty, bool *writeback)
978 {
979 struct address_space *mapping;
980
981 /*
982 * Anonymous folios are not handled by flushers and must be written
983 * from reclaim context. Do not stall reclaim based on them.
984 * MADV_FREE anonymous folios are put into inactive file list too.
985 * They could be mistakenly treated as file lru. So further anon
986 * test is needed.
987 */
988 if (!folio_is_file_lru(folio) ||
989 (folio_test_anon(folio) && !folio_test_swapbacked(folio))) {
990 *dirty = false;
991 *writeback = false;
992 return;
993 }
994
995 /* By default assume that the folio flags are accurate */
996 *dirty = folio_test_dirty(folio);
997 *writeback = folio_test_writeback(folio);
998
999 /* Verify dirty/writeback state if the filesystem supports it */
1000 if (!folio_test_private(folio))
1001 return;
1002
1003 mapping = folio_mapping(folio);
1004 if (mapping && mapping->a_ops->is_dirty_writeback)
1005 mapping->a_ops->is_dirty_writeback(folio, dirty, writeback);
1006 }
1007
alloc_demote_folio(struct folio * src,unsigned long private)1008 static struct folio *alloc_demote_folio(struct folio *src,
1009 unsigned long private)
1010 {
1011 struct folio *dst;
1012 nodemask_t *allowed_mask;
1013 struct migration_target_control *mtc;
1014
1015 mtc = (struct migration_target_control *)private;
1016
1017 allowed_mask = mtc->nmask;
1018 /*
1019 * make sure we allocate from the target node first also trying to
1020 * demote or reclaim pages from the target node via kswapd if we are
1021 * low on free memory on target node. If we don't do this and if
1022 * we have free memory on the slower(lower) memtier, we would start
1023 * allocating pages from slower(lower) memory tiers without even forcing
1024 * a demotion of cold pages from the target memtier. This can result
1025 * in the kernel placing hot pages in slower(lower) memory tiers.
1026 */
1027 mtc->nmask = NULL;
1028 mtc->gfp_mask |= __GFP_THISNODE;
1029 dst = alloc_migration_target(src, (unsigned long)mtc);
1030 if (dst)
1031 return dst;
1032
1033 mtc->gfp_mask &= ~__GFP_THISNODE;
1034 mtc->nmask = allowed_mask;
1035
1036 return alloc_migration_target(src, (unsigned long)mtc);
1037 }
1038
1039 /*
1040 * Take folios on @demote_folios and attempt to demote them to another node.
1041 * Folios which are not demoted are left on @demote_folios.
1042 */
demote_folio_list(struct list_head * demote_folios,struct pglist_data * pgdat)1043 static unsigned int demote_folio_list(struct list_head *demote_folios,
1044 struct pglist_data *pgdat)
1045 {
1046 int target_nid = next_demotion_node(pgdat->node_id);
1047 unsigned int nr_succeeded;
1048 nodemask_t allowed_mask;
1049
1050 struct migration_target_control mtc = {
1051 /*
1052 * Allocate from 'node', or fail quickly and quietly.
1053 * When this happens, 'page' will likely just be discarded
1054 * instead of migrated.
1055 */
1056 .gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | __GFP_NOWARN |
1057 __GFP_NOMEMALLOC | GFP_NOWAIT,
1058 .nid = target_nid,
1059 .nmask = &allowed_mask,
1060 .reason = MR_DEMOTION,
1061 };
1062
1063 if (list_empty(demote_folios))
1064 return 0;
1065
1066 if (target_nid == NUMA_NO_NODE)
1067 return 0;
1068
1069 node_get_allowed_targets(pgdat, &allowed_mask);
1070
1071 /* Demotion ignores all cpuset and mempolicy settings */
1072 migrate_pages(demote_folios, alloc_demote_folio, NULL,
1073 (unsigned long)&mtc, MIGRATE_ASYNC, MR_DEMOTION,
1074 &nr_succeeded);
1075
1076 return nr_succeeded;
1077 }
1078
may_enter_fs(struct folio * folio,gfp_t gfp_mask)1079 static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask)
1080 {
1081 if (gfp_mask & __GFP_FS)
1082 return true;
1083 if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO))
1084 return false;
1085 /*
1086 * We can "enter_fs" for swap-cache with only __GFP_IO
1087 * providing this isn't SWP_FS_OPS.
1088 * ->flags can be updated non-atomicially (scan_swap_map_slots),
1089 * but that will never affect SWP_FS_OPS, so the data_race
1090 * is safe.
1091 */
1092 return !data_race(folio_swap_flags(folio) & SWP_FS_OPS);
1093 }
1094
1095 /*
1096 * shrink_folio_list() returns the number of reclaimed pages
1097 */
shrink_folio_list(struct list_head * folio_list,struct pglist_data * pgdat,struct scan_control * sc,struct reclaim_stat * stat,bool ignore_references,struct mem_cgroup * memcg)1098 static unsigned int shrink_folio_list(struct list_head *folio_list,
1099 struct pglist_data *pgdat, struct scan_control *sc,
1100 struct reclaim_stat *stat, bool ignore_references,
1101 struct mem_cgroup *memcg)
1102 {
1103 struct folio_batch free_folios;
1104 LIST_HEAD(ret_folios);
1105 LIST_HEAD(demote_folios);
1106 unsigned int nr_reclaimed = 0, nr_demoted = 0;
1107 unsigned int pgactivate = 0;
1108 bool do_demote_pass;
1109 struct swap_iocb *plug = NULL;
1110
1111 folio_batch_init(&free_folios);
1112 memset(stat, 0, sizeof(*stat));
1113 cond_resched();
1114 do_demote_pass = can_demote(pgdat->node_id, sc, memcg);
1115
1116 retry:
1117 while (!list_empty(folio_list)) {
1118 struct address_space *mapping;
1119 struct folio *folio;
1120 enum folio_references references = FOLIOREF_RECLAIM;
1121 bool dirty, writeback;
1122 unsigned int nr_pages;
1123
1124 cond_resched();
1125
1126 folio = lru_to_folio(folio_list);
1127 list_del(&folio->lru);
1128
1129 if (!folio_trylock(folio))
1130 goto keep;
1131
1132 if (folio_contain_hwpoisoned_page(folio)) {
1133 /*
1134 * unmap_poisoned_folio() can't handle large
1135 * folio, just skip it. memory_failure() will
1136 * handle it if the UCE is triggered again.
1137 */
1138 if (folio_test_large(folio))
1139 goto keep_locked;
1140
1141 unmap_poisoned_folio(folio, folio_pfn(folio), false);
1142 folio_unlock(folio);
1143 folio_put(folio);
1144 continue;
1145 }
1146
1147 VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1148
1149 nr_pages = folio_nr_pages(folio);
1150
1151 /* Account the number of base pages */
1152 sc->nr_scanned += nr_pages;
1153
1154 if (unlikely(!folio_evictable(folio)))
1155 goto activate_locked;
1156
1157 if (!sc->may_unmap && folio_mapped(folio))
1158 goto keep_locked;
1159
1160 /*
1161 * The number of dirty pages determines if a node is marked
1162 * reclaim_congested. kswapd will stall and start writing
1163 * folios if the tail of the LRU is all dirty unqueued folios.
1164 */
1165 folio_check_dirty_writeback(folio, &dirty, &writeback);
1166 if (dirty || writeback)
1167 stat->nr_dirty += nr_pages;
1168
1169 if (dirty && !writeback)
1170 stat->nr_unqueued_dirty += nr_pages;
1171
1172 /*
1173 * Treat this folio as congested if folios are cycling
1174 * through the LRU so quickly that the folios marked
1175 * for immediate reclaim are making it to the end of
1176 * the LRU a second time.
1177 */
1178 if (writeback && folio_test_reclaim(folio))
1179 stat->nr_congested += nr_pages;
1180
1181 /*
1182 * If a folio at the tail of the LRU is under writeback, there
1183 * are three cases to consider.
1184 *
1185 * 1) If reclaim is encountering an excessive number
1186 * of folios under writeback and this folio has both
1187 * the writeback and reclaim flags set, then it
1188 * indicates that folios are being queued for I/O but
1189 * are being recycled through the LRU before the I/O
1190 * can complete. Waiting on the folio itself risks an
1191 * indefinite stall if it is impossible to writeback
1192 * the folio due to I/O error or disconnected storage
1193 * so instead note that the LRU is being scanned too
1194 * quickly and the caller can stall after the folio
1195 * list has been processed.
1196 *
1197 * 2) Global or new memcg reclaim encounters a folio that is
1198 * not marked for immediate reclaim, or the caller does not
1199 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1200 * not to fs), or the folio belongs to a mapping where
1201 * waiting on writeback during reclaim may lead to a deadlock.
1202 * In this case mark the folio for immediate reclaim and
1203 * continue scanning.
1204 *
1205 * Require may_enter_fs() because we would wait on fs, which
1206 * may not have submitted I/O yet. And the loop driver might
1207 * enter reclaim, and deadlock if it waits on a folio for
1208 * which it is needed to do the write (loop masks off
1209 * __GFP_IO|__GFP_FS for this reason); but more thought
1210 * would probably show more reasons.
1211 *
1212 * 3) Legacy memcg encounters a folio that already has the
1213 * reclaim flag set. memcg does not have any dirty folio
1214 * throttling so we could easily OOM just because too many
1215 * folios are in writeback and there is nothing else to
1216 * reclaim. Wait for the writeback to complete.
1217 *
1218 * In cases 1) and 2) we activate the folios to get them out of
1219 * the way while we continue scanning for clean folios on the
1220 * inactive list and refilling from the active list. The
1221 * observation here is that waiting for disk writes is more
1222 * expensive than potentially causing reloads down the line.
1223 * Since they're marked for immediate reclaim, they won't put
1224 * memory pressure on the cache working set any longer than it
1225 * takes to write them to disk.
1226 */
1227 if (folio_test_writeback(folio)) {
1228 mapping = folio_mapping(folio);
1229
1230 /* Case 1 above */
1231 if (current_is_kswapd() &&
1232 folio_test_reclaim(folio) &&
1233 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1234 stat->nr_immediate += nr_pages;
1235 goto activate_locked;
1236
1237 /* Case 2 above */
1238 } else if (writeback_throttling_sane(sc) ||
1239 !folio_test_reclaim(folio) ||
1240 !may_enter_fs(folio, sc->gfp_mask) ||
1241 (mapping &&
1242 mapping_writeback_may_deadlock_on_reclaim(mapping))) {
1243 /*
1244 * This is slightly racy -
1245 * folio_end_writeback() might have
1246 * just cleared the reclaim flag, then
1247 * setting the reclaim flag here ends up
1248 * interpreted as the readahead flag - but
1249 * that does not matter enough to care.
1250 * What we do want is for this folio to
1251 * have the reclaim flag set next time
1252 * memcg reclaim reaches the tests above,
1253 * so it will then wait for writeback to
1254 * avoid OOM; and it's also appropriate
1255 * in global reclaim.
1256 */
1257 folio_set_reclaim(folio);
1258 stat->nr_writeback += nr_pages;
1259 goto activate_locked;
1260
1261 /* Case 3 above */
1262 } else {
1263 folio_unlock(folio);
1264 folio_wait_writeback(folio);
1265 /* then go back and try same folio again */
1266 list_add_tail(&folio->lru, folio_list);
1267 continue;
1268 }
1269 }
1270
1271 if (!ignore_references)
1272 references = folio_check_references(folio, sc);
1273
1274 switch (references) {
1275 case FOLIOREF_ACTIVATE:
1276 goto activate_locked;
1277 case FOLIOREF_KEEP:
1278 stat->nr_ref_keep += nr_pages;
1279 goto keep_locked;
1280 case FOLIOREF_RECLAIM:
1281 case FOLIOREF_RECLAIM_CLEAN:
1282 ; /* try to reclaim the folio below */
1283 }
1284
1285 /*
1286 * Before reclaiming the folio, try to relocate
1287 * its contents to another node.
1288 */
1289 if (do_demote_pass &&
1290 (thp_migration_supported() || !folio_test_large(folio))) {
1291 list_add(&folio->lru, &demote_folios);
1292 folio_unlock(folio);
1293 continue;
1294 }
1295
1296 /*
1297 * Anonymous process memory has backing store?
1298 * Try to allocate it some swap space here.
1299 * Lazyfree folio could be freed directly
1300 */
1301 if (folio_test_anon(folio) && folio_test_swapbacked(folio)) {
1302 if (!folio_test_swapcache(folio)) {
1303 if (!(sc->gfp_mask & __GFP_IO))
1304 goto keep_locked;
1305 if (folio_maybe_dma_pinned(folio))
1306 goto keep_locked;
1307 if (folio_test_large(folio)) {
1308 /* cannot split folio, skip it */
1309 if (!can_split_folio(folio, 1, NULL))
1310 goto activate_locked;
1311 /*
1312 * Split partially mapped folios right away.
1313 * We can free the unmapped pages without IO.
1314 */
1315 if (data_race(!list_empty(&folio->_deferred_list) &&
1316 folio_test_partially_mapped(folio)) &&
1317 split_folio_to_list(folio, folio_list))
1318 goto activate_locked;
1319 }
1320 if (folio_alloc_swap(folio, __GFP_HIGH | __GFP_NOWARN)) {
1321 int __maybe_unused order = folio_order(folio);
1322
1323 if (!folio_test_large(folio))
1324 goto activate_locked_split;
1325 /* Fallback to swap normal pages */
1326 if (split_folio_to_list(folio, folio_list))
1327 goto activate_locked;
1328 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1329 if (nr_pages >= HPAGE_PMD_NR) {
1330 count_memcg_folio_events(folio,
1331 THP_SWPOUT_FALLBACK, 1);
1332 count_vm_event(THP_SWPOUT_FALLBACK);
1333 }
1334 #endif
1335 count_mthp_stat(order, MTHP_STAT_SWPOUT_FALLBACK);
1336 if (folio_alloc_swap(folio, __GFP_HIGH | __GFP_NOWARN))
1337 goto activate_locked_split;
1338 }
1339 /*
1340 * Normally the folio will be dirtied in unmap because its
1341 * pte should be dirty. A special case is MADV_FREE page. The
1342 * page's pte could have dirty bit cleared but the folio's
1343 * SwapBacked flag is still set because clearing the dirty bit
1344 * and SwapBacked flag has no lock protected. For such folio,
1345 * unmap will not set dirty bit for it, so folio reclaim will
1346 * not write the folio out. This can cause data corruption when
1347 * the folio is swapped in later. Always setting the dirty flag
1348 * for the folio solves the problem.
1349 */
1350 folio_mark_dirty(folio);
1351 }
1352 }
1353
1354 /*
1355 * If the folio was split above, the tail pages will make
1356 * their own pass through this function and be accounted
1357 * then.
1358 */
1359 if ((nr_pages > 1) && !folio_test_large(folio)) {
1360 sc->nr_scanned -= (nr_pages - 1);
1361 nr_pages = 1;
1362 }
1363
1364 /*
1365 * The folio is mapped into the page tables of one or more
1366 * processes. Try to unmap it here.
1367 */
1368 if (folio_mapped(folio)) {
1369 enum ttu_flags flags = TTU_BATCH_FLUSH;
1370 bool was_swapbacked = folio_test_swapbacked(folio);
1371
1372 if (folio_test_pmd_mappable(folio))
1373 flags |= TTU_SPLIT_HUGE_PMD;
1374 /*
1375 * Without TTU_SYNC, try_to_unmap will only begin to
1376 * hold PTL from the first present PTE within a large
1377 * folio. Some initial PTEs might be skipped due to
1378 * races with parallel PTE writes in which PTEs can be
1379 * cleared temporarily before being written new present
1380 * values. This will lead to a large folio is still
1381 * mapped while some subpages have been partially
1382 * unmapped after try_to_unmap; TTU_SYNC helps
1383 * try_to_unmap acquire PTL from the first PTE,
1384 * eliminating the influence of temporary PTE values.
1385 */
1386 if (folio_test_large(folio))
1387 flags |= TTU_SYNC;
1388
1389 try_to_unmap(folio, flags);
1390 if (folio_mapped(folio)) {
1391 stat->nr_unmap_fail += nr_pages;
1392 if (!was_swapbacked &&
1393 folio_test_swapbacked(folio))
1394 stat->nr_lazyfree_fail += nr_pages;
1395 goto activate_locked;
1396 }
1397 }
1398
1399 /*
1400 * Folio is unmapped now so it cannot be newly pinned anymore.
1401 * No point in trying to reclaim folio if it is pinned.
1402 * Furthermore we don't want to reclaim underlying fs metadata
1403 * if the folio is pinned and thus potentially modified by the
1404 * pinning process as that may upset the filesystem.
1405 */
1406 if (folio_maybe_dma_pinned(folio))
1407 goto activate_locked;
1408
1409 mapping = folio_mapping(folio);
1410 if (folio_test_dirty(folio)) {
1411 /*
1412 * Only kswapd can writeback filesystem folios
1413 * to avoid risk of stack overflow. But avoid
1414 * injecting inefficient single-folio I/O into
1415 * flusher writeback as much as possible: only
1416 * write folios when we've encountered many
1417 * dirty folios, and when we've already scanned
1418 * the rest of the LRU for clean folios and see
1419 * the same dirty folios again (with the reclaim
1420 * flag set).
1421 */
1422 if (folio_is_file_lru(folio) &&
1423 (!current_is_kswapd() ||
1424 !folio_test_reclaim(folio) ||
1425 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1426 /*
1427 * Immediately reclaim when written back.
1428 * Similar in principle to folio_deactivate()
1429 * except we already have the folio isolated
1430 * and know it's dirty
1431 */
1432 node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE,
1433 nr_pages);
1434 folio_set_reclaim(folio);
1435
1436 goto activate_locked;
1437 }
1438
1439 if (references == FOLIOREF_RECLAIM_CLEAN)
1440 goto keep_locked;
1441 if (!may_enter_fs(folio, sc->gfp_mask))
1442 goto keep_locked;
1443 if (!sc->may_writepage)
1444 goto keep_locked;
1445
1446 /*
1447 * Folio is dirty. Flush the TLB if a writable entry
1448 * potentially exists to avoid CPU writes after I/O
1449 * starts and then write it out here.
1450 */
1451 try_to_unmap_flush_dirty();
1452 switch (pageout(folio, mapping, &plug, folio_list)) {
1453 case PAGE_KEEP:
1454 goto keep_locked;
1455 case PAGE_ACTIVATE:
1456 /*
1457 * If shmem folio is split when writeback to swap,
1458 * the tail pages will make their own pass through
1459 * this function and be accounted then.
1460 */
1461 if (nr_pages > 1 && !folio_test_large(folio)) {
1462 sc->nr_scanned -= (nr_pages - 1);
1463 nr_pages = 1;
1464 }
1465 goto activate_locked;
1466 case PAGE_SUCCESS:
1467 if (nr_pages > 1 && !folio_test_large(folio)) {
1468 sc->nr_scanned -= (nr_pages - 1);
1469 nr_pages = 1;
1470 }
1471 stat->nr_pageout += nr_pages;
1472
1473 if (folio_test_writeback(folio))
1474 goto keep;
1475 if (folio_test_dirty(folio))
1476 goto keep;
1477
1478 /*
1479 * A synchronous write - probably a ramdisk. Go
1480 * ahead and try to reclaim the folio.
1481 */
1482 if (!folio_trylock(folio))
1483 goto keep;
1484 if (folio_test_dirty(folio) ||
1485 folio_test_writeback(folio))
1486 goto keep_locked;
1487 mapping = folio_mapping(folio);
1488 fallthrough;
1489 case PAGE_CLEAN:
1490 ; /* try to free the folio below */
1491 }
1492 }
1493
1494 /*
1495 * If the folio has buffers, try to free the buffer
1496 * mappings associated with this folio. If we succeed
1497 * we try to free the folio as well.
1498 *
1499 * We do this even if the folio is dirty.
1500 * filemap_release_folio() does not perform I/O, but it
1501 * is possible for a folio to have the dirty flag set,
1502 * but it is actually clean (all its buffers are clean).
1503 * This happens if the buffers were written out directly,
1504 * with submit_bh(). ext3 will do this, as well as
1505 * the blockdev mapping. filemap_release_folio() will
1506 * discover that cleanness and will drop the buffers
1507 * and mark the folio clean - it can be freed.
1508 *
1509 * Rarely, folios can have buffers and no ->mapping.
1510 * These are the folios which were not successfully
1511 * invalidated in truncate_cleanup_folio(). We try to
1512 * drop those buffers here and if that worked, and the
1513 * folio is no longer mapped into process address space
1514 * (refcount == 1) it can be freed. Otherwise, leave
1515 * the folio on the LRU so it is swappable.
1516 */
1517 if (folio_needs_release(folio)) {
1518 if (!filemap_release_folio(folio, sc->gfp_mask))
1519 goto activate_locked;
1520 if (!mapping && folio_ref_count(folio) == 1) {
1521 folio_unlock(folio);
1522 if (folio_put_testzero(folio))
1523 goto free_it;
1524 else {
1525 /*
1526 * rare race with speculative reference.
1527 * the speculative reference will free
1528 * this folio shortly, so we may
1529 * increment nr_reclaimed here (and
1530 * leave it off the LRU).
1531 */
1532 nr_reclaimed += nr_pages;
1533 continue;
1534 }
1535 }
1536 }
1537
1538 if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) {
1539 /* follow __remove_mapping for reference */
1540 if (!folio_ref_freeze(folio, 1))
1541 goto keep_locked;
1542 /*
1543 * The folio has only one reference left, which is
1544 * from the isolation. After the caller puts the
1545 * folio back on the lru and drops the reference, the
1546 * folio will be freed anyway. It doesn't matter
1547 * which lru it goes on. So we don't bother checking
1548 * the dirty flag here.
1549 */
1550 count_vm_events(PGLAZYFREED, nr_pages);
1551 count_memcg_folio_events(folio, PGLAZYFREED, nr_pages);
1552 } else if (!mapping || !__remove_mapping(mapping, folio, true,
1553 sc->target_mem_cgroup))
1554 goto keep_locked;
1555
1556 folio_unlock(folio);
1557 free_it:
1558 /*
1559 * Folio may get swapped out as a whole, need to account
1560 * all pages in it.
1561 */
1562 nr_reclaimed += nr_pages;
1563
1564 folio_unqueue_deferred_split(folio);
1565 if (folio_batch_add(&free_folios, folio) == 0) {
1566 mem_cgroup_uncharge_folios(&free_folios);
1567 try_to_unmap_flush();
1568 free_unref_folios(&free_folios);
1569 }
1570 continue;
1571
1572 activate_locked_split:
1573 /*
1574 * The tail pages that are failed to add into swap cache
1575 * reach here. Fixup nr_scanned and nr_pages.
1576 */
1577 if (nr_pages > 1) {
1578 sc->nr_scanned -= (nr_pages - 1);
1579 nr_pages = 1;
1580 }
1581 activate_locked:
1582 /* Not a candidate for swapping, so reclaim swap space. */
1583 if (folio_test_swapcache(folio) &&
1584 (mem_cgroup_swap_full(folio) || folio_test_mlocked(folio)))
1585 folio_free_swap(folio);
1586 VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1587 if (!folio_test_mlocked(folio)) {
1588 int type = folio_is_file_lru(folio);
1589 folio_set_active(folio);
1590 stat->nr_activate[type] += nr_pages;
1591 count_memcg_folio_events(folio, PGACTIVATE, nr_pages);
1592 }
1593 keep_locked:
1594 folio_unlock(folio);
1595 keep:
1596 list_add(&folio->lru, &ret_folios);
1597 VM_BUG_ON_FOLIO(folio_test_lru(folio) ||
1598 folio_test_unevictable(folio), folio);
1599 }
1600 /* 'folio_list' is always empty here */
1601
1602 /* Migrate folios selected for demotion */
1603 nr_demoted = demote_folio_list(&demote_folios, pgdat);
1604 nr_reclaimed += nr_demoted;
1605 stat->nr_demoted += nr_demoted;
1606 /* Folios that could not be demoted are still in @demote_folios */
1607 if (!list_empty(&demote_folios)) {
1608 /* Folios which weren't demoted go back on @folio_list */
1609 list_splice_init(&demote_folios, folio_list);
1610
1611 /*
1612 * goto retry to reclaim the undemoted folios in folio_list if
1613 * desired.
1614 *
1615 * Reclaiming directly from top tier nodes is not often desired
1616 * due to it breaking the LRU ordering: in general memory
1617 * should be reclaimed from lower tier nodes and demoted from
1618 * top tier nodes.
1619 *
1620 * However, disabling reclaim from top tier nodes entirely
1621 * would cause ooms in edge scenarios where lower tier memory
1622 * is unreclaimable for whatever reason, eg memory being
1623 * mlocked or too hot to reclaim. We can disable reclaim
1624 * from top tier nodes in proactive reclaim though as that is
1625 * not real memory pressure.
1626 */
1627 if (!sc->proactive) {
1628 do_demote_pass = false;
1629 goto retry;
1630 }
1631 }
1632
1633 pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1634
1635 mem_cgroup_uncharge_folios(&free_folios);
1636 try_to_unmap_flush();
1637 free_unref_folios(&free_folios);
1638
1639 list_splice(&ret_folios, folio_list);
1640 count_vm_events(PGACTIVATE, pgactivate);
1641
1642 if (plug)
1643 swap_write_unplug(plug);
1644 return nr_reclaimed;
1645 }
1646
reclaim_clean_pages_from_list(struct zone * zone,struct list_head * folio_list)1647 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1648 struct list_head *folio_list)
1649 {
1650 struct scan_control sc = {
1651 .gfp_mask = GFP_KERNEL,
1652 .may_unmap = 1,
1653 };
1654 struct reclaim_stat stat;
1655 unsigned int nr_reclaimed;
1656 struct folio *folio, *next;
1657 LIST_HEAD(clean_folios);
1658 unsigned int noreclaim_flag;
1659
1660 list_for_each_entry_safe(folio, next, folio_list, lru) {
1661 /* TODO: these pages should not even appear in this list. */
1662 if (page_has_movable_ops(&folio->page))
1663 continue;
1664 if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) &&
1665 !folio_test_dirty(folio) && !folio_test_unevictable(folio)) {
1666 folio_clear_active(folio);
1667 list_move(&folio->lru, &clean_folios);
1668 }
1669 }
1670
1671 /*
1672 * We should be safe here since we are only dealing with file pages and
1673 * we are not kswapd and therefore cannot write dirty file pages. But
1674 * call memalloc_noreclaim_save() anyway, just in case these conditions
1675 * change in the future.
1676 */
1677 noreclaim_flag = memalloc_noreclaim_save();
1678 nr_reclaimed = shrink_folio_list(&clean_folios, zone->zone_pgdat, &sc,
1679 &stat, true, NULL);
1680 memalloc_noreclaim_restore(noreclaim_flag);
1681
1682 list_splice(&clean_folios, folio_list);
1683 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1684 -(long)nr_reclaimed);
1685 /*
1686 * Since lazyfree pages are isolated from file LRU from the beginning,
1687 * they will rotate back to anonymous LRU in the end if it failed to
1688 * discard so isolated count will be mismatched.
1689 * Compensate the isolated count for both LRU lists.
1690 */
1691 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
1692 stat.nr_lazyfree_fail);
1693 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1694 -(long)stat.nr_lazyfree_fail);
1695 return nr_reclaimed;
1696 }
1697
1698 /*
1699 * Update LRU sizes after isolating pages. The LRU size updates must
1700 * be complete before mem_cgroup_update_lru_size due to a sanity check.
1701 */
update_lru_sizes(struct lruvec * lruvec,enum lru_list lru,unsigned long * nr_zone_taken)1702 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1703 enum lru_list lru, unsigned long *nr_zone_taken)
1704 {
1705 int zid;
1706
1707 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1708 if (!nr_zone_taken[zid])
1709 continue;
1710
1711 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1712 }
1713
1714 }
1715
1716 /*
1717 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
1718 *
1719 * lruvec->lru_lock is heavily contended. Some of the functions that
1720 * shrink the lists perform better by taking out a batch of pages
1721 * and working on them outside the LRU lock.
1722 *
1723 * For pagecache intensive workloads, this function is the hottest
1724 * spot in the kernel (apart from copy_*_user functions).
1725 *
1726 * Lru_lock must be held before calling this function.
1727 *
1728 * @nr_to_scan: The number of eligible pages to look through on the list.
1729 * @lruvec: The LRU vector to pull pages from.
1730 * @dst: The temp list to put pages on to.
1731 * @nr_scanned: The number of pages that were scanned.
1732 * @sc: The scan_control struct for this reclaim session
1733 * @lru: LRU list id for isolating
1734 *
1735 * returns how many pages were moved onto *@dst.
1736 */
isolate_lru_folios(unsigned long nr_to_scan,struct lruvec * lruvec,struct list_head * dst,unsigned long * nr_scanned,struct scan_control * sc,enum lru_list lru)1737 static unsigned long isolate_lru_folios(unsigned long nr_to_scan,
1738 struct lruvec *lruvec, struct list_head *dst,
1739 unsigned long *nr_scanned, struct scan_control *sc,
1740 enum lru_list lru)
1741 {
1742 struct list_head *src = &lruvec->lists[lru];
1743 unsigned long nr_taken = 0;
1744 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1745 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1746 unsigned long skipped = 0, total_scan = 0, scan = 0;
1747 unsigned long nr_pages;
1748 unsigned long max_nr_skipped = 0;
1749 LIST_HEAD(folios_skipped);
1750
1751 while (scan < nr_to_scan && !list_empty(src)) {
1752 struct list_head *move_to = src;
1753 struct folio *folio;
1754
1755 folio = lru_to_folio(src);
1756 prefetchw_prev_lru_folio(folio, src, flags);
1757
1758 nr_pages = folio_nr_pages(folio);
1759 total_scan += nr_pages;
1760
1761 /* Using max_nr_skipped to prevent hard LOCKUP*/
1762 if (max_nr_skipped < SWAP_CLUSTER_MAX_SKIPPED &&
1763 (folio_zonenum(folio) > sc->reclaim_idx)) {
1764 nr_skipped[folio_zonenum(folio)] += nr_pages;
1765 move_to = &folios_skipped;
1766 max_nr_skipped++;
1767 goto move;
1768 }
1769
1770 /*
1771 * Do not count skipped folios because that makes the function
1772 * return with no isolated folios if the LRU mostly contains
1773 * ineligible folios. This causes the VM to not reclaim any
1774 * folios, triggering a premature OOM.
1775 * Account all pages in a folio.
1776 */
1777 scan += nr_pages;
1778
1779 if (!folio_test_lru(folio))
1780 goto move;
1781 if (!sc->may_unmap && folio_mapped(folio))
1782 goto move;
1783
1784 /*
1785 * Be careful not to clear the lru flag until after we're
1786 * sure the folio is not being freed elsewhere -- the
1787 * folio release code relies on it.
1788 */
1789 if (unlikely(!folio_try_get(folio)))
1790 goto move;
1791
1792 if (!folio_test_clear_lru(folio)) {
1793 /* Another thread is already isolating this folio */
1794 folio_put(folio);
1795 goto move;
1796 }
1797
1798 nr_taken += nr_pages;
1799 nr_zone_taken[folio_zonenum(folio)] += nr_pages;
1800 move_to = dst;
1801 move:
1802 list_move(&folio->lru, move_to);
1803 }
1804
1805 /*
1806 * Splice any skipped folios to the start of the LRU list. Note that
1807 * this disrupts the LRU order when reclaiming for lower zones but
1808 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1809 * scanning would soon rescan the same folios to skip and waste lots
1810 * of cpu cycles.
1811 */
1812 if (!list_empty(&folios_skipped)) {
1813 int zid;
1814
1815 list_splice(&folios_skipped, src);
1816 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1817 if (!nr_skipped[zid])
1818 continue;
1819
1820 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1821 skipped += nr_skipped[zid];
1822 }
1823 }
1824 *nr_scanned = total_scan;
1825 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1826 total_scan, skipped, nr_taken, lru);
1827 update_lru_sizes(lruvec, lru, nr_zone_taken);
1828 return nr_taken;
1829 }
1830
1831 /**
1832 * folio_isolate_lru() - Try to isolate a folio from its LRU list.
1833 * @folio: Folio to isolate from its LRU list.
1834 *
1835 * Isolate a @folio from an LRU list and adjust the vmstat statistic
1836 * corresponding to whatever LRU list the folio was on.
1837 *
1838 * The folio will have its LRU flag cleared. If it was found on the
1839 * active list, it will have the Active flag set. If it was found on the
1840 * unevictable list, it will have the Unevictable flag set. These flags
1841 * may need to be cleared by the caller before letting the page go.
1842 *
1843 * Context:
1844 *
1845 * (1) Must be called with an elevated refcount on the folio. This is a
1846 * fundamental difference from isolate_lru_folios() (which is called
1847 * without a stable reference).
1848 * (2) The lru_lock must not be held.
1849 * (3) Interrupts must be enabled.
1850 *
1851 * Return: true if the folio was removed from an LRU list.
1852 * false if the folio was not on an LRU list.
1853 */
folio_isolate_lru(struct folio * folio)1854 bool folio_isolate_lru(struct folio *folio)
1855 {
1856 bool ret = false;
1857
1858 VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio);
1859
1860 if (folio_test_clear_lru(folio)) {
1861 struct lruvec *lruvec;
1862
1863 folio_get(folio);
1864 lruvec = folio_lruvec_lock_irq(folio);
1865 lruvec_del_folio(lruvec, folio);
1866 unlock_page_lruvec_irq(lruvec);
1867 ret = true;
1868 }
1869
1870 return ret;
1871 }
1872
1873 /*
1874 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1875 * then get rescheduled. When there are massive number of tasks doing page
1876 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1877 * the LRU list will go small and be scanned faster than necessary, leading to
1878 * unnecessary swapping, thrashing and OOM.
1879 */
too_many_isolated(struct pglist_data * pgdat,int file,struct scan_control * sc)1880 static bool too_many_isolated(struct pglist_data *pgdat, int file,
1881 struct scan_control *sc)
1882 {
1883 unsigned long inactive, isolated;
1884 bool too_many;
1885
1886 if (current_is_kswapd())
1887 return false;
1888
1889 if (!writeback_throttling_sane(sc))
1890 return false;
1891
1892 if (file) {
1893 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1894 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1895 } else {
1896 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1897 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1898 }
1899
1900 /*
1901 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1902 * won't get blocked by normal direct-reclaimers, forming a circular
1903 * deadlock.
1904 */
1905 if (gfp_has_io_fs(sc->gfp_mask))
1906 inactive >>= 3;
1907
1908 too_many = isolated > inactive;
1909
1910 /* Wake up tasks throttled due to too_many_isolated. */
1911 if (!too_many)
1912 wake_throttle_isolated(pgdat);
1913
1914 return too_many;
1915 }
1916
1917 /*
1918 * move_folios_to_lru() moves folios from private @list to appropriate LRU list.
1919 *
1920 * Returns the number of pages moved to the given lruvec.
1921 */
move_folios_to_lru(struct lruvec * lruvec,struct list_head * list)1922 static unsigned int move_folios_to_lru(struct lruvec *lruvec,
1923 struct list_head *list)
1924 {
1925 int nr_pages, nr_moved = 0;
1926 struct folio_batch free_folios;
1927
1928 folio_batch_init(&free_folios);
1929 while (!list_empty(list)) {
1930 struct folio *folio = lru_to_folio(list);
1931
1932 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
1933 list_del(&folio->lru);
1934 if (unlikely(!folio_evictable(folio))) {
1935 spin_unlock_irq(&lruvec->lru_lock);
1936 folio_putback_lru(folio);
1937 spin_lock_irq(&lruvec->lru_lock);
1938 continue;
1939 }
1940
1941 /*
1942 * The folio_set_lru needs to be kept here for list integrity.
1943 * Otherwise:
1944 * #0 move_folios_to_lru #1 release_pages
1945 * if (!folio_put_testzero())
1946 * if (folio_put_testzero())
1947 * !lru //skip lru_lock
1948 * folio_set_lru()
1949 * list_add(&folio->lru,)
1950 * list_add(&folio->lru,)
1951 */
1952 folio_set_lru(folio);
1953
1954 if (unlikely(folio_put_testzero(folio))) {
1955 __folio_clear_lru_flags(folio);
1956
1957 folio_unqueue_deferred_split(folio);
1958 if (folio_batch_add(&free_folios, folio) == 0) {
1959 spin_unlock_irq(&lruvec->lru_lock);
1960 mem_cgroup_uncharge_folios(&free_folios);
1961 free_unref_folios(&free_folios);
1962 spin_lock_irq(&lruvec->lru_lock);
1963 }
1964
1965 continue;
1966 }
1967
1968 /*
1969 * All pages were isolated from the same lruvec (and isolation
1970 * inhibits memcg migration).
1971 */
1972 VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio);
1973 lruvec_add_folio(lruvec, folio);
1974 nr_pages = folio_nr_pages(folio);
1975 nr_moved += nr_pages;
1976 if (folio_test_active(folio))
1977 workingset_age_nonresident(lruvec, nr_pages);
1978 }
1979
1980 if (free_folios.nr) {
1981 spin_unlock_irq(&lruvec->lru_lock);
1982 mem_cgroup_uncharge_folios(&free_folios);
1983 free_unref_folios(&free_folios);
1984 spin_lock_irq(&lruvec->lru_lock);
1985 }
1986
1987 return nr_moved;
1988 }
1989
1990 /*
1991 * If a kernel thread (such as nfsd for loop-back mounts) services a backing
1992 * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case
1993 * we should not throttle. Otherwise it is safe to do so.
1994 */
current_may_throttle(void)1995 static int current_may_throttle(void)
1996 {
1997 return !(current->flags & PF_LOCAL_THROTTLE);
1998 }
1999
2000 /*
2001 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
2002 * of reclaimed pages
2003 */
shrink_inactive_list(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,enum lru_list lru)2004 static unsigned long shrink_inactive_list(unsigned long nr_to_scan,
2005 struct lruvec *lruvec, struct scan_control *sc,
2006 enum lru_list lru)
2007 {
2008 LIST_HEAD(folio_list);
2009 unsigned long nr_scanned;
2010 unsigned int nr_reclaimed = 0;
2011 unsigned long nr_taken;
2012 struct reclaim_stat stat;
2013 bool file = is_file_lru(lru);
2014 enum vm_event_item item;
2015 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2016 bool stalled = false;
2017
2018 while (unlikely(too_many_isolated(pgdat, file, sc))) {
2019 if (stalled)
2020 return 0;
2021
2022 /* wait a bit for the reclaimer. */
2023 stalled = true;
2024 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
2025
2026 /* We are about to die and free our memory. Return now. */
2027 if (fatal_signal_pending(current))
2028 return SWAP_CLUSTER_MAX;
2029 }
2030
2031 lru_add_drain();
2032
2033 spin_lock_irq(&lruvec->lru_lock);
2034
2035 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &folio_list,
2036 &nr_scanned, sc, lru);
2037
2038 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2039 item = PGSCAN_KSWAPD + reclaimer_offset(sc);
2040 if (!cgroup_reclaim(sc))
2041 __count_vm_events(item, nr_scanned);
2042 count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
2043 __count_vm_events(PGSCAN_ANON + file, nr_scanned);
2044
2045 spin_unlock_irq(&lruvec->lru_lock);
2046
2047 if (nr_taken == 0)
2048 return 0;
2049
2050 nr_reclaimed = shrink_folio_list(&folio_list, pgdat, sc, &stat, false,
2051 lruvec_memcg(lruvec));
2052
2053 spin_lock_irq(&lruvec->lru_lock);
2054 move_folios_to_lru(lruvec, &folio_list);
2055
2056 __mod_lruvec_state(lruvec, PGDEMOTE_KSWAPD + reclaimer_offset(sc),
2057 stat.nr_demoted);
2058 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2059 item = PGSTEAL_KSWAPD + reclaimer_offset(sc);
2060 if (!cgroup_reclaim(sc))
2061 __count_vm_events(item, nr_reclaimed);
2062 count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
2063 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
2064
2065 lru_note_cost_unlock_irq(lruvec, file, stat.nr_pageout,
2066 nr_scanned - nr_reclaimed);
2067
2068 /*
2069 * If dirty folios are scanned that are not queued for IO, it
2070 * implies that flushers are not doing their job. This can
2071 * happen when memory pressure pushes dirty folios to the end of
2072 * the LRU before the dirty limits are breached and the dirty
2073 * data has expired. It can also happen when the proportion of
2074 * dirty folios grows not through writes but through memory
2075 * pressure reclaiming all the clean cache. And in some cases,
2076 * the flushers simply cannot keep up with the allocation
2077 * rate. Nudge the flusher threads in case they are asleep.
2078 */
2079 if (stat.nr_unqueued_dirty == nr_taken) {
2080 wakeup_flusher_threads(WB_REASON_VMSCAN);
2081 /*
2082 * For cgroupv1 dirty throttling is achieved by waking up
2083 * the kernel flusher here and later waiting on folios
2084 * which are in writeback to finish (see shrink_folio_list()).
2085 *
2086 * Flusher may not be able to issue writeback quickly
2087 * enough for cgroupv1 writeback throttling to work
2088 * on a large system.
2089 */
2090 if (!writeback_throttling_sane(sc))
2091 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
2092 }
2093
2094 sc->nr.dirty += stat.nr_dirty;
2095 sc->nr.congested += stat.nr_congested;
2096 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2097 sc->nr.writeback += stat.nr_writeback;
2098 sc->nr.immediate += stat.nr_immediate;
2099 sc->nr.taken += nr_taken;
2100 if (file)
2101 sc->nr.file_taken += nr_taken;
2102
2103 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2104 nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2105 return nr_reclaimed;
2106 }
2107
2108 /*
2109 * shrink_active_list() moves folios from the active LRU to the inactive LRU.
2110 *
2111 * We move them the other way if the folio is referenced by one or more
2112 * processes.
2113 *
2114 * If the folios are mostly unmapped, the processing is fast and it is
2115 * appropriate to hold lru_lock across the whole operation. But if
2116 * the folios are mapped, the processing is slow (folio_referenced()), so
2117 * we should drop lru_lock around each folio. It's impossible to balance
2118 * this, so instead we remove the folios from the LRU while processing them.
2119 * It is safe to rely on the active flag against the non-LRU folios in here
2120 * because nobody will play with that bit on a non-LRU folio.
2121 *
2122 * The downside is that we have to touch folio->_refcount against each folio.
2123 * But we had to alter folio->flags anyway.
2124 */
shrink_active_list(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,enum lru_list lru)2125 static void shrink_active_list(unsigned long nr_to_scan,
2126 struct lruvec *lruvec,
2127 struct scan_control *sc,
2128 enum lru_list lru)
2129 {
2130 unsigned long nr_taken;
2131 unsigned long nr_scanned;
2132 vm_flags_t vm_flags;
2133 LIST_HEAD(l_hold); /* The folios which were snipped off */
2134 LIST_HEAD(l_active);
2135 LIST_HEAD(l_inactive);
2136 unsigned nr_deactivate, nr_activate;
2137 unsigned nr_rotated = 0;
2138 bool file = is_file_lru(lru);
2139 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2140
2141 lru_add_drain();
2142
2143 spin_lock_irq(&lruvec->lru_lock);
2144
2145 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &l_hold,
2146 &nr_scanned, sc, lru);
2147
2148 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2149
2150 if (!cgroup_reclaim(sc))
2151 __count_vm_events(PGREFILL, nr_scanned);
2152 count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2153
2154 spin_unlock_irq(&lruvec->lru_lock);
2155
2156 while (!list_empty(&l_hold)) {
2157 struct folio *folio;
2158
2159 cond_resched();
2160 folio = lru_to_folio(&l_hold);
2161 list_del(&folio->lru);
2162
2163 if (unlikely(!folio_evictable(folio))) {
2164 folio_putback_lru(folio);
2165 continue;
2166 }
2167
2168 if (unlikely(buffer_heads_over_limit)) {
2169 if (folio_needs_release(folio) &&
2170 folio_trylock(folio)) {
2171 filemap_release_folio(folio, 0);
2172 folio_unlock(folio);
2173 }
2174 }
2175
2176 /* Referenced or rmap lock contention: rotate */
2177 if (folio_referenced(folio, 0, sc->target_mem_cgroup,
2178 &vm_flags) != 0) {
2179 /*
2180 * Identify referenced, file-backed active folios and
2181 * give them one more trip around the active list. So
2182 * that executable code get better chances to stay in
2183 * memory under moderate memory pressure. Anon folios
2184 * are not likely to be evicted by use-once streaming
2185 * IO, plus JVM can create lots of anon VM_EXEC folios,
2186 * so we ignore them here.
2187 */
2188 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) {
2189 nr_rotated += folio_nr_pages(folio);
2190 list_add(&folio->lru, &l_active);
2191 continue;
2192 }
2193 }
2194
2195 folio_clear_active(folio); /* we are de-activating */
2196 folio_set_workingset(folio);
2197 list_add(&folio->lru, &l_inactive);
2198 }
2199
2200 /*
2201 * Move folios back to the lru list.
2202 */
2203 spin_lock_irq(&lruvec->lru_lock);
2204
2205 nr_activate = move_folios_to_lru(lruvec, &l_active);
2206 nr_deactivate = move_folios_to_lru(lruvec, &l_inactive);
2207
2208 __count_vm_events(PGDEACTIVATE, nr_deactivate);
2209 count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2210
2211 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2212
2213 lru_note_cost_unlock_irq(lruvec, file, 0, nr_rotated);
2214 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2215 nr_deactivate, nr_rotated, sc->priority, file);
2216 }
2217
reclaim_folio_list(struct list_head * folio_list,struct pglist_data * pgdat)2218 static unsigned int reclaim_folio_list(struct list_head *folio_list,
2219 struct pglist_data *pgdat)
2220 {
2221 struct reclaim_stat stat;
2222 unsigned int nr_reclaimed;
2223 struct folio *folio;
2224 struct scan_control sc = {
2225 .gfp_mask = GFP_KERNEL,
2226 .may_writepage = 1,
2227 .may_unmap = 1,
2228 .may_swap = 1,
2229 .no_demotion = 1,
2230 };
2231
2232 nr_reclaimed = shrink_folio_list(folio_list, pgdat, &sc, &stat, true, NULL);
2233 while (!list_empty(folio_list)) {
2234 folio = lru_to_folio(folio_list);
2235 list_del(&folio->lru);
2236 folio_putback_lru(folio);
2237 }
2238 trace_mm_vmscan_reclaim_pages(pgdat->node_id, sc.nr_scanned, nr_reclaimed, &stat);
2239
2240 return nr_reclaimed;
2241 }
2242
reclaim_pages(struct list_head * folio_list)2243 unsigned long reclaim_pages(struct list_head *folio_list)
2244 {
2245 int nid;
2246 unsigned int nr_reclaimed = 0;
2247 LIST_HEAD(node_folio_list);
2248 unsigned int noreclaim_flag;
2249
2250 if (list_empty(folio_list))
2251 return nr_reclaimed;
2252
2253 noreclaim_flag = memalloc_noreclaim_save();
2254
2255 nid = folio_nid(lru_to_folio(folio_list));
2256 do {
2257 struct folio *folio = lru_to_folio(folio_list);
2258
2259 if (nid == folio_nid(folio)) {
2260 folio_clear_active(folio);
2261 list_move(&folio->lru, &node_folio_list);
2262 continue;
2263 }
2264
2265 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2266 nid = folio_nid(lru_to_folio(folio_list));
2267 } while (!list_empty(folio_list));
2268
2269 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2270
2271 memalloc_noreclaim_restore(noreclaim_flag);
2272
2273 return nr_reclaimed;
2274 }
2275
shrink_list(enum lru_list lru,unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc)2276 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2277 struct lruvec *lruvec, struct scan_control *sc)
2278 {
2279 if (is_active_lru(lru)) {
2280 if (sc->may_deactivate & (1 << is_file_lru(lru)))
2281 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2282 else
2283 sc->skipped_deactivate = 1;
2284 return 0;
2285 }
2286
2287 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2288 }
2289
2290 /*
2291 * The inactive anon list should be small enough that the VM never has
2292 * to do too much work.
2293 *
2294 * The inactive file list should be small enough to leave most memory
2295 * to the established workingset on the scan-resistant active list,
2296 * but large enough to avoid thrashing the aggregate readahead window.
2297 *
2298 * Both inactive lists should also be large enough that each inactive
2299 * folio has a chance to be referenced again before it is reclaimed.
2300 *
2301 * If that fails and refaulting is observed, the inactive list grows.
2302 *
2303 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE folios
2304 * on this LRU, maintained by the pageout code. An inactive_ratio
2305 * of 3 means 3:1 or 25% of the folios are kept on the inactive list.
2306 *
2307 * total target max
2308 * memory ratio inactive
2309 * -------------------------------------
2310 * 10MB 1 5MB
2311 * 100MB 1 50MB
2312 * 1GB 3 250MB
2313 * 10GB 10 0.9GB
2314 * 100GB 31 3GB
2315 * 1TB 101 10GB
2316 * 10TB 320 32GB
2317 */
inactive_is_low(struct lruvec * lruvec,enum lru_list inactive_lru)2318 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2319 {
2320 enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2321 unsigned long inactive, active;
2322 unsigned long inactive_ratio;
2323 unsigned long gb;
2324
2325 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2326 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2327
2328 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2329 if (gb)
2330 inactive_ratio = int_sqrt(10 * gb);
2331 else
2332 inactive_ratio = 1;
2333
2334 return inactive * inactive_ratio < active;
2335 }
2336
2337 enum scan_balance {
2338 SCAN_EQUAL,
2339 SCAN_FRACT,
2340 SCAN_ANON,
2341 SCAN_FILE,
2342 };
2343
prepare_scan_control(pg_data_t * pgdat,struct scan_control * sc)2344 static void prepare_scan_control(pg_data_t *pgdat, struct scan_control *sc)
2345 {
2346 unsigned long file;
2347 struct lruvec *target_lruvec;
2348
2349 if (lru_gen_enabled())
2350 return;
2351
2352 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2353
2354 /*
2355 * Flush the memory cgroup stats in rate-limited way as we don't need
2356 * most accurate stats here. We may switch to regular stats flushing
2357 * in the future once it is cheap enough.
2358 */
2359 mem_cgroup_flush_stats_ratelimited(sc->target_mem_cgroup);
2360
2361 /*
2362 * Determine the scan balance between anon and file LRUs.
2363 */
2364 spin_lock_irq(&target_lruvec->lru_lock);
2365 sc->anon_cost = target_lruvec->anon_cost;
2366 sc->file_cost = target_lruvec->file_cost;
2367 spin_unlock_irq(&target_lruvec->lru_lock);
2368
2369 /*
2370 * Target desirable inactive:active list ratios for the anon
2371 * and file LRU lists.
2372 */
2373 if (!sc->force_deactivate) {
2374 unsigned long refaults;
2375
2376 /*
2377 * When refaults are being observed, it means a new
2378 * workingset is being established. Deactivate to get
2379 * rid of any stale active pages quickly.
2380 */
2381 refaults = lruvec_page_state(target_lruvec,
2382 WORKINGSET_ACTIVATE_ANON);
2383 if (refaults != target_lruvec->refaults[WORKINGSET_ANON] ||
2384 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2385 sc->may_deactivate |= DEACTIVATE_ANON;
2386 else
2387 sc->may_deactivate &= ~DEACTIVATE_ANON;
2388
2389 refaults = lruvec_page_state(target_lruvec,
2390 WORKINGSET_ACTIVATE_FILE);
2391 if (refaults != target_lruvec->refaults[WORKINGSET_FILE] ||
2392 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2393 sc->may_deactivate |= DEACTIVATE_FILE;
2394 else
2395 sc->may_deactivate &= ~DEACTIVATE_FILE;
2396 } else
2397 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2398
2399 /*
2400 * If we have plenty of inactive file pages that aren't
2401 * thrashing, try to reclaim those first before touching
2402 * anonymous pages.
2403 */
2404 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2405 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE) &&
2406 !sc->no_cache_trim_mode)
2407 sc->cache_trim_mode = 1;
2408 else
2409 sc->cache_trim_mode = 0;
2410
2411 /*
2412 * Prevent the reclaimer from falling into the cache trap: as
2413 * cache pages start out inactive, every cache fault will tip
2414 * the scan balance towards the file LRU. And as the file LRU
2415 * shrinks, so does the window for rotation from references.
2416 * This means we have a runaway feedback loop where a tiny
2417 * thrashing file LRU becomes infinitely more attractive than
2418 * anon pages. Try to detect this based on file LRU size.
2419 */
2420 if (!cgroup_reclaim(sc)) {
2421 unsigned long total_high_wmark = 0;
2422 unsigned long free, anon;
2423 int z;
2424 struct zone *zone;
2425
2426 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2427 file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2428 node_page_state(pgdat, NR_INACTIVE_FILE);
2429
2430 for_each_managed_zone_pgdat(zone, pgdat, z, MAX_NR_ZONES - 1) {
2431 total_high_wmark += high_wmark_pages(zone);
2432 }
2433
2434 /*
2435 * Consider anon: if that's low too, this isn't a
2436 * runaway file reclaim problem, but rather just
2437 * extreme pressure. Reclaim as per usual then.
2438 */
2439 anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2440
2441 sc->file_is_tiny =
2442 file + free <= total_high_wmark &&
2443 !(sc->may_deactivate & DEACTIVATE_ANON) &&
2444 anon >> sc->priority;
2445 }
2446 }
2447
calculate_pressure_balance(struct scan_control * sc,int swappiness,u64 * fraction,u64 * denominator)2448 static inline void calculate_pressure_balance(struct scan_control *sc,
2449 int swappiness, u64 *fraction, u64 *denominator)
2450 {
2451 unsigned long anon_cost, file_cost, total_cost;
2452 unsigned long ap, fp;
2453
2454 /*
2455 * Calculate the pressure balance between anon and file pages.
2456 *
2457 * The amount of pressure we put on each LRU is inversely
2458 * proportional to the cost of reclaiming each list, as
2459 * determined by the share of pages that are refaulting, times
2460 * the relative IO cost of bringing back a swapped out
2461 * anonymous page vs reloading a filesystem page (swappiness).
2462 *
2463 * Although we limit that influence to ensure no list gets
2464 * left behind completely: at least a third of the pressure is
2465 * applied, before swappiness.
2466 *
2467 * With swappiness at 100, anon and file have equal IO cost.
2468 */
2469 total_cost = sc->anon_cost + sc->file_cost;
2470 anon_cost = total_cost + sc->anon_cost;
2471 file_cost = total_cost + sc->file_cost;
2472 total_cost = anon_cost + file_cost;
2473
2474 ap = swappiness * (total_cost + 1);
2475 ap /= anon_cost + 1;
2476
2477 fp = (MAX_SWAPPINESS - swappiness) * (total_cost + 1);
2478 fp /= file_cost + 1;
2479
2480 fraction[WORKINGSET_ANON] = ap;
2481 fraction[WORKINGSET_FILE] = fp;
2482 *denominator = ap + fp;
2483 }
2484
apply_proportional_protection(struct mem_cgroup * memcg,struct scan_control * sc,unsigned long scan)2485 static unsigned long apply_proportional_protection(struct mem_cgroup *memcg,
2486 struct scan_control *sc, unsigned long scan)
2487 {
2488 unsigned long min, low;
2489
2490 mem_cgroup_protection(sc->target_mem_cgroup, memcg, &min, &low);
2491
2492 if (min || low) {
2493 /*
2494 * Scale a cgroup's reclaim pressure by proportioning
2495 * its current usage to its memory.low or memory.min
2496 * setting.
2497 *
2498 * This is important, as otherwise scanning aggression
2499 * becomes extremely binary -- from nothing as we
2500 * approach the memory protection threshold, to totally
2501 * nominal as we exceed it. This results in requiring
2502 * setting extremely liberal protection thresholds. It
2503 * also means we simply get no protection at all if we
2504 * set it too low, which is not ideal.
2505 *
2506 * If there is any protection in place, we reduce scan
2507 * pressure by how much of the total memory used is
2508 * within protection thresholds.
2509 *
2510 * There is one special case: in the first reclaim pass,
2511 * we skip over all groups that are within their low
2512 * protection. If that fails to reclaim enough pages to
2513 * satisfy the reclaim goal, we come back and override
2514 * the best-effort low protection. However, we still
2515 * ideally want to honor how well-behaved groups are in
2516 * that case instead of simply punishing them all
2517 * equally. As such, we reclaim them based on how much
2518 * memory they are using, reducing the scan pressure
2519 * again by how much of the total memory used is under
2520 * hard protection.
2521 */
2522 unsigned long cgroup_size = mem_cgroup_size(memcg);
2523 unsigned long protection;
2524
2525 /* memory.low scaling, make sure we retry before OOM */
2526 if (!sc->memcg_low_reclaim && low > min) {
2527 protection = low;
2528 sc->memcg_low_skipped = 1;
2529 } else {
2530 protection = min;
2531 }
2532
2533 /* Avoid TOCTOU with earlier protection check */
2534 cgroup_size = max(cgroup_size, protection);
2535
2536 scan -= scan * protection / (cgroup_size + 1);
2537
2538 /*
2539 * Minimally target SWAP_CLUSTER_MAX pages to keep
2540 * reclaim moving forwards, avoiding decrementing
2541 * sc->priority further than desirable.
2542 */
2543 scan = max(scan, SWAP_CLUSTER_MAX);
2544 }
2545 return scan;
2546 }
2547
2548 /*
2549 * Determine how aggressively the anon and file LRU lists should be
2550 * scanned.
2551 *
2552 * nr[0] = anon inactive folios to scan; nr[1] = anon active folios to scan
2553 * nr[2] = file inactive folios to scan; nr[3] = file active folios to scan
2554 */
get_scan_count(struct lruvec * lruvec,struct scan_control * sc,unsigned long * nr)2555 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2556 unsigned long *nr)
2557 {
2558 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2559 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2560 int swappiness = sc_swappiness(sc, memcg);
2561 u64 fraction[ANON_AND_FILE];
2562 u64 denominator = 0; /* gcc */
2563 enum scan_balance scan_balance;
2564 enum lru_list lru;
2565
2566 /* If we have no swap space, do not bother scanning anon folios. */
2567 if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
2568 scan_balance = SCAN_FILE;
2569 goto out;
2570 }
2571
2572 /*
2573 * Global reclaim will swap to prevent OOM even with no
2574 * swappiness, but memcg users want to use this knob to
2575 * disable swapping for individual groups completely when
2576 * using the memory controller's swap limit feature would be
2577 * too expensive.
2578 */
2579 if (cgroup_reclaim(sc) && !swappiness) {
2580 scan_balance = SCAN_FILE;
2581 goto out;
2582 }
2583
2584 /* Proactive reclaim initiated by userspace for anonymous memory only */
2585 if (swappiness == SWAPPINESS_ANON_ONLY) {
2586 WARN_ON_ONCE(!sc->proactive);
2587 scan_balance = SCAN_ANON;
2588 goto out;
2589 }
2590
2591 /*
2592 * Do not apply any pressure balancing cleverness when the
2593 * system is close to OOM, scan both anon and file equally
2594 * (unless the swappiness setting disagrees with swapping).
2595 */
2596 if (!sc->priority && swappiness) {
2597 scan_balance = SCAN_EQUAL;
2598 goto out;
2599 }
2600
2601 /*
2602 * If the system is almost out of file pages, force-scan anon.
2603 */
2604 if (sc->file_is_tiny) {
2605 scan_balance = SCAN_ANON;
2606 goto out;
2607 }
2608
2609 /*
2610 * If there is enough inactive page cache, we do not reclaim
2611 * anything from the anonymous working right now to make sure
2612 * a streaming file access pattern doesn't cause swapping.
2613 */
2614 if (sc->cache_trim_mode) {
2615 scan_balance = SCAN_FILE;
2616 goto out;
2617 }
2618
2619 scan_balance = SCAN_FRACT;
2620 calculate_pressure_balance(sc, swappiness, fraction, &denominator);
2621
2622 out:
2623 for_each_evictable_lru(lru) {
2624 bool file = is_file_lru(lru);
2625 unsigned long lruvec_size;
2626 unsigned long scan;
2627
2628 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2629 scan = apply_proportional_protection(memcg, sc, lruvec_size);
2630 scan >>= sc->priority;
2631
2632 /*
2633 * If the cgroup's already been deleted, make sure to
2634 * scrape out the remaining cache.
2635 */
2636 if (!scan && !mem_cgroup_online(memcg))
2637 scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2638
2639 switch (scan_balance) {
2640 case SCAN_EQUAL:
2641 /* Scan lists relative to size */
2642 break;
2643 case SCAN_FRACT:
2644 /*
2645 * Scan types proportional to swappiness and
2646 * their relative recent reclaim efficiency.
2647 * Make sure we don't miss the last page on
2648 * the offlined memory cgroups because of a
2649 * round-off error.
2650 */
2651 scan = mem_cgroup_online(memcg) ?
2652 div64_u64(scan * fraction[file], denominator) :
2653 DIV64_U64_ROUND_UP(scan * fraction[file],
2654 denominator);
2655 break;
2656 case SCAN_FILE:
2657 case SCAN_ANON:
2658 /* Scan one type exclusively */
2659 if ((scan_balance == SCAN_FILE) != file)
2660 scan = 0;
2661 break;
2662 default:
2663 /* Look ma, no brain */
2664 BUG();
2665 }
2666
2667 nr[lru] = scan;
2668 }
2669 }
2670
2671 /*
2672 * Anonymous LRU management is a waste if there is
2673 * ultimately no way to reclaim the memory.
2674 */
can_age_anon_pages(struct lruvec * lruvec,struct scan_control * sc)2675 static bool can_age_anon_pages(struct lruvec *lruvec,
2676 struct scan_control *sc)
2677 {
2678 /* Aging the anon LRU is valuable if swap is present: */
2679 if (total_swap_pages > 0)
2680 return true;
2681
2682 /* Also valuable if anon pages can be demoted: */
2683 return can_demote(lruvec_pgdat(lruvec)->node_id, sc,
2684 lruvec_memcg(lruvec));
2685 }
2686
2687 #ifdef CONFIG_LRU_GEN
2688
2689 #ifdef CONFIG_LRU_GEN_ENABLED
2690 DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS);
2691 #define get_cap(cap) static_branch_likely(&lru_gen_caps[cap])
2692 #else
2693 DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS);
2694 #define get_cap(cap) static_branch_unlikely(&lru_gen_caps[cap])
2695 #endif
2696
should_walk_mmu(void)2697 static bool should_walk_mmu(void)
2698 {
2699 return arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK);
2700 }
2701
should_clear_pmd_young(void)2702 static bool should_clear_pmd_young(void)
2703 {
2704 return arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG);
2705 }
2706
2707 /******************************************************************************
2708 * shorthand helpers
2709 ******************************************************************************/
2710
2711 #define DEFINE_MAX_SEQ(lruvec) \
2712 unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq)
2713
2714 #define DEFINE_MIN_SEQ(lruvec) \
2715 unsigned long min_seq[ANON_AND_FILE] = { \
2716 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]), \
2717 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]), \
2718 }
2719
2720 /* Get the min/max evictable type based on swappiness */
2721 #define min_type(swappiness) (!(swappiness))
2722 #define max_type(swappiness) ((swappiness) < SWAPPINESS_ANON_ONLY)
2723
2724 #define evictable_min_seq(min_seq, swappiness) \
2725 min((min_seq)[min_type(swappiness)], (min_seq)[max_type(swappiness)])
2726
2727 #define for_each_gen_type_zone(gen, type, zone) \
2728 for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++) \
2729 for ((type) = 0; (type) < ANON_AND_FILE; (type)++) \
2730 for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++)
2731
2732 #define for_each_evictable_type(type, swappiness) \
2733 for ((type) = min_type(swappiness); (type) <= max_type(swappiness); (type)++)
2734
2735 #define get_memcg_gen(seq) ((seq) % MEMCG_NR_GENS)
2736 #define get_memcg_bin(bin) ((bin) % MEMCG_NR_BINS)
2737
get_lruvec(struct mem_cgroup * memcg,int nid)2738 static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid)
2739 {
2740 struct pglist_data *pgdat = NODE_DATA(nid);
2741
2742 #ifdef CONFIG_MEMCG
2743 if (memcg) {
2744 struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec;
2745
2746 /* see the comment in mem_cgroup_lruvec() */
2747 if (!lruvec->pgdat)
2748 lruvec->pgdat = pgdat;
2749
2750 return lruvec;
2751 }
2752 #endif
2753 VM_WARN_ON_ONCE(!mem_cgroup_disabled());
2754
2755 return &pgdat->__lruvec;
2756 }
2757
get_swappiness(struct lruvec * lruvec,struct scan_control * sc)2758 static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc)
2759 {
2760 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2761 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2762
2763 if (!sc->may_swap)
2764 return 0;
2765
2766 if (!can_demote(pgdat->node_id, sc, memcg) &&
2767 mem_cgroup_get_nr_swap_pages(memcg) < MIN_LRU_BATCH)
2768 return 0;
2769
2770 return sc_swappiness(sc, memcg);
2771 }
2772
get_nr_gens(struct lruvec * lruvec,int type)2773 static int get_nr_gens(struct lruvec *lruvec, int type)
2774 {
2775 return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1;
2776 }
2777
seq_is_valid(struct lruvec * lruvec)2778 static bool __maybe_unused seq_is_valid(struct lruvec *lruvec)
2779 {
2780 int type;
2781
2782 for (type = 0; type < ANON_AND_FILE; type++) {
2783 int n = get_nr_gens(lruvec, type);
2784
2785 if (n < MIN_NR_GENS || n > MAX_NR_GENS)
2786 return false;
2787 }
2788
2789 return true;
2790 }
2791
2792 /******************************************************************************
2793 * Bloom filters
2794 ******************************************************************************/
2795
2796 /*
2797 * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when
2798 * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of
2799 * bits in a bitmap, k is the number of hash functions and n is the number of
2800 * inserted items.
2801 *
2802 * Page table walkers use one of the two filters to reduce their search space.
2803 * To get rid of non-leaf entries that no longer have enough leaf entries, the
2804 * aging uses the double-buffering technique to flip to the other filter each
2805 * time it produces a new generation. For non-leaf entries that have enough
2806 * leaf entries, the aging carries them over to the next generation in
2807 * walk_pmd_range(); the eviction also report them when walking the rmap
2808 * in lru_gen_look_around().
2809 *
2810 * For future optimizations:
2811 * 1. It's not necessary to keep both filters all the time. The spare one can be
2812 * freed after the RCU grace period and reallocated if needed again.
2813 * 2. And when reallocating, it's worth scaling its size according to the number
2814 * of inserted entries in the other filter, to reduce the memory overhead on
2815 * small systems and false positives on large systems.
2816 * 3. Jenkins' hash function is an alternative to Knuth's.
2817 */
2818 #define BLOOM_FILTER_SHIFT 15
2819
filter_gen_from_seq(unsigned long seq)2820 static inline int filter_gen_from_seq(unsigned long seq)
2821 {
2822 return seq % NR_BLOOM_FILTERS;
2823 }
2824
get_item_key(void * item,int * key)2825 static void get_item_key(void *item, int *key)
2826 {
2827 u32 hash = hash_ptr(item, BLOOM_FILTER_SHIFT * 2);
2828
2829 BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32));
2830
2831 key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1);
2832 key[1] = hash >> BLOOM_FILTER_SHIFT;
2833 }
2834
test_bloom_filter(struct lru_gen_mm_state * mm_state,unsigned long seq,void * item)2835 static bool test_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq,
2836 void *item)
2837 {
2838 int key[2];
2839 unsigned long *filter;
2840 int gen = filter_gen_from_seq(seq);
2841
2842 filter = READ_ONCE(mm_state->filters[gen]);
2843 if (!filter)
2844 return true;
2845
2846 get_item_key(item, key);
2847
2848 return test_bit(key[0], filter) && test_bit(key[1], filter);
2849 }
2850
update_bloom_filter(struct lru_gen_mm_state * mm_state,unsigned long seq,void * item)2851 static void update_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq,
2852 void *item)
2853 {
2854 int key[2];
2855 unsigned long *filter;
2856 int gen = filter_gen_from_seq(seq);
2857
2858 filter = READ_ONCE(mm_state->filters[gen]);
2859 if (!filter)
2860 return;
2861
2862 get_item_key(item, key);
2863
2864 if (!test_bit(key[0], filter))
2865 set_bit(key[0], filter);
2866 if (!test_bit(key[1], filter))
2867 set_bit(key[1], filter);
2868 }
2869
reset_bloom_filter(struct lru_gen_mm_state * mm_state,unsigned long seq)2870 static void reset_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq)
2871 {
2872 unsigned long *filter;
2873 int gen = filter_gen_from_seq(seq);
2874
2875 filter = mm_state->filters[gen];
2876 if (filter) {
2877 bitmap_clear(filter, 0, BIT(BLOOM_FILTER_SHIFT));
2878 return;
2879 }
2880
2881 filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT),
2882 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
2883 WRITE_ONCE(mm_state->filters[gen], filter);
2884 }
2885
2886 /******************************************************************************
2887 * mm_struct list
2888 ******************************************************************************/
2889
2890 #ifdef CONFIG_LRU_GEN_WALKS_MMU
2891
get_mm_list(struct mem_cgroup * memcg)2892 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
2893 {
2894 static struct lru_gen_mm_list mm_list = {
2895 .fifo = LIST_HEAD_INIT(mm_list.fifo),
2896 .lock = __SPIN_LOCK_UNLOCKED(mm_list.lock),
2897 };
2898
2899 #ifdef CONFIG_MEMCG
2900 if (memcg)
2901 return &memcg->mm_list;
2902 #endif
2903 VM_WARN_ON_ONCE(!mem_cgroup_disabled());
2904
2905 return &mm_list;
2906 }
2907
get_mm_state(struct lruvec * lruvec)2908 static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec)
2909 {
2910 return &lruvec->mm_state;
2911 }
2912
get_next_mm(struct lru_gen_mm_walk * walk)2913 static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk)
2914 {
2915 int key;
2916 struct mm_struct *mm;
2917 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
2918 struct lru_gen_mm_state *mm_state = get_mm_state(walk->lruvec);
2919
2920 mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list);
2921 key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap);
2922
2923 if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap))
2924 return NULL;
2925
2926 clear_bit(key, &mm->lru_gen.bitmap);
2927
2928 return mmget_not_zero(mm) ? mm : NULL;
2929 }
2930
lru_gen_add_mm(struct mm_struct * mm)2931 void lru_gen_add_mm(struct mm_struct *mm)
2932 {
2933 int nid;
2934 struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm);
2935 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
2936
2937 VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list));
2938 #ifdef CONFIG_MEMCG
2939 VM_WARN_ON_ONCE(mm->lru_gen.memcg);
2940 mm->lru_gen.memcg = memcg;
2941 #endif
2942 spin_lock(&mm_list->lock);
2943
2944 for_each_node_state(nid, N_MEMORY) {
2945 struct lruvec *lruvec = get_lruvec(memcg, nid);
2946 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
2947
2948 /* the first addition since the last iteration */
2949 if (mm_state->tail == &mm_list->fifo)
2950 mm_state->tail = &mm->lru_gen.list;
2951 }
2952
2953 list_add_tail(&mm->lru_gen.list, &mm_list->fifo);
2954
2955 spin_unlock(&mm_list->lock);
2956 }
2957
lru_gen_del_mm(struct mm_struct * mm)2958 void lru_gen_del_mm(struct mm_struct *mm)
2959 {
2960 int nid;
2961 struct lru_gen_mm_list *mm_list;
2962 struct mem_cgroup *memcg = NULL;
2963
2964 if (list_empty(&mm->lru_gen.list))
2965 return;
2966
2967 #ifdef CONFIG_MEMCG
2968 memcg = mm->lru_gen.memcg;
2969 #endif
2970 mm_list = get_mm_list(memcg);
2971
2972 spin_lock(&mm_list->lock);
2973
2974 for_each_node(nid) {
2975 struct lruvec *lruvec = get_lruvec(memcg, nid);
2976 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
2977
2978 /* where the current iteration continues after */
2979 if (mm_state->head == &mm->lru_gen.list)
2980 mm_state->head = mm_state->head->prev;
2981
2982 /* where the last iteration ended before */
2983 if (mm_state->tail == &mm->lru_gen.list)
2984 mm_state->tail = mm_state->tail->next;
2985 }
2986
2987 list_del_init(&mm->lru_gen.list);
2988
2989 spin_unlock(&mm_list->lock);
2990
2991 #ifdef CONFIG_MEMCG
2992 mem_cgroup_put(mm->lru_gen.memcg);
2993 mm->lru_gen.memcg = NULL;
2994 #endif
2995 }
2996
2997 #ifdef CONFIG_MEMCG
lru_gen_migrate_mm(struct mm_struct * mm)2998 void lru_gen_migrate_mm(struct mm_struct *mm)
2999 {
3000 struct mem_cgroup *memcg;
3001 struct task_struct *task = rcu_dereference_protected(mm->owner, true);
3002
3003 VM_WARN_ON_ONCE(task->mm != mm);
3004 lockdep_assert_held(&task->alloc_lock);
3005
3006 /* for mm_update_next_owner() */
3007 if (mem_cgroup_disabled())
3008 return;
3009
3010 /* migration can happen before addition */
3011 if (!mm->lru_gen.memcg)
3012 return;
3013
3014 rcu_read_lock();
3015 memcg = mem_cgroup_from_task(task);
3016 rcu_read_unlock();
3017 if (memcg == mm->lru_gen.memcg)
3018 return;
3019
3020 VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list));
3021
3022 lru_gen_del_mm(mm);
3023 lru_gen_add_mm(mm);
3024 }
3025 #endif
3026
3027 #else /* !CONFIG_LRU_GEN_WALKS_MMU */
3028
get_mm_list(struct mem_cgroup * memcg)3029 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
3030 {
3031 return NULL;
3032 }
3033
get_mm_state(struct lruvec * lruvec)3034 static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec)
3035 {
3036 return NULL;
3037 }
3038
get_next_mm(struct lru_gen_mm_walk * walk)3039 static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk)
3040 {
3041 return NULL;
3042 }
3043
3044 #endif
3045
reset_mm_stats(struct lru_gen_mm_walk * walk,bool last)3046 static void reset_mm_stats(struct lru_gen_mm_walk *walk, bool last)
3047 {
3048 int i;
3049 int hist;
3050 struct lruvec *lruvec = walk->lruvec;
3051 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
3052
3053 lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock);
3054
3055 hist = lru_hist_from_seq(walk->seq);
3056
3057 for (i = 0; i < NR_MM_STATS; i++) {
3058 WRITE_ONCE(mm_state->stats[hist][i],
3059 mm_state->stats[hist][i] + walk->mm_stats[i]);
3060 walk->mm_stats[i] = 0;
3061 }
3062
3063 if (NR_HIST_GENS > 1 && last) {
3064 hist = lru_hist_from_seq(walk->seq + 1);
3065
3066 for (i = 0; i < NR_MM_STATS; i++)
3067 WRITE_ONCE(mm_state->stats[hist][i], 0);
3068 }
3069 }
3070
iterate_mm_list(struct lru_gen_mm_walk * walk,struct mm_struct ** iter)3071 static bool iterate_mm_list(struct lru_gen_mm_walk *walk, struct mm_struct **iter)
3072 {
3073 bool first = false;
3074 bool last = false;
3075 struct mm_struct *mm = NULL;
3076 struct lruvec *lruvec = walk->lruvec;
3077 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3078 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3079 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
3080
3081 /*
3082 * mm_state->seq is incremented after each iteration of mm_list. There
3083 * are three interesting cases for this page table walker:
3084 * 1. It tries to start a new iteration with a stale max_seq: there is
3085 * nothing left to do.
3086 * 2. It started the next iteration: it needs to reset the Bloom filter
3087 * so that a fresh set of PTE tables can be recorded.
3088 * 3. It ended the current iteration: it needs to reset the mm stats
3089 * counters and tell its caller to increment max_seq.
3090 */
3091 spin_lock(&mm_list->lock);
3092
3093 VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->seq);
3094
3095 if (walk->seq <= mm_state->seq)
3096 goto done;
3097
3098 if (!mm_state->head)
3099 mm_state->head = &mm_list->fifo;
3100
3101 if (mm_state->head == &mm_list->fifo)
3102 first = true;
3103
3104 do {
3105 mm_state->head = mm_state->head->next;
3106 if (mm_state->head == &mm_list->fifo) {
3107 WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3108 last = true;
3109 break;
3110 }
3111
3112 /* force scan for those added after the last iteration */
3113 if (!mm_state->tail || mm_state->tail == mm_state->head) {
3114 mm_state->tail = mm_state->head->next;
3115 walk->force_scan = true;
3116 }
3117 } while (!(mm = get_next_mm(walk)));
3118 done:
3119 if (*iter || last)
3120 reset_mm_stats(walk, last);
3121
3122 spin_unlock(&mm_list->lock);
3123
3124 if (mm && first)
3125 reset_bloom_filter(mm_state, walk->seq + 1);
3126
3127 if (*iter)
3128 mmput_async(*iter);
3129
3130 *iter = mm;
3131
3132 return last;
3133 }
3134
iterate_mm_list_nowalk(struct lruvec * lruvec,unsigned long seq)3135 static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long seq)
3136 {
3137 bool success = false;
3138 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3139 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3140 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
3141
3142 spin_lock(&mm_list->lock);
3143
3144 VM_WARN_ON_ONCE(mm_state->seq + 1 < seq);
3145
3146 if (seq > mm_state->seq) {
3147 mm_state->head = NULL;
3148 mm_state->tail = NULL;
3149 WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3150 success = true;
3151 }
3152
3153 spin_unlock(&mm_list->lock);
3154
3155 return success;
3156 }
3157
3158 /******************************************************************************
3159 * PID controller
3160 ******************************************************************************/
3161
3162 /*
3163 * A feedback loop based on Proportional-Integral-Derivative (PID) controller.
3164 *
3165 * The P term is refaulted/(evicted+protected) from a tier in the generation
3166 * currently being evicted; the I term is the exponential moving average of the
3167 * P term over the generations previously evicted, using the smoothing factor
3168 * 1/2; the D term isn't supported.
3169 *
3170 * The setpoint (SP) is always the first tier of one type; the process variable
3171 * (PV) is either any tier of the other type or any other tier of the same
3172 * type.
3173 *
3174 * The error is the difference between the SP and the PV; the correction is to
3175 * turn off protection when SP>PV or turn on protection when SP<PV.
3176 *
3177 * For future optimizations:
3178 * 1. The D term may discount the other two terms over time so that long-lived
3179 * generations can resist stale information.
3180 */
3181 struct ctrl_pos {
3182 unsigned long refaulted;
3183 unsigned long total;
3184 int gain;
3185 };
3186
read_ctrl_pos(struct lruvec * lruvec,int type,int tier,int gain,struct ctrl_pos * pos)3187 static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain,
3188 struct ctrl_pos *pos)
3189 {
3190 int i;
3191 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3192 int hist = lru_hist_from_seq(lrugen->min_seq[type]);
3193
3194 pos->gain = gain;
3195 pos->refaulted = pos->total = 0;
3196
3197 for (i = tier % MAX_NR_TIERS; i <= min(tier, MAX_NR_TIERS - 1); i++) {
3198 pos->refaulted += lrugen->avg_refaulted[type][i] +
3199 atomic_long_read(&lrugen->refaulted[hist][type][i]);
3200 pos->total += lrugen->avg_total[type][i] +
3201 lrugen->protected[hist][type][i] +
3202 atomic_long_read(&lrugen->evicted[hist][type][i]);
3203 }
3204 }
3205
reset_ctrl_pos(struct lruvec * lruvec,int type,bool carryover)3206 static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover)
3207 {
3208 int hist, tier;
3209 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3210 bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1;
3211 unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1;
3212
3213 lockdep_assert_held(&lruvec->lru_lock);
3214
3215 if (!carryover && !clear)
3216 return;
3217
3218 hist = lru_hist_from_seq(seq);
3219
3220 for (tier = 0; tier < MAX_NR_TIERS; tier++) {
3221 if (carryover) {
3222 unsigned long sum;
3223
3224 sum = lrugen->avg_refaulted[type][tier] +
3225 atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3226 WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2);
3227
3228 sum = lrugen->avg_total[type][tier] +
3229 lrugen->protected[hist][type][tier] +
3230 atomic_long_read(&lrugen->evicted[hist][type][tier]);
3231 WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2);
3232 }
3233
3234 if (clear) {
3235 atomic_long_set(&lrugen->refaulted[hist][type][tier], 0);
3236 atomic_long_set(&lrugen->evicted[hist][type][tier], 0);
3237 WRITE_ONCE(lrugen->protected[hist][type][tier], 0);
3238 }
3239 }
3240 }
3241
positive_ctrl_err(struct ctrl_pos * sp,struct ctrl_pos * pv)3242 static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv)
3243 {
3244 /*
3245 * Return true if the PV has a limited number of refaults or a lower
3246 * refaulted/total than the SP.
3247 */
3248 return pv->refaulted < MIN_LRU_BATCH ||
3249 pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <=
3250 (sp->refaulted + 1) * pv->total * pv->gain;
3251 }
3252
3253 /******************************************************************************
3254 * the aging
3255 ******************************************************************************/
3256
3257 /* promote pages accessed through page tables */
folio_update_gen(struct folio * folio,int gen)3258 static int folio_update_gen(struct folio *folio, int gen)
3259 {
3260 unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3261
3262 VM_WARN_ON_ONCE(gen >= MAX_NR_GENS);
3263
3264 /* see the comment on LRU_REFS_FLAGS */
3265 if (!folio_test_referenced(folio) && !folio_test_workingset(folio)) {
3266 set_mask_bits(&folio->flags, LRU_REFS_MASK, BIT(PG_referenced));
3267 return -1;
3268 }
3269
3270 do {
3271 /* lru_gen_del_folio() has isolated this page? */
3272 if (!(old_flags & LRU_GEN_MASK))
3273 return -1;
3274
3275 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_FLAGS);
3276 new_flags |= ((gen + 1UL) << LRU_GEN_PGOFF) | BIT(PG_workingset);
3277 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3278
3279 return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3280 }
3281
3282 /* protect pages accessed multiple times through file descriptors */
folio_inc_gen(struct lruvec * lruvec,struct folio * folio,bool reclaiming)3283 static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming)
3284 {
3285 int type = folio_is_file_lru(folio);
3286 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3287 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
3288 unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3289
3290 VM_WARN_ON_ONCE_FOLIO(!(old_flags & LRU_GEN_MASK), folio);
3291
3292 do {
3293 new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3294 /* folio_update_gen() has promoted this page? */
3295 if (new_gen >= 0 && new_gen != old_gen)
3296 return new_gen;
3297
3298 new_gen = (old_gen + 1) % MAX_NR_GENS;
3299
3300 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_FLAGS);
3301 new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF;
3302 /* for folio_end_writeback() */
3303 if (reclaiming)
3304 new_flags |= BIT(PG_reclaim);
3305 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3306
3307 lru_gen_update_size(lruvec, folio, old_gen, new_gen);
3308
3309 return new_gen;
3310 }
3311
update_batch_size(struct lru_gen_mm_walk * walk,struct folio * folio,int old_gen,int new_gen)3312 static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio,
3313 int old_gen, int new_gen)
3314 {
3315 int type = folio_is_file_lru(folio);
3316 int zone = folio_zonenum(folio);
3317 int delta = folio_nr_pages(folio);
3318
3319 VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS);
3320 VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS);
3321
3322 walk->batched++;
3323
3324 walk->nr_pages[old_gen][type][zone] -= delta;
3325 walk->nr_pages[new_gen][type][zone] += delta;
3326 }
3327
reset_batch_size(struct lru_gen_mm_walk * walk)3328 static void reset_batch_size(struct lru_gen_mm_walk *walk)
3329 {
3330 int gen, type, zone;
3331 struct lruvec *lruvec = walk->lruvec;
3332 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3333
3334 walk->batched = 0;
3335
3336 for_each_gen_type_zone(gen, type, zone) {
3337 enum lru_list lru = type * LRU_INACTIVE_FILE;
3338 int delta = walk->nr_pages[gen][type][zone];
3339
3340 if (!delta)
3341 continue;
3342
3343 walk->nr_pages[gen][type][zone] = 0;
3344 WRITE_ONCE(lrugen->nr_pages[gen][type][zone],
3345 lrugen->nr_pages[gen][type][zone] + delta);
3346
3347 if (lru_gen_is_active(lruvec, gen))
3348 lru += LRU_ACTIVE;
3349 __update_lru_size(lruvec, lru, zone, delta);
3350 }
3351 }
3352
should_skip_vma(unsigned long start,unsigned long end,struct mm_walk * args)3353 static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args)
3354 {
3355 struct address_space *mapping;
3356 struct vm_area_struct *vma = args->vma;
3357 struct lru_gen_mm_walk *walk = args->private;
3358
3359 if (!vma_is_accessible(vma))
3360 return true;
3361
3362 if (is_vm_hugetlb_page(vma))
3363 return true;
3364
3365 if (!vma_has_recency(vma))
3366 return true;
3367
3368 if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL))
3369 return true;
3370
3371 if (vma == get_gate_vma(vma->vm_mm))
3372 return true;
3373
3374 if (vma_is_anonymous(vma))
3375 return !walk->swappiness;
3376
3377 if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping))
3378 return true;
3379
3380 mapping = vma->vm_file->f_mapping;
3381 if (mapping_unevictable(mapping))
3382 return true;
3383
3384 if (shmem_mapping(mapping))
3385 return !walk->swappiness;
3386
3387 if (walk->swappiness > MAX_SWAPPINESS)
3388 return true;
3389
3390 /* to exclude special mappings like dax, etc. */
3391 return !mapping->a_ops->read_folio;
3392 }
3393
3394 /*
3395 * Some userspace memory allocators map many single-page VMAs. Instead of
3396 * returning back to the PGD table for each of such VMAs, finish an entire PMD
3397 * table to reduce zigzags and improve cache performance.
3398 */
get_next_vma(unsigned long mask,unsigned long size,struct mm_walk * args,unsigned long * vm_start,unsigned long * vm_end)3399 static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args,
3400 unsigned long *vm_start, unsigned long *vm_end)
3401 {
3402 unsigned long start = round_up(*vm_end, size);
3403 unsigned long end = (start | ~mask) + 1;
3404 VMA_ITERATOR(vmi, args->mm, start);
3405
3406 VM_WARN_ON_ONCE(mask & size);
3407 VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask));
3408
3409 for_each_vma(vmi, args->vma) {
3410 if (end && end <= args->vma->vm_start)
3411 return false;
3412
3413 if (should_skip_vma(args->vma->vm_start, args->vma->vm_end, args))
3414 continue;
3415
3416 *vm_start = max(start, args->vma->vm_start);
3417 *vm_end = min(end - 1, args->vma->vm_end - 1) + 1;
3418
3419 return true;
3420 }
3421
3422 return false;
3423 }
3424
get_pte_pfn(pte_t pte,struct vm_area_struct * vma,unsigned long addr,struct pglist_data * pgdat)3425 static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr,
3426 struct pglist_data *pgdat)
3427 {
3428 unsigned long pfn = pte_pfn(pte);
3429
3430 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3431
3432 if (!pte_present(pte) || is_zero_pfn(pfn))
3433 return -1;
3434
3435 if (WARN_ON_ONCE(pte_special(pte)))
3436 return -1;
3437
3438 if (!pte_young(pte) && !mm_has_notifiers(vma->vm_mm))
3439 return -1;
3440
3441 if (WARN_ON_ONCE(!pfn_valid(pfn)))
3442 return -1;
3443
3444 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
3445 return -1;
3446
3447 return pfn;
3448 }
3449
get_pmd_pfn(pmd_t pmd,struct vm_area_struct * vma,unsigned long addr,struct pglist_data * pgdat)3450 static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr,
3451 struct pglist_data *pgdat)
3452 {
3453 unsigned long pfn = pmd_pfn(pmd);
3454
3455 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3456
3457 if (!pmd_present(pmd) || is_huge_zero_pmd(pmd))
3458 return -1;
3459
3460 if (!pmd_young(pmd) && !mm_has_notifiers(vma->vm_mm))
3461 return -1;
3462
3463 if (WARN_ON_ONCE(!pfn_valid(pfn)))
3464 return -1;
3465
3466 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
3467 return -1;
3468
3469 return pfn;
3470 }
3471
get_pfn_folio(unsigned long pfn,struct mem_cgroup * memcg,struct pglist_data * pgdat)3472 static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg,
3473 struct pglist_data *pgdat)
3474 {
3475 struct folio *folio = pfn_folio(pfn);
3476
3477 if (folio_lru_gen(folio) < 0)
3478 return NULL;
3479
3480 if (folio_nid(folio) != pgdat->node_id)
3481 return NULL;
3482
3483 if (folio_memcg(folio) != memcg)
3484 return NULL;
3485
3486 return folio;
3487 }
3488
suitable_to_scan(int total,int young)3489 static bool suitable_to_scan(int total, int young)
3490 {
3491 int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8);
3492
3493 /* suitable if the average number of young PTEs per cacheline is >=1 */
3494 return young * n >= total;
3495 }
3496
walk_update_folio(struct lru_gen_mm_walk * walk,struct folio * folio,int new_gen,bool dirty)3497 static void walk_update_folio(struct lru_gen_mm_walk *walk, struct folio *folio,
3498 int new_gen, bool dirty)
3499 {
3500 int old_gen;
3501
3502 if (!folio)
3503 return;
3504
3505 if (dirty && !folio_test_dirty(folio) &&
3506 !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
3507 !folio_test_swapcache(folio)))
3508 folio_mark_dirty(folio);
3509
3510 if (walk) {
3511 old_gen = folio_update_gen(folio, new_gen);
3512 if (old_gen >= 0 && old_gen != new_gen)
3513 update_batch_size(walk, folio, old_gen, new_gen);
3514 } else if (lru_gen_set_refs(folio)) {
3515 old_gen = folio_lru_gen(folio);
3516 if (old_gen >= 0 && old_gen != new_gen)
3517 folio_activate(folio);
3518 }
3519 }
3520
walk_pte_range(pmd_t * pmd,unsigned long start,unsigned long end,struct mm_walk * args)3521 static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end,
3522 struct mm_walk *args)
3523 {
3524 int i;
3525 bool dirty;
3526 pte_t *pte;
3527 spinlock_t *ptl;
3528 unsigned long addr;
3529 int total = 0;
3530 int young = 0;
3531 struct folio *last = NULL;
3532 struct lru_gen_mm_walk *walk = args->private;
3533 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3534 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3535 DEFINE_MAX_SEQ(walk->lruvec);
3536 int gen = lru_gen_from_seq(max_seq);
3537 pmd_t pmdval;
3538
3539 pte = pte_offset_map_rw_nolock(args->mm, pmd, start & PMD_MASK, &pmdval, &ptl);
3540 if (!pte)
3541 return false;
3542
3543 if (!spin_trylock(ptl)) {
3544 pte_unmap(pte);
3545 return true;
3546 }
3547
3548 if (unlikely(!pmd_same(pmdval, pmdp_get_lockless(pmd)))) {
3549 pte_unmap_unlock(pte, ptl);
3550 return false;
3551 }
3552
3553 arch_enter_lazy_mmu_mode();
3554 restart:
3555 for (i = pte_index(start), addr = start; addr != end; i++, addr += PAGE_SIZE) {
3556 unsigned long pfn;
3557 struct folio *folio;
3558 pte_t ptent = ptep_get(pte + i);
3559
3560 total++;
3561 walk->mm_stats[MM_LEAF_TOTAL]++;
3562
3563 pfn = get_pte_pfn(ptent, args->vma, addr, pgdat);
3564 if (pfn == -1)
3565 continue;
3566
3567 folio = get_pfn_folio(pfn, memcg, pgdat);
3568 if (!folio)
3569 continue;
3570
3571 if (!ptep_clear_young_notify(args->vma, addr, pte + i))
3572 continue;
3573
3574 if (last != folio) {
3575 walk_update_folio(walk, last, gen, dirty);
3576
3577 last = folio;
3578 dirty = false;
3579 }
3580
3581 if (pte_dirty(ptent))
3582 dirty = true;
3583
3584 young++;
3585 walk->mm_stats[MM_LEAF_YOUNG]++;
3586 }
3587
3588 walk_update_folio(walk, last, gen, dirty);
3589 last = NULL;
3590
3591 if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, &start, &end))
3592 goto restart;
3593
3594 arch_leave_lazy_mmu_mode();
3595 pte_unmap_unlock(pte, ptl);
3596
3597 return suitable_to_scan(total, young);
3598 }
3599
walk_pmd_range_locked(pud_t * pud,unsigned long addr,struct vm_area_struct * vma,struct mm_walk * args,unsigned long * bitmap,unsigned long * first)3600 static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma,
3601 struct mm_walk *args, unsigned long *bitmap, unsigned long *first)
3602 {
3603 int i;
3604 bool dirty;
3605 pmd_t *pmd;
3606 spinlock_t *ptl;
3607 struct folio *last = NULL;
3608 struct lru_gen_mm_walk *walk = args->private;
3609 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3610 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3611 DEFINE_MAX_SEQ(walk->lruvec);
3612 int gen = lru_gen_from_seq(max_seq);
3613
3614 VM_WARN_ON_ONCE(pud_leaf(*pud));
3615
3616 /* try to batch at most 1+MIN_LRU_BATCH+1 entries */
3617 if (*first == -1) {
3618 *first = addr;
3619 bitmap_zero(bitmap, MIN_LRU_BATCH);
3620 return;
3621 }
3622
3623 i = addr == -1 ? 0 : pmd_index(addr) - pmd_index(*first);
3624 if (i && i <= MIN_LRU_BATCH) {
3625 __set_bit(i - 1, bitmap);
3626 return;
3627 }
3628
3629 pmd = pmd_offset(pud, *first);
3630
3631 ptl = pmd_lockptr(args->mm, pmd);
3632 if (!spin_trylock(ptl))
3633 goto done;
3634
3635 arch_enter_lazy_mmu_mode();
3636
3637 do {
3638 unsigned long pfn;
3639 struct folio *folio;
3640
3641 /* don't round down the first address */
3642 addr = i ? (*first & PMD_MASK) + i * PMD_SIZE : *first;
3643
3644 if (!pmd_present(pmd[i]))
3645 goto next;
3646
3647 if (!pmd_trans_huge(pmd[i])) {
3648 if (!walk->force_scan && should_clear_pmd_young() &&
3649 !mm_has_notifiers(args->mm))
3650 pmdp_test_and_clear_young(vma, addr, pmd + i);
3651 goto next;
3652 }
3653
3654 pfn = get_pmd_pfn(pmd[i], vma, addr, pgdat);
3655 if (pfn == -1)
3656 goto next;
3657
3658 folio = get_pfn_folio(pfn, memcg, pgdat);
3659 if (!folio)
3660 goto next;
3661
3662 if (!pmdp_clear_young_notify(vma, addr, pmd + i))
3663 goto next;
3664
3665 if (last != folio) {
3666 walk_update_folio(walk, last, gen, dirty);
3667
3668 last = folio;
3669 dirty = false;
3670 }
3671
3672 if (pmd_dirty(pmd[i]))
3673 dirty = true;
3674
3675 walk->mm_stats[MM_LEAF_YOUNG]++;
3676 next:
3677 i = i > MIN_LRU_BATCH ? 0 : find_next_bit(bitmap, MIN_LRU_BATCH, i) + 1;
3678 } while (i <= MIN_LRU_BATCH);
3679
3680 walk_update_folio(walk, last, gen, dirty);
3681
3682 arch_leave_lazy_mmu_mode();
3683 spin_unlock(ptl);
3684 done:
3685 *first = -1;
3686 }
3687
walk_pmd_range(pud_t * pud,unsigned long start,unsigned long end,struct mm_walk * args)3688 static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end,
3689 struct mm_walk *args)
3690 {
3691 int i;
3692 pmd_t *pmd;
3693 unsigned long next;
3694 unsigned long addr;
3695 struct vm_area_struct *vma;
3696 DECLARE_BITMAP(bitmap, MIN_LRU_BATCH);
3697 unsigned long first = -1;
3698 struct lru_gen_mm_walk *walk = args->private;
3699 struct lru_gen_mm_state *mm_state = get_mm_state(walk->lruvec);
3700
3701 VM_WARN_ON_ONCE(pud_leaf(*pud));
3702
3703 /*
3704 * Finish an entire PMD in two passes: the first only reaches to PTE
3705 * tables to avoid taking the PMD lock; the second, if necessary, takes
3706 * the PMD lock to clear the accessed bit in PMD entries.
3707 */
3708 pmd = pmd_offset(pud, start & PUD_MASK);
3709 restart:
3710 /* walk_pte_range() may call get_next_vma() */
3711 vma = args->vma;
3712 for (i = pmd_index(start), addr = start; addr != end; i++, addr = next) {
3713 pmd_t val = pmdp_get_lockless(pmd + i);
3714
3715 next = pmd_addr_end(addr, end);
3716
3717 if (!pmd_present(val) || is_huge_zero_pmd(val)) {
3718 walk->mm_stats[MM_LEAF_TOTAL]++;
3719 continue;
3720 }
3721
3722 if (pmd_trans_huge(val)) {
3723 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3724 unsigned long pfn = get_pmd_pfn(val, vma, addr, pgdat);
3725
3726 walk->mm_stats[MM_LEAF_TOTAL]++;
3727
3728 if (pfn != -1)
3729 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
3730 continue;
3731 }
3732
3733 if (!walk->force_scan && should_clear_pmd_young() &&
3734 !mm_has_notifiers(args->mm)) {
3735 if (!pmd_young(val))
3736 continue;
3737
3738 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
3739 }
3740
3741 if (!walk->force_scan && !test_bloom_filter(mm_state, walk->seq, pmd + i))
3742 continue;
3743
3744 walk->mm_stats[MM_NONLEAF_FOUND]++;
3745
3746 if (!walk_pte_range(&val, addr, next, args))
3747 continue;
3748
3749 walk->mm_stats[MM_NONLEAF_ADDED]++;
3750
3751 /* carry over to the next generation */
3752 update_bloom_filter(mm_state, walk->seq + 1, pmd + i);
3753 }
3754
3755 walk_pmd_range_locked(pud, -1, vma, args, bitmap, &first);
3756
3757 if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, &start, &end))
3758 goto restart;
3759 }
3760
walk_pud_range(p4d_t * p4d,unsigned long start,unsigned long end,struct mm_walk * args)3761 static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end,
3762 struct mm_walk *args)
3763 {
3764 int i;
3765 pud_t *pud;
3766 unsigned long addr;
3767 unsigned long next;
3768 struct lru_gen_mm_walk *walk = args->private;
3769
3770 VM_WARN_ON_ONCE(p4d_leaf(*p4d));
3771
3772 pud = pud_offset(p4d, start & P4D_MASK);
3773 restart:
3774 for (i = pud_index(start), addr = start; addr != end; i++, addr = next) {
3775 pud_t val = READ_ONCE(pud[i]);
3776
3777 next = pud_addr_end(addr, end);
3778
3779 if (!pud_present(val) || WARN_ON_ONCE(pud_leaf(val)))
3780 continue;
3781
3782 walk_pmd_range(&val, addr, next, args);
3783
3784 if (need_resched() || walk->batched >= MAX_LRU_BATCH) {
3785 end = (addr | ~PUD_MASK) + 1;
3786 goto done;
3787 }
3788 }
3789
3790 if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, &start, &end))
3791 goto restart;
3792
3793 end = round_up(end, P4D_SIZE);
3794 done:
3795 if (!end || !args->vma)
3796 return 1;
3797
3798 walk->next_addr = max(end, args->vma->vm_start);
3799
3800 return -EAGAIN;
3801 }
3802
walk_mm(struct mm_struct * mm,struct lru_gen_mm_walk * walk)3803 static void walk_mm(struct mm_struct *mm, struct lru_gen_mm_walk *walk)
3804 {
3805 static const struct mm_walk_ops mm_walk_ops = {
3806 .test_walk = should_skip_vma,
3807 .p4d_entry = walk_pud_range,
3808 .walk_lock = PGWALK_RDLOCK,
3809 };
3810 int err;
3811 struct lruvec *lruvec = walk->lruvec;
3812
3813 walk->next_addr = FIRST_USER_ADDRESS;
3814
3815 do {
3816 DEFINE_MAX_SEQ(lruvec);
3817
3818 err = -EBUSY;
3819
3820 /* another thread might have called inc_max_seq() */
3821 if (walk->seq != max_seq)
3822 break;
3823
3824 /* the caller might be holding the lock for write */
3825 if (mmap_read_trylock(mm)) {
3826 err = walk_page_range(mm, walk->next_addr, ULONG_MAX, &mm_walk_ops, walk);
3827
3828 mmap_read_unlock(mm);
3829 }
3830
3831 if (walk->batched) {
3832 spin_lock_irq(&lruvec->lru_lock);
3833 reset_batch_size(walk);
3834 spin_unlock_irq(&lruvec->lru_lock);
3835 }
3836
3837 cond_resched();
3838 } while (err == -EAGAIN);
3839 }
3840
set_mm_walk(struct pglist_data * pgdat,bool force_alloc)3841 static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat, bool force_alloc)
3842 {
3843 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
3844
3845 if (pgdat && current_is_kswapd()) {
3846 VM_WARN_ON_ONCE(walk);
3847
3848 walk = &pgdat->mm_walk;
3849 } else if (!walk && force_alloc) {
3850 VM_WARN_ON_ONCE(current_is_kswapd());
3851
3852 walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
3853 }
3854
3855 current->reclaim_state->mm_walk = walk;
3856
3857 return walk;
3858 }
3859
clear_mm_walk(void)3860 static void clear_mm_walk(void)
3861 {
3862 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
3863
3864 VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages)));
3865 VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats)));
3866
3867 current->reclaim_state->mm_walk = NULL;
3868
3869 if (!current_is_kswapd())
3870 kfree(walk);
3871 }
3872
inc_min_seq(struct lruvec * lruvec,int type,int swappiness)3873 static bool inc_min_seq(struct lruvec *lruvec, int type, int swappiness)
3874 {
3875 int zone;
3876 int remaining = MAX_LRU_BATCH;
3877 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3878 int hist = lru_hist_from_seq(lrugen->min_seq[type]);
3879 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
3880
3881 /* For file type, skip the check if swappiness is anon only */
3882 if (type && (swappiness == SWAPPINESS_ANON_ONLY))
3883 goto done;
3884
3885 /* For anon type, skip the check if swappiness is zero (file only) */
3886 if (!type && !swappiness)
3887 goto done;
3888
3889 /* prevent cold/hot inversion if the type is evictable */
3890 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3891 struct list_head *head = &lrugen->folios[old_gen][type][zone];
3892
3893 while (!list_empty(head)) {
3894 struct folio *folio = lru_to_folio(head);
3895 int refs = folio_lru_refs(folio);
3896 bool workingset = folio_test_workingset(folio);
3897
3898 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
3899 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
3900 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
3901 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
3902
3903 new_gen = folio_inc_gen(lruvec, folio, false);
3904 list_move_tail(&folio->lru, &lrugen->folios[new_gen][type][zone]);
3905
3906 /* don't count the workingset being lazily promoted */
3907 if (refs + workingset != BIT(LRU_REFS_WIDTH) + 1) {
3908 int tier = lru_tier_from_refs(refs, workingset);
3909 int delta = folio_nr_pages(folio);
3910
3911 WRITE_ONCE(lrugen->protected[hist][type][tier],
3912 lrugen->protected[hist][type][tier] + delta);
3913 }
3914
3915 if (!--remaining)
3916 return false;
3917 }
3918 }
3919 done:
3920 reset_ctrl_pos(lruvec, type, true);
3921 WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1);
3922
3923 return true;
3924 }
3925
try_to_inc_min_seq(struct lruvec * lruvec,int swappiness)3926 static bool try_to_inc_min_seq(struct lruvec *lruvec, int swappiness)
3927 {
3928 int gen, type, zone;
3929 bool success = false;
3930 bool seq_inc_flag = false;
3931 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3932 DEFINE_MIN_SEQ(lruvec);
3933
3934 VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
3935
3936 /* find the oldest populated generation */
3937 for_each_evictable_type(type, swappiness) {
3938 while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) {
3939 gen = lru_gen_from_seq(min_seq[type]);
3940
3941 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3942 if (!list_empty(&lrugen->folios[gen][type][zone]))
3943 goto next;
3944 }
3945
3946 min_seq[type]++;
3947 seq_inc_flag = true;
3948 }
3949 next:
3950 ;
3951 }
3952
3953 /*
3954 * If min_seq[type] of both anonymous and file is not increased,
3955 * we can directly return false to avoid unnecessary checking
3956 * overhead later.
3957 */
3958 if (!seq_inc_flag)
3959 return success;
3960
3961 /* see the comment on lru_gen_folio */
3962 if (swappiness && swappiness <= MAX_SWAPPINESS) {
3963 unsigned long seq = lrugen->max_seq - MIN_NR_GENS;
3964
3965 if (min_seq[LRU_GEN_ANON] > seq && min_seq[LRU_GEN_FILE] < seq)
3966 min_seq[LRU_GEN_ANON] = seq;
3967 else if (min_seq[LRU_GEN_FILE] > seq && min_seq[LRU_GEN_ANON] < seq)
3968 min_seq[LRU_GEN_FILE] = seq;
3969 }
3970
3971 for_each_evictable_type(type, swappiness) {
3972 if (min_seq[type] <= lrugen->min_seq[type])
3973 continue;
3974
3975 reset_ctrl_pos(lruvec, type, true);
3976 WRITE_ONCE(lrugen->min_seq[type], min_seq[type]);
3977 success = true;
3978 }
3979
3980 return success;
3981 }
3982
inc_max_seq(struct lruvec * lruvec,unsigned long seq,int swappiness)3983 static bool inc_max_seq(struct lruvec *lruvec, unsigned long seq, int swappiness)
3984 {
3985 bool success;
3986 int prev, next;
3987 int type, zone;
3988 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3989 restart:
3990 if (seq < READ_ONCE(lrugen->max_seq))
3991 return false;
3992
3993 spin_lock_irq(&lruvec->lru_lock);
3994
3995 VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
3996
3997 success = seq == lrugen->max_seq;
3998 if (!success)
3999 goto unlock;
4000
4001 for (type = 0; type < ANON_AND_FILE; type++) {
4002 if (get_nr_gens(lruvec, type) != MAX_NR_GENS)
4003 continue;
4004
4005 if (inc_min_seq(lruvec, type, swappiness))
4006 continue;
4007
4008 spin_unlock_irq(&lruvec->lru_lock);
4009 cond_resched();
4010 goto restart;
4011 }
4012
4013 /*
4014 * Update the active/inactive LRU sizes for compatibility. Both sides of
4015 * the current max_seq need to be covered, since max_seq+1 can overlap
4016 * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do
4017 * overlap, cold/hot inversion happens.
4018 */
4019 prev = lru_gen_from_seq(lrugen->max_seq - 1);
4020 next = lru_gen_from_seq(lrugen->max_seq + 1);
4021
4022 for (type = 0; type < ANON_AND_FILE; type++) {
4023 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4024 enum lru_list lru = type * LRU_INACTIVE_FILE;
4025 long delta = lrugen->nr_pages[prev][type][zone] -
4026 lrugen->nr_pages[next][type][zone];
4027
4028 if (!delta)
4029 continue;
4030
4031 __update_lru_size(lruvec, lru, zone, delta);
4032 __update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta);
4033 }
4034 }
4035
4036 for (type = 0; type < ANON_AND_FILE; type++)
4037 reset_ctrl_pos(lruvec, type, false);
4038
4039 WRITE_ONCE(lrugen->timestamps[next], jiffies);
4040 /* make sure preceding modifications appear */
4041 smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1);
4042 unlock:
4043 spin_unlock_irq(&lruvec->lru_lock);
4044
4045 return success;
4046 }
4047
try_to_inc_max_seq(struct lruvec * lruvec,unsigned long seq,int swappiness,bool force_scan)4048 static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long seq,
4049 int swappiness, bool force_scan)
4050 {
4051 bool success;
4052 struct lru_gen_mm_walk *walk;
4053 struct mm_struct *mm = NULL;
4054 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4055 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
4056
4057 VM_WARN_ON_ONCE(seq > READ_ONCE(lrugen->max_seq));
4058
4059 if (!mm_state)
4060 return inc_max_seq(lruvec, seq, swappiness);
4061
4062 /* see the comment in iterate_mm_list() */
4063 if (seq <= READ_ONCE(mm_state->seq))
4064 return false;
4065
4066 /*
4067 * If the hardware doesn't automatically set the accessed bit, fallback
4068 * to lru_gen_look_around(), which only clears the accessed bit in a
4069 * handful of PTEs. Spreading the work out over a period of time usually
4070 * is less efficient, but it avoids bursty page faults.
4071 */
4072 if (!should_walk_mmu()) {
4073 success = iterate_mm_list_nowalk(lruvec, seq);
4074 goto done;
4075 }
4076
4077 walk = set_mm_walk(NULL, true);
4078 if (!walk) {
4079 success = iterate_mm_list_nowalk(lruvec, seq);
4080 goto done;
4081 }
4082
4083 walk->lruvec = lruvec;
4084 walk->seq = seq;
4085 walk->swappiness = swappiness;
4086 walk->force_scan = force_scan;
4087
4088 do {
4089 success = iterate_mm_list(walk, &mm);
4090 if (mm)
4091 walk_mm(mm, walk);
4092 } while (mm);
4093 done:
4094 if (success) {
4095 success = inc_max_seq(lruvec, seq, swappiness);
4096 WARN_ON_ONCE(!success);
4097 }
4098
4099 return success;
4100 }
4101
4102 /******************************************************************************
4103 * working set protection
4104 ******************************************************************************/
4105
set_initial_priority(struct pglist_data * pgdat,struct scan_control * sc)4106 static void set_initial_priority(struct pglist_data *pgdat, struct scan_control *sc)
4107 {
4108 int priority;
4109 unsigned long reclaimable;
4110
4111 if (sc->priority != DEF_PRIORITY || sc->nr_to_reclaim < MIN_LRU_BATCH)
4112 return;
4113 /*
4114 * Determine the initial priority based on
4115 * (total >> priority) * reclaimed_to_scanned_ratio = nr_to_reclaim,
4116 * where reclaimed_to_scanned_ratio = inactive / total.
4117 */
4118 reclaimable = node_page_state(pgdat, NR_INACTIVE_FILE);
4119 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
4120 reclaimable += node_page_state(pgdat, NR_INACTIVE_ANON);
4121
4122 /* round down reclaimable and round up sc->nr_to_reclaim */
4123 priority = fls_long(reclaimable) - 1 - fls_long(sc->nr_to_reclaim - 1);
4124
4125 /*
4126 * The estimation is based on LRU pages only, so cap it to prevent
4127 * overshoots of shrinker objects by large margins.
4128 */
4129 sc->priority = clamp(priority, DEF_PRIORITY / 2, DEF_PRIORITY);
4130 }
4131
lruvec_is_sizable(struct lruvec * lruvec,struct scan_control * sc)4132 static bool lruvec_is_sizable(struct lruvec *lruvec, struct scan_control *sc)
4133 {
4134 int gen, type, zone;
4135 unsigned long total = 0;
4136 int swappiness = get_swappiness(lruvec, sc);
4137 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4138 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4139 DEFINE_MAX_SEQ(lruvec);
4140 DEFINE_MIN_SEQ(lruvec);
4141
4142 for_each_evictable_type(type, swappiness) {
4143 unsigned long seq;
4144
4145 for (seq = min_seq[type]; seq <= max_seq; seq++) {
4146 gen = lru_gen_from_seq(seq);
4147
4148 for (zone = 0; zone < MAX_NR_ZONES; zone++)
4149 total += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
4150 }
4151 }
4152
4153 /* whether the size is big enough to be helpful */
4154 return mem_cgroup_online(memcg) ? (total >> sc->priority) : total;
4155 }
4156
lruvec_is_reclaimable(struct lruvec * lruvec,struct scan_control * sc,unsigned long min_ttl)4157 static bool lruvec_is_reclaimable(struct lruvec *lruvec, struct scan_control *sc,
4158 unsigned long min_ttl)
4159 {
4160 int gen;
4161 unsigned long birth;
4162 int swappiness = get_swappiness(lruvec, sc);
4163 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4164 DEFINE_MIN_SEQ(lruvec);
4165
4166 if (mem_cgroup_below_min(NULL, memcg))
4167 return false;
4168
4169 if (!lruvec_is_sizable(lruvec, sc))
4170 return false;
4171
4172 gen = lru_gen_from_seq(evictable_min_seq(min_seq, swappiness));
4173 birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
4174
4175 return time_is_before_jiffies(birth + min_ttl);
4176 }
4177
4178 /* to protect the working set of the last N jiffies */
4179 static unsigned long lru_gen_min_ttl __read_mostly;
4180
lru_gen_age_node(struct pglist_data * pgdat,struct scan_control * sc)4181 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
4182 {
4183 struct mem_cgroup *memcg;
4184 unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl);
4185 bool reclaimable = !min_ttl;
4186
4187 VM_WARN_ON_ONCE(!current_is_kswapd());
4188
4189 set_initial_priority(pgdat, sc);
4190
4191 memcg = mem_cgroup_iter(NULL, NULL, NULL);
4192 do {
4193 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4194
4195 mem_cgroup_calculate_protection(NULL, memcg);
4196
4197 if (!reclaimable)
4198 reclaimable = lruvec_is_reclaimable(lruvec, sc, min_ttl);
4199 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
4200
4201 /*
4202 * The main goal is to OOM kill if every generation from all memcgs is
4203 * younger than min_ttl. However, another possibility is all memcgs are
4204 * either too small or below min.
4205 */
4206 if (!reclaimable && mutex_trylock(&oom_lock)) {
4207 struct oom_control oc = {
4208 .gfp_mask = sc->gfp_mask,
4209 };
4210
4211 out_of_memory(&oc);
4212
4213 mutex_unlock(&oom_lock);
4214 }
4215 }
4216
4217 /******************************************************************************
4218 * rmap/PT walk feedback
4219 ******************************************************************************/
4220
4221 /*
4222 * This function exploits spatial locality when shrink_folio_list() walks the
4223 * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If
4224 * the scan was done cacheline efficiently, it adds the PMD entry pointing to
4225 * the PTE table to the Bloom filter. This forms a feedback loop between the
4226 * eviction and the aging.
4227 */
lru_gen_look_around(struct page_vma_mapped_walk * pvmw)4228 bool lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
4229 {
4230 int i;
4231 bool dirty;
4232 unsigned long start;
4233 unsigned long end;
4234 struct lru_gen_mm_walk *walk;
4235 struct folio *last = NULL;
4236 int young = 1;
4237 pte_t *pte = pvmw->pte;
4238 unsigned long addr = pvmw->address;
4239 struct vm_area_struct *vma = pvmw->vma;
4240 struct folio *folio = pfn_folio(pvmw->pfn);
4241 struct mem_cgroup *memcg = folio_memcg(folio);
4242 struct pglist_data *pgdat = folio_pgdat(folio);
4243 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4244 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
4245 DEFINE_MAX_SEQ(lruvec);
4246 int gen = lru_gen_from_seq(max_seq);
4247
4248 lockdep_assert_held(pvmw->ptl);
4249 VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio), folio);
4250
4251 if (!ptep_clear_young_notify(vma, addr, pte))
4252 return false;
4253
4254 if (spin_is_contended(pvmw->ptl))
4255 return true;
4256
4257 /* exclude special VMAs containing anon pages from COW */
4258 if (vma->vm_flags & VM_SPECIAL)
4259 return true;
4260
4261 /* avoid taking the LRU lock under the PTL when possible */
4262 walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL;
4263
4264 start = max(addr & PMD_MASK, vma->vm_start);
4265 end = min(addr | ~PMD_MASK, vma->vm_end - 1) + 1;
4266
4267 if (end - start == PAGE_SIZE)
4268 return true;
4269
4270 if (end - start > MIN_LRU_BATCH * PAGE_SIZE) {
4271 if (addr - start < MIN_LRU_BATCH * PAGE_SIZE / 2)
4272 end = start + MIN_LRU_BATCH * PAGE_SIZE;
4273 else if (end - addr < MIN_LRU_BATCH * PAGE_SIZE / 2)
4274 start = end - MIN_LRU_BATCH * PAGE_SIZE;
4275 else {
4276 start = addr - MIN_LRU_BATCH * PAGE_SIZE / 2;
4277 end = addr + MIN_LRU_BATCH * PAGE_SIZE / 2;
4278 }
4279 }
4280
4281 arch_enter_lazy_mmu_mode();
4282
4283 pte -= (addr - start) / PAGE_SIZE;
4284
4285 for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) {
4286 unsigned long pfn;
4287 pte_t ptent = ptep_get(pte + i);
4288
4289 pfn = get_pte_pfn(ptent, vma, addr, pgdat);
4290 if (pfn == -1)
4291 continue;
4292
4293 folio = get_pfn_folio(pfn, memcg, pgdat);
4294 if (!folio)
4295 continue;
4296
4297 if (!ptep_clear_young_notify(vma, addr, pte + i))
4298 continue;
4299
4300 if (last != folio) {
4301 walk_update_folio(walk, last, gen, dirty);
4302
4303 last = folio;
4304 dirty = false;
4305 }
4306
4307 if (pte_dirty(ptent))
4308 dirty = true;
4309
4310 young++;
4311 }
4312
4313 walk_update_folio(walk, last, gen, dirty);
4314
4315 arch_leave_lazy_mmu_mode();
4316
4317 /* feedback from rmap walkers to page table walkers */
4318 if (mm_state && suitable_to_scan(i, young))
4319 update_bloom_filter(mm_state, max_seq, pvmw->pmd);
4320
4321 return true;
4322 }
4323
4324 /******************************************************************************
4325 * memcg LRU
4326 ******************************************************************************/
4327
4328 /* see the comment on MEMCG_NR_GENS */
4329 enum {
4330 MEMCG_LRU_NOP,
4331 MEMCG_LRU_HEAD,
4332 MEMCG_LRU_TAIL,
4333 MEMCG_LRU_OLD,
4334 MEMCG_LRU_YOUNG,
4335 };
4336
lru_gen_rotate_memcg(struct lruvec * lruvec,int op)4337 static void lru_gen_rotate_memcg(struct lruvec *lruvec, int op)
4338 {
4339 int seg;
4340 int old, new;
4341 unsigned long flags;
4342 int bin = get_random_u32_below(MEMCG_NR_BINS);
4343 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4344
4345 spin_lock_irqsave(&pgdat->memcg_lru.lock, flags);
4346
4347 VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list));
4348
4349 seg = 0;
4350 new = old = lruvec->lrugen.gen;
4351
4352 /* see the comment on MEMCG_NR_GENS */
4353 if (op == MEMCG_LRU_HEAD)
4354 seg = MEMCG_LRU_HEAD;
4355 else if (op == MEMCG_LRU_TAIL)
4356 seg = MEMCG_LRU_TAIL;
4357 else if (op == MEMCG_LRU_OLD)
4358 new = get_memcg_gen(pgdat->memcg_lru.seq);
4359 else if (op == MEMCG_LRU_YOUNG)
4360 new = get_memcg_gen(pgdat->memcg_lru.seq + 1);
4361 else
4362 VM_WARN_ON_ONCE(true);
4363
4364 WRITE_ONCE(lruvec->lrugen.seg, seg);
4365 WRITE_ONCE(lruvec->lrugen.gen, new);
4366
4367 hlist_nulls_del_rcu(&lruvec->lrugen.list);
4368
4369 if (op == MEMCG_LRU_HEAD || op == MEMCG_LRU_OLD)
4370 hlist_nulls_add_head_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
4371 else
4372 hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
4373
4374 pgdat->memcg_lru.nr_memcgs[old]--;
4375 pgdat->memcg_lru.nr_memcgs[new]++;
4376
4377 if (!pgdat->memcg_lru.nr_memcgs[old] && old == get_memcg_gen(pgdat->memcg_lru.seq))
4378 WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
4379
4380 spin_unlock_irqrestore(&pgdat->memcg_lru.lock, flags);
4381 }
4382
4383 #ifdef CONFIG_MEMCG
4384
lru_gen_online_memcg(struct mem_cgroup * memcg)4385 void lru_gen_online_memcg(struct mem_cgroup *memcg)
4386 {
4387 int gen;
4388 int nid;
4389 int bin = get_random_u32_below(MEMCG_NR_BINS);
4390
4391 for_each_node(nid) {
4392 struct pglist_data *pgdat = NODE_DATA(nid);
4393 struct lruvec *lruvec = get_lruvec(memcg, nid);
4394
4395 spin_lock_irq(&pgdat->memcg_lru.lock);
4396
4397 VM_WARN_ON_ONCE(!hlist_nulls_unhashed(&lruvec->lrugen.list));
4398
4399 gen = get_memcg_gen(pgdat->memcg_lru.seq);
4400
4401 lruvec->lrugen.gen = gen;
4402
4403 hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[gen][bin]);
4404 pgdat->memcg_lru.nr_memcgs[gen]++;
4405
4406 spin_unlock_irq(&pgdat->memcg_lru.lock);
4407 }
4408 }
4409
lru_gen_offline_memcg(struct mem_cgroup * memcg)4410 void lru_gen_offline_memcg(struct mem_cgroup *memcg)
4411 {
4412 int nid;
4413
4414 for_each_node(nid) {
4415 struct lruvec *lruvec = get_lruvec(memcg, nid);
4416
4417 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_OLD);
4418 }
4419 }
4420
lru_gen_release_memcg(struct mem_cgroup * memcg)4421 void lru_gen_release_memcg(struct mem_cgroup *memcg)
4422 {
4423 int gen;
4424 int nid;
4425
4426 for_each_node(nid) {
4427 struct pglist_data *pgdat = NODE_DATA(nid);
4428 struct lruvec *lruvec = get_lruvec(memcg, nid);
4429
4430 spin_lock_irq(&pgdat->memcg_lru.lock);
4431
4432 if (hlist_nulls_unhashed(&lruvec->lrugen.list))
4433 goto unlock;
4434
4435 gen = lruvec->lrugen.gen;
4436
4437 hlist_nulls_del_init_rcu(&lruvec->lrugen.list);
4438 pgdat->memcg_lru.nr_memcgs[gen]--;
4439
4440 if (!pgdat->memcg_lru.nr_memcgs[gen] && gen == get_memcg_gen(pgdat->memcg_lru.seq))
4441 WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
4442 unlock:
4443 spin_unlock_irq(&pgdat->memcg_lru.lock);
4444 }
4445 }
4446
lru_gen_soft_reclaim(struct mem_cgroup * memcg,int nid)4447 void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid)
4448 {
4449 struct lruvec *lruvec = get_lruvec(memcg, nid);
4450
4451 /* see the comment on MEMCG_NR_GENS */
4452 if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_HEAD)
4453 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_HEAD);
4454 }
4455
4456 #endif /* CONFIG_MEMCG */
4457
4458 /******************************************************************************
4459 * the eviction
4460 ******************************************************************************/
4461
sort_folio(struct lruvec * lruvec,struct folio * folio,struct scan_control * sc,int tier_idx)4462 static bool sort_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc,
4463 int tier_idx)
4464 {
4465 bool success;
4466 bool dirty, writeback;
4467 int gen = folio_lru_gen(folio);
4468 int type = folio_is_file_lru(folio);
4469 int zone = folio_zonenum(folio);
4470 int delta = folio_nr_pages(folio);
4471 int refs = folio_lru_refs(folio);
4472 bool workingset = folio_test_workingset(folio);
4473 int tier = lru_tier_from_refs(refs, workingset);
4474 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4475
4476 VM_WARN_ON_ONCE_FOLIO(gen >= MAX_NR_GENS, folio);
4477
4478 /* unevictable */
4479 if (!folio_evictable(folio)) {
4480 success = lru_gen_del_folio(lruvec, folio, true);
4481 VM_WARN_ON_ONCE_FOLIO(!success, folio);
4482 folio_set_unevictable(folio);
4483 lruvec_add_folio(lruvec, folio);
4484 __count_vm_events(UNEVICTABLE_PGCULLED, delta);
4485 return true;
4486 }
4487
4488 /* promoted */
4489 if (gen != lru_gen_from_seq(lrugen->min_seq[type])) {
4490 list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4491 return true;
4492 }
4493
4494 /* protected */
4495 if (tier > tier_idx || refs + workingset == BIT(LRU_REFS_WIDTH) + 1) {
4496 gen = folio_inc_gen(lruvec, folio, false);
4497 list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4498
4499 /* don't count the workingset being lazily promoted */
4500 if (refs + workingset != BIT(LRU_REFS_WIDTH) + 1) {
4501 int hist = lru_hist_from_seq(lrugen->min_seq[type]);
4502
4503 WRITE_ONCE(lrugen->protected[hist][type][tier],
4504 lrugen->protected[hist][type][tier] + delta);
4505 }
4506 return true;
4507 }
4508
4509 /* ineligible */
4510 if (!folio_test_lru(folio) || zone > sc->reclaim_idx) {
4511 gen = folio_inc_gen(lruvec, folio, false);
4512 list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]);
4513 return true;
4514 }
4515
4516 dirty = folio_test_dirty(folio);
4517 writeback = folio_test_writeback(folio);
4518 if (type == LRU_GEN_FILE && dirty) {
4519 sc->nr.file_taken += delta;
4520 if (!writeback)
4521 sc->nr.unqueued_dirty += delta;
4522 }
4523
4524 /* waiting for writeback */
4525 if (writeback || (type == LRU_GEN_FILE && dirty)) {
4526 gen = folio_inc_gen(lruvec, folio, true);
4527 list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4528 return true;
4529 }
4530
4531 return false;
4532 }
4533
isolate_folio(struct lruvec * lruvec,struct folio * folio,struct scan_control * sc)4534 static bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc)
4535 {
4536 bool success;
4537
4538 /* swap constrained */
4539 if (!(sc->gfp_mask & __GFP_IO) &&
4540 (folio_test_dirty(folio) ||
4541 (folio_test_anon(folio) && !folio_test_swapcache(folio))))
4542 return false;
4543
4544 /* raced with release_pages() */
4545 if (!folio_try_get(folio))
4546 return false;
4547
4548 /* raced with another isolation */
4549 if (!folio_test_clear_lru(folio)) {
4550 folio_put(folio);
4551 return false;
4552 }
4553
4554 /* see the comment on LRU_REFS_FLAGS */
4555 if (!folio_test_referenced(folio))
4556 set_mask_bits(&folio->flags, LRU_REFS_MASK, 0);
4557
4558 /* for shrink_folio_list() */
4559 folio_clear_reclaim(folio);
4560
4561 success = lru_gen_del_folio(lruvec, folio, true);
4562 VM_WARN_ON_ONCE_FOLIO(!success, folio);
4563
4564 return true;
4565 }
4566
scan_folios(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,int type,int tier,struct list_head * list)4567 static int scan_folios(unsigned long nr_to_scan, struct lruvec *lruvec,
4568 struct scan_control *sc, int type, int tier,
4569 struct list_head *list)
4570 {
4571 int i;
4572 int gen;
4573 enum vm_event_item item;
4574 int sorted = 0;
4575 int scanned = 0;
4576 int isolated = 0;
4577 int skipped = 0;
4578 int remaining = min(nr_to_scan, MAX_LRU_BATCH);
4579 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4580 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4581
4582 VM_WARN_ON_ONCE(!list_empty(list));
4583
4584 if (get_nr_gens(lruvec, type) == MIN_NR_GENS)
4585 return 0;
4586
4587 gen = lru_gen_from_seq(lrugen->min_seq[type]);
4588
4589 for (i = MAX_NR_ZONES; i > 0; i--) {
4590 LIST_HEAD(moved);
4591 int skipped_zone = 0;
4592 int zone = (sc->reclaim_idx + i) % MAX_NR_ZONES;
4593 struct list_head *head = &lrugen->folios[gen][type][zone];
4594
4595 while (!list_empty(head)) {
4596 struct folio *folio = lru_to_folio(head);
4597 int delta = folio_nr_pages(folio);
4598
4599 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
4600 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
4601 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
4602 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
4603
4604 scanned += delta;
4605
4606 if (sort_folio(lruvec, folio, sc, tier))
4607 sorted += delta;
4608 else if (isolate_folio(lruvec, folio, sc)) {
4609 list_add(&folio->lru, list);
4610 isolated += delta;
4611 } else {
4612 list_move(&folio->lru, &moved);
4613 skipped_zone += delta;
4614 }
4615
4616 if (!--remaining || max(isolated, skipped_zone) >= MIN_LRU_BATCH)
4617 break;
4618 }
4619
4620 if (skipped_zone) {
4621 list_splice(&moved, head);
4622 __count_zid_vm_events(PGSCAN_SKIP, zone, skipped_zone);
4623 skipped += skipped_zone;
4624 }
4625
4626 if (!remaining || isolated >= MIN_LRU_BATCH)
4627 break;
4628 }
4629
4630 item = PGSCAN_KSWAPD + reclaimer_offset(sc);
4631 if (!cgroup_reclaim(sc)) {
4632 __count_vm_events(item, isolated);
4633 __count_vm_events(PGREFILL, sorted);
4634 }
4635 count_memcg_events(memcg, item, isolated);
4636 count_memcg_events(memcg, PGREFILL, sorted);
4637 __count_vm_events(PGSCAN_ANON + type, isolated);
4638 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, MAX_LRU_BATCH,
4639 scanned, skipped, isolated,
4640 type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON);
4641 if (type == LRU_GEN_FILE)
4642 sc->nr.file_taken += isolated;
4643 /*
4644 * There might not be eligible folios due to reclaim_idx. Check the
4645 * remaining to prevent livelock if it's not making progress.
4646 */
4647 return isolated || !remaining ? scanned : 0;
4648 }
4649
get_tier_idx(struct lruvec * lruvec,int type)4650 static int get_tier_idx(struct lruvec *lruvec, int type)
4651 {
4652 int tier;
4653 struct ctrl_pos sp, pv;
4654
4655 /*
4656 * To leave a margin for fluctuations, use a larger gain factor (2:3).
4657 * This value is chosen because any other tier would have at least twice
4658 * as many refaults as the first tier.
4659 */
4660 read_ctrl_pos(lruvec, type, 0, 2, &sp);
4661 for (tier = 1; tier < MAX_NR_TIERS; tier++) {
4662 read_ctrl_pos(lruvec, type, tier, 3, &pv);
4663 if (!positive_ctrl_err(&sp, &pv))
4664 break;
4665 }
4666
4667 return tier - 1;
4668 }
4669
get_type_to_scan(struct lruvec * lruvec,int swappiness)4670 static int get_type_to_scan(struct lruvec *lruvec, int swappiness)
4671 {
4672 struct ctrl_pos sp, pv;
4673
4674 if (swappiness <= MIN_SWAPPINESS + 1)
4675 return LRU_GEN_FILE;
4676
4677 if (swappiness >= MAX_SWAPPINESS)
4678 return LRU_GEN_ANON;
4679 /*
4680 * Compare the sum of all tiers of anon with that of file to determine
4681 * which type to scan.
4682 */
4683 read_ctrl_pos(lruvec, LRU_GEN_ANON, MAX_NR_TIERS, swappiness, &sp);
4684 read_ctrl_pos(lruvec, LRU_GEN_FILE, MAX_NR_TIERS, MAX_SWAPPINESS - swappiness, &pv);
4685
4686 return positive_ctrl_err(&sp, &pv);
4687 }
4688
isolate_folios(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,int swappiness,int * type_scanned,struct list_head * list)4689 static int isolate_folios(unsigned long nr_to_scan, struct lruvec *lruvec,
4690 struct scan_control *sc, int swappiness,
4691 int *type_scanned, struct list_head *list)
4692 {
4693 int i;
4694 int type = get_type_to_scan(lruvec, swappiness);
4695
4696 for_each_evictable_type(i, swappiness) {
4697 int scanned;
4698 int tier = get_tier_idx(lruvec, type);
4699
4700 *type_scanned = type;
4701
4702 scanned = scan_folios(nr_to_scan, lruvec, sc, type, tier, list);
4703 if (scanned)
4704 return scanned;
4705
4706 type = !type;
4707 }
4708
4709 return 0;
4710 }
4711
evict_folios(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,int swappiness)4712 static int evict_folios(unsigned long nr_to_scan, struct lruvec *lruvec,
4713 struct scan_control *sc, int swappiness)
4714 {
4715 int type;
4716 int scanned;
4717 int reclaimed;
4718 LIST_HEAD(list);
4719 LIST_HEAD(clean);
4720 struct folio *folio;
4721 struct folio *next;
4722 enum vm_event_item item;
4723 struct reclaim_stat stat;
4724 struct lru_gen_mm_walk *walk;
4725 bool skip_retry = false;
4726 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4727 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4728 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4729
4730 spin_lock_irq(&lruvec->lru_lock);
4731
4732 scanned = isolate_folios(nr_to_scan, lruvec, sc, swappiness, &type, &list);
4733
4734 scanned += try_to_inc_min_seq(lruvec, swappiness);
4735
4736 if (evictable_min_seq(lrugen->min_seq, swappiness) + MIN_NR_GENS > lrugen->max_seq)
4737 scanned = 0;
4738
4739 spin_unlock_irq(&lruvec->lru_lock);
4740
4741 if (list_empty(&list))
4742 return scanned;
4743 retry:
4744 reclaimed = shrink_folio_list(&list, pgdat, sc, &stat, false, memcg);
4745 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
4746 sc->nr_reclaimed += reclaimed;
4747 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
4748 scanned, reclaimed, &stat, sc->priority,
4749 type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON);
4750
4751 list_for_each_entry_safe_reverse(folio, next, &list, lru) {
4752 DEFINE_MIN_SEQ(lruvec);
4753
4754 if (!folio_evictable(folio)) {
4755 list_del(&folio->lru);
4756 folio_putback_lru(folio);
4757 continue;
4758 }
4759
4760 /* retry folios that may have missed folio_rotate_reclaimable() */
4761 if (!skip_retry && !folio_test_active(folio) && !folio_mapped(folio) &&
4762 !folio_test_dirty(folio) && !folio_test_writeback(folio)) {
4763 list_move(&folio->lru, &clean);
4764 continue;
4765 }
4766
4767 /* don't add rejected folios to the oldest generation */
4768 if (lru_gen_folio_seq(lruvec, folio, false) == min_seq[type])
4769 set_mask_bits(&folio->flags, LRU_REFS_FLAGS, BIT(PG_active));
4770 }
4771
4772 spin_lock_irq(&lruvec->lru_lock);
4773
4774 move_folios_to_lru(lruvec, &list);
4775
4776 walk = current->reclaim_state->mm_walk;
4777 if (walk && walk->batched) {
4778 walk->lruvec = lruvec;
4779 reset_batch_size(walk);
4780 }
4781
4782 __mod_lruvec_state(lruvec, PGDEMOTE_KSWAPD + reclaimer_offset(sc),
4783 stat.nr_demoted);
4784
4785 item = PGSTEAL_KSWAPD + reclaimer_offset(sc);
4786 if (!cgroup_reclaim(sc))
4787 __count_vm_events(item, reclaimed);
4788 count_memcg_events(memcg, item, reclaimed);
4789 __count_vm_events(PGSTEAL_ANON + type, reclaimed);
4790
4791 spin_unlock_irq(&lruvec->lru_lock);
4792
4793 list_splice_init(&clean, &list);
4794
4795 if (!list_empty(&list)) {
4796 skip_retry = true;
4797 goto retry;
4798 }
4799
4800 return scanned;
4801 }
4802
should_run_aging(struct lruvec * lruvec,unsigned long max_seq,int swappiness,unsigned long * nr_to_scan)4803 static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq,
4804 int swappiness, unsigned long *nr_to_scan)
4805 {
4806 int gen, type, zone;
4807 unsigned long size = 0;
4808 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4809 DEFINE_MIN_SEQ(lruvec);
4810
4811 *nr_to_scan = 0;
4812 /* have to run aging, since eviction is not possible anymore */
4813 if (evictable_min_seq(min_seq, swappiness) + MIN_NR_GENS > max_seq)
4814 return true;
4815
4816 for_each_evictable_type(type, swappiness) {
4817 unsigned long seq;
4818
4819 for (seq = min_seq[type]; seq <= max_seq; seq++) {
4820 gen = lru_gen_from_seq(seq);
4821
4822 for (zone = 0; zone < MAX_NR_ZONES; zone++)
4823 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
4824 }
4825 }
4826
4827 *nr_to_scan = size;
4828 /* better to run aging even though eviction is still possible */
4829 return evictable_min_seq(min_seq, swappiness) + MIN_NR_GENS == max_seq;
4830 }
4831
4832 /*
4833 * For future optimizations:
4834 * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg
4835 * reclaim.
4836 */
get_nr_to_scan(struct lruvec * lruvec,struct scan_control * sc,int swappiness)4837 static long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc, int swappiness)
4838 {
4839 bool success;
4840 unsigned long nr_to_scan;
4841 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4842 DEFINE_MAX_SEQ(lruvec);
4843
4844 if (mem_cgroup_below_min(sc->target_mem_cgroup, memcg))
4845 return -1;
4846
4847 success = should_run_aging(lruvec, max_seq, swappiness, &nr_to_scan);
4848
4849 /* try to scrape all its memory if this memcg was deleted */
4850 if (nr_to_scan && !mem_cgroup_online(memcg))
4851 return nr_to_scan;
4852
4853 nr_to_scan = apply_proportional_protection(memcg, sc, nr_to_scan);
4854
4855 /* try to get away with not aging at the default priority */
4856 if (!success || sc->priority == DEF_PRIORITY)
4857 return nr_to_scan >> sc->priority;
4858
4859 /* stop scanning this lruvec as it's low on cold folios */
4860 return try_to_inc_max_seq(lruvec, max_seq, swappiness, false) ? -1 : 0;
4861 }
4862
should_abort_scan(struct lruvec * lruvec,struct scan_control * sc)4863 static bool should_abort_scan(struct lruvec *lruvec, struct scan_control *sc)
4864 {
4865 int i;
4866 enum zone_watermarks mark;
4867
4868 /* don't abort memcg reclaim to ensure fairness */
4869 if (!root_reclaim(sc))
4870 return false;
4871
4872 if (sc->nr_reclaimed >= max(sc->nr_to_reclaim, compact_gap(sc->order)))
4873 return true;
4874
4875 /* check the order to exclude compaction-induced reclaim */
4876 if (!current_is_kswapd() || sc->order)
4877 return false;
4878
4879 mark = sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ?
4880 WMARK_PROMO : WMARK_HIGH;
4881
4882 for (i = 0; i <= sc->reclaim_idx; i++) {
4883 struct zone *zone = lruvec_pgdat(lruvec)->node_zones + i;
4884 unsigned long size = wmark_pages(zone, mark) + MIN_LRU_BATCH;
4885
4886 if (managed_zone(zone) && !zone_watermark_ok(zone, 0, size, sc->reclaim_idx, 0))
4887 return false;
4888 }
4889
4890 /* kswapd should abort if all eligible zones are safe */
4891 return true;
4892 }
4893
try_to_shrink_lruvec(struct lruvec * lruvec,struct scan_control * sc)4894 static bool try_to_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
4895 {
4896 long nr_to_scan;
4897 unsigned long scanned = 0;
4898 int swappiness = get_swappiness(lruvec, sc);
4899
4900 while (true) {
4901 int delta;
4902
4903 nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness);
4904 if (nr_to_scan <= 0)
4905 break;
4906
4907 delta = evict_folios(nr_to_scan, lruvec, sc, swappiness);
4908 if (!delta)
4909 break;
4910
4911 scanned += delta;
4912 if (scanned >= nr_to_scan)
4913 break;
4914
4915 if (should_abort_scan(lruvec, sc))
4916 break;
4917
4918 cond_resched();
4919 }
4920
4921 /*
4922 * If too many file cache in the coldest generation can't be evicted
4923 * due to being dirty, wake up the flusher.
4924 */
4925 if (sc->nr.unqueued_dirty && sc->nr.unqueued_dirty == sc->nr.file_taken)
4926 wakeup_flusher_threads(WB_REASON_VMSCAN);
4927
4928 /* whether this lruvec should be rotated */
4929 return nr_to_scan < 0;
4930 }
4931
shrink_one(struct lruvec * lruvec,struct scan_control * sc)4932 static int shrink_one(struct lruvec *lruvec, struct scan_control *sc)
4933 {
4934 bool success;
4935 unsigned long scanned = sc->nr_scanned;
4936 unsigned long reclaimed = sc->nr_reclaimed;
4937 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4938 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4939
4940 /* lru_gen_age_node() called mem_cgroup_calculate_protection() */
4941 if (mem_cgroup_below_min(NULL, memcg))
4942 return MEMCG_LRU_YOUNG;
4943
4944 if (mem_cgroup_below_low(NULL, memcg)) {
4945 /* see the comment on MEMCG_NR_GENS */
4946 if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL)
4947 return MEMCG_LRU_TAIL;
4948
4949 memcg_memory_event(memcg, MEMCG_LOW);
4950 }
4951
4952 success = try_to_shrink_lruvec(lruvec, sc);
4953
4954 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, sc->priority);
4955
4956 if (!sc->proactive)
4957 vmpressure(sc->gfp_mask, memcg, false, sc->nr_scanned - scanned,
4958 sc->nr_reclaimed - reclaimed);
4959
4960 flush_reclaim_state(sc);
4961
4962 if (success && mem_cgroup_online(memcg))
4963 return MEMCG_LRU_YOUNG;
4964
4965 if (!success && lruvec_is_sizable(lruvec, sc))
4966 return 0;
4967
4968 /* one retry if offlined or too small */
4969 return READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL ?
4970 MEMCG_LRU_TAIL : MEMCG_LRU_YOUNG;
4971 }
4972
shrink_many(struct pglist_data * pgdat,struct scan_control * sc)4973 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc)
4974 {
4975 int op;
4976 int gen;
4977 int bin;
4978 int first_bin;
4979 struct lruvec *lruvec;
4980 struct lru_gen_folio *lrugen;
4981 struct mem_cgroup *memcg;
4982 struct hlist_nulls_node *pos;
4983
4984 gen = get_memcg_gen(READ_ONCE(pgdat->memcg_lru.seq));
4985 bin = first_bin = get_random_u32_below(MEMCG_NR_BINS);
4986 restart:
4987 op = 0;
4988 memcg = NULL;
4989
4990 rcu_read_lock();
4991
4992 hlist_nulls_for_each_entry_rcu(lrugen, pos, &pgdat->memcg_lru.fifo[gen][bin], list) {
4993 if (op) {
4994 lru_gen_rotate_memcg(lruvec, op);
4995 op = 0;
4996 }
4997
4998 mem_cgroup_put(memcg);
4999 memcg = NULL;
5000
5001 if (gen != READ_ONCE(lrugen->gen))
5002 continue;
5003
5004 lruvec = container_of(lrugen, struct lruvec, lrugen);
5005 memcg = lruvec_memcg(lruvec);
5006
5007 if (!mem_cgroup_tryget(memcg)) {
5008 lru_gen_release_memcg(memcg);
5009 memcg = NULL;
5010 continue;
5011 }
5012
5013 rcu_read_unlock();
5014
5015 op = shrink_one(lruvec, sc);
5016
5017 rcu_read_lock();
5018
5019 if (should_abort_scan(lruvec, sc))
5020 break;
5021 }
5022
5023 rcu_read_unlock();
5024
5025 if (op)
5026 lru_gen_rotate_memcg(lruvec, op);
5027
5028 mem_cgroup_put(memcg);
5029
5030 if (!is_a_nulls(pos))
5031 return;
5032
5033 /* restart if raced with lru_gen_rotate_memcg() */
5034 if (gen != get_nulls_value(pos))
5035 goto restart;
5036
5037 /* try the rest of the bins of the current generation */
5038 bin = get_memcg_bin(bin + 1);
5039 if (bin != first_bin)
5040 goto restart;
5041 }
5042
lru_gen_shrink_lruvec(struct lruvec * lruvec,struct scan_control * sc)5043 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5044 {
5045 struct blk_plug plug;
5046
5047 VM_WARN_ON_ONCE(root_reclaim(sc));
5048 VM_WARN_ON_ONCE(!sc->may_writepage || !sc->may_unmap);
5049
5050 lru_add_drain();
5051
5052 blk_start_plug(&plug);
5053
5054 set_mm_walk(NULL, sc->proactive);
5055
5056 if (try_to_shrink_lruvec(lruvec, sc))
5057 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_YOUNG);
5058
5059 clear_mm_walk();
5060
5061 blk_finish_plug(&plug);
5062 }
5063
lru_gen_shrink_node(struct pglist_data * pgdat,struct scan_control * sc)5064 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
5065 {
5066 struct blk_plug plug;
5067 unsigned long reclaimed = sc->nr_reclaimed;
5068
5069 VM_WARN_ON_ONCE(!root_reclaim(sc));
5070
5071 /*
5072 * Unmapped clean folios are already prioritized. Scanning for more of
5073 * them is likely futile and can cause high reclaim latency when there
5074 * is a large number of memcgs.
5075 */
5076 if (!sc->may_writepage || !sc->may_unmap)
5077 goto done;
5078
5079 lru_add_drain();
5080
5081 blk_start_plug(&plug);
5082
5083 set_mm_walk(pgdat, sc->proactive);
5084
5085 set_initial_priority(pgdat, sc);
5086
5087 if (current_is_kswapd())
5088 sc->nr_reclaimed = 0;
5089
5090 if (mem_cgroup_disabled())
5091 shrink_one(&pgdat->__lruvec, sc);
5092 else
5093 shrink_many(pgdat, sc);
5094
5095 if (current_is_kswapd())
5096 sc->nr_reclaimed += reclaimed;
5097
5098 clear_mm_walk();
5099
5100 blk_finish_plug(&plug);
5101 done:
5102 if (sc->nr_reclaimed > reclaimed)
5103 pgdat->kswapd_failures = 0;
5104 }
5105
5106 /******************************************************************************
5107 * state change
5108 ******************************************************************************/
5109
state_is_valid(struct lruvec * lruvec)5110 static bool __maybe_unused state_is_valid(struct lruvec *lruvec)
5111 {
5112 struct lru_gen_folio *lrugen = &lruvec->lrugen;
5113
5114 if (lrugen->enabled) {
5115 enum lru_list lru;
5116
5117 for_each_evictable_lru(lru) {
5118 if (!list_empty(&lruvec->lists[lru]))
5119 return false;
5120 }
5121 } else {
5122 int gen, type, zone;
5123
5124 for_each_gen_type_zone(gen, type, zone) {
5125 if (!list_empty(&lrugen->folios[gen][type][zone]))
5126 return false;
5127 }
5128 }
5129
5130 return true;
5131 }
5132
fill_evictable(struct lruvec * lruvec)5133 static bool fill_evictable(struct lruvec *lruvec)
5134 {
5135 enum lru_list lru;
5136 int remaining = MAX_LRU_BATCH;
5137
5138 for_each_evictable_lru(lru) {
5139 int type = is_file_lru(lru);
5140 bool active = is_active_lru(lru);
5141 struct list_head *head = &lruvec->lists[lru];
5142
5143 while (!list_empty(head)) {
5144 bool success;
5145 struct folio *folio = lru_to_folio(head);
5146
5147 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5148 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio) != active, folio);
5149 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5150 VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio) != -1, folio);
5151
5152 lruvec_del_folio(lruvec, folio);
5153 success = lru_gen_add_folio(lruvec, folio, false);
5154 VM_WARN_ON_ONCE(!success);
5155
5156 if (!--remaining)
5157 return false;
5158 }
5159 }
5160
5161 return true;
5162 }
5163
drain_evictable(struct lruvec * lruvec)5164 static bool drain_evictable(struct lruvec *lruvec)
5165 {
5166 int gen, type, zone;
5167 int remaining = MAX_LRU_BATCH;
5168
5169 for_each_gen_type_zone(gen, type, zone) {
5170 struct list_head *head = &lruvec->lrugen.folios[gen][type][zone];
5171
5172 while (!list_empty(head)) {
5173 bool success;
5174 struct folio *folio = lru_to_folio(head);
5175
5176 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5177 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
5178 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5179 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
5180
5181 success = lru_gen_del_folio(lruvec, folio, false);
5182 VM_WARN_ON_ONCE(!success);
5183 lruvec_add_folio(lruvec, folio);
5184
5185 if (!--remaining)
5186 return false;
5187 }
5188 }
5189
5190 return true;
5191 }
5192
lru_gen_change_state(bool enabled)5193 static void lru_gen_change_state(bool enabled)
5194 {
5195 static DEFINE_MUTEX(state_mutex);
5196
5197 struct mem_cgroup *memcg;
5198
5199 cgroup_lock();
5200 cpus_read_lock();
5201 get_online_mems();
5202 mutex_lock(&state_mutex);
5203
5204 if (enabled == lru_gen_enabled())
5205 goto unlock;
5206
5207 if (enabled)
5208 static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5209 else
5210 static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5211
5212 memcg = mem_cgroup_iter(NULL, NULL, NULL);
5213 do {
5214 int nid;
5215
5216 for_each_node(nid) {
5217 struct lruvec *lruvec = get_lruvec(memcg, nid);
5218
5219 spin_lock_irq(&lruvec->lru_lock);
5220
5221 VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
5222 VM_WARN_ON_ONCE(!state_is_valid(lruvec));
5223
5224 lruvec->lrugen.enabled = enabled;
5225
5226 while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) {
5227 spin_unlock_irq(&lruvec->lru_lock);
5228 cond_resched();
5229 spin_lock_irq(&lruvec->lru_lock);
5230 }
5231
5232 spin_unlock_irq(&lruvec->lru_lock);
5233 }
5234
5235 cond_resched();
5236 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5237 unlock:
5238 mutex_unlock(&state_mutex);
5239 put_online_mems();
5240 cpus_read_unlock();
5241 cgroup_unlock();
5242 }
5243
5244 /******************************************************************************
5245 * sysfs interface
5246 ******************************************************************************/
5247
min_ttl_ms_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)5248 static ssize_t min_ttl_ms_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5249 {
5250 return sysfs_emit(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl)));
5251 }
5252
5253 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
min_ttl_ms_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)5254 static ssize_t min_ttl_ms_store(struct kobject *kobj, struct kobj_attribute *attr,
5255 const char *buf, size_t len)
5256 {
5257 unsigned int msecs;
5258
5259 if (kstrtouint(buf, 0, &msecs))
5260 return -EINVAL;
5261
5262 WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs));
5263
5264 return len;
5265 }
5266
5267 static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR_RW(min_ttl_ms);
5268
enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)5269 static ssize_t enabled_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5270 {
5271 unsigned int caps = 0;
5272
5273 if (get_cap(LRU_GEN_CORE))
5274 caps |= BIT(LRU_GEN_CORE);
5275
5276 if (should_walk_mmu())
5277 caps |= BIT(LRU_GEN_MM_WALK);
5278
5279 if (should_clear_pmd_young())
5280 caps |= BIT(LRU_GEN_NONLEAF_YOUNG);
5281
5282 return sysfs_emit(buf, "0x%04x\n", caps);
5283 }
5284
5285 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)5286 static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr,
5287 const char *buf, size_t len)
5288 {
5289 int i;
5290 unsigned int caps;
5291
5292 if (tolower(*buf) == 'n')
5293 caps = 0;
5294 else if (tolower(*buf) == 'y')
5295 caps = -1;
5296 else if (kstrtouint(buf, 0, &caps))
5297 return -EINVAL;
5298
5299 for (i = 0; i < NR_LRU_GEN_CAPS; i++) {
5300 bool enabled = caps & BIT(i);
5301
5302 if (i == LRU_GEN_CORE)
5303 lru_gen_change_state(enabled);
5304 else if (enabled)
5305 static_branch_enable(&lru_gen_caps[i]);
5306 else
5307 static_branch_disable(&lru_gen_caps[i]);
5308 }
5309
5310 return len;
5311 }
5312
5313 static struct kobj_attribute lru_gen_enabled_attr = __ATTR_RW(enabled);
5314
5315 static struct attribute *lru_gen_attrs[] = {
5316 &lru_gen_min_ttl_attr.attr,
5317 &lru_gen_enabled_attr.attr,
5318 NULL
5319 };
5320
5321 static const struct attribute_group lru_gen_attr_group = {
5322 .name = "lru_gen",
5323 .attrs = lru_gen_attrs,
5324 };
5325
5326 /******************************************************************************
5327 * debugfs interface
5328 ******************************************************************************/
5329
lru_gen_seq_start(struct seq_file * m,loff_t * pos)5330 static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos)
5331 {
5332 struct mem_cgroup *memcg;
5333 loff_t nr_to_skip = *pos;
5334
5335 m->private = kvmalloc(PATH_MAX, GFP_KERNEL);
5336 if (!m->private)
5337 return ERR_PTR(-ENOMEM);
5338
5339 memcg = mem_cgroup_iter(NULL, NULL, NULL);
5340 do {
5341 int nid;
5342
5343 for_each_node_state(nid, N_MEMORY) {
5344 if (!nr_to_skip--)
5345 return get_lruvec(memcg, nid);
5346 }
5347 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5348
5349 return NULL;
5350 }
5351
lru_gen_seq_stop(struct seq_file * m,void * v)5352 static void lru_gen_seq_stop(struct seq_file *m, void *v)
5353 {
5354 if (!IS_ERR_OR_NULL(v))
5355 mem_cgroup_iter_break(NULL, lruvec_memcg(v));
5356
5357 kvfree(m->private);
5358 m->private = NULL;
5359 }
5360
lru_gen_seq_next(struct seq_file * m,void * v,loff_t * pos)5361 static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos)
5362 {
5363 int nid = lruvec_pgdat(v)->node_id;
5364 struct mem_cgroup *memcg = lruvec_memcg(v);
5365
5366 ++*pos;
5367
5368 nid = next_memory_node(nid);
5369 if (nid == MAX_NUMNODES) {
5370 memcg = mem_cgroup_iter(NULL, memcg, NULL);
5371 if (!memcg)
5372 return NULL;
5373
5374 nid = first_memory_node;
5375 }
5376
5377 return get_lruvec(memcg, nid);
5378 }
5379
lru_gen_seq_show_full(struct seq_file * m,struct lruvec * lruvec,unsigned long max_seq,unsigned long * min_seq,unsigned long seq)5380 static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec,
5381 unsigned long max_seq, unsigned long *min_seq,
5382 unsigned long seq)
5383 {
5384 int i;
5385 int type, tier;
5386 int hist = lru_hist_from_seq(seq);
5387 struct lru_gen_folio *lrugen = &lruvec->lrugen;
5388 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
5389
5390 for (tier = 0; tier < MAX_NR_TIERS; tier++) {
5391 seq_printf(m, " %10d", tier);
5392 for (type = 0; type < ANON_AND_FILE; type++) {
5393 const char *s = "xxx";
5394 unsigned long n[3] = {};
5395
5396 if (seq == max_seq) {
5397 s = "RTx";
5398 n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]);
5399 n[1] = READ_ONCE(lrugen->avg_total[type][tier]);
5400 } else if (seq == min_seq[type] || NR_HIST_GENS > 1) {
5401 s = "rep";
5402 n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]);
5403 n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]);
5404 n[2] = READ_ONCE(lrugen->protected[hist][type][tier]);
5405 }
5406
5407 for (i = 0; i < 3; i++)
5408 seq_printf(m, " %10lu%c", n[i], s[i]);
5409 }
5410 seq_putc(m, '\n');
5411 }
5412
5413 if (!mm_state)
5414 return;
5415
5416 seq_puts(m, " ");
5417 for (i = 0; i < NR_MM_STATS; i++) {
5418 const char *s = "xxxx";
5419 unsigned long n = 0;
5420
5421 if (seq == max_seq && NR_HIST_GENS == 1) {
5422 s = "TYFA";
5423 n = READ_ONCE(mm_state->stats[hist][i]);
5424 } else if (seq != max_seq && NR_HIST_GENS > 1) {
5425 s = "tyfa";
5426 n = READ_ONCE(mm_state->stats[hist][i]);
5427 }
5428
5429 seq_printf(m, " %10lu%c", n, s[i]);
5430 }
5431 seq_putc(m, '\n');
5432 }
5433
5434 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
lru_gen_seq_show(struct seq_file * m,void * v)5435 static int lru_gen_seq_show(struct seq_file *m, void *v)
5436 {
5437 unsigned long seq;
5438 bool full = debugfs_get_aux_num(m->file);
5439 struct lruvec *lruvec = v;
5440 struct lru_gen_folio *lrugen = &lruvec->lrugen;
5441 int nid = lruvec_pgdat(lruvec)->node_id;
5442 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5443 DEFINE_MAX_SEQ(lruvec);
5444 DEFINE_MIN_SEQ(lruvec);
5445
5446 if (nid == first_memory_node) {
5447 const char *path = memcg ? m->private : "";
5448
5449 #ifdef CONFIG_MEMCG
5450 if (memcg)
5451 cgroup_path(memcg->css.cgroup, m->private, PATH_MAX);
5452 #endif
5453 seq_printf(m, "memcg %5hu %s\n", mem_cgroup_id(memcg), path);
5454 }
5455
5456 seq_printf(m, " node %5d\n", nid);
5457
5458 if (!full)
5459 seq = evictable_min_seq(min_seq, MAX_SWAPPINESS / 2);
5460 else if (max_seq >= MAX_NR_GENS)
5461 seq = max_seq - MAX_NR_GENS + 1;
5462 else
5463 seq = 0;
5464
5465 for (; seq <= max_seq; seq++) {
5466 int type, zone;
5467 int gen = lru_gen_from_seq(seq);
5468 unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
5469
5470 seq_printf(m, " %10lu %10u", seq, jiffies_to_msecs(jiffies - birth));
5471
5472 for (type = 0; type < ANON_AND_FILE; type++) {
5473 unsigned long size = 0;
5474 char mark = full && seq < min_seq[type] ? 'x' : ' ';
5475
5476 for (zone = 0; zone < MAX_NR_ZONES; zone++)
5477 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
5478
5479 seq_printf(m, " %10lu%c", size, mark);
5480 }
5481
5482 seq_putc(m, '\n');
5483
5484 if (full)
5485 lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq);
5486 }
5487
5488 return 0;
5489 }
5490
5491 static const struct seq_operations lru_gen_seq_ops = {
5492 .start = lru_gen_seq_start,
5493 .stop = lru_gen_seq_stop,
5494 .next = lru_gen_seq_next,
5495 .show = lru_gen_seq_show,
5496 };
5497
run_aging(struct lruvec * lruvec,unsigned long seq,int swappiness,bool force_scan)5498 static int run_aging(struct lruvec *lruvec, unsigned long seq,
5499 int swappiness, bool force_scan)
5500 {
5501 DEFINE_MAX_SEQ(lruvec);
5502
5503 if (seq > max_seq)
5504 return -EINVAL;
5505
5506 return try_to_inc_max_seq(lruvec, max_seq, swappiness, force_scan) ? 0 : -EEXIST;
5507 }
5508
run_eviction(struct lruvec * lruvec,unsigned long seq,struct scan_control * sc,int swappiness,unsigned long nr_to_reclaim)5509 static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
5510 int swappiness, unsigned long nr_to_reclaim)
5511 {
5512 DEFINE_MAX_SEQ(lruvec);
5513
5514 if (seq + MIN_NR_GENS > max_seq)
5515 return -EINVAL;
5516
5517 sc->nr_reclaimed = 0;
5518
5519 while (!signal_pending(current)) {
5520 DEFINE_MIN_SEQ(lruvec);
5521
5522 if (seq < evictable_min_seq(min_seq, swappiness))
5523 return 0;
5524
5525 if (sc->nr_reclaimed >= nr_to_reclaim)
5526 return 0;
5527
5528 if (!evict_folios(nr_to_reclaim - sc->nr_reclaimed, lruvec, sc,
5529 swappiness))
5530 return 0;
5531
5532 cond_resched();
5533 }
5534
5535 return -EINTR;
5536 }
5537
run_cmd(char cmd,int memcg_id,int nid,unsigned long seq,struct scan_control * sc,int swappiness,unsigned long opt)5538 static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq,
5539 struct scan_control *sc, int swappiness, unsigned long opt)
5540 {
5541 struct lruvec *lruvec;
5542 int err = -EINVAL;
5543 struct mem_cgroup *memcg = NULL;
5544
5545 if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY))
5546 return -EINVAL;
5547
5548 if (!mem_cgroup_disabled()) {
5549 rcu_read_lock();
5550
5551 memcg = mem_cgroup_from_id(memcg_id);
5552 if (!mem_cgroup_tryget(memcg))
5553 memcg = NULL;
5554
5555 rcu_read_unlock();
5556
5557 if (!memcg)
5558 return -EINVAL;
5559 }
5560
5561 if (memcg_id != mem_cgroup_id(memcg))
5562 goto done;
5563
5564 lruvec = get_lruvec(memcg, nid);
5565
5566 if (swappiness < MIN_SWAPPINESS)
5567 swappiness = get_swappiness(lruvec, sc);
5568 else if (swappiness > SWAPPINESS_ANON_ONLY)
5569 goto done;
5570
5571 switch (cmd) {
5572 case '+':
5573 err = run_aging(lruvec, seq, swappiness, opt);
5574 break;
5575 case '-':
5576 err = run_eviction(lruvec, seq, sc, swappiness, opt);
5577 break;
5578 }
5579 done:
5580 mem_cgroup_put(memcg);
5581
5582 return err;
5583 }
5584
5585 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
lru_gen_seq_write(struct file * file,const char __user * src,size_t len,loff_t * pos)5586 static ssize_t lru_gen_seq_write(struct file *file, const char __user *src,
5587 size_t len, loff_t *pos)
5588 {
5589 void *buf;
5590 char *cur, *next;
5591 unsigned int flags;
5592 struct blk_plug plug;
5593 int err = -EINVAL;
5594 struct scan_control sc = {
5595 .may_writepage = true,
5596 .may_unmap = true,
5597 .may_swap = true,
5598 .reclaim_idx = MAX_NR_ZONES - 1,
5599 .gfp_mask = GFP_KERNEL,
5600 };
5601
5602 buf = kvmalloc(len + 1, GFP_KERNEL);
5603 if (!buf)
5604 return -ENOMEM;
5605
5606 if (copy_from_user(buf, src, len)) {
5607 kvfree(buf);
5608 return -EFAULT;
5609 }
5610
5611 set_task_reclaim_state(current, &sc.reclaim_state);
5612 flags = memalloc_noreclaim_save();
5613 blk_start_plug(&plug);
5614 if (!set_mm_walk(NULL, true)) {
5615 err = -ENOMEM;
5616 goto done;
5617 }
5618
5619 next = buf;
5620 next[len] = '\0';
5621
5622 while ((cur = strsep(&next, ",;\n"))) {
5623 int n;
5624 int end;
5625 char cmd, swap_string[5];
5626 unsigned int memcg_id;
5627 unsigned int nid;
5628 unsigned long seq;
5629 unsigned int swappiness;
5630 unsigned long opt = -1;
5631
5632 cur = skip_spaces(cur);
5633 if (!*cur)
5634 continue;
5635
5636 n = sscanf(cur, "%c %u %u %lu %n %4s %n %lu %n", &cmd, &memcg_id, &nid,
5637 &seq, &end, swap_string, &end, &opt, &end);
5638 if (n < 4 || cur[end]) {
5639 err = -EINVAL;
5640 break;
5641 }
5642
5643 if (n == 4) {
5644 swappiness = -1;
5645 } else if (!strcmp("max", swap_string)) {
5646 /* set by userspace for anonymous memory only */
5647 swappiness = SWAPPINESS_ANON_ONLY;
5648 } else {
5649 err = kstrtouint(swap_string, 0, &swappiness);
5650 if (err)
5651 break;
5652 }
5653
5654 err = run_cmd(cmd, memcg_id, nid, seq, &sc, swappiness, opt);
5655 if (err)
5656 break;
5657 }
5658 done:
5659 clear_mm_walk();
5660 blk_finish_plug(&plug);
5661 memalloc_noreclaim_restore(flags);
5662 set_task_reclaim_state(current, NULL);
5663
5664 kvfree(buf);
5665
5666 return err ? : len;
5667 }
5668
lru_gen_seq_open(struct inode * inode,struct file * file)5669 static int lru_gen_seq_open(struct inode *inode, struct file *file)
5670 {
5671 return seq_open(file, &lru_gen_seq_ops);
5672 }
5673
5674 static const struct file_operations lru_gen_rw_fops = {
5675 .open = lru_gen_seq_open,
5676 .read = seq_read,
5677 .write = lru_gen_seq_write,
5678 .llseek = seq_lseek,
5679 .release = seq_release,
5680 };
5681
5682 static const struct file_operations lru_gen_ro_fops = {
5683 .open = lru_gen_seq_open,
5684 .read = seq_read,
5685 .llseek = seq_lseek,
5686 .release = seq_release,
5687 };
5688
5689 /******************************************************************************
5690 * initialization
5691 ******************************************************************************/
5692
lru_gen_init_pgdat(struct pglist_data * pgdat)5693 void lru_gen_init_pgdat(struct pglist_data *pgdat)
5694 {
5695 int i, j;
5696
5697 spin_lock_init(&pgdat->memcg_lru.lock);
5698
5699 for (i = 0; i < MEMCG_NR_GENS; i++) {
5700 for (j = 0; j < MEMCG_NR_BINS; j++)
5701 INIT_HLIST_NULLS_HEAD(&pgdat->memcg_lru.fifo[i][j], i);
5702 }
5703 }
5704
lru_gen_init_lruvec(struct lruvec * lruvec)5705 void lru_gen_init_lruvec(struct lruvec *lruvec)
5706 {
5707 int i;
5708 int gen, type, zone;
5709 struct lru_gen_folio *lrugen = &lruvec->lrugen;
5710 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
5711
5712 lrugen->max_seq = MIN_NR_GENS + 1;
5713 lrugen->enabled = lru_gen_enabled();
5714
5715 for (i = 0; i <= MIN_NR_GENS + 1; i++)
5716 lrugen->timestamps[i] = jiffies;
5717
5718 for_each_gen_type_zone(gen, type, zone)
5719 INIT_LIST_HEAD(&lrugen->folios[gen][type][zone]);
5720
5721 if (mm_state)
5722 mm_state->seq = MIN_NR_GENS;
5723 }
5724
5725 #ifdef CONFIG_MEMCG
5726
lru_gen_init_memcg(struct mem_cgroup * memcg)5727 void lru_gen_init_memcg(struct mem_cgroup *memcg)
5728 {
5729 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
5730
5731 if (!mm_list)
5732 return;
5733
5734 INIT_LIST_HEAD(&mm_list->fifo);
5735 spin_lock_init(&mm_list->lock);
5736 }
5737
lru_gen_exit_memcg(struct mem_cgroup * memcg)5738 void lru_gen_exit_memcg(struct mem_cgroup *memcg)
5739 {
5740 int i;
5741 int nid;
5742 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
5743
5744 VM_WARN_ON_ONCE(mm_list && !list_empty(&mm_list->fifo));
5745
5746 for_each_node(nid) {
5747 struct lruvec *lruvec = get_lruvec(memcg, nid);
5748 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
5749
5750 VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0,
5751 sizeof(lruvec->lrugen.nr_pages)));
5752
5753 lruvec->lrugen.list.next = LIST_POISON1;
5754
5755 if (!mm_state)
5756 continue;
5757
5758 for (i = 0; i < NR_BLOOM_FILTERS; i++) {
5759 bitmap_free(mm_state->filters[i]);
5760 mm_state->filters[i] = NULL;
5761 }
5762 }
5763 }
5764
5765 #endif /* CONFIG_MEMCG */
5766
init_lru_gen(void)5767 static int __init init_lru_gen(void)
5768 {
5769 BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS);
5770 BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS);
5771
5772 if (sysfs_create_group(mm_kobj, &lru_gen_attr_group))
5773 pr_err("lru_gen: failed to create sysfs group\n");
5774
5775 debugfs_create_file_aux_num("lru_gen", 0644, NULL, NULL, 1,
5776 &lru_gen_rw_fops);
5777 debugfs_create_file_aux_num("lru_gen_full", 0444, NULL, NULL, 0,
5778 &lru_gen_ro_fops);
5779
5780 return 0;
5781 };
5782 late_initcall(init_lru_gen);
5783
5784 #else /* !CONFIG_LRU_GEN */
5785
lru_gen_age_node(struct pglist_data * pgdat,struct scan_control * sc)5786 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
5787 {
5788 BUILD_BUG();
5789 }
5790
lru_gen_shrink_lruvec(struct lruvec * lruvec,struct scan_control * sc)5791 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5792 {
5793 BUILD_BUG();
5794 }
5795
lru_gen_shrink_node(struct pglist_data * pgdat,struct scan_control * sc)5796 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
5797 {
5798 BUILD_BUG();
5799 }
5800
5801 #endif /* CONFIG_LRU_GEN */
5802
shrink_lruvec(struct lruvec * lruvec,struct scan_control * sc)5803 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5804 {
5805 unsigned long nr[NR_LRU_LISTS];
5806 unsigned long targets[NR_LRU_LISTS];
5807 unsigned long nr_to_scan;
5808 enum lru_list lru;
5809 unsigned long nr_reclaimed = 0;
5810 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
5811 bool proportional_reclaim;
5812 struct blk_plug plug;
5813
5814 if (lru_gen_enabled() && !root_reclaim(sc)) {
5815 lru_gen_shrink_lruvec(lruvec, sc);
5816 return;
5817 }
5818
5819 get_scan_count(lruvec, sc, nr);
5820
5821 /* Record the original scan target for proportional adjustments later */
5822 memcpy(targets, nr, sizeof(nr));
5823
5824 /*
5825 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
5826 * event that can occur when there is little memory pressure e.g.
5827 * multiple streaming readers/writers. Hence, we do not abort scanning
5828 * when the requested number of pages are reclaimed when scanning at
5829 * DEF_PRIORITY on the assumption that the fact we are direct
5830 * reclaiming implies that kswapd is not keeping up and it is best to
5831 * do a batch of work at once. For memcg reclaim one check is made to
5832 * abort proportional reclaim if either the file or anon lru has already
5833 * dropped to zero at the first pass.
5834 */
5835 proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
5836 sc->priority == DEF_PRIORITY);
5837
5838 blk_start_plug(&plug);
5839 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
5840 nr[LRU_INACTIVE_FILE]) {
5841 unsigned long nr_anon, nr_file, percentage;
5842 unsigned long nr_scanned;
5843
5844 for_each_evictable_lru(lru) {
5845 if (nr[lru]) {
5846 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
5847 nr[lru] -= nr_to_scan;
5848
5849 nr_reclaimed += shrink_list(lru, nr_to_scan,
5850 lruvec, sc);
5851 }
5852 }
5853
5854 cond_resched();
5855
5856 if (nr_reclaimed < nr_to_reclaim || proportional_reclaim)
5857 continue;
5858
5859 /*
5860 * For kswapd and memcg, reclaim at least the number of pages
5861 * requested. Ensure that the anon and file LRUs are scanned
5862 * proportionally what was requested by get_scan_count(). We
5863 * stop reclaiming one LRU and reduce the amount scanning
5864 * proportional to the original scan target.
5865 */
5866 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
5867 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
5868
5869 /*
5870 * It's just vindictive to attack the larger once the smaller
5871 * has gone to zero. And given the way we stop scanning the
5872 * smaller below, this makes sure that we only make one nudge
5873 * towards proportionality once we've got nr_to_reclaim.
5874 */
5875 if (!nr_file || !nr_anon)
5876 break;
5877
5878 if (nr_file > nr_anon) {
5879 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
5880 targets[LRU_ACTIVE_ANON] + 1;
5881 lru = LRU_BASE;
5882 percentage = nr_anon * 100 / scan_target;
5883 } else {
5884 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
5885 targets[LRU_ACTIVE_FILE] + 1;
5886 lru = LRU_FILE;
5887 percentage = nr_file * 100 / scan_target;
5888 }
5889
5890 /* Stop scanning the smaller of the LRU */
5891 nr[lru] = 0;
5892 nr[lru + LRU_ACTIVE] = 0;
5893
5894 /*
5895 * Recalculate the other LRU scan count based on its original
5896 * scan target and the percentage scanning already complete
5897 */
5898 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
5899 nr_scanned = targets[lru] - nr[lru];
5900 nr[lru] = targets[lru] * (100 - percentage) / 100;
5901 nr[lru] -= min(nr[lru], nr_scanned);
5902
5903 lru += LRU_ACTIVE;
5904 nr_scanned = targets[lru] - nr[lru];
5905 nr[lru] = targets[lru] * (100 - percentage) / 100;
5906 nr[lru] -= min(nr[lru], nr_scanned);
5907 }
5908 blk_finish_plug(&plug);
5909 sc->nr_reclaimed += nr_reclaimed;
5910
5911 /*
5912 * Even if we did not try to evict anon pages at all, we want to
5913 * rebalance the anon lru active/inactive ratio.
5914 */
5915 if (can_age_anon_pages(lruvec, sc) &&
5916 inactive_is_low(lruvec, LRU_INACTIVE_ANON))
5917 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
5918 sc, LRU_ACTIVE_ANON);
5919 }
5920
5921 /* Use reclaim/compaction for costly allocs or under memory pressure */
in_reclaim_compaction(struct scan_control * sc)5922 static bool in_reclaim_compaction(struct scan_control *sc)
5923 {
5924 if (gfp_compaction_allowed(sc->gfp_mask) && sc->order &&
5925 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
5926 sc->priority < DEF_PRIORITY - 2))
5927 return true;
5928
5929 return false;
5930 }
5931
5932 /*
5933 * Reclaim/compaction is used for high-order allocation requests. It reclaims
5934 * order-0 pages before compacting the zone. should_continue_reclaim() returns
5935 * true if more pages should be reclaimed such that when the page allocator
5936 * calls try_to_compact_pages() that it will have enough free pages to succeed.
5937 * It will give up earlier than that if there is difficulty reclaiming pages.
5938 */
should_continue_reclaim(struct pglist_data * pgdat,unsigned long nr_reclaimed,struct scan_control * sc)5939 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
5940 unsigned long nr_reclaimed,
5941 struct scan_control *sc)
5942 {
5943 unsigned long pages_for_compaction;
5944 unsigned long inactive_lru_pages;
5945 int z;
5946 struct zone *zone;
5947
5948 /* If not in reclaim/compaction mode, stop */
5949 if (!in_reclaim_compaction(sc))
5950 return false;
5951
5952 /*
5953 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
5954 * number of pages that were scanned. This will return to the caller
5955 * with the risk reclaim/compaction and the resulting allocation attempt
5956 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
5957 * allocations through requiring that the full LRU list has been scanned
5958 * first, by assuming that zero delta of sc->nr_scanned means full LRU
5959 * scan, but that approximation was wrong, and there were corner cases
5960 * where always a non-zero amount of pages were scanned.
5961 */
5962 if (!nr_reclaimed)
5963 return false;
5964
5965 /* If compaction would go ahead or the allocation would succeed, stop */
5966 for_each_managed_zone_pgdat(zone, pgdat, z, sc->reclaim_idx) {
5967 unsigned long watermark = min_wmark_pages(zone);
5968
5969 /* Allocation can already succeed, nothing to do */
5970 if (zone_watermark_ok(zone, sc->order, watermark,
5971 sc->reclaim_idx, 0))
5972 return false;
5973
5974 if (compaction_suitable(zone, sc->order, watermark,
5975 sc->reclaim_idx))
5976 return false;
5977 }
5978
5979 /*
5980 * If we have not reclaimed enough pages for compaction and the
5981 * inactive lists are large enough, continue reclaiming
5982 */
5983 pages_for_compaction = compact_gap(sc->order);
5984 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
5985 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
5986 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
5987
5988 return inactive_lru_pages > pages_for_compaction;
5989 }
5990
shrink_node_memcgs(pg_data_t * pgdat,struct scan_control * sc)5991 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
5992 {
5993 struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
5994 struct mem_cgroup_reclaim_cookie reclaim = {
5995 .pgdat = pgdat,
5996 };
5997 struct mem_cgroup_reclaim_cookie *partial = &reclaim;
5998 struct mem_cgroup *memcg;
5999
6000 /*
6001 * In most cases, direct reclaimers can do partial walks
6002 * through the cgroup tree, using an iterator state that
6003 * persists across invocations. This strikes a balance between
6004 * fairness and allocation latency.
6005 *
6006 * For kswapd, reliable forward progress is more important
6007 * than a quick return to idle. Always do full walks.
6008 */
6009 if (current_is_kswapd() || sc->memcg_full_walk)
6010 partial = NULL;
6011
6012 memcg = mem_cgroup_iter(target_memcg, NULL, partial);
6013 do {
6014 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
6015 unsigned long reclaimed;
6016 unsigned long scanned;
6017
6018 /*
6019 * This loop can become CPU-bound when target memcgs
6020 * aren't eligible for reclaim - either because they
6021 * don't have any reclaimable pages, or because their
6022 * memory is explicitly protected. Avoid soft lockups.
6023 */
6024 cond_resched();
6025
6026 mem_cgroup_calculate_protection(target_memcg, memcg);
6027
6028 if (mem_cgroup_below_min(target_memcg, memcg)) {
6029 /*
6030 * Hard protection.
6031 * If there is no reclaimable memory, OOM.
6032 */
6033 continue;
6034 } else if (mem_cgroup_below_low(target_memcg, memcg)) {
6035 /*
6036 * Soft protection.
6037 * Respect the protection only as long as
6038 * there is an unprotected supply
6039 * of reclaimable memory from other cgroups.
6040 */
6041 if (!sc->memcg_low_reclaim) {
6042 sc->memcg_low_skipped = 1;
6043 continue;
6044 }
6045 memcg_memory_event(memcg, MEMCG_LOW);
6046 }
6047
6048 reclaimed = sc->nr_reclaimed;
6049 scanned = sc->nr_scanned;
6050
6051 shrink_lruvec(lruvec, sc);
6052
6053 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
6054 sc->priority);
6055
6056 /* Record the group's reclaim efficiency */
6057 if (!sc->proactive)
6058 vmpressure(sc->gfp_mask, memcg, false,
6059 sc->nr_scanned - scanned,
6060 sc->nr_reclaimed - reclaimed);
6061
6062 /* If partial walks are allowed, bail once goal is reached */
6063 if (partial && sc->nr_reclaimed >= sc->nr_to_reclaim) {
6064 mem_cgroup_iter_break(target_memcg, memcg);
6065 break;
6066 }
6067 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, partial)));
6068 }
6069
shrink_node(pg_data_t * pgdat,struct scan_control * sc)6070 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
6071 {
6072 unsigned long nr_reclaimed, nr_scanned, nr_node_reclaimed;
6073 struct lruvec *target_lruvec;
6074 bool reclaimable = false;
6075
6076 if (lru_gen_enabled() && root_reclaim(sc)) {
6077 memset(&sc->nr, 0, sizeof(sc->nr));
6078 lru_gen_shrink_node(pgdat, sc);
6079 return;
6080 }
6081
6082 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
6083
6084 again:
6085 memset(&sc->nr, 0, sizeof(sc->nr));
6086
6087 nr_reclaimed = sc->nr_reclaimed;
6088 nr_scanned = sc->nr_scanned;
6089
6090 prepare_scan_control(pgdat, sc);
6091
6092 shrink_node_memcgs(pgdat, sc);
6093
6094 flush_reclaim_state(sc);
6095
6096 nr_node_reclaimed = sc->nr_reclaimed - nr_reclaimed;
6097
6098 /* Record the subtree's reclaim efficiency */
6099 if (!sc->proactive)
6100 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
6101 sc->nr_scanned - nr_scanned, nr_node_reclaimed);
6102
6103 if (nr_node_reclaimed)
6104 reclaimable = true;
6105
6106 if (current_is_kswapd()) {
6107 /*
6108 * If reclaim is isolating dirty pages under writeback,
6109 * it implies that the long-lived page allocation rate
6110 * is exceeding the page laundering rate. Either the
6111 * global limits are not being effective at throttling
6112 * processes due to the page distribution throughout
6113 * zones or there is heavy usage of a slow backing
6114 * device. The only option is to throttle from reclaim
6115 * context which is not ideal as there is no guarantee
6116 * the dirtying process is throttled in the same way
6117 * balance_dirty_pages() manages.
6118 *
6119 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
6120 * count the number of pages under pages flagged for
6121 * immediate reclaim and stall if any are encountered
6122 * in the nr_immediate check below.
6123 */
6124 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
6125 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
6126
6127 /* Allow kswapd to start writing pages during reclaim.*/
6128 if (sc->nr.unqueued_dirty &&
6129 sc->nr.unqueued_dirty == sc->nr.file_taken)
6130 set_bit(PGDAT_DIRTY, &pgdat->flags);
6131
6132 /*
6133 * If kswapd scans pages marked for immediate
6134 * reclaim and under writeback (nr_immediate), it
6135 * implies that pages are cycling through the LRU
6136 * faster than they are written so forcibly stall
6137 * until some pages complete writeback.
6138 */
6139 if (sc->nr.immediate)
6140 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
6141 }
6142
6143 /*
6144 * Tag a node/memcg as congested if all the dirty pages were marked
6145 * for writeback and immediate reclaim (counted in nr.congested).
6146 *
6147 * Legacy memcg will stall in page writeback so avoid forcibly
6148 * stalling in reclaim_throttle().
6149 */
6150 if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested) {
6151 if (cgroup_reclaim(sc) && writeback_throttling_sane(sc))
6152 set_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags);
6153
6154 if (current_is_kswapd())
6155 set_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags);
6156 }
6157
6158 /*
6159 * Stall direct reclaim for IO completions if the lruvec is
6160 * node is congested. Allow kswapd to continue until it
6161 * starts encountering unqueued dirty pages or cycling through
6162 * the LRU too quickly.
6163 */
6164 if (!current_is_kswapd() && current_may_throttle() &&
6165 !sc->hibernation_mode &&
6166 (test_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags) ||
6167 test_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags)))
6168 reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED);
6169
6170 if (should_continue_reclaim(pgdat, nr_node_reclaimed, sc))
6171 goto again;
6172
6173 /*
6174 * Kswapd gives up on balancing particular nodes after too
6175 * many failures to reclaim anything from them and goes to
6176 * sleep. On reclaim progress, reset the failure counter. A
6177 * successful direct reclaim run will revive a dormant kswapd.
6178 */
6179 if (reclaimable)
6180 pgdat->kswapd_failures = 0;
6181 else if (sc->cache_trim_mode)
6182 sc->cache_trim_mode_failed = 1;
6183 }
6184
6185 /*
6186 * Returns true if compaction should go ahead for a costly-order request, or
6187 * the allocation would already succeed without compaction. Return false if we
6188 * should reclaim first.
6189 */
compaction_ready(struct zone * zone,struct scan_control * sc)6190 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
6191 {
6192 unsigned long watermark;
6193
6194 if (!gfp_compaction_allowed(sc->gfp_mask))
6195 return false;
6196
6197 /* Allocation can already succeed, nothing to do */
6198 if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone),
6199 sc->reclaim_idx, 0))
6200 return true;
6201
6202 /*
6203 * Direct reclaim usually targets the min watermark, but compaction
6204 * takes time to run and there are potentially other callers using the
6205 * pages just freed. So target a higher buffer to give compaction a
6206 * reasonable chance of completing and allocating the pages.
6207 *
6208 * Note that we won't actually reclaim the whole buffer in one attempt
6209 * as the target watermark in should_continue_reclaim() is lower. But if
6210 * we are already above the high+gap watermark, don't reclaim at all.
6211 */
6212 watermark = high_wmark_pages(zone);
6213 if (compaction_suitable(zone, sc->order, watermark, sc->reclaim_idx))
6214 return true;
6215
6216 return false;
6217 }
6218
consider_reclaim_throttle(pg_data_t * pgdat,struct scan_control * sc)6219 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
6220 {
6221 /*
6222 * If reclaim is making progress greater than 12% efficiency then
6223 * wake all the NOPROGRESS throttled tasks.
6224 */
6225 if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
6226 wait_queue_head_t *wqh;
6227
6228 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
6229 if (waitqueue_active(wqh))
6230 wake_up(wqh);
6231
6232 return;
6233 }
6234
6235 /*
6236 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will
6237 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages
6238 * under writeback and marked for immediate reclaim at the tail of the
6239 * LRU.
6240 */
6241 if (current_is_kswapd() || cgroup_reclaim(sc))
6242 return;
6243
6244 /* Throttle if making no progress at high prioities. */
6245 if (sc->priority == 1 && !sc->nr_reclaimed)
6246 reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS);
6247 }
6248
6249 /*
6250 * This is the direct reclaim path, for page-allocating processes. We only
6251 * try to reclaim pages from zones which will satisfy the caller's allocation
6252 * request.
6253 *
6254 * If a zone is deemed to be full of pinned pages then just give it a light
6255 * scan then give up on it.
6256 */
shrink_zones(struct zonelist * zonelist,struct scan_control * sc)6257 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
6258 {
6259 struct zoneref *z;
6260 struct zone *zone;
6261 unsigned long nr_soft_reclaimed;
6262 unsigned long nr_soft_scanned;
6263 gfp_t orig_mask;
6264 pg_data_t *last_pgdat = NULL;
6265 pg_data_t *first_pgdat = NULL;
6266
6267 /*
6268 * If the number of buffer_heads in the machine exceeds the maximum
6269 * allowed level, force direct reclaim to scan the highmem zone as
6270 * highmem pages could be pinning lowmem pages storing buffer_heads
6271 */
6272 orig_mask = sc->gfp_mask;
6273 if (buffer_heads_over_limit) {
6274 sc->gfp_mask |= __GFP_HIGHMEM;
6275 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
6276 }
6277
6278 for_each_zone_zonelist_nodemask(zone, z, zonelist,
6279 sc->reclaim_idx, sc->nodemask) {
6280 /*
6281 * Take care memory controller reclaiming has small influence
6282 * to global LRU.
6283 */
6284 if (!cgroup_reclaim(sc)) {
6285 if (!cpuset_zone_allowed(zone,
6286 GFP_KERNEL | __GFP_HARDWALL))
6287 continue;
6288
6289 /*
6290 * If we already have plenty of memory free for
6291 * compaction in this zone, don't free any more.
6292 * Even though compaction is invoked for any
6293 * non-zero order, only frequent costly order
6294 * reclamation is disruptive enough to become a
6295 * noticeable problem, like transparent huge
6296 * page allocations.
6297 */
6298 if (IS_ENABLED(CONFIG_COMPACTION) &&
6299 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
6300 compaction_ready(zone, sc)) {
6301 sc->compaction_ready = true;
6302 continue;
6303 }
6304
6305 /*
6306 * Shrink each node in the zonelist once. If the
6307 * zonelist is ordered by zone (not the default) then a
6308 * node may be shrunk multiple times but in that case
6309 * the user prefers lower zones being preserved.
6310 */
6311 if (zone->zone_pgdat == last_pgdat)
6312 continue;
6313
6314 /*
6315 * This steals pages from memory cgroups over softlimit
6316 * and returns the number of reclaimed pages and
6317 * scanned pages. This works for global memory pressure
6318 * and balancing, not for a memcg's limit.
6319 */
6320 nr_soft_scanned = 0;
6321 nr_soft_reclaimed = memcg1_soft_limit_reclaim(zone->zone_pgdat,
6322 sc->order, sc->gfp_mask,
6323 &nr_soft_scanned);
6324 sc->nr_reclaimed += nr_soft_reclaimed;
6325 sc->nr_scanned += nr_soft_scanned;
6326 /* need some check for avoid more shrink_zone() */
6327 }
6328
6329 if (!first_pgdat)
6330 first_pgdat = zone->zone_pgdat;
6331
6332 /* See comment about same check for global reclaim above */
6333 if (zone->zone_pgdat == last_pgdat)
6334 continue;
6335 last_pgdat = zone->zone_pgdat;
6336 shrink_node(zone->zone_pgdat, sc);
6337 }
6338
6339 if (first_pgdat)
6340 consider_reclaim_throttle(first_pgdat, sc);
6341
6342 /*
6343 * Restore to original mask to avoid the impact on the caller if we
6344 * promoted it to __GFP_HIGHMEM.
6345 */
6346 sc->gfp_mask = orig_mask;
6347 }
6348
snapshot_refaults(struct mem_cgroup * target_memcg,pg_data_t * pgdat)6349 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
6350 {
6351 struct lruvec *target_lruvec;
6352 unsigned long refaults;
6353
6354 if (lru_gen_enabled())
6355 return;
6356
6357 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
6358 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
6359 target_lruvec->refaults[WORKINGSET_ANON] = refaults;
6360 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
6361 target_lruvec->refaults[WORKINGSET_FILE] = refaults;
6362 }
6363
6364 /*
6365 * This is the main entry point to direct page reclaim.
6366 *
6367 * If a full scan of the inactive list fails to free enough memory then we
6368 * are "out of memory" and something needs to be killed.
6369 *
6370 * If the caller is !__GFP_FS then the probability of a failure is reasonably
6371 * high - the zone may be full of dirty or under-writeback pages, which this
6372 * caller can't do much about. We kick the writeback threads and take explicit
6373 * naps in the hope that some of these pages can be written. But if the
6374 * allocating task holds filesystem locks which prevent writeout this might not
6375 * work, and the allocation attempt will fail.
6376 *
6377 * returns: 0, if no pages reclaimed
6378 * else, the number of pages reclaimed
6379 */
do_try_to_free_pages(struct zonelist * zonelist,struct scan_control * sc)6380 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
6381 struct scan_control *sc)
6382 {
6383 int initial_priority = sc->priority;
6384 pg_data_t *last_pgdat;
6385 struct zoneref *z;
6386 struct zone *zone;
6387 retry:
6388 delayacct_freepages_start();
6389
6390 if (!cgroup_reclaim(sc))
6391 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
6392
6393 do {
6394 if (!sc->proactive)
6395 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
6396 sc->priority);
6397 sc->nr_scanned = 0;
6398 shrink_zones(zonelist, sc);
6399
6400 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
6401 break;
6402
6403 if (sc->compaction_ready)
6404 break;
6405
6406 /*
6407 * If we're getting trouble reclaiming, start doing
6408 * writepage even in laptop mode.
6409 */
6410 if (sc->priority < DEF_PRIORITY - 2)
6411 sc->may_writepage = 1;
6412 } while (--sc->priority >= 0);
6413
6414 last_pgdat = NULL;
6415 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
6416 sc->nodemask) {
6417 if (zone->zone_pgdat == last_pgdat)
6418 continue;
6419 last_pgdat = zone->zone_pgdat;
6420
6421 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
6422
6423 if (cgroup_reclaim(sc)) {
6424 struct lruvec *lruvec;
6425
6426 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
6427 zone->zone_pgdat);
6428 clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags);
6429 }
6430 }
6431
6432 delayacct_freepages_end();
6433
6434 if (sc->nr_reclaimed)
6435 return sc->nr_reclaimed;
6436
6437 /* Aborted reclaim to try compaction? don't OOM, then */
6438 if (sc->compaction_ready)
6439 return 1;
6440
6441 /*
6442 * In most cases, direct reclaimers can do partial walks
6443 * through the cgroup tree to meet the reclaim goal while
6444 * keeping latency low. Since the iterator state is shared
6445 * among all direct reclaim invocations (to retain fairness
6446 * among cgroups), though, high concurrency can result in
6447 * individual threads not seeing enough cgroups to make
6448 * meaningful forward progress. Avoid false OOMs in this case.
6449 */
6450 if (!sc->memcg_full_walk) {
6451 sc->priority = initial_priority;
6452 sc->memcg_full_walk = 1;
6453 goto retry;
6454 }
6455
6456 /*
6457 * We make inactive:active ratio decisions based on the node's
6458 * composition of memory, but a restrictive reclaim_idx or a
6459 * memory.low cgroup setting can exempt large amounts of
6460 * memory from reclaim. Neither of which are very common, so
6461 * instead of doing costly eligibility calculations of the
6462 * entire cgroup subtree up front, we assume the estimates are
6463 * good, and retry with forcible deactivation if that fails.
6464 */
6465 if (sc->skipped_deactivate) {
6466 sc->priority = initial_priority;
6467 sc->force_deactivate = 1;
6468 sc->skipped_deactivate = 0;
6469 goto retry;
6470 }
6471
6472 /* Untapped cgroup reserves? Don't OOM, retry. */
6473 if (sc->memcg_low_skipped) {
6474 sc->priority = initial_priority;
6475 sc->force_deactivate = 0;
6476 sc->memcg_low_reclaim = 1;
6477 sc->memcg_low_skipped = 0;
6478 goto retry;
6479 }
6480
6481 return 0;
6482 }
6483
allow_direct_reclaim(pg_data_t * pgdat)6484 static bool allow_direct_reclaim(pg_data_t *pgdat)
6485 {
6486 struct zone *zone;
6487 unsigned long pfmemalloc_reserve = 0;
6488 unsigned long free_pages = 0;
6489 int i;
6490 bool wmark_ok;
6491
6492 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6493 return true;
6494
6495 for_each_managed_zone_pgdat(zone, pgdat, i, ZONE_NORMAL) {
6496 if (!zone_reclaimable_pages(zone))
6497 continue;
6498
6499 pfmemalloc_reserve += min_wmark_pages(zone);
6500 free_pages += zone_page_state_snapshot(zone, NR_FREE_PAGES);
6501 }
6502
6503 /* If there are no reserves (unexpected config) then do not throttle */
6504 if (!pfmemalloc_reserve)
6505 return true;
6506
6507 wmark_ok = free_pages > pfmemalloc_reserve / 2;
6508
6509 /* kswapd must be awake if processes are being throttled */
6510 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
6511 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
6512 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
6513
6514 wake_up_interruptible(&pgdat->kswapd_wait);
6515 }
6516
6517 return wmark_ok;
6518 }
6519
6520 /*
6521 * Throttle direct reclaimers if backing storage is backed by the network
6522 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
6523 * depleted. kswapd will continue to make progress and wake the processes
6524 * when the low watermark is reached.
6525 *
6526 * Returns true if a fatal signal was delivered during throttling. If this
6527 * happens, the page allocator should not consider triggering the OOM killer.
6528 */
throttle_direct_reclaim(gfp_t gfp_mask,struct zonelist * zonelist,nodemask_t * nodemask)6529 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
6530 nodemask_t *nodemask)
6531 {
6532 struct zoneref *z;
6533 struct zone *zone;
6534 pg_data_t *pgdat = NULL;
6535
6536 /*
6537 * Kernel threads should not be throttled as they may be indirectly
6538 * responsible for cleaning pages necessary for reclaim to make forward
6539 * progress. kjournald for example may enter direct reclaim while
6540 * committing a transaction where throttling it could forcing other
6541 * processes to block on log_wait_commit().
6542 */
6543 if (current->flags & PF_KTHREAD)
6544 goto out;
6545
6546 /*
6547 * If a fatal signal is pending, this process should not throttle.
6548 * It should return quickly so it can exit and free its memory
6549 */
6550 if (fatal_signal_pending(current))
6551 goto out;
6552
6553 /*
6554 * Check if the pfmemalloc reserves are ok by finding the first node
6555 * with a usable ZONE_NORMAL or lower zone. The expectation is that
6556 * GFP_KERNEL will be required for allocating network buffers when
6557 * swapping over the network so ZONE_HIGHMEM is unusable.
6558 *
6559 * Throttling is based on the first usable node and throttled processes
6560 * wait on a queue until kswapd makes progress and wakes them. There
6561 * is an affinity then between processes waking up and where reclaim
6562 * progress has been made assuming the process wakes on the same node.
6563 * More importantly, processes running on remote nodes will not compete
6564 * for remote pfmemalloc reserves and processes on different nodes
6565 * should make reasonable progress.
6566 */
6567 for_each_zone_zonelist_nodemask(zone, z, zonelist,
6568 gfp_zone(gfp_mask), nodemask) {
6569 if (zone_idx(zone) > ZONE_NORMAL)
6570 continue;
6571
6572 /* Throttle based on the first usable node */
6573 pgdat = zone->zone_pgdat;
6574 if (allow_direct_reclaim(pgdat))
6575 goto out;
6576 break;
6577 }
6578
6579 /* If no zone was usable by the allocation flags then do not throttle */
6580 if (!pgdat)
6581 goto out;
6582
6583 /* Account for the throttling */
6584 count_vm_event(PGSCAN_DIRECT_THROTTLE);
6585
6586 /*
6587 * If the caller cannot enter the filesystem, it's possible that it
6588 * is due to the caller holding an FS lock or performing a journal
6589 * transaction in the case of a filesystem like ext[3|4]. In this case,
6590 * it is not safe to block on pfmemalloc_wait as kswapd could be
6591 * blocked waiting on the same lock. Instead, throttle for up to a
6592 * second before continuing.
6593 */
6594 if (!(gfp_mask & __GFP_FS))
6595 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
6596 allow_direct_reclaim(pgdat), HZ);
6597 else
6598 /* Throttle until kswapd wakes the process */
6599 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
6600 allow_direct_reclaim(pgdat));
6601
6602 if (fatal_signal_pending(current))
6603 return true;
6604
6605 out:
6606 return false;
6607 }
6608
try_to_free_pages(struct zonelist * zonelist,int order,gfp_t gfp_mask,nodemask_t * nodemask)6609 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
6610 gfp_t gfp_mask, nodemask_t *nodemask)
6611 {
6612 unsigned long nr_reclaimed;
6613 struct scan_control sc = {
6614 .nr_to_reclaim = SWAP_CLUSTER_MAX,
6615 .gfp_mask = current_gfp_context(gfp_mask),
6616 .reclaim_idx = gfp_zone(gfp_mask),
6617 .order = order,
6618 .nodemask = nodemask,
6619 .priority = DEF_PRIORITY,
6620 .may_writepage = !laptop_mode,
6621 .may_unmap = 1,
6622 .may_swap = 1,
6623 };
6624
6625 /*
6626 * scan_control uses s8 fields for order, priority, and reclaim_idx.
6627 * Confirm they are large enough for max values.
6628 */
6629 BUILD_BUG_ON(MAX_PAGE_ORDER >= S8_MAX);
6630 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
6631 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
6632
6633 /*
6634 * Do not enter reclaim if fatal signal was delivered while throttled.
6635 * 1 is returned so that the page allocator does not OOM kill at this
6636 * point.
6637 */
6638 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
6639 return 1;
6640
6641 set_task_reclaim_state(current, &sc.reclaim_state);
6642 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
6643
6644 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
6645
6646 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
6647 set_task_reclaim_state(current, NULL);
6648
6649 return nr_reclaimed;
6650 }
6651
6652 #ifdef CONFIG_MEMCG
6653
6654 /* Only used by soft limit reclaim. Do not reuse for anything else. */
mem_cgroup_shrink_node(struct mem_cgroup * memcg,gfp_t gfp_mask,bool noswap,pg_data_t * pgdat,unsigned long * nr_scanned)6655 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
6656 gfp_t gfp_mask, bool noswap,
6657 pg_data_t *pgdat,
6658 unsigned long *nr_scanned)
6659 {
6660 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
6661 struct scan_control sc = {
6662 .nr_to_reclaim = SWAP_CLUSTER_MAX,
6663 .target_mem_cgroup = memcg,
6664 .may_writepage = !laptop_mode,
6665 .may_unmap = 1,
6666 .reclaim_idx = MAX_NR_ZONES - 1,
6667 .may_swap = !noswap,
6668 };
6669
6670 WARN_ON_ONCE(!current->reclaim_state);
6671
6672 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
6673 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
6674
6675 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
6676 sc.gfp_mask);
6677
6678 /*
6679 * NOTE: Although we can get the priority field, using it
6680 * here is not a good idea, since it limits the pages we can scan.
6681 * if we don't reclaim here, the shrink_node from balance_pgdat
6682 * will pick up pages from other mem cgroup's as well. We hack
6683 * the priority and make it zero.
6684 */
6685 shrink_lruvec(lruvec, &sc);
6686
6687 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
6688
6689 *nr_scanned = sc.nr_scanned;
6690
6691 return sc.nr_reclaimed;
6692 }
6693
try_to_free_mem_cgroup_pages(struct mem_cgroup * memcg,unsigned long nr_pages,gfp_t gfp_mask,unsigned int reclaim_options,int * swappiness)6694 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
6695 unsigned long nr_pages,
6696 gfp_t gfp_mask,
6697 unsigned int reclaim_options,
6698 int *swappiness)
6699 {
6700 unsigned long nr_reclaimed;
6701 unsigned int noreclaim_flag;
6702 struct scan_control sc = {
6703 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
6704 .proactive_swappiness = swappiness,
6705 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
6706 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
6707 .reclaim_idx = MAX_NR_ZONES - 1,
6708 .target_mem_cgroup = memcg,
6709 .priority = DEF_PRIORITY,
6710 .may_writepage = !laptop_mode,
6711 .may_unmap = 1,
6712 .may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP),
6713 .proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE),
6714 };
6715 /*
6716 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
6717 * equal pressure on all the nodes. This is based on the assumption that
6718 * the reclaim does not bail out early.
6719 */
6720 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
6721
6722 set_task_reclaim_state(current, &sc.reclaim_state);
6723 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
6724 noreclaim_flag = memalloc_noreclaim_save();
6725
6726 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
6727
6728 memalloc_noreclaim_restore(noreclaim_flag);
6729 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
6730 set_task_reclaim_state(current, NULL);
6731
6732 return nr_reclaimed;
6733 }
6734 #else
try_to_free_mem_cgroup_pages(struct mem_cgroup * memcg,unsigned long nr_pages,gfp_t gfp_mask,unsigned int reclaim_options,int * swappiness)6735 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
6736 unsigned long nr_pages,
6737 gfp_t gfp_mask,
6738 unsigned int reclaim_options,
6739 int *swappiness)
6740 {
6741 return 0;
6742 }
6743 #endif
6744
kswapd_age_node(struct pglist_data * pgdat,struct scan_control * sc)6745 static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc)
6746 {
6747 struct mem_cgroup *memcg;
6748 struct lruvec *lruvec;
6749
6750 if (lru_gen_enabled()) {
6751 lru_gen_age_node(pgdat, sc);
6752 return;
6753 }
6754
6755 lruvec = mem_cgroup_lruvec(NULL, pgdat);
6756 if (!can_age_anon_pages(lruvec, sc))
6757 return;
6758
6759 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
6760 return;
6761
6762 memcg = mem_cgroup_iter(NULL, NULL, NULL);
6763 do {
6764 lruvec = mem_cgroup_lruvec(memcg, pgdat);
6765 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
6766 sc, LRU_ACTIVE_ANON);
6767 memcg = mem_cgroup_iter(NULL, memcg, NULL);
6768 } while (memcg);
6769 }
6770
pgdat_watermark_boosted(pg_data_t * pgdat,int highest_zoneidx)6771 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
6772 {
6773 int i;
6774 struct zone *zone;
6775
6776 /*
6777 * Check for watermark boosts top-down as the higher zones
6778 * are more likely to be boosted. Both watermarks and boosts
6779 * should not be checked at the same time as reclaim would
6780 * start prematurely when there is no boosting and a lower
6781 * zone is balanced.
6782 */
6783 for (i = highest_zoneidx; i >= 0; i--) {
6784 zone = pgdat->node_zones + i;
6785 if (!managed_zone(zone))
6786 continue;
6787
6788 if (zone->watermark_boost)
6789 return true;
6790 }
6791
6792 return false;
6793 }
6794
6795 /*
6796 * Returns true if there is an eligible zone balanced for the request order
6797 * and highest_zoneidx
6798 */
pgdat_balanced(pg_data_t * pgdat,int order,int highest_zoneidx)6799 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
6800 {
6801 int i;
6802 unsigned long mark = -1;
6803 struct zone *zone;
6804
6805 /*
6806 * Check watermarks bottom-up as lower zones are more likely to
6807 * meet watermarks.
6808 */
6809 for_each_managed_zone_pgdat(zone, pgdat, i, highest_zoneidx) {
6810 enum zone_stat_item item;
6811 unsigned long free_pages;
6812
6813 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)
6814 mark = promo_wmark_pages(zone);
6815 else
6816 mark = high_wmark_pages(zone);
6817
6818 /*
6819 * In defrag_mode, watermarks must be met in whole
6820 * blocks to avoid polluting allocator fallbacks.
6821 *
6822 * However, kswapd usually cannot accomplish this on
6823 * its own and needs kcompactd support. Once it's
6824 * reclaimed a compaction gap, and kswapd_shrink_node
6825 * has dropped order, simply ensure there are enough
6826 * base pages for compaction, wake kcompactd & sleep.
6827 */
6828 if (defrag_mode && order)
6829 item = NR_FREE_PAGES_BLOCKS;
6830 else
6831 item = NR_FREE_PAGES;
6832
6833 /*
6834 * When there is a high number of CPUs in the system,
6835 * the cumulative error from the vmstat per-cpu cache
6836 * can blur the line between the watermarks. In that
6837 * case, be safe and get an accurate snapshot.
6838 *
6839 * TODO: NR_FREE_PAGES_BLOCKS moves in steps of
6840 * pageblock_nr_pages, while the vmstat pcp threshold
6841 * is limited to 125. On many configurations that
6842 * counter won't actually be per-cpu cached. But keep
6843 * things simple for now; revisit when somebody cares.
6844 */
6845 free_pages = zone_page_state(zone, item);
6846 if (zone->percpu_drift_mark && free_pages < zone->percpu_drift_mark)
6847 free_pages = zone_page_state_snapshot(zone, item);
6848
6849 if (__zone_watermark_ok(zone, order, mark, highest_zoneidx,
6850 0, free_pages))
6851 return true;
6852 }
6853
6854 /*
6855 * If a node has no managed zone within highest_zoneidx, it does not
6856 * need balancing by definition. This can happen if a zone-restricted
6857 * allocation tries to wake a remote kswapd.
6858 */
6859 if (mark == -1)
6860 return true;
6861
6862 return false;
6863 }
6864
6865 /* Clear pgdat state for congested, dirty or under writeback. */
clear_pgdat_congested(pg_data_t * pgdat)6866 static void clear_pgdat_congested(pg_data_t *pgdat)
6867 {
6868 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
6869
6870 clear_bit(LRUVEC_NODE_CONGESTED, &lruvec->flags);
6871 clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags);
6872 clear_bit(PGDAT_DIRTY, &pgdat->flags);
6873 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
6874 }
6875
6876 /*
6877 * Prepare kswapd for sleeping. This verifies that there are no processes
6878 * waiting in throttle_direct_reclaim() and that watermarks have been met.
6879 *
6880 * Returns true if kswapd is ready to sleep
6881 */
prepare_kswapd_sleep(pg_data_t * pgdat,int order,int highest_zoneidx)6882 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
6883 int highest_zoneidx)
6884 {
6885 /*
6886 * The throttled processes are normally woken up in balance_pgdat() as
6887 * soon as allow_direct_reclaim() is true. But there is a potential
6888 * race between when kswapd checks the watermarks and a process gets
6889 * throttled. There is also a potential race if processes get
6890 * throttled, kswapd wakes, a large process exits thereby balancing the
6891 * zones, which causes kswapd to exit balance_pgdat() before reaching
6892 * the wake up checks. If kswapd is going to sleep, no process should
6893 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
6894 * the wake up is premature, processes will wake kswapd and get
6895 * throttled again. The difference from wake ups in balance_pgdat() is
6896 * that here we are under prepare_to_wait().
6897 */
6898 if (waitqueue_active(&pgdat->pfmemalloc_wait))
6899 wake_up_all(&pgdat->pfmemalloc_wait);
6900
6901 /* Hopeless node, leave it to direct reclaim */
6902 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6903 return true;
6904
6905 if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
6906 clear_pgdat_congested(pgdat);
6907 return true;
6908 }
6909
6910 return false;
6911 }
6912
6913 /*
6914 * kswapd shrinks a node of pages that are at or below the highest usable
6915 * zone that is currently unbalanced.
6916 *
6917 * Returns true if kswapd scanned at least the requested number of pages to
6918 * reclaim or if the lack of progress was due to pages under writeback.
6919 * This is used to determine if the scanning priority needs to be raised.
6920 */
kswapd_shrink_node(pg_data_t * pgdat,struct scan_control * sc)6921 static bool kswapd_shrink_node(pg_data_t *pgdat,
6922 struct scan_control *sc)
6923 {
6924 struct zone *zone;
6925 int z;
6926 unsigned long nr_reclaimed = sc->nr_reclaimed;
6927
6928 /* Reclaim a number of pages proportional to the number of zones */
6929 sc->nr_to_reclaim = 0;
6930 for_each_managed_zone_pgdat(zone, pgdat, z, sc->reclaim_idx) {
6931 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
6932 }
6933
6934 /*
6935 * Historically care was taken to put equal pressure on all zones but
6936 * now pressure is applied based on node LRU order.
6937 */
6938 shrink_node(pgdat, sc);
6939
6940 /*
6941 * Fragmentation may mean that the system cannot be rebalanced for
6942 * high-order allocations. If twice the allocation size has been
6943 * reclaimed then recheck watermarks only at order-0 to prevent
6944 * excessive reclaim. Assume that a process requested a high-order
6945 * can direct reclaim/compact.
6946 */
6947 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
6948 sc->order = 0;
6949
6950 /* account for progress from mm_account_reclaimed_pages() */
6951 return max(sc->nr_scanned, sc->nr_reclaimed - nr_reclaimed) >= sc->nr_to_reclaim;
6952 }
6953
6954 /* Page allocator PCP high watermark is lowered if reclaim is active. */
6955 static inline void
update_reclaim_active(pg_data_t * pgdat,int highest_zoneidx,bool active)6956 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
6957 {
6958 int i;
6959 struct zone *zone;
6960
6961 for_each_managed_zone_pgdat(zone, pgdat, i, highest_zoneidx) {
6962 if (active)
6963 set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
6964 else
6965 clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
6966 }
6967 }
6968
6969 static inline void
set_reclaim_active(pg_data_t * pgdat,int highest_zoneidx)6970 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
6971 {
6972 update_reclaim_active(pgdat, highest_zoneidx, true);
6973 }
6974
6975 static inline void
clear_reclaim_active(pg_data_t * pgdat,int highest_zoneidx)6976 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
6977 {
6978 update_reclaim_active(pgdat, highest_zoneidx, false);
6979 }
6980
6981 /*
6982 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
6983 * that are eligible for use by the caller until at least one zone is
6984 * balanced.
6985 *
6986 * Returns the order kswapd finished reclaiming at.
6987 *
6988 * kswapd scans the zones in the highmem->normal->dma direction. It skips
6989 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
6990 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
6991 * or lower is eligible for reclaim until at least one usable zone is
6992 * balanced.
6993 */
balance_pgdat(pg_data_t * pgdat,int order,int highest_zoneidx)6994 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
6995 {
6996 int i;
6997 unsigned long nr_soft_reclaimed;
6998 unsigned long nr_soft_scanned;
6999 unsigned long pflags;
7000 unsigned long nr_boost_reclaim;
7001 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
7002 bool boosted;
7003 struct zone *zone;
7004 struct scan_control sc = {
7005 .gfp_mask = GFP_KERNEL,
7006 .order = order,
7007 .may_unmap = 1,
7008 };
7009
7010 set_task_reclaim_state(current, &sc.reclaim_state);
7011 psi_memstall_enter(&pflags);
7012 __fs_reclaim_acquire(_THIS_IP_);
7013
7014 count_vm_event(PAGEOUTRUN);
7015
7016 /*
7017 * Account for the reclaim boost. Note that the zone boost is left in
7018 * place so that parallel allocations that are near the watermark will
7019 * stall or direct reclaim until kswapd is finished.
7020 */
7021 nr_boost_reclaim = 0;
7022 for_each_managed_zone_pgdat(zone, pgdat, i, highest_zoneidx) {
7023 nr_boost_reclaim += zone->watermark_boost;
7024 zone_boosts[i] = zone->watermark_boost;
7025 }
7026 boosted = nr_boost_reclaim;
7027
7028 restart:
7029 set_reclaim_active(pgdat, highest_zoneidx);
7030 sc.priority = DEF_PRIORITY;
7031 do {
7032 unsigned long nr_reclaimed = sc.nr_reclaimed;
7033 bool raise_priority = true;
7034 bool balanced;
7035 bool ret;
7036 bool was_frozen;
7037
7038 sc.reclaim_idx = highest_zoneidx;
7039
7040 /*
7041 * If the number of buffer_heads exceeds the maximum allowed
7042 * then consider reclaiming from all zones. This has a dual
7043 * purpose -- on 64-bit systems it is expected that
7044 * buffer_heads are stripped during active rotation. On 32-bit
7045 * systems, highmem pages can pin lowmem memory and shrinking
7046 * buffers can relieve lowmem pressure. Reclaim may still not
7047 * go ahead if all eligible zones for the original allocation
7048 * request are balanced to avoid excessive reclaim from kswapd.
7049 */
7050 if (buffer_heads_over_limit) {
7051 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
7052 zone = pgdat->node_zones + i;
7053 if (!managed_zone(zone))
7054 continue;
7055
7056 sc.reclaim_idx = i;
7057 break;
7058 }
7059 }
7060
7061 /*
7062 * If the pgdat is imbalanced then ignore boosting and preserve
7063 * the watermarks for a later time and restart. Note that the
7064 * zone watermarks will be still reset at the end of balancing
7065 * on the grounds that the normal reclaim should be enough to
7066 * re-evaluate if boosting is required when kswapd next wakes.
7067 */
7068 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
7069 if (!balanced && nr_boost_reclaim) {
7070 nr_boost_reclaim = 0;
7071 goto restart;
7072 }
7073
7074 /*
7075 * If boosting is not active then only reclaim if there are no
7076 * eligible zones. Note that sc.reclaim_idx is not used as
7077 * buffer_heads_over_limit may have adjusted it.
7078 */
7079 if (!nr_boost_reclaim && balanced)
7080 goto out;
7081
7082 /* Limit the priority of boosting to avoid reclaim writeback */
7083 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
7084 raise_priority = false;
7085
7086 /*
7087 * Do not writeback or swap pages for boosted reclaim. The
7088 * intent is to relieve pressure not issue sub-optimal IO
7089 * from reclaim context. If no pages are reclaimed, the
7090 * reclaim will be aborted.
7091 */
7092 sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
7093 sc.may_swap = !nr_boost_reclaim;
7094
7095 /*
7096 * Do some background aging, to give pages a chance to be
7097 * referenced before reclaiming. All pages are rotated
7098 * regardless of classzone as this is about consistent aging.
7099 */
7100 kswapd_age_node(pgdat, &sc);
7101
7102 /*
7103 * If we're getting trouble reclaiming, start doing writepage
7104 * even in laptop mode.
7105 */
7106 if (sc.priority < DEF_PRIORITY - 2)
7107 sc.may_writepage = 1;
7108
7109 /* Call soft limit reclaim before calling shrink_node. */
7110 sc.nr_scanned = 0;
7111 nr_soft_scanned = 0;
7112 nr_soft_reclaimed = memcg1_soft_limit_reclaim(pgdat, sc.order,
7113 sc.gfp_mask, &nr_soft_scanned);
7114 sc.nr_reclaimed += nr_soft_reclaimed;
7115
7116 /*
7117 * There should be no need to raise the scanning priority if
7118 * enough pages are already being scanned that that high
7119 * watermark would be met at 100% efficiency.
7120 */
7121 if (kswapd_shrink_node(pgdat, &sc))
7122 raise_priority = false;
7123
7124 /*
7125 * If the low watermark is met there is no need for processes
7126 * to be throttled on pfmemalloc_wait as they should not be
7127 * able to safely make forward progress. Wake them
7128 */
7129 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
7130 allow_direct_reclaim(pgdat))
7131 wake_up_all(&pgdat->pfmemalloc_wait);
7132
7133 /* Check if kswapd should be suspending */
7134 __fs_reclaim_release(_THIS_IP_);
7135 ret = kthread_freezable_should_stop(&was_frozen);
7136 __fs_reclaim_acquire(_THIS_IP_);
7137 if (was_frozen || ret)
7138 break;
7139
7140 /*
7141 * Raise priority if scanning rate is too low or there was no
7142 * progress in reclaiming pages
7143 */
7144 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
7145 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
7146
7147 /*
7148 * If reclaim made no progress for a boost, stop reclaim as
7149 * IO cannot be queued and it could be an infinite loop in
7150 * extreme circumstances.
7151 */
7152 if (nr_boost_reclaim && !nr_reclaimed)
7153 break;
7154
7155 if (raise_priority || !nr_reclaimed)
7156 sc.priority--;
7157 } while (sc.priority >= 1);
7158
7159 /*
7160 * Restart only if it went through the priority loop all the way,
7161 * but cache_trim_mode didn't work.
7162 */
7163 if (!sc.nr_reclaimed && sc.priority < 1 &&
7164 !sc.no_cache_trim_mode && sc.cache_trim_mode_failed) {
7165 sc.no_cache_trim_mode = 1;
7166 goto restart;
7167 }
7168
7169 if (!sc.nr_reclaimed)
7170 pgdat->kswapd_failures++;
7171
7172 out:
7173 clear_reclaim_active(pgdat, highest_zoneidx);
7174
7175 /* If reclaim was boosted, account for the reclaim done in this pass */
7176 if (boosted) {
7177 unsigned long flags;
7178
7179 for (i = 0; i <= highest_zoneidx; i++) {
7180 if (!zone_boosts[i])
7181 continue;
7182
7183 /* Increments are under the zone lock */
7184 zone = pgdat->node_zones + i;
7185 spin_lock_irqsave(&zone->lock, flags);
7186 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
7187 spin_unlock_irqrestore(&zone->lock, flags);
7188 }
7189
7190 /*
7191 * As there is now likely space, wakeup kcompact to defragment
7192 * pageblocks.
7193 */
7194 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
7195 }
7196
7197 snapshot_refaults(NULL, pgdat);
7198 __fs_reclaim_release(_THIS_IP_);
7199 psi_memstall_leave(&pflags);
7200 set_task_reclaim_state(current, NULL);
7201
7202 /*
7203 * Return the order kswapd stopped reclaiming at as
7204 * prepare_kswapd_sleep() takes it into account. If another caller
7205 * entered the allocator slow path while kswapd was awake, order will
7206 * remain at the higher level.
7207 */
7208 return sc.order;
7209 }
7210
7211 /*
7212 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
7213 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
7214 * not a valid index then either kswapd runs for first time or kswapd couldn't
7215 * sleep after previous reclaim attempt (node is still unbalanced). In that
7216 * case return the zone index of the previous kswapd reclaim cycle.
7217 */
kswapd_highest_zoneidx(pg_data_t * pgdat,enum zone_type prev_highest_zoneidx)7218 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
7219 enum zone_type prev_highest_zoneidx)
7220 {
7221 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7222
7223 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
7224 }
7225
kswapd_try_to_sleep(pg_data_t * pgdat,int alloc_order,int reclaim_order,unsigned int highest_zoneidx)7226 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
7227 unsigned int highest_zoneidx)
7228 {
7229 long remaining = 0;
7230 DEFINE_WAIT(wait);
7231
7232 if (freezing(current) || kthread_should_stop())
7233 return;
7234
7235 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7236
7237 /*
7238 * Try to sleep for a short interval. Note that kcompactd will only be
7239 * woken if it is possible to sleep for a short interval. This is
7240 * deliberate on the assumption that if reclaim cannot keep an
7241 * eligible zone balanced that it's also unlikely that compaction will
7242 * succeed.
7243 */
7244 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7245 /*
7246 * Compaction records what page blocks it recently failed to
7247 * isolate pages from and skips them in the future scanning.
7248 * When kswapd is going to sleep, it is reasonable to assume
7249 * that pages and compaction may succeed so reset the cache.
7250 */
7251 reset_isolation_suitable(pgdat);
7252
7253 /*
7254 * We have freed the memory, now we should compact it to make
7255 * allocation of the requested order possible.
7256 */
7257 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
7258
7259 remaining = schedule_timeout(HZ/10);
7260
7261 /*
7262 * If woken prematurely then reset kswapd_highest_zoneidx and
7263 * order. The values will either be from a wakeup request or
7264 * the previous request that slept prematurely.
7265 */
7266 if (remaining) {
7267 WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
7268 kswapd_highest_zoneidx(pgdat,
7269 highest_zoneidx));
7270
7271 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
7272 WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
7273 }
7274
7275 finish_wait(&pgdat->kswapd_wait, &wait);
7276 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7277 }
7278
7279 /*
7280 * After a short sleep, check if it was a premature sleep. If not, then
7281 * go fully to sleep until explicitly woken up.
7282 */
7283 if (!remaining &&
7284 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7285 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
7286
7287 /*
7288 * vmstat counters are not perfectly accurate and the estimated
7289 * value for counters such as NR_FREE_PAGES can deviate from the
7290 * true value by nr_online_cpus * threshold. To avoid the zone
7291 * watermarks being breached while under pressure, we reduce the
7292 * per-cpu vmstat threshold while kswapd is awake and restore
7293 * them before going back to sleep.
7294 */
7295 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
7296
7297 if (!kthread_should_stop())
7298 schedule();
7299
7300 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
7301 } else {
7302 if (remaining)
7303 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
7304 else
7305 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
7306 }
7307 finish_wait(&pgdat->kswapd_wait, &wait);
7308 }
7309
7310 /*
7311 * The background pageout daemon, started as a kernel thread
7312 * from the init process.
7313 *
7314 * This basically trickles out pages so that we have _some_
7315 * free memory available even if there is no other activity
7316 * that frees anything up. This is needed for things like routing
7317 * etc, where we otherwise might have all activity going on in
7318 * asynchronous contexts that cannot page things out.
7319 *
7320 * If there are applications that are active memory-allocators
7321 * (most normal use), this basically shouldn't matter.
7322 */
kswapd(void * p)7323 static int kswapd(void *p)
7324 {
7325 unsigned int alloc_order, reclaim_order;
7326 unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
7327 pg_data_t *pgdat = (pg_data_t *)p;
7328 struct task_struct *tsk = current;
7329
7330 /*
7331 * Tell the memory management that we're a "memory allocator",
7332 * and that if we need more memory we should get access to it
7333 * regardless (see "__alloc_pages()"). "kswapd" should
7334 * never get caught in the normal page freeing logic.
7335 *
7336 * (Kswapd normally doesn't need memory anyway, but sometimes
7337 * you need a small amount of memory in order to be able to
7338 * page out something else, and this flag essentially protects
7339 * us from recursively trying to free more memory as we're
7340 * trying to free the first piece of memory in the first place).
7341 */
7342 tsk->flags |= PF_MEMALLOC | PF_KSWAPD;
7343 set_freezable();
7344
7345 WRITE_ONCE(pgdat->kswapd_order, 0);
7346 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7347 atomic_set(&pgdat->nr_writeback_throttled, 0);
7348 for ( ; ; ) {
7349 bool was_frozen;
7350
7351 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
7352 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7353 highest_zoneidx);
7354
7355 kswapd_try_sleep:
7356 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
7357 highest_zoneidx);
7358
7359 /* Read the new order and highest_zoneidx */
7360 alloc_order = READ_ONCE(pgdat->kswapd_order);
7361 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7362 highest_zoneidx);
7363 WRITE_ONCE(pgdat->kswapd_order, 0);
7364 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7365
7366 if (kthread_freezable_should_stop(&was_frozen))
7367 break;
7368
7369 /*
7370 * We can speed up thawing tasks if we don't call balance_pgdat
7371 * after returning from the refrigerator
7372 */
7373 if (was_frozen)
7374 continue;
7375
7376 /*
7377 * Reclaim begins at the requested order but if a high-order
7378 * reclaim fails then kswapd falls back to reclaiming for
7379 * order-0. If that happens, kswapd will consider sleeping
7380 * for the order it finished reclaiming at (reclaim_order)
7381 * but kcompactd is woken to compact for the original
7382 * request (alloc_order).
7383 */
7384 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
7385 alloc_order);
7386 reclaim_order = balance_pgdat(pgdat, alloc_order,
7387 highest_zoneidx);
7388 if (reclaim_order < alloc_order)
7389 goto kswapd_try_sleep;
7390 }
7391
7392 tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD);
7393
7394 return 0;
7395 }
7396
7397 /*
7398 * A zone is low on free memory or too fragmented for high-order memory. If
7399 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
7400 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
7401 * has failed or is not needed, still wake up kcompactd if only compaction is
7402 * needed.
7403 */
wakeup_kswapd(struct zone * zone,gfp_t gfp_flags,int order,enum zone_type highest_zoneidx)7404 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
7405 enum zone_type highest_zoneidx)
7406 {
7407 pg_data_t *pgdat;
7408 enum zone_type curr_idx;
7409
7410 if (!managed_zone(zone))
7411 return;
7412
7413 if (!cpuset_zone_allowed(zone, gfp_flags))
7414 return;
7415
7416 pgdat = zone->zone_pgdat;
7417 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7418
7419 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
7420 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
7421
7422 if (READ_ONCE(pgdat->kswapd_order) < order)
7423 WRITE_ONCE(pgdat->kswapd_order, order);
7424
7425 if (!waitqueue_active(&pgdat->kswapd_wait))
7426 return;
7427
7428 /* Hopeless node, leave it to direct reclaim if possible */
7429 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
7430 (pgdat_balanced(pgdat, order, highest_zoneidx) &&
7431 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
7432 /*
7433 * There may be plenty of free memory available, but it's too
7434 * fragmented for high-order allocations. Wake up kcompactd
7435 * and rely on compaction_suitable() to determine if it's
7436 * needed. If it fails, it will defer subsequent attempts to
7437 * ratelimit its work.
7438 */
7439 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
7440 wakeup_kcompactd(pgdat, order, highest_zoneidx);
7441 return;
7442 }
7443
7444 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
7445 gfp_flags);
7446 wake_up_interruptible(&pgdat->kswapd_wait);
7447 }
7448
7449 #ifdef CONFIG_HIBERNATION
7450 /*
7451 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
7452 * freed pages.
7453 *
7454 * Rather than trying to age LRUs the aim is to preserve the overall
7455 * LRU order by reclaiming preferentially
7456 * inactive > active > active referenced > active mapped
7457 */
shrink_all_memory(unsigned long nr_to_reclaim)7458 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
7459 {
7460 struct scan_control sc = {
7461 .nr_to_reclaim = nr_to_reclaim,
7462 .gfp_mask = GFP_HIGHUSER_MOVABLE,
7463 .reclaim_idx = MAX_NR_ZONES - 1,
7464 .priority = DEF_PRIORITY,
7465 .may_writepage = 1,
7466 .may_unmap = 1,
7467 .may_swap = 1,
7468 .hibernation_mode = 1,
7469 };
7470 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7471 unsigned long nr_reclaimed;
7472 unsigned int noreclaim_flag;
7473
7474 fs_reclaim_acquire(sc.gfp_mask);
7475 noreclaim_flag = memalloc_noreclaim_save();
7476 set_task_reclaim_state(current, &sc.reclaim_state);
7477
7478 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
7479
7480 set_task_reclaim_state(current, NULL);
7481 memalloc_noreclaim_restore(noreclaim_flag);
7482 fs_reclaim_release(sc.gfp_mask);
7483
7484 return nr_reclaimed;
7485 }
7486 #endif /* CONFIG_HIBERNATION */
7487
7488 /*
7489 * This kswapd start function will be called by init and node-hot-add.
7490 */
kswapd_run(int nid)7491 void __meminit kswapd_run(int nid)
7492 {
7493 pg_data_t *pgdat = NODE_DATA(nid);
7494
7495 pgdat_kswapd_lock(pgdat);
7496 if (!pgdat->kswapd) {
7497 pgdat->kswapd = kthread_create_on_node(kswapd, pgdat, nid, "kswapd%d", nid);
7498 if (IS_ERR(pgdat->kswapd)) {
7499 /* failure at boot is fatal */
7500 pr_err("Failed to start kswapd on node %d,ret=%ld\n",
7501 nid, PTR_ERR(pgdat->kswapd));
7502 BUG_ON(system_state < SYSTEM_RUNNING);
7503 pgdat->kswapd = NULL;
7504 } else {
7505 wake_up_process(pgdat->kswapd);
7506 }
7507 }
7508 pgdat_kswapd_unlock(pgdat);
7509 }
7510
7511 /*
7512 * Called by memory hotplug when all memory in a node is offlined. Caller must
7513 * be holding mem_hotplug_begin/done().
7514 */
kswapd_stop(int nid)7515 void __meminit kswapd_stop(int nid)
7516 {
7517 pg_data_t *pgdat = NODE_DATA(nid);
7518 struct task_struct *kswapd;
7519
7520 pgdat_kswapd_lock(pgdat);
7521 kswapd = pgdat->kswapd;
7522 if (kswapd) {
7523 kthread_stop(kswapd);
7524 pgdat->kswapd = NULL;
7525 }
7526 pgdat_kswapd_unlock(pgdat);
7527 }
7528
7529 static const struct ctl_table vmscan_sysctl_table[] = {
7530 {
7531 .procname = "swappiness",
7532 .data = &vm_swappiness,
7533 .maxlen = sizeof(vm_swappiness),
7534 .mode = 0644,
7535 .proc_handler = proc_dointvec_minmax,
7536 .extra1 = SYSCTL_ZERO,
7537 .extra2 = SYSCTL_TWO_HUNDRED,
7538 },
7539 #ifdef CONFIG_NUMA
7540 {
7541 .procname = "zone_reclaim_mode",
7542 .data = &node_reclaim_mode,
7543 .maxlen = sizeof(node_reclaim_mode),
7544 .mode = 0644,
7545 .proc_handler = proc_dointvec_minmax,
7546 .extra1 = SYSCTL_ZERO,
7547 }
7548 #endif
7549 };
7550
kswapd_init(void)7551 static int __init kswapd_init(void)
7552 {
7553 int nid;
7554
7555 swap_setup();
7556 for_each_node_state(nid, N_MEMORY)
7557 kswapd_run(nid);
7558 register_sysctl_init("vm", vmscan_sysctl_table);
7559 return 0;
7560 }
7561
7562 module_init(kswapd_init)
7563
7564 #ifdef CONFIG_NUMA
7565 /*
7566 * Node reclaim mode
7567 *
7568 * If non-zero call node_reclaim when the number of free pages falls below
7569 * the watermarks.
7570 */
7571 int node_reclaim_mode __read_mostly;
7572
7573 /*
7574 * Priority for NODE_RECLAIM. This determines the fraction of pages
7575 * of a node considered for each zone_reclaim. 4 scans 1/16th of
7576 * a zone.
7577 */
7578 #define NODE_RECLAIM_PRIORITY 4
7579
7580 /*
7581 * Percentage of pages in a zone that must be unmapped for node_reclaim to
7582 * occur.
7583 */
7584 int sysctl_min_unmapped_ratio = 1;
7585
7586 /*
7587 * If the number of slab pages in a zone grows beyond this percentage then
7588 * slab reclaim needs to occur.
7589 */
7590 int sysctl_min_slab_ratio = 5;
7591
node_unmapped_file_pages(struct pglist_data * pgdat)7592 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
7593 {
7594 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
7595 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
7596 node_page_state(pgdat, NR_ACTIVE_FILE);
7597
7598 /*
7599 * It's possible for there to be more file mapped pages than
7600 * accounted for by the pages on the file LRU lists because
7601 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
7602 */
7603 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
7604 }
7605
7606 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
node_pagecache_reclaimable(struct pglist_data * pgdat)7607 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
7608 {
7609 unsigned long nr_pagecache_reclaimable;
7610 unsigned long delta = 0;
7611
7612 /*
7613 * If RECLAIM_UNMAP is set, then all file pages are considered
7614 * potentially reclaimable. Otherwise, we have to worry about
7615 * pages like swapcache and node_unmapped_file_pages() provides
7616 * a better estimate
7617 */
7618 if (node_reclaim_mode & RECLAIM_UNMAP)
7619 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
7620 else
7621 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
7622
7623 /* If we can't clean pages, remove dirty pages from consideration */
7624 if (!(node_reclaim_mode & RECLAIM_WRITE))
7625 delta += node_page_state(pgdat, NR_FILE_DIRTY);
7626
7627 /* Watch for any possible underflows due to delta */
7628 if (unlikely(delta > nr_pagecache_reclaimable))
7629 delta = nr_pagecache_reclaimable;
7630
7631 return nr_pagecache_reclaimable - delta;
7632 }
7633
7634 /*
7635 * Try to free up some pages from this node through reclaim.
7636 */
__node_reclaim(struct pglist_data * pgdat,gfp_t gfp_mask,unsigned long nr_pages,struct scan_control * sc)7637 static unsigned long __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask,
7638 unsigned long nr_pages,
7639 struct scan_control *sc)
7640 {
7641 struct task_struct *p = current;
7642 unsigned int noreclaim_flag;
7643 unsigned long pflags;
7644
7645 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, sc->order,
7646 sc->gfp_mask);
7647
7648 cond_resched();
7649 psi_memstall_enter(&pflags);
7650 delayacct_freepages_start();
7651 fs_reclaim_acquire(sc->gfp_mask);
7652 /*
7653 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
7654 */
7655 noreclaim_flag = memalloc_noreclaim_save();
7656 set_task_reclaim_state(p, &sc->reclaim_state);
7657
7658 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages ||
7659 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) {
7660 /*
7661 * Free memory by calling shrink node with increasing
7662 * priorities until we have enough memory freed.
7663 */
7664 do {
7665 shrink_node(pgdat, sc);
7666 } while (sc->nr_reclaimed < nr_pages && --sc->priority >= 0);
7667 }
7668
7669 set_task_reclaim_state(p, NULL);
7670 memalloc_noreclaim_restore(noreclaim_flag);
7671 fs_reclaim_release(sc->gfp_mask);
7672 delayacct_freepages_end();
7673 psi_memstall_leave(&pflags);
7674
7675 trace_mm_vmscan_node_reclaim_end(sc->nr_reclaimed);
7676
7677 return sc->nr_reclaimed;
7678 }
7679
node_reclaim(struct pglist_data * pgdat,gfp_t gfp_mask,unsigned int order)7680 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
7681 {
7682 int ret;
7683 /* Minimum pages needed in order to stay on node */
7684 const unsigned long nr_pages = 1 << order;
7685 struct scan_control sc = {
7686 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7687 .gfp_mask = current_gfp_context(gfp_mask),
7688 .order = order,
7689 .priority = NODE_RECLAIM_PRIORITY,
7690 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
7691 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
7692 .may_swap = 1,
7693 .reclaim_idx = gfp_zone(gfp_mask),
7694 };
7695
7696 /*
7697 * Node reclaim reclaims unmapped file backed pages and
7698 * slab pages if we are over the defined limits.
7699 *
7700 * A small portion of unmapped file backed pages is needed for
7701 * file I/O otherwise pages read by file I/O will be immediately
7702 * thrown out if the node is overallocated. So we do not reclaim
7703 * if less than a specified percentage of the node is used by
7704 * unmapped file backed pages.
7705 */
7706 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
7707 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
7708 pgdat->min_slab_pages)
7709 return NODE_RECLAIM_FULL;
7710
7711 /*
7712 * Do not scan if the allocation should not be delayed.
7713 */
7714 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
7715 return NODE_RECLAIM_NOSCAN;
7716
7717 /*
7718 * Only run node reclaim on the local node or on nodes that do not
7719 * have associated processors. This will favor the local processor
7720 * over remote processors and spread off node memory allocations
7721 * as wide as possible.
7722 */
7723 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
7724 return NODE_RECLAIM_NOSCAN;
7725
7726 if (test_and_set_bit_lock(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
7727 return NODE_RECLAIM_NOSCAN;
7728
7729 ret = __node_reclaim(pgdat, gfp_mask, nr_pages, &sc) >= nr_pages;
7730 clear_bit_unlock(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
7731
7732 if (ret)
7733 count_vm_event(PGSCAN_ZONE_RECLAIM_SUCCESS);
7734 else
7735 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
7736
7737 return ret;
7738 }
7739
7740 enum {
7741 MEMORY_RECLAIM_SWAPPINESS = 0,
7742 MEMORY_RECLAIM_SWAPPINESS_MAX,
7743 MEMORY_RECLAIM_NULL,
7744 };
7745 static const match_table_t tokens = {
7746 { MEMORY_RECLAIM_SWAPPINESS, "swappiness=%d"},
7747 { MEMORY_RECLAIM_SWAPPINESS_MAX, "swappiness=max"},
7748 { MEMORY_RECLAIM_NULL, NULL },
7749 };
7750
user_proactive_reclaim(char * buf,struct mem_cgroup * memcg,pg_data_t * pgdat)7751 int user_proactive_reclaim(char *buf,
7752 struct mem_cgroup *memcg, pg_data_t *pgdat)
7753 {
7754 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
7755 unsigned long nr_to_reclaim, nr_reclaimed = 0;
7756 int swappiness = -1;
7757 char *old_buf, *start;
7758 substring_t args[MAX_OPT_ARGS];
7759 gfp_t gfp_mask = GFP_KERNEL;
7760
7761 if (!buf || (!memcg && !pgdat) || (memcg && pgdat))
7762 return -EINVAL;
7763
7764 buf = strstrip(buf);
7765
7766 old_buf = buf;
7767 nr_to_reclaim = memparse(buf, &buf) / PAGE_SIZE;
7768 if (buf == old_buf)
7769 return -EINVAL;
7770
7771 buf = strstrip(buf);
7772
7773 while ((start = strsep(&buf, " ")) != NULL) {
7774 if (!strlen(start))
7775 continue;
7776 switch (match_token(start, tokens, args)) {
7777 case MEMORY_RECLAIM_SWAPPINESS:
7778 if (match_int(&args[0], &swappiness))
7779 return -EINVAL;
7780 if (swappiness < MIN_SWAPPINESS ||
7781 swappiness > MAX_SWAPPINESS)
7782 return -EINVAL;
7783 break;
7784 case MEMORY_RECLAIM_SWAPPINESS_MAX:
7785 swappiness = SWAPPINESS_ANON_ONLY;
7786 break;
7787 default:
7788 return -EINVAL;
7789 }
7790 }
7791
7792 while (nr_reclaimed < nr_to_reclaim) {
7793 /* Will converge on zero, but reclaim enforces a minimum */
7794 unsigned long batch_size = (nr_to_reclaim - nr_reclaimed) / 4;
7795 unsigned long reclaimed;
7796
7797 if (signal_pending(current))
7798 return -EINTR;
7799
7800 /*
7801 * This is the final attempt, drain percpu lru caches in the
7802 * hope of introducing more evictable pages.
7803 */
7804 if (!nr_retries)
7805 lru_add_drain_all();
7806
7807 if (memcg) {
7808 unsigned int reclaim_options;
7809
7810 reclaim_options = MEMCG_RECLAIM_MAY_SWAP |
7811 MEMCG_RECLAIM_PROACTIVE;
7812 reclaimed = try_to_free_mem_cgroup_pages(memcg,
7813 batch_size, gfp_mask,
7814 reclaim_options,
7815 swappiness == -1 ? NULL : &swappiness);
7816 } else {
7817 struct scan_control sc = {
7818 .gfp_mask = current_gfp_context(gfp_mask),
7819 .reclaim_idx = gfp_zone(gfp_mask),
7820 .proactive_swappiness = swappiness == -1 ? NULL : &swappiness,
7821 .priority = DEF_PRIORITY,
7822 .may_writepage = !laptop_mode,
7823 .nr_to_reclaim = max(batch_size, SWAP_CLUSTER_MAX),
7824 .may_unmap = 1,
7825 .may_swap = 1,
7826 .proactive = 1,
7827 };
7828
7829 if (test_and_set_bit_lock(PGDAT_RECLAIM_LOCKED,
7830 &pgdat->flags))
7831 return -EBUSY;
7832
7833 reclaimed = __node_reclaim(pgdat, gfp_mask,
7834 batch_size, &sc);
7835 clear_bit_unlock(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
7836 }
7837
7838 if (!reclaimed && !nr_retries--)
7839 return -EAGAIN;
7840
7841 nr_reclaimed += reclaimed;
7842 }
7843
7844 return 0;
7845 }
7846
7847 #endif
7848
7849 /**
7850 * check_move_unevictable_folios - Move evictable folios to appropriate zone
7851 * lru list
7852 * @fbatch: Batch of lru folios to check.
7853 *
7854 * Checks folios for evictability, if an evictable folio is in the unevictable
7855 * lru list, moves it to the appropriate evictable lru list. This function
7856 * should be only used for lru folios.
7857 */
check_move_unevictable_folios(struct folio_batch * fbatch)7858 void check_move_unevictable_folios(struct folio_batch *fbatch)
7859 {
7860 struct lruvec *lruvec = NULL;
7861 int pgscanned = 0;
7862 int pgrescued = 0;
7863 int i;
7864
7865 for (i = 0; i < fbatch->nr; i++) {
7866 struct folio *folio = fbatch->folios[i];
7867 int nr_pages = folio_nr_pages(folio);
7868
7869 pgscanned += nr_pages;
7870
7871 /* block memcg migration while the folio moves between lrus */
7872 if (!folio_test_clear_lru(folio))
7873 continue;
7874
7875 lruvec = folio_lruvec_relock_irq(folio, lruvec);
7876 if (folio_evictable(folio) && folio_test_unevictable(folio)) {
7877 lruvec_del_folio(lruvec, folio);
7878 folio_clear_unevictable(folio);
7879 lruvec_add_folio(lruvec, folio);
7880 pgrescued += nr_pages;
7881 }
7882 folio_set_lru(folio);
7883 }
7884
7885 if (lruvec) {
7886 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
7887 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
7888 unlock_page_lruvec_irq(lruvec);
7889 } else if (pgscanned) {
7890 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
7891 }
7892 }
7893 EXPORT_SYMBOL_GPL(check_move_unevictable_folios);
7894
7895 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
reclaim_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)7896 static ssize_t reclaim_store(struct device *dev,
7897 struct device_attribute *attr,
7898 const char *buf, size_t count)
7899 {
7900 int ret, nid = dev->id;
7901
7902 ret = user_proactive_reclaim((char *)buf, NULL, NODE_DATA(nid));
7903 return ret ? -EAGAIN : count;
7904 }
7905
7906 static DEVICE_ATTR_WO(reclaim);
reclaim_register_node(struct node * node)7907 int reclaim_register_node(struct node *node)
7908 {
7909 return device_create_file(&node->dev, &dev_attr_reclaim);
7910 }
7911
reclaim_unregister_node(struct node * node)7912 void reclaim_unregister_node(struct node *node)
7913 {
7914 return device_remove_file(&node->dev, &dev_attr_reclaim);
7915 }
7916 #endif
7917