xref: /linux/drivers/gpu/drm/nouveau/nvkm/subdev/gsp/rm/r535/gsp.c (revision d133036a0b23d3ef781d067ccdea6bbfb381e0cf)
1 /*
2  * Copyright 2023 Red Hat Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 #include <rm/rpc.h>
23 
24 #include "priv.h"
25 
26 #include <core/pci.h>
27 #include <subdev/pci/priv.h>
28 #include <subdev/timer.h>
29 #include <subdev/vfn.h>
30 #include <engine/fifo/chan.h>
31 #include <engine/sec2.h>
32 #include <nvif/log.h>
33 
34 #include <nvfw/fw.h>
35 
36 #include "nvrm/gsp.h"
37 #include "nvrm/rpcfn.h"
38 #include "nvrm/msgfn.h"
39 #include "nvrm/event.h"
40 #include "nvrm/fifo.h"
41 
42 #include <linux/acpi.h>
43 #include <linux/ctype.h>
44 #include <linux/parser.h>
45 
46 extern struct dentry *nouveau_debugfs_root;
47 
48 static void
r535_gsp_msgq_work(struct work_struct * work)49 r535_gsp_msgq_work(struct work_struct *work)
50 {
51 	struct nvkm_gsp *gsp = container_of(work, typeof(*gsp), msgq.work);
52 
53 	mutex_lock(&gsp->cmdq.mutex);
54 	if (*gsp->msgq.rptr != *gsp->msgq.wptr)
55 		r535_gsp_msg_recv(gsp, 0, 0);
56 	mutex_unlock(&gsp->cmdq.mutex);
57 }
58 
59 static irqreturn_t
r535_gsp_intr(struct nvkm_inth * inth)60 r535_gsp_intr(struct nvkm_inth *inth)
61 {
62 	struct nvkm_gsp *gsp = container_of(inth, typeof(*gsp), subdev.inth);
63 	struct nvkm_subdev *subdev = &gsp->subdev;
64 	u32 intr = nvkm_falcon_rd32(&gsp->falcon, 0x0008);
65 	u32 inte = nvkm_falcon_rd32(&gsp->falcon, gsp->falcon.func->addr2 +
66 						  gsp->falcon.func->riscv_irqmask);
67 	u32 stat = intr & inte;
68 
69 	if (!stat) {
70 		nvkm_debug(subdev, "inte %08x %08x\n", intr, inte);
71 		return IRQ_NONE;
72 	}
73 
74 	if (stat & 0x00000040) {
75 		nvkm_falcon_wr32(&gsp->falcon, 0x004, 0x00000040);
76 		schedule_work(&gsp->msgq.work);
77 		stat &= ~0x00000040;
78 	}
79 
80 	if (stat) {
81 		nvkm_error(subdev, "intr %08x\n", stat);
82 		nvkm_falcon_wr32(&gsp->falcon, 0x014, stat);
83 		nvkm_falcon_wr32(&gsp->falcon, 0x004, stat);
84 	}
85 
86 	nvkm_falcon_intr_retrigger(&gsp->falcon);
87 	return IRQ_HANDLED;
88 }
89 
90 static bool
r535_gsp_xlat_mc_engine_idx(u32 mc_engine_idx,enum nvkm_subdev_type * ptype,int * pinst)91 r535_gsp_xlat_mc_engine_idx(u32 mc_engine_idx, enum nvkm_subdev_type *ptype, int *pinst)
92 {
93 	switch (mc_engine_idx) {
94 	case MC_ENGINE_IDX_GSP:
95 		*ptype = NVKM_SUBDEV_GSP;
96 		*pinst = 0;
97 		return true;
98 	case MC_ENGINE_IDX_DISP:
99 		*ptype = NVKM_ENGINE_DISP;
100 		*pinst = 0;
101 		return true;
102 	case MC_ENGINE_IDX_CE0 ... MC_ENGINE_IDX_CE9:
103 		*ptype = NVKM_ENGINE_CE;
104 		*pinst = mc_engine_idx - MC_ENGINE_IDX_CE0;
105 		return true;
106 	case MC_ENGINE_IDX_GR0:
107 		*ptype = NVKM_ENGINE_GR;
108 		*pinst = 0;
109 		return true;
110 	case MC_ENGINE_IDX_NVDEC0 ... MC_ENGINE_IDX_NVDEC7:
111 		*ptype = NVKM_ENGINE_NVDEC;
112 		*pinst = mc_engine_idx - MC_ENGINE_IDX_NVDEC0;
113 		return true;
114 	case MC_ENGINE_IDX_MSENC ... MC_ENGINE_IDX_MSENC2:
115 		*ptype = NVKM_ENGINE_NVENC;
116 		*pinst = mc_engine_idx - MC_ENGINE_IDX_MSENC;
117 		return true;
118 	case MC_ENGINE_IDX_NVJPEG0 ... MC_ENGINE_IDX_NVJPEG7:
119 		*ptype = NVKM_ENGINE_NVJPG;
120 		*pinst = mc_engine_idx - MC_ENGINE_IDX_NVJPEG0;
121 		return true;
122 	case MC_ENGINE_IDX_OFA0:
123 		*ptype = NVKM_ENGINE_OFA;
124 		*pinst = 0;
125 		return true;
126 	default:
127 		return false;
128 	}
129 }
130 
131 static int
r535_gsp_intr_get_table(struct nvkm_gsp * gsp)132 r535_gsp_intr_get_table(struct nvkm_gsp *gsp)
133 {
134 	NV2080_CTRL_INTERNAL_INTR_GET_KERNEL_TABLE_PARAMS *ctrl;
135 	const struct nvkm_rm_api *rmapi = gsp->rm->api;
136 	int ret = 0;
137 
138 	ctrl = nvkm_gsp_rm_ctrl_get(&gsp->internal.device.subdevice,
139 				    NV2080_CTRL_CMD_INTERNAL_INTR_GET_KERNEL_TABLE, sizeof(*ctrl));
140 	if (IS_ERR(ctrl))
141 		return PTR_ERR(ctrl);
142 
143 	ret = nvkm_gsp_rm_ctrl_push(&gsp->internal.device.subdevice, &ctrl, sizeof(*ctrl));
144 	if (WARN_ON(ret)) {
145 		nvkm_gsp_rm_ctrl_done(&gsp->internal.device.subdevice, ctrl);
146 		return ret;
147 	}
148 
149 	for (unsigned i = 0; i < ctrl->tableLen; i++) {
150 		enum nvkm_subdev_type type;
151 		int inst;
152 
153 		nvkm_debug(&gsp->subdev,
154 			   "%2d: engineIdx %3d pmcIntrMask %08x stall %08x nonStall %08x\n", i,
155 			   ctrl->table[i].engineIdx, ctrl->table[i].pmcIntrMask,
156 			   ctrl->table[i].vectorStall, ctrl->table[i].vectorNonStall);
157 
158 		if (!rmapi->gsp->xlat_mc_engine_idx(ctrl->table[i].engineIdx, &type, &inst))
159 			continue;
160 
161 		if (WARN_ON(gsp->intr_nr == ARRAY_SIZE(gsp->intr))) {
162 			ret = -ENOSPC;
163 			break;
164 		}
165 
166 		gsp->intr[gsp->intr_nr].type = type;
167 		gsp->intr[gsp->intr_nr].inst = inst;
168 		gsp->intr[gsp->intr_nr].stall = ctrl->table[i].vectorStall;
169 		gsp->intr[gsp->intr_nr].nonstall = ctrl->table[i].vectorNonStall;
170 		gsp->intr_nr++;
171 	}
172 
173 	nvkm_gsp_rm_ctrl_done(&gsp->internal.device.subdevice, ctrl);
174 	return ret;
175 }
176 
177 void
r535_gsp_get_static_info_fb(struct nvkm_gsp * gsp,const struct NV2080_CTRL_CMD_FB_GET_FB_REGION_INFO_PARAMS * info)178 r535_gsp_get_static_info_fb(struct nvkm_gsp *gsp,
179 			    const struct NV2080_CTRL_CMD_FB_GET_FB_REGION_INFO_PARAMS *info)
180 {
181 	int last_usable = -1;
182 
183 	for (int i = 0; i < info->numFBRegions; i++) {
184 		const NV2080_CTRL_CMD_FB_GET_FB_REGION_FB_REGION_INFO *reg = &info->fbRegion[i];
185 
186 		nvkm_debug(&gsp->subdev, "fb region %d: "
187 			   "%016llx-%016llx rsvd:%016llx perf:%08x comp:%d iso:%d prot:%d\n", i,
188 			   reg->base, reg->limit, reg->reserved, reg->performance,
189 			   reg->supportCompressed, reg->supportISO, reg->bProtected);
190 
191 		if (!reg->reserved && !reg->bProtected) {
192 			if (reg->supportCompressed && reg->supportISO &&
193 			    !WARN_ON_ONCE(gsp->fb.region_nr >= ARRAY_SIZE(gsp->fb.region))) {
194 					const u64 size = (reg->limit + 1) - reg->base;
195 
196 					gsp->fb.region[gsp->fb.region_nr].addr = reg->base;
197 					gsp->fb.region[gsp->fb.region_nr].size = size;
198 					gsp->fb.region_nr++;
199 			}
200 
201 			last_usable = i;
202 		}
203 	}
204 
205 	if (last_usable >= 0) {
206 		u32 rsvd_base = info->fbRegion[last_usable].limit + 1;
207 
208 		gsp->fb.rsvd_size = gsp->fb.heap.addr - rsvd_base;
209 	}
210 }
211 
212 static int
r535_gsp_get_static_info(struct nvkm_gsp * gsp)213 r535_gsp_get_static_info(struct nvkm_gsp *gsp)
214 {
215 	GspStaticConfigInfo *rpc;
216 
217 	rpc = nvkm_gsp_rpc_rd(gsp, NV_VGPU_MSG_FUNCTION_GET_GSP_STATIC_INFO, sizeof(*rpc));
218 	if (IS_ERR(rpc))
219 		return PTR_ERR(rpc);
220 
221 	gsp->internal.client.object.client = &gsp->internal.client;
222 	gsp->internal.client.object.parent = NULL;
223 	gsp->internal.client.object.handle = rpc->hInternalClient;
224 	gsp->internal.client.gsp = gsp;
225 
226 	gsp->internal.device.object.client = &gsp->internal.client;
227 	gsp->internal.device.object.parent = &gsp->internal.client.object;
228 	gsp->internal.device.object.handle = rpc->hInternalDevice;
229 
230 	gsp->internal.device.subdevice.client = &gsp->internal.client;
231 	gsp->internal.device.subdevice.parent = &gsp->internal.device.object;
232 	gsp->internal.device.subdevice.handle = rpc->hInternalSubdevice;
233 
234 	gsp->bar.rm_bar1_pdb = rpc->bar1PdeBase;
235 	gsp->bar.rm_bar2_pdb = rpc->bar2PdeBase;
236 
237 	r535_gsp_get_static_info_fb(gsp, &rpc->fbRegionInfoParams);
238 
239 	for (int gpc = 0; gpc < ARRAY_SIZE(rpc->tpcInfo); gpc++) {
240 		if (rpc->gpcInfo.gpcMask & BIT(gpc)) {
241 			gsp->gr.tpcs += hweight32(rpc->tpcInfo[gpc].tpcMask);
242 			gsp->gr.gpcs++;
243 		}
244 	}
245 
246 	nvkm_gsp_rpc_done(gsp, rpc);
247 	return 0;
248 }
249 
250 void
nvkm_gsp_mem_dtor(struct nvkm_gsp_mem * mem)251 nvkm_gsp_mem_dtor(struct nvkm_gsp_mem *mem)
252 {
253 	if (mem->data) {
254 		/*
255 		 * Poison the buffer to catch any unexpected access from
256 		 * GSP-RM if the buffer was prematurely freed.
257 		 */
258 		memset(mem->data, 0xFF, mem->size);
259 
260 		dma_free_coherent(mem->dev, mem->size, mem->data, mem->addr);
261 		put_device(mem->dev);
262 
263 		memset(mem, 0, sizeof(*mem));
264 	}
265 }
266 
267 /**
268  * nvkm_gsp_mem_ctor - constructor for nvkm_gsp_mem objects
269  * @gsp: gsp pointer
270  * @size: number of bytes to allocate
271  * @mem: nvkm_gsp_mem object to initialize
272  *
273  * Allocates a block of memory for use with GSP.
274  *
275  * This memory block can potentially out-live the driver's remove() callback,
276  * so we take a device reference to ensure its lifetime. The reference is
277  * dropped in the destructor.
278  */
279 int
nvkm_gsp_mem_ctor(struct nvkm_gsp * gsp,size_t size,struct nvkm_gsp_mem * mem)280 nvkm_gsp_mem_ctor(struct nvkm_gsp *gsp, size_t size, struct nvkm_gsp_mem *mem)
281 {
282 	mem->data = dma_alloc_coherent(gsp->subdev.device->dev, size, &mem->addr, GFP_KERNEL);
283 	if (WARN_ON(!mem->data))
284 		return -ENOMEM;
285 
286 	mem->size = size;
287 	mem->dev = get_device(gsp->subdev.device->dev);
288 
289 	return 0;
290 }
291 
292 static int
r535_gsp_postinit(struct nvkm_gsp * gsp)293 r535_gsp_postinit(struct nvkm_gsp *gsp)
294 {
295 	struct nvkm_device *device = gsp->subdev.device;
296 	const struct nvkm_rm_api *rmapi = gsp->rm->api;
297 	int ret;
298 
299 	ret = rmapi->gsp->get_static_info(gsp);
300 	if (WARN_ON(ret))
301 		return ret;
302 
303 	INIT_WORK(&gsp->msgq.work, r535_gsp_msgq_work);
304 
305 	ret = r535_gsp_intr_get_table(gsp);
306 	if (WARN_ON(ret))
307 		return ret;
308 
309 	ret = nvkm_gsp_intr_stall(gsp, gsp->subdev.type, gsp->subdev.inst);
310 	if (WARN_ON(ret < 0))
311 		return ret;
312 
313 	ret = nvkm_inth_add(&device->vfn->intr, ret, NVKM_INTR_PRIO_NORMAL, &gsp->subdev,
314 			    r535_gsp_intr, &gsp->subdev.inth);
315 	if (WARN_ON(ret))
316 		return ret;
317 
318 	nvkm_inth_allow(&gsp->subdev.inth);
319 	nvkm_wr32(device, 0x110004, 0x00000040);
320 
321 	/* Release the DMA buffers that were needed only for boot and init */
322 	nvkm_gsp_mem_dtor(&gsp->boot.fw);
323 	nvkm_gsp_mem_dtor(&gsp->libos);
324 
325 	return ret;
326 }
327 
328 static int
r535_gsp_rpc_unloading_guest_driver(struct nvkm_gsp * gsp,bool suspend)329 r535_gsp_rpc_unloading_guest_driver(struct nvkm_gsp *gsp, bool suspend)
330 {
331 	rpc_unloading_guest_driver_v1F_07 *rpc;
332 
333 	rpc = nvkm_gsp_rpc_get(gsp, NV_VGPU_MSG_FUNCTION_UNLOADING_GUEST_DRIVER, sizeof(*rpc));
334 	if (IS_ERR(rpc))
335 		return PTR_ERR(rpc);
336 
337 	if (suspend) {
338 		rpc->bInPMTransition = 1;
339 		rpc->bGc6Entering = 0;
340 		rpc->newLevel = NV2080_CTRL_GPU_SET_POWER_STATE_GPU_LEVEL_3;
341 	} else {
342 		rpc->bInPMTransition = 0;
343 		rpc->bGc6Entering = 0;
344 		rpc->newLevel = NV2080_CTRL_GPU_SET_POWER_STATE_GPU_LEVEL_0;
345 	}
346 
347 	return nvkm_gsp_rpc_wr(gsp, rpc, NVKM_GSP_RPC_REPLY_RECV);
348 }
349 
350 enum registry_type {
351 	REGISTRY_TABLE_ENTRY_TYPE_DWORD  = 1, /* 32-bit unsigned integer */
352 	REGISTRY_TABLE_ENTRY_TYPE_BINARY = 2, /* Binary blob */
353 	REGISTRY_TABLE_ENTRY_TYPE_STRING = 3, /* Null-terminated string */
354 };
355 
356 /* An arbitrary limit to the length of a registry key */
357 #define REGISTRY_MAX_KEY_LENGTH		64
358 
359 /**
360  * struct registry_list_entry - linked list member for a registry key/value
361  * @head: list_head struct
362  * @type: dword, binary, or string
363  * @klen: the length of name of the key
364  * @vlen: the length of the value
365  * @key: the key name
366  * @dword: the data, if REGISTRY_TABLE_ENTRY_TYPE_DWORD
367  * @binary: the data, if TYPE_BINARY or TYPE_STRING
368  *
369  * Every registry key/value is represented internally by this struct.
370  *
371  * Type DWORD is a simple 32-bit unsigned integer, and its value is stored in
372  * @dword.
373  *
374  * Types BINARY and STRING are variable-length binary blobs.  The only real
375  * difference between BINARY and STRING is that STRING is null-terminated and
376  * is expected to contain only printable characters.
377  *
378  * Note: it is technically possible to have multiple keys with the same name
379  * but different types, but this is not useful since GSP-RM expects keys to
380  * have only one specific type.
381  */
382 struct registry_list_entry {
383 	struct list_head head;
384 	enum registry_type type;
385 	size_t klen;
386 	char key[REGISTRY_MAX_KEY_LENGTH];
387 	size_t vlen;
388 	u32 dword;			/* TYPE_DWORD */
389 	u8 binary[] __counted_by(vlen);	/* TYPE_BINARY or TYPE_STRING */
390 };
391 
392 /**
393  * add_registry -- adds a registry entry
394  * @gsp: gsp pointer
395  * @key: name of the registry key
396  * @type: type of data
397  * @data: pointer to value
398  * @length: size of data, in bytes
399  *
400  * Adds a registry key/value pair to the registry database.
401  *
402  * This function collects the registry information in a linked list.  After
403  * all registry keys have been added, build_registry() is used to create the
404  * RPC data structure.
405  *
406  * registry_rpc_size is a running total of the size of all registry keys.
407  * It's used to avoid an O(n) calculation of the size when the RPC is built.
408  *
409  * Returns 0 on success, or negative error code on error.
410  */
add_registry(struct nvkm_gsp * gsp,const char * key,enum registry_type type,const void * data,size_t length)411 static int add_registry(struct nvkm_gsp *gsp, const char *key,
412 			enum registry_type type, const void *data, size_t length)
413 {
414 	struct registry_list_entry *reg;
415 	const size_t nlen = strnlen(key, REGISTRY_MAX_KEY_LENGTH) + 1;
416 	size_t alloc_size; /* extra bytes to alloc for binary or string value */
417 
418 	if (nlen > REGISTRY_MAX_KEY_LENGTH)
419 		return -EINVAL;
420 
421 	alloc_size = (type == REGISTRY_TABLE_ENTRY_TYPE_DWORD) ? 0 : length;
422 
423 	reg = kmalloc(sizeof(*reg) + alloc_size, GFP_KERNEL);
424 	if (!reg)
425 		return -ENOMEM;
426 
427 	switch (type) {
428 	case REGISTRY_TABLE_ENTRY_TYPE_DWORD:
429 		reg->dword = *(const u32 *)(data);
430 		break;
431 	case REGISTRY_TABLE_ENTRY_TYPE_BINARY:
432 	case REGISTRY_TABLE_ENTRY_TYPE_STRING:
433 		memcpy(reg->binary, data, alloc_size);
434 		break;
435 	default:
436 		nvkm_error(&gsp->subdev, "unrecognized registry type %u for '%s'\n",
437 			   type, key);
438 		kfree(reg);
439 		return -EINVAL;
440 	}
441 
442 	memcpy(reg->key, key, nlen);
443 	reg->klen = nlen;
444 	reg->vlen = length;
445 	reg->type = type;
446 
447 	list_add_tail(&reg->head, &gsp->registry_list);
448 	gsp->registry_rpc_size += sizeof(PACKED_REGISTRY_ENTRY) + nlen + alloc_size;
449 
450 	return 0;
451 }
452 
add_registry_num(struct nvkm_gsp * gsp,const char * key,u32 value)453 static int add_registry_num(struct nvkm_gsp *gsp, const char *key, u32 value)
454 {
455 	return add_registry(gsp, key, REGISTRY_TABLE_ENTRY_TYPE_DWORD,
456 			    &value, sizeof(u32));
457 }
458 
add_registry_string(struct nvkm_gsp * gsp,const char * key,const char * value)459 static int add_registry_string(struct nvkm_gsp *gsp, const char *key, const char *value)
460 {
461 	return add_registry(gsp, key, REGISTRY_TABLE_ENTRY_TYPE_STRING,
462 			    value, strlen(value) + 1);
463 }
464 
465 /**
466  * build_registry -- create the registry RPC data
467  * @gsp: gsp pointer
468  * @registry: pointer to the RPC payload to fill
469  *
470  * After all registry key/value pairs have been added, call this function to
471  * build the RPC.
472  *
473  * The registry RPC looks like this:
474  *
475  * +-----------------+
476  * |NvU32 size;      |
477  * |NvU32 numEntries;|
478  * +-----------------+
479  * +----------------------------------------+
480  * |PACKED_REGISTRY_ENTRY                   |
481  * +----------------------------------------+
482  * |Null-terminated key (string) for entry 0|
483  * +----------------------------------------+
484  * |Binary/string data value for entry 0    | (only if necessary)
485  * +----------------------------------------+
486  *
487  * +----------------------------------------+
488  * |PACKED_REGISTRY_ENTRY                   |
489  * +----------------------------------------+
490  * |Null-terminated key (string) for entry 1|
491  * +----------------------------------------+
492  * |Binary/string data value for entry 1    | (only if necessary)
493  * +----------------------------------------+
494  * ... (and so on, one copy for each entry)
495  *
496  *
497  * The 'data' field of an entry is either a 32-bit integer (for type DWORD)
498  * or an offset into the PACKED_REGISTRY_TABLE (for types BINARY and STRING).
499  *
500  * All memory allocated by add_registry() is released.
501  */
build_registry(struct nvkm_gsp * gsp,PACKED_REGISTRY_TABLE * registry)502 static void build_registry(struct nvkm_gsp *gsp, PACKED_REGISTRY_TABLE *registry)
503 {
504 	struct registry_list_entry *reg, *n;
505 	size_t str_offset;
506 	unsigned int i = 0;
507 
508 	registry->numEntries = list_count_nodes(&gsp->registry_list);
509 	str_offset = struct_size(registry, entries, registry->numEntries);
510 
511 	list_for_each_entry_safe(reg, n, &gsp->registry_list, head) {
512 		registry->entries[i].type = reg->type;
513 		registry->entries[i].length = reg->vlen;
514 
515 		/* Append the key name to the table */
516 		registry->entries[i].nameOffset = str_offset;
517 		memcpy((void *)registry + str_offset, reg->key, reg->klen);
518 		str_offset += reg->klen;
519 
520 		switch (reg->type) {
521 		case REGISTRY_TABLE_ENTRY_TYPE_DWORD:
522 			registry->entries[i].data = reg->dword;
523 			break;
524 		case REGISTRY_TABLE_ENTRY_TYPE_BINARY:
525 		case REGISTRY_TABLE_ENTRY_TYPE_STRING:
526 			/* If the type is binary or string, also append the value */
527 			memcpy((void *)registry + str_offset, reg->binary, reg->vlen);
528 			registry->entries[i].data = str_offset;
529 			str_offset += reg->vlen;
530 			break;
531 		default:
532 			break;
533 		}
534 
535 		i++;
536 		list_del(&reg->head);
537 		kfree(reg);
538 	}
539 
540 	/* Double-check that we calculated the sizes correctly */
541 	WARN_ON(gsp->registry_rpc_size != str_offset);
542 
543 	registry->size = gsp->registry_rpc_size;
544 }
545 
546 /**
547  * clean_registry -- clean up registry memory in case of error
548  * @gsp: gsp pointer
549  *
550  * Call this function to clean up all memory allocated by add_registry()
551  * in case of error and build_registry() is not called.
552  */
clean_registry(struct nvkm_gsp * gsp)553 static void clean_registry(struct nvkm_gsp *gsp)
554 {
555 	struct registry_list_entry *reg, *n;
556 
557 	list_for_each_entry_safe(reg, n, &gsp->registry_list, head) {
558 		list_del(&reg->head);
559 		kfree(reg);
560 	}
561 
562 	gsp->registry_rpc_size = sizeof(PACKED_REGISTRY_TABLE);
563 }
564 
565 MODULE_PARM_DESC(NVreg_RegistryDwords,
566 		 "A semicolon-separated list of key=integer pairs of GSP-RM registry keys");
567 static char *NVreg_RegistryDwords;
568 module_param(NVreg_RegistryDwords, charp, 0400);
569 
570 /* dword only */
571 struct nv_gsp_registry_entries {
572 	const char *name;
573 	u32 value;
574 };
575 
576 /*
577  * r535_registry_entries - required registry entries for GSP-RM
578  *
579  * This array lists registry entries that are required for GSP-RM to
580  * function correctly.
581  *
582  * RMSecBusResetEnable - enables PCI secondary bus reset
583  * RMForcePcieConfigSave - forces GSP-RM to preserve PCI configuration
584  *   registers on any PCI reset.
585  */
586 static const struct nv_gsp_registry_entries r535_registry_entries[] = {
587 	{ "RMSecBusResetEnable", 1 },
588 	{ "RMForcePcieConfigSave", 1 },
589 };
590 #define NV_GSP_REG_NUM_ENTRIES ARRAY_SIZE(r535_registry_entries)
591 
592 /**
593  * strip - strips all characters in 'reject' from 's'
594  * @s: string to strip
595  * @reject: string of characters to remove
596  *
597  * 's' is modified.
598  *
599  * Returns the length of the new string.
600  */
strip(char * s,const char * reject)601 static size_t strip(char *s, const char *reject)
602 {
603 	char *p = s, *p2 = s;
604 	size_t length = 0;
605 	char c;
606 
607 	do {
608 		while ((c = *p2) && strchr(reject, c))
609 			p2++;
610 
611 		*p++ = c = *p2++;
612 		length++;
613 	} while (c);
614 
615 	return length;
616 }
617 
618 /**
619  * r535_gsp_rpc_set_registry - build registry RPC and call GSP-RM
620  * @gsp: gsp pointer
621  *
622  * The GSP-RM registry is a set of key/value pairs that configure some aspects
623  * of GSP-RM. The keys are strings, and the values are 32-bit integers.
624  *
625  * The registry is built from a combination of a static hard-coded list (see
626  * above) and entries passed on the driver's command line.
627  */
628 static int
r535_gsp_rpc_set_registry(struct nvkm_gsp * gsp)629 r535_gsp_rpc_set_registry(struct nvkm_gsp *gsp)
630 {
631 	PACKED_REGISTRY_TABLE *rpc;
632 	unsigned int i;
633 	int ret;
634 
635 	INIT_LIST_HEAD(&gsp->registry_list);
636 	gsp->registry_rpc_size = sizeof(PACKED_REGISTRY_TABLE);
637 
638 	for (i = 0; i < NV_GSP_REG_NUM_ENTRIES; i++) {
639 		ret = add_registry_num(gsp, r535_registry_entries[i].name,
640 				       r535_registry_entries[i].value);
641 		if (ret)
642 			goto fail;
643 	}
644 
645 	/*
646 	 * The NVreg_RegistryDwords parameter is a string of key=value
647 	 * pairs separated by semicolons. We need to extract and trim each
648 	 * substring, and then parse the substring to extract the key and
649 	 * value.
650 	 */
651 	if (NVreg_RegistryDwords) {
652 		char *p = kstrdup(NVreg_RegistryDwords, GFP_KERNEL);
653 		char *start, *next = p, *equal;
654 
655 		if (!p) {
656 			ret = -ENOMEM;
657 			goto fail;
658 		}
659 
660 		/* Remove any whitespace from the parameter string */
661 		strip(p, " \t\n");
662 
663 		while ((start = strsep(&next, ";"))) {
664 			long value;
665 
666 			equal = strchr(start, '=');
667 			if (!equal || equal == start || equal[1] == 0) {
668 				nvkm_error(&gsp->subdev,
669 					   "ignoring invalid registry string '%s'\n",
670 					   start);
671 				continue;
672 			}
673 
674 			/* Truncate the key=value string to just key */
675 			*equal = 0;
676 
677 			ret = kstrtol(equal + 1, 0, &value);
678 			if (!ret) {
679 				ret = add_registry_num(gsp, start, value);
680 			} else {
681 				/* Not a number, so treat it as a string */
682 				ret = add_registry_string(gsp, start, equal + 1);
683 			}
684 
685 			if (ret) {
686 				nvkm_error(&gsp->subdev,
687 					   "ignoring invalid registry key/value '%s=%s'\n",
688 					   start, equal + 1);
689 				continue;
690 			}
691 		}
692 
693 		kfree(p);
694 	}
695 
696 	rpc = nvkm_gsp_rpc_get(gsp, NV_VGPU_MSG_FUNCTION_SET_REGISTRY, gsp->registry_rpc_size);
697 	if (IS_ERR(rpc)) {
698 		ret = PTR_ERR(rpc);
699 		goto fail;
700 	}
701 
702 	build_registry(gsp, rpc);
703 
704 	return nvkm_gsp_rpc_wr(gsp, rpc, NVKM_GSP_RPC_REPLY_NOWAIT);
705 
706 fail:
707 	clean_registry(gsp);
708 	return ret;
709 }
710 
711 #if defined(CONFIG_ACPI) && defined(CONFIG_X86)
712 void
r535_gsp_acpi_caps(acpi_handle handle,CAPS_METHOD_DATA * caps)713 r535_gsp_acpi_caps(acpi_handle handle, CAPS_METHOD_DATA *caps)
714 {
715 	const guid_t NVOP_DSM_GUID =
716 		GUID_INIT(0xA486D8F8, 0x0BDA, 0x471B,
717 			  0xA7, 0x2B, 0x60, 0x42, 0xA6, 0xB5, 0xBE, 0xE0);
718 	u64 NVOP_DSM_REV = 0x00000100;
719 	union acpi_object argv4 = {
720 		.buffer.type    = ACPI_TYPE_BUFFER,
721 		.buffer.length  = 4,
722 	}, *obj;
723 
724 	caps->status = 0xffff;
725 
726 	if (!acpi_check_dsm(handle, &NVOP_DSM_GUID, NVOP_DSM_REV, BIT_ULL(0x1a)))
727 		return;
728 
729 	argv4.buffer.pointer = kmalloc(argv4.buffer.length, GFP_KERNEL);
730 	if (!argv4.buffer.pointer)
731 		return;
732 
733 	obj = acpi_evaluate_dsm(handle, &NVOP_DSM_GUID, NVOP_DSM_REV, 0x1a, &argv4);
734 	if (!obj)
735 		goto done;
736 
737 	if (WARN_ON(obj->type != ACPI_TYPE_BUFFER) ||
738 	    WARN_ON(obj->buffer.length != 4))
739 		goto done;
740 
741 	caps->status = 0;
742 	caps->optimusCaps = *(u32 *)obj->buffer.pointer;
743 
744 done:
745 	ACPI_FREE(obj);
746 
747 	kfree(argv4.buffer.pointer);
748 }
749 
750 void
r535_gsp_acpi_jt(acpi_handle handle,JT_METHOD_DATA * jt)751 r535_gsp_acpi_jt(acpi_handle handle, JT_METHOD_DATA *jt)
752 {
753 	const guid_t JT_DSM_GUID =
754 		GUID_INIT(0xCBECA351L, 0x067B, 0x4924,
755 			  0x9C, 0xBD, 0xB4, 0x6B, 0x00, 0xB8, 0x6F, 0x34);
756 	u64 JT_DSM_REV = 0x00000103;
757 	u32 caps;
758 	union acpi_object argv4 = {
759 		.buffer.type    = ACPI_TYPE_BUFFER,
760 		.buffer.length  = sizeof(caps),
761 	}, *obj;
762 
763 	jt->status = 0xffff;
764 
765 	argv4.buffer.pointer = kmalloc(argv4.buffer.length, GFP_KERNEL);
766 	if (!argv4.buffer.pointer)
767 		return;
768 
769 	obj = acpi_evaluate_dsm(handle, &JT_DSM_GUID, JT_DSM_REV, 0x1, &argv4);
770 	if (!obj)
771 		goto done;
772 
773 	if (WARN_ON(obj->type != ACPI_TYPE_BUFFER) ||
774 	    WARN_ON(obj->buffer.length != 4))
775 		goto done;
776 
777 	jt->status = 0;
778 	jt->jtCaps = *(u32 *)obj->buffer.pointer;
779 	jt->jtRevId = (jt->jtCaps & 0xfff00000) >> 20;
780 	jt->bSBIOSCaps = 0;
781 
782 done:
783 	ACPI_FREE(obj);
784 
785 	kfree(argv4.buffer.pointer);
786 }
787 
788 static void
r535_gsp_acpi_mux_id(acpi_handle handle,u32 id,MUX_METHOD_DATA_ELEMENT * mode,MUX_METHOD_DATA_ELEMENT * part)789 r535_gsp_acpi_mux_id(acpi_handle handle, u32 id, MUX_METHOD_DATA_ELEMENT *mode,
790 						 MUX_METHOD_DATA_ELEMENT *part)
791 {
792 	union acpi_object mux_arg = { ACPI_TYPE_INTEGER };
793 	struct acpi_object_list input = { 1, &mux_arg };
794 	acpi_handle iter = NULL, handle_mux = NULL;
795 	acpi_status status;
796 	unsigned long long value;
797 
798 	mode->status = 0xffff;
799 	part->status = 0xffff;
800 
801 	do {
802 		status = acpi_get_next_object(ACPI_TYPE_DEVICE, handle, iter, &iter);
803 		if (ACPI_FAILURE(status) || !iter)
804 			return;
805 
806 		status = acpi_evaluate_integer(iter, "_ADR", NULL, &value);
807 		if (ACPI_FAILURE(status) || value != id)
808 			continue;
809 
810 		handle_mux = iter;
811 	} while (!handle_mux);
812 
813 	if (!handle_mux)
814 		return;
815 
816 	/* I -think- 0 means "acquire" according to nvidia's driver source */
817 	input.pointer->integer.type = ACPI_TYPE_INTEGER;
818 	input.pointer->integer.value = 0;
819 
820 	status = acpi_evaluate_integer(handle_mux, "MXDM", &input, &value);
821 	if (ACPI_SUCCESS(status)) {
822 		mode->acpiId = id;
823 		mode->mode   = value;
824 		mode->status = 0;
825 	}
826 
827 	status = acpi_evaluate_integer(handle_mux, "MXDS", &input, &value);
828 	if (ACPI_SUCCESS(status)) {
829 		part->acpiId = id;
830 		part->mode   = value;
831 		part->status = 0;
832 	}
833 }
834 
835 static void
r535_gsp_acpi_mux(acpi_handle handle,DOD_METHOD_DATA * dod,MUX_METHOD_DATA * mux)836 r535_gsp_acpi_mux(acpi_handle handle, DOD_METHOD_DATA *dod, MUX_METHOD_DATA *mux)
837 {
838 	mux->tableLen = dod->acpiIdListLen / sizeof(dod->acpiIdList[0]);
839 
840 	for (int i = 0; i < mux->tableLen; i++) {
841 		r535_gsp_acpi_mux_id(handle, dod->acpiIdList[i], &mux->acpiIdMuxModeTable[i],
842 								 &mux->acpiIdMuxPartTable[i]);
843 	}
844 }
845 
846 void
r535_gsp_acpi_dod(acpi_handle handle,DOD_METHOD_DATA * dod)847 r535_gsp_acpi_dod(acpi_handle handle, DOD_METHOD_DATA *dod)
848 {
849 	acpi_status status;
850 	struct acpi_buffer output = { ACPI_ALLOCATE_BUFFER, NULL };
851 	union acpi_object *_DOD;
852 
853 	dod->status = 0xffff;
854 
855 	status = acpi_evaluate_object(handle, "_DOD", NULL, &output);
856 	if (ACPI_FAILURE(status))
857 		return;
858 
859 	_DOD = output.pointer;
860 
861 	if (WARN_ON(_DOD->type != ACPI_TYPE_PACKAGE) ||
862 	    WARN_ON(_DOD->package.count > ARRAY_SIZE(dod->acpiIdList)))
863 		return;
864 
865 	for (int i = 0; i < _DOD->package.count; i++) {
866 		if (WARN_ON(_DOD->package.elements[i].type != ACPI_TYPE_INTEGER))
867 			return;
868 
869 		dod->acpiIdList[i] = _DOD->package.elements[i].integer.value;
870 		dod->acpiIdListLen += sizeof(dod->acpiIdList[0]);
871 	}
872 
873 	dod->status = 0;
874 	kfree(output.pointer);
875 }
876 #endif
877 
878 static void
r535_gsp_acpi_info(struct nvkm_gsp * gsp,ACPI_METHOD_DATA * acpi)879 r535_gsp_acpi_info(struct nvkm_gsp *gsp, ACPI_METHOD_DATA *acpi)
880 {
881 #if defined(CONFIG_ACPI) && defined(CONFIG_X86)
882 	acpi_handle handle = ACPI_HANDLE(gsp->subdev.device->dev);
883 
884 	if (!handle)
885 		return;
886 
887 	acpi->bValid = 1;
888 
889 	r535_gsp_acpi_dod(handle, &acpi->dodMethodData);
890 	if (acpi->dodMethodData.status == 0)
891 		r535_gsp_acpi_mux(handle, &acpi->dodMethodData, &acpi->muxMethodData);
892 
893 	r535_gsp_acpi_jt(handle, &acpi->jtMethodData);
894 	r535_gsp_acpi_caps(handle, &acpi->capsMethodData);
895 #endif
896 }
897 
898 static int
r535_gsp_set_system_info(struct nvkm_gsp * gsp)899 r535_gsp_set_system_info(struct nvkm_gsp *gsp)
900 {
901 	struct nvkm_device *device = gsp->subdev.device;
902 	struct nvkm_device_pci *pdev = container_of(device, typeof(*pdev), device);
903 	GspSystemInfo *info;
904 
905 	if (WARN_ON(device->type == NVKM_DEVICE_TEGRA))
906 		return -ENOSYS;
907 
908 	info = nvkm_gsp_rpc_get(gsp, NV_VGPU_MSG_FUNCTION_GSP_SET_SYSTEM_INFO, sizeof(*info));
909 	if (IS_ERR(info))
910 		return PTR_ERR(info);
911 
912 	info->gpuPhysAddr = device->func->resource_addr(device, NVKM_BAR0_PRI);
913 	info->gpuPhysFbAddr = device->func->resource_addr(device, NVKM_BAR1_FB);
914 	info->gpuPhysInstAddr = device->func->resource_addr(device, NVKM_BAR2_INST);
915 	info->nvDomainBusDeviceFunc = pci_dev_id(pdev->pdev);
916 	info->maxUserVa = TASK_SIZE;
917 	info->pciConfigMirrorBase = device->pci->func->cfg.addr;
918 	info->pciConfigMirrorSize = device->pci->func->cfg.size;
919 	r535_gsp_acpi_info(gsp, &info->acpiMethodData);
920 
921 	return nvkm_gsp_rpc_wr(gsp, info, NVKM_GSP_RPC_REPLY_NOWAIT);
922 }
923 
924 static int
r535_gsp_msg_os_error_log(void * priv,u32 fn,void * repv,u32 repc)925 r535_gsp_msg_os_error_log(void *priv, u32 fn, void *repv, u32 repc)
926 {
927 	struct nvkm_gsp *gsp = priv;
928 	struct nvkm_subdev *subdev = &gsp->subdev;
929 	rpc_os_error_log_v17_00 *msg = repv;
930 
931 	if (WARN_ON(repc < sizeof(*msg)))
932 		return -EINVAL;
933 
934 	nvkm_error(subdev, "Xid:%d %s\n", msg->exceptType, msg->errString);
935 	return 0;
936 }
937 
938 static int
r535_gsp_msg_mmu_fault_queued(void * priv,u32 fn,void * repv,u32 repc)939 r535_gsp_msg_mmu_fault_queued(void *priv, u32 fn, void *repv, u32 repc)
940 {
941 	struct nvkm_gsp *gsp = priv;
942 	struct nvkm_subdev *subdev = &gsp->subdev;
943 
944 	WARN_ON(repc != 0);
945 
946 	nvkm_error(subdev, "mmu fault queued\n");
947 	return 0;
948 }
949 
950 static int
r535_gsp_msg_post_event(void * priv,u32 fn,void * repv,u32 repc)951 r535_gsp_msg_post_event(void *priv, u32 fn, void *repv, u32 repc)
952 {
953 	struct nvkm_gsp *gsp = priv;
954 	struct nvkm_gsp_client *client;
955 	struct nvkm_subdev *subdev = &gsp->subdev;
956 	rpc_post_event_v17_00 *msg = repv;
957 
958 	if (WARN_ON(repc < sizeof(*msg)))
959 		return -EINVAL;
960 	if (WARN_ON(repc != sizeof(*msg) + msg->eventDataSize))
961 		return -EINVAL;
962 
963 	nvkm_debug(subdev, "event: %08x %08x %d %08x %08x %d %d\n",
964 		   msg->hClient, msg->hEvent, msg->notifyIndex, msg->data,
965 		   msg->status, msg->eventDataSize, msg->bNotifyList);
966 
967 	mutex_lock(&gsp->client_id.mutex);
968 	client = idr_find(&gsp->client_id.idr, msg->hClient & 0xffff);
969 	if (client) {
970 		struct nvkm_gsp_event *event;
971 		bool handled = false;
972 
973 		list_for_each_entry(event, &client->events, head) {
974 			if (event->object.handle == msg->hEvent) {
975 				event->func(event, msg->eventData, msg->eventDataSize);
976 				handled = true;
977 			}
978 		}
979 
980 		if (!handled) {
981 			nvkm_error(subdev, "event: cid 0x%08x event 0x%08x not found!\n",
982 				   msg->hClient, msg->hEvent);
983 		}
984 	} else {
985 		nvkm_error(subdev, "event: cid 0x%08x not found!\n", msg->hClient);
986 	}
987 	mutex_unlock(&gsp->client_id.mutex);
988 	return 0;
989 }
990 
991 /**
992  * r535_gsp_msg_run_cpu_sequencer() -- process I/O commands from the GSP
993  * @priv: gsp pointer
994  * @fn: function number (ignored)
995  * @repv: pointer to libos print RPC
996  * @repc: message size
997  *
998  * The GSP sequencer is a list of I/O commands that the GSP can send to
999  * the driver to perform for various purposes.  The most common usage is to
1000  * perform a special mid-initialization reset.
1001  */
1002 static int
r535_gsp_msg_run_cpu_sequencer(void * priv,u32 fn,void * repv,u32 repc)1003 r535_gsp_msg_run_cpu_sequencer(void *priv, u32 fn, void *repv, u32 repc)
1004 {
1005 	struct nvkm_gsp *gsp = priv;
1006 	struct nvkm_subdev *subdev = &gsp->subdev;
1007 	struct nvkm_device *device = subdev->device;
1008 	rpc_run_cpu_sequencer_v17_00 *seq = repv;
1009 	int ptr = 0, ret;
1010 
1011 	nvkm_debug(subdev, "seq: %08x %08x\n", seq->bufferSizeDWord, seq->cmdIndex);
1012 
1013 	while (ptr < seq->cmdIndex) {
1014 		GSP_SEQUENCER_BUFFER_CMD *cmd = (void *)&seq->commandBuffer[ptr];
1015 
1016 		ptr += 1;
1017 		ptr += GSP_SEQUENCER_PAYLOAD_SIZE_DWORDS(cmd->opCode);
1018 
1019 		switch (cmd->opCode) {
1020 		case GSP_SEQ_BUF_OPCODE_REG_WRITE: {
1021 			u32 addr = cmd->payload.regWrite.addr;
1022 			u32 data = cmd->payload.regWrite.val;
1023 
1024 			nvkm_trace(subdev, "seq wr32 %06x %08x\n", addr, data);
1025 			nvkm_wr32(device, addr, data);
1026 		}
1027 			break;
1028 		case GSP_SEQ_BUF_OPCODE_REG_MODIFY: {
1029 			u32 addr = cmd->payload.regModify.addr;
1030 			u32 mask = cmd->payload.regModify.mask;
1031 			u32 data = cmd->payload.regModify.val;
1032 
1033 			nvkm_trace(subdev, "seq mask %06x %08x %08x\n", addr, mask, data);
1034 			nvkm_mask(device, addr, mask, data);
1035 		}
1036 			break;
1037 		case GSP_SEQ_BUF_OPCODE_REG_POLL: {
1038 			u32 addr = cmd->payload.regPoll.addr;
1039 			u32 mask = cmd->payload.regPoll.mask;
1040 			u32 data = cmd->payload.regPoll.val;
1041 			u32 usec = cmd->payload.regPoll.timeout ?: 4000000;
1042 			//u32 error = cmd->payload.regPoll.error;
1043 
1044 			nvkm_trace(subdev, "seq poll %06x %08x %08x %d\n", addr, mask, data, usec);
1045 			nvkm_rd32(device, addr);
1046 			nvkm_usec(device, usec,
1047 				if ((nvkm_rd32(device, addr) & mask) == data)
1048 					break;
1049 			);
1050 		}
1051 			break;
1052 		case GSP_SEQ_BUF_OPCODE_DELAY_US: {
1053 			u32 usec = cmd->payload.delayUs.val;
1054 
1055 			nvkm_trace(subdev, "seq usec %d\n", usec);
1056 			udelay(usec);
1057 		}
1058 			break;
1059 		case GSP_SEQ_BUF_OPCODE_REG_STORE: {
1060 			u32 addr = cmd->payload.regStore.addr;
1061 			u32 slot = cmd->payload.regStore.index;
1062 
1063 			seq->regSaveArea[slot] = nvkm_rd32(device, addr);
1064 			nvkm_trace(subdev, "seq save %08x -> %d: %08x\n", addr, slot,
1065 				   seq->regSaveArea[slot]);
1066 		}
1067 			break;
1068 		case GSP_SEQ_BUF_OPCODE_CORE_RESET:
1069 			nvkm_trace(subdev, "seq core reset\n");
1070 			nvkm_falcon_reset(&gsp->falcon);
1071 			nvkm_falcon_mask(&gsp->falcon, 0x624, 0x00000080, 0x00000080);
1072 			nvkm_falcon_wr32(&gsp->falcon, 0x10c, 0x00000000);
1073 			break;
1074 		case GSP_SEQ_BUF_OPCODE_CORE_START:
1075 			nvkm_trace(subdev, "seq core start\n");
1076 			if (nvkm_falcon_rd32(&gsp->falcon, 0x100) & 0x00000040)
1077 				nvkm_falcon_wr32(&gsp->falcon, 0x130, 0x00000002);
1078 			else
1079 				nvkm_falcon_wr32(&gsp->falcon, 0x100, 0x00000002);
1080 			break;
1081 		case GSP_SEQ_BUF_OPCODE_CORE_WAIT_FOR_HALT:
1082 			nvkm_trace(subdev, "seq core wait halt\n");
1083 			nvkm_msec(device, 2000,
1084 				if (nvkm_falcon_rd32(&gsp->falcon, 0x100) & 0x00000010)
1085 					break;
1086 			);
1087 			break;
1088 		case GSP_SEQ_BUF_OPCODE_CORE_RESUME: {
1089 			struct nvkm_sec2 *sec2 = device->sec2;
1090 			u32 mbox0;
1091 
1092 			nvkm_trace(subdev, "seq core resume\n");
1093 
1094 			ret = gsp->func->reset(gsp);
1095 			if (WARN_ON(ret))
1096 				return ret;
1097 
1098 			nvkm_falcon_wr32(&gsp->falcon, 0x040, lower_32_bits(gsp->libos.addr));
1099 			nvkm_falcon_wr32(&gsp->falcon, 0x044, upper_32_bits(gsp->libos.addr));
1100 
1101 			nvkm_falcon_start(&sec2->falcon);
1102 
1103 			if (nvkm_msec(device, 2000,
1104 				if (nvkm_rd32(device, 0x1180f8) & 0x04000000)
1105 					break;
1106 			) < 0)
1107 				return -ETIMEDOUT;
1108 
1109 			mbox0 = nvkm_falcon_rd32(&sec2->falcon, 0x040);
1110 			if (WARN_ON(mbox0)) {
1111 				nvkm_error(&gsp->subdev, "seq core resume sec2: 0x%x\n", mbox0);
1112 				return -EIO;
1113 			}
1114 
1115 			nvkm_falcon_wr32(&gsp->falcon, 0x080, gsp->boot.app_version);
1116 
1117 			if (WARN_ON(!nvkm_falcon_riscv_active(&gsp->falcon)))
1118 				return -EIO;
1119 		}
1120 			break;
1121 		default:
1122 			nvkm_error(subdev, "unknown sequencer opcode %08x\n", cmd->opCode);
1123 			return -EINVAL;
1124 		}
1125 	}
1126 
1127 	return 0;
1128 }
1129 
1130 static int
r535_gsp_shared_init(struct nvkm_gsp * gsp)1131 r535_gsp_shared_init(struct nvkm_gsp *gsp)
1132 {
1133 	struct {
1134 		msgqTxHeader tx;
1135 		msgqRxHeader rx;
1136 	} *cmdq, *msgq;
1137 	int ret, i;
1138 
1139 	gsp->shm.cmdq.size = 0x40000;
1140 	gsp->shm.msgq.size = 0x40000;
1141 
1142 	gsp->shm.ptes.nr  = (gsp->shm.cmdq.size + gsp->shm.msgq.size) >> GSP_PAGE_SHIFT;
1143 	gsp->shm.ptes.nr += DIV_ROUND_UP(gsp->shm.ptes.nr * sizeof(u64), GSP_PAGE_SIZE);
1144 	gsp->shm.ptes.size = ALIGN(gsp->shm.ptes.nr * sizeof(u64), GSP_PAGE_SIZE);
1145 
1146 	ret = nvkm_gsp_mem_ctor(gsp, gsp->shm.ptes.size +
1147 				     gsp->shm.cmdq.size +
1148 				     gsp->shm.msgq.size,
1149 				&gsp->shm.mem);
1150 	if (ret)
1151 		return ret;
1152 
1153 	gsp->shm.ptes.ptr = gsp->shm.mem.data;
1154 	gsp->shm.cmdq.ptr = (u8 *)gsp->shm.ptes.ptr + gsp->shm.ptes.size;
1155 	gsp->shm.msgq.ptr = (u8 *)gsp->shm.cmdq.ptr + gsp->shm.cmdq.size;
1156 
1157 	for (i = 0; i < gsp->shm.ptes.nr; i++)
1158 		gsp->shm.ptes.ptr[i] = gsp->shm.mem.addr + (i << GSP_PAGE_SHIFT);
1159 
1160 	cmdq = gsp->shm.cmdq.ptr;
1161 	cmdq->tx.version = 0;
1162 	cmdq->tx.size = gsp->shm.cmdq.size;
1163 	cmdq->tx.entryOff = GSP_PAGE_SIZE;
1164 	cmdq->tx.msgSize = GSP_PAGE_SIZE;
1165 	cmdq->tx.msgCount = (cmdq->tx.size - cmdq->tx.entryOff) / cmdq->tx.msgSize;
1166 	cmdq->tx.writePtr = 0;
1167 	cmdq->tx.flags = 1;
1168 	cmdq->tx.rxHdrOff = offsetof(typeof(*cmdq), rx.readPtr);
1169 
1170 	msgq = gsp->shm.msgq.ptr;
1171 
1172 	gsp->cmdq.cnt = cmdq->tx.msgCount;
1173 	gsp->cmdq.wptr = &cmdq->tx.writePtr;
1174 	gsp->cmdq.rptr = &msgq->rx.readPtr;
1175 	gsp->msgq.cnt = cmdq->tx.msgCount;
1176 	gsp->msgq.wptr = &msgq->tx.writePtr;
1177 	gsp->msgq.rptr = &cmdq->rx.readPtr;
1178 	return 0;
1179 }
1180 
1181 static void
r535_gsp_set_rmargs(struct nvkm_gsp * gsp,bool resume)1182 r535_gsp_set_rmargs(struct nvkm_gsp *gsp, bool resume)
1183 {
1184 	GSP_ARGUMENTS_CACHED *args = gsp->rmargs.data;
1185 
1186 	args->messageQueueInitArguments.sharedMemPhysAddr = gsp->shm.mem.addr;
1187 	args->messageQueueInitArguments.pageTableEntryCount = gsp->shm.ptes.nr;
1188 	args->messageQueueInitArguments.cmdQueueOffset =
1189 		(u8 *)gsp->shm.cmdq.ptr - (u8 *)gsp->shm.mem.data;
1190 	args->messageQueueInitArguments.statQueueOffset =
1191 		(u8 *)gsp->shm.msgq.ptr - (u8 *)gsp->shm.mem.data;
1192 
1193 	if (!resume) {
1194 		args->srInitArguments.oldLevel = 0;
1195 		args->srInitArguments.flags = 0;
1196 		args->srInitArguments.bInPMTransition = 0;
1197 	} else {
1198 		args->srInitArguments.oldLevel = NV2080_CTRL_GPU_SET_POWER_STATE_GPU_LEVEL_3;
1199 		args->srInitArguments.flags = 0;
1200 		args->srInitArguments.bInPMTransition = 1;
1201 	}
1202 }
1203 
1204 static int
r535_gsp_rmargs_init(struct nvkm_gsp * gsp,bool resume)1205 r535_gsp_rmargs_init(struct nvkm_gsp *gsp, bool resume)
1206 {
1207 	int ret;
1208 
1209 	if (!resume) {
1210 		ret = r535_gsp_shared_init(gsp);
1211 		if (ret)
1212 			return ret;
1213 
1214 		ret = nvkm_gsp_mem_ctor(gsp, 0x1000, &gsp->rmargs);
1215 		if (ret)
1216 			return ret;
1217 	}
1218 
1219 	gsp->rm->api->gsp->set_rmargs(gsp, resume);
1220 	return 0;
1221 }
1222 
1223 #ifdef CONFIG_DEBUG_FS
1224 
1225 /*
1226  * If GSP-RM load fails, then the GSP nvkm object will be deleted, the logging
1227  * debugfs entries will be deleted, and it will not be possible to debug the
1228  * load failure. The keep_gsp_logging parameter tells Nouveau to copy the
1229  * logging buffers to new debugfs entries, and these entries are retained
1230  * until the driver unloads.
1231  */
1232 static bool keep_gsp_logging;
1233 module_param(keep_gsp_logging, bool, 0444);
1234 MODULE_PARM_DESC(keep_gsp_logging,
1235 		 "Migrate the GSP-RM logging debugfs entries upon exit");
1236 
1237 /*
1238  * GSP-RM uses a pseudo-class mechanism to define of a variety of per-"engine"
1239  * data structures, and each engine has a "class ID" genererated by a
1240  * pre-processor. This is the class ID for the PMU.
1241  */
1242 #define NV_GSP_MSG_EVENT_UCODE_LIBOS_CLASS_PMU		0xf3d722
1243 
1244 /**
1245  * struct rpc_ucode_libos_print_v1e_08 - RPC payload for libos print buffers
1246  * @ucode_eng_desc: the engine descriptor
1247  * @libos_print_buf_size: the size of the libos_print_buf[]
1248  * @libos_print_buf: the actual buffer
1249  *
1250  * The engine descriptor is divided into 31:8 "class ID" and 7:0 "instance
1251  * ID". We only care about messages from PMU.
1252  */
1253 struct rpc_ucode_libos_print_v1e_08 {
1254 	u32 ucode_eng_desc;
1255 	u32 libos_print_buf_size;
1256 	u8 libos_print_buf[];
1257 };
1258 
1259 /**
1260  * r535_gsp_msg_libos_print - capture log message from the PMU
1261  * @priv: gsp pointer
1262  * @fn: function number (ignored)
1263  * @repv: pointer to libos print RPC
1264  * @repc: message size
1265  *
1266  * Called when we receive a UCODE_LIBOS_PRINT event RPC from GSP-RM. This RPC
1267  * contains the contents of the libos print buffer from PMU. It is typically
1268  * only written to when PMU encounters an error.
1269  *
1270  * Technically this RPC can be used to pass print buffers from any number of
1271  * GSP-RM engines, but we only expect to receive them for the PMU.
1272  *
1273  * For the PMU, the buffer is 4K in size and the RPC always contains the full
1274  * contents.
1275  */
1276 static int
r535_gsp_msg_libos_print(void * priv,u32 fn,void * repv,u32 repc)1277 r535_gsp_msg_libos_print(void *priv, u32 fn, void *repv, u32 repc)
1278 {
1279 	struct nvkm_gsp *gsp = priv;
1280 	struct nvkm_subdev *subdev = &gsp->subdev;
1281 	struct rpc_ucode_libos_print_v1e_08 *rpc = repv;
1282 	unsigned int class = rpc->ucode_eng_desc >> 8;
1283 
1284 	nvkm_debug(subdev, "received libos print from class 0x%x for %u bytes\n",
1285 		   class, rpc->libos_print_buf_size);
1286 
1287 	if (class != NV_GSP_MSG_EVENT_UCODE_LIBOS_CLASS_PMU) {
1288 		nvkm_warn(subdev,
1289 			  "received libos print from unknown class 0x%x\n",
1290 			  class);
1291 		return -ENOMSG;
1292 	}
1293 
1294 	if (rpc->libos_print_buf_size > GSP_PAGE_SIZE) {
1295 		nvkm_error(subdev, "libos print is too large (%u bytes)\n",
1296 			   rpc->libos_print_buf_size);
1297 		return -E2BIG;
1298 	}
1299 
1300 	memcpy(gsp->blob_pmu.data, rpc->libos_print_buf, rpc->libos_print_buf_size);
1301 
1302 	return 0;
1303 }
1304 
1305 /**
1306  * create_debugfs - create a blob debugfs entry
1307  * @gsp: gsp pointer
1308  * @name: name of this dentry
1309  * @blob: blob wrapper
1310  *
1311  * Creates a debugfs entry for a logging buffer with the name 'name'.
1312  */
create_debugfs(struct nvkm_gsp * gsp,const char * name,struct debugfs_blob_wrapper * blob)1313 static struct dentry *create_debugfs(struct nvkm_gsp *gsp, const char *name,
1314 				     struct debugfs_blob_wrapper *blob)
1315 {
1316 	struct dentry *dent;
1317 
1318 	dent = debugfs_create_blob(name, 0444, gsp->debugfs.parent, blob);
1319 	if (IS_ERR(dent)) {
1320 		nvkm_error(&gsp->subdev,
1321 			   "failed to create %s debugfs entry\n", name);
1322 		return NULL;
1323 	}
1324 
1325 	/*
1326 	 * For some reason, debugfs_create_blob doesn't set the size of the
1327 	 * dentry, so do that here.  See [1]
1328 	 *
1329 	 * [1] https://lore.kernel.org/r/linux-fsdevel/20240207200619.3354549-1-ttabi@nvidia.com/
1330 	 */
1331 	i_size_write(d_inode(dent), blob->size);
1332 
1333 	return dent;
1334 }
1335 
1336 /**
1337  * r535_gsp_libos_debugfs_init - create logging debugfs entries
1338  * @gsp: gsp pointer
1339  *
1340  * Create the debugfs entries. This exposes the log buffers to userspace so
1341  * that an external tool can parse it.
1342  *
1343  * The 'logpmu' contains exception dumps from the PMU. It is written via an
1344  * RPC sent from GSP-RM and must be only 4KB. We create it here because it's
1345  * only useful if there is a debugfs entry to expose it. If we get the PMU
1346  * logging RPC and there is no debugfs entry, the RPC is just ignored.
1347  *
1348  * The blob_init, blob_rm, and blob_pmu objects can't be transient
1349  * because debugfs_create_blob doesn't copy them.
1350  *
1351  * NOTE: OpenRM loads the logging elf image and prints the log messages
1352  * in real-time. We may add that capability in the future, but that
1353  * requires loading ELF images that are not distributed with the driver and
1354  * adding the parsing code to Nouveau.
1355  *
1356  * Ideally, this should be part of nouveau_debugfs_init(), but that function
1357  * is called too late. We really want to create these debugfs entries before
1358  * r535_gsp_booter_load() is called, so that if GSP-RM fails to initialize,
1359  * there could still be a log to capture.
1360  */
1361 static void
r535_gsp_libos_debugfs_init(struct nvkm_gsp * gsp)1362 r535_gsp_libos_debugfs_init(struct nvkm_gsp *gsp)
1363 {
1364 	struct device *dev = gsp->subdev.device->dev;
1365 
1366 	/* Create a new debugfs directory with a name unique to this GPU. */
1367 	gsp->debugfs.parent = debugfs_create_dir(dev_name(dev), nouveau_debugfs_root);
1368 	if (IS_ERR(gsp->debugfs.parent)) {
1369 		nvkm_error(&gsp->subdev,
1370 			   "failed to create %s debugfs root\n", dev_name(dev));
1371 		return;
1372 	}
1373 
1374 	gsp->blob_init.data = gsp->loginit.data;
1375 	gsp->blob_init.size = gsp->loginit.size;
1376 	gsp->blob_intr.data = gsp->logintr.data;
1377 	gsp->blob_intr.size = gsp->logintr.size;
1378 	gsp->blob_rm.data = gsp->logrm.data;
1379 	gsp->blob_rm.size = gsp->logrm.size;
1380 
1381 	gsp->debugfs.init = create_debugfs(gsp, "loginit", &gsp->blob_init);
1382 	if (!gsp->debugfs.init)
1383 		goto error;
1384 
1385 	gsp->debugfs.intr = create_debugfs(gsp, "logintr", &gsp->blob_intr);
1386 	if (!gsp->debugfs.intr)
1387 		goto error;
1388 
1389 	gsp->debugfs.rm = create_debugfs(gsp, "logrm", &gsp->blob_rm);
1390 	if (!gsp->debugfs.rm)
1391 		goto error;
1392 
1393 	/*
1394 	 * Since the PMU buffer is copied from an RPC, it doesn't need to be
1395 	 * a DMA buffer.
1396 	 */
1397 	gsp->blob_pmu.size = GSP_PAGE_SIZE;
1398 	gsp->blob_pmu.data = kzalloc(gsp->blob_pmu.size, GFP_KERNEL);
1399 	if (!gsp->blob_pmu.data)
1400 		goto error;
1401 
1402 	gsp->debugfs.pmu = create_debugfs(gsp, "logpmu", &gsp->blob_pmu);
1403 	if (!gsp->debugfs.pmu) {
1404 		kfree(gsp->blob_pmu.data);
1405 		goto error;
1406 	}
1407 
1408 	i_size_write(d_inode(gsp->debugfs.init), gsp->blob_init.size);
1409 	i_size_write(d_inode(gsp->debugfs.intr), gsp->blob_intr.size);
1410 	i_size_write(d_inode(gsp->debugfs.rm), gsp->blob_rm.size);
1411 	i_size_write(d_inode(gsp->debugfs.pmu), gsp->blob_pmu.size);
1412 
1413 	r535_gsp_msg_ntfy_add(gsp, NV_VGPU_MSG_EVENT_UCODE_LIBOS_PRINT,
1414 			      r535_gsp_msg_libos_print, gsp);
1415 
1416 	nvkm_debug(&gsp->subdev, "created debugfs GSP-RM logging entries\n");
1417 
1418 	if (keep_gsp_logging) {
1419 		nvkm_info(&gsp->subdev,
1420 			  "logging buffers will be retained on failure\n");
1421 	}
1422 
1423 	return;
1424 
1425 error:
1426 	debugfs_remove(gsp->debugfs.parent);
1427 	gsp->debugfs.parent = NULL;
1428 }
1429 
1430 #endif
1431 
1432 static inline u64
r535_gsp_libos_id8(const char * name)1433 r535_gsp_libos_id8(const char *name)
1434 {
1435 	u64 id = 0;
1436 
1437 	for (int i = 0; i < sizeof(id) && *name; i++, name++)
1438 		id = (id << 8) | *name;
1439 
1440 	return id;
1441 }
1442 
1443 /**
1444  * create_pte_array() - creates a PTE array of a physically contiguous buffer
1445  * @ptes: pointer to the array
1446  * @addr: base address of physically contiguous buffer (GSP_PAGE_SIZE aligned)
1447  * @size: size of the buffer
1448  *
1449  * GSP-RM sometimes expects physically-contiguous buffers to have an array of
1450  * "PTEs" for each page in that buffer.  Although in theory that allows for
1451  * the buffer to be physically discontiguous, GSP-RM does not currently
1452  * support that.
1453  *
1454  * In this case, the PTEs are DMA addresses of each page of the buffer.  Since
1455  * the buffer is physically contiguous, calculating all the PTEs is simple
1456  * math.
1457  *
1458  * See memdescGetPhysAddrsForGpu()
1459  */
create_pte_array(u64 * ptes,dma_addr_t addr,size_t size)1460 static void create_pte_array(u64 *ptes, dma_addr_t addr, size_t size)
1461 {
1462 	unsigned int num_pages = DIV_ROUND_UP_ULL(size, GSP_PAGE_SIZE);
1463 	unsigned int i;
1464 
1465 	for (i = 0; i < num_pages; i++)
1466 		ptes[i] = (u64)addr + (i << GSP_PAGE_SHIFT);
1467 }
1468 
1469 /**
1470  * r535_gsp_libos_init() -- create the libos arguments structure
1471  * @gsp: gsp pointer
1472  *
1473  * The logging buffers are byte queues that contain encoded printf-like
1474  * messages from GSP-RM.  They need to be decoded by a special application
1475  * that can parse the buffers.
1476  *
1477  * The 'loginit' buffer contains logs from early GSP-RM init and
1478  * exception dumps.  The 'logrm' buffer contains the subsequent logs. Both are
1479  * written to directly by GSP-RM and can be any multiple of GSP_PAGE_SIZE.
1480  *
1481  * The physical address map for the log buffer is stored in the buffer
1482  * itself, starting with offset 1. Offset 0 contains the "put" pointer (pp).
1483  * Initially, pp is equal to 0. If the buffer has valid logging data in it,
1484  * then pp points to index into the buffer where the next logging entry will
1485  * be written. Therefore, the logging data is valid if:
1486  *   1 <= pp < sizeof(buffer)/sizeof(u64)
1487  *
1488  * The GSP only understands 4K pages (GSP_PAGE_SIZE), so even if the kernel is
1489  * configured for a larger page size (e.g. 64K pages), we need to give
1490  * the GSP an array of 4K pages. Fortunately, since the buffer is
1491  * physically contiguous, it's simple math to calculate the addresses.
1492  *
1493  * The buffers must be a multiple of GSP_PAGE_SIZE.  GSP-RM also currently
1494  * ignores the @kind field for LOGINIT, LOGINTR, and LOGRM, but expects the
1495  * buffers to be physically contiguous anyway.
1496  *
1497  * The memory allocated for the arguments must remain until the GSP sends the
1498  * init_done RPC.
1499  *
1500  * See _kgspInitLibosLoggingStructures (allocates memory for buffers)
1501  * See kgspSetupLibosInitArgs_IMPL (creates pLibosInitArgs[] array)
1502  */
1503 static int
r535_gsp_libos_init(struct nvkm_gsp * gsp)1504 r535_gsp_libos_init(struct nvkm_gsp *gsp)
1505 {
1506 	LibosMemoryRegionInitArgument *args;
1507 	int ret;
1508 
1509 	ret = nvkm_gsp_mem_ctor(gsp, 0x1000, &gsp->libos);
1510 	if (ret)
1511 		return ret;
1512 
1513 	args = gsp->libos.data;
1514 
1515 	ret = nvkm_gsp_mem_ctor(gsp, 0x10000, &gsp->loginit);
1516 	if (ret)
1517 		return ret;
1518 
1519 	args[0].id8  = r535_gsp_libos_id8("LOGINIT");
1520 	args[0].pa   = gsp->loginit.addr;
1521 	args[0].size = gsp->loginit.size;
1522 	args[0].kind = LIBOS_MEMORY_REGION_CONTIGUOUS;
1523 	args[0].loc  = LIBOS_MEMORY_REGION_LOC_SYSMEM;
1524 	create_pte_array(gsp->loginit.data + sizeof(u64), gsp->loginit.addr, gsp->loginit.size);
1525 
1526 	ret = nvkm_gsp_mem_ctor(gsp, 0x10000, &gsp->logintr);
1527 	if (ret)
1528 		return ret;
1529 
1530 	args[1].id8  = r535_gsp_libos_id8("LOGINTR");
1531 	args[1].pa   = gsp->logintr.addr;
1532 	args[1].size = gsp->logintr.size;
1533 	args[1].kind = LIBOS_MEMORY_REGION_CONTIGUOUS;
1534 	args[1].loc  = LIBOS_MEMORY_REGION_LOC_SYSMEM;
1535 	create_pte_array(gsp->logintr.data + sizeof(u64), gsp->logintr.addr, gsp->logintr.size);
1536 
1537 	ret = nvkm_gsp_mem_ctor(gsp, 0x10000, &gsp->logrm);
1538 	if (ret)
1539 		return ret;
1540 
1541 	args[2].id8  = r535_gsp_libos_id8("LOGRM");
1542 	args[2].pa   = gsp->logrm.addr;
1543 	args[2].size = gsp->logrm.size;
1544 	args[2].kind = LIBOS_MEMORY_REGION_CONTIGUOUS;
1545 	args[2].loc  = LIBOS_MEMORY_REGION_LOC_SYSMEM;
1546 	create_pte_array(gsp->logrm.data + sizeof(u64), gsp->logrm.addr, gsp->logrm.size);
1547 
1548 	ret = r535_gsp_rmargs_init(gsp, false);
1549 	if (ret)
1550 		return ret;
1551 
1552 	args[3].id8  = r535_gsp_libos_id8("RMARGS");
1553 	args[3].pa   = gsp->rmargs.addr;
1554 	args[3].size = gsp->rmargs.size;
1555 	args[3].kind = LIBOS_MEMORY_REGION_CONTIGUOUS;
1556 	args[3].loc  = LIBOS_MEMORY_REGION_LOC_SYSMEM;
1557 
1558 #ifdef CONFIG_DEBUG_FS
1559 	r535_gsp_libos_debugfs_init(gsp);
1560 #endif
1561 
1562 	return 0;
1563 }
1564 
1565 void
nvkm_gsp_sg_free(struct nvkm_device * device,struct sg_table * sgt)1566 nvkm_gsp_sg_free(struct nvkm_device *device, struct sg_table *sgt)
1567 {
1568 	struct scatterlist *sgl;
1569 	int i;
1570 
1571 	dma_unmap_sgtable(device->dev, sgt, DMA_BIDIRECTIONAL, 0);
1572 
1573 	for_each_sgtable_sg(sgt, sgl, i) {
1574 		struct page *page = sg_page(sgl);
1575 
1576 		__free_page(page);
1577 	}
1578 
1579 	sg_free_table(sgt);
1580 }
1581 
1582 int
nvkm_gsp_sg(struct nvkm_device * device,u64 size,struct sg_table * sgt)1583 nvkm_gsp_sg(struct nvkm_device *device, u64 size, struct sg_table *sgt)
1584 {
1585 	const u64 pages = DIV_ROUND_UP(size, PAGE_SIZE);
1586 	struct scatterlist *sgl;
1587 	int ret, i;
1588 
1589 	ret = sg_alloc_table(sgt, pages, GFP_KERNEL);
1590 	if (ret)
1591 		return ret;
1592 
1593 	for_each_sgtable_sg(sgt, sgl, i) {
1594 		struct page *page = alloc_page(GFP_KERNEL);
1595 
1596 		if (!page) {
1597 			nvkm_gsp_sg_free(device, sgt);
1598 			return -ENOMEM;
1599 		}
1600 
1601 		sg_set_page(sgl, page, PAGE_SIZE, 0);
1602 	}
1603 
1604 	ret = dma_map_sgtable(device->dev, sgt, DMA_BIDIRECTIONAL, 0);
1605 	if (ret)
1606 		nvkm_gsp_sg_free(device, sgt);
1607 
1608 	return ret;
1609 }
1610 
1611 static void
nvkm_gsp_radix3_dtor(struct nvkm_gsp * gsp,struct nvkm_gsp_radix3 * rx3)1612 nvkm_gsp_radix3_dtor(struct nvkm_gsp *gsp, struct nvkm_gsp_radix3 *rx3)
1613 {
1614 	nvkm_gsp_sg_free(gsp->subdev.device, &rx3->lvl2);
1615 	nvkm_gsp_mem_dtor(&rx3->lvl1);
1616 	nvkm_gsp_mem_dtor(&rx3->lvl0);
1617 }
1618 
1619 /**
1620  * nvkm_gsp_radix3_sg - build a radix3 table from a S/G list
1621  * @gsp: gsp pointer
1622  * @sgt: S/G list to traverse
1623  * @size: size of the image, in bytes
1624  * @rx3: radix3 array to update
1625  *
1626  * The GSP uses a three-level page table, called radix3, to map the firmware.
1627  * Each 64-bit "pointer" in the table is either the bus address of an entry in
1628  * the next table (for levels 0 and 1) or the bus address of the next page in
1629  * the GSP firmware image itself.
1630  *
1631  * Level 0 contains a single entry in one page that points to the first page
1632  * of level 1.
1633  *
1634  * Level 1, since it's also only one page in size, contains up to 512 entries,
1635  * one for each page in Level 2.
1636  *
1637  * Level 2 can be up to 512 pages in size, and each of those entries points to
1638  * the next page of the firmware image.  Since there can be up to 512*512
1639  * pages, that limits the size of the firmware to 512*512*GSP_PAGE_SIZE = 1GB.
1640  *
1641  * Internally, the GSP has its window into system memory, but the base
1642  * physical address of the aperture is not 0.  In fact, it varies depending on
1643  * the GPU architecture.  Since the GPU is a PCI device, this window is
1644  * accessed via DMA and is therefore bound by IOMMU translation.  The end
1645  * result is that GSP-RM must translate the bus addresses in the table to GSP
1646  * physical addresses.  All this should happen transparently.
1647  *
1648  * Returns 0 on success, or negative error code
1649  *
1650  * See kgspCreateRadix3_IMPL
1651  */
1652 static int
nvkm_gsp_radix3_sg(struct nvkm_gsp * gsp,struct sg_table * sgt,u64 size,struct nvkm_gsp_radix3 * rx3)1653 nvkm_gsp_radix3_sg(struct nvkm_gsp *gsp, struct sg_table *sgt, u64 size,
1654 		   struct nvkm_gsp_radix3 *rx3)
1655 {
1656 	struct sg_dma_page_iter sg_dma_iter;
1657 	struct scatterlist *sg;
1658 	size_t bufsize;
1659 	u64 *pte;
1660 	int ret, i, page_idx = 0;
1661 
1662 	ret = nvkm_gsp_mem_ctor(gsp, GSP_PAGE_SIZE, &rx3->lvl0);
1663 	if (ret)
1664 		return ret;
1665 
1666 	ret = nvkm_gsp_mem_ctor(gsp, GSP_PAGE_SIZE, &rx3->lvl1);
1667 	if (ret)
1668 		goto lvl1_fail;
1669 
1670 	// Allocate level 2
1671 	bufsize = ALIGN((size / GSP_PAGE_SIZE) * sizeof(u64), GSP_PAGE_SIZE);
1672 	ret = nvkm_gsp_sg(gsp->subdev.device, bufsize, &rx3->lvl2);
1673 	if (ret)
1674 		goto lvl2_fail;
1675 
1676 	// Write the bus address of level 1 to level 0
1677 	pte = rx3->lvl0.data;
1678 	*pte = rx3->lvl1.addr;
1679 
1680 	// Write the bus address of each page in level 2 to level 1
1681 	pte = rx3->lvl1.data;
1682 	for_each_sgtable_dma_page(&rx3->lvl2, &sg_dma_iter, 0)
1683 		*pte++ = sg_page_iter_dma_address(&sg_dma_iter);
1684 
1685 	// Finally, write the bus address of each page in sgt to level 2
1686 	for_each_sgtable_sg(&rx3->lvl2, sg, i) {
1687 		void *sgl_end;
1688 
1689 		pte = sg_virt(sg);
1690 		sgl_end = (void *)pte + sg->length;
1691 
1692 		for_each_sgtable_dma_page(sgt, &sg_dma_iter, page_idx) {
1693 			*pte++ = sg_page_iter_dma_address(&sg_dma_iter);
1694 			page_idx++;
1695 
1696 			// Go to the next scatterlist for level 2 if we've reached the end
1697 			if ((void *)pte >= sgl_end)
1698 				break;
1699 		}
1700 	}
1701 
1702 	if (ret) {
1703 lvl2_fail:
1704 		nvkm_gsp_mem_dtor(&rx3->lvl1);
1705 lvl1_fail:
1706 		nvkm_gsp_mem_dtor(&rx3->lvl0);
1707 	}
1708 
1709 	return ret;
1710 }
1711 
1712 static u32
r535_gsp_sr_data_size(struct nvkm_gsp * gsp)1713 r535_gsp_sr_data_size(struct nvkm_gsp *gsp)
1714 {
1715 	GspFwWprMeta *meta = gsp->wpr_meta.data;
1716 
1717 	return meta->gspFwWprEnd - meta->gspFwWprStart;
1718 }
1719 
1720 int
r535_gsp_fini(struct nvkm_gsp * gsp,bool suspend)1721 r535_gsp_fini(struct nvkm_gsp *gsp, bool suspend)
1722 {
1723 	struct nvkm_rm *rm = gsp->rm;
1724 	int ret;
1725 
1726 	if (suspend) {
1727 		u32 len = rm->api->gsp->sr_data_size(gsp);
1728 		GspFwSRMeta *sr;
1729 
1730 		ret = nvkm_gsp_sg(gsp->subdev.device, len, &gsp->sr.sgt);
1731 		if (ret)
1732 			return ret;
1733 
1734 		ret = nvkm_gsp_radix3_sg(gsp, &gsp->sr.sgt, len, &gsp->sr.radix3);
1735 		if (ret)
1736 			return ret;
1737 
1738 		ret = nvkm_gsp_mem_ctor(gsp, sizeof(*sr), &gsp->sr.meta);
1739 		if (ret)
1740 			return ret;
1741 
1742 		sr = gsp->sr.meta.data;
1743 		sr->magic = GSP_FW_SR_META_MAGIC;
1744 		sr->revision = GSP_FW_SR_META_REVISION;
1745 		sr->sysmemAddrOfSuspendResumeData = gsp->sr.radix3.lvl0.addr;
1746 		sr->sizeOfSuspendResumeData = len;
1747 
1748 		ret = rm->api->fbsr->suspend(gsp);
1749 		if (ret) {
1750 			nvkm_gsp_mem_dtor(&gsp->sr.meta);
1751 			nvkm_gsp_radix3_dtor(gsp, &gsp->sr.radix3);
1752 			nvkm_gsp_sg_free(gsp->subdev.device, &gsp->sr.sgt);
1753 			return ret;
1754 		}
1755 
1756 		/*
1757 		 * TODO: Debug the GSP firmware / RPC handling to find out why
1758 		 * without this Turing (but none of the other architectures)
1759 		 * ends up resetting all channels after resume.
1760 		 */
1761 		msleep(50);
1762 	}
1763 
1764 	ret = r535_gsp_rpc_unloading_guest_driver(gsp, suspend);
1765 	if (WARN_ON(ret))
1766 		return ret;
1767 
1768 	nvkm_msec(gsp->subdev.device, 2000,
1769 		if (nvkm_falcon_rd32(&gsp->falcon, 0x040) == 0x80000000)
1770 			break;
1771 	);
1772 
1773 	gsp->running = false;
1774 	return 0;
1775 }
1776 
1777 int
r535_gsp_init(struct nvkm_gsp * gsp)1778 r535_gsp_init(struct nvkm_gsp *gsp)
1779 {
1780 	int ret;
1781 
1782 	nvkm_falcon_wr32(&gsp->falcon, 0x080, gsp->boot.app_version);
1783 
1784 	if (WARN_ON(!nvkm_falcon_riscv_active(&gsp->falcon)))
1785 		return -EIO;
1786 
1787 	ret = r535_gsp_rpc_poll(gsp, NV_VGPU_MSG_EVENT_GSP_INIT_DONE);
1788 	if (ret)
1789 		goto done;
1790 
1791 	gsp->running = true;
1792 
1793 done:
1794 	if (gsp->sr.meta.data) {
1795 		gsp->rm->api->fbsr->resume(gsp);
1796 
1797 		nvkm_gsp_mem_dtor(&gsp->sr.meta);
1798 		nvkm_gsp_radix3_dtor(gsp, &gsp->sr.radix3);
1799 		nvkm_gsp_sg_free(gsp->subdev.device, &gsp->sr.sgt);
1800 		return ret;
1801 	}
1802 
1803 	if (ret == 0)
1804 		ret = r535_gsp_postinit(gsp);
1805 
1806 	return ret;
1807 }
1808 
1809 static int
r535_gsp_rm_boot_ctor(struct nvkm_gsp * gsp)1810 r535_gsp_rm_boot_ctor(struct nvkm_gsp *gsp)
1811 {
1812 	const struct firmware *fw = gsp->fws.bl;
1813 	const struct nvfw_bin_hdr *hdr;
1814 	RM_RISCV_UCODE_DESC *desc;
1815 	int ret;
1816 
1817 	hdr = nvfw_bin_hdr(&gsp->subdev, fw->data);
1818 	desc = (void *)fw->data + hdr->header_offset;
1819 
1820 	ret = nvkm_gsp_mem_ctor(gsp, hdr->data_size, &gsp->boot.fw);
1821 	if (ret)
1822 		return ret;
1823 
1824 	memcpy(gsp->boot.fw.data, fw->data + hdr->data_offset, hdr->data_size);
1825 
1826 	gsp->boot.code_offset = desc->monitorCodeOffset;
1827 	gsp->boot.data_offset = desc->monitorDataOffset;
1828 	gsp->boot.manifest_offset = desc->manifestOffset;
1829 	gsp->boot.app_version = desc->appVersion;
1830 	return 0;
1831 }
1832 
1833 static const struct nvkm_firmware_func
1834 r535_gsp_fw = {
1835 	.type = NVKM_FIRMWARE_IMG_SGT,
1836 };
1837 
1838 static int
r535_gsp_elf_section(struct nvkm_gsp * gsp,const char * name,const u8 ** pdata,u64 * psize)1839 r535_gsp_elf_section(struct nvkm_gsp *gsp, const char *name, const u8 **pdata, u64 *psize)
1840 {
1841 	const u8 *img = gsp->fws.rm->data;
1842 	const struct elf64_hdr *ehdr = (const struct elf64_hdr *)img;
1843 	const struct elf64_shdr *shdr = (const struct elf64_shdr *)&img[ehdr->e_shoff];
1844 	const char *names = &img[shdr[ehdr->e_shstrndx].sh_offset];
1845 
1846 	for (int i = 0; i < ehdr->e_shnum; i++, shdr++) {
1847 		if (!strcmp(&names[shdr->sh_name], name)) {
1848 			*pdata = &img[shdr->sh_offset];
1849 			*psize = shdr->sh_size;
1850 			return 0;
1851 		}
1852 	}
1853 
1854 	nvkm_error(&gsp->subdev, "section '%s' not found\n", name);
1855 	return -ENOENT;
1856 }
1857 
1858 #ifdef CONFIG_DEBUG_FS
1859 
1860 struct r535_gsp_log {
1861 	struct nvif_log log;
1862 
1863 	/*
1864 	 * Logging buffers in debugfs. The wrapper objects need to remain
1865 	 * in memory until the dentry is deleted.
1866 	 */
1867 	struct dentry *debugfs_logging_dir;
1868 	struct debugfs_blob_wrapper blob_init;
1869 	struct debugfs_blob_wrapper blob_intr;
1870 	struct debugfs_blob_wrapper blob_rm;
1871 	struct debugfs_blob_wrapper blob_pmu;
1872 };
1873 
1874 /**
1875  * r535_debugfs_shutdown - delete GSP-RM logging buffers for one GPU
1876  * @_log: nvif_log struct for this GPU
1877  *
1878  * Called when the driver is shutting down, to clean up the retained GSP-RM
1879  * logging buffers.
1880  */
r535_debugfs_shutdown(struct nvif_log * _log)1881 static void r535_debugfs_shutdown(struct nvif_log *_log)
1882 {
1883 	struct r535_gsp_log *log = container_of(_log, struct r535_gsp_log, log);
1884 
1885 	debugfs_remove(log->debugfs_logging_dir);
1886 
1887 	kfree(log->blob_init.data);
1888 	kfree(log->blob_intr.data);
1889 	kfree(log->blob_rm.data);
1890 	kfree(log->blob_pmu.data);
1891 
1892 	/* We also need to delete the list object */
1893 	kfree(log);
1894 }
1895 
1896 /**
1897  * is_empty - return true if the logging buffer was never written to
1898  * @b: blob wrapper with ->data field pointing to logging buffer
1899  *
1900  * The first 64-bit field of loginit, and logintr, and logrm is the 'put'
1901  * pointer, and it is initialized to 0. It's a dword-based index into the
1902  * circular buffer, indicating where the next printf write will be made.
1903  *
1904  * If the pointer is still 0 when GSP-RM is shut down, that means that the
1905  * buffer was never written to, so it can be ignored.
1906  *
1907  * This test also works for logpmu, even though it doesn't have a put pointer.
1908  */
is_empty(const struct debugfs_blob_wrapper * b)1909 static bool is_empty(const struct debugfs_blob_wrapper *b)
1910 {
1911 	u64 *put = b->data;
1912 
1913 	return put ? (*put == 0) : true;
1914 }
1915 
1916 /**
1917  * r535_gsp_copy_log - preserve the logging buffers in a blob
1918  * @parent: the top-level dentry for this GPU
1919  * @name: name of debugfs entry to create
1920  * @s: original wrapper object to copy from
1921  * @t: new wrapper object to copy to
1922  *
1923  * When GSP shuts down, the nvkm_gsp object and all its memory is deleted.
1924  * To preserve the logging buffers, the buffers need to be copied, but only
1925  * if they actually have data.
1926  */
r535_gsp_copy_log(struct dentry * parent,const char * name,const struct debugfs_blob_wrapper * s,struct debugfs_blob_wrapper * t)1927 static int r535_gsp_copy_log(struct dentry *parent,
1928 			     const char *name,
1929 			     const struct debugfs_blob_wrapper *s,
1930 			     struct debugfs_blob_wrapper *t)
1931 {
1932 	struct dentry *dent;
1933 	void *p;
1934 
1935 	if (is_empty(s))
1936 		return 0;
1937 
1938 	/* The original buffers will be deleted */
1939 	p = kmemdup(s->data, s->size, GFP_KERNEL);
1940 	if (!p)
1941 		return -ENOMEM;
1942 
1943 	t->data = p;
1944 	t->size = s->size;
1945 
1946 	dent = debugfs_create_blob(name, 0444, parent, t);
1947 	if (IS_ERR(dent)) {
1948 		kfree(p);
1949 		memset(t, 0, sizeof(*t));
1950 		return PTR_ERR(dent);
1951 	}
1952 
1953 	i_size_write(d_inode(dent), t->size);
1954 
1955 	return 0;
1956 }
1957 
1958 /**
1959  * r535_gsp_retain_logging - copy logging buffers to new debugfs root
1960  * @gsp: gsp pointer
1961  *
1962  * If keep_gsp_logging is enabled, then we want to preserve the GSP-RM logging
1963  * buffers and their debugfs entries, but all those objects would normally
1964  * deleted if GSP-RM fails to load.
1965  *
1966  * To preserve the logging buffers, we need to:
1967  *
1968  * 1) Allocate new buffers and copy the logs into them, so that the original
1969  * DMA buffers can be released.
1970  *
1971  * 2) Preserve the directories.  We don't need to save single dentries because
1972  * we're going to delete the parent when the
1973  *
1974  * If anything fails in this process, then all the dentries need to be
1975  * deleted.  We don't need to deallocate the original logging buffers because
1976  * the caller will do that regardless.
1977  */
r535_gsp_retain_logging(struct nvkm_gsp * gsp)1978 static void r535_gsp_retain_logging(struct nvkm_gsp *gsp)
1979 {
1980 	struct device *dev = gsp->subdev.device->dev;
1981 	struct r535_gsp_log *log = NULL;
1982 	int ret;
1983 
1984 	if (!keep_gsp_logging || !gsp->debugfs.parent) {
1985 		/* Nothing to do */
1986 		goto exit;
1987 	}
1988 
1989 	/* Check to make sure at least one buffer has data. */
1990 	if (is_empty(&gsp->blob_init) && is_empty(&gsp->blob_intr) &&
1991 	    is_empty(&gsp->blob_rm) && is_empty(&gsp->blob_rm)) {
1992 		nvkm_warn(&gsp->subdev, "all logging buffers are empty\n");
1993 		goto exit;
1994 	}
1995 
1996 	log = kzalloc(sizeof(*log), GFP_KERNEL);
1997 	if (!log)
1998 		goto error;
1999 
2000 	/*
2001 	 * Since the nvkm_gsp object is going away, the debugfs_blob_wrapper
2002 	 * objects are also being deleted, which means the dentries will no
2003 	 * longer be valid.  Delete the existing entries so that we can create
2004 	 * new ones with the same name.
2005 	 */
2006 	debugfs_remove(gsp->debugfs.init);
2007 	debugfs_remove(gsp->debugfs.intr);
2008 	debugfs_remove(gsp->debugfs.rm);
2009 	debugfs_remove(gsp->debugfs.pmu);
2010 
2011 	ret = r535_gsp_copy_log(gsp->debugfs.parent, "loginit", &gsp->blob_init, &log->blob_init);
2012 	if (ret)
2013 		goto error;
2014 
2015 	ret = r535_gsp_copy_log(gsp->debugfs.parent, "logintr", &gsp->blob_intr, &log->blob_intr);
2016 	if (ret)
2017 		goto error;
2018 
2019 	ret = r535_gsp_copy_log(gsp->debugfs.parent, "logrm", &gsp->blob_rm, &log->blob_rm);
2020 	if (ret)
2021 		goto error;
2022 
2023 	ret = r535_gsp_copy_log(gsp->debugfs.parent, "logpmu", &gsp->blob_pmu, &log->blob_pmu);
2024 	if (ret)
2025 		goto error;
2026 
2027 	/* The nvkm_gsp object is going away, so save the dentry */
2028 	log->debugfs_logging_dir = gsp->debugfs.parent;
2029 
2030 	log->log.shutdown = r535_debugfs_shutdown;
2031 	list_add(&log->log.entry, &gsp_logs.head);
2032 
2033 	nvkm_warn(&gsp->subdev,
2034 		  "logging buffers migrated to /sys/kernel/debug/nouveau/%s\n",
2035 		  dev_name(dev));
2036 
2037 	return;
2038 
2039 error:
2040 	nvkm_warn(&gsp->subdev, "failed to migrate logging buffers\n");
2041 
2042 exit:
2043 	debugfs_remove(gsp->debugfs.parent);
2044 
2045 	if (log) {
2046 		kfree(log->blob_init.data);
2047 		kfree(log->blob_intr.data);
2048 		kfree(log->blob_rm.data);
2049 		kfree(log->blob_pmu.data);
2050 		kfree(log);
2051 	}
2052 }
2053 
2054 #endif
2055 
2056 /**
2057  * r535_gsp_libos_debugfs_fini - cleanup/retain log buffers on shutdown
2058  * @gsp: gsp pointer
2059  *
2060  * If the log buffers are exposed via debugfs, the data for those entries
2061  * needs to be cleaned up when the GSP device shuts down.
2062  */
2063 static void
r535_gsp_libos_debugfs_fini(struct nvkm_gsp __maybe_unused * gsp)2064 r535_gsp_libos_debugfs_fini(struct nvkm_gsp __maybe_unused *gsp)
2065 {
2066 #ifdef CONFIG_DEBUG_FS
2067 	r535_gsp_retain_logging(gsp);
2068 
2069 	/*
2070 	 * Unlike the other buffers, the PMU blob is a kmalloc'd buffer that
2071 	 * exists only if the debugfs entries were created.
2072 	 */
2073 	kfree(gsp->blob_pmu.data);
2074 	gsp->blob_pmu.data = NULL;
2075 #endif
2076 }
2077 
2078 void
r535_gsp_dtor(struct nvkm_gsp * gsp)2079 r535_gsp_dtor(struct nvkm_gsp *gsp)
2080 {
2081 	idr_destroy(&gsp->client_id.idr);
2082 	mutex_destroy(&gsp->client_id.mutex);
2083 
2084 	nvkm_gsp_radix3_dtor(gsp, &gsp->radix3);
2085 	nvkm_gsp_mem_dtor(&gsp->sig);
2086 	nvkm_firmware_dtor(&gsp->fw);
2087 
2088 	nvkm_falcon_fw_dtor(&gsp->booter.unload);
2089 	nvkm_falcon_fw_dtor(&gsp->booter.load);
2090 
2091 	nvkm_gsp_mem_dtor(&gsp->fmc.args);
2092 	kfree(gsp->fmc.sig);
2093 	kfree(gsp->fmc.pkey);
2094 	kfree(gsp->fmc.hash);
2095 	nvkm_gsp_mem_dtor(&gsp->fmc.fw);
2096 
2097 	mutex_destroy(&gsp->msgq.mutex);
2098 	mutex_destroy(&gsp->cmdq.mutex);
2099 
2100 	nvkm_gsp_dtor_fws(gsp);
2101 
2102 	nvkm_gsp_mem_dtor(&gsp->rmargs);
2103 	nvkm_gsp_mem_dtor(&gsp->wpr_meta);
2104 	nvkm_gsp_mem_dtor(&gsp->shm.mem);
2105 
2106 	r535_gsp_libos_debugfs_fini(gsp);
2107 
2108 	nvkm_gsp_mem_dtor(&gsp->loginit);
2109 	nvkm_gsp_mem_dtor(&gsp->logintr);
2110 	nvkm_gsp_mem_dtor(&gsp->logrm);
2111 }
2112 
2113 static void
r535_gsp_drop_send_user_shared_data(struct nvkm_gsp * gsp)2114 r535_gsp_drop_send_user_shared_data(struct nvkm_gsp *gsp)
2115 {
2116 	r535_gsp_msg_ntfy_add(gsp, NV_VGPU_MSG_EVENT_GSP_SEND_USER_SHARED_DATA, NULL, NULL);
2117 }
2118 
2119 int
r535_gsp_oneinit(struct nvkm_gsp * gsp)2120 r535_gsp_oneinit(struct nvkm_gsp *gsp)
2121 {
2122 	struct nvkm_device *device = gsp->subdev.device;
2123 	const struct nvkm_rm_api *rmapi = gsp->rm->api;
2124 	const u8 *data;
2125 	u64 size;
2126 	int ret;
2127 
2128 	mutex_init(&gsp->cmdq.mutex);
2129 	mutex_init(&gsp->msgq.mutex);
2130 
2131 	/* Load GSP firmware from ELF image into DMA-accessible memory. */
2132 	ret = r535_gsp_elf_section(gsp, ".fwimage", &data, &size);
2133 	if (ret)
2134 		return ret;
2135 
2136 	ret = nvkm_firmware_ctor(&r535_gsp_fw, "gsp-rm", device, data, size, &gsp->fw);
2137 	if (ret)
2138 		return ret;
2139 
2140 	/* Load relevant signature from ELF image. */
2141 	ret = r535_gsp_elf_section(gsp, gsp->func->sig_section, &data, &size);
2142 	if (ret)
2143 		return ret;
2144 
2145 	ret = nvkm_gsp_mem_ctor(gsp, ALIGN(size, 256), &gsp->sig);
2146 	if (ret)
2147 		return ret;
2148 
2149 	memcpy(gsp->sig.data, data, size);
2150 
2151 	/* Build radix3 page table for ELF image. */
2152 	ret = nvkm_gsp_radix3_sg(gsp, &gsp->fw.mem.sgt, gsp->fw.len, &gsp->radix3);
2153 	if (ret)
2154 		return ret;
2155 
2156 	r535_gsp_msg_ntfy_add(gsp, NV_VGPU_MSG_EVENT_GSP_RUN_CPU_SEQUENCER,
2157 			      r535_gsp_msg_run_cpu_sequencer, gsp);
2158 	r535_gsp_msg_ntfy_add(gsp, NV_VGPU_MSG_EVENT_POST_EVENT, r535_gsp_msg_post_event, gsp);
2159 	r535_gsp_msg_ntfy_add(gsp, NV_VGPU_MSG_EVENT_RC_TRIGGERED, rmapi->fifo->rc_triggered, gsp);
2160 	r535_gsp_msg_ntfy_add(gsp, NV_VGPU_MSG_EVENT_MMU_FAULT_QUEUED,
2161 			      r535_gsp_msg_mmu_fault_queued, gsp);
2162 	r535_gsp_msg_ntfy_add(gsp, NV_VGPU_MSG_EVENT_OS_ERROR_LOG, r535_gsp_msg_os_error_log, gsp);
2163 	r535_gsp_msg_ntfy_add(gsp, NV_VGPU_MSG_EVENT_PERF_BRIDGELESS_INFO_UPDATE, NULL, NULL);
2164 	r535_gsp_msg_ntfy_add(gsp, NV_VGPU_MSG_EVENT_UCODE_LIBOS_PRINT, NULL, NULL);
2165 	if (rmapi->gsp->drop_send_user_shared_data)
2166 		rmapi->gsp->drop_send_user_shared_data(gsp);
2167 	if (rmapi->gsp->drop_post_nocat_record)
2168 		rmapi->gsp->drop_post_nocat_record(gsp);
2169 
2170 	ret = r535_gsp_rm_boot_ctor(gsp);
2171 	if (ret)
2172 		return ret;
2173 
2174 	/* Release FW images - we've copied them to DMA buffers now. */
2175 	nvkm_gsp_dtor_fws(gsp);
2176 
2177 	ret = r535_gsp_libos_init(gsp);
2178 	if (WARN_ON(ret))
2179 		return ret;
2180 
2181 	ret = rmapi->gsp->set_system_info(gsp);
2182 	if (WARN_ON(ret))
2183 		return ret;
2184 
2185 	ret = r535_gsp_rpc_set_registry(gsp);
2186 	if (WARN_ON(ret))
2187 		return ret;
2188 
2189 	mutex_init(&gsp->client_id.mutex);
2190 	idr_init(&gsp->client_id.idr);
2191 	return 0;
2192 }
2193 
2194 const struct nvkm_rm_api_gsp
2195 r535_gsp = {
2196 	.set_rmargs = r535_gsp_set_rmargs,
2197 	.set_system_info = r535_gsp_set_system_info,
2198 	.get_static_info = r535_gsp_get_static_info,
2199 	.xlat_mc_engine_idx = r535_gsp_xlat_mc_engine_idx,
2200 	.drop_send_user_shared_data = r535_gsp_drop_send_user_shared_data,
2201 	.sr_data_size = r535_gsp_sr_data_size,
2202 };
2203