xref: /linux/drivers/net/ethernet/qlogic/qed/qed_hw.c (revision ab93e0dd72c37d378dd936f031ffb83ff2bd87ce)
1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause)
2 /* QLogic qed NIC Driver
3  * Copyright (c) 2015-2017  QLogic Corporation
4  * Copyright (c) 2019-2020 Marvell International Ltd.
5  */
6 
7 #include <linux/types.h>
8 #include <linux/io.h>
9 #include <linux/delay.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/errno.h>
12 #include <linux/kernel.h>
13 #include <linux/list.h>
14 #include <linux/mutex.h>
15 #include <linux/pci.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/string.h>
19 #include <linux/qed/qed_chain.h>
20 #include "qed.h"
21 #include "qed_hsi.h"
22 #include "qed_hw.h"
23 #include "qed_reg_addr.h"
24 #include "qed_sriov.h"
25 
26 #define QED_BAR_ACQUIRE_TIMEOUT_USLEEP_CNT	1000
27 #define QED_BAR_ACQUIRE_TIMEOUT_USLEEP		1000
28 #define QED_BAR_ACQUIRE_TIMEOUT_UDELAY_CNT	100000
29 #define QED_BAR_ACQUIRE_TIMEOUT_UDELAY		10
30 
31 /* Invalid values */
32 #define QED_BAR_INVALID_OFFSET          (cpu_to_le32(-1))
33 
34 struct qed_ptt {
35 	struct list_head	list_entry;
36 	unsigned int		idx;
37 	struct pxp_ptt_entry	pxp;
38 	u8			hwfn_id;
39 };
40 
41 struct qed_ptt_pool {
42 	struct list_head	free_list;
43 	spinlock_t		lock; /* ptt synchronized access */
44 	struct qed_ptt		ptts[PXP_EXTERNAL_BAR_PF_WINDOW_NUM];
45 };
46 
qed_ptt_pool_alloc(struct qed_hwfn * p_hwfn)47 int qed_ptt_pool_alloc(struct qed_hwfn *p_hwfn)
48 {
49 	struct qed_ptt_pool *p_pool = kmalloc(sizeof(*p_pool), GFP_KERNEL);
50 	int i;
51 
52 	if (!p_pool)
53 		return -ENOMEM;
54 
55 	INIT_LIST_HEAD(&p_pool->free_list);
56 	for (i = 0; i < PXP_EXTERNAL_BAR_PF_WINDOW_NUM; i++) {
57 		p_pool->ptts[i].idx = i;
58 		p_pool->ptts[i].pxp.offset = QED_BAR_INVALID_OFFSET;
59 		p_pool->ptts[i].pxp.pretend.control = 0;
60 		p_pool->ptts[i].hwfn_id = p_hwfn->my_id;
61 		if (i >= RESERVED_PTT_MAX)
62 			list_add(&p_pool->ptts[i].list_entry,
63 				 &p_pool->free_list);
64 	}
65 
66 	p_hwfn->p_ptt_pool = p_pool;
67 	spin_lock_init(&p_pool->lock);
68 
69 	return 0;
70 }
71 
qed_ptt_pool_free(struct qed_hwfn * p_hwfn)72 void qed_ptt_pool_free(struct qed_hwfn *p_hwfn)
73 {
74 	kfree(p_hwfn->p_ptt_pool);
75 	p_hwfn->p_ptt_pool = NULL;
76 }
77 
qed_ptt_acquire(struct qed_hwfn * p_hwfn)78 struct qed_ptt *qed_ptt_acquire(struct qed_hwfn *p_hwfn)
79 {
80 	return qed_ptt_acquire_context(p_hwfn, false);
81 }
82 
qed_ptt_acquire_context(struct qed_hwfn * p_hwfn,bool is_atomic)83 struct qed_ptt *qed_ptt_acquire_context(struct qed_hwfn *p_hwfn, bool is_atomic)
84 {
85 	struct qed_ptt *p_ptt;
86 	unsigned int i, count;
87 
88 	if (is_atomic)
89 		count = QED_BAR_ACQUIRE_TIMEOUT_UDELAY_CNT;
90 	else
91 		count = QED_BAR_ACQUIRE_TIMEOUT_USLEEP_CNT;
92 
93 	/* Take the free PTT from the list */
94 	for (i = 0; i < count; i++) {
95 		spin_lock_bh(&p_hwfn->p_ptt_pool->lock);
96 
97 		if (!list_empty(&p_hwfn->p_ptt_pool->free_list)) {
98 			p_ptt = list_first_entry(&p_hwfn->p_ptt_pool->free_list,
99 						 struct qed_ptt, list_entry);
100 			list_del(&p_ptt->list_entry);
101 
102 			spin_unlock_bh(&p_hwfn->p_ptt_pool->lock);
103 
104 			DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
105 				   "allocated ptt %d\n", p_ptt->idx);
106 			return p_ptt;
107 		}
108 
109 		spin_unlock_bh(&p_hwfn->p_ptt_pool->lock);
110 
111 		if (is_atomic)
112 			udelay(QED_BAR_ACQUIRE_TIMEOUT_UDELAY);
113 		else
114 			usleep_range(QED_BAR_ACQUIRE_TIMEOUT_USLEEP,
115 				     QED_BAR_ACQUIRE_TIMEOUT_USLEEP * 2);
116 	}
117 
118 	DP_NOTICE(p_hwfn, "PTT acquire timeout - failed to allocate PTT\n");
119 	return NULL;
120 }
121 
qed_ptt_release(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt)122 void qed_ptt_release(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
123 {
124 	spin_lock_bh(&p_hwfn->p_ptt_pool->lock);
125 	list_add(&p_ptt->list_entry, &p_hwfn->p_ptt_pool->free_list);
126 	spin_unlock_bh(&p_hwfn->p_ptt_pool->lock);
127 }
128 
qed_ptt_get_hw_addr(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt)129 u32 qed_ptt_get_hw_addr(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
130 {
131 	/* The HW is using DWORDS and we need to translate it to Bytes */
132 	return le32_to_cpu(p_ptt->pxp.offset) << 2;
133 }
134 
qed_ptt_config_addr(struct qed_ptt * p_ptt)135 static u32 qed_ptt_config_addr(struct qed_ptt *p_ptt)
136 {
137 	return PXP_PF_WINDOW_ADMIN_PER_PF_START +
138 	       p_ptt->idx * sizeof(struct pxp_ptt_entry);
139 }
140 
qed_ptt_get_bar_addr(struct qed_ptt * p_ptt)141 u32 qed_ptt_get_bar_addr(struct qed_ptt *p_ptt)
142 {
143 	return PXP_EXTERNAL_BAR_PF_WINDOW_START +
144 	       p_ptt->idx * PXP_EXTERNAL_BAR_PF_WINDOW_SINGLE_SIZE;
145 }
146 
qed_ptt_set_win(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,u32 new_hw_addr)147 void qed_ptt_set_win(struct qed_hwfn *p_hwfn,
148 		     struct qed_ptt *p_ptt, u32 new_hw_addr)
149 {
150 	u32 prev_hw_addr;
151 
152 	prev_hw_addr = qed_ptt_get_hw_addr(p_hwfn, p_ptt);
153 
154 	if (new_hw_addr == prev_hw_addr)
155 		return;
156 
157 	/* Update PTT entery in admin window */
158 	DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
159 		   "Updating PTT entry %d to offset 0x%x\n",
160 		   p_ptt->idx, new_hw_addr);
161 
162 	/* The HW is using DWORDS and the address is in Bytes */
163 	p_ptt->pxp.offset = cpu_to_le32(new_hw_addr >> 2);
164 
165 	REG_WR(p_hwfn,
166 	       qed_ptt_config_addr(p_ptt) +
167 	       offsetof(struct pxp_ptt_entry, offset),
168 	       le32_to_cpu(p_ptt->pxp.offset));
169 }
170 
qed_set_ptt(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,u32 hw_addr)171 static u32 qed_set_ptt(struct qed_hwfn *p_hwfn,
172 		       struct qed_ptt *p_ptt, u32 hw_addr)
173 {
174 	u32 win_hw_addr = qed_ptt_get_hw_addr(p_hwfn, p_ptt);
175 	u32 offset;
176 
177 	offset = hw_addr - win_hw_addr;
178 
179 	if (p_ptt->hwfn_id != p_hwfn->my_id)
180 		DP_NOTICE(p_hwfn,
181 			  "ptt[%d] of hwfn[%02x] is used by hwfn[%02x]!\n",
182 			  p_ptt->idx, p_ptt->hwfn_id, p_hwfn->my_id);
183 
184 	/* Verify the address is within the window */
185 	if (hw_addr < win_hw_addr ||
186 	    offset >= PXP_EXTERNAL_BAR_PF_WINDOW_SINGLE_SIZE) {
187 		qed_ptt_set_win(p_hwfn, p_ptt, hw_addr);
188 		offset = 0;
189 	}
190 
191 	return qed_ptt_get_bar_addr(p_ptt) + offset;
192 }
193 
qed_get_reserved_ptt(struct qed_hwfn * p_hwfn,enum reserved_ptts ptt_idx)194 struct qed_ptt *qed_get_reserved_ptt(struct qed_hwfn *p_hwfn,
195 				     enum reserved_ptts ptt_idx)
196 {
197 	if (ptt_idx >= RESERVED_PTT_MAX) {
198 		DP_NOTICE(p_hwfn,
199 			  "Requested PTT %d is out of range\n", ptt_idx);
200 		return NULL;
201 	}
202 
203 	return &p_hwfn->p_ptt_pool->ptts[ptt_idx];
204 }
205 
qed_wr(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,u32 hw_addr,u32 val)206 void qed_wr(struct qed_hwfn *p_hwfn,
207 	    struct qed_ptt *p_ptt,
208 	    u32 hw_addr, u32 val)
209 {
210 	u32 bar_addr = qed_set_ptt(p_hwfn, p_ptt, hw_addr);
211 
212 	REG_WR(p_hwfn, bar_addr, val);
213 	DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
214 		   "bar_addr 0x%x, hw_addr 0x%x, val 0x%x\n",
215 		   bar_addr, hw_addr, val);
216 }
217 
qed_rd(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,u32 hw_addr)218 u32 qed_rd(struct qed_hwfn *p_hwfn,
219 	   struct qed_ptt *p_ptt,
220 	   u32 hw_addr)
221 {
222 	u32 bar_addr = qed_set_ptt(p_hwfn, p_ptt, hw_addr);
223 	u32 val = REG_RD(p_hwfn, bar_addr);
224 
225 	DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
226 		   "bar_addr 0x%x, hw_addr 0x%x, val 0x%x\n",
227 		   bar_addr, hw_addr, val);
228 
229 	return val;
230 }
231 
qed_memcpy_hw(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,void * addr,u32 hw_addr,size_t n,bool to_device)232 static void qed_memcpy_hw(struct qed_hwfn *p_hwfn,
233 			  struct qed_ptt *p_ptt,
234 			  void *addr, u32 hw_addr, size_t n, bool to_device)
235 {
236 	u32 dw_count, *host_addr, hw_offset;
237 	size_t quota, done = 0;
238 	u32 __iomem *reg_addr;
239 
240 	while (done < n) {
241 		quota = min_t(size_t, n - done,
242 			      PXP_EXTERNAL_BAR_PF_WINDOW_SINGLE_SIZE);
243 
244 		if (IS_PF(p_hwfn->cdev)) {
245 			qed_ptt_set_win(p_hwfn, p_ptt, hw_addr + done);
246 			hw_offset = qed_ptt_get_bar_addr(p_ptt);
247 		} else {
248 			hw_offset = hw_addr + done;
249 		}
250 
251 		dw_count = quota / 4;
252 		host_addr = (u32 *)((u8 *)addr + done);
253 		reg_addr = (u32 __iomem *)REG_ADDR(p_hwfn, hw_offset);
254 		if (to_device)
255 			while (dw_count--)
256 				DIRECT_REG_WR(reg_addr++, *host_addr++);
257 		else
258 			while (dw_count--)
259 				*host_addr++ = DIRECT_REG_RD(reg_addr++);
260 
261 		done += quota;
262 	}
263 }
264 
qed_memcpy_from(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,void * dest,u32 hw_addr,size_t n)265 void qed_memcpy_from(struct qed_hwfn *p_hwfn,
266 		     struct qed_ptt *p_ptt, void *dest, u32 hw_addr, size_t n)
267 {
268 	DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
269 		   "hw_addr 0x%x, dest %p hw_addr 0x%x, size %lu\n",
270 		   hw_addr, dest, hw_addr, (unsigned long)n);
271 
272 	qed_memcpy_hw(p_hwfn, p_ptt, dest, hw_addr, n, false);
273 }
274 
qed_memcpy_to(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,u32 hw_addr,void * src,size_t n)275 void qed_memcpy_to(struct qed_hwfn *p_hwfn,
276 		   struct qed_ptt *p_ptt, u32 hw_addr, void *src, size_t n)
277 {
278 	DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
279 		   "hw_addr 0x%x, hw_addr 0x%x, src %p size %lu\n",
280 		   hw_addr, hw_addr, src, (unsigned long)n);
281 
282 	qed_memcpy_hw(p_hwfn, p_ptt, src, hw_addr, n, true);
283 }
284 
qed_fid_pretend(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,u16 fid)285 void qed_fid_pretend(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, u16 fid)
286 {
287 	u16 control = 0;
288 
289 	SET_FIELD(control, PXP_PRETEND_CMD_IS_CONCRETE, 1);
290 	SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_FUNCTION, 1);
291 
292 	/* Every pretend undos previous pretends, including
293 	 * previous port pretend.
294 	 */
295 	SET_FIELD(control, PXP_PRETEND_CMD_PORT, 0);
296 	SET_FIELD(control, PXP_PRETEND_CMD_USE_PORT, 0);
297 	SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_PORT, 1);
298 
299 	if (!GET_FIELD(fid, PXP_CONCRETE_FID_VFVALID))
300 		fid = GET_FIELD(fid, PXP_CONCRETE_FID_PFID);
301 
302 	p_ptt->pxp.pretend.control = cpu_to_le16(control);
303 	p_ptt->pxp.pretend.fid.concrete_fid.fid = cpu_to_le16(fid);
304 
305 	REG_WR(p_hwfn,
306 	       qed_ptt_config_addr(p_ptt) +
307 	       offsetof(struct pxp_ptt_entry, pretend),
308 	       *(u32 *)&p_ptt->pxp.pretend);
309 }
310 
qed_port_pretend(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,u8 port_id)311 void qed_port_pretend(struct qed_hwfn *p_hwfn,
312 		      struct qed_ptt *p_ptt, u8 port_id)
313 {
314 	u16 control = 0;
315 
316 	SET_FIELD(control, PXP_PRETEND_CMD_PORT, port_id);
317 	SET_FIELD(control, PXP_PRETEND_CMD_USE_PORT, 1);
318 	SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_PORT, 1);
319 
320 	p_ptt->pxp.pretend.control = cpu_to_le16(control);
321 
322 	REG_WR(p_hwfn,
323 	       qed_ptt_config_addr(p_ptt) +
324 	       offsetof(struct pxp_ptt_entry, pretend),
325 	       *(u32 *)&p_ptt->pxp.pretend);
326 }
327 
qed_port_unpretend(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt)328 void qed_port_unpretend(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
329 {
330 	u16 control = 0;
331 
332 	SET_FIELD(control, PXP_PRETEND_CMD_PORT, 0);
333 	SET_FIELD(control, PXP_PRETEND_CMD_USE_PORT, 0);
334 	SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_PORT, 1);
335 
336 	p_ptt->pxp.pretend.control = cpu_to_le16(control);
337 
338 	REG_WR(p_hwfn,
339 	       qed_ptt_config_addr(p_ptt) +
340 	       offsetof(struct pxp_ptt_entry, pretend),
341 	       *(u32 *)&p_ptt->pxp.pretend);
342 }
343 
qed_port_fid_pretend(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,u8 port_id,u16 fid)344 void qed_port_fid_pretend(struct qed_hwfn *p_hwfn,
345 			  struct qed_ptt *p_ptt, u8 port_id, u16 fid)
346 {
347 	u16 control = 0;
348 
349 	SET_FIELD(control, PXP_PRETEND_CMD_PORT, port_id);
350 	SET_FIELD(control, PXP_PRETEND_CMD_USE_PORT, 1);
351 	SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_PORT, 1);
352 	SET_FIELD(control, PXP_PRETEND_CMD_IS_CONCRETE, 1);
353 	SET_FIELD(control, PXP_PRETEND_CMD_PRETEND_FUNCTION, 1);
354 	if (!GET_FIELD(fid, PXP_CONCRETE_FID_VFVALID))
355 		fid = GET_FIELD(fid, PXP_CONCRETE_FID_PFID);
356 	p_ptt->pxp.pretend.control = cpu_to_le16(control);
357 	p_ptt->pxp.pretend.fid.concrete_fid.fid = cpu_to_le16(fid);
358 	REG_WR(p_hwfn,
359 	       qed_ptt_config_addr(p_ptt) +
360 	       offsetof(struct pxp_ptt_entry, pretend),
361 	       *(u32 *)&p_ptt->pxp.pretend);
362 }
363 
qed_vfid_to_concrete(struct qed_hwfn * p_hwfn,u8 vfid)364 u32 qed_vfid_to_concrete(struct qed_hwfn *p_hwfn, u8 vfid)
365 {
366 	u32 concrete_fid = 0;
367 
368 	SET_FIELD(concrete_fid, PXP_CONCRETE_FID_PFID, p_hwfn->rel_pf_id);
369 	SET_FIELD(concrete_fid, PXP_CONCRETE_FID_VFID, vfid);
370 	SET_FIELD(concrete_fid, PXP_CONCRETE_FID_VFVALID, 1);
371 
372 	return concrete_fid;
373 }
374 
375 /* DMAE */
376 #define QED_DMAE_FLAGS_IS_SET(params, flag) \
377 	((params) != NULL && GET_FIELD((params)->flags, QED_DMAE_PARAMS_##flag))
378 
qed_dmae_opcode(struct qed_hwfn * p_hwfn,const u8 is_src_type_grc,const u8 is_dst_type_grc,struct qed_dmae_params * p_params)379 static void qed_dmae_opcode(struct qed_hwfn *p_hwfn,
380 			    const u8 is_src_type_grc,
381 			    const u8 is_dst_type_grc,
382 			    struct qed_dmae_params *p_params)
383 {
384 	u8 src_pfid, dst_pfid, port_id;
385 	u16 opcode_b = 0;
386 	u32 opcode = 0;
387 
388 	/* Whether the source is the PCIe or the GRC.
389 	 * 0- The source is the PCIe
390 	 * 1- The source is the GRC.
391 	 */
392 	SET_FIELD(opcode, DMAE_CMD_SRC,
393 		  (is_src_type_grc ? dmae_cmd_src_grc : dmae_cmd_src_pcie));
394 	src_pfid = QED_DMAE_FLAGS_IS_SET(p_params, SRC_PF_VALID) ?
395 	    p_params->src_pfid : p_hwfn->rel_pf_id;
396 	SET_FIELD(opcode, DMAE_CMD_SRC_PF_ID, src_pfid);
397 
398 	/* The destination of the DMA can be: 0-None 1-PCIe 2-GRC 3-None */
399 	SET_FIELD(opcode, DMAE_CMD_DST,
400 		  (is_dst_type_grc ? dmae_cmd_dst_grc : dmae_cmd_dst_pcie));
401 	dst_pfid = QED_DMAE_FLAGS_IS_SET(p_params, DST_PF_VALID) ?
402 	    p_params->dst_pfid : p_hwfn->rel_pf_id;
403 	SET_FIELD(opcode, DMAE_CMD_DST_PF_ID, dst_pfid);
404 
405 
406 	/* Whether to write a completion word to the completion destination:
407 	 * 0-Do not write a completion word
408 	 * 1-Write the completion word
409 	 */
410 	SET_FIELD(opcode, DMAE_CMD_COMP_WORD_EN, 1);
411 	SET_FIELD(opcode, DMAE_CMD_SRC_ADDR_RESET, 1);
412 
413 	if (QED_DMAE_FLAGS_IS_SET(p_params, COMPLETION_DST))
414 		SET_FIELD(opcode, DMAE_CMD_COMP_FUNC, 1);
415 
416 	/* swapping mode 3 - big endian */
417 	SET_FIELD(opcode, DMAE_CMD_ENDIANITY_MODE, DMAE_CMD_ENDIANITY);
418 
419 	port_id = (QED_DMAE_FLAGS_IS_SET(p_params, PORT_VALID)) ?
420 	    p_params->port_id : p_hwfn->port_id;
421 	SET_FIELD(opcode, DMAE_CMD_PORT_ID, port_id);
422 
423 	/* reset source address in next go */
424 	SET_FIELD(opcode, DMAE_CMD_SRC_ADDR_RESET, 1);
425 
426 	/* reset dest address in next go */
427 	SET_FIELD(opcode, DMAE_CMD_DST_ADDR_RESET, 1);
428 
429 	/* SRC/DST VFID: all 1's - pf, otherwise VF id */
430 	if (QED_DMAE_FLAGS_IS_SET(p_params, SRC_VF_VALID)) {
431 		SET_FIELD(opcode, DMAE_CMD_SRC_VF_ID_VALID, 1);
432 		SET_FIELD(opcode_b, DMAE_CMD_SRC_VF_ID, p_params->src_vfid);
433 	} else {
434 		SET_FIELD(opcode_b, DMAE_CMD_SRC_VF_ID, 0xFF);
435 	}
436 	if (QED_DMAE_FLAGS_IS_SET(p_params, DST_VF_VALID)) {
437 		SET_FIELD(opcode, DMAE_CMD_DST_VF_ID_VALID, 1);
438 		SET_FIELD(opcode_b, DMAE_CMD_DST_VF_ID, p_params->dst_vfid);
439 	} else {
440 		SET_FIELD(opcode_b, DMAE_CMD_DST_VF_ID, 0xFF);
441 	}
442 
443 	p_hwfn->dmae_info.p_dmae_cmd->opcode = cpu_to_le32(opcode);
444 	p_hwfn->dmae_info.p_dmae_cmd->opcode_b = cpu_to_le16(opcode_b);
445 }
446 
qed_dmae_idx_to_go_cmd(u8 idx)447 u32 qed_dmae_idx_to_go_cmd(u8 idx)
448 {
449 	/* All the DMAE 'go' registers form an array in internal memory */
450 	return DMAE_REG_GO_C0 + (idx << 2);
451 }
452 
qed_dmae_post_command(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt)453 static int qed_dmae_post_command(struct qed_hwfn *p_hwfn,
454 				 struct qed_ptt *p_ptt)
455 {
456 	struct dmae_cmd *p_command = p_hwfn->dmae_info.p_dmae_cmd;
457 	u8 idx_cmd = p_hwfn->dmae_info.channel, i;
458 	int qed_status = 0;
459 
460 	/* verify address is not NULL */
461 	if ((((!p_command->dst_addr_lo) && (!p_command->dst_addr_hi)) ||
462 	     ((!p_command->src_addr_lo) && (!p_command->src_addr_hi)))) {
463 		DP_NOTICE(p_hwfn,
464 			  "source or destination address 0 idx_cmd=%d\n"
465 			  "opcode = [0x%08x,0x%04x] len=0x%x src=0x%x:%x dst=0x%x:%x\n",
466 			  idx_cmd,
467 			  le32_to_cpu(p_command->opcode),
468 			  le16_to_cpu(p_command->opcode_b),
469 			  le16_to_cpu(p_command->length_dw),
470 			  le32_to_cpu(p_command->src_addr_hi),
471 			  le32_to_cpu(p_command->src_addr_lo),
472 			  le32_to_cpu(p_command->dst_addr_hi),
473 			  le32_to_cpu(p_command->dst_addr_lo));
474 
475 		return -EINVAL;
476 	}
477 
478 	DP_VERBOSE(p_hwfn,
479 		   NETIF_MSG_HW,
480 		   "Posting DMAE command [idx %d]: opcode = [0x%08x,0x%04x] len=0x%x src=0x%x:%x dst=0x%x:%x\n",
481 		   idx_cmd,
482 		   le32_to_cpu(p_command->opcode),
483 		   le16_to_cpu(p_command->opcode_b),
484 		   le16_to_cpu(p_command->length_dw),
485 		   le32_to_cpu(p_command->src_addr_hi),
486 		   le32_to_cpu(p_command->src_addr_lo),
487 		   le32_to_cpu(p_command->dst_addr_hi),
488 		   le32_to_cpu(p_command->dst_addr_lo));
489 
490 	/* Copy the command to DMAE - need to do it before every call
491 	 * for source/dest address no reset.
492 	 * The first 9 DWs are the command registers, the 10 DW is the
493 	 * GO register, and the rest are result registers
494 	 * (which are read only by the client).
495 	 */
496 	for (i = 0; i < DMAE_CMD_SIZE; i++) {
497 		u32 data = (i < DMAE_CMD_SIZE_TO_FILL) ?
498 			   *(((u32 *)p_command) + i) : 0;
499 
500 		qed_wr(p_hwfn, p_ptt,
501 		       DMAE_REG_CMD_MEM +
502 		       (idx_cmd * DMAE_CMD_SIZE * sizeof(u32)) +
503 		       (i * sizeof(u32)), data);
504 	}
505 
506 	qed_wr(p_hwfn, p_ptt, qed_dmae_idx_to_go_cmd(idx_cmd), DMAE_GO_VALUE);
507 
508 	return qed_status;
509 }
510 
qed_dmae_info_alloc(struct qed_hwfn * p_hwfn)511 int qed_dmae_info_alloc(struct qed_hwfn *p_hwfn)
512 {
513 	dma_addr_t *p_addr = &p_hwfn->dmae_info.completion_word_phys_addr;
514 	struct dmae_cmd **p_cmd = &p_hwfn->dmae_info.p_dmae_cmd;
515 	u32 **p_buff = &p_hwfn->dmae_info.p_intermediate_buffer;
516 	u32 **p_comp = &p_hwfn->dmae_info.p_completion_word;
517 
518 	*p_comp = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
519 				     sizeof(u32), p_addr, GFP_KERNEL);
520 	if (!*p_comp)
521 		goto err;
522 
523 	p_addr = &p_hwfn->dmae_info.dmae_cmd_phys_addr;
524 	*p_cmd = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
525 				    sizeof(struct dmae_cmd),
526 				    p_addr, GFP_KERNEL);
527 	if (!*p_cmd)
528 		goto err;
529 
530 	p_addr = &p_hwfn->dmae_info.intermediate_buffer_phys_addr;
531 	*p_buff = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
532 				     sizeof(u32) * DMAE_MAX_RW_SIZE,
533 				     p_addr, GFP_KERNEL);
534 	if (!*p_buff)
535 		goto err;
536 
537 	p_hwfn->dmae_info.channel = p_hwfn->rel_pf_id;
538 
539 	return 0;
540 err:
541 	qed_dmae_info_free(p_hwfn);
542 	return -ENOMEM;
543 }
544 
qed_dmae_info_free(struct qed_hwfn * p_hwfn)545 void qed_dmae_info_free(struct qed_hwfn *p_hwfn)
546 {
547 	dma_addr_t p_phys;
548 
549 	/* Just make sure no one is in the middle */
550 	mutex_lock(&p_hwfn->dmae_info.mutex);
551 
552 	if (p_hwfn->dmae_info.p_completion_word) {
553 		p_phys = p_hwfn->dmae_info.completion_word_phys_addr;
554 		dma_free_coherent(&p_hwfn->cdev->pdev->dev,
555 				  sizeof(u32),
556 				  p_hwfn->dmae_info.p_completion_word, p_phys);
557 		p_hwfn->dmae_info.p_completion_word = NULL;
558 	}
559 
560 	if (p_hwfn->dmae_info.p_dmae_cmd) {
561 		p_phys = p_hwfn->dmae_info.dmae_cmd_phys_addr;
562 		dma_free_coherent(&p_hwfn->cdev->pdev->dev,
563 				  sizeof(struct dmae_cmd),
564 				  p_hwfn->dmae_info.p_dmae_cmd, p_phys);
565 		p_hwfn->dmae_info.p_dmae_cmd = NULL;
566 	}
567 
568 	if (p_hwfn->dmae_info.p_intermediate_buffer) {
569 		p_phys = p_hwfn->dmae_info.intermediate_buffer_phys_addr;
570 		dma_free_coherent(&p_hwfn->cdev->pdev->dev,
571 				  sizeof(u32) * DMAE_MAX_RW_SIZE,
572 				  p_hwfn->dmae_info.p_intermediate_buffer,
573 				  p_phys);
574 		p_hwfn->dmae_info.p_intermediate_buffer = NULL;
575 	}
576 
577 	mutex_unlock(&p_hwfn->dmae_info.mutex);
578 }
579 
qed_dmae_operation_wait(struct qed_hwfn * p_hwfn)580 static int qed_dmae_operation_wait(struct qed_hwfn *p_hwfn)
581 {
582 	u32 wait_cnt_limit = 10000, wait_cnt = 0;
583 	int qed_status = 0;
584 
585 	barrier();
586 	while (*p_hwfn->dmae_info.p_completion_word != DMAE_COMPLETION_VAL) {
587 		udelay(DMAE_MIN_WAIT_TIME);
588 		cond_resched();
589 		if (++wait_cnt > wait_cnt_limit) {
590 			DP_NOTICE(p_hwfn->cdev,
591 				  "Timed-out waiting for operation to complete. Completion word is 0x%08x expected 0x%08x.\n",
592 				  *p_hwfn->dmae_info.p_completion_word,
593 				 DMAE_COMPLETION_VAL);
594 			qed_status = -EBUSY;
595 			break;
596 		}
597 
598 		/* to sync the completion_word since we are not
599 		 * using the volatile keyword for p_completion_word
600 		 */
601 		barrier();
602 	}
603 
604 	if (qed_status == 0)
605 		*p_hwfn->dmae_info.p_completion_word = 0;
606 
607 	return qed_status;
608 }
609 
qed_dmae_execute_sub_operation(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,u64 src_addr,u64 dst_addr,u8 src_type,u8 dst_type,u32 length_dw)610 static int qed_dmae_execute_sub_operation(struct qed_hwfn *p_hwfn,
611 					  struct qed_ptt *p_ptt,
612 					  u64 src_addr,
613 					  u64 dst_addr,
614 					  u8 src_type,
615 					  u8 dst_type,
616 					  u32 length_dw)
617 {
618 	dma_addr_t phys = p_hwfn->dmae_info.intermediate_buffer_phys_addr;
619 	struct dmae_cmd *cmd = p_hwfn->dmae_info.p_dmae_cmd;
620 	int qed_status = 0;
621 
622 	switch (src_type) {
623 	case QED_DMAE_ADDRESS_GRC:
624 	case QED_DMAE_ADDRESS_HOST_PHYS:
625 		cmd->src_addr_hi = cpu_to_le32(upper_32_bits(src_addr));
626 		cmd->src_addr_lo = cpu_to_le32(lower_32_bits(src_addr));
627 		break;
628 	/* for virtual source addresses we use the intermediate buffer. */
629 	case QED_DMAE_ADDRESS_HOST_VIRT:
630 		cmd->src_addr_hi = cpu_to_le32(upper_32_bits(phys));
631 		cmd->src_addr_lo = cpu_to_le32(lower_32_bits(phys));
632 		memcpy(&p_hwfn->dmae_info.p_intermediate_buffer[0],
633 		       (void *)(uintptr_t)src_addr,
634 		       length_dw * sizeof(u32));
635 		break;
636 	default:
637 		return -EINVAL;
638 	}
639 
640 	switch (dst_type) {
641 	case QED_DMAE_ADDRESS_GRC:
642 	case QED_DMAE_ADDRESS_HOST_PHYS:
643 		cmd->dst_addr_hi = cpu_to_le32(upper_32_bits(dst_addr));
644 		cmd->dst_addr_lo = cpu_to_le32(lower_32_bits(dst_addr));
645 		break;
646 	/* for virtual source addresses we use the intermediate buffer. */
647 	case QED_DMAE_ADDRESS_HOST_VIRT:
648 		cmd->dst_addr_hi = cpu_to_le32(upper_32_bits(phys));
649 		cmd->dst_addr_lo = cpu_to_le32(lower_32_bits(phys));
650 		break;
651 	default:
652 		return -EINVAL;
653 	}
654 
655 	cmd->length_dw = cpu_to_le16((u16)length_dw);
656 
657 	qed_dmae_post_command(p_hwfn, p_ptt);
658 
659 	qed_status = qed_dmae_operation_wait(p_hwfn);
660 
661 	if (qed_status) {
662 		DP_NOTICE(p_hwfn,
663 			  "qed_dmae_host2grc: Wait Failed. source_addr 0x%llx, grc_addr 0x%llx, size_in_dwords 0x%x\n",
664 			  src_addr, dst_addr, length_dw);
665 		return qed_status;
666 	}
667 
668 	if (dst_type == QED_DMAE_ADDRESS_HOST_VIRT)
669 		memcpy((void *)(uintptr_t)(dst_addr),
670 		       &p_hwfn->dmae_info.p_intermediate_buffer[0],
671 		       length_dw * sizeof(u32));
672 
673 	return 0;
674 }
675 
qed_dmae_execute_command(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,u64 src_addr,u64 dst_addr,u8 src_type,u8 dst_type,u32 size_in_dwords,struct qed_dmae_params * p_params)676 static int qed_dmae_execute_command(struct qed_hwfn *p_hwfn,
677 				    struct qed_ptt *p_ptt,
678 				    u64 src_addr, u64 dst_addr,
679 				    u8 src_type, u8 dst_type,
680 				    u32 size_in_dwords,
681 				    struct qed_dmae_params *p_params)
682 {
683 	dma_addr_t phys = p_hwfn->dmae_info.completion_word_phys_addr;
684 	u16 length_cur = 0, i = 0, cnt_split = 0, length_mod = 0;
685 	struct dmae_cmd *cmd = p_hwfn->dmae_info.p_dmae_cmd;
686 	u64 src_addr_split = 0, dst_addr_split = 0;
687 	u16 length_limit = DMAE_MAX_RW_SIZE;
688 	int qed_status = 0;
689 	u32 offset = 0;
690 
691 	if (p_hwfn->cdev->recov_in_prog) {
692 		DP_VERBOSE(p_hwfn,
693 			   NETIF_MSG_HW,
694 			   "Recovery is in progress. Avoid DMAE transaction [{src: addr 0x%llx, type %d}, {dst: addr 0x%llx, type %d}, size %d].\n",
695 			   src_addr, src_type, dst_addr, dst_type,
696 			   size_in_dwords);
697 
698 		/* Let the flow complete w/o any error handling */
699 		return 0;
700 	}
701 
702 	qed_dmae_opcode(p_hwfn,
703 			(src_type == QED_DMAE_ADDRESS_GRC),
704 			(dst_type == QED_DMAE_ADDRESS_GRC),
705 			p_params);
706 
707 	cmd->comp_addr_lo = cpu_to_le32(lower_32_bits(phys));
708 	cmd->comp_addr_hi = cpu_to_le32(upper_32_bits(phys));
709 	cmd->comp_val = cpu_to_le32(DMAE_COMPLETION_VAL);
710 
711 	/* Check if the grc_addr is valid like < MAX_GRC_OFFSET */
712 	cnt_split = size_in_dwords / length_limit;
713 	length_mod = size_in_dwords % length_limit;
714 
715 	src_addr_split = src_addr;
716 	dst_addr_split = dst_addr;
717 
718 	for (i = 0; i <= cnt_split; i++) {
719 		offset = length_limit * i;
720 
721 		if (!QED_DMAE_FLAGS_IS_SET(p_params, RW_REPL_SRC)) {
722 			if (src_type == QED_DMAE_ADDRESS_GRC)
723 				src_addr_split = src_addr + offset;
724 			else
725 				src_addr_split = src_addr + (offset * 4);
726 		}
727 
728 		if (dst_type == QED_DMAE_ADDRESS_GRC)
729 			dst_addr_split = dst_addr + offset;
730 		else
731 			dst_addr_split = dst_addr + (offset * 4);
732 
733 		length_cur = (cnt_split == i) ? length_mod : length_limit;
734 
735 		/* might be zero on last iteration */
736 		if (!length_cur)
737 			continue;
738 
739 		qed_status = qed_dmae_execute_sub_operation(p_hwfn,
740 							    p_ptt,
741 							    src_addr_split,
742 							    dst_addr_split,
743 							    src_type,
744 							    dst_type,
745 							    length_cur);
746 		if (qed_status) {
747 			qed_hw_err_notify(p_hwfn, p_ptt, QED_HW_ERR_DMAE_FAIL,
748 					  "qed_dmae_execute_sub_operation Failed with error 0x%x. source_addr 0x%llx, destination addr 0x%llx, size_in_dwords 0x%x\n",
749 					  qed_status, src_addr,
750 					  dst_addr, length_cur);
751 			break;
752 		}
753 	}
754 
755 	return qed_status;
756 }
757 
qed_dmae_host2grc(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,u64 source_addr,u32 grc_addr,u32 size_in_dwords,struct qed_dmae_params * p_params)758 int qed_dmae_host2grc(struct qed_hwfn *p_hwfn,
759 		      struct qed_ptt *p_ptt,
760 		      u64 source_addr, u32 grc_addr, u32 size_in_dwords,
761 		      struct qed_dmae_params *p_params)
762 {
763 	u32 grc_addr_in_dw = grc_addr / sizeof(u32);
764 	int rc;
765 
766 
767 	mutex_lock(&p_hwfn->dmae_info.mutex);
768 
769 	rc = qed_dmae_execute_command(p_hwfn, p_ptt, source_addr,
770 				      grc_addr_in_dw,
771 				      QED_DMAE_ADDRESS_HOST_VIRT,
772 				      QED_DMAE_ADDRESS_GRC,
773 				      size_in_dwords, p_params);
774 
775 	mutex_unlock(&p_hwfn->dmae_info.mutex);
776 
777 	return rc;
778 }
779 
qed_dmae_grc2host(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,u32 grc_addr,dma_addr_t dest_addr,u32 size_in_dwords,struct qed_dmae_params * p_params)780 int qed_dmae_grc2host(struct qed_hwfn *p_hwfn,
781 		      struct qed_ptt *p_ptt,
782 		      u32 grc_addr,
783 		      dma_addr_t dest_addr, u32 size_in_dwords,
784 		      struct qed_dmae_params *p_params)
785 {
786 	u32 grc_addr_in_dw = grc_addr / sizeof(u32);
787 	int rc;
788 
789 
790 	mutex_lock(&p_hwfn->dmae_info.mutex);
791 
792 	rc = qed_dmae_execute_command(p_hwfn, p_ptt, grc_addr_in_dw,
793 				      dest_addr, QED_DMAE_ADDRESS_GRC,
794 				      QED_DMAE_ADDRESS_HOST_VIRT,
795 				      size_in_dwords, p_params);
796 
797 	mutex_unlock(&p_hwfn->dmae_info.mutex);
798 
799 	return rc;
800 }
801 
qed_dmae_host2host(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,dma_addr_t source_addr,dma_addr_t dest_addr,u32 size_in_dwords,struct qed_dmae_params * p_params)802 int qed_dmae_host2host(struct qed_hwfn *p_hwfn,
803 		       struct qed_ptt *p_ptt,
804 		       dma_addr_t source_addr,
805 		       dma_addr_t dest_addr,
806 		       u32 size_in_dwords, struct qed_dmae_params *p_params)
807 {
808 	int rc;
809 
810 	mutex_lock(&(p_hwfn->dmae_info.mutex));
811 
812 	rc = qed_dmae_execute_command(p_hwfn, p_ptt, source_addr,
813 				      dest_addr,
814 				      QED_DMAE_ADDRESS_HOST_PHYS,
815 				      QED_DMAE_ADDRESS_HOST_PHYS,
816 				      size_in_dwords, p_params);
817 
818 	mutex_unlock(&(p_hwfn->dmae_info.mutex));
819 
820 	return rc;
821 }
822 
qed_hw_err_notify(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,enum qed_hw_err_type err_type,const char * fmt,...)823 void qed_hw_err_notify(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
824 		       enum qed_hw_err_type err_type, const char *fmt, ...)
825 {
826 	char buf[QED_HW_ERR_MAX_STR_SIZE];
827 	va_list vl;
828 	int len;
829 
830 	if (fmt) {
831 		va_start(vl, fmt);
832 		len = vsnprintf(buf, QED_HW_ERR_MAX_STR_SIZE, fmt, vl);
833 		va_end(vl);
834 
835 		if (len > QED_HW_ERR_MAX_STR_SIZE - 1)
836 			len = QED_HW_ERR_MAX_STR_SIZE - 1;
837 
838 		DP_NOTICE(p_hwfn, "%s", buf);
839 	}
840 
841 	/* Fan failure cannot be masked by handling of another HW error */
842 	if (p_hwfn->cdev->recov_in_prog &&
843 	    err_type != QED_HW_ERR_FAN_FAIL) {
844 		DP_VERBOSE(p_hwfn,
845 			   NETIF_MSG_DRV,
846 			   "Recovery is in progress. Avoid notifying about HW error %d.\n",
847 			   err_type);
848 		return;
849 	}
850 
851 	qed_hw_error_occurred(p_hwfn, err_type);
852 
853 	if (fmt)
854 		qed_mcp_send_raw_debug_data(p_hwfn, p_ptt, buf, len);
855 }
856 
qed_dmae_sanity(struct qed_hwfn * p_hwfn,struct qed_ptt * p_ptt,const char * phase)857 int qed_dmae_sanity(struct qed_hwfn *p_hwfn,
858 		    struct qed_ptt *p_ptt, const char *phase)
859 {
860 	u32 size = PAGE_SIZE / 2, val;
861 	int rc = 0;
862 	dma_addr_t p_phys;
863 	void *p_virt;
864 	u32 *p_tmp;
865 
866 	p_virt = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
867 				    2 * size, &p_phys, GFP_KERNEL);
868 	if (!p_virt) {
869 		DP_NOTICE(p_hwfn,
870 			  "DMAE sanity [%s]: failed to allocate memory\n",
871 			  phase);
872 		return -ENOMEM;
873 	}
874 
875 	/* Fill the bottom half of the allocated memory with a known pattern */
876 	for (p_tmp = (u32 *)p_virt;
877 	     p_tmp < (u32 *)((u8 *)p_virt + size); p_tmp++) {
878 		/* Save the address itself as the value */
879 		val = (u32)(uintptr_t)p_tmp;
880 		*p_tmp = val;
881 	}
882 
883 	/* Zero the top half of the allocated memory */
884 	memset((u8 *)p_virt + size, 0, size);
885 
886 	DP_VERBOSE(p_hwfn,
887 		   QED_MSG_SP,
888 		   "DMAE sanity [%s]: src_addr={phys 0x%llx, virt %p}, dst_addr={phys 0x%llx, virt %p}, size 0x%x\n",
889 		   phase,
890 		   (u64)p_phys,
891 		   p_virt, (u64)(p_phys + size), (u8 *)p_virt + size, size);
892 
893 	rc = qed_dmae_host2host(p_hwfn, p_ptt, p_phys, p_phys + size,
894 				size / 4, NULL);
895 	if (rc) {
896 		DP_NOTICE(p_hwfn,
897 			  "DMAE sanity [%s]: qed_dmae_host2host() failed. rc = %d.\n",
898 			  phase, rc);
899 		goto out;
900 	}
901 
902 	/* Verify that the top half of the allocated memory has the pattern */
903 	for (p_tmp = (u32 *)((u8 *)p_virt + size);
904 	     p_tmp < (u32 *)((u8 *)p_virt + (2 * size)); p_tmp++) {
905 		/* The corresponding address in the bottom half */
906 		val = (u32)(uintptr_t)p_tmp - size;
907 
908 		if (*p_tmp != val) {
909 			DP_NOTICE(p_hwfn,
910 				  "DMAE sanity [%s]: addr={phys 0x%llx, virt %p}, read_val 0x%08x, expected_val 0x%08x\n",
911 				  phase,
912 				  (u64)p_phys + ((u8 *)p_tmp - (u8 *)p_virt),
913 				  p_tmp, *p_tmp, val);
914 			rc = -EINVAL;
915 			goto out;
916 		}
917 	}
918 
919 out:
920 	dma_free_coherent(&p_hwfn->cdev->pdev->dev, 2 * size, p_virt, p_phys);
921 	return rc;
922 }
923