1 // SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB
2 /*
3 * Copyright (c) 2005 Voltaire Inc. All rights reserved.
4 * Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved.
5 * Copyright (c) 1999-2019, Mellanox Technologies, Inc. All rights reserved.
6 * Copyright (c) 2005-2006 Intel Corporation. All rights reserved.
7 */
8
9 #include <linux/completion.h>
10 #include <linux/in.h>
11 #include <linux/in6.h>
12 #include <linux/mutex.h>
13 #include <linux/random.h>
14 #include <linux/rbtree.h>
15 #include <linux/igmp.h>
16 #include <linux/xarray.h>
17 #include <linux/inetdevice.h>
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <net/route.h>
21
22 #include <net/net_namespace.h>
23 #include <net/netns/generic.h>
24 #include <net/netevent.h>
25 #include <net/tcp.h>
26 #include <net/ipv6.h>
27 #include <net/ip_fib.h>
28 #include <net/ip6_route.h>
29
30 #include <rdma/rdma_cm.h>
31 #include <rdma/rdma_cm_ib.h>
32 #include <rdma/rdma_netlink.h>
33 #include <rdma/ib.h>
34 #include <rdma/ib_cache.h>
35 #include <rdma/ib_cm.h>
36 #include <rdma/ib_sa.h>
37 #include <rdma/iw_cm.h>
38
39 #include "core_priv.h"
40 #include "cma_priv.h"
41 #include "cma_trace.h"
42
43 MODULE_AUTHOR("Sean Hefty");
44 MODULE_DESCRIPTION("Generic RDMA CM Agent");
45 MODULE_LICENSE("Dual BSD/GPL");
46
47 #define CMA_CM_RESPONSE_TIMEOUT 20
48 #define CMA_MAX_CM_RETRIES 15
49 #define CMA_CM_MRA_SETTING (IB_CM_MRA_FLAG_DELAY | 24)
50 #define CMA_IBOE_PACKET_LIFETIME 16
51 #define CMA_PREFERRED_ROCE_GID_TYPE IB_GID_TYPE_ROCE_UDP_ENCAP
52
53 static const char * const cma_events[] = {
54 [RDMA_CM_EVENT_ADDR_RESOLVED] = "address resolved",
55 [RDMA_CM_EVENT_ADDR_ERROR] = "address error",
56 [RDMA_CM_EVENT_ROUTE_RESOLVED] = "route resolved ",
57 [RDMA_CM_EVENT_ROUTE_ERROR] = "route error",
58 [RDMA_CM_EVENT_CONNECT_REQUEST] = "connect request",
59 [RDMA_CM_EVENT_CONNECT_RESPONSE] = "connect response",
60 [RDMA_CM_EVENT_CONNECT_ERROR] = "connect error",
61 [RDMA_CM_EVENT_UNREACHABLE] = "unreachable",
62 [RDMA_CM_EVENT_REJECTED] = "rejected",
63 [RDMA_CM_EVENT_ESTABLISHED] = "established",
64 [RDMA_CM_EVENT_DISCONNECTED] = "disconnected",
65 [RDMA_CM_EVENT_DEVICE_REMOVAL] = "device removal",
66 [RDMA_CM_EVENT_MULTICAST_JOIN] = "multicast join",
67 [RDMA_CM_EVENT_MULTICAST_ERROR] = "multicast error",
68 [RDMA_CM_EVENT_ADDR_CHANGE] = "address change",
69 [RDMA_CM_EVENT_TIMEWAIT_EXIT] = "timewait exit",
70 };
71
72 static void cma_iboe_set_mgid(struct sockaddr *addr, union ib_gid *mgid,
73 enum ib_gid_type gid_type);
74
75 static void cma_netevent_work_handler(struct work_struct *_work);
76
rdma_event_msg(enum rdma_cm_event_type event)77 const char *__attribute_const__ rdma_event_msg(enum rdma_cm_event_type event)
78 {
79 size_t index = event;
80
81 return (index < ARRAY_SIZE(cma_events) && cma_events[index]) ?
82 cma_events[index] : "unrecognized event";
83 }
84 EXPORT_SYMBOL(rdma_event_msg);
85
rdma_reject_msg(struct rdma_cm_id * id,int reason)86 const char *__attribute_const__ rdma_reject_msg(struct rdma_cm_id *id,
87 int reason)
88 {
89 if (rdma_ib_or_roce(id->device, id->port_num))
90 return ibcm_reject_msg(reason);
91
92 if (rdma_protocol_iwarp(id->device, id->port_num))
93 return iwcm_reject_msg(reason);
94
95 WARN_ON_ONCE(1);
96 return "unrecognized transport";
97 }
98 EXPORT_SYMBOL(rdma_reject_msg);
99
100 /**
101 * rdma_is_consumer_reject - return true if the consumer rejected the connect
102 * request.
103 * @id: Communication identifier that received the REJECT event.
104 * @reason: Value returned in the REJECT event status field.
105 */
rdma_is_consumer_reject(struct rdma_cm_id * id,int reason)106 static bool rdma_is_consumer_reject(struct rdma_cm_id *id, int reason)
107 {
108 if (rdma_ib_or_roce(id->device, id->port_num))
109 return reason == IB_CM_REJ_CONSUMER_DEFINED;
110
111 if (rdma_protocol_iwarp(id->device, id->port_num))
112 return reason == -ECONNREFUSED;
113
114 WARN_ON_ONCE(1);
115 return false;
116 }
117
rdma_consumer_reject_data(struct rdma_cm_id * id,struct rdma_cm_event * ev,u8 * data_len)118 const void *rdma_consumer_reject_data(struct rdma_cm_id *id,
119 struct rdma_cm_event *ev, u8 *data_len)
120 {
121 const void *p;
122
123 if (rdma_is_consumer_reject(id, ev->status)) {
124 *data_len = ev->param.conn.private_data_len;
125 p = ev->param.conn.private_data;
126 } else {
127 *data_len = 0;
128 p = NULL;
129 }
130 return p;
131 }
132 EXPORT_SYMBOL(rdma_consumer_reject_data);
133
134 /**
135 * rdma_iw_cm_id() - return the iw_cm_id pointer for this cm_id.
136 * @id: Communication Identifier
137 */
rdma_iw_cm_id(struct rdma_cm_id * id)138 struct iw_cm_id *rdma_iw_cm_id(struct rdma_cm_id *id)
139 {
140 struct rdma_id_private *id_priv;
141
142 id_priv = container_of(id, struct rdma_id_private, id);
143 if (id->device->node_type == RDMA_NODE_RNIC)
144 return id_priv->cm_id.iw;
145 return NULL;
146 }
147 EXPORT_SYMBOL(rdma_iw_cm_id);
148
149 /**
150 * rdma_res_to_id() - return the rdma_cm_id pointer for this restrack.
151 * @res: rdma resource tracking entry pointer
152 */
rdma_res_to_id(struct rdma_restrack_entry * res)153 struct rdma_cm_id *rdma_res_to_id(struct rdma_restrack_entry *res)
154 {
155 struct rdma_id_private *id_priv =
156 container_of(res, struct rdma_id_private, res);
157
158 return &id_priv->id;
159 }
160 EXPORT_SYMBOL(rdma_res_to_id);
161
162 static int cma_add_one(struct ib_device *device);
163 static void cma_remove_one(struct ib_device *device, void *client_data);
164
165 static struct ib_client cma_client = {
166 .name = "cma",
167 .add = cma_add_one,
168 .remove = cma_remove_one
169 };
170
171 static struct ib_sa_client sa_client;
172 static LIST_HEAD(dev_list);
173 static LIST_HEAD(listen_any_list);
174 static DEFINE_MUTEX(lock);
175 static struct rb_root id_table = RB_ROOT;
176 /* Serialize operations of id_table tree */
177 static DEFINE_SPINLOCK(id_table_lock);
178 static struct workqueue_struct *cma_wq;
179 static unsigned int cma_pernet_id;
180
181 struct cma_pernet {
182 struct xarray tcp_ps;
183 struct xarray udp_ps;
184 struct xarray ipoib_ps;
185 struct xarray ib_ps;
186 };
187
cma_pernet(struct net * net)188 static struct cma_pernet *cma_pernet(struct net *net)
189 {
190 return net_generic(net, cma_pernet_id);
191 }
192
193 static
cma_pernet_xa(struct net * net,enum rdma_ucm_port_space ps)194 struct xarray *cma_pernet_xa(struct net *net, enum rdma_ucm_port_space ps)
195 {
196 struct cma_pernet *pernet = cma_pernet(net);
197
198 switch (ps) {
199 case RDMA_PS_TCP:
200 return &pernet->tcp_ps;
201 case RDMA_PS_UDP:
202 return &pernet->udp_ps;
203 case RDMA_PS_IPOIB:
204 return &pernet->ipoib_ps;
205 case RDMA_PS_IB:
206 return &pernet->ib_ps;
207 default:
208 return NULL;
209 }
210 }
211
212 struct id_table_entry {
213 struct list_head id_list;
214 struct rb_node rb_node;
215 };
216
217 struct cma_device {
218 struct list_head list;
219 struct ib_device *device;
220 struct completion comp;
221 refcount_t refcount;
222 struct list_head id_list;
223 enum ib_gid_type *default_gid_type;
224 u8 *default_roce_tos;
225 };
226
227 struct rdma_bind_list {
228 enum rdma_ucm_port_space ps;
229 struct hlist_head owners;
230 unsigned short port;
231 };
232
cma_ps_alloc(struct net * net,enum rdma_ucm_port_space ps,struct rdma_bind_list * bind_list,int snum)233 static int cma_ps_alloc(struct net *net, enum rdma_ucm_port_space ps,
234 struct rdma_bind_list *bind_list, int snum)
235 {
236 struct xarray *xa = cma_pernet_xa(net, ps);
237
238 return xa_insert(xa, snum, bind_list, GFP_KERNEL);
239 }
240
cma_ps_find(struct net * net,enum rdma_ucm_port_space ps,int snum)241 static struct rdma_bind_list *cma_ps_find(struct net *net,
242 enum rdma_ucm_port_space ps, int snum)
243 {
244 struct xarray *xa = cma_pernet_xa(net, ps);
245
246 return xa_load(xa, snum);
247 }
248
cma_ps_remove(struct net * net,enum rdma_ucm_port_space ps,int snum)249 static void cma_ps_remove(struct net *net, enum rdma_ucm_port_space ps,
250 int snum)
251 {
252 struct xarray *xa = cma_pernet_xa(net, ps);
253
254 xa_erase(xa, snum);
255 }
256
257 enum {
258 CMA_OPTION_AFONLY,
259 };
260
cma_dev_get(struct cma_device * cma_dev)261 void cma_dev_get(struct cma_device *cma_dev)
262 {
263 refcount_inc(&cma_dev->refcount);
264 }
265
cma_dev_put(struct cma_device * cma_dev)266 void cma_dev_put(struct cma_device *cma_dev)
267 {
268 if (refcount_dec_and_test(&cma_dev->refcount))
269 complete(&cma_dev->comp);
270 }
271
cma_enum_devices_by_ibdev(cma_device_filter filter,void * cookie)272 struct cma_device *cma_enum_devices_by_ibdev(cma_device_filter filter,
273 void *cookie)
274 {
275 struct cma_device *cma_dev;
276 struct cma_device *found_cma_dev = NULL;
277
278 mutex_lock(&lock);
279
280 list_for_each_entry(cma_dev, &dev_list, list)
281 if (filter(cma_dev->device, cookie)) {
282 found_cma_dev = cma_dev;
283 break;
284 }
285
286 if (found_cma_dev)
287 cma_dev_get(found_cma_dev);
288 mutex_unlock(&lock);
289 return found_cma_dev;
290 }
291
cma_get_default_gid_type(struct cma_device * cma_dev,u32 port)292 int cma_get_default_gid_type(struct cma_device *cma_dev,
293 u32 port)
294 {
295 if (!rdma_is_port_valid(cma_dev->device, port))
296 return -EINVAL;
297
298 return cma_dev->default_gid_type[port - rdma_start_port(cma_dev->device)];
299 }
300
cma_set_default_gid_type(struct cma_device * cma_dev,u32 port,enum ib_gid_type default_gid_type)301 int cma_set_default_gid_type(struct cma_device *cma_dev,
302 u32 port,
303 enum ib_gid_type default_gid_type)
304 {
305 unsigned long supported_gids;
306
307 if (!rdma_is_port_valid(cma_dev->device, port))
308 return -EINVAL;
309
310 if (default_gid_type == IB_GID_TYPE_IB &&
311 rdma_protocol_roce_eth_encap(cma_dev->device, port))
312 default_gid_type = IB_GID_TYPE_ROCE;
313
314 supported_gids = roce_gid_type_mask_support(cma_dev->device, port);
315
316 if (!(supported_gids & 1 << default_gid_type))
317 return -EINVAL;
318
319 cma_dev->default_gid_type[port - rdma_start_port(cma_dev->device)] =
320 default_gid_type;
321
322 return 0;
323 }
324
cma_get_default_roce_tos(struct cma_device * cma_dev,u32 port)325 int cma_get_default_roce_tos(struct cma_device *cma_dev, u32 port)
326 {
327 if (!rdma_is_port_valid(cma_dev->device, port))
328 return -EINVAL;
329
330 return cma_dev->default_roce_tos[port - rdma_start_port(cma_dev->device)];
331 }
332
cma_set_default_roce_tos(struct cma_device * cma_dev,u32 port,u8 default_roce_tos)333 int cma_set_default_roce_tos(struct cma_device *cma_dev, u32 port,
334 u8 default_roce_tos)
335 {
336 if (!rdma_is_port_valid(cma_dev->device, port))
337 return -EINVAL;
338
339 cma_dev->default_roce_tos[port - rdma_start_port(cma_dev->device)] =
340 default_roce_tos;
341
342 return 0;
343 }
cma_get_ib_dev(struct cma_device * cma_dev)344 struct ib_device *cma_get_ib_dev(struct cma_device *cma_dev)
345 {
346 return cma_dev->device;
347 }
348
349 /*
350 * Device removal can occur at anytime, so we need extra handling to
351 * serialize notifying the user of device removal with other callbacks.
352 * We do this by disabling removal notification while a callback is in process,
353 * and reporting it after the callback completes.
354 */
355
356 struct cma_multicast {
357 struct rdma_id_private *id_priv;
358 union {
359 struct ib_sa_multicast *sa_mc;
360 struct {
361 struct work_struct work;
362 struct rdma_cm_event event;
363 } iboe_join;
364 };
365 struct list_head list;
366 void *context;
367 struct sockaddr_storage addr;
368 u8 join_state;
369 };
370
371 struct cma_work {
372 struct work_struct work;
373 struct rdma_id_private *id;
374 enum rdma_cm_state old_state;
375 enum rdma_cm_state new_state;
376 struct rdma_cm_event event;
377 };
378
379 union cma_ip_addr {
380 struct in6_addr ip6;
381 struct {
382 __be32 pad[3];
383 __be32 addr;
384 } ip4;
385 };
386
387 struct cma_hdr {
388 u8 cma_version;
389 u8 ip_version; /* IP version: 7:4 */
390 __be16 port;
391 union cma_ip_addr src_addr;
392 union cma_ip_addr dst_addr;
393 };
394
395 #define CMA_VERSION 0x00
396
397 struct cma_req_info {
398 struct sockaddr_storage listen_addr_storage;
399 struct sockaddr_storage src_addr_storage;
400 struct ib_device *device;
401 union ib_gid local_gid;
402 __be64 service_id;
403 int port;
404 bool has_gid;
405 u16 pkey;
406 };
407
cma_comp_exch(struct rdma_id_private * id_priv,enum rdma_cm_state comp,enum rdma_cm_state exch)408 static int cma_comp_exch(struct rdma_id_private *id_priv,
409 enum rdma_cm_state comp, enum rdma_cm_state exch)
410 {
411 unsigned long flags;
412 int ret;
413
414 /*
415 * The FSM uses a funny double locking where state is protected by both
416 * the handler_mutex and the spinlock. State is not allowed to change
417 * to/from a handler_mutex protected value without also holding
418 * handler_mutex.
419 */
420 if (comp == RDMA_CM_CONNECT || exch == RDMA_CM_CONNECT)
421 lockdep_assert_held(&id_priv->handler_mutex);
422
423 spin_lock_irqsave(&id_priv->lock, flags);
424 if ((ret = (id_priv->state == comp)))
425 id_priv->state = exch;
426 spin_unlock_irqrestore(&id_priv->lock, flags);
427 return ret;
428 }
429
cma_get_ip_ver(const struct cma_hdr * hdr)430 static inline u8 cma_get_ip_ver(const struct cma_hdr *hdr)
431 {
432 return hdr->ip_version >> 4;
433 }
434
cma_set_ip_ver(struct cma_hdr * hdr,u8 ip_ver)435 static void cma_set_ip_ver(struct cma_hdr *hdr, u8 ip_ver)
436 {
437 hdr->ip_version = (ip_ver << 4) | (hdr->ip_version & 0xF);
438 }
439
cma_src_addr(struct rdma_id_private * id_priv)440 static struct sockaddr *cma_src_addr(struct rdma_id_private *id_priv)
441 {
442 return (struct sockaddr *)&id_priv->id.route.addr.src_addr;
443 }
444
cma_dst_addr(struct rdma_id_private * id_priv)445 static inline struct sockaddr *cma_dst_addr(struct rdma_id_private *id_priv)
446 {
447 return (struct sockaddr *)&id_priv->id.route.addr.dst_addr;
448 }
449
cma_igmp_send(struct net_device * ndev,union ib_gid * mgid,bool join)450 static int cma_igmp_send(struct net_device *ndev, union ib_gid *mgid, bool join)
451 {
452 struct in_device *in_dev = NULL;
453
454 if (ndev) {
455 rtnl_lock();
456 in_dev = __in_dev_get_rtnl(ndev);
457 if (in_dev) {
458 if (join)
459 ip_mc_inc_group(in_dev,
460 *(__be32 *)(mgid->raw + 12));
461 else
462 ip_mc_dec_group(in_dev,
463 *(__be32 *)(mgid->raw + 12));
464 }
465 rtnl_unlock();
466 }
467 return (in_dev) ? 0 : -ENODEV;
468 }
469
compare_netdev_and_ip(int ifindex_a,struct sockaddr * sa,struct id_table_entry * entry_b)470 static int compare_netdev_and_ip(int ifindex_a, struct sockaddr *sa,
471 struct id_table_entry *entry_b)
472 {
473 struct rdma_id_private *id_priv = list_first_entry(
474 &entry_b->id_list, struct rdma_id_private, id_list_entry);
475 int ifindex_b = id_priv->id.route.addr.dev_addr.bound_dev_if;
476 struct sockaddr *sb = cma_dst_addr(id_priv);
477
478 if (ifindex_a != ifindex_b)
479 return (ifindex_a > ifindex_b) ? 1 : -1;
480
481 if (sa->sa_family != sb->sa_family)
482 return sa->sa_family - sb->sa_family;
483
484 if (sa->sa_family == AF_INET &&
485 __builtin_object_size(sa, 0) >= sizeof(struct sockaddr_in)) {
486 return memcmp(&((struct sockaddr_in *)sa)->sin_addr,
487 &((struct sockaddr_in *)sb)->sin_addr,
488 sizeof(((struct sockaddr_in *)sa)->sin_addr));
489 }
490
491 if (sa->sa_family == AF_INET6 &&
492 __builtin_object_size(sa, 0) >= sizeof(struct sockaddr_in6)) {
493 return ipv6_addr_cmp(&((struct sockaddr_in6 *)sa)->sin6_addr,
494 &((struct sockaddr_in6 *)sb)->sin6_addr);
495 }
496
497 return -1;
498 }
499
cma_add_id_to_tree(struct rdma_id_private * node_id_priv)500 static int cma_add_id_to_tree(struct rdma_id_private *node_id_priv)
501 {
502 struct rb_node **new, *parent = NULL;
503 struct id_table_entry *this, *node;
504 unsigned long flags;
505 int result;
506
507 node = kzalloc(sizeof(*node), GFP_KERNEL);
508 if (!node)
509 return -ENOMEM;
510
511 spin_lock_irqsave(&id_table_lock, flags);
512 new = &id_table.rb_node;
513 while (*new) {
514 this = container_of(*new, struct id_table_entry, rb_node);
515 result = compare_netdev_and_ip(
516 node_id_priv->id.route.addr.dev_addr.bound_dev_if,
517 cma_dst_addr(node_id_priv), this);
518
519 parent = *new;
520 if (result < 0)
521 new = &((*new)->rb_left);
522 else if (result > 0)
523 new = &((*new)->rb_right);
524 else {
525 list_add_tail(&node_id_priv->id_list_entry,
526 &this->id_list);
527 kfree(node);
528 goto unlock;
529 }
530 }
531
532 INIT_LIST_HEAD(&node->id_list);
533 list_add_tail(&node_id_priv->id_list_entry, &node->id_list);
534
535 rb_link_node(&node->rb_node, parent, new);
536 rb_insert_color(&node->rb_node, &id_table);
537
538 unlock:
539 spin_unlock_irqrestore(&id_table_lock, flags);
540 return 0;
541 }
542
543 static struct id_table_entry *
node_from_ndev_ip(struct rb_root * root,int ifindex,struct sockaddr * sa)544 node_from_ndev_ip(struct rb_root *root, int ifindex, struct sockaddr *sa)
545 {
546 struct rb_node *node = root->rb_node;
547 struct id_table_entry *data;
548 int result;
549
550 while (node) {
551 data = container_of(node, struct id_table_entry, rb_node);
552 result = compare_netdev_and_ip(ifindex, sa, data);
553 if (result < 0)
554 node = node->rb_left;
555 else if (result > 0)
556 node = node->rb_right;
557 else
558 return data;
559 }
560
561 return NULL;
562 }
563
cma_remove_id_from_tree(struct rdma_id_private * id_priv)564 static void cma_remove_id_from_tree(struct rdma_id_private *id_priv)
565 {
566 struct id_table_entry *data;
567 unsigned long flags;
568
569 spin_lock_irqsave(&id_table_lock, flags);
570 if (list_empty(&id_priv->id_list_entry))
571 goto out;
572
573 data = node_from_ndev_ip(&id_table,
574 id_priv->id.route.addr.dev_addr.bound_dev_if,
575 cma_dst_addr(id_priv));
576 if (!data)
577 goto out;
578
579 list_del_init(&id_priv->id_list_entry);
580 if (list_empty(&data->id_list)) {
581 rb_erase(&data->rb_node, &id_table);
582 kfree(data);
583 }
584 out:
585 spin_unlock_irqrestore(&id_table_lock, flags);
586 }
587
_cma_attach_to_dev(struct rdma_id_private * id_priv,struct cma_device * cma_dev)588 static void _cma_attach_to_dev(struct rdma_id_private *id_priv,
589 struct cma_device *cma_dev)
590 {
591 cma_dev_get(cma_dev);
592 id_priv->cma_dev = cma_dev;
593 id_priv->id.device = cma_dev->device;
594 id_priv->id.route.addr.dev_addr.transport =
595 rdma_node_get_transport(cma_dev->device->node_type);
596 list_add_tail(&id_priv->device_item, &cma_dev->id_list);
597
598 trace_cm_id_attach(id_priv, cma_dev->device);
599 }
600
cma_attach_to_dev(struct rdma_id_private * id_priv,struct cma_device * cma_dev)601 static void cma_attach_to_dev(struct rdma_id_private *id_priv,
602 struct cma_device *cma_dev)
603 {
604 _cma_attach_to_dev(id_priv, cma_dev);
605 id_priv->gid_type =
606 cma_dev->default_gid_type[id_priv->id.port_num -
607 rdma_start_port(cma_dev->device)];
608 }
609
cma_release_dev(struct rdma_id_private * id_priv)610 static void cma_release_dev(struct rdma_id_private *id_priv)
611 {
612 mutex_lock(&lock);
613 list_del_init(&id_priv->device_item);
614 cma_dev_put(id_priv->cma_dev);
615 id_priv->cma_dev = NULL;
616 id_priv->id.device = NULL;
617 if (id_priv->id.route.addr.dev_addr.sgid_attr) {
618 rdma_put_gid_attr(id_priv->id.route.addr.dev_addr.sgid_attr);
619 id_priv->id.route.addr.dev_addr.sgid_attr = NULL;
620 }
621 mutex_unlock(&lock);
622 }
623
cma_family(struct rdma_id_private * id_priv)624 static inline unsigned short cma_family(struct rdma_id_private *id_priv)
625 {
626 return id_priv->id.route.addr.src_addr.ss_family;
627 }
628
cma_set_default_qkey(struct rdma_id_private * id_priv)629 static int cma_set_default_qkey(struct rdma_id_private *id_priv)
630 {
631 struct ib_sa_mcmember_rec rec;
632 int ret = 0;
633
634 switch (id_priv->id.ps) {
635 case RDMA_PS_UDP:
636 case RDMA_PS_IB:
637 id_priv->qkey = RDMA_UDP_QKEY;
638 break;
639 case RDMA_PS_IPOIB:
640 ib_addr_get_mgid(&id_priv->id.route.addr.dev_addr, &rec.mgid);
641 ret = ib_sa_get_mcmember_rec(id_priv->id.device,
642 id_priv->id.port_num, &rec.mgid,
643 &rec);
644 if (!ret)
645 id_priv->qkey = be32_to_cpu(rec.qkey);
646 break;
647 default:
648 break;
649 }
650 return ret;
651 }
652
cma_set_qkey(struct rdma_id_private * id_priv,u32 qkey)653 static int cma_set_qkey(struct rdma_id_private *id_priv, u32 qkey)
654 {
655 if (!qkey ||
656 (id_priv->qkey && (id_priv->qkey != qkey)))
657 return -EINVAL;
658
659 id_priv->qkey = qkey;
660 return 0;
661 }
662
cma_translate_ib(struct sockaddr_ib * sib,struct rdma_dev_addr * dev_addr)663 static void cma_translate_ib(struct sockaddr_ib *sib, struct rdma_dev_addr *dev_addr)
664 {
665 dev_addr->dev_type = ARPHRD_INFINIBAND;
666 rdma_addr_set_sgid(dev_addr, (union ib_gid *) &sib->sib_addr);
667 ib_addr_set_pkey(dev_addr, ntohs(sib->sib_pkey));
668 }
669
cma_translate_addr(struct sockaddr * addr,struct rdma_dev_addr * dev_addr)670 static int cma_translate_addr(struct sockaddr *addr, struct rdma_dev_addr *dev_addr)
671 {
672 int ret;
673
674 if (addr->sa_family != AF_IB) {
675 ret = rdma_translate_ip(addr, dev_addr);
676 } else {
677 cma_translate_ib((struct sockaddr_ib *) addr, dev_addr);
678 ret = 0;
679 }
680
681 return ret;
682 }
683
684 static const struct ib_gid_attr *
cma_validate_port(struct ib_device * device,u32 port,enum ib_gid_type gid_type,union ib_gid * gid,struct rdma_id_private * id_priv)685 cma_validate_port(struct ib_device *device, u32 port,
686 enum ib_gid_type gid_type,
687 union ib_gid *gid,
688 struct rdma_id_private *id_priv)
689 {
690 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
691 const struct ib_gid_attr *sgid_attr = ERR_PTR(-ENODEV);
692 int bound_if_index = dev_addr->bound_dev_if;
693 int dev_type = dev_addr->dev_type;
694 struct net_device *ndev = NULL;
695 struct net_device *pdev = NULL;
696
697 if (!rdma_dev_access_netns(device, id_priv->id.route.addr.dev_addr.net))
698 goto out;
699
700 if ((dev_type == ARPHRD_INFINIBAND) && !rdma_protocol_ib(device, port))
701 goto out;
702
703 if ((dev_type != ARPHRD_INFINIBAND) && rdma_protocol_ib(device, port))
704 goto out;
705
706 /*
707 * For drivers that do not associate more than one net device with
708 * their gid tables, such as iWARP drivers, it is sufficient to
709 * return the first table entry.
710 *
711 * Other driver classes might be included in the future.
712 */
713 if (rdma_protocol_iwarp(device, port)) {
714 sgid_attr = rdma_get_gid_attr(device, port, 0);
715 if (IS_ERR(sgid_attr))
716 goto out;
717
718 rcu_read_lock();
719 ndev = rcu_dereference(sgid_attr->ndev);
720 if (ndev->ifindex != bound_if_index) {
721 pdev = dev_get_by_index_rcu(dev_addr->net, bound_if_index);
722 if (pdev) {
723 if (is_vlan_dev(pdev)) {
724 pdev = vlan_dev_real_dev(pdev);
725 if (ndev->ifindex == pdev->ifindex)
726 bound_if_index = pdev->ifindex;
727 }
728 if (is_vlan_dev(ndev)) {
729 pdev = vlan_dev_real_dev(ndev);
730 if (bound_if_index == pdev->ifindex)
731 bound_if_index = ndev->ifindex;
732 }
733 }
734 }
735 if (!net_eq(dev_net(ndev), dev_addr->net) ||
736 ndev->ifindex != bound_if_index) {
737 rdma_put_gid_attr(sgid_attr);
738 sgid_attr = ERR_PTR(-ENODEV);
739 }
740 rcu_read_unlock();
741 goto out;
742 }
743
744 /*
745 * For a RXE device, it should work with TUN device and normal ethernet
746 * devices. Use driver_id to check if a device is a RXE device or not.
747 * ARPHDR_NONE means a TUN device.
748 */
749 if (device->ops.driver_id == RDMA_DRIVER_RXE) {
750 if ((dev_type == ARPHRD_NONE || dev_type == ARPHRD_ETHER)
751 && rdma_protocol_roce(device, port)) {
752 ndev = dev_get_by_index(dev_addr->net, bound_if_index);
753 if (!ndev)
754 goto out;
755 }
756 } else {
757 if (dev_type == ARPHRD_ETHER && rdma_protocol_roce(device, port)) {
758 ndev = dev_get_by_index(dev_addr->net, bound_if_index);
759 if (!ndev)
760 goto out;
761 } else {
762 gid_type = IB_GID_TYPE_IB;
763 }
764 }
765
766 sgid_attr = rdma_find_gid_by_port(device, gid, gid_type, port, ndev);
767 dev_put(ndev);
768 out:
769 return sgid_attr;
770 }
771
cma_bind_sgid_attr(struct rdma_id_private * id_priv,const struct ib_gid_attr * sgid_attr)772 static void cma_bind_sgid_attr(struct rdma_id_private *id_priv,
773 const struct ib_gid_attr *sgid_attr)
774 {
775 WARN_ON(id_priv->id.route.addr.dev_addr.sgid_attr);
776 id_priv->id.route.addr.dev_addr.sgid_attr = sgid_attr;
777 }
778
779 /**
780 * cma_acquire_dev_by_src_ip - Acquire cma device, port, gid attribute
781 * based on source ip address.
782 * @id_priv: cm_id which should be bound to cma device
783 *
784 * cma_acquire_dev_by_src_ip() binds cm id to cma device, port and GID attribute
785 * based on source IP address. It returns 0 on success or error code otherwise.
786 * It is applicable to active and passive side cm_id.
787 */
cma_acquire_dev_by_src_ip(struct rdma_id_private * id_priv)788 static int cma_acquire_dev_by_src_ip(struct rdma_id_private *id_priv)
789 {
790 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
791 const struct ib_gid_attr *sgid_attr;
792 union ib_gid gid, iboe_gid, *gidp;
793 struct cma_device *cma_dev;
794 enum ib_gid_type gid_type;
795 int ret = -ENODEV;
796 u32 port;
797
798 if (dev_addr->dev_type != ARPHRD_INFINIBAND &&
799 id_priv->id.ps == RDMA_PS_IPOIB)
800 return -EINVAL;
801
802 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr,
803 &iboe_gid);
804
805 memcpy(&gid, dev_addr->src_dev_addr +
806 rdma_addr_gid_offset(dev_addr), sizeof(gid));
807
808 mutex_lock(&lock);
809 list_for_each_entry(cma_dev, &dev_list, list) {
810 rdma_for_each_port (cma_dev->device, port) {
811 gidp = rdma_protocol_roce(cma_dev->device, port) ?
812 &iboe_gid : &gid;
813 gid_type = cma_dev->default_gid_type[port - 1];
814 sgid_attr = cma_validate_port(cma_dev->device, port,
815 gid_type, gidp, id_priv);
816 if (!IS_ERR(sgid_attr)) {
817 id_priv->id.port_num = port;
818 cma_bind_sgid_attr(id_priv, sgid_attr);
819 cma_attach_to_dev(id_priv, cma_dev);
820 ret = 0;
821 goto out;
822 }
823 }
824 }
825 out:
826 mutex_unlock(&lock);
827 return ret;
828 }
829
830 /**
831 * cma_ib_acquire_dev - Acquire cma device, port and SGID attribute
832 * @id_priv: cm id to bind to cma device
833 * @listen_id_priv: listener cm id to match against
834 * @req: Pointer to req structure containaining incoming
835 * request information
836 * cma_ib_acquire_dev() acquires cma device, port and SGID attribute when
837 * rdma device matches for listen_id and incoming request. It also verifies
838 * that a GID table entry is present for the source address.
839 * Returns 0 on success, or returns error code otherwise.
840 */
cma_ib_acquire_dev(struct rdma_id_private * id_priv,const struct rdma_id_private * listen_id_priv,struct cma_req_info * req)841 static int cma_ib_acquire_dev(struct rdma_id_private *id_priv,
842 const struct rdma_id_private *listen_id_priv,
843 struct cma_req_info *req)
844 {
845 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
846 const struct ib_gid_attr *sgid_attr;
847 enum ib_gid_type gid_type;
848 union ib_gid gid;
849
850 if (dev_addr->dev_type != ARPHRD_INFINIBAND &&
851 id_priv->id.ps == RDMA_PS_IPOIB)
852 return -EINVAL;
853
854 if (rdma_protocol_roce(req->device, req->port))
855 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr,
856 &gid);
857 else
858 memcpy(&gid, dev_addr->src_dev_addr +
859 rdma_addr_gid_offset(dev_addr), sizeof(gid));
860
861 gid_type = listen_id_priv->cma_dev->default_gid_type[req->port - 1];
862 sgid_attr = cma_validate_port(req->device, req->port,
863 gid_type, &gid, id_priv);
864 if (IS_ERR(sgid_attr))
865 return PTR_ERR(sgid_attr);
866
867 id_priv->id.port_num = req->port;
868 cma_bind_sgid_attr(id_priv, sgid_attr);
869 /* Need to acquire lock to protect against reader
870 * of cma_dev->id_list such as cma_netdev_callback() and
871 * cma_process_remove().
872 */
873 mutex_lock(&lock);
874 cma_attach_to_dev(id_priv, listen_id_priv->cma_dev);
875 mutex_unlock(&lock);
876 rdma_restrack_add(&id_priv->res);
877 return 0;
878 }
879
cma_iw_acquire_dev(struct rdma_id_private * id_priv,const struct rdma_id_private * listen_id_priv)880 static int cma_iw_acquire_dev(struct rdma_id_private *id_priv,
881 const struct rdma_id_private *listen_id_priv)
882 {
883 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
884 const struct ib_gid_attr *sgid_attr;
885 struct cma_device *cma_dev;
886 enum ib_gid_type gid_type;
887 int ret = -ENODEV;
888 union ib_gid gid;
889 u32 port;
890
891 if (dev_addr->dev_type != ARPHRD_INFINIBAND &&
892 id_priv->id.ps == RDMA_PS_IPOIB)
893 return -EINVAL;
894
895 memcpy(&gid, dev_addr->src_dev_addr +
896 rdma_addr_gid_offset(dev_addr), sizeof(gid));
897
898 mutex_lock(&lock);
899
900 cma_dev = listen_id_priv->cma_dev;
901 port = listen_id_priv->id.port_num;
902 gid_type = listen_id_priv->gid_type;
903 sgid_attr = cma_validate_port(cma_dev->device, port,
904 gid_type, &gid, id_priv);
905 if (!IS_ERR(sgid_attr)) {
906 id_priv->id.port_num = port;
907 cma_bind_sgid_attr(id_priv, sgid_attr);
908 ret = 0;
909 goto out;
910 }
911
912 list_for_each_entry(cma_dev, &dev_list, list) {
913 rdma_for_each_port (cma_dev->device, port) {
914 if (listen_id_priv->cma_dev == cma_dev &&
915 listen_id_priv->id.port_num == port)
916 continue;
917
918 gid_type = cma_dev->default_gid_type[port - 1];
919 sgid_attr = cma_validate_port(cma_dev->device, port,
920 gid_type, &gid, id_priv);
921 if (!IS_ERR(sgid_attr)) {
922 id_priv->id.port_num = port;
923 cma_bind_sgid_attr(id_priv, sgid_attr);
924 ret = 0;
925 goto out;
926 }
927 }
928 }
929
930 out:
931 if (!ret) {
932 cma_attach_to_dev(id_priv, cma_dev);
933 rdma_restrack_add(&id_priv->res);
934 }
935
936 mutex_unlock(&lock);
937 return ret;
938 }
939
940 /*
941 * Select the source IB device and address to reach the destination IB address.
942 */
cma_resolve_ib_dev(struct rdma_id_private * id_priv)943 static int cma_resolve_ib_dev(struct rdma_id_private *id_priv)
944 {
945 struct cma_device *cma_dev, *cur_dev;
946 struct sockaddr_ib *addr;
947 union ib_gid gid, sgid, *dgid;
948 unsigned int p;
949 u16 pkey, index;
950 enum ib_port_state port_state;
951 int ret;
952 int i;
953
954 cma_dev = NULL;
955 addr = (struct sockaddr_ib *) cma_dst_addr(id_priv);
956 dgid = (union ib_gid *) &addr->sib_addr;
957 pkey = ntohs(addr->sib_pkey);
958
959 mutex_lock(&lock);
960 list_for_each_entry(cur_dev, &dev_list, list) {
961 rdma_for_each_port (cur_dev->device, p) {
962 if (!rdma_cap_af_ib(cur_dev->device, p))
963 continue;
964
965 if (ib_find_cached_pkey(cur_dev->device, p, pkey, &index))
966 continue;
967
968 if (ib_get_cached_port_state(cur_dev->device, p, &port_state))
969 continue;
970
971 for (i = 0; i < cur_dev->device->port_data[p].immutable.gid_tbl_len;
972 ++i) {
973 ret = rdma_query_gid(cur_dev->device, p, i,
974 &gid);
975 if (ret)
976 continue;
977
978 if (!memcmp(&gid, dgid, sizeof(gid))) {
979 cma_dev = cur_dev;
980 sgid = gid;
981 id_priv->id.port_num = p;
982 goto found;
983 }
984
985 if (!cma_dev && (gid.global.subnet_prefix ==
986 dgid->global.subnet_prefix) &&
987 port_state == IB_PORT_ACTIVE) {
988 cma_dev = cur_dev;
989 sgid = gid;
990 id_priv->id.port_num = p;
991 goto found;
992 }
993 }
994 }
995 }
996 mutex_unlock(&lock);
997 return -ENODEV;
998
999 found:
1000 cma_attach_to_dev(id_priv, cma_dev);
1001 rdma_restrack_add(&id_priv->res);
1002 mutex_unlock(&lock);
1003 addr = (struct sockaddr_ib *)cma_src_addr(id_priv);
1004 memcpy(&addr->sib_addr, &sgid, sizeof(sgid));
1005 cma_translate_ib(addr, &id_priv->id.route.addr.dev_addr);
1006 return 0;
1007 }
1008
cma_id_get(struct rdma_id_private * id_priv)1009 static void cma_id_get(struct rdma_id_private *id_priv)
1010 {
1011 refcount_inc(&id_priv->refcount);
1012 }
1013
cma_id_put(struct rdma_id_private * id_priv)1014 static void cma_id_put(struct rdma_id_private *id_priv)
1015 {
1016 if (refcount_dec_and_test(&id_priv->refcount))
1017 complete(&id_priv->comp);
1018 }
1019
1020 static struct rdma_id_private *
__rdma_create_id(struct net * net,rdma_cm_event_handler event_handler,void * context,enum rdma_ucm_port_space ps,enum ib_qp_type qp_type,const struct rdma_id_private * parent)1021 __rdma_create_id(struct net *net, rdma_cm_event_handler event_handler,
1022 void *context, enum rdma_ucm_port_space ps,
1023 enum ib_qp_type qp_type, const struct rdma_id_private *parent)
1024 {
1025 struct rdma_id_private *id_priv;
1026
1027 id_priv = kzalloc(sizeof *id_priv, GFP_KERNEL);
1028 if (!id_priv)
1029 return ERR_PTR(-ENOMEM);
1030
1031 id_priv->state = RDMA_CM_IDLE;
1032 id_priv->id.context = context;
1033 id_priv->id.event_handler = event_handler;
1034 id_priv->id.ps = ps;
1035 id_priv->id.qp_type = qp_type;
1036 id_priv->tos_set = false;
1037 id_priv->timeout_set = false;
1038 id_priv->min_rnr_timer_set = false;
1039 id_priv->gid_type = IB_GID_TYPE_IB;
1040 spin_lock_init(&id_priv->lock);
1041 mutex_init(&id_priv->qp_mutex);
1042 init_completion(&id_priv->comp);
1043 refcount_set(&id_priv->refcount, 1);
1044 mutex_init(&id_priv->handler_mutex);
1045 INIT_LIST_HEAD(&id_priv->device_item);
1046 INIT_LIST_HEAD(&id_priv->id_list_entry);
1047 INIT_LIST_HEAD(&id_priv->listen_list);
1048 INIT_LIST_HEAD(&id_priv->mc_list);
1049 get_random_bytes(&id_priv->seq_num, sizeof id_priv->seq_num);
1050 id_priv->id.route.addr.dev_addr.net = get_net(net);
1051 id_priv->seq_num &= 0x00ffffff;
1052 INIT_WORK(&id_priv->id.net_work, cma_netevent_work_handler);
1053
1054 rdma_restrack_new(&id_priv->res, RDMA_RESTRACK_CM_ID);
1055 if (parent)
1056 rdma_restrack_parent_name(&id_priv->res, &parent->res);
1057
1058 return id_priv;
1059 }
1060
1061 struct rdma_cm_id *
__rdma_create_kernel_id(struct net * net,rdma_cm_event_handler event_handler,void * context,enum rdma_ucm_port_space ps,enum ib_qp_type qp_type,const char * caller)1062 __rdma_create_kernel_id(struct net *net, rdma_cm_event_handler event_handler,
1063 void *context, enum rdma_ucm_port_space ps,
1064 enum ib_qp_type qp_type, const char *caller)
1065 {
1066 struct rdma_id_private *ret;
1067
1068 ret = __rdma_create_id(net, event_handler, context, ps, qp_type, NULL);
1069 if (IS_ERR(ret))
1070 return ERR_CAST(ret);
1071
1072 rdma_restrack_set_name(&ret->res, caller);
1073 return &ret->id;
1074 }
1075 EXPORT_SYMBOL(__rdma_create_kernel_id);
1076
rdma_create_user_id(rdma_cm_event_handler event_handler,void * context,enum rdma_ucm_port_space ps,enum ib_qp_type qp_type)1077 struct rdma_cm_id *rdma_create_user_id(rdma_cm_event_handler event_handler,
1078 void *context,
1079 enum rdma_ucm_port_space ps,
1080 enum ib_qp_type qp_type)
1081 {
1082 struct rdma_id_private *ret;
1083
1084 ret = __rdma_create_id(current->nsproxy->net_ns, event_handler, context,
1085 ps, qp_type, NULL);
1086 if (IS_ERR(ret))
1087 return ERR_CAST(ret);
1088
1089 rdma_restrack_set_name(&ret->res, NULL);
1090 return &ret->id;
1091 }
1092 EXPORT_SYMBOL(rdma_create_user_id);
1093
cma_init_ud_qp(struct rdma_id_private * id_priv,struct ib_qp * qp)1094 static int cma_init_ud_qp(struct rdma_id_private *id_priv, struct ib_qp *qp)
1095 {
1096 struct ib_qp_attr qp_attr;
1097 int qp_attr_mask, ret;
1098
1099 qp_attr.qp_state = IB_QPS_INIT;
1100 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
1101 if (ret)
1102 return ret;
1103
1104 ret = ib_modify_qp(qp, &qp_attr, qp_attr_mask);
1105 if (ret)
1106 return ret;
1107
1108 qp_attr.qp_state = IB_QPS_RTR;
1109 ret = ib_modify_qp(qp, &qp_attr, IB_QP_STATE);
1110 if (ret)
1111 return ret;
1112
1113 qp_attr.qp_state = IB_QPS_RTS;
1114 qp_attr.sq_psn = 0;
1115 ret = ib_modify_qp(qp, &qp_attr, IB_QP_STATE | IB_QP_SQ_PSN);
1116
1117 return ret;
1118 }
1119
cma_init_conn_qp(struct rdma_id_private * id_priv,struct ib_qp * qp)1120 static int cma_init_conn_qp(struct rdma_id_private *id_priv, struct ib_qp *qp)
1121 {
1122 struct ib_qp_attr qp_attr;
1123 int qp_attr_mask, ret;
1124
1125 qp_attr.qp_state = IB_QPS_INIT;
1126 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
1127 if (ret)
1128 return ret;
1129
1130 return ib_modify_qp(qp, &qp_attr, qp_attr_mask);
1131 }
1132
rdma_create_qp(struct rdma_cm_id * id,struct ib_pd * pd,struct ib_qp_init_attr * qp_init_attr)1133 int rdma_create_qp(struct rdma_cm_id *id, struct ib_pd *pd,
1134 struct ib_qp_init_attr *qp_init_attr)
1135 {
1136 struct rdma_id_private *id_priv;
1137 struct ib_qp *qp;
1138 int ret;
1139
1140 id_priv = container_of(id, struct rdma_id_private, id);
1141 if (id->device != pd->device) {
1142 ret = -EINVAL;
1143 goto out_err;
1144 }
1145
1146 qp_init_attr->port_num = id->port_num;
1147 qp = ib_create_qp(pd, qp_init_attr);
1148 if (IS_ERR(qp)) {
1149 ret = PTR_ERR(qp);
1150 goto out_err;
1151 }
1152
1153 if (id->qp_type == IB_QPT_UD)
1154 ret = cma_init_ud_qp(id_priv, qp);
1155 else
1156 ret = cma_init_conn_qp(id_priv, qp);
1157 if (ret)
1158 goto out_destroy;
1159
1160 id->qp = qp;
1161 id_priv->qp_num = qp->qp_num;
1162 id_priv->srq = (qp->srq != NULL);
1163 trace_cm_qp_create(id_priv, pd, qp_init_attr, 0);
1164 return 0;
1165 out_destroy:
1166 ib_destroy_qp(qp);
1167 out_err:
1168 trace_cm_qp_create(id_priv, pd, qp_init_attr, ret);
1169 return ret;
1170 }
1171 EXPORT_SYMBOL(rdma_create_qp);
1172
rdma_destroy_qp(struct rdma_cm_id * id)1173 void rdma_destroy_qp(struct rdma_cm_id *id)
1174 {
1175 struct rdma_id_private *id_priv;
1176
1177 id_priv = container_of(id, struct rdma_id_private, id);
1178 trace_cm_qp_destroy(id_priv);
1179 mutex_lock(&id_priv->qp_mutex);
1180 ib_destroy_qp(id_priv->id.qp);
1181 id_priv->id.qp = NULL;
1182 mutex_unlock(&id_priv->qp_mutex);
1183 }
1184 EXPORT_SYMBOL(rdma_destroy_qp);
1185
cma_modify_qp_rtr(struct rdma_id_private * id_priv,struct rdma_conn_param * conn_param)1186 static int cma_modify_qp_rtr(struct rdma_id_private *id_priv,
1187 struct rdma_conn_param *conn_param)
1188 {
1189 struct ib_qp_attr qp_attr;
1190 int qp_attr_mask, ret;
1191
1192 mutex_lock(&id_priv->qp_mutex);
1193 if (!id_priv->id.qp) {
1194 ret = 0;
1195 goto out;
1196 }
1197
1198 /* Need to update QP attributes from default values. */
1199 qp_attr.qp_state = IB_QPS_INIT;
1200 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
1201 if (ret)
1202 goto out;
1203
1204 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask);
1205 if (ret)
1206 goto out;
1207
1208 qp_attr.qp_state = IB_QPS_RTR;
1209 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
1210 if (ret)
1211 goto out;
1212
1213 BUG_ON(id_priv->cma_dev->device != id_priv->id.device);
1214
1215 if (conn_param)
1216 qp_attr.max_dest_rd_atomic = conn_param->responder_resources;
1217 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask);
1218 out:
1219 mutex_unlock(&id_priv->qp_mutex);
1220 return ret;
1221 }
1222
cma_modify_qp_rts(struct rdma_id_private * id_priv,struct rdma_conn_param * conn_param)1223 static int cma_modify_qp_rts(struct rdma_id_private *id_priv,
1224 struct rdma_conn_param *conn_param)
1225 {
1226 struct ib_qp_attr qp_attr;
1227 int qp_attr_mask, ret;
1228
1229 mutex_lock(&id_priv->qp_mutex);
1230 if (!id_priv->id.qp) {
1231 ret = 0;
1232 goto out;
1233 }
1234
1235 qp_attr.qp_state = IB_QPS_RTS;
1236 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
1237 if (ret)
1238 goto out;
1239
1240 if (conn_param)
1241 qp_attr.max_rd_atomic = conn_param->initiator_depth;
1242 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask);
1243 out:
1244 mutex_unlock(&id_priv->qp_mutex);
1245 return ret;
1246 }
1247
cma_modify_qp_err(struct rdma_id_private * id_priv)1248 static int cma_modify_qp_err(struct rdma_id_private *id_priv)
1249 {
1250 struct ib_qp_attr qp_attr;
1251 int ret;
1252
1253 mutex_lock(&id_priv->qp_mutex);
1254 if (!id_priv->id.qp) {
1255 ret = 0;
1256 goto out;
1257 }
1258
1259 qp_attr.qp_state = IB_QPS_ERR;
1260 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, IB_QP_STATE);
1261 out:
1262 mutex_unlock(&id_priv->qp_mutex);
1263 return ret;
1264 }
1265
cma_ib_init_qp_attr(struct rdma_id_private * id_priv,struct ib_qp_attr * qp_attr,int * qp_attr_mask)1266 static int cma_ib_init_qp_attr(struct rdma_id_private *id_priv,
1267 struct ib_qp_attr *qp_attr, int *qp_attr_mask)
1268 {
1269 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
1270 int ret;
1271 u16 pkey;
1272
1273 if (rdma_cap_eth_ah(id_priv->id.device, id_priv->id.port_num))
1274 pkey = 0xffff;
1275 else
1276 pkey = ib_addr_get_pkey(dev_addr);
1277
1278 ret = ib_find_cached_pkey(id_priv->id.device, id_priv->id.port_num,
1279 pkey, &qp_attr->pkey_index);
1280 if (ret)
1281 return ret;
1282
1283 qp_attr->port_num = id_priv->id.port_num;
1284 *qp_attr_mask = IB_QP_STATE | IB_QP_PKEY_INDEX | IB_QP_PORT;
1285
1286 if (id_priv->id.qp_type == IB_QPT_UD) {
1287 ret = cma_set_default_qkey(id_priv);
1288 if (ret)
1289 return ret;
1290
1291 qp_attr->qkey = id_priv->qkey;
1292 *qp_attr_mask |= IB_QP_QKEY;
1293 } else {
1294 qp_attr->qp_access_flags = 0;
1295 *qp_attr_mask |= IB_QP_ACCESS_FLAGS;
1296 }
1297 return 0;
1298 }
1299
rdma_init_qp_attr(struct rdma_cm_id * id,struct ib_qp_attr * qp_attr,int * qp_attr_mask)1300 int rdma_init_qp_attr(struct rdma_cm_id *id, struct ib_qp_attr *qp_attr,
1301 int *qp_attr_mask)
1302 {
1303 struct rdma_id_private *id_priv;
1304 int ret = 0;
1305
1306 id_priv = container_of(id, struct rdma_id_private, id);
1307 if (rdma_cap_ib_cm(id->device, id->port_num)) {
1308 if (!id_priv->cm_id.ib || (id_priv->id.qp_type == IB_QPT_UD))
1309 ret = cma_ib_init_qp_attr(id_priv, qp_attr, qp_attr_mask);
1310 else
1311 ret = ib_cm_init_qp_attr(id_priv->cm_id.ib, qp_attr,
1312 qp_attr_mask);
1313
1314 if (qp_attr->qp_state == IB_QPS_RTR)
1315 qp_attr->rq_psn = id_priv->seq_num;
1316 } else if (rdma_cap_iw_cm(id->device, id->port_num)) {
1317 if (!id_priv->cm_id.iw) {
1318 qp_attr->qp_access_flags = 0;
1319 *qp_attr_mask = IB_QP_STATE | IB_QP_ACCESS_FLAGS;
1320 } else
1321 ret = iw_cm_init_qp_attr(id_priv->cm_id.iw, qp_attr,
1322 qp_attr_mask);
1323 qp_attr->port_num = id_priv->id.port_num;
1324 *qp_attr_mask |= IB_QP_PORT;
1325 } else {
1326 ret = -ENOSYS;
1327 }
1328
1329 if ((*qp_attr_mask & IB_QP_TIMEOUT) && id_priv->timeout_set)
1330 qp_attr->timeout = id_priv->timeout;
1331
1332 if ((*qp_attr_mask & IB_QP_MIN_RNR_TIMER) && id_priv->min_rnr_timer_set)
1333 qp_attr->min_rnr_timer = id_priv->min_rnr_timer;
1334
1335 return ret;
1336 }
1337 EXPORT_SYMBOL(rdma_init_qp_attr);
1338
cma_zero_addr(const struct sockaddr * addr)1339 static inline bool cma_zero_addr(const struct sockaddr *addr)
1340 {
1341 switch (addr->sa_family) {
1342 case AF_INET:
1343 return ipv4_is_zeronet(((struct sockaddr_in *)addr)->sin_addr.s_addr);
1344 case AF_INET6:
1345 return ipv6_addr_any(&((struct sockaddr_in6 *)addr)->sin6_addr);
1346 case AF_IB:
1347 return ib_addr_any(&((struct sockaddr_ib *)addr)->sib_addr);
1348 default:
1349 return false;
1350 }
1351 }
1352
cma_loopback_addr(const struct sockaddr * addr)1353 static inline bool cma_loopback_addr(const struct sockaddr *addr)
1354 {
1355 switch (addr->sa_family) {
1356 case AF_INET:
1357 return ipv4_is_loopback(
1358 ((struct sockaddr_in *)addr)->sin_addr.s_addr);
1359 case AF_INET6:
1360 return ipv6_addr_loopback(
1361 &((struct sockaddr_in6 *)addr)->sin6_addr);
1362 case AF_IB:
1363 return ib_addr_loopback(
1364 &((struct sockaddr_ib *)addr)->sib_addr);
1365 default:
1366 return false;
1367 }
1368 }
1369
cma_any_addr(const struct sockaddr * addr)1370 static inline bool cma_any_addr(const struct sockaddr *addr)
1371 {
1372 return cma_zero_addr(addr) || cma_loopback_addr(addr);
1373 }
1374
cma_addr_cmp(const struct sockaddr * src,const struct sockaddr * dst)1375 static int cma_addr_cmp(const struct sockaddr *src, const struct sockaddr *dst)
1376 {
1377 if (src->sa_family != dst->sa_family)
1378 return -1;
1379
1380 switch (src->sa_family) {
1381 case AF_INET:
1382 return ((struct sockaddr_in *)src)->sin_addr.s_addr !=
1383 ((struct sockaddr_in *)dst)->sin_addr.s_addr;
1384 case AF_INET6: {
1385 struct sockaddr_in6 *src_addr6 = (struct sockaddr_in6 *)src;
1386 struct sockaddr_in6 *dst_addr6 = (struct sockaddr_in6 *)dst;
1387 bool link_local;
1388
1389 if (ipv6_addr_cmp(&src_addr6->sin6_addr,
1390 &dst_addr6->sin6_addr))
1391 return 1;
1392 link_local = ipv6_addr_type(&dst_addr6->sin6_addr) &
1393 IPV6_ADDR_LINKLOCAL;
1394 /* Link local must match their scope_ids */
1395 return link_local ? (src_addr6->sin6_scope_id !=
1396 dst_addr6->sin6_scope_id) :
1397 0;
1398 }
1399
1400 default:
1401 return ib_addr_cmp(&((struct sockaddr_ib *) src)->sib_addr,
1402 &((struct sockaddr_ib *) dst)->sib_addr);
1403 }
1404 }
1405
cma_port(const struct sockaddr * addr)1406 static __be16 cma_port(const struct sockaddr *addr)
1407 {
1408 struct sockaddr_ib *sib;
1409
1410 switch (addr->sa_family) {
1411 case AF_INET:
1412 return ((struct sockaddr_in *) addr)->sin_port;
1413 case AF_INET6:
1414 return ((struct sockaddr_in6 *) addr)->sin6_port;
1415 case AF_IB:
1416 sib = (struct sockaddr_ib *) addr;
1417 return htons((u16) (be64_to_cpu(sib->sib_sid) &
1418 be64_to_cpu(sib->sib_sid_mask)));
1419 default:
1420 return 0;
1421 }
1422 }
1423
cma_any_port(const struct sockaddr * addr)1424 static inline int cma_any_port(const struct sockaddr *addr)
1425 {
1426 return !cma_port(addr);
1427 }
1428
cma_save_ib_info(struct sockaddr * src_addr,struct sockaddr * dst_addr,const struct rdma_cm_id * listen_id,const struct sa_path_rec * path)1429 static void cma_save_ib_info(struct sockaddr *src_addr,
1430 struct sockaddr *dst_addr,
1431 const struct rdma_cm_id *listen_id,
1432 const struct sa_path_rec *path)
1433 {
1434 struct sockaddr_ib *listen_ib, *ib;
1435
1436 listen_ib = (struct sockaddr_ib *) &listen_id->route.addr.src_addr;
1437 if (src_addr) {
1438 ib = (struct sockaddr_ib *)src_addr;
1439 ib->sib_family = AF_IB;
1440 if (path) {
1441 ib->sib_pkey = path->pkey;
1442 ib->sib_flowinfo = path->flow_label;
1443 memcpy(&ib->sib_addr, &path->sgid, 16);
1444 ib->sib_sid = path->service_id;
1445 ib->sib_scope_id = 0;
1446 } else {
1447 ib->sib_pkey = listen_ib->sib_pkey;
1448 ib->sib_flowinfo = listen_ib->sib_flowinfo;
1449 ib->sib_addr = listen_ib->sib_addr;
1450 ib->sib_sid = listen_ib->sib_sid;
1451 ib->sib_scope_id = listen_ib->sib_scope_id;
1452 }
1453 ib->sib_sid_mask = cpu_to_be64(0xffffffffffffffffULL);
1454 }
1455 if (dst_addr) {
1456 ib = (struct sockaddr_ib *)dst_addr;
1457 ib->sib_family = AF_IB;
1458 if (path) {
1459 ib->sib_pkey = path->pkey;
1460 ib->sib_flowinfo = path->flow_label;
1461 memcpy(&ib->sib_addr, &path->dgid, 16);
1462 }
1463 }
1464 }
1465
cma_save_ip4_info(struct sockaddr_in * src_addr,struct sockaddr_in * dst_addr,struct cma_hdr * hdr,__be16 local_port)1466 static void cma_save_ip4_info(struct sockaddr_in *src_addr,
1467 struct sockaddr_in *dst_addr,
1468 struct cma_hdr *hdr,
1469 __be16 local_port)
1470 {
1471 if (src_addr) {
1472 *src_addr = (struct sockaddr_in) {
1473 .sin_family = AF_INET,
1474 .sin_addr.s_addr = hdr->dst_addr.ip4.addr,
1475 .sin_port = local_port,
1476 };
1477 }
1478
1479 if (dst_addr) {
1480 *dst_addr = (struct sockaddr_in) {
1481 .sin_family = AF_INET,
1482 .sin_addr.s_addr = hdr->src_addr.ip4.addr,
1483 .sin_port = hdr->port,
1484 };
1485 }
1486 }
1487
cma_save_ip6_info(struct sockaddr_in6 * src_addr,struct sockaddr_in6 * dst_addr,struct cma_hdr * hdr,__be16 local_port)1488 static void cma_save_ip6_info(struct sockaddr_in6 *src_addr,
1489 struct sockaddr_in6 *dst_addr,
1490 struct cma_hdr *hdr,
1491 __be16 local_port)
1492 {
1493 if (src_addr) {
1494 *src_addr = (struct sockaddr_in6) {
1495 .sin6_family = AF_INET6,
1496 .sin6_addr = hdr->dst_addr.ip6,
1497 .sin6_port = local_port,
1498 };
1499 }
1500
1501 if (dst_addr) {
1502 *dst_addr = (struct sockaddr_in6) {
1503 .sin6_family = AF_INET6,
1504 .sin6_addr = hdr->src_addr.ip6,
1505 .sin6_port = hdr->port,
1506 };
1507 }
1508 }
1509
cma_port_from_service_id(__be64 service_id)1510 static u16 cma_port_from_service_id(__be64 service_id)
1511 {
1512 return (u16)be64_to_cpu(service_id);
1513 }
1514
cma_save_ip_info(struct sockaddr * src_addr,struct sockaddr * dst_addr,const struct ib_cm_event * ib_event,__be64 service_id)1515 static int cma_save_ip_info(struct sockaddr *src_addr,
1516 struct sockaddr *dst_addr,
1517 const struct ib_cm_event *ib_event,
1518 __be64 service_id)
1519 {
1520 struct cma_hdr *hdr;
1521 __be16 port;
1522
1523 hdr = ib_event->private_data;
1524 if (hdr->cma_version != CMA_VERSION)
1525 return -EINVAL;
1526
1527 port = htons(cma_port_from_service_id(service_id));
1528
1529 switch (cma_get_ip_ver(hdr)) {
1530 case 4:
1531 cma_save_ip4_info((struct sockaddr_in *)src_addr,
1532 (struct sockaddr_in *)dst_addr, hdr, port);
1533 break;
1534 case 6:
1535 cma_save_ip6_info((struct sockaddr_in6 *)src_addr,
1536 (struct sockaddr_in6 *)dst_addr, hdr, port);
1537 break;
1538 default:
1539 return -EAFNOSUPPORT;
1540 }
1541
1542 return 0;
1543 }
1544
cma_save_net_info(struct sockaddr * src_addr,struct sockaddr * dst_addr,const struct rdma_cm_id * listen_id,const struct ib_cm_event * ib_event,sa_family_t sa_family,__be64 service_id)1545 static int cma_save_net_info(struct sockaddr *src_addr,
1546 struct sockaddr *dst_addr,
1547 const struct rdma_cm_id *listen_id,
1548 const struct ib_cm_event *ib_event,
1549 sa_family_t sa_family, __be64 service_id)
1550 {
1551 if (sa_family == AF_IB) {
1552 if (ib_event->event == IB_CM_REQ_RECEIVED)
1553 cma_save_ib_info(src_addr, dst_addr, listen_id,
1554 ib_event->param.req_rcvd.primary_path);
1555 else if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED)
1556 cma_save_ib_info(src_addr, dst_addr, listen_id, NULL);
1557 return 0;
1558 }
1559
1560 return cma_save_ip_info(src_addr, dst_addr, ib_event, service_id);
1561 }
1562
cma_save_req_info(const struct ib_cm_event * ib_event,struct cma_req_info * req)1563 static int cma_save_req_info(const struct ib_cm_event *ib_event,
1564 struct cma_req_info *req)
1565 {
1566 const struct ib_cm_req_event_param *req_param =
1567 &ib_event->param.req_rcvd;
1568 const struct ib_cm_sidr_req_event_param *sidr_param =
1569 &ib_event->param.sidr_req_rcvd;
1570
1571 switch (ib_event->event) {
1572 case IB_CM_REQ_RECEIVED:
1573 req->device = req_param->listen_id->device;
1574 req->port = req_param->port;
1575 memcpy(&req->local_gid, &req_param->primary_path->sgid,
1576 sizeof(req->local_gid));
1577 req->has_gid = true;
1578 req->service_id = req_param->primary_path->service_id;
1579 req->pkey = be16_to_cpu(req_param->primary_path->pkey);
1580 if (req->pkey != req_param->bth_pkey)
1581 pr_warn_ratelimited("RDMA CMA: got different BTH P_Key (0x%x) and primary path P_Key (0x%x)\n"
1582 "RDMA CMA: in the future this may cause the request to be dropped\n",
1583 req_param->bth_pkey, req->pkey);
1584 break;
1585 case IB_CM_SIDR_REQ_RECEIVED:
1586 req->device = sidr_param->listen_id->device;
1587 req->port = sidr_param->port;
1588 req->has_gid = false;
1589 req->service_id = sidr_param->service_id;
1590 req->pkey = sidr_param->pkey;
1591 if (req->pkey != sidr_param->bth_pkey)
1592 pr_warn_ratelimited("RDMA CMA: got different BTH P_Key (0x%x) and SIDR request payload P_Key (0x%x)\n"
1593 "RDMA CMA: in the future this may cause the request to be dropped\n",
1594 sidr_param->bth_pkey, req->pkey);
1595 break;
1596 default:
1597 return -EINVAL;
1598 }
1599
1600 return 0;
1601 }
1602
validate_ipv4_net_dev(struct net_device * net_dev,const struct sockaddr_in * dst_addr,const struct sockaddr_in * src_addr)1603 static bool validate_ipv4_net_dev(struct net_device *net_dev,
1604 const struct sockaddr_in *dst_addr,
1605 const struct sockaddr_in *src_addr)
1606 {
1607 __be32 daddr = dst_addr->sin_addr.s_addr,
1608 saddr = src_addr->sin_addr.s_addr;
1609 struct fib_result res;
1610 struct flowi4 fl4;
1611 int err;
1612 bool ret;
1613
1614 if (ipv4_is_multicast(saddr) || ipv4_is_lbcast(saddr) ||
1615 ipv4_is_lbcast(daddr) || ipv4_is_zeronet(saddr) ||
1616 ipv4_is_zeronet(daddr) || ipv4_is_loopback(daddr) ||
1617 ipv4_is_loopback(saddr))
1618 return false;
1619
1620 memset(&fl4, 0, sizeof(fl4));
1621 fl4.flowi4_oif = net_dev->ifindex;
1622 fl4.daddr = daddr;
1623 fl4.saddr = saddr;
1624
1625 rcu_read_lock();
1626 err = fib_lookup(dev_net(net_dev), &fl4, &res, 0);
1627 ret = err == 0 && FIB_RES_DEV(res) == net_dev;
1628 rcu_read_unlock();
1629
1630 return ret;
1631 }
1632
validate_ipv6_net_dev(struct net_device * net_dev,const struct sockaddr_in6 * dst_addr,const struct sockaddr_in6 * src_addr)1633 static bool validate_ipv6_net_dev(struct net_device *net_dev,
1634 const struct sockaddr_in6 *dst_addr,
1635 const struct sockaddr_in6 *src_addr)
1636 {
1637 #if IS_ENABLED(CONFIG_IPV6)
1638 const int strict = ipv6_addr_type(&dst_addr->sin6_addr) &
1639 IPV6_ADDR_LINKLOCAL;
1640 struct rt6_info *rt = rt6_lookup(dev_net(net_dev), &dst_addr->sin6_addr,
1641 &src_addr->sin6_addr, net_dev->ifindex,
1642 NULL, strict);
1643 bool ret;
1644
1645 if (!rt)
1646 return false;
1647
1648 ret = rt->rt6i_idev->dev == net_dev;
1649 ip6_rt_put(rt);
1650
1651 return ret;
1652 #else
1653 return false;
1654 #endif
1655 }
1656
validate_net_dev(struct net_device * net_dev,const struct sockaddr * daddr,const struct sockaddr * saddr)1657 static bool validate_net_dev(struct net_device *net_dev,
1658 const struct sockaddr *daddr,
1659 const struct sockaddr *saddr)
1660 {
1661 const struct sockaddr_in *daddr4 = (const struct sockaddr_in *)daddr;
1662 const struct sockaddr_in *saddr4 = (const struct sockaddr_in *)saddr;
1663 const struct sockaddr_in6 *daddr6 = (const struct sockaddr_in6 *)daddr;
1664 const struct sockaddr_in6 *saddr6 = (const struct sockaddr_in6 *)saddr;
1665
1666 switch (daddr->sa_family) {
1667 case AF_INET:
1668 return saddr->sa_family == AF_INET &&
1669 validate_ipv4_net_dev(net_dev, daddr4, saddr4);
1670
1671 case AF_INET6:
1672 return saddr->sa_family == AF_INET6 &&
1673 validate_ipv6_net_dev(net_dev, daddr6, saddr6);
1674
1675 default:
1676 return false;
1677 }
1678 }
1679
1680 static struct net_device *
roce_get_net_dev_by_cm_event(const struct ib_cm_event * ib_event)1681 roce_get_net_dev_by_cm_event(const struct ib_cm_event *ib_event)
1682 {
1683 const struct ib_gid_attr *sgid_attr = NULL;
1684 struct net_device *ndev;
1685
1686 if (ib_event->event == IB_CM_REQ_RECEIVED)
1687 sgid_attr = ib_event->param.req_rcvd.ppath_sgid_attr;
1688 else if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED)
1689 sgid_attr = ib_event->param.sidr_req_rcvd.sgid_attr;
1690
1691 if (!sgid_attr)
1692 return NULL;
1693
1694 rcu_read_lock();
1695 ndev = rdma_read_gid_attr_ndev_rcu(sgid_attr);
1696 if (IS_ERR(ndev))
1697 ndev = NULL;
1698 else
1699 dev_hold(ndev);
1700 rcu_read_unlock();
1701 return ndev;
1702 }
1703
cma_get_net_dev(const struct ib_cm_event * ib_event,struct cma_req_info * req)1704 static struct net_device *cma_get_net_dev(const struct ib_cm_event *ib_event,
1705 struct cma_req_info *req)
1706 {
1707 struct sockaddr *listen_addr =
1708 (struct sockaddr *)&req->listen_addr_storage;
1709 struct sockaddr *src_addr = (struct sockaddr *)&req->src_addr_storage;
1710 struct net_device *net_dev;
1711 const union ib_gid *gid = req->has_gid ? &req->local_gid : NULL;
1712 int err;
1713
1714 err = cma_save_ip_info(listen_addr, src_addr, ib_event,
1715 req->service_id);
1716 if (err)
1717 return ERR_PTR(err);
1718
1719 if (rdma_protocol_roce(req->device, req->port))
1720 net_dev = roce_get_net_dev_by_cm_event(ib_event);
1721 else
1722 net_dev = ib_get_net_dev_by_params(req->device, req->port,
1723 req->pkey,
1724 gid, listen_addr);
1725 if (!net_dev)
1726 return ERR_PTR(-ENODEV);
1727
1728 return net_dev;
1729 }
1730
rdma_ps_from_service_id(__be64 service_id)1731 static enum rdma_ucm_port_space rdma_ps_from_service_id(__be64 service_id)
1732 {
1733 return (be64_to_cpu(service_id) >> 16) & 0xffff;
1734 }
1735
cma_match_private_data(struct rdma_id_private * id_priv,const struct cma_hdr * hdr)1736 static bool cma_match_private_data(struct rdma_id_private *id_priv,
1737 const struct cma_hdr *hdr)
1738 {
1739 struct sockaddr *addr = cma_src_addr(id_priv);
1740 __be32 ip4_addr;
1741 struct in6_addr ip6_addr;
1742
1743 if (cma_any_addr(addr) && !id_priv->afonly)
1744 return true;
1745
1746 switch (addr->sa_family) {
1747 case AF_INET:
1748 ip4_addr = ((struct sockaddr_in *)addr)->sin_addr.s_addr;
1749 if (cma_get_ip_ver(hdr) != 4)
1750 return false;
1751 if (!cma_any_addr(addr) &&
1752 hdr->dst_addr.ip4.addr != ip4_addr)
1753 return false;
1754 break;
1755 case AF_INET6:
1756 ip6_addr = ((struct sockaddr_in6 *)addr)->sin6_addr;
1757 if (cma_get_ip_ver(hdr) != 6)
1758 return false;
1759 if (!cma_any_addr(addr) &&
1760 memcmp(&hdr->dst_addr.ip6, &ip6_addr, sizeof(ip6_addr)))
1761 return false;
1762 break;
1763 case AF_IB:
1764 return true;
1765 default:
1766 return false;
1767 }
1768
1769 return true;
1770 }
1771
cma_protocol_roce(const struct rdma_cm_id * id)1772 static bool cma_protocol_roce(const struct rdma_cm_id *id)
1773 {
1774 struct ib_device *device = id->device;
1775 const u32 port_num = id->port_num ?: rdma_start_port(device);
1776
1777 return rdma_protocol_roce(device, port_num);
1778 }
1779
cma_is_req_ipv6_ll(const struct cma_req_info * req)1780 static bool cma_is_req_ipv6_ll(const struct cma_req_info *req)
1781 {
1782 const struct sockaddr *daddr =
1783 (const struct sockaddr *)&req->listen_addr_storage;
1784 const struct sockaddr_in6 *daddr6 = (const struct sockaddr_in6 *)daddr;
1785
1786 /* Returns true if the req is for IPv6 link local */
1787 return (daddr->sa_family == AF_INET6 &&
1788 (ipv6_addr_type(&daddr6->sin6_addr) & IPV6_ADDR_LINKLOCAL));
1789 }
1790
cma_match_net_dev(const struct rdma_cm_id * id,const struct net_device * net_dev,const struct cma_req_info * req)1791 static bool cma_match_net_dev(const struct rdma_cm_id *id,
1792 const struct net_device *net_dev,
1793 const struct cma_req_info *req)
1794 {
1795 const struct rdma_addr *addr = &id->route.addr;
1796
1797 if (!net_dev)
1798 /* This request is an AF_IB request */
1799 return (!id->port_num || id->port_num == req->port) &&
1800 (addr->src_addr.ss_family == AF_IB);
1801
1802 /*
1803 * If the request is not for IPv6 link local, allow matching
1804 * request to any netdevice of the one or multiport rdma device.
1805 */
1806 if (!cma_is_req_ipv6_ll(req))
1807 return true;
1808 /*
1809 * Net namespaces must match, and if the listner is listening
1810 * on a specific netdevice than netdevice must match as well.
1811 */
1812 if (net_eq(dev_net(net_dev), addr->dev_addr.net) &&
1813 (!!addr->dev_addr.bound_dev_if ==
1814 (addr->dev_addr.bound_dev_if == net_dev->ifindex)))
1815 return true;
1816 else
1817 return false;
1818 }
1819
cma_find_listener(const struct rdma_bind_list * bind_list,const struct ib_cm_id * cm_id,const struct ib_cm_event * ib_event,const struct cma_req_info * req,const struct net_device * net_dev)1820 static struct rdma_id_private *cma_find_listener(
1821 const struct rdma_bind_list *bind_list,
1822 const struct ib_cm_id *cm_id,
1823 const struct ib_cm_event *ib_event,
1824 const struct cma_req_info *req,
1825 const struct net_device *net_dev)
1826 {
1827 struct rdma_id_private *id_priv, *id_priv_dev;
1828
1829 lockdep_assert_held(&lock);
1830
1831 if (!bind_list)
1832 return ERR_PTR(-EINVAL);
1833
1834 hlist_for_each_entry(id_priv, &bind_list->owners, node) {
1835 if (cma_match_private_data(id_priv, ib_event->private_data)) {
1836 if (id_priv->id.device == cm_id->device &&
1837 cma_match_net_dev(&id_priv->id, net_dev, req))
1838 return id_priv;
1839 list_for_each_entry(id_priv_dev,
1840 &id_priv->listen_list,
1841 listen_item) {
1842 if (id_priv_dev->id.device == cm_id->device &&
1843 cma_match_net_dev(&id_priv_dev->id,
1844 net_dev, req))
1845 return id_priv_dev;
1846 }
1847 }
1848 }
1849
1850 return ERR_PTR(-EINVAL);
1851 }
1852
1853 static struct rdma_id_private *
cma_ib_id_from_event(struct ib_cm_id * cm_id,const struct ib_cm_event * ib_event,struct cma_req_info * req,struct net_device ** net_dev)1854 cma_ib_id_from_event(struct ib_cm_id *cm_id,
1855 const struct ib_cm_event *ib_event,
1856 struct cma_req_info *req,
1857 struct net_device **net_dev)
1858 {
1859 struct rdma_bind_list *bind_list;
1860 struct rdma_id_private *id_priv;
1861 int err;
1862
1863 err = cma_save_req_info(ib_event, req);
1864 if (err)
1865 return ERR_PTR(err);
1866
1867 *net_dev = cma_get_net_dev(ib_event, req);
1868 if (IS_ERR(*net_dev)) {
1869 if (PTR_ERR(*net_dev) == -EAFNOSUPPORT) {
1870 /* Assuming the protocol is AF_IB */
1871 *net_dev = NULL;
1872 } else {
1873 return ERR_CAST(*net_dev);
1874 }
1875 }
1876
1877 mutex_lock(&lock);
1878 /*
1879 * Net namespace might be getting deleted while route lookup,
1880 * cm_id lookup is in progress. Therefore, perform netdevice
1881 * validation, cm_id lookup under rcu lock.
1882 * RCU lock along with netdevice state check, synchronizes with
1883 * netdevice migrating to different net namespace and also avoids
1884 * case where net namespace doesn't get deleted while lookup is in
1885 * progress.
1886 * If the device state is not IFF_UP, its properties such as ifindex
1887 * and nd_net cannot be trusted to remain valid without rcu lock.
1888 * net/core/dev.c change_net_namespace() ensures to synchronize with
1889 * ongoing operations on net device after device is closed using
1890 * synchronize_net().
1891 */
1892 rcu_read_lock();
1893 if (*net_dev) {
1894 /*
1895 * If netdevice is down, it is likely that it is administratively
1896 * down or it might be migrating to different namespace.
1897 * In that case avoid further processing, as the net namespace
1898 * or ifindex may change.
1899 */
1900 if (((*net_dev)->flags & IFF_UP) == 0) {
1901 id_priv = ERR_PTR(-EHOSTUNREACH);
1902 goto err;
1903 }
1904
1905 if (!validate_net_dev(*net_dev,
1906 (struct sockaddr *)&req->src_addr_storage,
1907 (struct sockaddr *)&req->listen_addr_storage)) {
1908 id_priv = ERR_PTR(-EHOSTUNREACH);
1909 goto err;
1910 }
1911 }
1912
1913 bind_list = cma_ps_find(*net_dev ? dev_net(*net_dev) : &init_net,
1914 rdma_ps_from_service_id(req->service_id),
1915 cma_port_from_service_id(req->service_id));
1916 id_priv = cma_find_listener(bind_list, cm_id, ib_event, req, *net_dev);
1917 err:
1918 rcu_read_unlock();
1919 mutex_unlock(&lock);
1920 if (IS_ERR(id_priv) && *net_dev) {
1921 dev_put(*net_dev);
1922 *net_dev = NULL;
1923 }
1924 return id_priv;
1925 }
1926
cma_user_data_offset(struct rdma_id_private * id_priv)1927 static inline u8 cma_user_data_offset(struct rdma_id_private *id_priv)
1928 {
1929 return cma_family(id_priv) == AF_IB ? 0 : sizeof(struct cma_hdr);
1930 }
1931
cma_cancel_route(struct rdma_id_private * id_priv)1932 static void cma_cancel_route(struct rdma_id_private *id_priv)
1933 {
1934 if (rdma_cap_ib_sa(id_priv->id.device, id_priv->id.port_num)) {
1935 if (id_priv->query)
1936 ib_sa_cancel_query(id_priv->query_id, id_priv->query);
1937 }
1938 }
1939
_cma_cancel_listens(struct rdma_id_private * id_priv)1940 static void _cma_cancel_listens(struct rdma_id_private *id_priv)
1941 {
1942 struct rdma_id_private *dev_id_priv;
1943
1944 lockdep_assert_held(&lock);
1945
1946 /*
1947 * Remove from listen_any_list to prevent added devices from spawning
1948 * additional listen requests.
1949 */
1950 list_del_init(&id_priv->listen_any_item);
1951
1952 while (!list_empty(&id_priv->listen_list)) {
1953 dev_id_priv =
1954 list_first_entry(&id_priv->listen_list,
1955 struct rdma_id_private, listen_item);
1956 /* sync with device removal to avoid duplicate destruction */
1957 list_del_init(&dev_id_priv->device_item);
1958 list_del_init(&dev_id_priv->listen_item);
1959 mutex_unlock(&lock);
1960
1961 rdma_destroy_id(&dev_id_priv->id);
1962 mutex_lock(&lock);
1963 }
1964 }
1965
cma_cancel_listens(struct rdma_id_private * id_priv)1966 static void cma_cancel_listens(struct rdma_id_private *id_priv)
1967 {
1968 mutex_lock(&lock);
1969 _cma_cancel_listens(id_priv);
1970 mutex_unlock(&lock);
1971 }
1972
cma_cancel_operation(struct rdma_id_private * id_priv,enum rdma_cm_state state)1973 static void cma_cancel_operation(struct rdma_id_private *id_priv,
1974 enum rdma_cm_state state)
1975 {
1976 switch (state) {
1977 case RDMA_CM_ADDR_QUERY:
1978 /*
1979 * We can avoid doing the rdma_addr_cancel() based on state,
1980 * only RDMA_CM_ADDR_QUERY has a work that could still execute.
1981 * Notice that the addr_handler work could still be exiting
1982 * outside this state, however due to the interaction with the
1983 * handler_mutex the work is guaranteed not to touch id_priv
1984 * during exit.
1985 */
1986 rdma_addr_cancel(&id_priv->id.route.addr.dev_addr);
1987 break;
1988 case RDMA_CM_ROUTE_QUERY:
1989 cma_cancel_route(id_priv);
1990 break;
1991 case RDMA_CM_LISTEN:
1992 if (cma_any_addr(cma_src_addr(id_priv)) && !id_priv->cma_dev)
1993 cma_cancel_listens(id_priv);
1994 break;
1995 default:
1996 break;
1997 }
1998 }
1999
cma_release_port(struct rdma_id_private * id_priv)2000 static void cma_release_port(struct rdma_id_private *id_priv)
2001 {
2002 struct rdma_bind_list *bind_list = id_priv->bind_list;
2003 struct net *net = id_priv->id.route.addr.dev_addr.net;
2004
2005 if (!bind_list)
2006 return;
2007
2008 mutex_lock(&lock);
2009 hlist_del(&id_priv->node);
2010 if (hlist_empty(&bind_list->owners)) {
2011 cma_ps_remove(net, bind_list->ps, bind_list->port);
2012 kfree(bind_list);
2013 }
2014 mutex_unlock(&lock);
2015 }
2016
destroy_mc(struct rdma_id_private * id_priv,struct cma_multicast * mc)2017 static void destroy_mc(struct rdma_id_private *id_priv,
2018 struct cma_multicast *mc)
2019 {
2020 bool send_only = mc->join_state == BIT(SENDONLY_FULLMEMBER_JOIN);
2021
2022 if (rdma_cap_ib_mcast(id_priv->id.device, id_priv->id.port_num))
2023 ib_sa_free_multicast(mc->sa_mc);
2024
2025 if (rdma_protocol_roce(id_priv->id.device, id_priv->id.port_num)) {
2026 struct rdma_dev_addr *dev_addr =
2027 &id_priv->id.route.addr.dev_addr;
2028 struct net_device *ndev = NULL;
2029
2030 if (dev_addr->bound_dev_if)
2031 ndev = dev_get_by_index(dev_addr->net,
2032 dev_addr->bound_dev_if);
2033 if (ndev && !send_only) {
2034 enum ib_gid_type gid_type;
2035 union ib_gid mgid;
2036
2037 gid_type = id_priv->cma_dev->default_gid_type
2038 [id_priv->id.port_num -
2039 rdma_start_port(
2040 id_priv->cma_dev->device)];
2041 cma_iboe_set_mgid((struct sockaddr *)&mc->addr, &mgid,
2042 gid_type);
2043 cma_igmp_send(ndev, &mgid, false);
2044 }
2045 dev_put(ndev);
2046
2047 cancel_work_sync(&mc->iboe_join.work);
2048 }
2049 kfree(mc);
2050 }
2051
cma_leave_mc_groups(struct rdma_id_private * id_priv)2052 static void cma_leave_mc_groups(struct rdma_id_private *id_priv)
2053 {
2054 struct cma_multicast *mc;
2055
2056 while (!list_empty(&id_priv->mc_list)) {
2057 mc = list_first_entry(&id_priv->mc_list, struct cma_multicast,
2058 list);
2059 list_del(&mc->list);
2060 destroy_mc(id_priv, mc);
2061 }
2062 }
2063
_destroy_id(struct rdma_id_private * id_priv,enum rdma_cm_state state)2064 static void _destroy_id(struct rdma_id_private *id_priv,
2065 enum rdma_cm_state state)
2066 {
2067 cma_cancel_operation(id_priv, state);
2068
2069 rdma_restrack_del(&id_priv->res);
2070 cma_remove_id_from_tree(id_priv);
2071 if (id_priv->cma_dev) {
2072 if (rdma_cap_ib_cm(id_priv->id.device, 1)) {
2073 if (id_priv->cm_id.ib)
2074 ib_destroy_cm_id(id_priv->cm_id.ib);
2075 } else if (rdma_cap_iw_cm(id_priv->id.device, 1)) {
2076 if (id_priv->cm_id.iw)
2077 iw_destroy_cm_id(id_priv->cm_id.iw);
2078 }
2079 cma_leave_mc_groups(id_priv);
2080 cma_release_dev(id_priv);
2081 }
2082
2083 cma_release_port(id_priv);
2084 cma_id_put(id_priv);
2085 wait_for_completion(&id_priv->comp);
2086
2087 if (id_priv->internal_id)
2088 cma_id_put(id_priv->id.context);
2089
2090 kfree(id_priv->id.route.path_rec);
2091 kfree(id_priv->id.route.path_rec_inbound);
2092 kfree(id_priv->id.route.path_rec_outbound);
2093
2094 put_net(id_priv->id.route.addr.dev_addr.net);
2095 kfree(id_priv);
2096 }
2097
2098 /*
2099 * destroy an ID from within the handler_mutex. This ensures that no other
2100 * handlers can start running concurrently.
2101 */
destroy_id_handler_unlock(struct rdma_id_private * id_priv)2102 static void destroy_id_handler_unlock(struct rdma_id_private *id_priv)
2103 __releases(&idprv->handler_mutex)
2104 {
2105 enum rdma_cm_state state;
2106 unsigned long flags;
2107
2108 trace_cm_id_destroy(id_priv);
2109
2110 /*
2111 * Setting the state to destroyed under the handler mutex provides a
2112 * fence against calling handler callbacks. If this is invoked due to
2113 * the failure of a handler callback then it guarentees that no future
2114 * handlers will be called.
2115 */
2116 lockdep_assert_held(&id_priv->handler_mutex);
2117 spin_lock_irqsave(&id_priv->lock, flags);
2118 state = id_priv->state;
2119 id_priv->state = RDMA_CM_DESTROYING;
2120 spin_unlock_irqrestore(&id_priv->lock, flags);
2121 mutex_unlock(&id_priv->handler_mutex);
2122 _destroy_id(id_priv, state);
2123 }
2124
rdma_destroy_id(struct rdma_cm_id * id)2125 void rdma_destroy_id(struct rdma_cm_id *id)
2126 {
2127 struct rdma_id_private *id_priv =
2128 container_of(id, struct rdma_id_private, id);
2129
2130 mutex_lock(&id_priv->handler_mutex);
2131 destroy_id_handler_unlock(id_priv);
2132 }
2133 EXPORT_SYMBOL(rdma_destroy_id);
2134
cma_rep_recv(struct rdma_id_private * id_priv)2135 static int cma_rep_recv(struct rdma_id_private *id_priv)
2136 {
2137 int ret;
2138
2139 ret = cma_modify_qp_rtr(id_priv, NULL);
2140 if (ret)
2141 goto reject;
2142
2143 ret = cma_modify_qp_rts(id_priv, NULL);
2144 if (ret)
2145 goto reject;
2146
2147 trace_cm_send_rtu(id_priv);
2148 ret = ib_send_cm_rtu(id_priv->cm_id.ib, NULL, 0);
2149 if (ret)
2150 goto reject;
2151
2152 return 0;
2153 reject:
2154 pr_debug_ratelimited("RDMA CM: CONNECT_ERROR: failed to handle reply. status %d\n", ret);
2155 cma_modify_qp_err(id_priv);
2156 trace_cm_send_rej(id_priv);
2157 ib_send_cm_rej(id_priv->cm_id.ib, IB_CM_REJ_CONSUMER_DEFINED,
2158 NULL, 0, NULL, 0);
2159 return ret;
2160 }
2161
cma_set_rep_event_data(struct rdma_cm_event * event,const struct ib_cm_rep_event_param * rep_data,void * private_data)2162 static void cma_set_rep_event_data(struct rdma_cm_event *event,
2163 const struct ib_cm_rep_event_param *rep_data,
2164 void *private_data)
2165 {
2166 event->param.conn.private_data = private_data;
2167 event->param.conn.private_data_len = IB_CM_REP_PRIVATE_DATA_SIZE;
2168 event->param.conn.responder_resources = rep_data->responder_resources;
2169 event->param.conn.initiator_depth = rep_data->initiator_depth;
2170 event->param.conn.flow_control = rep_data->flow_control;
2171 event->param.conn.rnr_retry_count = rep_data->rnr_retry_count;
2172 event->param.conn.srq = rep_data->srq;
2173 event->param.conn.qp_num = rep_data->remote_qpn;
2174
2175 event->ece.vendor_id = rep_data->ece.vendor_id;
2176 event->ece.attr_mod = rep_data->ece.attr_mod;
2177 }
2178
cma_cm_event_handler(struct rdma_id_private * id_priv,struct rdma_cm_event * event)2179 static int cma_cm_event_handler(struct rdma_id_private *id_priv,
2180 struct rdma_cm_event *event)
2181 {
2182 int ret;
2183
2184 lockdep_assert_held(&id_priv->handler_mutex);
2185
2186 trace_cm_event_handler(id_priv, event);
2187 ret = id_priv->id.event_handler(&id_priv->id, event);
2188 trace_cm_event_done(id_priv, event, ret);
2189 return ret;
2190 }
2191
cma_ib_handler(struct ib_cm_id * cm_id,const struct ib_cm_event * ib_event)2192 static int cma_ib_handler(struct ib_cm_id *cm_id,
2193 const struct ib_cm_event *ib_event)
2194 {
2195 struct rdma_id_private *id_priv = cm_id->context;
2196 struct rdma_cm_event event = {};
2197 enum rdma_cm_state state;
2198 int ret;
2199
2200 mutex_lock(&id_priv->handler_mutex);
2201 state = READ_ONCE(id_priv->state);
2202 if ((ib_event->event != IB_CM_TIMEWAIT_EXIT &&
2203 state != RDMA_CM_CONNECT) ||
2204 (ib_event->event == IB_CM_TIMEWAIT_EXIT &&
2205 state != RDMA_CM_DISCONNECT))
2206 goto out;
2207
2208 switch (ib_event->event) {
2209 case IB_CM_REQ_ERROR:
2210 case IB_CM_REP_ERROR:
2211 event.event = RDMA_CM_EVENT_UNREACHABLE;
2212 event.status = -ETIMEDOUT;
2213 break;
2214 case IB_CM_REP_RECEIVED:
2215 if (state == RDMA_CM_CONNECT &&
2216 (id_priv->id.qp_type != IB_QPT_UD)) {
2217 trace_cm_send_mra(id_priv);
2218 ib_send_cm_mra(cm_id, CMA_CM_MRA_SETTING, NULL, 0);
2219 }
2220 if (id_priv->id.qp) {
2221 event.status = cma_rep_recv(id_priv);
2222 event.event = event.status ? RDMA_CM_EVENT_CONNECT_ERROR :
2223 RDMA_CM_EVENT_ESTABLISHED;
2224 } else {
2225 event.event = RDMA_CM_EVENT_CONNECT_RESPONSE;
2226 }
2227 cma_set_rep_event_data(&event, &ib_event->param.rep_rcvd,
2228 ib_event->private_data);
2229 break;
2230 case IB_CM_RTU_RECEIVED:
2231 case IB_CM_USER_ESTABLISHED:
2232 event.event = RDMA_CM_EVENT_ESTABLISHED;
2233 break;
2234 case IB_CM_DREQ_ERROR:
2235 event.status = -ETIMEDOUT;
2236 fallthrough;
2237 case IB_CM_DREQ_RECEIVED:
2238 case IB_CM_DREP_RECEIVED:
2239 if (!cma_comp_exch(id_priv, RDMA_CM_CONNECT,
2240 RDMA_CM_DISCONNECT))
2241 goto out;
2242 event.event = RDMA_CM_EVENT_DISCONNECTED;
2243 break;
2244 case IB_CM_TIMEWAIT_EXIT:
2245 event.event = RDMA_CM_EVENT_TIMEWAIT_EXIT;
2246 break;
2247 case IB_CM_MRA_RECEIVED:
2248 /* ignore event */
2249 goto out;
2250 case IB_CM_REJ_RECEIVED:
2251 pr_debug_ratelimited("RDMA CM: REJECTED: %s\n", rdma_reject_msg(&id_priv->id,
2252 ib_event->param.rej_rcvd.reason));
2253 cma_modify_qp_err(id_priv);
2254 event.status = ib_event->param.rej_rcvd.reason;
2255 event.event = RDMA_CM_EVENT_REJECTED;
2256 event.param.conn.private_data = ib_event->private_data;
2257 event.param.conn.private_data_len = IB_CM_REJ_PRIVATE_DATA_SIZE;
2258 break;
2259 default:
2260 pr_err("RDMA CMA: unexpected IB CM event: %d\n",
2261 ib_event->event);
2262 goto out;
2263 }
2264
2265 ret = cma_cm_event_handler(id_priv, &event);
2266 if (ret) {
2267 /* Destroy the CM ID by returning a non-zero value. */
2268 id_priv->cm_id.ib = NULL;
2269 destroy_id_handler_unlock(id_priv);
2270 return ret;
2271 }
2272 out:
2273 mutex_unlock(&id_priv->handler_mutex);
2274 return 0;
2275 }
2276
2277 static struct rdma_id_private *
cma_ib_new_conn_id(const struct rdma_cm_id * listen_id,const struct ib_cm_event * ib_event,struct net_device * net_dev)2278 cma_ib_new_conn_id(const struct rdma_cm_id *listen_id,
2279 const struct ib_cm_event *ib_event,
2280 struct net_device *net_dev)
2281 {
2282 struct rdma_id_private *listen_id_priv;
2283 struct rdma_id_private *id_priv;
2284 struct rdma_cm_id *id;
2285 struct rdma_route *rt;
2286 const sa_family_t ss_family = listen_id->route.addr.src_addr.ss_family;
2287 struct sa_path_rec *path = ib_event->param.req_rcvd.primary_path;
2288 const __be64 service_id =
2289 ib_event->param.req_rcvd.primary_path->service_id;
2290 int ret;
2291
2292 listen_id_priv = container_of(listen_id, struct rdma_id_private, id);
2293 id_priv = __rdma_create_id(listen_id->route.addr.dev_addr.net,
2294 listen_id->event_handler, listen_id->context,
2295 listen_id->ps,
2296 ib_event->param.req_rcvd.qp_type,
2297 listen_id_priv);
2298 if (IS_ERR(id_priv))
2299 return NULL;
2300
2301 id = &id_priv->id;
2302 if (cma_save_net_info((struct sockaddr *)&id->route.addr.src_addr,
2303 (struct sockaddr *)&id->route.addr.dst_addr,
2304 listen_id, ib_event, ss_family, service_id))
2305 goto err;
2306
2307 rt = &id->route;
2308 rt->num_pri_alt_paths = ib_event->param.req_rcvd.alternate_path ? 2 : 1;
2309 rt->path_rec = kmalloc_array(rt->num_pri_alt_paths,
2310 sizeof(*rt->path_rec), GFP_KERNEL);
2311 if (!rt->path_rec)
2312 goto err;
2313
2314 rt->path_rec[0] = *path;
2315 if (rt->num_pri_alt_paths == 2)
2316 rt->path_rec[1] = *ib_event->param.req_rcvd.alternate_path;
2317
2318 if (net_dev) {
2319 rdma_copy_src_l2_addr(&rt->addr.dev_addr, net_dev);
2320 } else {
2321 if (!cma_protocol_roce(listen_id) &&
2322 cma_any_addr(cma_src_addr(id_priv))) {
2323 rt->addr.dev_addr.dev_type = ARPHRD_INFINIBAND;
2324 rdma_addr_set_sgid(&rt->addr.dev_addr, &rt->path_rec[0].sgid);
2325 ib_addr_set_pkey(&rt->addr.dev_addr, be16_to_cpu(rt->path_rec[0].pkey));
2326 } else if (!cma_any_addr(cma_src_addr(id_priv))) {
2327 ret = cma_translate_addr(cma_src_addr(id_priv), &rt->addr.dev_addr);
2328 if (ret)
2329 goto err;
2330 }
2331 }
2332 rdma_addr_set_dgid(&rt->addr.dev_addr, &rt->path_rec[0].dgid);
2333
2334 id_priv->state = RDMA_CM_CONNECT;
2335 return id_priv;
2336
2337 err:
2338 rdma_destroy_id(id);
2339 return NULL;
2340 }
2341
2342 static struct rdma_id_private *
cma_ib_new_udp_id(const struct rdma_cm_id * listen_id,const struct ib_cm_event * ib_event,struct net_device * net_dev)2343 cma_ib_new_udp_id(const struct rdma_cm_id *listen_id,
2344 const struct ib_cm_event *ib_event,
2345 struct net_device *net_dev)
2346 {
2347 const struct rdma_id_private *listen_id_priv;
2348 struct rdma_id_private *id_priv;
2349 struct rdma_cm_id *id;
2350 const sa_family_t ss_family = listen_id->route.addr.src_addr.ss_family;
2351 struct net *net = listen_id->route.addr.dev_addr.net;
2352 int ret;
2353
2354 listen_id_priv = container_of(listen_id, struct rdma_id_private, id);
2355 id_priv = __rdma_create_id(net, listen_id->event_handler,
2356 listen_id->context, listen_id->ps, IB_QPT_UD,
2357 listen_id_priv);
2358 if (IS_ERR(id_priv))
2359 return NULL;
2360
2361 id = &id_priv->id;
2362 if (cma_save_net_info((struct sockaddr *)&id->route.addr.src_addr,
2363 (struct sockaddr *)&id->route.addr.dst_addr,
2364 listen_id, ib_event, ss_family,
2365 ib_event->param.sidr_req_rcvd.service_id))
2366 goto err;
2367
2368 if (net_dev) {
2369 rdma_copy_src_l2_addr(&id->route.addr.dev_addr, net_dev);
2370 } else {
2371 if (!cma_any_addr(cma_src_addr(id_priv))) {
2372 ret = cma_translate_addr(cma_src_addr(id_priv),
2373 &id->route.addr.dev_addr);
2374 if (ret)
2375 goto err;
2376 }
2377 }
2378
2379 id_priv->state = RDMA_CM_CONNECT;
2380 return id_priv;
2381 err:
2382 rdma_destroy_id(id);
2383 return NULL;
2384 }
2385
cma_set_req_event_data(struct rdma_cm_event * event,const struct ib_cm_req_event_param * req_data,void * private_data,int offset)2386 static void cma_set_req_event_data(struct rdma_cm_event *event,
2387 const struct ib_cm_req_event_param *req_data,
2388 void *private_data, int offset)
2389 {
2390 event->param.conn.private_data = private_data + offset;
2391 event->param.conn.private_data_len = IB_CM_REQ_PRIVATE_DATA_SIZE - offset;
2392 event->param.conn.responder_resources = req_data->responder_resources;
2393 event->param.conn.initiator_depth = req_data->initiator_depth;
2394 event->param.conn.flow_control = req_data->flow_control;
2395 event->param.conn.retry_count = req_data->retry_count;
2396 event->param.conn.rnr_retry_count = req_data->rnr_retry_count;
2397 event->param.conn.srq = req_data->srq;
2398 event->param.conn.qp_num = req_data->remote_qpn;
2399
2400 event->ece.vendor_id = req_data->ece.vendor_id;
2401 event->ece.attr_mod = req_data->ece.attr_mod;
2402 }
2403
cma_ib_check_req_qp_type(const struct rdma_cm_id * id,const struct ib_cm_event * ib_event)2404 static int cma_ib_check_req_qp_type(const struct rdma_cm_id *id,
2405 const struct ib_cm_event *ib_event)
2406 {
2407 return (((ib_event->event == IB_CM_REQ_RECEIVED) &&
2408 (ib_event->param.req_rcvd.qp_type == id->qp_type)) ||
2409 ((ib_event->event == IB_CM_SIDR_REQ_RECEIVED) &&
2410 (id->qp_type == IB_QPT_UD)) ||
2411 (!id->qp_type));
2412 }
2413
cma_ib_req_handler(struct ib_cm_id * cm_id,const struct ib_cm_event * ib_event)2414 static int cma_ib_req_handler(struct ib_cm_id *cm_id,
2415 const struct ib_cm_event *ib_event)
2416 {
2417 struct rdma_id_private *listen_id, *conn_id = NULL;
2418 struct rdma_cm_event event = {};
2419 struct cma_req_info req = {};
2420 struct net_device *net_dev;
2421 u8 offset;
2422 int ret;
2423
2424 listen_id = cma_ib_id_from_event(cm_id, ib_event, &req, &net_dev);
2425 if (IS_ERR(listen_id))
2426 return PTR_ERR(listen_id);
2427
2428 trace_cm_req_handler(listen_id, ib_event->event);
2429 if (!cma_ib_check_req_qp_type(&listen_id->id, ib_event)) {
2430 ret = -EINVAL;
2431 goto net_dev_put;
2432 }
2433
2434 mutex_lock(&listen_id->handler_mutex);
2435 if (READ_ONCE(listen_id->state) != RDMA_CM_LISTEN) {
2436 ret = -ECONNABORTED;
2437 goto err_unlock;
2438 }
2439
2440 offset = cma_user_data_offset(listen_id);
2441 event.event = RDMA_CM_EVENT_CONNECT_REQUEST;
2442 if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED) {
2443 conn_id = cma_ib_new_udp_id(&listen_id->id, ib_event, net_dev);
2444 event.param.ud.private_data = ib_event->private_data + offset;
2445 event.param.ud.private_data_len =
2446 IB_CM_SIDR_REQ_PRIVATE_DATA_SIZE - offset;
2447 } else {
2448 conn_id = cma_ib_new_conn_id(&listen_id->id, ib_event, net_dev);
2449 cma_set_req_event_data(&event, &ib_event->param.req_rcvd,
2450 ib_event->private_data, offset);
2451 }
2452 if (!conn_id) {
2453 ret = -ENOMEM;
2454 goto err_unlock;
2455 }
2456
2457 mutex_lock_nested(&conn_id->handler_mutex, SINGLE_DEPTH_NESTING);
2458 ret = cma_ib_acquire_dev(conn_id, listen_id, &req);
2459 if (ret) {
2460 destroy_id_handler_unlock(conn_id);
2461 goto err_unlock;
2462 }
2463
2464 conn_id->cm_id.ib = cm_id;
2465 cm_id->context = conn_id;
2466 cm_id->cm_handler = cma_ib_handler;
2467
2468 ret = cma_cm_event_handler(conn_id, &event);
2469 if (ret) {
2470 /* Destroy the CM ID by returning a non-zero value. */
2471 conn_id->cm_id.ib = NULL;
2472 mutex_unlock(&listen_id->handler_mutex);
2473 destroy_id_handler_unlock(conn_id);
2474 goto net_dev_put;
2475 }
2476
2477 if (READ_ONCE(conn_id->state) == RDMA_CM_CONNECT &&
2478 conn_id->id.qp_type != IB_QPT_UD) {
2479 trace_cm_send_mra(cm_id->context);
2480 ib_send_cm_mra(cm_id, CMA_CM_MRA_SETTING, NULL, 0);
2481 }
2482 mutex_unlock(&conn_id->handler_mutex);
2483
2484 err_unlock:
2485 mutex_unlock(&listen_id->handler_mutex);
2486
2487 net_dev_put:
2488 dev_put(net_dev);
2489
2490 return ret;
2491 }
2492
rdma_get_service_id(struct rdma_cm_id * id,struct sockaddr * addr)2493 __be64 rdma_get_service_id(struct rdma_cm_id *id, struct sockaddr *addr)
2494 {
2495 if (addr->sa_family == AF_IB)
2496 return ((struct sockaddr_ib *) addr)->sib_sid;
2497
2498 return cpu_to_be64(((u64)id->ps << 16) + be16_to_cpu(cma_port(addr)));
2499 }
2500 EXPORT_SYMBOL(rdma_get_service_id);
2501
rdma_read_gids(struct rdma_cm_id * cm_id,union ib_gid * sgid,union ib_gid * dgid)2502 void rdma_read_gids(struct rdma_cm_id *cm_id, union ib_gid *sgid,
2503 union ib_gid *dgid)
2504 {
2505 struct rdma_addr *addr = &cm_id->route.addr;
2506
2507 if (!cm_id->device) {
2508 if (sgid)
2509 memset(sgid, 0, sizeof(*sgid));
2510 if (dgid)
2511 memset(dgid, 0, sizeof(*dgid));
2512 return;
2513 }
2514
2515 if (rdma_protocol_roce(cm_id->device, cm_id->port_num)) {
2516 if (sgid)
2517 rdma_ip2gid((struct sockaddr *)&addr->src_addr, sgid);
2518 if (dgid)
2519 rdma_ip2gid((struct sockaddr *)&addr->dst_addr, dgid);
2520 } else {
2521 if (sgid)
2522 rdma_addr_get_sgid(&addr->dev_addr, sgid);
2523 if (dgid)
2524 rdma_addr_get_dgid(&addr->dev_addr, dgid);
2525 }
2526 }
2527 EXPORT_SYMBOL(rdma_read_gids);
2528
cma_iw_handler(struct iw_cm_id * iw_id,struct iw_cm_event * iw_event)2529 static int cma_iw_handler(struct iw_cm_id *iw_id, struct iw_cm_event *iw_event)
2530 {
2531 struct rdma_id_private *id_priv = iw_id->context;
2532 struct rdma_cm_event event = {};
2533 int ret = 0;
2534 struct sockaddr *laddr = (struct sockaddr *)&iw_event->local_addr;
2535 struct sockaddr *raddr = (struct sockaddr *)&iw_event->remote_addr;
2536
2537 mutex_lock(&id_priv->handler_mutex);
2538 if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT)
2539 goto out;
2540
2541 switch (iw_event->event) {
2542 case IW_CM_EVENT_CLOSE:
2543 event.event = RDMA_CM_EVENT_DISCONNECTED;
2544 break;
2545 case IW_CM_EVENT_CONNECT_REPLY:
2546 memcpy(cma_src_addr(id_priv), laddr,
2547 rdma_addr_size(laddr));
2548 memcpy(cma_dst_addr(id_priv), raddr,
2549 rdma_addr_size(raddr));
2550 switch (iw_event->status) {
2551 case 0:
2552 event.event = RDMA_CM_EVENT_ESTABLISHED;
2553 event.param.conn.initiator_depth = iw_event->ird;
2554 event.param.conn.responder_resources = iw_event->ord;
2555 break;
2556 case -ECONNRESET:
2557 case -ECONNREFUSED:
2558 event.event = RDMA_CM_EVENT_REJECTED;
2559 break;
2560 case -ETIMEDOUT:
2561 event.event = RDMA_CM_EVENT_UNREACHABLE;
2562 break;
2563 default:
2564 event.event = RDMA_CM_EVENT_CONNECT_ERROR;
2565 break;
2566 }
2567 break;
2568 case IW_CM_EVENT_ESTABLISHED:
2569 event.event = RDMA_CM_EVENT_ESTABLISHED;
2570 event.param.conn.initiator_depth = iw_event->ird;
2571 event.param.conn.responder_resources = iw_event->ord;
2572 break;
2573 default:
2574 goto out;
2575 }
2576
2577 event.status = iw_event->status;
2578 event.param.conn.private_data = iw_event->private_data;
2579 event.param.conn.private_data_len = iw_event->private_data_len;
2580 ret = cma_cm_event_handler(id_priv, &event);
2581 if (ret) {
2582 /* Destroy the CM ID by returning a non-zero value. */
2583 id_priv->cm_id.iw = NULL;
2584 destroy_id_handler_unlock(id_priv);
2585 return ret;
2586 }
2587
2588 out:
2589 mutex_unlock(&id_priv->handler_mutex);
2590 return ret;
2591 }
2592
iw_conn_req_handler(struct iw_cm_id * cm_id,struct iw_cm_event * iw_event)2593 static int iw_conn_req_handler(struct iw_cm_id *cm_id,
2594 struct iw_cm_event *iw_event)
2595 {
2596 struct rdma_id_private *listen_id, *conn_id;
2597 struct rdma_cm_event event = {};
2598 int ret = -ECONNABORTED;
2599 struct sockaddr *laddr = (struct sockaddr *)&iw_event->local_addr;
2600 struct sockaddr *raddr = (struct sockaddr *)&iw_event->remote_addr;
2601
2602 event.event = RDMA_CM_EVENT_CONNECT_REQUEST;
2603 event.param.conn.private_data = iw_event->private_data;
2604 event.param.conn.private_data_len = iw_event->private_data_len;
2605 event.param.conn.initiator_depth = iw_event->ird;
2606 event.param.conn.responder_resources = iw_event->ord;
2607
2608 listen_id = cm_id->context;
2609
2610 mutex_lock(&listen_id->handler_mutex);
2611 if (READ_ONCE(listen_id->state) != RDMA_CM_LISTEN)
2612 goto out;
2613
2614 /* Create a new RDMA id for the new IW CM ID */
2615 conn_id = __rdma_create_id(listen_id->id.route.addr.dev_addr.net,
2616 listen_id->id.event_handler,
2617 listen_id->id.context, RDMA_PS_TCP,
2618 IB_QPT_RC, listen_id);
2619 if (IS_ERR(conn_id)) {
2620 ret = -ENOMEM;
2621 goto out;
2622 }
2623 mutex_lock_nested(&conn_id->handler_mutex, SINGLE_DEPTH_NESTING);
2624 conn_id->state = RDMA_CM_CONNECT;
2625
2626 ret = rdma_translate_ip(laddr, &conn_id->id.route.addr.dev_addr);
2627 if (ret) {
2628 mutex_unlock(&listen_id->handler_mutex);
2629 destroy_id_handler_unlock(conn_id);
2630 return ret;
2631 }
2632
2633 ret = cma_iw_acquire_dev(conn_id, listen_id);
2634 if (ret) {
2635 mutex_unlock(&listen_id->handler_mutex);
2636 destroy_id_handler_unlock(conn_id);
2637 return ret;
2638 }
2639
2640 conn_id->cm_id.iw = cm_id;
2641 cm_id->context = conn_id;
2642 cm_id->cm_handler = cma_iw_handler;
2643
2644 memcpy(cma_src_addr(conn_id), laddr, rdma_addr_size(laddr));
2645 memcpy(cma_dst_addr(conn_id), raddr, rdma_addr_size(raddr));
2646
2647 ret = cma_cm_event_handler(conn_id, &event);
2648 if (ret) {
2649 /* User wants to destroy the CM ID */
2650 conn_id->cm_id.iw = NULL;
2651 mutex_unlock(&listen_id->handler_mutex);
2652 destroy_id_handler_unlock(conn_id);
2653 return ret;
2654 }
2655
2656 mutex_unlock(&conn_id->handler_mutex);
2657
2658 out:
2659 mutex_unlock(&listen_id->handler_mutex);
2660 return ret;
2661 }
2662
cma_ib_listen(struct rdma_id_private * id_priv)2663 static int cma_ib_listen(struct rdma_id_private *id_priv)
2664 {
2665 struct sockaddr *addr;
2666 struct ib_cm_id *id;
2667 __be64 svc_id;
2668
2669 addr = cma_src_addr(id_priv);
2670 svc_id = rdma_get_service_id(&id_priv->id, addr);
2671 id = ib_cm_insert_listen(id_priv->id.device,
2672 cma_ib_req_handler, svc_id);
2673 if (IS_ERR(id))
2674 return PTR_ERR(id);
2675 id_priv->cm_id.ib = id;
2676
2677 return 0;
2678 }
2679
cma_iw_listen(struct rdma_id_private * id_priv,int backlog)2680 static int cma_iw_listen(struct rdma_id_private *id_priv, int backlog)
2681 {
2682 int ret;
2683 struct iw_cm_id *id;
2684
2685 id = iw_create_cm_id(id_priv->id.device,
2686 iw_conn_req_handler,
2687 id_priv);
2688 if (IS_ERR(id))
2689 return PTR_ERR(id);
2690
2691 mutex_lock(&id_priv->qp_mutex);
2692 id->tos = id_priv->tos;
2693 id->tos_set = id_priv->tos_set;
2694 mutex_unlock(&id_priv->qp_mutex);
2695 id->afonly = id_priv->afonly;
2696 id_priv->cm_id.iw = id;
2697
2698 memcpy(&id_priv->cm_id.iw->local_addr, cma_src_addr(id_priv),
2699 rdma_addr_size(cma_src_addr(id_priv)));
2700
2701 ret = iw_cm_listen(id_priv->cm_id.iw, backlog);
2702
2703 if (ret) {
2704 iw_destroy_cm_id(id_priv->cm_id.iw);
2705 id_priv->cm_id.iw = NULL;
2706 }
2707
2708 return ret;
2709 }
2710
cma_listen_handler(struct rdma_cm_id * id,struct rdma_cm_event * event)2711 static int cma_listen_handler(struct rdma_cm_id *id,
2712 struct rdma_cm_event *event)
2713 {
2714 struct rdma_id_private *id_priv = id->context;
2715
2716 /* Listening IDs are always destroyed on removal */
2717 if (event->event == RDMA_CM_EVENT_DEVICE_REMOVAL)
2718 return -1;
2719
2720 id->context = id_priv->id.context;
2721 id->event_handler = id_priv->id.event_handler;
2722 trace_cm_event_handler(id_priv, event);
2723 return id_priv->id.event_handler(id, event);
2724 }
2725
cma_listen_on_dev(struct rdma_id_private * id_priv,struct cma_device * cma_dev,struct rdma_id_private ** to_destroy)2726 static int cma_listen_on_dev(struct rdma_id_private *id_priv,
2727 struct cma_device *cma_dev,
2728 struct rdma_id_private **to_destroy)
2729 {
2730 struct rdma_id_private *dev_id_priv;
2731 struct net *net = id_priv->id.route.addr.dev_addr.net;
2732 int ret;
2733
2734 lockdep_assert_held(&lock);
2735
2736 *to_destroy = NULL;
2737 if (cma_family(id_priv) == AF_IB && !rdma_cap_ib_cm(cma_dev->device, 1))
2738 return 0;
2739
2740 dev_id_priv =
2741 __rdma_create_id(net, cma_listen_handler, id_priv,
2742 id_priv->id.ps, id_priv->id.qp_type, id_priv);
2743 if (IS_ERR(dev_id_priv))
2744 return PTR_ERR(dev_id_priv);
2745
2746 dev_id_priv->state = RDMA_CM_ADDR_BOUND;
2747 memcpy(cma_src_addr(dev_id_priv), cma_src_addr(id_priv),
2748 rdma_addr_size(cma_src_addr(id_priv)));
2749
2750 _cma_attach_to_dev(dev_id_priv, cma_dev);
2751 rdma_restrack_add(&dev_id_priv->res);
2752 cma_id_get(id_priv);
2753 dev_id_priv->internal_id = 1;
2754 dev_id_priv->afonly = id_priv->afonly;
2755 mutex_lock(&id_priv->qp_mutex);
2756 dev_id_priv->tos_set = id_priv->tos_set;
2757 dev_id_priv->tos = id_priv->tos;
2758 mutex_unlock(&id_priv->qp_mutex);
2759
2760 ret = rdma_listen(&dev_id_priv->id, id_priv->backlog);
2761 if (ret)
2762 goto err_listen;
2763 list_add_tail(&dev_id_priv->listen_item, &id_priv->listen_list);
2764 return 0;
2765 err_listen:
2766 /* Caller must destroy this after releasing lock */
2767 *to_destroy = dev_id_priv;
2768 dev_warn(&cma_dev->device->dev, "RDMA CMA: %s, error %d\n", __func__, ret);
2769 return ret;
2770 }
2771
cma_listen_on_all(struct rdma_id_private * id_priv)2772 static int cma_listen_on_all(struct rdma_id_private *id_priv)
2773 {
2774 struct rdma_id_private *to_destroy;
2775 struct cma_device *cma_dev;
2776 int ret;
2777
2778 mutex_lock(&lock);
2779 list_add_tail(&id_priv->listen_any_item, &listen_any_list);
2780 list_for_each_entry(cma_dev, &dev_list, list) {
2781 ret = cma_listen_on_dev(id_priv, cma_dev, &to_destroy);
2782 if (ret) {
2783 /* Prevent racing with cma_process_remove() */
2784 if (to_destroy)
2785 list_del_init(&to_destroy->device_item);
2786 goto err_listen;
2787 }
2788 }
2789 mutex_unlock(&lock);
2790 return 0;
2791
2792 err_listen:
2793 _cma_cancel_listens(id_priv);
2794 mutex_unlock(&lock);
2795 if (to_destroy)
2796 rdma_destroy_id(&to_destroy->id);
2797 return ret;
2798 }
2799
rdma_set_service_type(struct rdma_cm_id * id,int tos)2800 void rdma_set_service_type(struct rdma_cm_id *id, int tos)
2801 {
2802 struct rdma_id_private *id_priv;
2803
2804 id_priv = container_of(id, struct rdma_id_private, id);
2805 mutex_lock(&id_priv->qp_mutex);
2806 id_priv->tos = (u8) tos;
2807 id_priv->tos_set = true;
2808 mutex_unlock(&id_priv->qp_mutex);
2809 }
2810 EXPORT_SYMBOL(rdma_set_service_type);
2811
2812 /**
2813 * rdma_set_ack_timeout() - Set the ack timeout of QP associated
2814 * with a connection identifier.
2815 * @id: Communication identifier to associated with service type.
2816 * @timeout: Ack timeout to set a QP, expressed as 4.096 * 2^(timeout) usec.
2817 *
2818 * This function should be called before rdma_connect() on active side,
2819 * and on passive side before rdma_accept(). It is applicable to primary
2820 * path only. The timeout will affect the local side of the QP, it is not
2821 * negotiated with remote side and zero disables the timer. In case it is
2822 * set before rdma_resolve_route, the value will also be used to determine
2823 * PacketLifeTime for RoCE.
2824 *
2825 * Return: 0 for success
2826 */
rdma_set_ack_timeout(struct rdma_cm_id * id,u8 timeout)2827 int rdma_set_ack_timeout(struct rdma_cm_id *id, u8 timeout)
2828 {
2829 struct rdma_id_private *id_priv;
2830
2831 if (id->qp_type != IB_QPT_RC && id->qp_type != IB_QPT_XRC_INI)
2832 return -EINVAL;
2833
2834 id_priv = container_of(id, struct rdma_id_private, id);
2835 mutex_lock(&id_priv->qp_mutex);
2836 id_priv->timeout = timeout;
2837 id_priv->timeout_set = true;
2838 mutex_unlock(&id_priv->qp_mutex);
2839
2840 return 0;
2841 }
2842 EXPORT_SYMBOL(rdma_set_ack_timeout);
2843
2844 /**
2845 * rdma_set_min_rnr_timer() - Set the minimum RNR Retry timer of the
2846 * QP associated with a connection identifier.
2847 * @id: Communication identifier to associated with service type.
2848 * @min_rnr_timer: 5-bit value encoded as Table 45: "Encoding for RNR NAK
2849 * Timer Field" in the IBTA specification.
2850 *
2851 * This function should be called before rdma_connect() on active
2852 * side, and on passive side before rdma_accept(). The timer value
2853 * will be associated with the local QP. When it receives a send it is
2854 * not read to handle, typically if the receive queue is empty, an RNR
2855 * Retry NAK is returned to the requester with the min_rnr_timer
2856 * encoded. The requester will then wait at least the time specified
2857 * in the NAK before retrying. The default is zero, which translates
2858 * to a minimum RNR Timer value of 655 ms.
2859 *
2860 * Return: 0 for success
2861 */
rdma_set_min_rnr_timer(struct rdma_cm_id * id,u8 min_rnr_timer)2862 int rdma_set_min_rnr_timer(struct rdma_cm_id *id, u8 min_rnr_timer)
2863 {
2864 struct rdma_id_private *id_priv;
2865
2866 /* It is a five-bit value */
2867 if (min_rnr_timer & 0xe0)
2868 return -EINVAL;
2869
2870 if (WARN_ON(id->qp_type != IB_QPT_RC && id->qp_type != IB_QPT_XRC_TGT))
2871 return -EINVAL;
2872
2873 id_priv = container_of(id, struct rdma_id_private, id);
2874 mutex_lock(&id_priv->qp_mutex);
2875 id_priv->min_rnr_timer = min_rnr_timer;
2876 id_priv->min_rnr_timer_set = true;
2877 mutex_unlock(&id_priv->qp_mutex);
2878
2879 return 0;
2880 }
2881 EXPORT_SYMBOL(rdma_set_min_rnr_timer);
2882
route_set_path_rec_inbound(struct cma_work * work,struct sa_path_rec * path_rec)2883 static int route_set_path_rec_inbound(struct cma_work *work,
2884 struct sa_path_rec *path_rec)
2885 {
2886 struct rdma_route *route = &work->id->id.route;
2887
2888 if (!route->path_rec_inbound) {
2889 route->path_rec_inbound =
2890 kzalloc(sizeof(*route->path_rec_inbound), GFP_KERNEL);
2891 if (!route->path_rec_inbound)
2892 return -ENOMEM;
2893 }
2894
2895 *route->path_rec_inbound = *path_rec;
2896 return 0;
2897 }
2898
route_set_path_rec_outbound(struct cma_work * work,struct sa_path_rec * path_rec)2899 static int route_set_path_rec_outbound(struct cma_work *work,
2900 struct sa_path_rec *path_rec)
2901 {
2902 struct rdma_route *route = &work->id->id.route;
2903
2904 if (!route->path_rec_outbound) {
2905 route->path_rec_outbound =
2906 kzalloc(sizeof(*route->path_rec_outbound), GFP_KERNEL);
2907 if (!route->path_rec_outbound)
2908 return -ENOMEM;
2909 }
2910
2911 *route->path_rec_outbound = *path_rec;
2912 return 0;
2913 }
2914
cma_query_handler(int status,struct sa_path_rec * path_rec,unsigned int num_prs,void * context)2915 static void cma_query_handler(int status, struct sa_path_rec *path_rec,
2916 unsigned int num_prs, void *context)
2917 {
2918 struct cma_work *work = context;
2919 struct rdma_route *route;
2920 int i;
2921
2922 route = &work->id->id.route;
2923
2924 if (status)
2925 goto fail;
2926
2927 for (i = 0; i < num_prs; i++) {
2928 if (!path_rec[i].flags || (path_rec[i].flags & IB_PATH_GMP))
2929 *route->path_rec = path_rec[i];
2930 else if (path_rec[i].flags & IB_PATH_INBOUND)
2931 status = route_set_path_rec_inbound(work, &path_rec[i]);
2932 else if (path_rec[i].flags & IB_PATH_OUTBOUND)
2933 status = route_set_path_rec_outbound(work,
2934 &path_rec[i]);
2935 else
2936 status = -EINVAL;
2937
2938 if (status)
2939 goto fail;
2940 }
2941
2942 route->num_pri_alt_paths = 1;
2943 queue_work(cma_wq, &work->work);
2944 return;
2945
2946 fail:
2947 work->old_state = RDMA_CM_ROUTE_QUERY;
2948 work->new_state = RDMA_CM_ADDR_RESOLVED;
2949 work->event.event = RDMA_CM_EVENT_ROUTE_ERROR;
2950 work->event.status = status;
2951 pr_debug_ratelimited("RDMA CM: ROUTE_ERROR: failed to query path. status %d\n",
2952 status);
2953 queue_work(cma_wq, &work->work);
2954 }
2955
cma_query_ib_route(struct rdma_id_private * id_priv,unsigned long timeout_ms,struct cma_work * work)2956 static int cma_query_ib_route(struct rdma_id_private *id_priv,
2957 unsigned long timeout_ms, struct cma_work *work)
2958 {
2959 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
2960 struct sa_path_rec path_rec;
2961 ib_sa_comp_mask comp_mask;
2962 struct sockaddr_in6 *sin6;
2963 struct sockaddr_ib *sib;
2964
2965 memset(&path_rec, 0, sizeof path_rec);
2966
2967 if (rdma_cap_opa_ah(id_priv->id.device, id_priv->id.port_num))
2968 path_rec.rec_type = SA_PATH_REC_TYPE_OPA;
2969 else
2970 path_rec.rec_type = SA_PATH_REC_TYPE_IB;
2971 rdma_addr_get_sgid(dev_addr, &path_rec.sgid);
2972 rdma_addr_get_dgid(dev_addr, &path_rec.dgid);
2973 path_rec.pkey = cpu_to_be16(ib_addr_get_pkey(dev_addr));
2974 path_rec.numb_path = 1;
2975 path_rec.reversible = 1;
2976 path_rec.service_id = rdma_get_service_id(&id_priv->id,
2977 cma_dst_addr(id_priv));
2978
2979 comp_mask = IB_SA_PATH_REC_DGID | IB_SA_PATH_REC_SGID |
2980 IB_SA_PATH_REC_PKEY | IB_SA_PATH_REC_NUMB_PATH |
2981 IB_SA_PATH_REC_REVERSIBLE | IB_SA_PATH_REC_SERVICE_ID;
2982
2983 switch (cma_family(id_priv)) {
2984 case AF_INET:
2985 path_rec.qos_class = cpu_to_be16((u16) id_priv->tos);
2986 comp_mask |= IB_SA_PATH_REC_QOS_CLASS;
2987 break;
2988 case AF_INET6:
2989 sin6 = (struct sockaddr_in6 *) cma_src_addr(id_priv);
2990 path_rec.traffic_class = (u8) (be32_to_cpu(sin6->sin6_flowinfo) >> 20);
2991 comp_mask |= IB_SA_PATH_REC_TRAFFIC_CLASS;
2992 break;
2993 case AF_IB:
2994 sib = (struct sockaddr_ib *) cma_src_addr(id_priv);
2995 path_rec.traffic_class = (u8) (be32_to_cpu(sib->sib_flowinfo) >> 20);
2996 comp_mask |= IB_SA_PATH_REC_TRAFFIC_CLASS;
2997 break;
2998 }
2999
3000 id_priv->query_id = ib_sa_path_rec_get(&sa_client, id_priv->id.device,
3001 id_priv->id.port_num, &path_rec,
3002 comp_mask, timeout_ms,
3003 GFP_KERNEL, cma_query_handler,
3004 work, &id_priv->query);
3005
3006 return (id_priv->query_id < 0) ? id_priv->query_id : 0;
3007 }
3008
cma_iboe_join_work_handler(struct work_struct * work)3009 static void cma_iboe_join_work_handler(struct work_struct *work)
3010 {
3011 struct cma_multicast *mc =
3012 container_of(work, struct cma_multicast, iboe_join.work);
3013 struct rdma_cm_event *event = &mc->iboe_join.event;
3014 struct rdma_id_private *id_priv = mc->id_priv;
3015 int ret;
3016
3017 mutex_lock(&id_priv->handler_mutex);
3018 if (READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING ||
3019 READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL)
3020 goto out_unlock;
3021
3022 ret = cma_cm_event_handler(id_priv, event);
3023 WARN_ON(ret);
3024
3025 out_unlock:
3026 mutex_unlock(&id_priv->handler_mutex);
3027 if (event->event == RDMA_CM_EVENT_MULTICAST_JOIN)
3028 rdma_destroy_ah_attr(&event->param.ud.ah_attr);
3029 }
3030
cma_work_handler(struct work_struct * _work)3031 static void cma_work_handler(struct work_struct *_work)
3032 {
3033 struct cma_work *work = container_of(_work, struct cma_work, work);
3034 struct rdma_id_private *id_priv = work->id;
3035
3036 mutex_lock(&id_priv->handler_mutex);
3037 if (READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING ||
3038 READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL)
3039 goto out_unlock;
3040 if (work->old_state != 0 || work->new_state != 0) {
3041 if (!cma_comp_exch(id_priv, work->old_state, work->new_state))
3042 goto out_unlock;
3043 }
3044
3045 if (cma_cm_event_handler(id_priv, &work->event)) {
3046 cma_id_put(id_priv);
3047 destroy_id_handler_unlock(id_priv);
3048 goto out_free;
3049 }
3050
3051 out_unlock:
3052 mutex_unlock(&id_priv->handler_mutex);
3053 cma_id_put(id_priv);
3054 out_free:
3055 if (work->event.event == RDMA_CM_EVENT_MULTICAST_JOIN)
3056 rdma_destroy_ah_attr(&work->event.param.ud.ah_attr);
3057 kfree(work);
3058 }
3059
cma_init_resolve_route_work(struct cma_work * work,struct rdma_id_private * id_priv)3060 static void cma_init_resolve_route_work(struct cma_work *work,
3061 struct rdma_id_private *id_priv)
3062 {
3063 work->id = id_priv;
3064 INIT_WORK(&work->work, cma_work_handler);
3065 work->old_state = RDMA_CM_ROUTE_QUERY;
3066 work->new_state = RDMA_CM_ROUTE_RESOLVED;
3067 work->event.event = RDMA_CM_EVENT_ROUTE_RESOLVED;
3068 }
3069
enqueue_resolve_addr_work(struct cma_work * work,struct rdma_id_private * id_priv)3070 static void enqueue_resolve_addr_work(struct cma_work *work,
3071 struct rdma_id_private *id_priv)
3072 {
3073 /* Balances with cma_id_put() in cma_work_handler */
3074 cma_id_get(id_priv);
3075
3076 work->id = id_priv;
3077 INIT_WORK(&work->work, cma_work_handler);
3078 work->old_state = RDMA_CM_ADDR_QUERY;
3079 work->new_state = RDMA_CM_ADDR_RESOLVED;
3080 work->event.event = RDMA_CM_EVENT_ADDR_RESOLVED;
3081
3082 queue_work(cma_wq, &work->work);
3083 }
3084
cma_resolve_ib_route(struct rdma_id_private * id_priv,unsigned long timeout_ms)3085 static int cma_resolve_ib_route(struct rdma_id_private *id_priv,
3086 unsigned long timeout_ms)
3087 {
3088 struct rdma_route *route = &id_priv->id.route;
3089 struct cma_work *work;
3090 int ret;
3091
3092 work = kzalloc(sizeof *work, GFP_KERNEL);
3093 if (!work)
3094 return -ENOMEM;
3095
3096 cma_init_resolve_route_work(work, id_priv);
3097
3098 if (!route->path_rec)
3099 route->path_rec = kmalloc(sizeof *route->path_rec, GFP_KERNEL);
3100 if (!route->path_rec) {
3101 ret = -ENOMEM;
3102 goto err1;
3103 }
3104
3105 ret = cma_query_ib_route(id_priv, timeout_ms, work);
3106 if (ret)
3107 goto err2;
3108
3109 return 0;
3110 err2:
3111 kfree(route->path_rec);
3112 route->path_rec = NULL;
3113 err1:
3114 kfree(work);
3115 return ret;
3116 }
3117
cma_route_gid_type(enum rdma_network_type network_type,unsigned long supported_gids,enum ib_gid_type default_gid)3118 static enum ib_gid_type cma_route_gid_type(enum rdma_network_type network_type,
3119 unsigned long supported_gids,
3120 enum ib_gid_type default_gid)
3121 {
3122 if ((network_type == RDMA_NETWORK_IPV4 ||
3123 network_type == RDMA_NETWORK_IPV6) &&
3124 test_bit(IB_GID_TYPE_ROCE_UDP_ENCAP, &supported_gids))
3125 return IB_GID_TYPE_ROCE_UDP_ENCAP;
3126
3127 return default_gid;
3128 }
3129
3130 /*
3131 * cma_iboe_set_path_rec_l2_fields() is helper function which sets
3132 * path record type based on GID type.
3133 * It also sets up other L2 fields which includes destination mac address
3134 * netdev ifindex, of the path record.
3135 * It returns the netdev of the bound interface for this path record entry.
3136 */
3137 static struct net_device *
cma_iboe_set_path_rec_l2_fields(struct rdma_id_private * id_priv)3138 cma_iboe_set_path_rec_l2_fields(struct rdma_id_private *id_priv)
3139 {
3140 struct rdma_route *route = &id_priv->id.route;
3141 enum ib_gid_type gid_type = IB_GID_TYPE_ROCE;
3142 struct rdma_addr *addr = &route->addr;
3143 unsigned long supported_gids;
3144 struct net_device *ndev;
3145
3146 if (!addr->dev_addr.bound_dev_if)
3147 return NULL;
3148
3149 ndev = dev_get_by_index(addr->dev_addr.net,
3150 addr->dev_addr.bound_dev_if);
3151 if (!ndev)
3152 return NULL;
3153
3154 supported_gids = roce_gid_type_mask_support(id_priv->id.device,
3155 id_priv->id.port_num);
3156 gid_type = cma_route_gid_type(addr->dev_addr.network,
3157 supported_gids,
3158 id_priv->gid_type);
3159 /* Use the hint from IP Stack to select GID Type */
3160 if (gid_type < ib_network_to_gid_type(addr->dev_addr.network))
3161 gid_type = ib_network_to_gid_type(addr->dev_addr.network);
3162 route->path_rec->rec_type = sa_conv_gid_to_pathrec_type(gid_type);
3163
3164 route->path_rec->roce.route_resolved = true;
3165 sa_path_set_dmac(route->path_rec, addr->dev_addr.dst_dev_addr);
3166 return ndev;
3167 }
3168
rdma_set_ib_path(struct rdma_cm_id * id,struct sa_path_rec * path_rec)3169 int rdma_set_ib_path(struct rdma_cm_id *id,
3170 struct sa_path_rec *path_rec)
3171 {
3172 struct rdma_id_private *id_priv;
3173 struct net_device *ndev;
3174 int ret;
3175
3176 id_priv = container_of(id, struct rdma_id_private, id);
3177 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED,
3178 RDMA_CM_ROUTE_RESOLVED))
3179 return -EINVAL;
3180
3181 id->route.path_rec = kmemdup(path_rec, sizeof(*path_rec),
3182 GFP_KERNEL);
3183 if (!id->route.path_rec) {
3184 ret = -ENOMEM;
3185 goto err;
3186 }
3187
3188 if (rdma_protocol_roce(id->device, id->port_num)) {
3189 ndev = cma_iboe_set_path_rec_l2_fields(id_priv);
3190 if (!ndev) {
3191 ret = -ENODEV;
3192 goto err_free;
3193 }
3194 dev_put(ndev);
3195 }
3196
3197 id->route.num_pri_alt_paths = 1;
3198 return 0;
3199
3200 err_free:
3201 kfree(id->route.path_rec);
3202 id->route.path_rec = NULL;
3203 err:
3204 cma_comp_exch(id_priv, RDMA_CM_ROUTE_RESOLVED, RDMA_CM_ADDR_RESOLVED);
3205 return ret;
3206 }
3207 EXPORT_SYMBOL(rdma_set_ib_path);
3208
cma_resolve_iw_route(struct rdma_id_private * id_priv)3209 static int cma_resolve_iw_route(struct rdma_id_private *id_priv)
3210 {
3211 struct cma_work *work;
3212
3213 work = kzalloc(sizeof *work, GFP_KERNEL);
3214 if (!work)
3215 return -ENOMEM;
3216
3217 cma_init_resolve_route_work(work, id_priv);
3218 queue_work(cma_wq, &work->work);
3219 return 0;
3220 }
3221
get_vlan_ndev_tc(struct net_device * vlan_ndev,int prio)3222 static int get_vlan_ndev_tc(struct net_device *vlan_ndev, int prio)
3223 {
3224 struct net_device *dev;
3225
3226 dev = vlan_dev_real_dev(vlan_ndev);
3227 if (dev->num_tc)
3228 return netdev_get_prio_tc_map(dev, prio);
3229
3230 return (vlan_dev_get_egress_qos_mask(vlan_ndev, prio) &
3231 VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
3232 }
3233
3234 struct iboe_prio_tc_map {
3235 int input_prio;
3236 int output_tc;
3237 bool found;
3238 };
3239
get_lower_vlan_dev_tc(struct net_device * dev,struct netdev_nested_priv * priv)3240 static int get_lower_vlan_dev_tc(struct net_device *dev,
3241 struct netdev_nested_priv *priv)
3242 {
3243 struct iboe_prio_tc_map *map = (struct iboe_prio_tc_map *)priv->data;
3244
3245 if (is_vlan_dev(dev))
3246 map->output_tc = get_vlan_ndev_tc(dev, map->input_prio);
3247 else if (dev->num_tc)
3248 map->output_tc = netdev_get_prio_tc_map(dev, map->input_prio);
3249 else
3250 map->output_tc = 0;
3251 /* We are interested only in first level VLAN device, so always
3252 * return 1 to stop iterating over next level devices.
3253 */
3254 map->found = true;
3255 return 1;
3256 }
3257
iboe_tos_to_sl(struct net_device * ndev,int tos)3258 static int iboe_tos_to_sl(struct net_device *ndev, int tos)
3259 {
3260 struct iboe_prio_tc_map prio_tc_map = {};
3261 int prio = rt_tos2priority(tos);
3262 struct netdev_nested_priv priv;
3263
3264 /* If VLAN device, get it directly from the VLAN netdev */
3265 if (is_vlan_dev(ndev))
3266 return get_vlan_ndev_tc(ndev, prio);
3267
3268 prio_tc_map.input_prio = prio;
3269 priv.data = (void *)&prio_tc_map;
3270 rcu_read_lock();
3271 netdev_walk_all_lower_dev_rcu(ndev,
3272 get_lower_vlan_dev_tc,
3273 &priv);
3274 rcu_read_unlock();
3275 /* If map is found from lower device, use it; Otherwise
3276 * continue with the current netdevice to get priority to tc map.
3277 */
3278 if (prio_tc_map.found)
3279 return prio_tc_map.output_tc;
3280 else if (ndev->num_tc)
3281 return netdev_get_prio_tc_map(ndev, prio);
3282 else
3283 return 0;
3284 }
3285
cma_get_roce_udp_flow_label(struct rdma_id_private * id_priv)3286 static __be32 cma_get_roce_udp_flow_label(struct rdma_id_private *id_priv)
3287 {
3288 struct sockaddr_in6 *addr6;
3289 u16 dport, sport;
3290 u32 hash, fl;
3291
3292 addr6 = (struct sockaddr_in6 *)cma_src_addr(id_priv);
3293 fl = be32_to_cpu(addr6->sin6_flowinfo) & IB_GRH_FLOWLABEL_MASK;
3294 if ((cma_family(id_priv) != AF_INET6) || !fl) {
3295 dport = be16_to_cpu(cma_port(cma_dst_addr(id_priv)));
3296 sport = be16_to_cpu(cma_port(cma_src_addr(id_priv)));
3297 hash = (u32)sport * 31 + dport;
3298 fl = hash & IB_GRH_FLOWLABEL_MASK;
3299 }
3300
3301 return cpu_to_be32(fl);
3302 }
3303
cma_resolve_iboe_route(struct rdma_id_private * id_priv)3304 static int cma_resolve_iboe_route(struct rdma_id_private *id_priv)
3305 {
3306 struct rdma_route *route = &id_priv->id.route;
3307 struct rdma_addr *addr = &route->addr;
3308 struct cma_work *work;
3309 int ret;
3310 struct net_device *ndev;
3311
3312 u8 default_roce_tos = id_priv->cma_dev->default_roce_tos[id_priv->id.port_num -
3313 rdma_start_port(id_priv->cma_dev->device)];
3314 u8 tos;
3315
3316 mutex_lock(&id_priv->qp_mutex);
3317 tos = id_priv->tos_set ? id_priv->tos : default_roce_tos;
3318 mutex_unlock(&id_priv->qp_mutex);
3319
3320 work = kzalloc(sizeof *work, GFP_KERNEL);
3321 if (!work)
3322 return -ENOMEM;
3323
3324 route->path_rec = kzalloc(sizeof *route->path_rec, GFP_KERNEL);
3325 if (!route->path_rec) {
3326 ret = -ENOMEM;
3327 goto err1;
3328 }
3329
3330 route->num_pri_alt_paths = 1;
3331
3332 ndev = cma_iboe_set_path_rec_l2_fields(id_priv);
3333 if (!ndev) {
3334 ret = -ENODEV;
3335 goto err2;
3336 }
3337
3338 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr,
3339 &route->path_rec->sgid);
3340 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.dst_addr,
3341 &route->path_rec->dgid);
3342
3343 if (((struct sockaddr *)&id_priv->id.route.addr.dst_addr)->sa_family != AF_IB)
3344 /* TODO: get the hoplimit from the inet/inet6 device */
3345 route->path_rec->hop_limit = addr->dev_addr.hoplimit;
3346 else
3347 route->path_rec->hop_limit = 1;
3348 route->path_rec->reversible = 1;
3349 route->path_rec->pkey = cpu_to_be16(0xffff);
3350 route->path_rec->mtu_selector = IB_SA_EQ;
3351 route->path_rec->sl = iboe_tos_to_sl(ndev, tos);
3352 route->path_rec->traffic_class = tos;
3353 route->path_rec->mtu = iboe_get_mtu(ndev->mtu);
3354 route->path_rec->rate_selector = IB_SA_EQ;
3355 route->path_rec->rate = IB_RATE_PORT_CURRENT;
3356 dev_put(ndev);
3357 route->path_rec->packet_life_time_selector = IB_SA_EQ;
3358 /* In case ACK timeout is set, use this value to calculate
3359 * PacketLifeTime. As per IBTA 12.7.34,
3360 * local ACK timeout = (2 * PacketLifeTime + Local CA’s ACK delay).
3361 * Assuming a negligible local ACK delay, we can use
3362 * PacketLifeTime = local ACK timeout/2
3363 * as a reasonable approximation for RoCE networks.
3364 */
3365 mutex_lock(&id_priv->qp_mutex);
3366 if (id_priv->timeout_set && id_priv->timeout)
3367 route->path_rec->packet_life_time = id_priv->timeout - 1;
3368 else
3369 route->path_rec->packet_life_time = CMA_IBOE_PACKET_LIFETIME;
3370 mutex_unlock(&id_priv->qp_mutex);
3371
3372 if (!route->path_rec->mtu) {
3373 ret = -EINVAL;
3374 goto err2;
3375 }
3376
3377 if (rdma_protocol_roce_udp_encap(id_priv->id.device,
3378 id_priv->id.port_num))
3379 route->path_rec->flow_label =
3380 cma_get_roce_udp_flow_label(id_priv);
3381
3382 cma_init_resolve_route_work(work, id_priv);
3383 queue_work(cma_wq, &work->work);
3384
3385 return 0;
3386
3387 err2:
3388 kfree(route->path_rec);
3389 route->path_rec = NULL;
3390 route->num_pri_alt_paths = 0;
3391 err1:
3392 kfree(work);
3393 return ret;
3394 }
3395
rdma_resolve_route(struct rdma_cm_id * id,unsigned long timeout_ms)3396 int rdma_resolve_route(struct rdma_cm_id *id, unsigned long timeout_ms)
3397 {
3398 struct rdma_id_private *id_priv;
3399 int ret;
3400
3401 if (!timeout_ms)
3402 return -EINVAL;
3403
3404 id_priv = container_of(id, struct rdma_id_private, id);
3405 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED, RDMA_CM_ROUTE_QUERY))
3406 return -EINVAL;
3407
3408 cma_id_get(id_priv);
3409 if (rdma_cap_ib_sa(id->device, id->port_num))
3410 ret = cma_resolve_ib_route(id_priv, timeout_ms);
3411 else if (rdma_protocol_roce(id->device, id->port_num)) {
3412 ret = cma_resolve_iboe_route(id_priv);
3413 if (!ret)
3414 cma_add_id_to_tree(id_priv);
3415 }
3416 else if (rdma_protocol_iwarp(id->device, id->port_num))
3417 ret = cma_resolve_iw_route(id_priv);
3418 else
3419 ret = -ENOSYS;
3420
3421 if (ret)
3422 goto err;
3423
3424 return 0;
3425 err:
3426 cma_comp_exch(id_priv, RDMA_CM_ROUTE_QUERY, RDMA_CM_ADDR_RESOLVED);
3427 cma_id_put(id_priv);
3428 return ret;
3429 }
3430 EXPORT_SYMBOL(rdma_resolve_route);
3431
cma_set_loopback(struct sockaddr * addr)3432 static void cma_set_loopback(struct sockaddr *addr)
3433 {
3434 switch (addr->sa_family) {
3435 case AF_INET:
3436 ((struct sockaddr_in *) addr)->sin_addr.s_addr = htonl(INADDR_LOOPBACK);
3437 break;
3438 case AF_INET6:
3439 ipv6_addr_set(&((struct sockaddr_in6 *) addr)->sin6_addr,
3440 0, 0, 0, htonl(1));
3441 break;
3442 default:
3443 ib_addr_set(&((struct sockaddr_ib *) addr)->sib_addr,
3444 0, 0, 0, htonl(1));
3445 break;
3446 }
3447 }
3448
cma_bind_loopback(struct rdma_id_private * id_priv)3449 static int cma_bind_loopback(struct rdma_id_private *id_priv)
3450 {
3451 struct cma_device *cma_dev, *cur_dev;
3452 union ib_gid gid;
3453 enum ib_port_state port_state;
3454 unsigned int p;
3455 u16 pkey;
3456 int ret;
3457
3458 cma_dev = NULL;
3459 mutex_lock(&lock);
3460 list_for_each_entry(cur_dev, &dev_list, list) {
3461 if (cma_family(id_priv) == AF_IB &&
3462 !rdma_cap_ib_cm(cur_dev->device, 1))
3463 continue;
3464
3465 if (!cma_dev)
3466 cma_dev = cur_dev;
3467
3468 rdma_for_each_port (cur_dev->device, p) {
3469 if (!ib_get_cached_port_state(cur_dev->device, p, &port_state) &&
3470 port_state == IB_PORT_ACTIVE) {
3471 cma_dev = cur_dev;
3472 goto port_found;
3473 }
3474 }
3475 }
3476
3477 if (!cma_dev) {
3478 ret = -ENODEV;
3479 goto out;
3480 }
3481
3482 p = 1;
3483
3484 port_found:
3485 ret = rdma_query_gid(cma_dev->device, p, 0, &gid);
3486 if (ret)
3487 goto out;
3488
3489 ret = ib_get_cached_pkey(cma_dev->device, p, 0, &pkey);
3490 if (ret)
3491 goto out;
3492
3493 id_priv->id.route.addr.dev_addr.dev_type =
3494 (rdma_protocol_ib(cma_dev->device, p)) ?
3495 ARPHRD_INFINIBAND : ARPHRD_ETHER;
3496
3497 rdma_addr_set_sgid(&id_priv->id.route.addr.dev_addr, &gid);
3498 ib_addr_set_pkey(&id_priv->id.route.addr.dev_addr, pkey);
3499 id_priv->id.port_num = p;
3500 cma_attach_to_dev(id_priv, cma_dev);
3501 rdma_restrack_add(&id_priv->res);
3502 cma_set_loopback(cma_src_addr(id_priv));
3503 out:
3504 mutex_unlock(&lock);
3505 return ret;
3506 }
3507
addr_handler(int status,struct sockaddr * src_addr,struct rdma_dev_addr * dev_addr,void * context)3508 static void addr_handler(int status, struct sockaddr *src_addr,
3509 struct rdma_dev_addr *dev_addr, void *context)
3510 {
3511 struct rdma_id_private *id_priv = context;
3512 struct rdma_cm_event event = {};
3513 struct sockaddr *addr;
3514 struct sockaddr_storage old_addr;
3515
3516 mutex_lock(&id_priv->handler_mutex);
3517 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY,
3518 RDMA_CM_ADDR_RESOLVED))
3519 goto out;
3520
3521 /*
3522 * Store the previous src address, so that if we fail to acquire
3523 * matching rdma device, old address can be restored back, which helps
3524 * to cancel the cma listen operation correctly.
3525 */
3526 addr = cma_src_addr(id_priv);
3527 memcpy(&old_addr, addr, rdma_addr_size(addr));
3528 memcpy(addr, src_addr, rdma_addr_size(src_addr));
3529 if (!status && !id_priv->cma_dev) {
3530 status = cma_acquire_dev_by_src_ip(id_priv);
3531 if (status)
3532 pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to acquire device. status %d\n",
3533 status);
3534 rdma_restrack_add(&id_priv->res);
3535 } else if (status) {
3536 pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to resolve IP. status %d\n", status);
3537 }
3538
3539 if (status) {
3540 memcpy(addr, &old_addr,
3541 rdma_addr_size((struct sockaddr *)&old_addr));
3542 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED,
3543 RDMA_CM_ADDR_BOUND))
3544 goto out;
3545 event.event = RDMA_CM_EVENT_ADDR_ERROR;
3546 event.status = status;
3547 } else
3548 event.event = RDMA_CM_EVENT_ADDR_RESOLVED;
3549
3550 if (cma_cm_event_handler(id_priv, &event)) {
3551 destroy_id_handler_unlock(id_priv);
3552 return;
3553 }
3554 out:
3555 mutex_unlock(&id_priv->handler_mutex);
3556 }
3557
cma_resolve_loopback(struct rdma_id_private * id_priv)3558 static int cma_resolve_loopback(struct rdma_id_private *id_priv)
3559 {
3560 struct cma_work *work;
3561 union ib_gid gid;
3562 int ret;
3563
3564 work = kzalloc(sizeof *work, GFP_KERNEL);
3565 if (!work)
3566 return -ENOMEM;
3567
3568 if (!id_priv->cma_dev) {
3569 ret = cma_bind_loopback(id_priv);
3570 if (ret)
3571 goto err;
3572 }
3573
3574 rdma_addr_get_sgid(&id_priv->id.route.addr.dev_addr, &gid);
3575 rdma_addr_set_dgid(&id_priv->id.route.addr.dev_addr, &gid);
3576
3577 enqueue_resolve_addr_work(work, id_priv);
3578 return 0;
3579 err:
3580 kfree(work);
3581 return ret;
3582 }
3583
cma_resolve_ib_addr(struct rdma_id_private * id_priv)3584 static int cma_resolve_ib_addr(struct rdma_id_private *id_priv)
3585 {
3586 struct cma_work *work;
3587 int ret;
3588
3589 work = kzalloc(sizeof *work, GFP_KERNEL);
3590 if (!work)
3591 return -ENOMEM;
3592
3593 if (!id_priv->cma_dev) {
3594 ret = cma_resolve_ib_dev(id_priv);
3595 if (ret)
3596 goto err;
3597 }
3598
3599 rdma_addr_set_dgid(&id_priv->id.route.addr.dev_addr, (union ib_gid *)
3600 &(((struct sockaddr_ib *) &id_priv->id.route.addr.dst_addr)->sib_addr));
3601
3602 enqueue_resolve_addr_work(work, id_priv);
3603 return 0;
3604 err:
3605 kfree(work);
3606 return ret;
3607 }
3608
rdma_set_reuseaddr(struct rdma_cm_id * id,int reuse)3609 int rdma_set_reuseaddr(struct rdma_cm_id *id, int reuse)
3610 {
3611 struct rdma_id_private *id_priv;
3612 unsigned long flags;
3613 int ret;
3614
3615 id_priv = container_of(id, struct rdma_id_private, id);
3616 spin_lock_irqsave(&id_priv->lock, flags);
3617 if ((reuse && id_priv->state != RDMA_CM_LISTEN) ||
3618 id_priv->state == RDMA_CM_IDLE) {
3619 id_priv->reuseaddr = reuse;
3620 ret = 0;
3621 } else {
3622 ret = -EINVAL;
3623 }
3624 spin_unlock_irqrestore(&id_priv->lock, flags);
3625 return ret;
3626 }
3627 EXPORT_SYMBOL(rdma_set_reuseaddr);
3628
rdma_set_afonly(struct rdma_cm_id * id,int afonly)3629 int rdma_set_afonly(struct rdma_cm_id *id, int afonly)
3630 {
3631 struct rdma_id_private *id_priv;
3632 unsigned long flags;
3633 int ret;
3634
3635 id_priv = container_of(id, struct rdma_id_private, id);
3636 spin_lock_irqsave(&id_priv->lock, flags);
3637 if (id_priv->state == RDMA_CM_IDLE || id_priv->state == RDMA_CM_ADDR_BOUND) {
3638 id_priv->options |= (1 << CMA_OPTION_AFONLY);
3639 id_priv->afonly = afonly;
3640 ret = 0;
3641 } else {
3642 ret = -EINVAL;
3643 }
3644 spin_unlock_irqrestore(&id_priv->lock, flags);
3645 return ret;
3646 }
3647 EXPORT_SYMBOL(rdma_set_afonly);
3648
cma_bind_port(struct rdma_bind_list * bind_list,struct rdma_id_private * id_priv)3649 static void cma_bind_port(struct rdma_bind_list *bind_list,
3650 struct rdma_id_private *id_priv)
3651 {
3652 struct sockaddr *addr;
3653 struct sockaddr_ib *sib;
3654 u64 sid, mask;
3655 __be16 port;
3656
3657 lockdep_assert_held(&lock);
3658
3659 addr = cma_src_addr(id_priv);
3660 port = htons(bind_list->port);
3661
3662 switch (addr->sa_family) {
3663 case AF_INET:
3664 ((struct sockaddr_in *) addr)->sin_port = port;
3665 break;
3666 case AF_INET6:
3667 ((struct sockaddr_in6 *) addr)->sin6_port = port;
3668 break;
3669 case AF_IB:
3670 sib = (struct sockaddr_ib *) addr;
3671 sid = be64_to_cpu(sib->sib_sid);
3672 mask = be64_to_cpu(sib->sib_sid_mask);
3673 sib->sib_sid = cpu_to_be64((sid & mask) | (u64) ntohs(port));
3674 sib->sib_sid_mask = cpu_to_be64(~0ULL);
3675 break;
3676 }
3677 id_priv->bind_list = bind_list;
3678 hlist_add_head(&id_priv->node, &bind_list->owners);
3679 }
3680
cma_alloc_port(enum rdma_ucm_port_space ps,struct rdma_id_private * id_priv,unsigned short snum)3681 static int cma_alloc_port(enum rdma_ucm_port_space ps,
3682 struct rdma_id_private *id_priv, unsigned short snum)
3683 {
3684 struct rdma_bind_list *bind_list;
3685 int ret;
3686
3687 lockdep_assert_held(&lock);
3688
3689 bind_list = kzalloc(sizeof *bind_list, GFP_KERNEL);
3690 if (!bind_list)
3691 return -ENOMEM;
3692
3693 ret = cma_ps_alloc(id_priv->id.route.addr.dev_addr.net, ps, bind_list,
3694 snum);
3695 if (ret < 0)
3696 goto err;
3697
3698 bind_list->ps = ps;
3699 bind_list->port = snum;
3700 cma_bind_port(bind_list, id_priv);
3701 return 0;
3702 err:
3703 kfree(bind_list);
3704 return ret == -ENOSPC ? -EADDRNOTAVAIL : ret;
3705 }
3706
cma_port_is_unique(struct rdma_bind_list * bind_list,struct rdma_id_private * id_priv)3707 static int cma_port_is_unique(struct rdma_bind_list *bind_list,
3708 struct rdma_id_private *id_priv)
3709 {
3710 struct rdma_id_private *cur_id;
3711 struct sockaddr *daddr = cma_dst_addr(id_priv);
3712 struct sockaddr *saddr = cma_src_addr(id_priv);
3713 __be16 dport = cma_port(daddr);
3714
3715 lockdep_assert_held(&lock);
3716
3717 hlist_for_each_entry(cur_id, &bind_list->owners, node) {
3718 struct sockaddr *cur_daddr = cma_dst_addr(cur_id);
3719 struct sockaddr *cur_saddr = cma_src_addr(cur_id);
3720 __be16 cur_dport = cma_port(cur_daddr);
3721
3722 if (id_priv == cur_id)
3723 continue;
3724
3725 /* different dest port -> unique */
3726 if (!cma_any_port(daddr) &&
3727 !cma_any_port(cur_daddr) &&
3728 (dport != cur_dport))
3729 continue;
3730
3731 /* different src address -> unique */
3732 if (!cma_any_addr(saddr) &&
3733 !cma_any_addr(cur_saddr) &&
3734 cma_addr_cmp(saddr, cur_saddr))
3735 continue;
3736
3737 /* different dst address -> unique */
3738 if (!cma_any_addr(daddr) &&
3739 !cma_any_addr(cur_daddr) &&
3740 cma_addr_cmp(daddr, cur_daddr))
3741 continue;
3742
3743 return -EADDRNOTAVAIL;
3744 }
3745 return 0;
3746 }
3747
cma_alloc_any_port(enum rdma_ucm_port_space ps,struct rdma_id_private * id_priv)3748 static int cma_alloc_any_port(enum rdma_ucm_port_space ps,
3749 struct rdma_id_private *id_priv)
3750 {
3751 static unsigned int last_used_port;
3752 int low, high, remaining;
3753 unsigned int rover;
3754 struct net *net = id_priv->id.route.addr.dev_addr.net;
3755
3756 lockdep_assert_held(&lock);
3757
3758 inet_get_local_port_range(net, &low, &high);
3759 remaining = (high - low) + 1;
3760 rover = get_random_u32_inclusive(low, remaining + low - 1);
3761 retry:
3762 if (last_used_port != rover) {
3763 struct rdma_bind_list *bind_list;
3764 int ret;
3765
3766 bind_list = cma_ps_find(net, ps, (unsigned short)rover);
3767
3768 if (!bind_list) {
3769 ret = cma_alloc_port(ps, id_priv, rover);
3770 } else {
3771 ret = cma_port_is_unique(bind_list, id_priv);
3772 if (!ret)
3773 cma_bind_port(bind_list, id_priv);
3774 }
3775 /*
3776 * Remember previously used port number in order to avoid
3777 * re-using same port immediately after it is closed.
3778 */
3779 if (!ret)
3780 last_used_port = rover;
3781 if (ret != -EADDRNOTAVAIL)
3782 return ret;
3783 }
3784 if (--remaining) {
3785 rover++;
3786 if ((rover < low) || (rover > high))
3787 rover = low;
3788 goto retry;
3789 }
3790 return -EADDRNOTAVAIL;
3791 }
3792
3793 /*
3794 * Check that the requested port is available. This is called when trying to
3795 * bind to a specific port, or when trying to listen on a bound port. In
3796 * the latter case, the provided id_priv may already be on the bind_list, but
3797 * we still need to check that it's okay to start listening.
3798 */
cma_check_port(struct rdma_bind_list * bind_list,struct rdma_id_private * id_priv,uint8_t reuseaddr)3799 static int cma_check_port(struct rdma_bind_list *bind_list,
3800 struct rdma_id_private *id_priv, uint8_t reuseaddr)
3801 {
3802 struct rdma_id_private *cur_id;
3803 struct sockaddr *addr, *cur_addr;
3804
3805 lockdep_assert_held(&lock);
3806
3807 addr = cma_src_addr(id_priv);
3808 hlist_for_each_entry(cur_id, &bind_list->owners, node) {
3809 if (id_priv == cur_id)
3810 continue;
3811
3812 if (reuseaddr && cur_id->reuseaddr)
3813 continue;
3814
3815 cur_addr = cma_src_addr(cur_id);
3816 if (id_priv->afonly && cur_id->afonly &&
3817 (addr->sa_family != cur_addr->sa_family))
3818 continue;
3819
3820 if (cma_any_addr(addr) || cma_any_addr(cur_addr))
3821 return -EADDRNOTAVAIL;
3822
3823 if (!cma_addr_cmp(addr, cur_addr))
3824 return -EADDRINUSE;
3825 }
3826 return 0;
3827 }
3828
cma_use_port(enum rdma_ucm_port_space ps,struct rdma_id_private * id_priv)3829 static int cma_use_port(enum rdma_ucm_port_space ps,
3830 struct rdma_id_private *id_priv)
3831 {
3832 struct rdma_bind_list *bind_list;
3833 unsigned short snum;
3834 int ret;
3835
3836 lockdep_assert_held(&lock);
3837
3838 snum = ntohs(cma_port(cma_src_addr(id_priv)));
3839 if (snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE))
3840 return -EACCES;
3841
3842 bind_list = cma_ps_find(id_priv->id.route.addr.dev_addr.net, ps, snum);
3843 if (!bind_list) {
3844 ret = cma_alloc_port(ps, id_priv, snum);
3845 } else {
3846 ret = cma_check_port(bind_list, id_priv, id_priv->reuseaddr);
3847 if (!ret)
3848 cma_bind_port(bind_list, id_priv);
3849 }
3850 return ret;
3851 }
3852
3853 static enum rdma_ucm_port_space
cma_select_inet_ps(struct rdma_id_private * id_priv)3854 cma_select_inet_ps(struct rdma_id_private *id_priv)
3855 {
3856 switch (id_priv->id.ps) {
3857 case RDMA_PS_TCP:
3858 case RDMA_PS_UDP:
3859 case RDMA_PS_IPOIB:
3860 case RDMA_PS_IB:
3861 return id_priv->id.ps;
3862 default:
3863
3864 return 0;
3865 }
3866 }
3867
3868 static enum rdma_ucm_port_space
cma_select_ib_ps(struct rdma_id_private * id_priv)3869 cma_select_ib_ps(struct rdma_id_private *id_priv)
3870 {
3871 enum rdma_ucm_port_space ps = 0;
3872 struct sockaddr_ib *sib;
3873 u64 sid_ps, mask, sid;
3874
3875 sib = (struct sockaddr_ib *) cma_src_addr(id_priv);
3876 mask = be64_to_cpu(sib->sib_sid_mask) & RDMA_IB_IP_PS_MASK;
3877 sid = be64_to_cpu(sib->sib_sid) & mask;
3878
3879 if ((id_priv->id.ps == RDMA_PS_IB) && (sid == (RDMA_IB_IP_PS_IB & mask))) {
3880 sid_ps = RDMA_IB_IP_PS_IB;
3881 ps = RDMA_PS_IB;
3882 } else if (((id_priv->id.ps == RDMA_PS_IB) || (id_priv->id.ps == RDMA_PS_TCP)) &&
3883 (sid == (RDMA_IB_IP_PS_TCP & mask))) {
3884 sid_ps = RDMA_IB_IP_PS_TCP;
3885 ps = RDMA_PS_TCP;
3886 } else if (((id_priv->id.ps == RDMA_PS_IB) || (id_priv->id.ps == RDMA_PS_UDP)) &&
3887 (sid == (RDMA_IB_IP_PS_UDP & mask))) {
3888 sid_ps = RDMA_IB_IP_PS_UDP;
3889 ps = RDMA_PS_UDP;
3890 }
3891
3892 if (ps) {
3893 sib->sib_sid = cpu_to_be64(sid_ps | ntohs(cma_port((struct sockaddr *) sib)));
3894 sib->sib_sid_mask = cpu_to_be64(RDMA_IB_IP_PS_MASK |
3895 be64_to_cpu(sib->sib_sid_mask));
3896 }
3897 return ps;
3898 }
3899
cma_get_port(struct rdma_id_private * id_priv)3900 static int cma_get_port(struct rdma_id_private *id_priv)
3901 {
3902 enum rdma_ucm_port_space ps;
3903 int ret;
3904
3905 if (cma_family(id_priv) != AF_IB)
3906 ps = cma_select_inet_ps(id_priv);
3907 else
3908 ps = cma_select_ib_ps(id_priv);
3909 if (!ps)
3910 return -EPROTONOSUPPORT;
3911
3912 mutex_lock(&lock);
3913 if (cma_any_port(cma_src_addr(id_priv)))
3914 ret = cma_alloc_any_port(ps, id_priv);
3915 else
3916 ret = cma_use_port(ps, id_priv);
3917 mutex_unlock(&lock);
3918
3919 return ret;
3920 }
3921
cma_check_linklocal(struct rdma_dev_addr * dev_addr,struct sockaddr * addr)3922 static int cma_check_linklocal(struct rdma_dev_addr *dev_addr,
3923 struct sockaddr *addr)
3924 {
3925 #if IS_ENABLED(CONFIG_IPV6)
3926 struct sockaddr_in6 *sin6;
3927
3928 if (addr->sa_family != AF_INET6)
3929 return 0;
3930
3931 sin6 = (struct sockaddr_in6 *) addr;
3932
3933 if (!(ipv6_addr_type(&sin6->sin6_addr) & IPV6_ADDR_LINKLOCAL))
3934 return 0;
3935
3936 if (!sin6->sin6_scope_id)
3937 return -EINVAL;
3938
3939 dev_addr->bound_dev_if = sin6->sin6_scope_id;
3940 #endif
3941 return 0;
3942 }
3943
rdma_listen(struct rdma_cm_id * id,int backlog)3944 int rdma_listen(struct rdma_cm_id *id, int backlog)
3945 {
3946 struct rdma_id_private *id_priv =
3947 container_of(id, struct rdma_id_private, id);
3948 int ret;
3949
3950 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_LISTEN)) {
3951 struct sockaddr_in any_in = {
3952 .sin_family = AF_INET,
3953 .sin_addr.s_addr = htonl(INADDR_ANY),
3954 };
3955
3956 /* For a well behaved ULP state will be RDMA_CM_IDLE */
3957 ret = rdma_bind_addr(id, (struct sockaddr *)&any_in);
3958 if (ret)
3959 return ret;
3960 if (WARN_ON(!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND,
3961 RDMA_CM_LISTEN)))
3962 return -EINVAL;
3963 }
3964
3965 /*
3966 * Once the ID reaches RDMA_CM_LISTEN it is not allowed to be reusable
3967 * any more, and has to be unique in the bind list.
3968 */
3969 if (id_priv->reuseaddr) {
3970 mutex_lock(&lock);
3971 ret = cma_check_port(id_priv->bind_list, id_priv, 0);
3972 if (!ret)
3973 id_priv->reuseaddr = 0;
3974 mutex_unlock(&lock);
3975 if (ret)
3976 goto err;
3977 }
3978
3979 id_priv->backlog = backlog;
3980 if (id_priv->cma_dev) {
3981 if (rdma_cap_ib_cm(id->device, 1)) {
3982 ret = cma_ib_listen(id_priv);
3983 if (ret)
3984 goto err;
3985 } else if (rdma_cap_iw_cm(id->device, 1)) {
3986 ret = cma_iw_listen(id_priv, backlog);
3987 if (ret)
3988 goto err;
3989 } else {
3990 ret = -ENOSYS;
3991 goto err;
3992 }
3993 } else {
3994 ret = cma_listen_on_all(id_priv);
3995 if (ret)
3996 goto err;
3997 }
3998
3999 return 0;
4000 err:
4001 id_priv->backlog = 0;
4002 /*
4003 * All the failure paths that lead here will not allow the req_handler's
4004 * to have run.
4005 */
4006 cma_comp_exch(id_priv, RDMA_CM_LISTEN, RDMA_CM_ADDR_BOUND);
4007 return ret;
4008 }
4009 EXPORT_SYMBOL(rdma_listen);
4010
rdma_bind_addr_dst(struct rdma_id_private * id_priv,struct sockaddr * addr,const struct sockaddr * daddr)4011 static int rdma_bind_addr_dst(struct rdma_id_private *id_priv,
4012 struct sockaddr *addr, const struct sockaddr *daddr)
4013 {
4014 struct sockaddr *id_daddr;
4015 int ret;
4016
4017 if (addr->sa_family != AF_INET && addr->sa_family != AF_INET6 &&
4018 addr->sa_family != AF_IB)
4019 return -EAFNOSUPPORT;
4020
4021 if (!cma_comp_exch(id_priv, RDMA_CM_IDLE, RDMA_CM_ADDR_BOUND))
4022 return -EINVAL;
4023
4024 ret = cma_check_linklocal(&id_priv->id.route.addr.dev_addr, addr);
4025 if (ret)
4026 goto err1;
4027
4028 memcpy(cma_src_addr(id_priv), addr, rdma_addr_size(addr));
4029 if (!cma_any_addr(addr)) {
4030 ret = cma_translate_addr(addr, &id_priv->id.route.addr.dev_addr);
4031 if (ret)
4032 goto err1;
4033
4034 ret = cma_acquire_dev_by_src_ip(id_priv);
4035 if (ret)
4036 goto err1;
4037 }
4038
4039 if (!(id_priv->options & (1 << CMA_OPTION_AFONLY))) {
4040 if (addr->sa_family == AF_INET)
4041 id_priv->afonly = 1;
4042 #if IS_ENABLED(CONFIG_IPV6)
4043 else if (addr->sa_family == AF_INET6) {
4044 struct net *net = id_priv->id.route.addr.dev_addr.net;
4045
4046 id_priv->afonly = net->ipv6.sysctl.bindv6only;
4047 }
4048 #endif
4049 }
4050 id_daddr = cma_dst_addr(id_priv);
4051 if (daddr != id_daddr)
4052 memcpy(id_daddr, daddr, rdma_addr_size(addr));
4053 id_daddr->sa_family = addr->sa_family;
4054
4055 ret = cma_get_port(id_priv);
4056 if (ret)
4057 goto err2;
4058
4059 if (!cma_any_addr(addr))
4060 rdma_restrack_add(&id_priv->res);
4061 return 0;
4062 err2:
4063 if (id_priv->cma_dev)
4064 cma_release_dev(id_priv);
4065 err1:
4066 cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_IDLE);
4067 return ret;
4068 }
4069
cma_bind_addr(struct rdma_cm_id * id,struct sockaddr * src_addr,const struct sockaddr * dst_addr)4070 static int cma_bind_addr(struct rdma_cm_id *id, struct sockaddr *src_addr,
4071 const struct sockaddr *dst_addr)
4072 {
4073 struct rdma_id_private *id_priv =
4074 container_of(id, struct rdma_id_private, id);
4075 struct sockaddr_storage zero_sock = {};
4076
4077 if (src_addr && src_addr->sa_family)
4078 return rdma_bind_addr_dst(id_priv, src_addr, dst_addr);
4079
4080 /*
4081 * When the src_addr is not specified, automatically supply an any addr
4082 */
4083 zero_sock.ss_family = dst_addr->sa_family;
4084 if (IS_ENABLED(CONFIG_IPV6) && dst_addr->sa_family == AF_INET6) {
4085 struct sockaddr_in6 *src_addr6 =
4086 (struct sockaddr_in6 *)&zero_sock;
4087 struct sockaddr_in6 *dst_addr6 =
4088 (struct sockaddr_in6 *)dst_addr;
4089
4090 src_addr6->sin6_scope_id = dst_addr6->sin6_scope_id;
4091 if (ipv6_addr_type(&dst_addr6->sin6_addr) & IPV6_ADDR_LINKLOCAL)
4092 id->route.addr.dev_addr.bound_dev_if =
4093 dst_addr6->sin6_scope_id;
4094 } else if (dst_addr->sa_family == AF_IB) {
4095 ((struct sockaddr_ib *)&zero_sock)->sib_pkey =
4096 ((struct sockaddr_ib *)dst_addr)->sib_pkey;
4097 }
4098 return rdma_bind_addr_dst(id_priv, (struct sockaddr *)&zero_sock, dst_addr);
4099 }
4100
4101 /*
4102 * If required, resolve the source address for bind and leave the id_priv in
4103 * state RDMA_CM_ADDR_BOUND. This oddly uses the state to determine the prior
4104 * calls made by ULP, a previously bound ID will not be re-bound and src_addr is
4105 * ignored.
4106 */
resolve_prepare_src(struct rdma_id_private * id_priv,struct sockaddr * src_addr,const struct sockaddr * dst_addr)4107 static int resolve_prepare_src(struct rdma_id_private *id_priv,
4108 struct sockaddr *src_addr,
4109 const struct sockaddr *dst_addr)
4110 {
4111 int ret;
4112
4113 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_ADDR_QUERY)) {
4114 /* For a well behaved ULP state will be RDMA_CM_IDLE */
4115 ret = cma_bind_addr(&id_priv->id, src_addr, dst_addr);
4116 if (ret)
4117 return ret;
4118 if (WARN_ON(!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND,
4119 RDMA_CM_ADDR_QUERY)))
4120 return -EINVAL;
4121
4122 } else {
4123 memcpy(cma_dst_addr(id_priv), dst_addr, rdma_addr_size(dst_addr));
4124 }
4125
4126 if (cma_family(id_priv) != dst_addr->sa_family) {
4127 ret = -EINVAL;
4128 goto err_state;
4129 }
4130 return 0;
4131
4132 err_state:
4133 cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, RDMA_CM_ADDR_BOUND);
4134 return ret;
4135 }
4136
rdma_resolve_addr(struct rdma_cm_id * id,struct sockaddr * src_addr,const struct sockaddr * dst_addr,unsigned long timeout_ms)4137 int rdma_resolve_addr(struct rdma_cm_id *id, struct sockaddr *src_addr,
4138 const struct sockaddr *dst_addr, unsigned long timeout_ms)
4139 {
4140 struct rdma_id_private *id_priv =
4141 container_of(id, struct rdma_id_private, id);
4142 int ret;
4143
4144 ret = resolve_prepare_src(id_priv, src_addr, dst_addr);
4145 if (ret)
4146 return ret;
4147
4148 if (cma_any_addr(dst_addr)) {
4149 ret = cma_resolve_loopback(id_priv);
4150 } else {
4151 if (dst_addr->sa_family == AF_IB) {
4152 ret = cma_resolve_ib_addr(id_priv);
4153 } else {
4154 /*
4155 * The FSM can return back to RDMA_CM_ADDR_BOUND after
4156 * rdma_resolve_ip() is called, eg through the error
4157 * path in addr_handler(). If this happens the existing
4158 * request must be canceled before issuing a new one.
4159 * Since canceling a request is a bit slow and this
4160 * oddball path is rare, keep track once a request has
4161 * been issued. The track turns out to be a permanent
4162 * state since this is the only cancel as it is
4163 * immediately before rdma_resolve_ip().
4164 */
4165 if (id_priv->used_resolve_ip)
4166 rdma_addr_cancel(&id->route.addr.dev_addr);
4167 else
4168 id_priv->used_resolve_ip = 1;
4169 ret = rdma_resolve_ip(cma_src_addr(id_priv), dst_addr,
4170 &id->route.addr.dev_addr,
4171 timeout_ms, addr_handler,
4172 false, id_priv);
4173 }
4174 }
4175 if (ret)
4176 goto err;
4177
4178 return 0;
4179 err:
4180 cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, RDMA_CM_ADDR_BOUND);
4181 return ret;
4182 }
4183 EXPORT_SYMBOL(rdma_resolve_addr);
4184
rdma_bind_addr(struct rdma_cm_id * id,struct sockaddr * addr)4185 int rdma_bind_addr(struct rdma_cm_id *id, struct sockaddr *addr)
4186 {
4187 struct rdma_id_private *id_priv =
4188 container_of(id, struct rdma_id_private, id);
4189
4190 return rdma_bind_addr_dst(id_priv, addr, cma_dst_addr(id_priv));
4191 }
4192 EXPORT_SYMBOL(rdma_bind_addr);
4193
cma_format_hdr(void * hdr,struct rdma_id_private * id_priv)4194 static int cma_format_hdr(void *hdr, struct rdma_id_private *id_priv)
4195 {
4196 struct cma_hdr *cma_hdr;
4197
4198 cma_hdr = hdr;
4199 cma_hdr->cma_version = CMA_VERSION;
4200 if (cma_family(id_priv) == AF_INET) {
4201 struct sockaddr_in *src4, *dst4;
4202
4203 src4 = (struct sockaddr_in *) cma_src_addr(id_priv);
4204 dst4 = (struct sockaddr_in *) cma_dst_addr(id_priv);
4205
4206 cma_set_ip_ver(cma_hdr, 4);
4207 cma_hdr->src_addr.ip4.addr = src4->sin_addr.s_addr;
4208 cma_hdr->dst_addr.ip4.addr = dst4->sin_addr.s_addr;
4209 cma_hdr->port = src4->sin_port;
4210 } else if (cma_family(id_priv) == AF_INET6) {
4211 struct sockaddr_in6 *src6, *dst6;
4212
4213 src6 = (struct sockaddr_in6 *) cma_src_addr(id_priv);
4214 dst6 = (struct sockaddr_in6 *) cma_dst_addr(id_priv);
4215
4216 cma_set_ip_ver(cma_hdr, 6);
4217 cma_hdr->src_addr.ip6 = src6->sin6_addr;
4218 cma_hdr->dst_addr.ip6 = dst6->sin6_addr;
4219 cma_hdr->port = src6->sin6_port;
4220 }
4221 return 0;
4222 }
4223
cma_sidr_rep_handler(struct ib_cm_id * cm_id,const struct ib_cm_event * ib_event)4224 static int cma_sidr_rep_handler(struct ib_cm_id *cm_id,
4225 const struct ib_cm_event *ib_event)
4226 {
4227 struct rdma_id_private *id_priv = cm_id->context;
4228 struct rdma_cm_event event = {};
4229 const struct ib_cm_sidr_rep_event_param *rep =
4230 &ib_event->param.sidr_rep_rcvd;
4231 int ret;
4232
4233 mutex_lock(&id_priv->handler_mutex);
4234 if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT)
4235 goto out;
4236
4237 switch (ib_event->event) {
4238 case IB_CM_SIDR_REQ_ERROR:
4239 event.event = RDMA_CM_EVENT_UNREACHABLE;
4240 event.status = -ETIMEDOUT;
4241 break;
4242 case IB_CM_SIDR_REP_RECEIVED:
4243 event.param.ud.private_data = ib_event->private_data;
4244 event.param.ud.private_data_len = IB_CM_SIDR_REP_PRIVATE_DATA_SIZE;
4245 if (rep->status != IB_SIDR_SUCCESS) {
4246 event.event = RDMA_CM_EVENT_UNREACHABLE;
4247 event.status = ib_event->param.sidr_rep_rcvd.status;
4248 pr_debug_ratelimited("RDMA CM: UNREACHABLE: bad SIDR reply. status %d\n",
4249 event.status);
4250 break;
4251 }
4252 ret = cma_set_qkey(id_priv, rep->qkey);
4253 if (ret) {
4254 pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to set qkey. status %d\n", ret);
4255 event.event = RDMA_CM_EVENT_ADDR_ERROR;
4256 event.status = ret;
4257 break;
4258 }
4259 ib_init_ah_attr_from_path(id_priv->id.device,
4260 id_priv->id.port_num,
4261 id_priv->id.route.path_rec,
4262 &event.param.ud.ah_attr,
4263 rep->sgid_attr);
4264 event.param.ud.qp_num = rep->qpn;
4265 event.param.ud.qkey = rep->qkey;
4266 event.event = RDMA_CM_EVENT_ESTABLISHED;
4267 event.status = 0;
4268 break;
4269 default:
4270 pr_err("RDMA CMA: unexpected IB CM event: %d\n",
4271 ib_event->event);
4272 goto out;
4273 }
4274
4275 ret = cma_cm_event_handler(id_priv, &event);
4276
4277 rdma_destroy_ah_attr(&event.param.ud.ah_attr);
4278 if (ret) {
4279 /* Destroy the CM ID by returning a non-zero value. */
4280 id_priv->cm_id.ib = NULL;
4281 destroy_id_handler_unlock(id_priv);
4282 return ret;
4283 }
4284 out:
4285 mutex_unlock(&id_priv->handler_mutex);
4286 return 0;
4287 }
4288
cma_resolve_ib_udp(struct rdma_id_private * id_priv,struct rdma_conn_param * conn_param)4289 static int cma_resolve_ib_udp(struct rdma_id_private *id_priv,
4290 struct rdma_conn_param *conn_param)
4291 {
4292 struct ib_cm_sidr_req_param req;
4293 struct ib_cm_id *id;
4294 void *private_data;
4295 u8 offset;
4296 int ret;
4297
4298 memset(&req, 0, sizeof req);
4299 offset = cma_user_data_offset(id_priv);
4300 if (check_add_overflow(offset, conn_param->private_data_len, &req.private_data_len))
4301 return -EINVAL;
4302
4303 if (req.private_data_len) {
4304 private_data = kzalloc(req.private_data_len, GFP_ATOMIC);
4305 if (!private_data)
4306 return -ENOMEM;
4307 } else {
4308 private_data = NULL;
4309 }
4310
4311 if (conn_param->private_data && conn_param->private_data_len)
4312 memcpy(private_data + offset, conn_param->private_data,
4313 conn_param->private_data_len);
4314
4315 if (private_data) {
4316 ret = cma_format_hdr(private_data, id_priv);
4317 if (ret)
4318 goto out;
4319 req.private_data = private_data;
4320 }
4321
4322 id = ib_create_cm_id(id_priv->id.device, cma_sidr_rep_handler,
4323 id_priv);
4324 if (IS_ERR(id)) {
4325 ret = PTR_ERR(id);
4326 goto out;
4327 }
4328 id_priv->cm_id.ib = id;
4329
4330 req.path = id_priv->id.route.path_rec;
4331 req.sgid_attr = id_priv->id.route.addr.dev_addr.sgid_attr;
4332 req.service_id = rdma_get_service_id(&id_priv->id, cma_dst_addr(id_priv));
4333 req.timeout_ms = 1 << (CMA_CM_RESPONSE_TIMEOUT - 8);
4334 req.max_cm_retries = CMA_MAX_CM_RETRIES;
4335
4336 trace_cm_send_sidr_req(id_priv);
4337 ret = ib_send_cm_sidr_req(id_priv->cm_id.ib, &req);
4338 if (ret) {
4339 ib_destroy_cm_id(id_priv->cm_id.ib);
4340 id_priv->cm_id.ib = NULL;
4341 }
4342 out:
4343 kfree(private_data);
4344 return ret;
4345 }
4346
cma_connect_ib(struct rdma_id_private * id_priv,struct rdma_conn_param * conn_param)4347 static int cma_connect_ib(struct rdma_id_private *id_priv,
4348 struct rdma_conn_param *conn_param)
4349 {
4350 struct ib_cm_req_param req;
4351 struct rdma_route *route;
4352 void *private_data;
4353 struct ib_cm_id *id;
4354 u8 offset;
4355 int ret;
4356
4357 memset(&req, 0, sizeof req);
4358 offset = cma_user_data_offset(id_priv);
4359 if (check_add_overflow(offset, conn_param->private_data_len, &req.private_data_len))
4360 return -EINVAL;
4361
4362 if (req.private_data_len) {
4363 private_data = kzalloc(req.private_data_len, GFP_ATOMIC);
4364 if (!private_data)
4365 return -ENOMEM;
4366 } else {
4367 private_data = NULL;
4368 }
4369
4370 if (conn_param->private_data && conn_param->private_data_len)
4371 memcpy(private_data + offset, conn_param->private_data,
4372 conn_param->private_data_len);
4373
4374 id = ib_create_cm_id(id_priv->id.device, cma_ib_handler, id_priv);
4375 if (IS_ERR(id)) {
4376 ret = PTR_ERR(id);
4377 goto out;
4378 }
4379 id_priv->cm_id.ib = id;
4380
4381 route = &id_priv->id.route;
4382 if (private_data) {
4383 ret = cma_format_hdr(private_data, id_priv);
4384 if (ret)
4385 goto out;
4386 req.private_data = private_data;
4387 }
4388
4389 req.primary_path = &route->path_rec[0];
4390 req.primary_path_inbound = route->path_rec_inbound;
4391 req.primary_path_outbound = route->path_rec_outbound;
4392 if (route->num_pri_alt_paths == 2)
4393 req.alternate_path = &route->path_rec[1];
4394
4395 req.ppath_sgid_attr = id_priv->id.route.addr.dev_addr.sgid_attr;
4396 /* Alternate path SGID attribute currently unsupported */
4397 req.service_id = rdma_get_service_id(&id_priv->id, cma_dst_addr(id_priv));
4398 req.qp_num = id_priv->qp_num;
4399 req.qp_type = id_priv->id.qp_type;
4400 req.starting_psn = id_priv->seq_num;
4401 req.responder_resources = conn_param->responder_resources;
4402 req.initiator_depth = conn_param->initiator_depth;
4403 req.flow_control = conn_param->flow_control;
4404 req.retry_count = min_t(u8, 7, conn_param->retry_count);
4405 req.rnr_retry_count = min_t(u8, 7, conn_param->rnr_retry_count);
4406 req.remote_cm_response_timeout = CMA_CM_RESPONSE_TIMEOUT;
4407 req.local_cm_response_timeout = CMA_CM_RESPONSE_TIMEOUT;
4408 req.max_cm_retries = CMA_MAX_CM_RETRIES;
4409 req.srq = id_priv->srq ? 1 : 0;
4410 req.ece.vendor_id = id_priv->ece.vendor_id;
4411 req.ece.attr_mod = id_priv->ece.attr_mod;
4412
4413 trace_cm_send_req(id_priv);
4414 ret = ib_send_cm_req(id_priv->cm_id.ib, &req);
4415 out:
4416 if (ret && !IS_ERR(id)) {
4417 ib_destroy_cm_id(id);
4418 id_priv->cm_id.ib = NULL;
4419 }
4420
4421 kfree(private_data);
4422 return ret;
4423 }
4424
cma_connect_iw(struct rdma_id_private * id_priv,struct rdma_conn_param * conn_param)4425 static int cma_connect_iw(struct rdma_id_private *id_priv,
4426 struct rdma_conn_param *conn_param)
4427 {
4428 struct iw_cm_id *cm_id;
4429 int ret;
4430 struct iw_cm_conn_param iw_param;
4431
4432 cm_id = iw_create_cm_id(id_priv->id.device, cma_iw_handler, id_priv);
4433 if (IS_ERR(cm_id))
4434 return PTR_ERR(cm_id);
4435
4436 mutex_lock(&id_priv->qp_mutex);
4437 cm_id->tos = id_priv->tos;
4438 cm_id->tos_set = id_priv->tos_set;
4439 mutex_unlock(&id_priv->qp_mutex);
4440
4441 id_priv->cm_id.iw = cm_id;
4442
4443 memcpy(&cm_id->local_addr, cma_src_addr(id_priv),
4444 rdma_addr_size(cma_src_addr(id_priv)));
4445 memcpy(&cm_id->remote_addr, cma_dst_addr(id_priv),
4446 rdma_addr_size(cma_dst_addr(id_priv)));
4447
4448 ret = cma_modify_qp_rtr(id_priv, conn_param);
4449 if (ret)
4450 goto out;
4451
4452 if (conn_param) {
4453 iw_param.ord = conn_param->initiator_depth;
4454 iw_param.ird = conn_param->responder_resources;
4455 iw_param.private_data = conn_param->private_data;
4456 iw_param.private_data_len = conn_param->private_data_len;
4457 iw_param.qpn = id_priv->id.qp ? id_priv->qp_num : conn_param->qp_num;
4458 } else {
4459 memset(&iw_param, 0, sizeof iw_param);
4460 iw_param.qpn = id_priv->qp_num;
4461 }
4462 ret = iw_cm_connect(cm_id, &iw_param);
4463 out:
4464 if (ret) {
4465 iw_destroy_cm_id(cm_id);
4466 id_priv->cm_id.iw = NULL;
4467 }
4468 return ret;
4469 }
4470
4471 /**
4472 * rdma_connect_locked - Initiate an active connection request.
4473 * @id: Connection identifier to connect.
4474 * @conn_param: Connection information used for connected QPs.
4475 *
4476 * Same as rdma_connect() but can only be called from the
4477 * RDMA_CM_EVENT_ROUTE_RESOLVED handler callback.
4478 */
rdma_connect_locked(struct rdma_cm_id * id,struct rdma_conn_param * conn_param)4479 int rdma_connect_locked(struct rdma_cm_id *id,
4480 struct rdma_conn_param *conn_param)
4481 {
4482 struct rdma_id_private *id_priv =
4483 container_of(id, struct rdma_id_private, id);
4484 int ret;
4485
4486 if (!cma_comp_exch(id_priv, RDMA_CM_ROUTE_RESOLVED, RDMA_CM_CONNECT))
4487 return -EINVAL;
4488
4489 if (!id->qp) {
4490 id_priv->qp_num = conn_param->qp_num;
4491 id_priv->srq = conn_param->srq;
4492 }
4493
4494 if (rdma_cap_ib_cm(id->device, id->port_num)) {
4495 if (id->qp_type == IB_QPT_UD)
4496 ret = cma_resolve_ib_udp(id_priv, conn_param);
4497 else
4498 ret = cma_connect_ib(id_priv, conn_param);
4499 } else if (rdma_cap_iw_cm(id->device, id->port_num)) {
4500 ret = cma_connect_iw(id_priv, conn_param);
4501 } else {
4502 ret = -ENOSYS;
4503 }
4504 if (ret)
4505 goto err_state;
4506 return 0;
4507 err_state:
4508 cma_comp_exch(id_priv, RDMA_CM_CONNECT, RDMA_CM_ROUTE_RESOLVED);
4509 return ret;
4510 }
4511 EXPORT_SYMBOL(rdma_connect_locked);
4512
4513 /**
4514 * rdma_connect - Initiate an active connection request.
4515 * @id: Connection identifier to connect.
4516 * @conn_param: Connection information used for connected QPs.
4517 *
4518 * Users must have resolved a route for the rdma_cm_id to connect with by having
4519 * called rdma_resolve_route before calling this routine.
4520 *
4521 * This call will either connect to a remote QP or obtain remote QP information
4522 * for unconnected rdma_cm_id's. The actual operation is based on the
4523 * rdma_cm_id's port space.
4524 */
rdma_connect(struct rdma_cm_id * id,struct rdma_conn_param * conn_param)4525 int rdma_connect(struct rdma_cm_id *id, struct rdma_conn_param *conn_param)
4526 {
4527 struct rdma_id_private *id_priv =
4528 container_of(id, struct rdma_id_private, id);
4529 int ret;
4530
4531 mutex_lock(&id_priv->handler_mutex);
4532 ret = rdma_connect_locked(id, conn_param);
4533 mutex_unlock(&id_priv->handler_mutex);
4534 return ret;
4535 }
4536 EXPORT_SYMBOL(rdma_connect);
4537
4538 /**
4539 * rdma_connect_ece - Initiate an active connection request with ECE data.
4540 * @id: Connection identifier to connect.
4541 * @conn_param: Connection information used for connected QPs.
4542 * @ece: ECE parameters
4543 *
4544 * See rdma_connect() explanation.
4545 */
rdma_connect_ece(struct rdma_cm_id * id,struct rdma_conn_param * conn_param,struct rdma_ucm_ece * ece)4546 int rdma_connect_ece(struct rdma_cm_id *id, struct rdma_conn_param *conn_param,
4547 struct rdma_ucm_ece *ece)
4548 {
4549 struct rdma_id_private *id_priv =
4550 container_of(id, struct rdma_id_private, id);
4551
4552 id_priv->ece.vendor_id = ece->vendor_id;
4553 id_priv->ece.attr_mod = ece->attr_mod;
4554
4555 return rdma_connect(id, conn_param);
4556 }
4557 EXPORT_SYMBOL(rdma_connect_ece);
4558
cma_accept_ib(struct rdma_id_private * id_priv,struct rdma_conn_param * conn_param)4559 static int cma_accept_ib(struct rdma_id_private *id_priv,
4560 struct rdma_conn_param *conn_param)
4561 {
4562 struct ib_cm_rep_param rep;
4563 int ret;
4564
4565 ret = cma_modify_qp_rtr(id_priv, conn_param);
4566 if (ret)
4567 goto out;
4568
4569 ret = cma_modify_qp_rts(id_priv, conn_param);
4570 if (ret)
4571 goto out;
4572
4573 memset(&rep, 0, sizeof rep);
4574 rep.qp_num = id_priv->qp_num;
4575 rep.starting_psn = id_priv->seq_num;
4576 rep.private_data = conn_param->private_data;
4577 rep.private_data_len = conn_param->private_data_len;
4578 rep.responder_resources = conn_param->responder_resources;
4579 rep.initiator_depth = conn_param->initiator_depth;
4580 rep.failover_accepted = 0;
4581 rep.flow_control = conn_param->flow_control;
4582 rep.rnr_retry_count = min_t(u8, 7, conn_param->rnr_retry_count);
4583 rep.srq = id_priv->srq ? 1 : 0;
4584 rep.ece.vendor_id = id_priv->ece.vendor_id;
4585 rep.ece.attr_mod = id_priv->ece.attr_mod;
4586
4587 trace_cm_send_rep(id_priv);
4588 ret = ib_send_cm_rep(id_priv->cm_id.ib, &rep);
4589 out:
4590 return ret;
4591 }
4592
cma_accept_iw(struct rdma_id_private * id_priv,struct rdma_conn_param * conn_param)4593 static int cma_accept_iw(struct rdma_id_private *id_priv,
4594 struct rdma_conn_param *conn_param)
4595 {
4596 struct iw_cm_conn_param iw_param;
4597 int ret;
4598
4599 if (!conn_param)
4600 return -EINVAL;
4601
4602 ret = cma_modify_qp_rtr(id_priv, conn_param);
4603 if (ret)
4604 return ret;
4605
4606 iw_param.ord = conn_param->initiator_depth;
4607 iw_param.ird = conn_param->responder_resources;
4608 iw_param.private_data = conn_param->private_data;
4609 iw_param.private_data_len = conn_param->private_data_len;
4610 if (id_priv->id.qp)
4611 iw_param.qpn = id_priv->qp_num;
4612 else
4613 iw_param.qpn = conn_param->qp_num;
4614
4615 return iw_cm_accept(id_priv->cm_id.iw, &iw_param);
4616 }
4617
cma_send_sidr_rep(struct rdma_id_private * id_priv,enum ib_cm_sidr_status status,u32 qkey,const void * private_data,int private_data_len)4618 static int cma_send_sidr_rep(struct rdma_id_private *id_priv,
4619 enum ib_cm_sidr_status status, u32 qkey,
4620 const void *private_data, int private_data_len)
4621 {
4622 struct ib_cm_sidr_rep_param rep;
4623 int ret;
4624
4625 memset(&rep, 0, sizeof rep);
4626 rep.status = status;
4627 if (status == IB_SIDR_SUCCESS) {
4628 if (qkey)
4629 ret = cma_set_qkey(id_priv, qkey);
4630 else
4631 ret = cma_set_default_qkey(id_priv);
4632 if (ret)
4633 return ret;
4634 rep.qp_num = id_priv->qp_num;
4635 rep.qkey = id_priv->qkey;
4636
4637 rep.ece.vendor_id = id_priv->ece.vendor_id;
4638 rep.ece.attr_mod = id_priv->ece.attr_mod;
4639 }
4640
4641 rep.private_data = private_data;
4642 rep.private_data_len = private_data_len;
4643
4644 trace_cm_send_sidr_rep(id_priv);
4645 return ib_send_cm_sidr_rep(id_priv->cm_id.ib, &rep);
4646 }
4647
4648 /**
4649 * rdma_accept - Called to accept a connection request or response.
4650 * @id: Connection identifier associated with the request.
4651 * @conn_param: Information needed to establish the connection. This must be
4652 * provided if accepting a connection request. If accepting a connection
4653 * response, this parameter must be NULL.
4654 *
4655 * Typically, this routine is only called by the listener to accept a connection
4656 * request. It must also be called on the active side of a connection if the
4657 * user is performing their own QP transitions.
4658 *
4659 * In the case of error, a reject message is sent to the remote side and the
4660 * state of the qp associated with the id is modified to error, such that any
4661 * previously posted receive buffers would be flushed.
4662 *
4663 * This function is for use by kernel ULPs and must be called from under the
4664 * handler callback.
4665 */
rdma_accept(struct rdma_cm_id * id,struct rdma_conn_param * conn_param)4666 int rdma_accept(struct rdma_cm_id *id, struct rdma_conn_param *conn_param)
4667 {
4668 struct rdma_id_private *id_priv =
4669 container_of(id, struct rdma_id_private, id);
4670 int ret;
4671
4672 lockdep_assert_held(&id_priv->handler_mutex);
4673
4674 if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT)
4675 return -EINVAL;
4676
4677 if (!id->qp && conn_param) {
4678 id_priv->qp_num = conn_param->qp_num;
4679 id_priv->srq = conn_param->srq;
4680 }
4681
4682 if (rdma_cap_ib_cm(id->device, id->port_num)) {
4683 if (id->qp_type == IB_QPT_UD) {
4684 if (conn_param)
4685 ret = cma_send_sidr_rep(id_priv, IB_SIDR_SUCCESS,
4686 conn_param->qkey,
4687 conn_param->private_data,
4688 conn_param->private_data_len);
4689 else
4690 ret = cma_send_sidr_rep(id_priv, IB_SIDR_SUCCESS,
4691 0, NULL, 0);
4692 } else {
4693 if (conn_param)
4694 ret = cma_accept_ib(id_priv, conn_param);
4695 else
4696 ret = cma_rep_recv(id_priv);
4697 }
4698 } else if (rdma_cap_iw_cm(id->device, id->port_num)) {
4699 ret = cma_accept_iw(id_priv, conn_param);
4700 } else {
4701 ret = -ENOSYS;
4702 }
4703 if (ret)
4704 goto reject;
4705
4706 return 0;
4707 reject:
4708 cma_modify_qp_err(id_priv);
4709 rdma_reject(id, NULL, 0, IB_CM_REJ_CONSUMER_DEFINED);
4710 return ret;
4711 }
4712 EXPORT_SYMBOL(rdma_accept);
4713
rdma_accept_ece(struct rdma_cm_id * id,struct rdma_conn_param * conn_param,struct rdma_ucm_ece * ece)4714 int rdma_accept_ece(struct rdma_cm_id *id, struct rdma_conn_param *conn_param,
4715 struct rdma_ucm_ece *ece)
4716 {
4717 struct rdma_id_private *id_priv =
4718 container_of(id, struct rdma_id_private, id);
4719
4720 id_priv->ece.vendor_id = ece->vendor_id;
4721 id_priv->ece.attr_mod = ece->attr_mod;
4722
4723 return rdma_accept(id, conn_param);
4724 }
4725 EXPORT_SYMBOL(rdma_accept_ece);
4726
rdma_lock_handler(struct rdma_cm_id * id)4727 void rdma_lock_handler(struct rdma_cm_id *id)
4728 {
4729 struct rdma_id_private *id_priv =
4730 container_of(id, struct rdma_id_private, id);
4731
4732 mutex_lock(&id_priv->handler_mutex);
4733 }
4734 EXPORT_SYMBOL(rdma_lock_handler);
4735
rdma_unlock_handler(struct rdma_cm_id * id)4736 void rdma_unlock_handler(struct rdma_cm_id *id)
4737 {
4738 struct rdma_id_private *id_priv =
4739 container_of(id, struct rdma_id_private, id);
4740
4741 mutex_unlock(&id_priv->handler_mutex);
4742 }
4743 EXPORT_SYMBOL(rdma_unlock_handler);
4744
rdma_notify(struct rdma_cm_id * id,enum ib_event_type event)4745 int rdma_notify(struct rdma_cm_id *id, enum ib_event_type event)
4746 {
4747 struct rdma_id_private *id_priv;
4748 int ret;
4749
4750 id_priv = container_of(id, struct rdma_id_private, id);
4751 if (!id_priv->cm_id.ib)
4752 return -EINVAL;
4753
4754 switch (id->device->node_type) {
4755 case RDMA_NODE_IB_CA:
4756 ret = ib_cm_notify(id_priv->cm_id.ib, event);
4757 break;
4758 default:
4759 ret = 0;
4760 break;
4761 }
4762 return ret;
4763 }
4764 EXPORT_SYMBOL(rdma_notify);
4765
rdma_reject(struct rdma_cm_id * id,const void * private_data,u8 private_data_len,u8 reason)4766 int rdma_reject(struct rdma_cm_id *id, const void *private_data,
4767 u8 private_data_len, u8 reason)
4768 {
4769 struct rdma_id_private *id_priv;
4770 int ret;
4771
4772 id_priv = container_of(id, struct rdma_id_private, id);
4773 if (!id_priv->cm_id.ib)
4774 return -EINVAL;
4775
4776 if (rdma_cap_ib_cm(id->device, id->port_num)) {
4777 if (id->qp_type == IB_QPT_UD) {
4778 ret = cma_send_sidr_rep(id_priv, IB_SIDR_REJECT, 0,
4779 private_data, private_data_len);
4780 } else {
4781 trace_cm_send_rej(id_priv);
4782 ret = ib_send_cm_rej(id_priv->cm_id.ib, reason, NULL, 0,
4783 private_data, private_data_len);
4784 }
4785 } else if (rdma_cap_iw_cm(id->device, id->port_num)) {
4786 ret = iw_cm_reject(id_priv->cm_id.iw,
4787 private_data, private_data_len);
4788 } else {
4789 ret = -ENOSYS;
4790 }
4791
4792 return ret;
4793 }
4794 EXPORT_SYMBOL(rdma_reject);
4795
rdma_disconnect(struct rdma_cm_id * id)4796 int rdma_disconnect(struct rdma_cm_id *id)
4797 {
4798 struct rdma_id_private *id_priv;
4799 int ret;
4800
4801 id_priv = container_of(id, struct rdma_id_private, id);
4802 if (!id_priv->cm_id.ib)
4803 return -EINVAL;
4804
4805 if (rdma_cap_ib_cm(id->device, id->port_num)) {
4806 ret = cma_modify_qp_err(id_priv);
4807 if (ret)
4808 goto out;
4809 /* Initiate or respond to a disconnect. */
4810 trace_cm_disconnect(id_priv);
4811 if (ib_send_cm_dreq(id_priv->cm_id.ib, NULL, 0)) {
4812 if (!ib_send_cm_drep(id_priv->cm_id.ib, NULL, 0))
4813 trace_cm_sent_drep(id_priv);
4814 } else {
4815 trace_cm_sent_dreq(id_priv);
4816 }
4817 } else if (rdma_cap_iw_cm(id->device, id->port_num)) {
4818 ret = iw_cm_disconnect(id_priv->cm_id.iw, 0);
4819 } else
4820 ret = -EINVAL;
4821
4822 out:
4823 return ret;
4824 }
4825 EXPORT_SYMBOL(rdma_disconnect);
4826
cma_make_mc_event(int status,struct rdma_id_private * id_priv,struct ib_sa_multicast * multicast,struct rdma_cm_event * event,struct cma_multicast * mc)4827 static void cma_make_mc_event(int status, struct rdma_id_private *id_priv,
4828 struct ib_sa_multicast *multicast,
4829 struct rdma_cm_event *event,
4830 struct cma_multicast *mc)
4831 {
4832 struct rdma_dev_addr *dev_addr;
4833 enum ib_gid_type gid_type;
4834 struct net_device *ndev;
4835
4836 if (status)
4837 pr_debug_ratelimited("RDMA CM: MULTICAST_ERROR: failed to join multicast. status %d\n",
4838 status);
4839
4840 event->status = status;
4841 event->param.ud.private_data = mc->context;
4842 if (status) {
4843 event->event = RDMA_CM_EVENT_MULTICAST_ERROR;
4844 return;
4845 }
4846
4847 dev_addr = &id_priv->id.route.addr.dev_addr;
4848 ndev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if);
4849 gid_type =
4850 id_priv->cma_dev
4851 ->default_gid_type[id_priv->id.port_num -
4852 rdma_start_port(
4853 id_priv->cma_dev->device)];
4854
4855 event->event = RDMA_CM_EVENT_MULTICAST_JOIN;
4856 if (ib_init_ah_from_mcmember(id_priv->id.device, id_priv->id.port_num,
4857 &multicast->rec, ndev, gid_type,
4858 &event->param.ud.ah_attr)) {
4859 event->event = RDMA_CM_EVENT_MULTICAST_ERROR;
4860 goto out;
4861 }
4862
4863 event->param.ud.qp_num = 0xFFFFFF;
4864 event->param.ud.qkey = id_priv->qkey;
4865
4866 out:
4867 dev_put(ndev);
4868 }
4869
cma_ib_mc_handler(int status,struct ib_sa_multicast * multicast)4870 static int cma_ib_mc_handler(int status, struct ib_sa_multicast *multicast)
4871 {
4872 struct cma_multicast *mc = multicast->context;
4873 struct rdma_id_private *id_priv = mc->id_priv;
4874 struct rdma_cm_event event = {};
4875 int ret = 0;
4876
4877 mutex_lock(&id_priv->handler_mutex);
4878 if (READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL ||
4879 READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING)
4880 goto out;
4881
4882 ret = cma_set_qkey(id_priv, be32_to_cpu(multicast->rec.qkey));
4883 if (!ret) {
4884 cma_make_mc_event(status, id_priv, multicast, &event, mc);
4885 ret = cma_cm_event_handler(id_priv, &event);
4886 }
4887 rdma_destroy_ah_attr(&event.param.ud.ah_attr);
4888 WARN_ON(ret);
4889
4890 out:
4891 mutex_unlock(&id_priv->handler_mutex);
4892 return 0;
4893 }
4894
cma_set_mgid(struct rdma_id_private * id_priv,struct sockaddr * addr,union ib_gid * mgid)4895 static void cma_set_mgid(struct rdma_id_private *id_priv,
4896 struct sockaddr *addr, union ib_gid *mgid)
4897 {
4898 unsigned char mc_map[MAX_ADDR_LEN];
4899 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
4900 struct sockaddr_in *sin = (struct sockaddr_in *) addr;
4901 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *) addr;
4902
4903 if (cma_any_addr(addr)) {
4904 memset(mgid, 0, sizeof *mgid);
4905 } else if ((addr->sa_family == AF_INET6) &&
4906 ((be32_to_cpu(sin6->sin6_addr.s6_addr32[0]) & 0xFFF0FFFF) ==
4907 0xFF10A01B)) {
4908 /* IPv6 address is an SA assigned MGID. */
4909 memcpy(mgid, &sin6->sin6_addr, sizeof *mgid);
4910 } else if (addr->sa_family == AF_IB) {
4911 memcpy(mgid, &((struct sockaddr_ib *) addr)->sib_addr, sizeof *mgid);
4912 } else if (addr->sa_family == AF_INET6) {
4913 ipv6_ib_mc_map(&sin6->sin6_addr, dev_addr->broadcast, mc_map);
4914 if (id_priv->id.ps == RDMA_PS_UDP)
4915 mc_map[7] = 0x01; /* Use RDMA CM signature */
4916 *mgid = *(union ib_gid *) (mc_map + 4);
4917 } else {
4918 ip_ib_mc_map(sin->sin_addr.s_addr, dev_addr->broadcast, mc_map);
4919 if (id_priv->id.ps == RDMA_PS_UDP)
4920 mc_map[7] = 0x01; /* Use RDMA CM signature */
4921 *mgid = *(union ib_gid *) (mc_map + 4);
4922 }
4923 }
4924
cma_join_ib_multicast(struct rdma_id_private * id_priv,struct cma_multicast * mc)4925 static int cma_join_ib_multicast(struct rdma_id_private *id_priv,
4926 struct cma_multicast *mc)
4927 {
4928 struct ib_sa_mcmember_rec rec;
4929 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
4930 ib_sa_comp_mask comp_mask;
4931 int ret;
4932
4933 ib_addr_get_mgid(dev_addr, &rec.mgid);
4934 ret = ib_sa_get_mcmember_rec(id_priv->id.device, id_priv->id.port_num,
4935 &rec.mgid, &rec);
4936 if (ret)
4937 return ret;
4938
4939 if (!id_priv->qkey) {
4940 ret = cma_set_default_qkey(id_priv);
4941 if (ret)
4942 return ret;
4943 }
4944
4945 cma_set_mgid(id_priv, (struct sockaddr *) &mc->addr, &rec.mgid);
4946 rec.qkey = cpu_to_be32(id_priv->qkey);
4947 rdma_addr_get_sgid(dev_addr, &rec.port_gid);
4948 rec.pkey = cpu_to_be16(ib_addr_get_pkey(dev_addr));
4949 rec.join_state = mc->join_state;
4950
4951 comp_mask = IB_SA_MCMEMBER_REC_MGID | IB_SA_MCMEMBER_REC_PORT_GID |
4952 IB_SA_MCMEMBER_REC_PKEY | IB_SA_MCMEMBER_REC_JOIN_STATE |
4953 IB_SA_MCMEMBER_REC_QKEY | IB_SA_MCMEMBER_REC_SL |
4954 IB_SA_MCMEMBER_REC_FLOW_LABEL |
4955 IB_SA_MCMEMBER_REC_TRAFFIC_CLASS;
4956
4957 if (id_priv->id.ps == RDMA_PS_IPOIB)
4958 comp_mask |= IB_SA_MCMEMBER_REC_RATE |
4959 IB_SA_MCMEMBER_REC_RATE_SELECTOR |
4960 IB_SA_MCMEMBER_REC_MTU_SELECTOR |
4961 IB_SA_MCMEMBER_REC_MTU |
4962 IB_SA_MCMEMBER_REC_HOP_LIMIT;
4963
4964 mc->sa_mc = ib_sa_join_multicast(&sa_client, id_priv->id.device,
4965 id_priv->id.port_num, &rec, comp_mask,
4966 GFP_KERNEL, cma_ib_mc_handler, mc);
4967 return PTR_ERR_OR_ZERO(mc->sa_mc);
4968 }
4969
cma_iboe_set_mgid(struct sockaddr * addr,union ib_gid * mgid,enum ib_gid_type gid_type)4970 static void cma_iboe_set_mgid(struct sockaddr *addr, union ib_gid *mgid,
4971 enum ib_gid_type gid_type)
4972 {
4973 struct sockaddr_in *sin = (struct sockaddr_in *)addr;
4974 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)addr;
4975
4976 if (cma_any_addr(addr)) {
4977 memset(mgid, 0, sizeof *mgid);
4978 } else if (addr->sa_family == AF_INET6) {
4979 memcpy(mgid, &sin6->sin6_addr, sizeof *mgid);
4980 } else {
4981 mgid->raw[0] =
4982 (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) ? 0 : 0xff;
4983 mgid->raw[1] =
4984 (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) ? 0 : 0x0e;
4985 mgid->raw[2] = 0;
4986 mgid->raw[3] = 0;
4987 mgid->raw[4] = 0;
4988 mgid->raw[5] = 0;
4989 mgid->raw[6] = 0;
4990 mgid->raw[7] = 0;
4991 mgid->raw[8] = 0;
4992 mgid->raw[9] = 0;
4993 mgid->raw[10] = 0xff;
4994 mgid->raw[11] = 0xff;
4995 *(__be32 *)(&mgid->raw[12]) = sin->sin_addr.s_addr;
4996 }
4997 }
4998
cma_iboe_join_multicast(struct rdma_id_private * id_priv,struct cma_multicast * mc)4999 static int cma_iboe_join_multicast(struct rdma_id_private *id_priv,
5000 struct cma_multicast *mc)
5001 {
5002 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
5003 int err = 0;
5004 struct sockaddr *addr = (struct sockaddr *)&mc->addr;
5005 struct net_device *ndev = NULL;
5006 struct ib_sa_multicast ib = {};
5007 enum ib_gid_type gid_type;
5008 bool send_only;
5009
5010 send_only = mc->join_state == BIT(SENDONLY_FULLMEMBER_JOIN);
5011
5012 if (cma_zero_addr(addr))
5013 return -EINVAL;
5014
5015 gid_type = id_priv->cma_dev->default_gid_type[id_priv->id.port_num -
5016 rdma_start_port(id_priv->cma_dev->device)];
5017 cma_iboe_set_mgid(addr, &ib.rec.mgid, gid_type);
5018
5019 ib.rec.pkey = cpu_to_be16(0xffff);
5020 if (dev_addr->bound_dev_if)
5021 ndev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if);
5022 if (!ndev)
5023 return -ENODEV;
5024
5025 ib.rec.rate = IB_RATE_PORT_CURRENT;
5026 ib.rec.hop_limit = 1;
5027 ib.rec.mtu = iboe_get_mtu(ndev->mtu);
5028
5029 if (addr->sa_family == AF_INET) {
5030 if (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) {
5031 ib.rec.hop_limit = IPV6_DEFAULT_HOPLIMIT;
5032 if (!send_only) {
5033 err = cma_igmp_send(ndev, &ib.rec.mgid,
5034 true);
5035 }
5036 }
5037 } else {
5038 if (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP)
5039 err = -ENOTSUPP;
5040 }
5041 dev_put(ndev);
5042 if (err || !ib.rec.mtu)
5043 return err ?: -EINVAL;
5044
5045 if (!id_priv->qkey)
5046 cma_set_default_qkey(id_priv);
5047
5048 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr,
5049 &ib.rec.port_gid);
5050 INIT_WORK(&mc->iboe_join.work, cma_iboe_join_work_handler);
5051 cma_make_mc_event(0, id_priv, &ib, &mc->iboe_join.event, mc);
5052 queue_work(cma_wq, &mc->iboe_join.work);
5053 return 0;
5054 }
5055
rdma_join_multicast(struct rdma_cm_id * id,struct sockaddr * addr,u8 join_state,void * context)5056 int rdma_join_multicast(struct rdma_cm_id *id, struct sockaddr *addr,
5057 u8 join_state, void *context)
5058 {
5059 struct rdma_id_private *id_priv =
5060 container_of(id, struct rdma_id_private, id);
5061 struct cma_multicast *mc;
5062 int ret;
5063
5064 /* Not supported for kernel QPs */
5065 if (WARN_ON(id->qp))
5066 return -EINVAL;
5067
5068 /* ULP is calling this wrong. */
5069 if (!id->device || (READ_ONCE(id_priv->state) != RDMA_CM_ADDR_BOUND &&
5070 READ_ONCE(id_priv->state) != RDMA_CM_ADDR_RESOLVED))
5071 return -EINVAL;
5072
5073 if (id_priv->id.qp_type != IB_QPT_UD)
5074 return -EINVAL;
5075
5076 mc = kzalloc(sizeof(*mc), GFP_KERNEL);
5077 if (!mc)
5078 return -ENOMEM;
5079
5080 memcpy(&mc->addr, addr, rdma_addr_size(addr));
5081 mc->context = context;
5082 mc->id_priv = id_priv;
5083 mc->join_state = join_state;
5084
5085 if (rdma_protocol_roce(id->device, id->port_num)) {
5086 ret = cma_iboe_join_multicast(id_priv, mc);
5087 if (ret)
5088 goto out_err;
5089 } else if (rdma_cap_ib_mcast(id->device, id->port_num)) {
5090 ret = cma_join_ib_multicast(id_priv, mc);
5091 if (ret)
5092 goto out_err;
5093 } else {
5094 ret = -ENOSYS;
5095 goto out_err;
5096 }
5097
5098 spin_lock(&id_priv->lock);
5099 list_add(&mc->list, &id_priv->mc_list);
5100 spin_unlock(&id_priv->lock);
5101
5102 return 0;
5103 out_err:
5104 kfree(mc);
5105 return ret;
5106 }
5107 EXPORT_SYMBOL(rdma_join_multicast);
5108
rdma_leave_multicast(struct rdma_cm_id * id,struct sockaddr * addr)5109 void rdma_leave_multicast(struct rdma_cm_id *id, struct sockaddr *addr)
5110 {
5111 struct rdma_id_private *id_priv;
5112 struct cma_multicast *mc;
5113
5114 id_priv = container_of(id, struct rdma_id_private, id);
5115 spin_lock_irq(&id_priv->lock);
5116 list_for_each_entry(mc, &id_priv->mc_list, list) {
5117 if (memcmp(&mc->addr, addr, rdma_addr_size(addr)) != 0)
5118 continue;
5119 list_del(&mc->list);
5120 spin_unlock_irq(&id_priv->lock);
5121
5122 WARN_ON(id_priv->cma_dev->device != id->device);
5123 destroy_mc(id_priv, mc);
5124 return;
5125 }
5126 spin_unlock_irq(&id_priv->lock);
5127 }
5128 EXPORT_SYMBOL(rdma_leave_multicast);
5129
cma_netdev_change(struct net_device * ndev,struct rdma_id_private * id_priv)5130 static int cma_netdev_change(struct net_device *ndev, struct rdma_id_private *id_priv)
5131 {
5132 struct rdma_dev_addr *dev_addr;
5133 struct cma_work *work;
5134
5135 dev_addr = &id_priv->id.route.addr.dev_addr;
5136
5137 if ((dev_addr->bound_dev_if == ndev->ifindex) &&
5138 (net_eq(dev_net(ndev), dev_addr->net)) &&
5139 memcmp(dev_addr->src_dev_addr, ndev->dev_addr, ndev->addr_len)) {
5140 pr_info("RDMA CM addr change for ndev %s used by id %p\n",
5141 ndev->name, &id_priv->id);
5142 work = kzalloc(sizeof *work, GFP_KERNEL);
5143 if (!work)
5144 return -ENOMEM;
5145
5146 INIT_WORK(&work->work, cma_work_handler);
5147 work->id = id_priv;
5148 work->event.event = RDMA_CM_EVENT_ADDR_CHANGE;
5149 cma_id_get(id_priv);
5150 queue_work(cma_wq, &work->work);
5151 }
5152
5153 return 0;
5154 }
5155
cma_netdev_callback(struct notifier_block * self,unsigned long event,void * ptr)5156 static int cma_netdev_callback(struct notifier_block *self, unsigned long event,
5157 void *ptr)
5158 {
5159 struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
5160 struct cma_device *cma_dev;
5161 struct rdma_id_private *id_priv;
5162 int ret = NOTIFY_DONE;
5163
5164 if (event != NETDEV_BONDING_FAILOVER)
5165 return NOTIFY_DONE;
5166
5167 if (!netif_is_bond_master(ndev))
5168 return NOTIFY_DONE;
5169
5170 mutex_lock(&lock);
5171 list_for_each_entry(cma_dev, &dev_list, list)
5172 list_for_each_entry(id_priv, &cma_dev->id_list, device_item) {
5173 ret = cma_netdev_change(ndev, id_priv);
5174 if (ret)
5175 goto out;
5176 }
5177
5178 out:
5179 mutex_unlock(&lock);
5180 return ret;
5181 }
5182
cma_netevent_work_handler(struct work_struct * _work)5183 static void cma_netevent_work_handler(struct work_struct *_work)
5184 {
5185 struct rdma_id_private *id_priv =
5186 container_of(_work, struct rdma_id_private, id.net_work);
5187 struct rdma_cm_event event = {};
5188
5189 mutex_lock(&id_priv->handler_mutex);
5190
5191 if (READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING ||
5192 READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL)
5193 goto out_unlock;
5194
5195 event.event = RDMA_CM_EVENT_UNREACHABLE;
5196 event.status = -ETIMEDOUT;
5197
5198 if (cma_cm_event_handler(id_priv, &event)) {
5199 __acquire(&id_priv->handler_mutex);
5200 id_priv->cm_id.ib = NULL;
5201 cma_id_put(id_priv);
5202 destroy_id_handler_unlock(id_priv);
5203 return;
5204 }
5205
5206 out_unlock:
5207 mutex_unlock(&id_priv->handler_mutex);
5208 cma_id_put(id_priv);
5209 }
5210
cma_netevent_callback(struct notifier_block * self,unsigned long event,void * ctx)5211 static int cma_netevent_callback(struct notifier_block *self,
5212 unsigned long event, void *ctx)
5213 {
5214 struct id_table_entry *ips_node = NULL;
5215 struct rdma_id_private *current_id;
5216 struct neighbour *neigh = ctx;
5217 unsigned long flags;
5218
5219 if (event != NETEVENT_NEIGH_UPDATE)
5220 return NOTIFY_DONE;
5221
5222 spin_lock_irqsave(&id_table_lock, flags);
5223 if (neigh->tbl->family == AF_INET6) {
5224 struct sockaddr_in6 neigh_sock_6;
5225
5226 neigh_sock_6.sin6_family = AF_INET6;
5227 neigh_sock_6.sin6_addr = *(struct in6_addr *)neigh->primary_key;
5228 ips_node = node_from_ndev_ip(&id_table, neigh->dev->ifindex,
5229 (struct sockaddr *)&neigh_sock_6);
5230 } else if (neigh->tbl->family == AF_INET) {
5231 struct sockaddr_in neigh_sock_4;
5232
5233 neigh_sock_4.sin_family = AF_INET;
5234 neigh_sock_4.sin_addr.s_addr = *(__be32 *)(neigh->primary_key);
5235 ips_node = node_from_ndev_ip(&id_table, neigh->dev->ifindex,
5236 (struct sockaddr *)&neigh_sock_4);
5237 } else
5238 goto out;
5239
5240 if (!ips_node)
5241 goto out;
5242
5243 list_for_each_entry(current_id, &ips_node->id_list, id_list_entry) {
5244 if (!memcmp(current_id->id.route.addr.dev_addr.dst_dev_addr,
5245 neigh->ha, ETH_ALEN))
5246 continue;
5247 cma_id_get(current_id);
5248 queue_work(cma_wq, ¤t_id->id.net_work);
5249 }
5250 out:
5251 spin_unlock_irqrestore(&id_table_lock, flags);
5252 return NOTIFY_DONE;
5253 }
5254
5255 static struct notifier_block cma_nb = {
5256 .notifier_call = cma_netdev_callback
5257 };
5258
5259 static struct notifier_block cma_netevent_cb = {
5260 .notifier_call = cma_netevent_callback
5261 };
5262
cma_send_device_removal_put(struct rdma_id_private * id_priv)5263 static void cma_send_device_removal_put(struct rdma_id_private *id_priv)
5264 {
5265 struct rdma_cm_event event = { .event = RDMA_CM_EVENT_DEVICE_REMOVAL };
5266 enum rdma_cm_state state;
5267 unsigned long flags;
5268
5269 mutex_lock(&id_priv->handler_mutex);
5270 /* Record that we want to remove the device */
5271 spin_lock_irqsave(&id_priv->lock, flags);
5272 state = id_priv->state;
5273 if (state == RDMA_CM_DESTROYING || state == RDMA_CM_DEVICE_REMOVAL) {
5274 spin_unlock_irqrestore(&id_priv->lock, flags);
5275 mutex_unlock(&id_priv->handler_mutex);
5276 cma_id_put(id_priv);
5277 return;
5278 }
5279 id_priv->state = RDMA_CM_DEVICE_REMOVAL;
5280 spin_unlock_irqrestore(&id_priv->lock, flags);
5281
5282 if (cma_cm_event_handler(id_priv, &event)) {
5283 /*
5284 * At this point the ULP promises it won't call
5285 * rdma_destroy_id() concurrently
5286 */
5287 cma_id_put(id_priv);
5288 mutex_unlock(&id_priv->handler_mutex);
5289 trace_cm_id_destroy(id_priv);
5290 _destroy_id(id_priv, state);
5291 return;
5292 }
5293 mutex_unlock(&id_priv->handler_mutex);
5294
5295 /*
5296 * If this races with destroy then the thread that first assigns state
5297 * to a destroying does the cancel.
5298 */
5299 cma_cancel_operation(id_priv, state);
5300 cma_id_put(id_priv);
5301 }
5302
cma_process_remove(struct cma_device * cma_dev)5303 static void cma_process_remove(struct cma_device *cma_dev)
5304 {
5305 mutex_lock(&lock);
5306 while (!list_empty(&cma_dev->id_list)) {
5307 struct rdma_id_private *id_priv = list_first_entry(
5308 &cma_dev->id_list, struct rdma_id_private, device_item);
5309
5310 list_del_init(&id_priv->listen_item);
5311 list_del_init(&id_priv->device_item);
5312 cma_id_get(id_priv);
5313 mutex_unlock(&lock);
5314
5315 cma_send_device_removal_put(id_priv);
5316
5317 mutex_lock(&lock);
5318 }
5319 mutex_unlock(&lock);
5320
5321 cma_dev_put(cma_dev);
5322 wait_for_completion(&cma_dev->comp);
5323 }
5324
cma_supported(struct ib_device * device)5325 static bool cma_supported(struct ib_device *device)
5326 {
5327 u32 i;
5328
5329 rdma_for_each_port(device, i) {
5330 if (rdma_cap_ib_cm(device, i) || rdma_cap_iw_cm(device, i))
5331 return true;
5332 }
5333 return false;
5334 }
5335
cma_add_one(struct ib_device * device)5336 static int cma_add_one(struct ib_device *device)
5337 {
5338 struct rdma_id_private *to_destroy;
5339 struct cma_device *cma_dev;
5340 struct rdma_id_private *id_priv;
5341 unsigned long supported_gids = 0;
5342 int ret;
5343 u32 i;
5344
5345 if (!cma_supported(device))
5346 return -EOPNOTSUPP;
5347
5348 cma_dev = kmalloc(sizeof(*cma_dev), GFP_KERNEL);
5349 if (!cma_dev)
5350 return -ENOMEM;
5351
5352 cma_dev->device = device;
5353 cma_dev->default_gid_type = kcalloc(device->phys_port_cnt,
5354 sizeof(*cma_dev->default_gid_type),
5355 GFP_KERNEL);
5356 if (!cma_dev->default_gid_type) {
5357 ret = -ENOMEM;
5358 goto free_cma_dev;
5359 }
5360
5361 cma_dev->default_roce_tos = kcalloc(device->phys_port_cnt,
5362 sizeof(*cma_dev->default_roce_tos),
5363 GFP_KERNEL);
5364 if (!cma_dev->default_roce_tos) {
5365 ret = -ENOMEM;
5366 goto free_gid_type;
5367 }
5368
5369 rdma_for_each_port (device, i) {
5370 supported_gids = roce_gid_type_mask_support(device, i);
5371 WARN_ON(!supported_gids);
5372 if (supported_gids & (1 << CMA_PREFERRED_ROCE_GID_TYPE))
5373 cma_dev->default_gid_type[i - rdma_start_port(device)] =
5374 CMA_PREFERRED_ROCE_GID_TYPE;
5375 else
5376 cma_dev->default_gid_type[i - rdma_start_port(device)] =
5377 find_first_bit(&supported_gids, BITS_PER_LONG);
5378 cma_dev->default_roce_tos[i - rdma_start_port(device)] = 0;
5379 }
5380
5381 init_completion(&cma_dev->comp);
5382 refcount_set(&cma_dev->refcount, 1);
5383 INIT_LIST_HEAD(&cma_dev->id_list);
5384 ib_set_client_data(device, &cma_client, cma_dev);
5385
5386 mutex_lock(&lock);
5387 list_add_tail(&cma_dev->list, &dev_list);
5388 list_for_each_entry(id_priv, &listen_any_list, listen_any_item) {
5389 ret = cma_listen_on_dev(id_priv, cma_dev, &to_destroy);
5390 if (ret)
5391 goto free_listen;
5392 }
5393 mutex_unlock(&lock);
5394
5395 trace_cm_add_one(device);
5396 return 0;
5397
5398 free_listen:
5399 list_del(&cma_dev->list);
5400 mutex_unlock(&lock);
5401
5402 /* cma_process_remove() will delete to_destroy */
5403 cma_process_remove(cma_dev);
5404 kfree(cma_dev->default_roce_tos);
5405 free_gid_type:
5406 kfree(cma_dev->default_gid_type);
5407
5408 free_cma_dev:
5409 kfree(cma_dev);
5410 return ret;
5411 }
5412
cma_remove_one(struct ib_device * device,void * client_data)5413 static void cma_remove_one(struct ib_device *device, void *client_data)
5414 {
5415 struct cma_device *cma_dev = client_data;
5416
5417 trace_cm_remove_one(device);
5418
5419 mutex_lock(&lock);
5420 list_del(&cma_dev->list);
5421 mutex_unlock(&lock);
5422
5423 cma_process_remove(cma_dev);
5424 kfree(cma_dev->default_roce_tos);
5425 kfree(cma_dev->default_gid_type);
5426 kfree(cma_dev);
5427 }
5428
cma_init_net(struct net * net)5429 static int cma_init_net(struct net *net)
5430 {
5431 struct cma_pernet *pernet = cma_pernet(net);
5432
5433 xa_init(&pernet->tcp_ps);
5434 xa_init(&pernet->udp_ps);
5435 xa_init(&pernet->ipoib_ps);
5436 xa_init(&pernet->ib_ps);
5437
5438 return 0;
5439 }
5440
cma_exit_net(struct net * net)5441 static void cma_exit_net(struct net *net)
5442 {
5443 struct cma_pernet *pernet = cma_pernet(net);
5444
5445 WARN_ON(!xa_empty(&pernet->tcp_ps));
5446 WARN_ON(!xa_empty(&pernet->udp_ps));
5447 WARN_ON(!xa_empty(&pernet->ipoib_ps));
5448 WARN_ON(!xa_empty(&pernet->ib_ps));
5449 }
5450
5451 static struct pernet_operations cma_pernet_operations = {
5452 .init = cma_init_net,
5453 .exit = cma_exit_net,
5454 .id = &cma_pernet_id,
5455 .size = sizeof(struct cma_pernet),
5456 };
5457
cma_init(void)5458 static int __init cma_init(void)
5459 {
5460 int ret;
5461
5462 /*
5463 * There is a rare lock ordering dependency in cma_netdev_callback()
5464 * that only happens when bonding is enabled. Teach lockdep that rtnl
5465 * must never be nested under lock so it can find these without having
5466 * to test with bonding.
5467 */
5468 if (IS_ENABLED(CONFIG_LOCKDEP)) {
5469 rtnl_lock();
5470 mutex_lock(&lock);
5471 mutex_unlock(&lock);
5472 rtnl_unlock();
5473 }
5474
5475 cma_wq = alloc_ordered_workqueue("rdma_cm", WQ_MEM_RECLAIM);
5476 if (!cma_wq)
5477 return -ENOMEM;
5478
5479 ret = register_pernet_subsys(&cma_pernet_operations);
5480 if (ret)
5481 goto err_wq;
5482
5483 ib_sa_register_client(&sa_client);
5484 register_netdevice_notifier(&cma_nb);
5485 register_netevent_notifier(&cma_netevent_cb);
5486
5487 ret = ib_register_client(&cma_client);
5488 if (ret)
5489 goto err;
5490
5491 ret = cma_configfs_init();
5492 if (ret)
5493 goto err_ib;
5494
5495 return 0;
5496
5497 err_ib:
5498 ib_unregister_client(&cma_client);
5499 err:
5500 unregister_netevent_notifier(&cma_netevent_cb);
5501 unregister_netdevice_notifier(&cma_nb);
5502 ib_sa_unregister_client(&sa_client);
5503 unregister_pernet_subsys(&cma_pernet_operations);
5504 err_wq:
5505 destroy_workqueue(cma_wq);
5506 return ret;
5507 }
5508
cma_cleanup(void)5509 static void __exit cma_cleanup(void)
5510 {
5511 cma_configfs_exit();
5512 ib_unregister_client(&cma_client);
5513 unregister_netevent_notifier(&cma_netevent_cb);
5514 unregister_netdevice_notifier(&cma_nb);
5515 ib_sa_unregister_client(&sa_client);
5516 unregister_pernet_subsys(&cma_pernet_operations);
5517 destroy_workqueue(cma_wq);
5518 }
5519
5520 module_init(cma_init);
5521 module_exit(cma_cleanup);
5522