xref: /qemu/hw/arm/smmuv3.c (revision 06b40d250ecfa1633209c2e431a7a38acfd03a98)
1 /*
2  * Copyright (C) 2014-2016 Broadcom Corporation
3  * Copyright (c) 2017 Red Hat, Inc.
4  * Written by Prem Mallappa, Eric Auger
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License along
16  * with this program; if not, see <http://www.gnu.org/licenses/>.
17  */
18 
19 #include "qemu/osdep.h"
20 #include "qemu/bitops.h"
21 #include "hw/irq.h"
22 #include "hw/sysbus.h"
23 #include "migration/vmstate.h"
24 #include "hw/qdev-properties.h"
25 #include "hw/qdev-core.h"
26 #include "hw/pci/pci.h"
27 #include "cpu.h"
28 #include "exec/target_page.h"
29 #include "trace.h"
30 #include "qemu/log.h"
31 #include "qemu/error-report.h"
32 #include "qapi/error.h"
33 
34 #include "hw/arm/smmuv3.h"
35 #include "smmuv3-internal.h"
36 #include "smmu-internal.h"
37 
38 #define PTW_RECORD_FAULT(ptw_info, cfg) (((ptw_info).stage == SMMU_STAGE_1 && \
39                                         (cfg)->record_faults) || \
40                                         ((ptw_info).stage == SMMU_STAGE_2 && \
41                                         (cfg)->s2cfg.record_faults))
42 
43 /**
44  * smmuv3_trigger_irq - pulse @irq if enabled and update
45  * GERROR register in case of GERROR interrupt
46  *
47  * @irq: irq type
48  * @gerror_mask: mask of gerrors to toggle (relevant if @irq is GERROR)
49  */
smmuv3_trigger_irq(SMMUv3State * s,SMMUIrq irq,uint32_t gerror_mask)50 static void smmuv3_trigger_irq(SMMUv3State *s, SMMUIrq irq,
51                                uint32_t gerror_mask)
52 {
53 
54     bool pulse = false;
55 
56     switch (irq) {
57     case SMMU_IRQ_EVTQ:
58         pulse = smmuv3_eventq_irq_enabled(s);
59         break;
60     case SMMU_IRQ_PRIQ:
61         qemu_log_mask(LOG_UNIMP, "PRI not yet supported\n");
62         break;
63     case SMMU_IRQ_CMD_SYNC:
64         pulse = true;
65         break;
66     case SMMU_IRQ_GERROR:
67     {
68         uint32_t pending = s->gerror ^ s->gerrorn;
69         uint32_t new_gerrors = ~pending & gerror_mask;
70 
71         if (!new_gerrors) {
72             /* only toggle non pending errors */
73             return;
74         }
75         s->gerror ^= new_gerrors;
76         trace_smmuv3_write_gerror(new_gerrors, s->gerror);
77 
78         pulse = smmuv3_gerror_irq_enabled(s);
79         break;
80     }
81     }
82     if (pulse) {
83             trace_smmuv3_trigger_irq(irq);
84             qemu_irq_pulse(s->irq[irq]);
85     }
86 }
87 
smmuv3_write_gerrorn(SMMUv3State * s,uint32_t new_gerrorn)88 static void smmuv3_write_gerrorn(SMMUv3State *s, uint32_t new_gerrorn)
89 {
90     uint32_t pending = s->gerror ^ s->gerrorn;
91     uint32_t toggled = s->gerrorn ^ new_gerrorn;
92 
93     if (toggled & ~pending) {
94         qemu_log_mask(LOG_GUEST_ERROR,
95                       "guest toggles non pending errors = 0x%x\n",
96                       toggled & ~pending);
97     }
98 
99     /*
100      * We do not raise any error in case guest toggles bits corresponding
101      * to not active IRQs (CONSTRAINED UNPREDICTABLE)
102      */
103     s->gerrorn = new_gerrorn;
104 
105     trace_smmuv3_write_gerrorn(toggled & pending, s->gerrorn);
106 }
107 
queue_read(SMMUQueue * q,Cmd * cmd)108 static inline MemTxResult queue_read(SMMUQueue *q, Cmd *cmd)
109 {
110     dma_addr_t addr = Q_CONS_ENTRY(q);
111     MemTxResult ret;
112     int i;
113 
114     ret = dma_memory_read(&address_space_memory, addr, cmd, sizeof(Cmd),
115                           MEMTXATTRS_UNSPECIFIED);
116     if (ret != MEMTX_OK) {
117         return ret;
118     }
119     for (i = 0; i < ARRAY_SIZE(cmd->word); i++) {
120         le32_to_cpus(&cmd->word[i]);
121     }
122     return ret;
123 }
124 
queue_write(SMMUQueue * q,Evt * evt_in)125 static MemTxResult queue_write(SMMUQueue *q, Evt *evt_in)
126 {
127     dma_addr_t addr = Q_PROD_ENTRY(q);
128     MemTxResult ret;
129     Evt evt = *evt_in;
130     int i;
131 
132     for (i = 0; i < ARRAY_SIZE(evt.word); i++) {
133         cpu_to_le32s(&evt.word[i]);
134     }
135     ret = dma_memory_write(&address_space_memory, addr, &evt, sizeof(Evt),
136                            MEMTXATTRS_UNSPECIFIED);
137     if (ret != MEMTX_OK) {
138         return ret;
139     }
140 
141     queue_prod_incr(q);
142     return MEMTX_OK;
143 }
144 
smmuv3_write_eventq(SMMUv3State * s,Evt * evt)145 static MemTxResult smmuv3_write_eventq(SMMUv3State *s, Evt *evt)
146 {
147     SMMUQueue *q = &s->eventq;
148     MemTxResult r;
149 
150     if (!smmuv3_eventq_enabled(s)) {
151         return MEMTX_ERROR;
152     }
153 
154     if (smmuv3_q_full(q)) {
155         return MEMTX_ERROR;
156     }
157 
158     r = queue_write(q, evt);
159     if (r != MEMTX_OK) {
160         return r;
161     }
162 
163     if (!smmuv3_q_empty(q)) {
164         smmuv3_trigger_irq(s, SMMU_IRQ_EVTQ, 0);
165     }
166     return MEMTX_OK;
167 }
168 
smmuv3_record_event(SMMUv3State * s,SMMUEventInfo * info)169 void smmuv3_record_event(SMMUv3State *s, SMMUEventInfo *info)
170 {
171     Evt evt = {};
172     MemTxResult r;
173 
174     if (!smmuv3_eventq_enabled(s)) {
175         return;
176     }
177 
178     EVT_SET_TYPE(&evt, info->type);
179     EVT_SET_SID(&evt, info->sid);
180 
181     switch (info->type) {
182     case SMMU_EVT_NONE:
183         return;
184     case SMMU_EVT_F_UUT:
185         EVT_SET_SSID(&evt, info->u.f_uut.ssid);
186         EVT_SET_SSV(&evt,  info->u.f_uut.ssv);
187         EVT_SET_ADDR(&evt, info->u.f_uut.addr);
188         EVT_SET_RNW(&evt,  info->u.f_uut.rnw);
189         EVT_SET_PNU(&evt,  info->u.f_uut.pnu);
190         EVT_SET_IND(&evt,  info->u.f_uut.ind);
191         break;
192     case SMMU_EVT_C_BAD_STREAMID:
193         EVT_SET_SSID(&evt, info->u.c_bad_streamid.ssid);
194         EVT_SET_SSV(&evt,  info->u.c_bad_streamid.ssv);
195         break;
196     case SMMU_EVT_F_STE_FETCH:
197         EVT_SET_SSID(&evt, info->u.f_ste_fetch.ssid);
198         EVT_SET_SSV(&evt,  info->u.f_ste_fetch.ssv);
199         EVT_SET_ADDR2(&evt, info->u.f_ste_fetch.addr);
200         break;
201     case SMMU_EVT_C_BAD_STE:
202         EVT_SET_SSID(&evt, info->u.c_bad_ste.ssid);
203         EVT_SET_SSV(&evt,  info->u.c_bad_ste.ssv);
204         break;
205     case SMMU_EVT_F_STREAM_DISABLED:
206         break;
207     case SMMU_EVT_F_TRANS_FORBIDDEN:
208         EVT_SET_ADDR(&evt, info->u.f_transl_forbidden.addr);
209         EVT_SET_RNW(&evt, info->u.f_transl_forbidden.rnw);
210         break;
211     case SMMU_EVT_C_BAD_SUBSTREAMID:
212         EVT_SET_SSID(&evt, info->u.c_bad_substream.ssid);
213         break;
214     case SMMU_EVT_F_CD_FETCH:
215         EVT_SET_SSID(&evt, info->u.f_cd_fetch.ssid);
216         EVT_SET_SSV(&evt,  info->u.f_cd_fetch.ssv);
217         EVT_SET_ADDR(&evt, info->u.f_cd_fetch.addr);
218         break;
219     case SMMU_EVT_C_BAD_CD:
220         EVT_SET_SSID(&evt, info->u.c_bad_cd.ssid);
221         EVT_SET_SSV(&evt,  info->u.c_bad_cd.ssv);
222         break;
223     case SMMU_EVT_F_WALK_EABT:
224     case SMMU_EVT_F_TRANSLATION:
225     case SMMU_EVT_F_ADDR_SIZE:
226     case SMMU_EVT_F_ACCESS:
227     case SMMU_EVT_F_PERMISSION:
228         EVT_SET_STALL(&evt, info->u.f_walk_eabt.stall);
229         EVT_SET_STAG(&evt, info->u.f_walk_eabt.stag);
230         EVT_SET_SSID(&evt, info->u.f_walk_eabt.ssid);
231         EVT_SET_SSV(&evt, info->u.f_walk_eabt.ssv);
232         EVT_SET_S2(&evt, info->u.f_walk_eabt.s2);
233         EVT_SET_ADDR(&evt, info->u.f_walk_eabt.addr);
234         EVT_SET_RNW(&evt, info->u.f_walk_eabt.rnw);
235         EVT_SET_PNU(&evt, info->u.f_walk_eabt.pnu);
236         EVT_SET_IND(&evt, info->u.f_walk_eabt.ind);
237         EVT_SET_CLASS(&evt, info->u.f_walk_eabt.class);
238         EVT_SET_ADDR2(&evt, info->u.f_walk_eabt.addr2);
239         break;
240     case SMMU_EVT_F_CFG_CONFLICT:
241         EVT_SET_SSID(&evt, info->u.f_cfg_conflict.ssid);
242         EVT_SET_SSV(&evt,  info->u.f_cfg_conflict.ssv);
243         break;
244     /* rest is not implemented */
245     case SMMU_EVT_F_BAD_ATS_TREQ:
246     case SMMU_EVT_F_TLB_CONFLICT:
247     case SMMU_EVT_E_PAGE_REQ:
248     default:
249         g_assert_not_reached();
250     }
251 
252     trace_smmuv3_record_event(smmu_event_string(info->type), info->sid);
253     r = smmuv3_write_eventq(s, &evt);
254     if (r != MEMTX_OK) {
255         smmuv3_trigger_irq(s, SMMU_IRQ_GERROR, R_GERROR_EVENTQ_ABT_ERR_MASK);
256     }
257     info->recorded = true;
258 }
259 
smmuv3_init_regs(SMMUv3State * s)260 static void smmuv3_init_regs(SMMUv3State *s)
261 {
262     /* Based on sys property, the stages supported in smmu will be advertised.*/
263     if (s->stage && !strcmp("2", s->stage)) {
264         s->idr[0] = FIELD_DP32(s->idr[0], IDR0, S2P, 1);
265     } else if (s->stage && !strcmp("nested", s->stage)) {
266         s->idr[0] = FIELD_DP32(s->idr[0], IDR0, S1P, 1);
267         s->idr[0] = FIELD_DP32(s->idr[0], IDR0, S2P, 1);
268     } else {
269         s->idr[0] = FIELD_DP32(s->idr[0], IDR0, S1P, 1);
270     }
271 
272     s->idr[0] = FIELD_DP32(s->idr[0], IDR0, TTF, 2); /* AArch64 PTW only */
273     s->idr[0] = FIELD_DP32(s->idr[0], IDR0, COHACC, 1); /* IO coherent */
274     s->idr[0] = FIELD_DP32(s->idr[0], IDR0, ASID16, 1); /* 16-bit ASID */
275     s->idr[0] = FIELD_DP32(s->idr[0], IDR0, VMID16, 1); /* 16-bit VMID */
276     s->idr[0] = FIELD_DP32(s->idr[0], IDR0, TTENDIAN, 2); /* little endian */
277     s->idr[0] = FIELD_DP32(s->idr[0], IDR0, STALL_MODEL, 1); /* No stall */
278     /* terminated transaction will always be aborted/error returned */
279     s->idr[0] = FIELD_DP32(s->idr[0], IDR0, TERM_MODEL, 1);
280     /* 2-level stream table supported */
281     s->idr[0] = FIELD_DP32(s->idr[0], IDR0, STLEVEL, 1);
282 
283     s->idr[1] = FIELD_DP32(s->idr[1], IDR1, SIDSIZE, SMMU_IDR1_SIDSIZE);
284     s->idr[1] = FIELD_DP32(s->idr[1], IDR1, EVENTQS, SMMU_EVENTQS);
285     s->idr[1] = FIELD_DP32(s->idr[1], IDR1, CMDQS,   SMMU_CMDQS);
286 
287     s->idr[3] = FIELD_DP32(s->idr[3], IDR3, HAD, 1);
288     if (FIELD_EX32(s->idr[0], IDR0, S2P)) {
289         /* XNX is a stage-2-specific feature */
290         s->idr[3] = FIELD_DP32(s->idr[3], IDR3, XNX, 1);
291     }
292     s->idr[3] = FIELD_DP32(s->idr[3], IDR3, RIL, 1);
293     s->idr[3] = FIELD_DP32(s->idr[3], IDR3, BBML, 2);
294 
295     s->idr[5] = FIELD_DP32(s->idr[5], IDR5, OAS, SMMU_IDR5_OAS); /* 44 bits */
296     /* 4K, 16K and 64K granule support */
297     s->idr[5] = FIELD_DP32(s->idr[5], IDR5, GRAN4K, 1);
298     s->idr[5] = FIELD_DP32(s->idr[5], IDR5, GRAN16K, 1);
299     s->idr[5] = FIELD_DP32(s->idr[5], IDR5, GRAN64K, 1);
300 
301     s->cmdq.base = deposit64(s->cmdq.base, 0, 5, SMMU_CMDQS);
302     s->cmdq.prod = 0;
303     s->cmdq.cons = 0;
304     s->cmdq.entry_size = sizeof(struct Cmd);
305     s->eventq.base = deposit64(s->eventq.base, 0, 5, SMMU_EVENTQS);
306     s->eventq.prod = 0;
307     s->eventq.cons = 0;
308     s->eventq.entry_size = sizeof(struct Evt);
309 
310     s->features = 0;
311     s->sid_split = 0;
312     s->aidr = 0x1;
313     s->cr[0] = 0;
314     s->cr0ack = 0;
315     s->irq_ctrl = 0;
316     s->gerror = 0;
317     s->gerrorn = 0;
318     s->statusr = 0;
319     s->gbpa = SMMU_GBPA_RESET_VAL;
320 }
321 
smmu_get_ste(SMMUv3State * s,dma_addr_t addr,STE * buf,SMMUEventInfo * event)322 static int smmu_get_ste(SMMUv3State *s, dma_addr_t addr, STE *buf,
323                         SMMUEventInfo *event)
324 {
325     int ret, i;
326 
327     trace_smmuv3_get_ste(addr);
328     /* TODO: guarantee 64-bit single-copy atomicity */
329     ret = dma_memory_read(&address_space_memory, addr, buf, sizeof(*buf),
330                           MEMTXATTRS_UNSPECIFIED);
331     if (ret != MEMTX_OK) {
332         qemu_log_mask(LOG_GUEST_ERROR,
333                       "Cannot fetch pte at address=0x%"PRIx64"\n", addr);
334         event->type = SMMU_EVT_F_STE_FETCH;
335         event->u.f_ste_fetch.addr = addr;
336         return -EINVAL;
337     }
338     for (i = 0; i < ARRAY_SIZE(buf->word); i++) {
339         le32_to_cpus(&buf->word[i]);
340     }
341     return 0;
342 
343 }
344 
345 static SMMUTranslationStatus smmuv3_do_translate(SMMUv3State *s, hwaddr addr,
346                                                  SMMUTransCfg *cfg,
347                                                  SMMUEventInfo *event,
348                                                  IOMMUAccessFlags flag,
349                                                  SMMUTLBEntry **out_entry,
350                                                  SMMUTranslationClass class);
351 /* @ssid > 0 not supported yet */
smmu_get_cd(SMMUv3State * s,STE * ste,SMMUTransCfg * cfg,uint32_t ssid,CD * buf,SMMUEventInfo * event)352 static int smmu_get_cd(SMMUv3State *s, STE *ste, SMMUTransCfg *cfg,
353                        uint32_t ssid, CD *buf, SMMUEventInfo *event)
354 {
355     dma_addr_t addr = STE_CTXPTR(ste);
356     int ret, i;
357     SMMUTranslationStatus status;
358     SMMUTLBEntry *entry;
359 
360     trace_smmuv3_get_cd(addr);
361 
362     if (cfg->stage == SMMU_NESTED) {
363         status = smmuv3_do_translate(s, addr, cfg, event,
364                                      IOMMU_RO, &entry, SMMU_CLASS_CD);
365 
366         /* Same PTW faults are reported but with CLASS = CD. */
367         if (status != SMMU_TRANS_SUCCESS) {
368             return -EINVAL;
369         }
370 
371         addr = CACHED_ENTRY_TO_ADDR(entry, addr);
372     }
373 
374     /* TODO: guarantee 64-bit single-copy atomicity */
375     ret = dma_memory_read(&address_space_memory, addr, buf, sizeof(*buf),
376                           MEMTXATTRS_UNSPECIFIED);
377     if (ret != MEMTX_OK) {
378         qemu_log_mask(LOG_GUEST_ERROR,
379                       "Cannot fetch pte at address=0x%"PRIx64"\n", addr);
380         event->type = SMMU_EVT_F_CD_FETCH;
381         event->u.f_cd_fetch.addr = addr;
382         return -EINVAL;
383     }
384     for (i = 0; i < ARRAY_SIZE(buf->word); i++) {
385         le32_to_cpus(&buf->word[i]);
386     }
387     return 0;
388 }
389 
390 /*
391  * Max valid value is 39 when SMMU_IDR3.STT == 0.
392  * In architectures after SMMUv3.0:
393  * - If STE.S2TG selects a 4KB or 16KB granule, the minimum valid value for this
394  *   field is MAX(16, 64-IAS)
395  * - If STE.S2TG selects a 64KB granule, the minimum valid value for this field
396  *   is (64-IAS).
397  * As we only support AA64, IAS = OAS.
398  */
s2t0sz_valid(SMMUTransCfg * cfg)399 static bool s2t0sz_valid(SMMUTransCfg *cfg)
400 {
401     if (cfg->s2cfg.tsz > 39) {
402         return false;
403     }
404 
405     if (cfg->s2cfg.granule_sz == 16) {
406         return (cfg->s2cfg.tsz >= 64 - cfg->s2cfg.eff_ps);
407     }
408 
409     return (cfg->s2cfg.tsz >= MAX(64 - cfg->s2cfg.eff_ps, 16));
410 }
411 
412 /*
413  * Return true if s2 page table config is valid.
414  * This checks with the configured start level, ias_bits and granularity we can
415  * have a valid page table as described in ARM ARM D8.2 Translation process.
416  * The idea here is to see for the highest possible number of IPA bits, how
417  * many concatenated tables we would need, if it is more than 16, then this is
418  * not possible.
419  */
s2_pgtable_config_valid(uint8_t sl0,uint8_t t0sz,uint8_t gran)420 static bool s2_pgtable_config_valid(uint8_t sl0, uint8_t t0sz, uint8_t gran)
421 {
422     int level = get_start_level(sl0, gran);
423     uint64_t ipa_bits = 64 - t0sz;
424     uint64_t max_ipa = (1ULL << ipa_bits) - 1;
425     int nr_concat = pgd_concat_idx(level, gran, max_ipa) + 1;
426 
427     return nr_concat <= VMSA_MAX_S2_CONCAT;
428 }
429 
decode_ste_s2_cfg(SMMUv3State * s,SMMUTransCfg * cfg,STE * ste)430 static int decode_ste_s2_cfg(SMMUv3State *s, SMMUTransCfg *cfg,
431                              STE *ste)
432 {
433     uint8_t oas = FIELD_EX32(s->idr[5], IDR5, OAS);
434 
435     if (STE_S2AA64(ste) == 0x0) {
436         qemu_log_mask(LOG_UNIMP,
437                       "SMMUv3 AArch32 tables not supported\n");
438         g_assert_not_reached();
439     }
440 
441     switch (STE_S2TG(ste)) {
442     case 0x0: /* 4KB */
443         cfg->s2cfg.granule_sz = 12;
444         break;
445     case 0x1: /* 64KB */
446         cfg->s2cfg.granule_sz = 16;
447         break;
448     case 0x2: /* 16KB */
449         cfg->s2cfg.granule_sz = 14;
450         break;
451     default:
452         qemu_log_mask(LOG_GUEST_ERROR,
453                       "SMMUv3 bad STE S2TG: %x\n", STE_S2TG(ste));
454         goto bad_ste;
455     }
456 
457     cfg->s2cfg.vttb = STE_S2TTB(ste);
458 
459     cfg->s2cfg.sl0 = STE_S2SL0(ste);
460     /* FEAT_TTST not supported. */
461     if (cfg->s2cfg.sl0 == 0x3) {
462         qemu_log_mask(LOG_UNIMP, "SMMUv3 S2SL0 = 0x3 has no meaning!\n");
463         goto bad_ste;
464     }
465 
466     /* For AA64, The effective S2PS size is capped to the OAS. */
467     cfg->s2cfg.eff_ps = oas2bits(MIN(STE_S2PS(ste), oas));
468     /*
469      * For SMMUv3.1 and later, when OAS == IAS == 52, the stage 2 input
470      * range is further limited to 48 bits unless STE.S2TG indicates a
471      * 64KB granule.
472      */
473     if (cfg->s2cfg.granule_sz != 16) {
474         cfg->s2cfg.eff_ps = MIN(cfg->s2cfg.eff_ps, 48);
475     }
476     /*
477      * It is ILLEGAL for the address in S2TTB to be outside the range
478      * described by the effective S2PS value.
479      */
480     if (cfg->s2cfg.vttb & ~(MAKE_64BIT_MASK(0, cfg->s2cfg.eff_ps))) {
481         qemu_log_mask(LOG_GUEST_ERROR,
482                       "SMMUv3 S2TTB too large 0x%" PRIx64
483                       ", effective PS %d bits\n",
484                       cfg->s2cfg.vttb,  cfg->s2cfg.eff_ps);
485         goto bad_ste;
486     }
487 
488     cfg->s2cfg.tsz = STE_S2T0SZ(ste);
489 
490     if (!s2t0sz_valid(cfg)) {
491         qemu_log_mask(LOG_GUEST_ERROR, "SMMUv3 bad STE S2T0SZ = %d\n",
492                       cfg->s2cfg.tsz);
493         goto bad_ste;
494     }
495 
496     if (!s2_pgtable_config_valid(cfg->s2cfg.sl0, cfg->s2cfg.tsz,
497                                     cfg->s2cfg.granule_sz)) {
498         qemu_log_mask(LOG_GUEST_ERROR,
499                       "SMMUv3 STE stage 2 config not valid!\n");
500         goto bad_ste;
501     }
502 
503     /* Only LE supported(IDR0.TTENDIAN). */
504     if (STE_S2ENDI(ste)) {
505         qemu_log_mask(LOG_GUEST_ERROR,
506                       "SMMUv3 STE_S2ENDI only supports LE!\n");
507         goto bad_ste;
508     }
509 
510     cfg->s2cfg.affd = STE_S2AFFD(ste);
511 
512     cfg->s2cfg.record_faults = STE_S2R(ste);
513     /* As stall is not supported. */
514     if (STE_S2S(ste)) {
515         qemu_log_mask(LOG_UNIMP, "SMMUv3 Stall not implemented!\n");
516         goto bad_ste;
517     }
518 
519     return 0;
520 
521 bad_ste:
522     return -EINVAL;
523 }
524 
decode_ste_config(SMMUTransCfg * cfg,uint32_t config)525 static void decode_ste_config(SMMUTransCfg *cfg, uint32_t config)
526 {
527 
528     if (STE_CFG_ABORT(config)) {
529         cfg->aborted = true;
530         return;
531     }
532     if (STE_CFG_BYPASS(config)) {
533         cfg->bypassed = true;
534         return;
535     }
536 
537     if (STE_CFG_S1_ENABLED(config)) {
538         cfg->stage = SMMU_STAGE_1;
539     }
540 
541     if (STE_CFG_S2_ENABLED(config)) {
542         cfg->stage |= SMMU_STAGE_2;
543     }
544 }
545 
546 /* Returns < 0 in case of invalid STE, 0 otherwise */
decode_ste(SMMUv3State * s,SMMUTransCfg * cfg,STE * ste,SMMUEventInfo * event)547 static int decode_ste(SMMUv3State *s, SMMUTransCfg *cfg,
548                       STE *ste, SMMUEventInfo *event)
549 {
550     uint32_t config;
551     uint8_t oas = FIELD_EX32(s->idr[5], IDR5, OAS);
552     int ret;
553 
554     if (!STE_VALID(ste)) {
555         if (!event->inval_ste_allowed) {
556             qemu_log_mask(LOG_GUEST_ERROR, "invalid STE\n");
557         }
558         goto bad_ste;
559     }
560 
561     config = STE_CONFIG(ste);
562 
563     decode_ste_config(cfg, config);
564 
565     if (cfg->aborted || cfg->bypassed) {
566         return 0;
567     }
568 
569     /*
570      * If a stage is enabled in SW while not advertised, throw bad ste
571      * according to user manual(IHI0070E) "5.2 Stream Table Entry".
572      */
573     if (!STAGE1_SUPPORTED(s) && STE_CFG_S1_ENABLED(config)) {
574         qemu_log_mask(LOG_GUEST_ERROR, "SMMUv3 S1 used but not supported.\n");
575         goto bad_ste;
576     }
577     if (!STAGE2_SUPPORTED(s) && STE_CFG_S2_ENABLED(config)) {
578         qemu_log_mask(LOG_GUEST_ERROR, "SMMUv3 S2 used but not supported.\n");
579         goto bad_ste;
580     }
581 
582     if (STAGE2_SUPPORTED(s)) {
583         /* VMID is considered even if s2 is disabled. */
584         cfg->s2cfg.vmid = STE_S2VMID(ste);
585     } else {
586         /* Default to -1 */
587         cfg->s2cfg.vmid = -1;
588     }
589 
590     if (STE_CFG_S2_ENABLED(config)) {
591         /*
592          * Stage-1 OAS defaults to OAS even if not enabled as it would be used
593          * in input address check for stage-2.
594          */
595         cfg->oas = oas2bits(oas);
596         ret = decode_ste_s2_cfg(s, cfg, ste);
597         if (ret) {
598             goto bad_ste;
599         }
600     }
601 
602     if (STE_S1CDMAX(ste) != 0) {
603         qemu_log_mask(LOG_UNIMP,
604                       "SMMUv3 does not support multiple context descriptors yet\n");
605         goto bad_ste;
606     }
607 
608     if (STE_S1STALLD(ste)) {
609         qemu_log_mask(LOG_UNIMP,
610                       "SMMUv3 S1 stalling fault model not allowed yet\n");
611         goto bad_ste;
612     }
613     return 0;
614 
615 bad_ste:
616     event->type = SMMU_EVT_C_BAD_STE;
617     return -EINVAL;
618 }
619 
620 /**
621  * smmu_find_ste - Return the stream table entry associated
622  * to the sid
623  *
624  * @s: smmuv3 handle
625  * @sid: stream ID
626  * @ste: returned stream table entry
627  * @event: handle to an event info
628  *
629  * Supports linear and 2-level stream table
630  * Return 0 on success, -EINVAL otherwise
631  */
smmu_find_ste(SMMUv3State * s,uint32_t sid,STE * ste,SMMUEventInfo * event)632 static int smmu_find_ste(SMMUv3State *s, uint32_t sid, STE *ste,
633                          SMMUEventInfo *event)
634 {
635     dma_addr_t addr, strtab_base;
636     uint32_t log2size;
637     int strtab_size_shift;
638     int ret;
639 
640     trace_smmuv3_find_ste(sid, s->features, s->sid_split);
641     log2size = FIELD_EX32(s->strtab_base_cfg, STRTAB_BASE_CFG, LOG2SIZE);
642     /*
643      * Check SID range against both guest-configured and implementation limits
644      */
645     if (sid >= (1 << MIN(log2size, SMMU_IDR1_SIDSIZE))) {
646         event->type = SMMU_EVT_C_BAD_STREAMID;
647         return -EINVAL;
648     }
649     if (s->features & SMMU_FEATURE_2LVL_STE) {
650         int l1_ste_offset, l2_ste_offset, max_l2_ste, span, i;
651         dma_addr_t l1ptr, l2ptr;
652         STEDesc l1std;
653 
654         /*
655          * Align strtab base address to table size. For this purpose, assume it
656          * is not bounded by SMMU_IDR1_SIDSIZE.
657          */
658         strtab_size_shift = MAX(5, (int)log2size - s->sid_split - 1 + 3);
659         strtab_base = s->strtab_base & SMMU_BASE_ADDR_MASK &
660                       ~MAKE_64BIT_MASK(0, strtab_size_shift);
661         l1_ste_offset = sid >> s->sid_split;
662         l2_ste_offset = sid & ((1 << s->sid_split) - 1);
663         l1ptr = (dma_addr_t)(strtab_base + l1_ste_offset * sizeof(l1std));
664         /* TODO: guarantee 64-bit single-copy atomicity */
665         ret = dma_memory_read(&address_space_memory, l1ptr, &l1std,
666                               sizeof(l1std), MEMTXATTRS_UNSPECIFIED);
667         if (ret != MEMTX_OK) {
668             qemu_log_mask(LOG_GUEST_ERROR,
669                           "Could not read L1PTR at 0X%"PRIx64"\n", l1ptr);
670             event->type = SMMU_EVT_F_STE_FETCH;
671             event->u.f_ste_fetch.addr = l1ptr;
672             return -EINVAL;
673         }
674         for (i = 0; i < ARRAY_SIZE(l1std.word); i++) {
675             le32_to_cpus(&l1std.word[i]);
676         }
677 
678         span = L1STD_SPAN(&l1std);
679 
680         if (!span) {
681             /* l2ptr is not valid */
682             if (!event->inval_ste_allowed) {
683                 qemu_log_mask(LOG_GUEST_ERROR,
684                               "invalid sid=%d (L1STD span=0)\n", sid);
685             }
686             event->type = SMMU_EVT_C_BAD_STREAMID;
687             return -EINVAL;
688         }
689         max_l2_ste = (1 << span) - 1;
690         l2ptr = l1std_l2ptr(&l1std);
691         trace_smmuv3_find_ste_2lvl(s->strtab_base, l1ptr, l1_ste_offset,
692                                    l2ptr, l2_ste_offset, max_l2_ste);
693         if (l2_ste_offset > max_l2_ste) {
694             qemu_log_mask(LOG_GUEST_ERROR,
695                           "l2_ste_offset=%d > max_l2_ste=%d\n",
696                           l2_ste_offset, max_l2_ste);
697             event->type = SMMU_EVT_C_BAD_STE;
698             return -EINVAL;
699         }
700         addr = l2ptr + l2_ste_offset * sizeof(*ste);
701     } else {
702         strtab_size_shift = log2size + 5;
703         strtab_base = s->strtab_base & SMMU_BASE_ADDR_MASK &
704                       ~MAKE_64BIT_MASK(0, strtab_size_shift);
705         addr = strtab_base + sid * sizeof(*ste);
706     }
707 
708     if (smmu_get_ste(s, addr, ste, event)) {
709         return -EINVAL;
710     }
711 
712     return 0;
713 }
714 
decode_cd(SMMUv3State * s,SMMUTransCfg * cfg,CD * cd,SMMUEventInfo * event)715 static int decode_cd(SMMUv3State *s, SMMUTransCfg *cfg,
716                      CD *cd, SMMUEventInfo *event)
717 {
718     int ret = -EINVAL;
719     int i;
720     SMMUTranslationStatus status;
721     SMMUTLBEntry *entry;
722     uint8_t oas = FIELD_EX32(s->idr[5], IDR5, OAS);
723 
724     if (!CD_VALID(cd) || !CD_AARCH64(cd)) {
725         goto bad_cd;
726     }
727     if (!CD_A(cd)) {
728         goto bad_cd; /* SMMU_IDR0.TERM_MODEL == 1 */
729     }
730     if (CD_S(cd)) {
731         goto bad_cd; /* !STE_SECURE && SMMU_IDR0.STALL_MODEL == 1 */
732     }
733     if (CD_HA(cd) || CD_HD(cd)) {
734         goto bad_cd; /* HTTU = 0 */
735     }
736 
737     /* we support only those at the moment */
738     cfg->aa64 = true;
739 
740     cfg->oas = oas2bits(CD_IPS(cd));
741     cfg->oas = MIN(oas2bits(oas), cfg->oas);
742     cfg->tbi = CD_TBI(cd);
743     cfg->asid = CD_ASID(cd);
744     cfg->affd = CD_AFFD(cd);
745 
746     trace_smmuv3_decode_cd(cfg->oas);
747 
748     /* decode data dependent on TT */
749     for (i = 0; i <= 1; i++) {
750         int tg, tsz;
751         SMMUTransTableInfo *tt = &cfg->tt[i];
752 
753         cfg->tt[i].disabled = CD_EPD(cd, i);
754         if (cfg->tt[i].disabled) {
755             continue;
756         }
757 
758         tsz = CD_TSZ(cd, i);
759         if (tsz < 16 || tsz > 39) {
760             goto bad_cd;
761         }
762 
763         tg = CD_TG(cd, i);
764         tt->granule_sz = tg2granule(tg, i);
765         if ((tt->granule_sz != 12 && tt->granule_sz != 14 &&
766              tt->granule_sz != 16) || CD_ENDI(cd)) {
767             goto bad_cd;
768         }
769 
770         /*
771          * An address greater than 48 bits in size can only be output from a
772          * TTD when, in SMMUv3.1 and later, the effective IPS is 52 and a 64KB
773          * granule is in use for that translation table
774          */
775         if (tt->granule_sz != 16) {
776             cfg->oas = MIN(cfg->oas, 48);
777         }
778         tt->tsz = tsz;
779         tt->ttb = CD_TTB(cd, i);
780 
781         if (tt->ttb & ~(MAKE_64BIT_MASK(0, cfg->oas))) {
782             goto bad_cd;
783         }
784 
785         /* Translate the TTBx, from IPA to PA if nesting is enabled. */
786         if (cfg->stage == SMMU_NESTED) {
787             status = smmuv3_do_translate(s, tt->ttb, cfg, event, IOMMU_RO,
788                                          &entry, SMMU_CLASS_TT);
789             /*
790              * Same PTW faults are reported but with CLASS = TT.
791              * If TTBx is larger than the effective stage 1 output addres
792              * size, it reports C_BAD_CD, which is handled by the above case.
793              */
794             if (status != SMMU_TRANS_SUCCESS) {
795                 return -EINVAL;
796             }
797             tt->ttb = CACHED_ENTRY_TO_ADDR(entry, tt->ttb);
798         }
799 
800         tt->had = CD_HAD(cd, i);
801         trace_smmuv3_decode_cd_tt(i, tt->tsz, tt->ttb, tt->granule_sz, tt->had);
802     }
803 
804     cfg->record_faults = CD_R(cd);
805 
806     return 0;
807 
808 bad_cd:
809     event->type = SMMU_EVT_C_BAD_CD;
810     return ret;
811 }
812 
813 /**
814  * smmuv3_decode_config - Prepare the translation configuration
815  * for the @mr iommu region
816  * @mr: iommu memory region the translation config must be prepared for
817  * @cfg: output translation configuration which is populated through
818  *       the different configuration decoding steps
819  * @event: must be zero'ed by the caller
820  *
821  * return < 0 in case of config decoding error (@event is filled
822  * accordingly). Return 0 otherwise.
823  */
smmuv3_decode_config(IOMMUMemoryRegion * mr,SMMUTransCfg * cfg,SMMUEventInfo * event)824 static int smmuv3_decode_config(IOMMUMemoryRegion *mr, SMMUTransCfg *cfg,
825                                 SMMUEventInfo *event)
826 {
827     SMMUDevice *sdev = container_of(mr, SMMUDevice, iommu);
828     uint32_t sid = smmu_get_sid(sdev);
829     SMMUv3State *s = sdev->smmu;
830     int ret;
831     STE ste;
832     CD cd;
833 
834     /* ASID defaults to -1 (if s1 is not supported). */
835     cfg->asid = -1;
836 
837     ret = smmu_find_ste(s, sid, &ste, event);
838     if (ret) {
839         return ret;
840     }
841 
842     ret = decode_ste(s, cfg, &ste, event);
843     if (ret) {
844         return ret;
845     }
846 
847     if (cfg->aborted || cfg->bypassed || (cfg->stage == SMMU_STAGE_2)) {
848         return 0;
849     }
850 
851     ret = smmu_get_cd(s, &ste, cfg, 0 /* ssid */, &cd, event);
852     if (ret) {
853         return ret;
854     }
855 
856     return decode_cd(s, cfg, &cd, event);
857 }
858 
859 /**
860  * smmuv3_get_config - Look up for a cached copy of configuration data for
861  * @sdev and on cache miss performs a configuration structure decoding from
862  * guest RAM.
863  *
864  * @sdev: SMMUDevice handle
865  * @event: output event info
866  *
867  * The configuration cache contains data resulting from both STE and CD
868  * decoding under the form of an SMMUTransCfg struct. The hash table is indexed
869  * by the SMMUDevice handle.
870  */
smmuv3_get_config(SMMUDevice * sdev,SMMUEventInfo * event)871 static SMMUTransCfg *smmuv3_get_config(SMMUDevice *sdev, SMMUEventInfo *event)
872 {
873     SMMUv3State *s = sdev->smmu;
874     SMMUState *bc = &s->smmu_state;
875     SMMUTransCfg *cfg;
876 
877     cfg = g_hash_table_lookup(bc->configs, sdev);
878     if (cfg) {
879         sdev->cfg_cache_hits++;
880         trace_smmuv3_config_cache_hit(smmu_get_sid(sdev),
881                             sdev->cfg_cache_hits, sdev->cfg_cache_misses,
882                             100 * sdev->cfg_cache_hits /
883                             (sdev->cfg_cache_hits + sdev->cfg_cache_misses));
884     } else {
885         sdev->cfg_cache_misses++;
886         trace_smmuv3_config_cache_miss(smmu_get_sid(sdev),
887                             sdev->cfg_cache_hits, sdev->cfg_cache_misses,
888                             100 * sdev->cfg_cache_hits /
889                             (sdev->cfg_cache_hits + sdev->cfg_cache_misses));
890         cfg = g_new0(SMMUTransCfg, 1);
891 
892         if (!smmuv3_decode_config(&sdev->iommu, cfg, event)) {
893             g_hash_table_insert(bc->configs, sdev, cfg);
894         } else {
895             g_free(cfg);
896             cfg = NULL;
897         }
898     }
899     return cfg;
900 }
901 
smmuv3_flush_config(SMMUDevice * sdev)902 static void smmuv3_flush_config(SMMUDevice *sdev)
903 {
904     SMMUv3State *s = sdev->smmu;
905     SMMUState *bc = &s->smmu_state;
906 
907     trace_smmu_config_cache_inv(smmu_get_sid(sdev));
908     g_hash_table_remove(bc->configs, sdev);
909 }
910 
911 /* Do translation with TLB lookup. */
smmuv3_do_translate(SMMUv3State * s,hwaddr addr,SMMUTransCfg * cfg,SMMUEventInfo * event,IOMMUAccessFlags flag,SMMUTLBEntry ** out_entry,SMMUTranslationClass class)912 static SMMUTranslationStatus smmuv3_do_translate(SMMUv3State *s, hwaddr addr,
913                                                  SMMUTransCfg *cfg,
914                                                  SMMUEventInfo *event,
915                                                  IOMMUAccessFlags flag,
916                                                  SMMUTLBEntry **out_entry,
917                                                  SMMUTranslationClass class)
918 {
919     SMMUPTWEventInfo ptw_info = {};
920     SMMUState *bs = ARM_SMMU(s);
921     SMMUTLBEntry *cached_entry = NULL;
922     int asid, stage;
923     bool desc_s2_translation = class != SMMU_CLASS_IN;
924 
925     /*
926      * The function uses the argument class to identify which stage is used:
927      * - CLASS = IN: Means an input translation, determine the stage from STE.
928      * - CLASS = CD: Means the addr is an IPA of the CD, and it would be
929      *   translated using the stage-2.
930      * - CLASS = TT: Means the addr is an IPA of the stage-1 translation table
931      *   and it would be translated using the stage-2.
932      * For the last 2 cases instead of having intrusive changes in the common
933      * logic, we modify the cfg to be a stage-2 translation only in case of
934      * nested, and then restore it after.
935      */
936     if (desc_s2_translation) {
937         asid = cfg->asid;
938         stage = cfg->stage;
939         cfg->asid = -1;
940         cfg->stage = SMMU_STAGE_2;
941     }
942 
943     cached_entry = smmu_translate(bs, cfg, addr, flag, &ptw_info);
944 
945     if (desc_s2_translation) {
946         cfg->asid = asid;
947         cfg->stage = stage;
948     }
949 
950     if (!cached_entry) {
951         /* All faults from PTW has S2 field. */
952         event->u.f_walk_eabt.s2 = (ptw_info.stage == SMMU_STAGE_2);
953         /*
954          * Fault class is set as follows based on "class" input to
955          * the function and to "ptw_info" from "smmu_translate()"
956          * For stage-1:
957          *   - EABT => CLASS_TT (hardcoded)
958          *   - other events => CLASS_IN (input to function)
959          * For stage-2 => CLASS_IN (input to function)
960          * For nested, for all events:
961          *  - CD fetch => CLASS_CD (input to function)
962          *  - walking stage 1 translation table  => CLASS_TT (from
963          *    is_ipa_descriptor or input in case of TTBx)
964          *  - s2 translation => CLASS_IN (input to function)
965          */
966         class = ptw_info.is_ipa_descriptor ? SMMU_CLASS_TT : class;
967         switch (ptw_info.type) {
968         case SMMU_PTW_ERR_WALK_EABT:
969             event->type = SMMU_EVT_F_WALK_EABT;
970             event->u.f_walk_eabt.rnw = flag & 0x1;
971             event->u.f_walk_eabt.class = (ptw_info.stage == SMMU_STAGE_2) ?
972                                           class : SMMU_CLASS_TT;
973             event->u.f_walk_eabt.addr2 = ptw_info.addr;
974             break;
975         case SMMU_PTW_ERR_TRANSLATION:
976             if (PTW_RECORD_FAULT(ptw_info, cfg)) {
977                 event->type = SMMU_EVT_F_TRANSLATION;
978                 event->u.f_translation.addr2 = ptw_info.addr;
979                 event->u.f_translation.class = class;
980                 event->u.f_translation.rnw = flag & 0x1;
981             }
982             break;
983         case SMMU_PTW_ERR_ADDR_SIZE:
984             if (PTW_RECORD_FAULT(ptw_info, cfg)) {
985                 event->type = SMMU_EVT_F_ADDR_SIZE;
986                 event->u.f_addr_size.addr2 = ptw_info.addr;
987                 event->u.f_addr_size.class = class;
988                 event->u.f_addr_size.rnw = flag & 0x1;
989             }
990             break;
991         case SMMU_PTW_ERR_ACCESS:
992             if (PTW_RECORD_FAULT(ptw_info, cfg)) {
993                 event->type = SMMU_EVT_F_ACCESS;
994                 event->u.f_access.addr2 = ptw_info.addr;
995                 event->u.f_access.class = class;
996                 event->u.f_access.rnw = flag & 0x1;
997             }
998             break;
999         case SMMU_PTW_ERR_PERMISSION:
1000             if (PTW_RECORD_FAULT(ptw_info, cfg)) {
1001                 event->type = SMMU_EVT_F_PERMISSION;
1002                 event->u.f_permission.addr2 = ptw_info.addr;
1003                 event->u.f_permission.class = class;
1004                 event->u.f_permission.rnw = flag & 0x1;
1005             }
1006             break;
1007         default:
1008             g_assert_not_reached();
1009         }
1010         return SMMU_TRANS_ERROR;
1011     }
1012     *out_entry = cached_entry;
1013     return SMMU_TRANS_SUCCESS;
1014 }
1015 
1016 /*
1017  * Sets the InputAddr for an SMMU_TRANS_ERROR, as it can't be
1018  * set from all contexts, as smmuv3_get_config() can return
1019  * translation faults in case of nested translation (for CD
1020  * and TTBx). But in that case the iova is not known.
1021  */
smmuv3_fixup_event(SMMUEventInfo * event,hwaddr iova)1022 static void smmuv3_fixup_event(SMMUEventInfo *event, hwaddr iova)
1023 {
1024     switch (event->type) {
1025     case SMMU_EVT_F_WALK_EABT:
1026     case SMMU_EVT_F_TRANSLATION:
1027     case SMMU_EVT_F_ADDR_SIZE:
1028     case SMMU_EVT_F_ACCESS:
1029     case SMMU_EVT_F_PERMISSION:
1030         event->u.f_walk_eabt.addr = iova;
1031         break;
1032     default:
1033         break;
1034     }
1035 }
1036 
1037 /* Entry point to SMMU, does everything. */
smmuv3_translate(IOMMUMemoryRegion * mr,hwaddr addr,IOMMUAccessFlags flag,int iommu_idx)1038 static IOMMUTLBEntry smmuv3_translate(IOMMUMemoryRegion *mr, hwaddr addr,
1039                                       IOMMUAccessFlags flag, int iommu_idx)
1040 {
1041     SMMUDevice *sdev = container_of(mr, SMMUDevice, iommu);
1042     SMMUv3State *s = sdev->smmu;
1043     uint32_t sid = smmu_get_sid(sdev);
1044     SMMUEventInfo event = {.type = SMMU_EVT_NONE,
1045                            .sid = sid,
1046                            .inval_ste_allowed = false};
1047     SMMUTranslationStatus status;
1048     SMMUTransCfg *cfg = NULL;
1049     IOMMUTLBEntry entry = {
1050         .target_as = &address_space_memory,
1051         .iova = addr,
1052         .translated_addr = addr,
1053         .addr_mask = ~(hwaddr)0,
1054         .perm = IOMMU_NONE,
1055     };
1056     SMMUTLBEntry *cached_entry = NULL;
1057 
1058     qemu_mutex_lock(&s->mutex);
1059 
1060     if (!smmu_enabled(s)) {
1061         if (FIELD_EX32(s->gbpa, GBPA, ABORT)) {
1062             status = SMMU_TRANS_ABORT;
1063         } else {
1064             status = SMMU_TRANS_DISABLE;
1065         }
1066         goto epilogue;
1067     }
1068 
1069     cfg = smmuv3_get_config(sdev, &event);
1070     if (!cfg) {
1071         status = SMMU_TRANS_ERROR;
1072         goto epilogue;
1073     }
1074 
1075     if (cfg->aborted) {
1076         status = SMMU_TRANS_ABORT;
1077         goto epilogue;
1078     }
1079 
1080     if (cfg->bypassed) {
1081         status = SMMU_TRANS_BYPASS;
1082         goto epilogue;
1083     }
1084 
1085     status = smmuv3_do_translate(s, addr, cfg, &event, flag,
1086                                  &cached_entry, SMMU_CLASS_IN);
1087 
1088 epilogue:
1089     qemu_mutex_unlock(&s->mutex);
1090     switch (status) {
1091     case SMMU_TRANS_SUCCESS:
1092         entry.perm = cached_entry->entry.perm;
1093         entry.translated_addr = CACHED_ENTRY_TO_ADDR(cached_entry, addr);
1094         entry.addr_mask = cached_entry->entry.addr_mask;
1095         trace_smmuv3_translate_success(mr->parent_obj.name, sid, addr,
1096                                        entry.translated_addr, entry.perm,
1097                                        cfg->stage);
1098         break;
1099     case SMMU_TRANS_DISABLE:
1100         entry.perm = flag;
1101         entry.addr_mask = ~TARGET_PAGE_MASK;
1102         trace_smmuv3_translate_disable(mr->parent_obj.name, sid, addr,
1103                                       entry.perm);
1104         break;
1105     case SMMU_TRANS_BYPASS:
1106         entry.perm = flag;
1107         entry.addr_mask = ~TARGET_PAGE_MASK;
1108         trace_smmuv3_translate_bypass(mr->parent_obj.name, sid, addr,
1109                                       entry.perm);
1110         break;
1111     case SMMU_TRANS_ABORT:
1112         /* no event is recorded on abort */
1113         trace_smmuv3_translate_abort(mr->parent_obj.name, sid, addr,
1114                                      entry.perm);
1115         break;
1116     case SMMU_TRANS_ERROR:
1117         smmuv3_fixup_event(&event, addr);
1118         qemu_log_mask(LOG_GUEST_ERROR,
1119                       "%s translation failed for iova=0x%"PRIx64" (%s)\n",
1120                       mr->parent_obj.name, addr, smmu_event_string(event.type));
1121         smmuv3_record_event(s, &event);
1122         break;
1123     }
1124 
1125     return entry;
1126 }
1127 
1128 /**
1129  * smmuv3_notify_iova - call the notifier @n for a given
1130  * @asid and @iova tuple.
1131  *
1132  * @mr: IOMMU mr region handle
1133  * @n: notifier to be called
1134  * @asid: address space ID or negative value if we don't care
1135  * @vmid: virtual machine ID or negative value if we don't care
1136  * @iova: iova
1137  * @tg: translation granule (if communicated through range invalidation)
1138  * @num_pages: number of @granule sized pages (if tg != 0), otherwise 1
1139  * @stage: Which stage(1 or 2) is used
1140  */
smmuv3_notify_iova(IOMMUMemoryRegion * mr,IOMMUNotifier * n,int asid,int vmid,dma_addr_t iova,uint8_t tg,uint64_t num_pages,int stage)1141 static void smmuv3_notify_iova(IOMMUMemoryRegion *mr,
1142                                IOMMUNotifier *n,
1143                                int asid, int vmid,
1144                                dma_addr_t iova, uint8_t tg,
1145                                uint64_t num_pages, int stage)
1146 {
1147     SMMUDevice *sdev = container_of(mr, SMMUDevice, iommu);
1148     SMMUEventInfo eventinfo = {.inval_ste_allowed = true};
1149     SMMUTransCfg *cfg = smmuv3_get_config(sdev, &eventinfo);
1150     IOMMUTLBEvent event;
1151     uint8_t granule;
1152 
1153     if (!cfg) {
1154         return;
1155     }
1156 
1157     /*
1158      * stage is passed from TLB invalidation commands which can be either
1159      * stage-1 or stage-2.
1160      * However, IOMMUTLBEvent only understands IOVA, for stage-1 or stage-2
1161      * SMMU instances we consider the input address as the IOVA, but when
1162      * nesting is used, we can't mix stage-1 and stage-2 addresses, so for
1163      * nesting only stage-1 is considered the IOVA and would be notified.
1164      */
1165     if ((stage == SMMU_STAGE_2) && (cfg->stage == SMMU_NESTED))
1166         return;
1167 
1168     if (!tg) {
1169         SMMUTransTableInfo *tt;
1170 
1171         if (asid >= 0 && cfg->asid != asid) {
1172             return;
1173         }
1174 
1175         if (vmid >= 0 && cfg->s2cfg.vmid != vmid) {
1176             return;
1177         }
1178 
1179         if (stage == SMMU_STAGE_1) {
1180             tt = select_tt(cfg, iova);
1181             if (!tt) {
1182                 return;
1183             }
1184             granule = tt->granule_sz;
1185         } else {
1186             granule = cfg->s2cfg.granule_sz;
1187         }
1188 
1189     } else {
1190         granule = tg * 2 + 10;
1191     }
1192 
1193     event.type = IOMMU_NOTIFIER_UNMAP;
1194     event.entry.target_as = &address_space_memory;
1195     event.entry.iova = iova;
1196     event.entry.addr_mask = num_pages * (1 << granule) - 1;
1197     event.entry.perm = IOMMU_NONE;
1198 
1199     memory_region_notify_iommu_one(n, &event);
1200 }
1201 
1202 /* invalidate an asid/vmid/iova range tuple in all mr's */
smmuv3_inv_notifiers_iova(SMMUState * s,int asid,int vmid,dma_addr_t iova,uint8_t tg,uint64_t num_pages,int stage)1203 static void smmuv3_inv_notifiers_iova(SMMUState *s, int asid, int vmid,
1204                                       dma_addr_t iova, uint8_t tg,
1205                                       uint64_t num_pages, int stage)
1206 {
1207     SMMUDevice *sdev;
1208 
1209     QLIST_FOREACH(sdev, &s->devices_with_notifiers, next) {
1210         IOMMUMemoryRegion *mr = &sdev->iommu;
1211         IOMMUNotifier *n;
1212 
1213         trace_smmuv3_inv_notifiers_iova(mr->parent_obj.name, asid, vmid,
1214                                         iova, tg, num_pages, stage);
1215 
1216         IOMMU_NOTIFIER_FOREACH(n, mr) {
1217             smmuv3_notify_iova(mr, n, asid, vmid, iova, tg, num_pages, stage);
1218         }
1219     }
1220 }
1221 
smmuv3_range_inval(SMMUState * s,Cmd * cmd,SMMUStage stage)1222 static void smmuv3_range_inval(SMMUState *s, Cmd *cmd, SMMUStage stage)
1223 {
1224     dma_addr_t end, addr = CMD_ADDR(cmd);
1225     uint8_t type = CMD_TYPE(cmd);
1226     int vmid = -1;
1227     uint8_t scale = CMD_SCALE(cmd);
1228     uint8_t num = CMD_NUM(cmd);
1229     uint8_t ttl = CMD_TTL(cmd);
1230     bool leaf = CMD_LEAF(cmd);
1231     uint8_t tg = CMD_TG(cmd);
1232     uint64_t num_pages;
1233     uint8_t granule;
1234     int asid = -1;
1235     SMMUv3State *smmuv3 = ARM_SMMUV3(s);
1236 
1237     /* Only consider VMID if stage-2 is supported. */
1238     if (STAGE2_SUPPORTED(smmuv3)) {
1239         vmid = CMD_VMID(cmd);
1240     }
1241 
1242     if (type == SMMU_CMD_TLBI_NH_VA) {
1243         asid = CMD_ASID(cmd);
1244     }
1245 
1246     if (!tg) {
1247         trace_smmuv3_range_inval(vmid, asid, addr, tg, 1, ttl, leaf, stage);
1248         smmuv3_inv_notifiers_iova(s, asid, vmid, addr, tg, 1, stage);
1249         if (stage == SMMU_STAGE_1) {
1250             smmu_iotlb_inv_iova(s, asid, vmid, addr, tg, 1, ttl);
1251         } else {
1252             smmu_iotlb_inv_ipa(s, vmid, addr, tg, 1, ttl);
1253         }
1254         return;
1255     }
1256 
1257     /* RIL in use */
1258 
1259     num_pages = (num + 1) * BIT_ULL(scale);
1260     granule = tg * 2 + 10;
1261 
1262     /* Split invalidations into ^2 range invalidations */
1263     end = addr + (num_pages << granule) - 1;
1264 
1265     while (addr != end + 1) {
1266         uint64_t mask = dma_aligned_pow2_mask(addr, end, 64);
1267 
1268         num_pages = (mask + 1) >> granule;
1269         trace_smmuv3_range_inval(vmid, asid, addr, tg, num_pages,
1270                                  ttl, leaf, stage);
1271         smmuv3_inv_notifiers_iova(s, asid, vmid, addr, tg, num_pages, stage);
1272         if (stage == SMMU_STAGE_1) {
1273             smmu_iotlb_inv_iova(s, asid, vmid, addr, tg, num_pages, ttl);
1274         } else {
1275             smmu_iotlb_inv_ipa(s, vmid, addr, tg, num_pages, ttl);
1276         }
1277         addr += mask + 1;
1278     }
1279 }
1280 
smmuv3_cmdq_consume(SMMUv3State * s)1281 static int smmuv3_cmdq_consume(SMMUv3State *s)
1282 {
1283     SMMUState *bs = ARM_SMMU(s);
1284     SMMUCmdError cmd_error = SMMU_CERROR_NONE;
1285     SMMUQueue *q = &s->cmdq;
1286     SMMUCommandType type = 0;
1287 
1288     if (!smmuv3_cmdq_enabled(s)) {
1289         return 0;
1290     }
1291     /*
1292      * some commands depend on register values, typically CR0. In case those
1293      * register values change while handling the command, spec says it
1294      * is UNPREDICTABLE whether the command is interpreted under the new
1295      * or old value.
1296      */
1297 
1298     while (!smmuv3_q_empty(q)) {
1299         uint32_t pending = s->gerror ^ s->gerrorn;
1300         Cmd cmd;
1301 
1302         trace_smmuv3_cmdq_consume(Q_PROD(q), Q_CONS(q),
1303                                   Q_PROD_WRAP(q), Q_CONS_WRAP(q));
1304 
1305         if (FIELD_EX32(pending, GERROR, CMDQ_ERR)) {
1306             break;
1307         }
1308 
1309         if (queue_read(q, &cmd) != MEMTX_OK) {
1310             cmd_error = SMMU_CERROR_ABT;
1311             break;
1312         }
1313 
1314         type = CMD_TYPE(&cmd);
1315 
1316         trace_smmuv3_cmdq_opcode(smmu_cmd_string(type));
1317 
1318         qemu_mutex_lock(&s->mutex);
1319         switch (type) {
1320         case SMMU_CMD_SYNC:
1321             if (CMD_SYNC_CS(&cmd) & CMD_SYNC_SIG_IRQ) {
1322                 smmuv3_trigger_irq(s, SMMU_IRQ_CMD_SYNC, 0);
1323             }
1324             break;
1325         case SMMU_CMD_PREFETCH_CONFIG:
1326         case SMMU_CMD_PREFETCH_ADDR:
1327             break;
1328         case SMMU_CMD_CFGI_STE:
1329         {
1330             uint32_t sid = CMD_SID(&cmd);
1331             SMMUDevice *sdev = smmu_find_sdev(bs, sid);
1332 
1333             if (CMD_SSEC(&cmd)) {
1334                 cmd_error = SMMU_CERROR_ILL;
1335                 break;
1336             }
1337 
1338             if (!sdev) {
1339                 break;
1340             }
1341 
1342             trace_smmuv3_cmdq_cfgi_ste(sid);
1343             smmuv3_flush_config(sdev);
1344 
1345             break;
1346         }
1347         case SMMU_CMD_CFGI_STE_RANGE: /* same as SMMU_CMD_CFGI_ALL */
1348         {
1349             uint32_t sid = CMD_SID(&cmd), mask;
1350             uint8_t range = CMD_STE_RANGE(&cmd);
1351             SMMUSIDRange sid_range;
1352 
1353             if (CMD_SSEC(&cmd)) {
1354                 cmd_error = SMMU_CERROR_ILL;
1355                 break;
1356             }
1357 
1358             mask = (1ULL << (range + 1)) - 1;
1359             sid_range.start = sid & ~mask;
1360             sid_range.end = sid_range.start + mask;
1361 
1362             trace_smmuv3_cmdq_cfgi_ste_range(sid_range.start, sid_range.end);
1363             smmu_configs_inv_sid_range(bs, sid_range);
1364             break;
1365         }
1366         case SMMU_CMD_CFGI_CD:
1367         case SMMU_CMD_CFGI_CD_ALL:
1368         {
1369             uint32_t sid = CMD_SID(&cmd);
1370             SMMUDevice *sdev = smmu_find_sdev(bs, sid);
1371 
1372             if (CMD_SSEC(&cmd)) {
1373                 cmd_error = SMMU_CERROR_ILL;
1374                 break;
1375             }
1376 
1377             if (!sdev) {
1378                 break;
1379             }
1380 
1381             trace_smmuv3_cmdq_cfgi_cd(sid);
1382             smmuv3_flush_config(sdev);
1383             break;
1384         }
1385         case SMMU_CMD_TLBI_NH_ASID:
1386         {
1387             int asid = CMD_ASID(&cmd);
1388             int vmid = -1;
1389 
1390             if (!STAGE1_SUPPORTED(s)) {
1391                 cmd_error = SMMU_CERROR_ILL;
1392                 break;
1393             }
1394 
1395             /*
1396              * VMID is only matched when stage 2 is supported, otherwise set it
1397              * to -1 as the value used for stage-1 only VMIDs.
1398              */
1399             if (STAGE2_SUPPORTED(s)) {
1400                 vmid = CMD_VMID(&cmd);
1401             }
1402 
1403             trace_smmuv3_cmdq_tlbi_nh_asid(asid);
1404             smmu_inv_notifiers_all(&s->smmu_state);
1405             smmu_iotlb_inv_asid_vmid(bs, asid, vmid);
1406             break;
1407         }
1408         case SMMU_CMD_TLBI_NH_ALL:
1409         {
1410             int vmid = -1;
1411 
1412             if (!STAGE1_SUPPORTED(s)) {
1413                 cmd_error = SMMU_CERROR_ILL;
1414                 break;
1415             }
1416 
1417             /*
1418              * If stage-2 is supported, invalidate for this VMID only, otherwise
1419              * invalidate the whole thing.
1420              */
1421             if (STAGE2_SUPPORTED(s)) {
1422                 vmid = CMD_VMID(&cmd);
1423                 trace_smmuv3_cmdq_tlbi_nh(vmid);
1424                 smmu_iotlb_inv_vmid_s1(bs, vmid);
1425                 break;
1426             }
1427             QEMU_FALLTHROUGH;
1428         }
1429         case SMMU_CMD_TLBI_NSNH_ALL:
1430             trace_smmuv3_cmdq_tlbi_nsnh();
1431             smmu_inv_notifiers_all(&s->smmu_state);
1432             smmu_iotlb_inv_all(bs);
1433             break;
1434         case SMMU_CMD_TLBI_NH_VAA:
1435         case SMMU_CMD_TLBI_NH_VA:
1436             if (!STAGE1_SUPPORTED(s)) {
1437                 cmd_error = SMMU_CERROR_ILL;
1438                 break;
1439             }
1440             smmuv3_range_inval(bs, &cmd, SMMU_STAGE_1);
1441             break;
1442         case SMMU_CMD_TLBI_S12_VMALL:
1443         {
1444             int vmid = CMD_VMID(&cmd);
1445 
1446             if (!STAGE2_SUPPORTED(s)) {
1447                 cmd_error = SMMU_CERROR_ILL;
1448                 break;
1449             }
1450 
1451             trace_smmuv3_cmdq_tlbi_s12_vmid(vmid);
1452             smmu_inv_notifiers_all(&s->smmu_state);
1453             smmu_iotlb_inv_vmid(bs, vmid);
1454             break;
1455         }
1456         case SMMU_CMD_TLBI_S2_IPA:
1457             if (!STAGE2_SUPPORTED(s)) {
1458                 cmd_error = SMMU_CERROR_ILL;
1459                 break;
1460             }
1461             /*
1462              * As currently only either s1 or s2 are supported
1463              * we can reuse same function for s2.
1464              */
1465             smmuv3_range_inval(bs, &cmd, SMMU_STAGE_2);
1466             break;
1467         case SMMU_CMD_TLBI_EL3_ALL:
1468         case SMMU_CMD_TLBI_EL3_VA:
1469         case SMMU_CMD_TLBI_EL2_ALL:
1470         case SMMU_CMD_TLBI_EL2_ASID:
1471         case SMMU_CMD_TLBI_EL2_VA:
1472         case SMMU_CMD_TLBI_EL2_VAA:
1473         case SMMU_CMD_ATC_INV:
1474         case SMMU_CMD_PRI_RESP:
1475         case SMMU_CMD_RESUME:
1476         case SMMU_CMD_STALL_TERM:
1477             trace_smmuv3_unhandled_cmd(type);
1478             break;
1479         default:
1480             cmd_error = SMMU_CERROR_ILL;
1481             break;
1482         }
1483         qemu_mutex_unlock(&s->mutex);
1484         if (cmd_error) {
1485             if (cmd_error == SMMU_CERROR_ILL) {
1486                 qemu_log_mask(LOG_GUEST_ERROR,
1487                               "Illegal command type: %d\n", CMD_TYPE(&cmd));
1488             }
1489             break;
1490         }
1491         /*
1492          * We only increment the cons index after the completion of
1493          * the command. We do that because the SYNC returns immediately
1494          * and does not check the completion of previous commands
1495          */
1496         queue_cons_incr(q);
1497     }
1498 
1499     if (cmd_error) {
1500         trace_smmuv3_cmdq_consume_error(smmu_cmd_string(type), cmd_error);
1501         smmu_write_cmdq_err(s, cmd_error);
1502         smmuv3_trigger_irq(s, SMMU_IRQ_GERROR, R_GERROR_CMDQ_ERR_MASK);
1503     }
1504 
1505     trace_smmuv3_cmdq_consume_out(Q_PROD(q), Q_CONS(q),
1506                                   Q_PROD_WRAP(q), Q_CONS_WRAP(q));
1507 
1508     return 0;
1509 }
1510 
smmu_writell(SMMUv3State * s,hwaddr offset,uint64_t data,MemTxAttrs attrs)1511 static MemTxResult smmu_writell(SMMUv3State *s, hwaddr offset,
1512                                uint64_t data, MemTxAttrs attrs)
1513 {
1514     switch (offset) {
1515     case A_GERROR_IRQ_CFG0:
1516         s->gerror_irq_cfg0 = data;
1517         return MEMTX_OK;
1518     case A_STRTAB_BASE:
1519         s->strtab_base = data;
1520         return MEMTX_OK;
1521     case A_CMDQ_BASE:
1522         s->cmdq.base = data;
1523         s->cmdq.log2size = extract64(s->cmdq.base, 0, 5);
1524         if (s->cmdq.log2size > SMMU_CMDQS) {
1525             s->cmdq.log2size = SMMU_CMDQS;
1526         }
1527         return MEMTX_OK;
1528     case A_EVENTQ_BASE:
1529         s->eventq.base = data;
1530         s->eventq.log2size = extract64(s->eventq.base, 0, 5);
1531         if (s->eventq.log2size > SMMU_EVENTQS) {
1532             s->eventq.log2size = SMMU_EVENTQS;
1533         }
1534         return MEMTX_OK;
1535     case A_EVENTQ_IRQ_CFG0:
1536         s->eventq_irq_cfg0 = data;
1537         return MEMTX_OK;
1538     default:
1539         qemu_log_mask(LOG_UNIMP,
1540                       "%s Unexpected 64-bit access to 0x%"PRIx64" (WI)\n",
1541                       __func__, offset);
1542         return MEMTX_OK;
1543     }
1544 }
1545 
smmu_writel(SMMUv3State * s,hwaddr offset,uint64_t data,MemTxAttrs attrs)1546 static MemTxResult smmu_writel(SMMUv3State *s, hwaddr offset,
1547                                uint64_t data, MemTxAttrs attrs)
1548 {
1549     switch (offset) {
1550     case A_CR0:
1551         s->cr[0] = data;
1552         s->cr0ack = data & ~SMMU_CR0_RESERVED;
1553         /* in case the command queue has been enabled */
1554         smmuv3_cmdq_consume(s);
1555         return MEMTX_OK;
1556     case A_CR1:
1557         s->cr[1] = data;
1558         return MEMTX_OK;
1559     case A_CR2:
1560         s->cr[2] = data;
1561         return MEMTX_OK;
1562     case A_IRQ_CTRL:
1563         s->irq_ctrl = data;
1564         return MEMTX_OK;
1565     case A_GERRORN:
1566         smmuv3_write_gerrorn(s, data);
1567         /*
1568          * By acknowledging the CMDQ_ERR, SW may notify cmds can
1569          * be processed again
1570          */
1571         smmuv3_cmdq_consume(s);
1572         return MEMTX_OK;
1573     case A_GERROR_IRQ_CFG0: /* 64b */
1574         s->gerror_irq_cfg0 = deposit64(s->gerror_irq_cfg0, 0, 32, data);
1575         return MEMTX_OK;
1576     case A_GERROR_IRQ_CFG0 + 4:
1577         s->gerror_irq_cfg0 = deposit64(s->gerror_irq_cfg0, 32, 32, data);
1578         return MEMTX_OK;
1579     case A_GERROR_IRQ_CFG1:
1580         s->gerror_irq_cfg1 = data;
1581         return MEMTX_OK;
1582     case A_GERROR_IRQ_CFG2:
1583         s->gerror_irq_cfg2 = data;
1584         return MEMTX_OK;
1585     case A_GBPA:
1586         /*
1587          * If UPDATE is not set, the write is ignored. This is the only
1588          * permitted behavior in SMMUv3.2 and later.
1589          */
1590         if (data & R_GBPA_UPDATE_MASK) {
1591             /* Ignore update bit as write is synchronous. */
1592             s->gbpa = data & ~R_GBPA_UPDATE_MASK;
1593         }
1594         return MEMTX_OK;
1595     case A_STRTAB_BASE: /* 64b */
1596         s->strtab_base = deposit64(s->strtab_base, 0, 32, data);
1597         return MEMTX_OK;
1598     case A_STRTAB_BASE + 4:
1599         s->strtab_base = deposit64(s->strtab_base, 32, 32, data);
1600         return MEMTX_OK;
1601     case A_STRTAB_BASE_CFG:
1602         s->strtab_base_cfg = data;
1603         if (FIELD_EX32(data, STRTAB_BASE_CFG, FMT) == 1) {
1604             s->sid_split = FIELD_EX32(data, STRTAB_BASE_CFG, SPLIT);
1605             s->features |= SMMU_FEATURE_2LVL_STE;
1606         }
1607         return MEMTX_OK;
1608     case A_CMDQ_BASE: /* 64b */
1609         s->cmdq.base = deposit64(s->cmdq.base, 0, 32, data);
1610         s->cmdq.log2size = extract64(s->cmdq.base, 0, 5);
1611         if (s->cmdq.log2size > SMMU_CMDQS) {
1612             s->cmdq.log2size = SMMU_CMDQS;
1613         }
1614         return MEMTX_OK;
1615     case A_CMDQ_BASE + 4: /* 64b */
1616         s->cmdq.base = deposit64(s->cmdq.base, 32, 32, data);
1617         return MEMTX_OK;
1618     case A_CMDQ_PROD:
1619         s->cmdq.prod = data;
1620         smmuv3_cmdq_consume(s);
1621         return MEMTX_OK;
1622     case A_CMDQ_CONS:
1623         s->cmdq.cons = data;
1624         return MEMTX_OK;
1625     case A_EVENTQ_BASE: /* 64b */
1626         s->eventq.base = deposit64(s->eventq.base, 0, 32, data);
1627         s->eventq.log2size = extract64(s->eventq.base, 0, 5);
1628         if (s->eventq.log2size > SMMU_EVENTQS) {
1629             s->eventq.log2size = SMMU_EVENTQS;
1630         }
1631         return MEMTX_OK;
1632     case A_EVENTQ_BASE + 4:
1633         s->eventq.base = deposit64(s->eventq.base, 32, 32, data);
1634         return MEMTX_OK;
1635     case A_EVENTQ_PROD:
1636         s->eventq.prod = data;
1637         return MEMTX_OK;
1638     case A_EVENTQ_CONS:
1639         s->eventq.cons = data;
1640         return MEMTX_OK;
1641     case A_EVENTQ_IRQ_CFG0: /* 64b */
1642         s->eventq_irq_cfg0 = deposit64(s->eventq_irq_cfg0, 0, 32, data);
1643         return MEMTX_OK;
1644     case A_EVENTQ_IRQ_CFG0 + 4:
1645         s->eventq_irq_cfg0 = deposit64(s->eventq_irq_cfg0, 32, 32, data);
1646         return MEMTX_OK;
1647     case A_EVENTQ_IRQ_CFG1:
1648         s->eventq_irq_cfg1 = data;
1649         return MEMTX_OK;
1650     case A_EVENTQ_IRQ_CFG2:
1651         s->eventq_irq_cfg2 = data;
1652         return MEMTX_OK;
1653     default:
1654         qemu_log_mask(LOG_UNIMP,
1655                       "%s Unexpected 32-bit access to 0x%"PRIx64" (WI)\n",
1656                       __func__, offset);
1657         return MEMTX_OK;
1658     }
1659 }
1660 
smmu_write_mmio(void * opaque,hwaddr offset,uint64_t data,unsigned size,MemTxAttrs attrs)1661 static MemTxResult smmu_write_mmio(void *opaque, hwaddr offset, uint64_t data,
1662                                    unsigned size, MemTxAttrs attrs)
1663 {
1664     SMMUState *sys = opaque;
1665     SMMUv3State *s = ARM_SMMUV3(sys);
1666     MemTxResult r;
1667 
1668     /* CONSTRAINED UNPREDICTABLE choice to have page0/1 be exact aliases */
1669     offset &= ~0x10000;
1670 
1671     switch (size) {
1672     case 8:
1673         r = smmu_writell(s, offset, data, attrs);
1674         break;
1675     case 4:
1676         r = smmu_writel(s, offset, data, attrs);
1677         break;
1678     default:
1679         r = MEMTX_ERROR;
1680         break;
1681     }
1682 
1683     trace_smmuv3_write_mmio(offset, data, size, r);
1684     return r;
1685 }
1686 
smmu_readll(SMMUv3State * s,hwaddr offset,uint64_t * data,MemTxAttrs attrs)1687 static MemTxResult smmu_readll(SMMUv3State *s, hwaddr offset,
1688                                uint64_t *data, MemTxAttrs attrs)
1689 {
1690     switch (offset) {
1691     case A_GERROR_IRQ_CFG0:
1692         *data = s->gerror_irq_cfg0;
1693         return MEMTX_OK;
1694     case A_STRTAB_BASE:
1695         *data = s->strtab_base;
1696         return MEMTX_OK;
1697     case A_CMDQ_BASE:
1698         *data = s->cmdq.base;
1699         return MEMTX_OK;
1700     case A_EVENTQ_BASE:
1701         *data = s->eventq.base;
1702         return MEMTX_OK;
1703     default:
1704         *data = 0;
1705         qemu_log_mask(LOG_UNIMP,
1706                       "%s Unexpected 64-bit access to 0x%"PRIx64" (RAZ)\n",
1707                       __func__, offset);
1708         return MEMTX_OK;
1709     }
1710 }
1711 
smmu_readl(SMMUv3State * s,hwaddr offset,uint64_t * data,MemTxAttrs attrs)1712 static MemTxResult smmu_readl(SMMUv3State *s, hwaddr offset,
1713                               uint64_t *data, MemTxAttrs attrs)
1714 {
1715     switch (offset) {
1716     case A_IDREGS ... A_IDREGS + 0x2f:
1717         *data = smmuv3_idreg(offset - A_IDREGS);
1718         return MEMTX_OK;
1719     case A_IDR0 ... A_IDR5:
1720         *data = s->idr[(offset - A_IDR0) / 4];
1721         return MEMTX_OK;
1722     case A_IIDR:
1723         *data = s->iidr;
1724         return MEMTX_OK;
1725     case A_AIDR:
1726         *data = s->aidr;
1727         return MEMTX_OK;
1728     case A_CR0:
1729         *data = s->cr[0];
1730         return MEMTX_OK;
1731     case A_CR0ACK:
1732         *data = s->cr0ack;
1733         return MEMTX_OK;
1734     case A_CR1:
1735         *data = s->cr[1];
1736         return MEMTX_OK;
1737     case A_CR2:
1738         *data = s->cr[2];
1739         return MEMTX_OK;
1740     case A_STATUSR:
1741         *data = s->statusr;
1742         return MEMTX_OK;
1743     case A_GBPA:
1744         *data = s->gbpa;
1745         return MEMTX_OK;
1746     case A_IRQ_CTRL:
1747     case A_IRQ_CTRL_ACK:
1748         *data = s->irq_ctrl;
1749         return MEMTX_OK;
1750     case A_GERROR:
1751         *data = s->gerror;
1752         return MEMTX_OK;
1753     case A_GERRORN:
1754         *data = s->gerrorn;
1755         return MEMTX_OK;
1756     case A_GERROR_IRQ_CFG0: /* 64b */
1757         *data = extract64(s->gerror_irq_cfg0, 0, 32);
1758         return MEMTX_OK;
1759     case A_GERROR_IRQ_CFG0 + 4:
1760         *data = extract64(s->gerror_irq_cfg0, 32, 32);
1761         return MEMTX_OK;
1762     case A_GERROR_IRQ_CFG1:
1763         *data = s->gerror_irq_cfg1;
1764         return MEMTX_OK;
1765     case A_GERROR_IRQ_CFG2:
1766         *data = s->gerror_irq_cfg2;
1767         return MEMTX_OK;
1768     case A_STRTAB_BASE: /* 64b */
1769         *data = extract64(s->strtab_base, 0, 32);
1770         return MEMTX_OK;
1771     case A_STRTAB_BASE + 4: /* 64b */
1772         *data = extract64(s->strtab_base, 32, 32);
1773         return MEMTX_OK;
1774     case A_STRTAB_BASE_CFG:
1775         *data = s->strtab_base_cfg;
1776         return MEMTX_OK;
1777     case A_CMDQ_BASE: /* 64b */
1778         *data = extract64(s->cmdq.base, 0, 32);
1779         return MEMTX_OK;
1780     case A_CMDQ_BASE + 4:
1781         *data = extract64(s->cmdq.base, 32, 32);
1782         return MEMTX_OK;
1783     case A_CMDQ_PROD:
1784         *data = s->cmdq.prod;
1785         return MEMTX_OK;
1786     case A_CMDQ_CONS:
1787         *data = s->cmdq.cons;
1788         return MEMTX_OK;
1789     case A_EVENTQ_BASE: /* 64b */
1790         *data = extract64(s->eventq.base, 0, 32);
1791         return MEMTX_OK;
1792     case A_EVENTQ_BASE + 4: /* 64b */
1793         *data = extract64(s->eventq.base, 32, 32);
1794         return MEMTX_OK;
1795     case A_EVENTQ_PROD:
1796         *data = s->eventq.prod;
1797         return MEMTX_OK;
1798     case A_EVENTQ_CONS:
1799         *data = s->eventq.cons;
1800         return MEMTX_OK;
1801     default:
1802         *data = 0;
1803         qemu_log_mask(LOG_UNIMP,
1804                       "%s unhandled 32-bit access at 0x%"PRIx64" (RAZ)\n",
1805                       __func__, offset);
1806         return MEMTX_OK;
1807     }
1808 }
1809 
smmu_read_mmio(void * opaque,hwaddr offset,uint64_t * data,unsigned size,MemTxAttrs attrs)1810 static MemTxResult smmu_read_mmio(void *opaque, hwaddr offset, uint64_t *data,
1811                                   unsigned size, MemTxAttrs attrs)
1812 {
1813     SMMUState *sys = opaque;
1814     SMMUv3State *s = ARM_SMMUV3(sys);
1815     MemTxResult r;
1816 
1817     /* CONSTRAINED UNPREDICTABLE choice to have page0/1 be exact aliases */
1818     offset &= ~0x10000;
1819 
1820     switch (size) {
1821     case 8:
1822         r = smmu_readll(s, offset, data, attrs);
1823         break;
1824     case 4:
1825         r = smmu_readl(s, offset, data, attrs);
1826         break;
1827     default:
1828         r = MEMTX_ERROR;
1829         break;
1830     }
1831 
1832     trace_smmuv3_read_mmio(offset, *data, size, r);
1833     return r;
1834 }
1835 
1836 static const MemoryRegionOps smmu_mem_ops = {
1837     .read_with_attrs = smmu_read_mmio,
1838     .write_with_attrs = smmu_write_mmio,
1839     .endianness = DEVICE_LITTLE_ENDIAN,
1840     .valid = {
1841         .min_access_size = 4,
1842         .max_access_size = 8,
1843     },
1844     .impl = {
1845         .min_access_size = 4,
1846         .max_access_size = 8,
1847     },
1848 };
1849 
smmu_init_irq(SMMUv3State * s,SysBusDevice * dev)1850 static void smmu_init_irq(SMMUv3State *s, SysBusDevice *dev)
1851 {
1852     int i;
1853 
1854     for (i = 0; i < ARRAY_SIZE(s->irq); i++) {
1855         sysbus_init_irq(dev, &s->irq[i]);
1856     }
1857 }
1858 
1859 /*
1860  * Make sure the IOMMU is reset in 'exit' phase after
1861  * all outstanding DMA requests have been quiesced during
1862  * the 'enter' or 'hold' reset phases
1863  */
smmu_reset_exit(Object * obj,ResetType type)1864 static void smmu_reset_exit(Object *obj, ResetType type)
1865 {
1866     SMMUv3State *s = ARM_SMMUV3(obj);
1867     SMMUv3Class *c = ARM_SMMUV3_GET_CLASS(s);
1868 
1869     trace_smmu_reset_exit();
1870     if (c->parent_phases.exit) {
1871         c->parent_phases.exit(obj, type);
1872     }
1873 
1874     smmuv3_init_regs(s);
1875 }
1876 
smmu_realize(DeviceState * d,Error ** errp)1877 static void smmu_realize(DeviceState *d, Error **errp)
1878 {
1879     SMMUState *sys = ARM_SMMU(d);
1880     SMMUv3State *s = ARM_SMMUV3(sys);
1881     SMMUv3Class *c = ARM_SMMUV3_GET_CLASS(s);
1882     SysBusDevice *dev = SYS_BUS_DEVICE(d);
1883     Error *local_err = NULL;
1884 
1885     c->parent_realize(d, &local_err);
1886     if (local_err) {
1887         error_propagate(errp, local_err);
1888         return;
1889     }
1890 
1891     qemu_mutex_init(&s->mutex);
1892 
1893     memory_region_init_io(&sys->iomem, OBJECT(s),
1894                           &smmu_mem_ops, sys, TYPE_ARM_SMMUV3, 0x20000);
1895 
1896     sys->mrtypename = TYPE_SMMUV3_IOMMU_MEMORY_REGION;
1897 
1898     sysbus_init_mmio(dev, &sys->iomem);
1899 
1900     smmu_init_irq(s, dev);
1901 }
1902 
1903 static const VMStateDescription vmstate_smmuv3_queue = {
1904     .name = "smmuv3_queue",
1905     .version_id = 1,
1906     .minimum_version_id = 1,
1907     .fields = (const VMStateField[]) {
1908         VMSTATE_UINT64(base, SMMUQueue),
1909         VMSTATE_UINT32(prod, SMMUQueue),
1910         VMSTATE_UINT32(cons, SMMUQueue),
1911         VMSTATE_UINT8(log2size, SMMUQueue),
1912         VMSTATE_END_OF_LIST(),
1913     },
1914 };
1915 
smmuv3_gbpa_needed(void * opaque)1916 static bool smmuv3_gbpa_needed(void *opaque)
1917 {
1918     SMMUv3State *s = opaque;
1919 
1920     /* Only migrate GBPA if it has different reset value. */
1921     return s->gbpa != SMMU_GBPA_RESET_VAL;
1922 }
1923 
1924 static const VMStateDescription vmstate_gbpa = {
1925     .name = "smmuv3/gbpa",
1926     .version_id = 1,
1927     .minimum_version_id = 1,
1928     .needed = smmuv3_gbpa_needed,
1929     .fields = (const VMStateField[]) {
1930         VMSTATE_UINT32(gbpa, SMMUv3State),
1931         VMSTATE_END_OF_LIST()
1932     }
1933 };
1934 
1935 static const VMStateDescription vmstate_smmuv3 = {
1936     .name = "smmuv3",
1937     .version_id = 1,
1938     .minimum_version_id = 1,
1939     .priority = MIG_PRI_IOMMU,
1940     .fields = (const VMStateField[]) {
1941         VMSTATE_UINT32(features, SMMUv3State),
1942         VMSTATE_UINT8(sid_size, SMMUv3State),
1943         VMSTATE_UINT8(sid_split, SMMUv3State),
1944 
1945         VMSTATE_UINT32_ARRAY(cr, SMMUv3State, 3),
1946         VMSTATE_UINT32(cr0ack, SMMUv3State),
1947         VMSTATE_UINT32(statusr, SMMUv3State),
1948         VMSTATE_UINT32(irq_ctrl, SMMUv3State),
1949         VMSTATE_UINT32(gerror, SMMUv3State),
1950         VMSTATE_UINT32(gerrorn, SMMUv3State),
1951         VMSTATE_UINT64(gerror_irq_cfg0, SMMUv3State),
1952         VMSTATE_UINT32(gerror_irq_cfg1, SMMUv3State),
1953         VMSTATE_UINT32(gerror_irq_cfg2, SMMUv3State),
1954         VMSTATE_UINT64(strtab_base, SMMUv3State),
1955         VMSTATE_UINT32(strtab_base_cfg, SMMUv3State),
1956         VMSTATE_UINT64(eventq_irq_cfg0, SMMUv3State),
1957         VMSTATE_UINT32(eventq_irq_cfg1, SMMUv3State),
1958         VMSTATE_UINT32(eventq_irq_cfg2, SMMUv3State),
1959 
1960         VMSTATE_STRUCT(cmdq, SMMUv3State, 0, vmstate_smmuv3_queue, SMMUQueue),
1961         VMSTATE_STRUCT(eventq, SMMUv3State, 0, vmstate_smmuv3_queue, SMMUQueue),
1962 
1963         VMSTATE_END_OF_LIST(),
1964     },
1965     .subsections = (const VMStateDescription * const []) {
1966         &vmstate_gbpa,
1967         NULL
1968     }
1969 };
1970 
1971 static const Property smmuv3_properties[] = {
1972     /*
1973      * Stages of translation advertised.
1974      * "1": Stage 1
1975      * "2": Stage 2
1976      * "nested": Both stage 1 and stage 2
1977      * Defaults to stage 1
1978      */
1979     DEFINE_PROP_STRING("stage", SMMUv3State, stage),
1980 };
1981 
smmuv3_instance_init(Object * obj)1982 static void smmuv3_instance_init(Object *obj)
1983 {
1984     /* Nothing much to do here as of now */
1985 }
1986 
smmuv3_class_init(ObjectClass * klass,const void * data)1987 static void smmuv3_class_init(ObjectClass *klass, const void *data)
1988 {
1989     DeviceClass *dc = DEVICE_CLASS(klass);
1990     ResettableClass *rc = RESETTABLE_CLASS(klass);
1991     SMMUv3Class *c = ARM_SMMUV3_CLASS(klass);
1992 
1993     dc->vmsd = &vmstate_smmuv3;
1994     resettable_class_set_parent_phases(rc, NULL, NULL, smmu_reset_exit,
1995                                        &c->parent_phases);
1996     device_class_set_parent_realize(dc, smmu_realize,
1997                                     &c->parent_realize);
1998     device_class_set_props(dc, smmuv3_properties);
1999 }
2000 
smmuv3_notify_flag_changed(IOMMUMemoryRegion * iommu,IOMMUNotifierFlag old,IOMMUNotifierFlag new,Error ** errp)2001 static int smmuv3_notify_flag_changed(IOMMUMemoryRegion *iommu,
2002                                       IOMMUNotifierFlag old,
2003                                       IOMMUNotifierFlag new,
2004                                       Error **errp)
2005 {
2006     SMMUDevice *sdev = container_of(iommu, SMMUDevice, iommu);
2007     SMMUv3State *s3 = sdev->smmu;
2008     SMMUState *s = &(s3->smmu_state);
2009 
2010     if (new & IOMMU_NOTIFIER_DEVIOTLB_UNMAP) {
2011         error_setg(errp, "SMMUv3 does not support dev-iotlb yet");
2012         return -EINVAL;
2013     }
2014 
2015     if (new & IOMMU_NOTIFIER_MAP) {
2016         error_setg(errp,
2017                    "device %02x.%02x.%x requires iommu MAP notifier which is "
2018                    "not currently supported", pci_bus_num(sdev->bus),
2019                    PCI_SLOT(sdev->devfn), PCI_FUNC(sdev->devfn));
2020         return -EINVAL;
2021     }
2022 
2023     if (old == IOMMU_NOTIFIER_NONE) {
2024         trace_smmuv3_notify_flag_add(iommu->parent_obj.name);
2025         QLIST_INSERT_HEAD(&s->devices_with_notifiers, sdev, next);
2026     } else if (new == IOMMU_NOTIFIER_NONE) {
2027         trace_smmuv3_notify_flag_del(iommu->parent_obj.name);
2028         QLIST_REMOVE(sdev, next);
2029     }
2030     return 0;
2031 }
2032 
smmuv3_iommu_memory_region_class_init(ObjectClass * klass,const void * data)2033 static void smmuv3_iommu_memory_region_class_init(ObjectClass *klass,
2034                                                   const void *data)
2035 {
2036     IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);
2037 
2038     imrc->translate = smmuv3_translate;
2039     imrc->notify_flag_changed = smmuv3_notify_flag_changed;
2040 }
2041 
2042 static const TypeInfo smmuv3_type_info = {
2043     .name          = TYPE_ARM_SMMUV3,
2044     .parent        = TYPE_ARM_SMMU,
2045     .instance_size = sizeof(SMMUv3State),
2046     .instance_init = smmuv3_instance_init,
2047     .class_size    = sizeof(SMMUv3Class),
2048     .class_init    = smmuv3_class_init,
2049 };
2050 
2051 static const TypeInfo smmuv3_iommu_memory_region_info = {
2052     .parent = TYPE_IOMMU_MEMORY_REGION,
2053     .name = TYPE_SMMUV3_IOMMU_MEMORY_REGION,
2054     .class_init = smmuv3_iommu_memory_region_class_init,
2055 };
2056 
smmuv3_register_types(void)2057 static void smmuv3_register_types(void)
2058 {
2059     type_register_static(&smmuv3_type_info);
2060     type_register_static(&smmuv3_iommu_memory_region_info);
2061 }
2062 
2063 type_init(smmuv3_register_types)
2064 
2065