1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2020 Facebook */
3
4 #include <linux/bits.h>
5 #include <linux/err.h>
6 #include <linux/kernel.h>
7 #include <linux/module.h>
8 #include <linux/debugfs.h>
9 #include <linux/init.h>
10 #include <linux/pci.h>
11 #include <linux/serial_8250.h>
12 #include <linux/clkdev.h>
13 #include <linux/clk-provider.h>
14 #include <linux/platform_device.h>
15 #include <linux/platform_data/i2c-xiic.h>
16 #include <linux/platform_data/i2c-ocores.h>
17 #include <linux/ptp_clock_kernel.h>
18 #include <linux/spi/spi.h>
19 #include <linux/spi/xilinx_spi.h>
20 #include <linux/spi/altera.h>
21 #include <net/devlink.h>
22 #include <linux/i2c.h>
23 #include <linux/mtd/mtd.h>
24 #include <linux/nvmem-consumer.h>
25 #include <linux/crc16.h>
26 #include <linux/dpll.h>
27
28 #define PCI_VENDOR_ID_FACEBOOK 0x1d9b
29 #define PCI_DEVICE_ID_FACEBOOK_TIMECARD 0x0400
30
31 #define PCI_VENDOR_ID_CELESTICA 0x18d4
32 #define PCI_DEVICE_ID_CELESTICA_TIMECARD 0x1008
33
34 #define PCI_VENDOR_ID_OROLIA 0x1ad7
35 #define PCI_DEVICE_ID_OROLIA_ARTCARD 0xa000
36
37 static struct class timecard_class = {
38 .name = "timecard",
39 };
40
41 struct ocp_reg {
42 u32 ctrl;
43 u32 status;
44 u32 select;
45 u32 version;
46 u32 time_ns;
47 u32 time_sec;
48 u32 __pad0[2];
49 u32 adjust_ns;
50 u32 adjust_sec;
51 u32 __pad1[2];
52 u32 offset_ns;
53 u32 offset_window_ns;
54 u32 __pad2[2];
55 u32 drift_ns;
56 u32 drift_window_ns;
57 u32 __pad3[6];
58 u32 servo_offset_p;
59 u32 servo_offset_i;
60 u32 servo_drift_p;
61 u32 servo_drift_i;
62 u32 status_offset;
63 u32 status_drift;
64 };
65
66 #define OCP_CTRL_ENABLE BIT(0)
67 #define OCP_CTRL_ADJUST_TIME BIT(1)
68 #define OCP_CTRL_ADJUST_OFFSET BIT(2)
69 #define OCP_CTRL_ADJUST_DRIFT BIT(3)
70 #define OCP_CTRL_ADJUST_SERVO BIT(8)
71 #define OCP_CTRL_READ_TIME_REQ BIT(30)
72 #define OCP_CTRL_READ_TIME_DONE BIT(31)
73
74 #define OCP_STATUS_IN_SYNC BIT(0)
75 #define OCP_STATUS_IN_HOLDOVER BIT(1)
76
77 #define OCP_SELECT_CLK_NONE 0
78 #define OCP_SELECT_CLK_REG 0xfe
79
80 struct tod_reg {
81 u32 ctrl;
82 u32 status;
83 u32 uart_polarity;
84 u32 version;
85 u32 adj_sec;
86 u32 __pad0[3];
87 u32 uart_baud;
88 u32 __pad1[3];
89 u32 utc_status;
90 u32 leap;
91 };
92
93 #define TOD_CTRL_PROTOCOL BIT(28)
94 #define TOD_CTRL_DISABLE_FMT_A BIT(17)
95 #define TOD_CTRL_DISABLE_FMT_B BIT(16)
96 #define TOD_CTRL_ENABLE BIT(0)
97 #define TOD_CTRL_GNSS_MASK GENMASK(3, 0)
98 #define TOD_CTRL_GNSS_SHIFT 24
99
100 #define TOD_STATUS_UTC_MASK GENMASK(7, 0)
101 #define TOD_STATUS_UTC_VALID BIT(8)
102 #define TOD_STATUS_LEAP_ANNOUNCE BIT(12)
103 #define TOD_STATUS_LEAP_VALID BIT(16)
104
105 struct ts_reg {
106 u32 enable;
107 u32 error;
108 u32 polarity;
109 u32 version;
110 u32 __pad0[4];
111 u32 cable_delay;
112 u32 __pad1[3];
113 u32 intr;
114 u32 intr_mask;
115 u32 event_count;
116 u32 __pad2[1];
117 u32 ts_count;
118 u32 time_ns;
119 u32 time_sec;
120 u32 data_width;
121 u32 data;
122 };
123
124 struct pps_reg {
125 u32 ctrl;
126 u32 status;
127 u32 __pad0[6];
128 u32 cable_delay;
129 };
130
131 #define PPS_STATUS_FILTER_ERR BIT(0)
132 #define PPS_STATUS_SUPERV_ERR BIT(1)
133
134 struct img_reg {
135 u32 version;
136 };
137
138 struct gpio_reg {
139 u32 gpio1;
140 u32 __pad0;
141 u32 gpio2;
142 u32 __pad1;
143 };
144
145 struct irig_master_reg {
146 u32 ctrl;
147 u32 status;
148 u32 __pad0;
149 u32 version;
150 u32 adj_sec;
151 u32 mode_ctrl;
152 };
153
154 #define IRIG_M_CTRL_ENABLE BIT(0)
155
156 struct irig_slave_reg {
157 u32 ctrl;
158 u32 status;
159 u32 __pad0;
160 u32 version;
161 u32 adj_sec;
162 u32 mode_ctrl;
163 };
164
165 #define IRIG_S_CTRL_ENABLE BIT(0)
166
167 struct dcf_master_reg {
168 u32 ctrl;
169 u32 status;
170 u32 __pad0;
171 u32 version;
172 u32 adj_sec;
173 };
174
175 #define DCF_M_CTRL_ENABLE BIT(0)
176
177 struct dcf_slave_reg {
178 u32 ctrl;
179 u32 status;
180 u32 __pad0;
181 u32 version;
182 u32 adj_sec;
183 };
184
185 #define DCF_S_CTRL_ENABLE BIT(0)
186
187 struct signal_reg {
188 u32 enable;
189 u32 status;
190 u32 polarity;
191 u32 version;
192 u32 __pad0[4];
193 u32 cable_delay;
194 u32 __pad1[3];
195 u32 intr;
196 u32 intr_mask;
197 u32 __pad2[2];
198 u32 start_ns;
199 u32 start_sec;
200 u32 pulse_ns;
201 u32 pulse_sec;
202 u32 period_ns;
203 u32 period_sec;
204 u32 repeat_count;
205 };
206
207 struct frequency_reg {
208 u32 ctrl;
209 u32 status;
210 };
211
212 struct board_config_reg {
213 u32 mro50_serial_activate;
214 };
215
216 #define FREQ_STATUS_VALID BIT(31)
217 #define FREQ_STATUS_ERROR BIT(30)
218 #define FREQ_STATUS_OVERRUN BIT(29)
219 #define FREQ_STATUS_MASK GENMASK(23, 0)
220
221 struct ptp_ocp_flash_info {
222 const char *name;
223 int pci_offset;
224 int data_size;
225 void *data;
226 };
227
228 struct ptp_ocp_firmware_header {
229 char magic[4];
230 __be16 pci_vendor_id;
231 __be16 pci_device_id;
232 __be32 image_size;
233 __be16 hw_revision;
234 __be16 crc;
235 };
236
237 #define OCP_FIRMWARE_MAGIC_HEADER "OCPC"
238
239 struct ptp_ocp_i2c_info {
240 const char *name;
241 unsigned long fixed_rate;
242 size_t data_size;
243 void *data;
244 };
245
246 struct ptp_ocp_ext_info {
247 int index;
248 irqreturn_t (*irq_fcn)(int irq, void *priv);
249 int (*enable)(void *priv, u32 req, bool enable);
250 };
251
252 struct ptp_ocp_ext_src {
253 void __iomem *mem;
254 struct ptp_ocp *bp;
255 struct ptp_ocp_ext_info *info;
256 int irq_vec;
257 };
258
259 enum ptp_ocp_sma_mode {
260 SMA_MODE_IN,
261 SMA_MODE_OUT,
262 };
263
264 static struct dpll_pin_frequency ptp_ocp_sma_freq[] = {
265 DPLL_PIN_FREQUENCY_1PPS,
266 DPLL_PIN_FREQUENCY_10MHZ,
267 DPLL_PIN_FREQUENCY_IRIG_B,
268 DPLL_PIN_FREQUENCY_DCF77,
269 };
270
271 struct ptp_ocp_sma_connector {
272 enum ptp_ocp_sma_mode mode;
273 bool fixed_fcn;
274 bool fixed_dir;
275 bool disabled;
276 u8 default_fcn;
277 struct dpll_pin *dpll_pin;
278 struct dpll_pin_properties dpll_prop;
279 };
280
281 struct ocp_attr_group {
282 u64 cap;
283 const struct attribute_group *group;
284 };
285
286 #define OCP_CAP_BASIC BIT(0)
287 #define OCP_CAP_SIGNAL BIT(1)
288 #define OCP_CAP_FREQ BIT(2)
289
290 struct ptp_ocp_signal {
291 ktime_t period;
292 ktime_t pulse;
293 ktime_t phase;
294 ktime_t start;
295 int duty;
296 bool polarity;
297 bool running;
298 };
299
300 struct ptp_ocp_serial_port {
301 int line;
302 int baud;
303 };
304
305 #define OCP_BOARD_ID_LEN 13
306 #define OCP_SERIAL_LEN 6
307 #define OCP_SMA_NUM 4
308
309 struct ptp_ocp {
310 struct pci_dev *pdev;
311 struct device dev;
312 spinlock_t lock;
313 struct ocp_reg __iomem *reg;
314 struct tod_reg __iomem *tod;
315 struct pps_reg __iomem *pps_to_ext;
316 struct pps_reg __iomem *pps_to_clk;
317 struct board_config_reg __iomem *board_config;
318 struct gpio_reg __iomem *pps_select;
319 struct gpio_reg __iomem *sma_map1;
320 struct gpio_reg __iomem *sma_map2;
321 struct irig_master_reg __iomem *irig_out;
322 struct irig_slave_reg __iomem *irig_in;
323 struct dcf_master_reg __iomem *dcf_out;
324 struct dcf_slave_reg __iomem *dcf_in;
325 struct tod_reg __iomem *nmea_out;
326 struct frequency_reg __iomem *freq_in[4];
327 struct ptp_ocp_ext_src *signal_out[4];
328 struct ptp_ocp_ext_src *pps;
329 struct ptp_ocp_ext_src *ts0;
330 struct ptp_ocp_ext_src *ts1;
331 struct ptp_ocp_ext_src *ts2;
332 struct ptp_ocp_ext_src *ts3;
333 struct ptp_ocp_ext_src *ts4;
334 struct ocp_art_gpio_reg __iomem *art_sma;
335 struct img_reg __iomem *image;
336 struct ptp_clock *ptp;
337 struct ptp_clock_info ptp_info;
338 struct platform_device *i2c_ctrl;
339 struct platform_device *spi_flash;
340 struct clk_hw *i2c_clk;
341 struct timer_list watchdog;
342 const struct attribute_group **attr_group;
343 const struct ptp_ocp_eeprom_map *eeprom_map;
344 struct dentry *debug_root;
345 bool sync;
346 time64_t gnss_lost;
347 struct delayed_work sync_work;
348 int id;
349 int n_irqs;
350 struct ptp_ocp_serial_port gnss_port;
351 struct ptp_ocp_serial_port gnss2_port;
352 struct ptp_ocp_serial_port mac_port; /* miniature atomic clock */
353 struct ptp_ocp_serial_port nmea_port;
354 bool fw_loader;
355 u8 fw_tag;
356 u16 fw_version;
357 u8 board_id[OCP_BOARD_ID_LEN];
358 u8 serial[OCP_SERIAL_LEN];
359 bool has_eeprom_data;
360 u32 pps_req_map;
361 int flash_start;
362 u32 utc_tai_offset;
363 u32 ts_window_adjust;
364 u64 fw_cap;
365 struct ptp_ocp_signal signal[4];
366 struct ptp_ocp_sma_connector sma[OCP_SMA_NUM];
367 const struct ocp_sma_op *sma_op;
368 struct dpll_device *dpll;
369 };
370
371 #define OCP_REQ_TIMESTAMP BIT(0)
372 #define OCP_REQ_PPS BIT(1)
373
374 struct ocp_resource {
375 unsigned long offset;
376 int size;
377 int irq_vec;
378 int (*setup)(struct ptp_ocp *bp, struct ocp_resource *r);
379 void *extra;
380 unsigned long bp_offset;
381 const char * const name;
382 };
383
384 static int ptp_ocp_register_mem(struct ptp_ocp *bp, struct ocp_resource *r);
385 static int ptp_ocp_register_i2c(struct ptp_ocp *bp, struct ocp_resource *r);
386 static int ptp_ocp_register_spi(struct ptp_ocp *bp, struct ocp_resource *r);
387 static int ptp_ocp_register_serial(struct ptp_ocp *bp, struct ocp_resource *r);
388 static int ptp_ocp_register_ext(struct ptp_ocp *bp, struct ocp_resource *r);
389 static int ptp_ocp_fb_board_init(struct ptp_ocp *bp, struct ocp_resource *r);
390 static irqreturn_t ptp_ocp_ts_irq(int irq, void *priv);
391 static irqreturn_t ptp_ocp_signal_irq(int irq, void *priv);
392 static int ptp_ocp_ts_enable(void *priv, u32 req, bool enable);
393 static int ptp_ocp_signal_from_perout(struct ptp_ocp *bp, int gen,
394 struct ptp_perout_request *req);
395 static int ptp_ocp_signal_enable(void *priv, u32 req, bool enable);
396 static int ptp_ocp_sma_store(struct ptp_ocp *bp, const char *buf, int sma_nr);
397
398 static int ptp_ocp_art_board_init(struct ptp_ocp *bp, struct ocp_resource *r);
399
400 static const struct ocp_attr_group fb_timecard_groups[];
401
402 static const struct ocp_attr_group art_timecard_groups[];
403
404 struct ptp_ocp_eeprom_map {
405 u16 off;
406 u16 len;
407 u32 bp_offset;
408 const void * const tag;
409 };
410
411 #define EEPROM_ENTRY(addr, member) \
412 .off = addr, \
413 .len = sizeof_field(struct ptp_ocp, member), \
414 .bp_offset = offsetof(struct ptp_ocp, member)
415
416 #define BP_MAP_ENTRY_ADDR(bp, map) ({ \
417 (void *)((uintptr_t)(bp) + (map)->bp_offset); \
418 })
419
420 static struct ptp_ocp_eeprom_map fb_eeprom_map[] = {
421 { EEPROM_ENTRY(0x43, board_id) },
422 { EEPROM_ENTRY(0x00, serial), .tag = "mac" },
423 { }
424 };
425
426 static struct ptp_ocp_eeprom_map art_eeprom_map[] = {
427 { EEPROM_ENTRY(0x200 + 0x43, board_id) },
428 { EEPROM_ENTRY(0x200 + 0x63, serial) },
429 { }
430 };
431
432 #define bp_assign_entry(bp, res, val) ({ \
433 uintptr_t addr = (uintptr_t)(bp) + (res)->bp_offset; \
434 *(typeof(val) *)addr = val; \
435 })
436
437 #define OCP_RES_LOCATION(member) \
438 .name = #member, .bp_offset = offsetof(struct ptp_ocp, member)
439
440 #define OCP_MEM_RESOURCE(member) \
441 OCP_RES_LOCATION(member), .setup = ptp_ocp_register_mem
442
443 #define OCP_SERIAL_RESOURCE(member) \
444 OCP_RES_LOCATION(member), .setup = ptp_ocp_register_serial
445
446 #define OCP_I2C_RESOURCE(member) \
447 OCP_RES_LOCATION(member), .setup = ptp_ocp_register_i2c
448
449 #define OCP_SPI_RESOURCE(member) \
450 OCP_RES_LOCATION(member), .setup = ptp_ocp_register_spi
451
452 #define OCP_EXT_RESOURCE(member) \
453 OCP_RES_LOCATION(member), .setup = ptp_ocp_register_ext
454
455 /* This is the MSI vector mapping used.
456 * 0: PPS (TS5)
457 * 1: TS0
458 * 2: TS1
459 * 3: GNSS1
460 * 4: GNSS2
461 * 5: MAC
462 * 6: TS2
463 * 7: I2C controller
464 * 8: HWICAP (notused)
465 * 9: SPI Flash
466 * 10: NMEA
467 * 11: Signal Generator 1
468 * 12: Signal Generator 2
469 * 13: Signal Generator 3
470 * 14: Signal Generator 4
471 * 15: TS3
472 * 16: TS4
473 --
474 * 8: Orolia TS1
475 * 10: Orolia TS2
476 * 11: Orolia TS0 (GNSS)
477 * 12: Orolia PPS
478 * 14: Orolia TS3
479 * 15: Orolia TS4
480 */
481
482 static struct ocp_resource ocp_fb_resource[] = {
483 {
484 OCP_MEM_RESOURCE(reg),
485 .offset = 0x01000000, .size = 0x10000,
486 },
487 {
488 OCP_EXT_RESOURCE(ts0),
489 .offset = 0x01010000, .size = 0x10000, .irq_vec = 1,
490 .extra = &(struct ptp_ocp_ext_info) {
491 .index = 0,
492 .irq_fcn = ptp_ocp_ts_irq,
493 .enable = ptp_ocp_ts_enable,
494 },
495 },
496 {
497 OCP_EXT_RESOURCE(ts1),
498 .offset = 0x01020000, .size = 0x10000, .irq_vec = 2,
499 .extra = &(struct ptp_ocp_ext_info) {
500 .index = 1,
501 .irq_fcn = ptp_ocp_ts_irq,
502 .enable = ptp_ocp_ts_enable,
503 },
504 },
505 {
506 OCP_EXT_RESOURCE(ts2),
507 .offset = 0x01060000, .size = 0x10000, .irq_vec = 6,
508 .extra = &(struct ptp_ocp_ext_info) {
509 .index = 2,
510 .irq_fcn = ptp_ocp_ts_irq,
511 .enable = ptp_ocp_ts_enable,
512 },
513 },
514 {
515 OCP_EXT_RESOURCE(ts3),
516 .offset = 0x01110000, .size = 0x10000, .irq_vec = 15,
517 .extra = &(struct ptp_ocp_ext_info) {
518 .index = 3,
519 .irq_fcn = ptp_ocp_ts_irq,
520 .enable = ptp_ocp_ts_enable,
521 },
522 },
523 {
524 OCP_EXT_RESOURCE(ts4),
525 .offset = 0x01120000, .size = 0x10000, .irq_vec = 16,
526 .extra = &(struct ptp_ocp_ext_info) {
527 .index = 4,
528 .irq_fcn = ptp_ocp_ts_irq,
529 .enable = ptp_ocp_ts_enable,
530 },
531 },
532 /* Timestamp for PHC and/or PPS generator */
533 {
534 OCP_EXT_RESOURCE(pps),
535 .offset = 0x010C0000, .size = 0x10000, .irq_vec = 0,
536 .extra = &(struct ptp_ocp_ext_info) {
537 .index = 5,
538 .irq_fcn = ptp_ocp_ts_irq,
539 .enable = ptp_ocp_ts_enable,
540 },
541 },
542 {
543 OCP_EXT_RESOURCE(signal_out[0]),
544 .offset = 0x010D0000, .size = 0x10000, .irq_vec = 11,
545 .extra = &(struct ptp_ocp_ext_info) {
546 .index = 1,
547 .irq_fcn = ptp_ocp_signal_irq,
548 .enable = ptp_ocp_signal_enable,
549 },
550 },
551 {
552 OCP_EXT_RESOURCE(signal_out[1]),
553 .offset = 0x010E0000, .size = 0x10000, .irq_vec = 12,
554 .extra = &(struct ptp_ocp_ext_info) {
555 .index = 2,
556 .irq_fcn = ptp_ocp_signal_irq,
557 .enable = ptp_ocp_signal_enable,
558 },
559 },
560 {
561 OCP_EXT_RESOURCE(signal_out[2]),
562 .offset = 0x010F0000, .size = 0x10000, .irq_vec = 13,
563 .extra = &(struct ptp_ocp_ext_info) {
564 .index = 3,
565 .irq_fcn = ptp_ocp_signal_irq,
566 .enable = ptp_ocp_signal_enable,
567 },
568 },
569 {
570 OCP_EXT_RESOURCE(signal_out[3]),
571 .offset = 0x01100000, .size = 0x10000, .irq_vec = 14,
572 .extra = &(struct ptp_ocp_ext_info) {
573 .index = 4,
574 .irq_fcn = ptp_ocp_signal_irq,
575 .enable = ptp_ocp_signal_enable,
576 },
577 },
578 {
579 OCP_MEM_RESOURCE(pps_to_ext),
580 .offset = 0x01030000, .size = 0x10000,
581 },
582 {
583 OCP_MEM_RESOURCE(pps_to_clk),
584 .offset = 0x01040000, .size = 0x10000,
585 },
586 {
587 OCP_MEM_RESOURCE(tod),
588 .offset = 0x01050000, .size = 0x10000,
589 },
590 {
591 OCP_MEM_RESOURCE(irig_in),
592 .offset = 0x01070000, .size = 0x10000,
593 },
594 {
595 OCP_MEM_RESOURCE(irig_out),
596 .offset = 0x01080000, .size = 0x10000,
597 },
598 {
599 OCP_MEM_RESOURCE(dcf_in),
600 .offset = 0x01090000, .size = 0x10000,
601 },
602 {
603 OCP_MEM_RESOURCE(dcf_out),
604 .offset = 0x010A0000, .size = 0x10000,
605 },
606 {
607 OCP_MEM_RESOURCE(nmea_out),
608 .offset = 0x010B0000, .size = 0x10000,
609 },
610 {
611 OCP_MEM_RESOURCE(image),
612 .offset = 0x00020000, .size = 0x1000,
613 },
614 {
615 OCP_MEM_RESOURCE(pps_select),
616 .offset = 0x00130000, .size = 0x1000,
617 },
618 {
619 OCP_MEM_RESOURCE(sma_map1),
620 .offset = 0x00140000, .size = 0x1000,
621 },
622 {
623 OCP_MEM_RESOURCE(sma_map2),
624 .offset = 0x00220000, .size = 0x1000,
625 },
626 {
627 OCP_I2C_RESOURCE(i2c_ctrl),
628 .offset = 0x00150000, .size = 0x10000, .irq_vec = 7,
629 .extra = &(struct ptp_ocp_i2c_info) {
630 .name = "xiic-i2c",
631 .fixed_rate = 50000000,
632 .data_size = sizeof(struct xiic_i2c_platform_data),
633 .data = &(struct xiic_i2c_platform_data) {
634 .num_devices = 2,
635 .devices = (struct i2c_board_info[]) {
636 { I2C_BOARD_INFO("24c02", 0x50) },
637 { I2C_BOARD_INFO("24mac402", 0x58),
638 .platform_data = "mac" },
639 },
640 },
641 },
642 },
643 {
644 OCP_SERIAL_RESOURCE(gnss_port),
645 .offset = 0x00160000 + 0x1000, .irq_vec = 3,
646 .extra = &(struct ptp_ocp_serial_port) {
647 .baud = 115200,
648 },
649 },
650 {
651 OCP_SERIAL_RESOURCE(gnss2_port),
652 .offset = 0x00170000 + 0x1000, .irq_vec = 4,
653 .extra = &(struct ptp_ocp_serial_port) {
654 .baud = 115200,
655 },
656 },
657 {
658 OCP_SERIAL_RESOURCE(mac_port),
659 .offset = 0x00180000 + 0x1000, .irq_vec = 5,
660 .extra = &(struct ptp_ocp_serial_port) {
661 .baud = 57600,
662 },
663 },
664 {
665 OCP_SERIAL_RESOURCE(nmea_port),
666 .offset = 0x00190000 + 0x1000, .irq_vec = 10,
667 },
668 {
669 OCP_SPI_RESOURCE(spi_flash),
670 .offset = 0x00310000, .size = 0x10000, .irq_vec = 9,
671 .extra = &(struct ptp_ocp_flash_info) {
672 .name = "xilinx_spi", .pci_offset = 0,
673 .data_size = sizeof(struct xspi_platform_data),
674 .data = &(struct xspi_platform_data) {
675 .num_chipselect = 1,
676 .bits_per_word = 8,
677 .num_devices = 1,
678 .force_irq = true,
679 .devices = &(struct spi_board_info) {
680 .modalias = "spi-nor",
681 },
682 },
683 },
684 },
685 {
686 OCP_MEM_RESOURCE(freq_in[0]),
687 .offset = 0x01200000, .size = 0x10000,
688 },
689 {
690 OCP_MEM_RESOURCE(freq_in[1]),
691 .offset = 0x01210000, .size = 0x10000,
692 },
693 {
694 OCP_MEM_RESOURCE(freq_in[2]),
695 .offset = 0x01220000, .size = 0x10000,
696 },
697 {
698 OCP_MEM_RESOURCE(freq_in[3]),
699 .offset = 0x01230000, .size = 0x10000,
700 },
701 {
702 .setup = ptp_ocp_fb_board_init,
703 },
704 { }
705 };
706
707 #define OCP_ART_CONFIG_SIZE 144
708 #define OCP_ART_TEMP_TABLE_SIZE 368
709
710 struct ocp_art_gpio_reg {
711 struct {
712 u32 gpio;
713 u32 __pad[3];
714 } map[4];
715 };
716
717 static struct ocp_resource ocp_art_resource[] = {
718 {
719 OCP_MEM_RESOURCE(reg),
720 .offset = 0x01000000, .size = 0x10000,
721 },
722 {
723 OCP_SERIAL_RESOURCE(gnss_port),
724 .offset = 0x00160000 + 0x1000, .irq_vec = 3,
725 .extra = &(struct ptp_ocp_serial_port) {
726 .baud = 115200,
727 },
728 },
729 {
730 OCP_MEM_RESOURCE(art_sma),
731 .offset = 0x003C0000, .size = 0x1000,
732 },
733 /* Timestamp associated with GNSS1 receiver PPS */
734 {
735 OCP_EXT_RESOURCE(ts0),
736 .offset = 0x360000, .size = 0x20, .irq_vec = 12,
737 .extra = &(struct ptp_ocp_ext_info) {
738 .index = 0,
739 .irq_fcn = ptp_ocp_ts_irq,
740 .enable = ptp_ocp_ts_enable,
741 },
742 },
743 {
744 OCP_EXT_RESOURCE(ts1),
745 .offset = 0x380000, .size = 0x20, .irq_vec = 8,
746 .extra = &(struct ptp_ocp_ext_info) {
747 .index = 1,
748 .irq_fcn = ptp_ocp_ts_irq,
749 .enable = ptp_ocp_ts_enable,
750 },
751 },
752 {
753 OCP_EXT_RESOURCE(ts2),
754 .offset = 0x390000, .size = 0x20, .irq_vec = 10,
755 .extra = &(struct ptp_ocp_ext_info) {
756 .index = 2,
757 .irq_fcn = ptp_ocp_ts_irq,
758 .enable = ptp_ocp_ts_enable,
759 },
760 },
761 {
762 OCP_EXT_RESOURCE(ts3),
763 .offset = 0x3A0000, .size = 0x20, .irq_vec = 14,
764 .extra = &(struct ptp_ocp_ext_info) {
765 .index = 3,
766 .irq_fcn = ptp_ocp_ts_irq,
767 .enable = ptp_ocp_ts_enable,
768 },
769 },
770 {
771 OCP_EXT_RESOURCE(ts4),
772 .offset = 0x3B0000, .size = 0x20, .irq_vec = 15,
773 .extra = &(struct ptp_ocp_ext_info) {
774 .index = 4,
775 .irq_fcn = ptp_ocp_ts_irq,
776 .enable = ptp_ocp_ts_enable,
777 },
778 },
779 /* Timestamp associated with Internal PPS of the card */
780 {
781 OCP_EXT_RESOURCE(pps),
782 .offset = 0x00330000, .size = 0x20, .irq_vec = 11,
783 .extra = &(struct ptp_ocp_ext_info) {
784 .index = 5,
785 .irq_fcn = ptp_ocp_ts_irq,
786 .enable = ptp_ocp_ts_enable,
787 },
788 },
789 {
790 OCP_SPI_RESOURCE(spi_flash),
791 .offset = 0x00310000, .size = 0x10000, .irq_vec = 9,
792 .extra = &(struct ptp_ocp_flash_info) {
793 .name = "spi_altera", .pci_offset = 0,
794 .data_size = sizeof(struct altera_spi_platform_data),
795 .data = &(struct altera_spi_platform_data) {
796 .num_chipselect = 1,
797 .num_devices = 1,
798 .devices = &(struct spi_board_info) {
799 .modalias = "spi-nor",
800 },
801 },
802 },
803 },
804 {
805 OCP_I2C_RESOURCE(i2c_ctrl),
806 .offset = 0x350000, .size = 0x100, .irq_vec = 4,
807 .extra = &(struct ptp_ocp_i2c_info) {
808 .name = "ocores-i2c",
809 .fixed_rate = 400000,
810 .data_size = sizeof(struct ocores_i2c_platform_data),
811 .data = &(struct ocores_i2c_platform_data) {
812 .clock_khz = 125000,
813 .bus_khz = 400,
814 .num_devices = 1,
815 .devices = &(struct i2c_board_info) {
816 I2C_BOARD_INFO("24c08", 0x50),
817 },
818 },
819 },
820 },
821 {
822 OCP_SERIAL_RESOURCE(mac_port),
823 .offset = 0x00190000, .irq_vec = 7,
824 .extra = &(struct ptp_ocp_serial_port) {
825 .baud = 9600,
826 },
827 },
828 {
829 OCP_MEM_RESOURCE(board_config),
830 .offset = 0x210000, .size = 0x1000,
831 },
832 {
833 .setup = ptp_ocp_art_board_init,
834 },
835 { }
836 };
837
838 static const struct pci_device_id ptp_ocp_pcidev_id[] = {
839 { PCI_DEVICE_DATA(FACEBOOK, TIMECARD, &ocp_fb_resource) },
840 { PCI_DEVICE_DATA(CELESTICA, TIMECARD, &ocp_fb_resource) },
841 { PCI_DEVICE_DATA(OROLIA, ARTCARD, &ocp_art_resource) },
842 { }
843 };
844 MODULE_DEVICE_TABLE(pci, ptp_ocp_pcidev_id);
845
846 static DEFINE_MUTEX(ptp_ocp_lock);
847 static DEFINE_IDR(ptp_ocp_idr);
848
849 struct ocp_selector {
850 const char *name;
851 int value;
852 u64 frequency;
853 };
854
855 static const struct ocp_selector ptp_ocp_clock[] = {
856 { .name = "NONE", .value = 0 },
857 { .name = "TOD", .value = 1 },
858 { .name = "IRIG", .value = 2 },
859 { .name = "PPS", .value = 3 },
860 { .name = "PTP", .value = 4 },
861 { .name = "RTC", .value = 5 },
862 { .name = "DCF", .value = 6 },
863 { .name = "REGS", .value = 0xfe },
864 { .name = "EXT", .value = 0xff },
865 { }
866 };
867
868 #define SMA_DISABLE BIT(16)
869 #define SMA_ENABLE BIT(15)
870 #define SMA_SELECT_MASK GENMASK(14, 0)
871
872 static const struct ocp_selector ptp_ocp_sma_in[] = {
873 { .name = "10Mhz", .value = 0x0000, .frequency = 10000000 },
874 { .name = "PPS1", .value = 0x0001, .frequency = 1 },
875 { .name = "PPS2", .value = 0x0002, .frequency = 1 },
876 { .name = "TS1", .value = 0x0004, .frequency = 0 },
877 { .name = "TS2", .value = 0x0008, .frequency = 0 },
878 { .name = "IRIG", .value = 0x0010, .frequency = 10000 },
879 { .name = "DCF", .value = 0x0020, .frequency = 77500 },
880 { .name = "TS3", .value = 0x0040, .frequency = 0 },
881 { .name = "TS4", .value = 0x0080, .frequency = 0 },
882 { .name = "FREQ1", .value = 0x0100, .frequency = 0 },
883 { .name = "FREQ2", .value = 0x0200, .frequency = 0 },
884 { .name = "FREQ3", .value = 0x0400, .frequency = 0 },
885 { .name = "FREQ4", .value = 0x0800, .frequency = 0 },
886 { .name = "None", .value = SMA_DISABLE, .frequency = 0 },
887 { }
888 };
889
890 static const struct ocp_selector ptp_ocp_sma_out[] = {
891 { .name = "10Mhz", .value = 0x0000, .frequency = 10000000 },
892 { .name = "PHC", .value = 0x0001, .frequency = 1 },
893 { .name = "MAC", .value = 0x0002, .frequency = 1 },
894 { .name = "GNSS1", .value = 0x0004, .frequency = 1 },
895 { .name = "GNSS2", .value = 0x0008, .frequency = 1 },
896 { .name = "IRIG", .value = 0x0010, .frequency = 10000 },
897 { .name = "DCF", .value = 0x0020, .frequency = 77000 },
898 { .name = "GEN1", .value = 0x0040 },
899 { .name = "GEN2", .value = 0x0080 },
900 { .name = "GEN3", .value = 0x0100 },
901 { .name = "GEN4", .value = 0x0200 },
902 { .name = "GND", .value = 0x2000 },
903 { .name = "VCC", .value = 0x4000 },
904 { }
905 };
906
907 static const struct ocp_selector ptp_ocp_art_sma_in[] = {
908 { .name = "PPS1", .value = 0x0001, .frequency = 1 },
909 { .name = "10Mhz", .value = 0x0008, .frequency = 1000000 },
910 { }
911 };
912
913 static const struct ocp_selector ptp_ocp_art_sma_out[] = {
914 { .name = "PHC", .value = 0x0002, .frequency = 1 },
915 { .name = "GNSS", .value = 0x0004, .frequency = 1 },
916 { .name = "10Mhz", .value = 0x0010, .frequency = 10000000 },
917 { }
918 };
919
920 struct ocp_sma_op {
921 const struct ocp_selector *tbl[2];
922 void (*init)(struct ptp_ocp *bp);
923 u32 (*get)(struct ptp_ocp *bp, int sma_nr);
924 int (*set_inputs)(struct ptp_ocp *bp, int sma_nr, u32 val);
925 int (*set_output)(struct ptp_ocp *bp, int sma_nr, u32 val);
926 };
927
928 static void
ptp_ocp_sma_init(struct ptp_ocp * bp)929 ptp_ocp_sma_init(struct ptp_ocp *bp)
930 {
931 return bp->sma_op->init(bp);
932 }
933
934 static u32
ptp_ocp_sma_get(struct ptp_ocp * bp,int sma_nr)935 ptp_ocp_sma_get(struct ptp_ocp *bp, int sma_nr)
936 {
937 return bp->sma_op->get(bp, sma_nr);
938 }
939
940 static int
ptp_ocp_sma_set_inputs(struct ptp_ocp * bp,int sma_nr,u32 val)941 ptp_ocp_sma_set_inputs(struct ptp_ocp *bp, int sma_nr, u32 val)
942 {
943 return bp->sma_op->set_inputs(bp, sma_nr, val);
944 }
945
946 static int
ptp_ocp_sma_set_output(struct ptp_ocp * bp,int sma_nr,u32 val)947 ptp_ocp_sma_set_output(struct ptp_ocp *bp, int sma_nr, u32 val)
948 {
949 return bp->sma_op->set_output(bp, sma_nr, val);
950 }
951
952 static const char *
ptp_ocp_select_name_from_val(const struct ocp_selector * tbl,int val)953 ptp_ocp_select_name_from_val(const struct ocp_selector *tbl, int val)
954 {
955 int i;
956
957 for (i = 0; tbl[i].name; i++)
958 if (tbl[i].value == val)
959 return tbl[i].name;
960 return NULL;
961 }
962
963 static int
ptp_ocp_select_val_from_name(const struct ocp_selector * tbl,const char * name)964 ptp_ocp_select_val_from_name(const struct ocp_selector *tbl, const char *name)
965 {
966 const char *select;
967 int i;
968
969 for (i = 0; tbl[i].name; i++) {
970 select = tbl[i].name;
971 if (!strncasecmp(name, select, strlen(select)))
972 return tbl[i].value;
973 }
974 return -EINVAL;
975 }
976
977 static ssize_t
ptp_ocp_select_table_show(const struct ocp_selector * tbl,char * buf)978 ptp_ocp_select_table_show(const struct ocp_selector *tbl, char *buf)
979 {
980 ssize_t count;
981 int i;
982
983 count = 0;
984 for (i = 0; tbl[i].name; i++)
985 count += sysfs_emit_at(buf, count, "%s ", tbl[i].name);
986 if (count)
987 count--;
988 count += sysfs_emit_at(buf, count, "\n");
989 return count;
990 }
991
992 static int
__ptp_ocp_gettime_locked(struct ptp_ocp * bp,struct timespec64 * ts,struct ptp_system_timestamp * sts)993 __ptp_ocp_gettime_locked(struct ptp_ocp *bp, struct timespec64 *ts,
994 struct ptp_system_timestamp *sts)
995 {
996 u32 ctrl, time_sec, time_ns;
997 int i;
998
999 ptp_read_system_prets(sts);
1000
1001 ctrl = OCP_CTRL_READ_TIME_REQ | OCP_CTRL_ENABLE;
1002 iowrite32(ctrl, &bp->reg->ctrl);
1003
1004 for (i = 0; i < 100; i++) {
1005 ctrl = ioread32(&bp->reg->ctrl);
1006 if (ctrl & OCP_CTRL_READ_TIME_DONE)
1007 break;
1008 }
1009 ptp_read_system_postts(sts);
1010
1011 if (sts && bp->ts_window_adjust) {
1012 s64 ns = timespec64_to_ns(&sts->post_ts);
1013
1014 sts->post_ts = ns_to_timespec64(ns - bp->ts_window_adjust);
1015 }
1016
1017 time_ns = ioread32(&bp->reg->time_ns);
1018 time_sec = ioread32(&bp->reg->time_sec);
1019
1020 ts->tv_sec = time_sec;
1021 ts->tv_nsec = time_ns;
1022
1023 return ctrl & OCP_CTRL_READ_TIME_DONE ? 0 : -ETIMEDOUT;
1024 }
1025
1026 static int
ptp_ocp_gettimex(struct ptp_clock_info * ptp_info,struct timespec64 * ts,struct ptp_system_timestamp * sts)1027 ptp_ocp_gettimex(struct ptp_clock_info *ptp_info, struct timespec64 *ts,
1028 struct ptp_system_timestamp *sts)
1029 {
1030 struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
1031 unsigned long flags;
1032 int err;
1033
1034 spin_lock_irqsave(&bp->lock, flags);
1035 err = __ptp_ocp_gettime_locked(bp, ts, sts);
1036 spin_unlock_irqrestore(&bp->lock, flags);
1037
1038 return err;
1039 }
1040
1041 static void
__ptp_ocp_settime_locked(struct ptp_ocp * bp,const struct timespec64 * ts)1042 __ptp_ocp_settime_locked(struct ptp_ocp *bp, const struct timespec64 *ts)
1043 {
1044 u32 ctrl, time_sec, time_ns;
1045 u32 select;
1046
1047 time_ns = ts->tv_nsec;
1048 time_sec = ts->tv_sec;
1049
1050 select = ioread32(&bp->reg->select);
1051 iowrite32(OCP_SELECT_CLK_REG, &bp->reg->select);
1052
1053 iowrite32(time_ns, &bp->reg->adjust_ns);
1054 iowrite32(time_sec, &bp->reg->adjust_sec);
1055
1056 ctrl = OCP_CTRL_ADJUST_TIME | OCP_CTRL_ENABLE;
1057 iowrite32(ctrl, &bp->reg->ctrl);
1058
1059 /* restore clock selection */
1060 iowrite32(select >> 16, &bp->reg->select);
1061 }
1062
1063 static int
ptp_ocp_settime(struct ptp_clock_info * ptp_info,const struct timespec64 * ts)1064 ptp_ocp_settime(struct ptp_clock_info *ptp_info, const struct timespec64 *ts)
1065 {
1066 struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
1067 unsigned long flags;
1068
1069 spin_lock_irqsave(&bp->lock, flags);
1070 __ptp_ocp_settime_locked(bp, ts);
1071 spin_unlock_irqrestore(&bp->lock, flags);
1072
1073 return 0;
1074 }
1075
1076 static void
__ptp_ocp_adjtime_locked(struct ptp_ocp * bp,u32 adj_val)1077 __ptp_ocp_adjtime_locked(struct ptp_ocp *bp, u32 adj_val)
1078 {
1079 u32 select, ctrl;
1080
1081 select = ioread32(&bp->reg->select);
1082 iowrite32(OCP_SELECT_CLK_REG, &bp->reg->select);
1083
1084 iowrite32(adj_val, &bp->reg->offset_ns);
1085 iowrite32(NSEC_PER_SEC, &bp->reg->offset_window_ns);
1086
1087 ctrl = OCP_CTRL_ADJUST_OFFSET | OCP_CTRL_ENABLE;
1088 iowrite32(ctrl, &bp->reg->ctrl);
1089
1090 /* restore clock selection */
1091 iowrite32(select >> 16, &bp->reg->select);
1092 }
1093
1094 static void
ptp_ocp_adjtime_coarse(struct ptp_ocp * bp,s64 delta_ns)1095 ptp_ocp_adjtime_coarse(struct ptp_ocp *bp, s64 delta_ns)
1096 {
1097 struct timespec64 ts;
1098 unsigned long flags;
1099 int err;
1100
1101 spin_lock_irqsave(&bp->lock, flags);
1102 err = __ptp_ocp_gettime_locked(bp, &ts, NULL);
1103 if (likely(!err)) {
1104 set_normalized_timespec64(&ts, ts.tv_sec,
1105 ts.tv_nsec + delta_ns);
1106 __ptp_ocp_settime_locked(bp, &ts);
1107 }
1108 spin_unlock_irqrestore(&bp->lock, flags);
1109 }
1110
1111 static int
ptp_ocp_adjtime(struct ptp_clock_info * ptp_info,s64 delta_ns)1112 ptp_ocp_adjtime(struct ptp_clock_info *ptp_info, s64 delta_ns)
1113 {
1114 struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
1115 unsigned long flags;
1116 u32 adj_ns, sign;
1117
1118 if (delta_ns > NSEC_PER_SEC || -delta_ns > NSEC_PER_SEC) {
1119 ptp_ocp_adjtime_coarse(bp, delta_ns);
1120 return 0;
1121 }
1122
1123 sign = delta_ns < 0 ? BIT(31) : 0;
1124 adj_ns = sign ? -delta_ns : delta_ns;
1125
1126 spin_lock_irqsave(&bp->lock, flags);
1127 __ptp_ocp_adjtime_locked(bp, sign | adj_ns);
1128 spin_unlock_irqrestore(&bp->lock, flags);
1129
1130 return 0;
1131 }
1132
1133 static int
ptp_ocp_null_adjfine(struct ptp_clock_info * ptp_info,long scaled_ppm)1134 ptp_ocp_null_adjfine(struct ptp_clock_info *ptp_info, long scaled_ppm)
1135 {
1136 if (scaled_ppm == 0)
1137 return 0;
1138
1139 return -EOPNOTSUPP;
1140 }
1141
1142 static s32
ptp_ocp_null_getmaxphase(struct ptp_clock_info * ptp_info)1143 ptp_ocp_null_getmaxphase(struct ptp_clock_info *ptp_info)
1144 {
1145 return 0;
1146 }
1147
1148 static int
ptp_ocp_null_adjphase(struct ptp_clock_info * ptp_info,s32 phase_ns)1149 ptp_ocp_null_adjphase(struct ptp_clock_info *ptp_info, s32 phase_ns)
1150 {
1151 return -EOPNOTSUPP;
1152 }
1153
1154 static int
ptp_ocp_enable(struct ptp_clock_info * ptp_info,struct ptp_clock_request * rq,int on)1155 ptp_ocp_enable(struct ptp_clock_info *ptp_info, struct ptp_clock_request *rq,
1156 int on)
1157 {
1158 struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
1159 struct ptp_ocp_ext_src *ext = NULL;
1160 u32 req;
1161 int err;
1162
1163 switch (rq->type) {
1164 case PTP_CLK_REQ_EXTTS:
1165 req = OCP_REQ_TIMESTAMP;
1166 switch (rq->extts.index) {
1167 case 0:
1168 ext = bp->ts0;
1169 break;
1170 case 1:
1171 ext = bp->ts1;
1172 break;
1173 case 2:
1174 ext = bp->ts2;
1175 break;
1176 case 3:
1177 ext = bp->ts3;
1178 break;
1179 case 4:
1180 ext = bp->ts4;
1181 break;
1182 case 5:
1183 ext = bp->pps;
1184 break;
1185 }
1186 break;
1187 case PTP_CLK_REQ_PPS:
1188 req = OCP_REQ_PPS;
1189 ext = bp->pps;
1190 break;
1191 case PTP_CLK_REQ_PEROUT:
1192 switch (rq->perout.index) {
1193 case 0:
1194 /* This is a request for 1PPS on an output SMA.
1195 * Allow, but assume manual configuration.
1196 */
1197 if (on && (rq->perout.period.sec != 1 ||
1198 rq->perout.period.nsec != 0))
1199 return -EINVAL;
1200 return 0;
1201 case 1:
1202 case 2:
1203 case 3:
1204 case 4:
1205 req = rq->perout.index - 1;
1206 ext = bp->signal_out[req];
1207 err = ptp_ocp_signal_from_perout(bp, req, &rq->perout);
1208 if (err)
1209 return err;
1210 break;
1211 }
1212 break;
1213 default:
1214 return -EOPNOTSUPP;
1215 }
1216
1217 err = -ENXIO;
1218 if (ext)
1219 err = ext->info->enable(ext, req, on);
1220
1221 return err;
1222 }
1223
1224 static int
ptp_ocp_verify(struct ptp_clock_info * ptp_info,unsigned pin,enum ptp_pin_function func,unsigned chan)1225 ptp_ocp_verify(struct ptp_clock_info *ptp_info, unsigned pin,
1226 enum ptp_pin_function func, unsigned chan)
1227 {
1228 struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
1229 char buf[16];
1230
1231 switch (func) {
1232 case PTP_PF_NONE:
1233 snprintf(buf, sizeof(buf), "IN: None");
1234 break;
1235 case PTP_PF_EXTTS:
1236 /* Allow timestamps, but require sysfs configuration. */
1237 return 0;
1238 case PTP_PF_PEROUT:
1239 /* channel 0 is 1PPS from PHC.
1240 * channels 1..4 are the frequency generators.
1241 */
1242 if (chan)
1243 snprintf(buf, sizeof(buf), "OUT: GEN%d", chan);
1244 else
1245 snprintf(buf, sizeof(buf), "OUT: PHC");
1246 break;
1247 default:
1248 return -EOPNOTSUPP;
1249 }
1250
1251 return ptp_ocp_sma_store(bp, buf, pin + 1);
1252 }
1253
1254 static const struct ptp_clock_info ptp_ocp_clock_info = {
1255 .owner = THIS_MODULE,
1256 .name = KBUILD_MODNAME,
1257 .max_adj = 100000000,
1258 .gettimex64 = ptp_ocp_gettimex,
1259 .settime64 = ptp_ocp_settime,
1260 .adjtime = ptp_ocp_adjtime,
1261 .adjfine = ptp_ocp_null_adjfine,
1262 .adjphase = ptp_ocp_null_adjphase,
1263 .getmaxphase = ptp_ocp_null_getmaxphase,
1264 .enable = ptp_ocp_enable,
1265 .verify = ptp_ocp_verify,
1266 .pps = true,
1267 .n_ext_ts = 6,
1268 .n_per_out = 5,
1269 };
1270
1271 static void
__ptp_ocp_clear_drift_locked(struct ptp_ocp * bp)1272 __ptp_ocp_clear_drift_locked(struct ptp_ocp *bp)
1273 {
1274 u32 ctrl, select;
1275
1276 select = ioread32(&bp->reg->select);
1277 iowrite32(OCP_SELECT_CLK_REG, &bp->reg->select);
1278
1279 iowrite32(0, &bp->reg->drift_ns);
1280
1281 ctrl = OCP_CTRL_ADJUST_DRIFT | OCP_CTRL_ENABLE;
1282 iowrite32(ctrl, &bp->reg->ctrl);
1283
1284 /* restore clock selection */
1285 iowrite32(select >> 16, &bp->reg->select);
1286 }
1287
1288 static void
ptp_ocp_utc_distribute(struct ptp_ocp * bp,u32 val)1289 ptp_ocp_utc_distribute(struct ptp_ocp *bp, u32 val)
1290 {
1291 unsigned long flags;
1292
1293 spin_lock_irqsave(&bp->lock, flags);
1294
1295 bp->utc_tai_offset = val;
1296
1297 if (bp->irig_out)
1298 iowrite32(val, &bp->irig_out->adj_sec);
1299 if (bp->dcf_out)
1300 iowrite32(val, &bp->dcf_out->adj_sec);
1301 if (bp->nmea_out)
1302 iowrite32(val, &bp->nmea_out->adj_sec);
1303
1304 spin_unlock_irqrestore(&bp->lock, flags);
1305 }
1306
1307 static void
ptp_ocp_watchdog(struct timer_list * t)1308 ptp_ocp_watchdog(struct timer_list *t)
1309 {
1310 struct ptp_ocp *bp = from_timer(bp, t, watchdog);
1311 unsigned long flags;
1312 u32 status, utc_offset;
1313
1314 status = ioread32(&bp->pps_to_clk->status);
1315
1316 if (status & PPS_STATUS_SUPERV_ERR) {
1317 iowrite32(status, &bp->pps_to_clk->status);
1318 if (!bp->gnss_lost) {
1319 spin_lock_irqsave(&bp->lock, flags);
1320 __ptp_ocp_clear_drift_locked(bp);
1321 spin_unlock_irqrestore(&bp->lock, flags);
1322 bp->gnss_lost = ktime_get_real_seconds();
1323 }
1324
1325 } else if (bp->gnss_lost) {
1326 bp->gnss_lost = 0;
1327 }
1328
1329 /* if GNSS provides correct data we can rely on
1330 * it to get leap second information
1331 */
1332 if (bp->tod) {
1333 status = ioread32(&bp->tod->utc_status);
1334 utc_offset = status & TOD_STATUS_UTC_MASK;
1335 if (status & TOD_STATUS_UTC_VALID &&
1336 utc_offset != bp->utc_tai_offset)
1337 ptp_ocp_utc_distribute(bp, utc_offset);
1338 }
1339
1340 mod_timer(&bp->watchdog, jiffies + HZ);
1341 }
1342
1343 static void
ptp_ocp_estimate_pci_timing(struct ptp_ocp * bp)1344 ptp_ocp_estimate_pci_timing(struct ptp_ocp *bp)
1345 {
1346 ktime_t start, end;
1347 ktime_t delay;
1348 u32 ctrl;
1349
1350 ctrl = ioread32(&bp->reg->ctrl);
1351 ctrl = OCP_CTRL_READ_TIME_REQ | OCP_CTRL_ENABLE;
1352
1353 iowrite32(ctrl, &bp->reg->ctrl);
1354
1355 start = ktime_get_ns();
1356
1357 ctrl = ioread32(&bp->reg->ctrl);
1358
1359 end = ktime_get_ns();
1360
1361 delay = end - start;
1362 bp->ts_window_adjust = (delay >> 5) * 3;
1363 }
1364
1365 static int
ptp_ocp_init_clock(struct ptp_ocp * bp)1366 ptp_ocp_init_clock(struct ptp_ocp *bp)
1367 {
1368 struct timespec64 ts;
1369 u32 ctrl;
1370
1371 ctrl = OCP_CTRL_ENABLE;
1372 iowrite32(ctrl, &bp->reg->ctrl);
1373
1374 /* NO DRIFT Correction */
1375 /* offset_p:i 1/8, offset_i: 1/16, drift_p: 0, drift_i: 0 */
1376 iowrite32(0x2000, &bp->reg->servo_offset_p);
1377 iowrite32(0x1000, &bp->reg->servo_offset_i);
1378 iowrite32(0, &bp->reg->servo_drift_p);
1379 iowrite32(0, &bp->reg->servo_drift_i);
1380
1381 /* latch servo values */
1382 ctrl |= OCP_CTRL_ADJUST_SERVO;
1383 iowrite32(ctrl, &bp->reg->ctrl);
1384
1385 if ((ioread32(&bp->reg->ctrl) & OCP_CTRL_ENABLE) == 0) {
1386 dev_err(&bp->pdev->dev, "clock not enabled\n");
1387 return -ENODEV;
1388 }
1389
1390 ptp_ocp_estimate_pci_timing(bp);
1391
1392 bp->sync = ioread32(&bp->reg->status) & OCP_STATUS_IN_SYNC;
1393 if (!bp->sync) {
1394 ktime_get_clocktai_ts64(&ts);
1395 ptp_ocp_settime(&bp->ptp_info, &ts);
1396 }
1397
1398 /* If there is a clock supervisor, then enable the watchdog */
1399 if (bp->pps_to_clk) {
1400 timer_setup(&bp->watchdog, ptp_ocp_watchdog, 0);
1401 mod_timer(&bp->watchdog, jiffies + HZ);
1402 }
1403
1404 return 0;
1405 }
1406
1407 static void
ptp_ocp_tod_init(struct ptp_ocp * bp)1408 ptp_ocp_tod_init(struct ptp_ocp *bp)
1409 {
1410 u32 ctrl, reg;
1411
1412 ctrl = ioread32(&bp->tod->ctrl);
1413 ctrl |= TOD_CTRL_PROTOCOL | TOD_CTRL_ENABLE;
1414 ctrl &= ~(TOD_CTRL_DISABLE_FMT_A | TOD_CTRL_DISABLE_FMT_B);
1415 iowrite32(ctrl, &bp->tod->ctrl);
1416
1417 reg = ioread32(&bp->tod->utc_status);
1418 if (reg & TOD_STATUS_UTC_VALID)
1419 ptp_ocp_utc_distribute(bp, reg & TOD_STATUS_UTC_MASK);
1420 }
1421
1422 static const char *
ptp_ocp_tod_proto_name(const int idx)1423 ptp_ocp_tod_proto_name(const int idx)
1424 {
1425 static const char * const proto_name[] = {
1426 "NMEA", "NMEA_ZDA", "NMEA_RMC", "NMEA_none",
1427 "UBX", "UBX_UTC", "UBX_LS", "UBX_none"
1428 };
1429 return proto_name[idx];
1430 }
1431
1432 static const char *
ptp_ocp_tod_gnss_name(int idx)1433 ptp_ocp_tod_gnss_name(int idx)
1434 {
1435 static const char * const gnss_name[] = {
1436 "ALL", "COMBINED", "GPS", "GLONASS", "GALILEO", "BEIDOU",
1437 "Unknown"
1438 };
1439 if (idx >= ARRAY_SIZE(gnss_name))
1440 idx = ARRAY_SIZE(gnss_name) - 1;
1441 return gnss_name[idx];
1442 }
1443
1444 struct ptp_ocp_nvmem_match_info {
1445 struct ptp_ocp *bp;
1446 const void * const tag;
1447 };
1448
1449 static int
ptp_ocp_nvmem_match(struct device * dev,const void * data)1450 ptp_ocp_nvmem_match(struct device *dev, const void *data)
1451 {
1452 const struct ptp_ocp_nvmem_match_info *info = data;
1453
1454 dev = dev->parent;
1455 if (!i2c_verify_client(dev) || info->tag != dev->platform_data)
1456 return 0;
1457
1458 while ((dev = dev->parent))
1459 if (dev->driver && !strcmp(dev->driver->name, KBUILD_MODNAME))
1460 return info->bp == dev_get_drvdata(dev);
1461 return 0;
1462 }
1463
1464 static inline struct nvmem_device *
ptp_ocp_nvmem_device_get(struct ptp_ocp * bp,const void * const tag)1465 ptp_ocp_nvmem_device_get(struct ptp_ocp *bp, const void * const tag)
1466 {
1467 struct ptp_ocp_nvmem_match_info info = { .bp = bp, .tag = tag };
1468
1469 return nvmem_device_find(&info, ptp_ocp_nvmem_match);
1470 }
1471
1472 static inline void
ptp_ocp_nvmem_device_put(struct nvmem_device ** nvmemp)1473 ptp_ocp_nvmem_device_put(struct nvmem_device **nvmemp)
1474 {
1475 if (!IS_ERR_OR_NULL(*nvmemp))
1476 nvmem_device_put(*nvmemp);
1477 *nvmemp = NULL;
1478 }
1479
1480 static void
ptp_ocp_read_eeprom(struct ptp_ocp * bp)1481 ptp_ocp_read_eeprom(struct ptp_ocp *bp)
1482 {
1483 const struct ptp_ocp_eeprom_map *map;
1484 struct nvmem_device *nvmem;
1485 const void *tag;
1486 int ret;
1487
1488 if (!bp->i2c_ctrl)
1489 return;
1490
1491 tag = NULL;
1492 nvmem = NULL;
1493
1494 for (map = bp->eeprom_map; map->len; map++) {
1495 if (map->tag != tag) {
1496 tag = map->tag;
1497 ptp_ocp_nvmem_device_put(&nvmem);
1498 }
1499 if (!nvmem) {
1500 nvmem = ptp_ocp_nvmem_device_get(bp, tag);
1501 if (IS_ERR(nvmem)) {
1502 ret = PTR_ERR(nvmem);
1503 goto fail;
1504 }
1505 }
1506 ret = nvmem_device_read(nvmem, map->off, map->len,
1507 BP_MAP_ENTRY_ADDR(bp, map));
1508 if (ret != map->len)
1509 goto fail;
1510 }
1511
1512 bp->has_eeprom_data = true;
1513
1514 out:
1515 ptp_ocp_nvmem_device_put(&nvmem);
1516 return;
1517
1518 fail:
1519 dev_err(&bp->pdev->dev, "could not read eeprom: %d\n", ret);
1520 goto out;
1521 }
1522
1523 static struct device *
ptp_ocp_find_flash(struct ptp_ocp * bp)1524 ptp_ocp_find_flash(struct ptp_ocp *bp)
1525 {
1526 struct device *dev, *last;
1527
1528 last = NULL;
1529 dev = &bp->spi_flash->dev;
1530
1531 while ((dev = device_find_any_child(dev))) {
1532 if (!strcmp("mtd", dev_bus_name(dev)))
1533 break;
1534 put_device(last);
1535 last = dev;
1536 }
1537 put_device(last);
1538
1539 return dev;
1540 }
1541
1542 static int
ptp_ocp_devlink_fw_image(struct devlink * devlink,const struct firmware * fw,const u8 ** data,size_t * size)1543 ptp_ocp_devlink_fw_image(struct devlink *devlink, const struct firmware *fw,
1544 const u8 **data, size_t *size)
1545 {
1546 struct ptp_ocp *bp = devlink_priv(devlink);
1547 const struct ptp_ocp_firmware_header *hdr;
1548 size_t offset, length;
1549 u16 crc;
1550
1551 hdr = (const struct ptp_ocp_firmware_header *)fw->data;
1552 if (memcmp(hdr->magic, OCP_FIRMWARE_MAGIC_HEADER, 4)) {
1553 devlink_flash_update_status_notify(devlink,
1554 "No firmware header found, cancel firmware upgrade",
1555 NULL, 0, 0);
1556 return -EINVAL;
1557 }
1558
1559 if (be16_to_cpu(hdr->pci_vendor_id) != bp->pdev->vendor ||
1560 be16_to_cpu(hdr->pci_device_id) != bp->pdev->device) {
1561 devlink_flash_update_status_notify(devlink,
1562 "Firmware image compatibility check failed",
1563 NULL, 0, 0);
1564 return -EINVAL;
1565 }
1566
1567 offset = sizeof(*hdr);
1568 length = be32_to_cpu(hdr->image_size);
1569 if (length != (fw->size - offset)) {
1570 devlink_flash_update_status_notify(devlink,
1571 "Firmware image size check failed",
1572 NULL, 0, 0);
1573 return -EINVAL;
1574 }
1575
1576 crc = crc16(0xffff, &fw->data[offset], length);
1577 if (be16_to_cpu(hdr->crc) != crc) {
1578 devlink_flash_update_status_notify(devlink,
1579 "Firmware image CRC check failed",
1580 NULL, 0, 0);
1581 return -EINVAL;
1582 }
1583
1584 *data = &fw->data[offset];
1585 *size = length;
1586
1587 return 0;
1588 }
1589
1590 static int
ptp_ocp_devlink_flash(struct devlink * devlink,struct device * dev,const struct firmware * fw)1591 ptp_ocp_devlink_flash(struct devlink *devlink, struct device *dev,
1592 const struct firmware *fw)
1593 {
1594 struct mtd_info *mtd = dev_get_drvdata(dev);
1595 struct ptp_ocp *bp = devlink_priv(devlink);
1596 size_t off, len, size, resid, wrote;
1597 struct erase_info erase;
1598 size_t base, blksz;
1599 const u8 *data;
1600 int err;
1601
1602 err = ptp_ocp_devlink_fw_image(devlink, fw, &data, &size);
1603 if (err)
1604 goto out;
1605
1606 off = 0;
1607 base = bp->flash_start;
1608 blksz = 4096;
1609 resid = size;
1610
1611 while (resid) {
1612 devlink_flash_update_status_notify(devlink, "Flashing",
1613 NULL, off, size);
1614
1615 len = min_t(size_t, resid, blksz);
1616 erase.addr = base + off;
1617 erase.len = blksz;
1618
1619 err = mtd_erase(mtd, &erase);
1620 if (err)
1621 goto out;
1622
1623 err = mtd_write(mtd, base + off, len, &wrote, data + off);
1624 if (err)
1625 goto out;
1626
1627 off += blksz;
1628 resid -= len;
1629 }
1630 out:
1631 return err;
1632 }
1633
1634 static int
ptp_ocp_devlink_flash_update(struct devlink * devlink,struct devlink_flash_update_params * params,struct netlink_ext_ack * extack)1635 ptp_ocp_devlink_flash_update(struct devlink *devlink,
1636 struct devlink_flash_update_params *params,
1637 struct netlink_ext_ack *extack)
1638 {
1639 struct ptp_ocp *bp = devlink_priv(devlink);
1640 struct device *dev;
1641 const char *msg;
1642 int err;
1643
1644 dev = ptp_ocp_find_flash(bp);
1645 if (!dev) {
1646 dev_err(&bp->pdev->dev, "Can't find Flash SPI adapter\n");
1647 return -ENODEV;
1648 }
1649
1650 devlink_flash_update_status_notify(devlink, "Preparing to flash",
1651 NULL, 0, 0);
1652
1653 err = ptp_ocp_devlink_flash(devlink, dev, params->fw);
1654
1655 msg = err ? "Flash error" : "Flash complete";
1656 devlink_flash_update_status_notify(devlink, msg, NULL, 0, 0);
1657
1658 put_device(dev);
1659 return err;
1660 }
1661
1662 static int
ptp_ocp_devlink_info_get(struct devlink * devlink,struct devlink_info_req * req,struct netlink_ext_ack * extack)1663 ptp_ocp_devlink_info_get(struct devlink *devlink, struct devlink_info_req *req,
1664 struct netlink_ext_ack *extack)
1665 {
1666 struct ptp_ocp *bp = devlink_priv(devlink);
1667 const char *fw_image;
1668 char buf[32];
1669 int err;
1670
1671 fw_image = bp->fw_loader ? "loader" : "fw";
1672 sprintf(buf, "%d.%d", bp->fw_tag, bp->fw_version);
1673 err = devlink_info_version_running_put(req, fw_image, buf);
1674 if (err)
1675 return err;
1676
1677 if (!bp->has_eeprom_data) {
1678 ptp_ocp_read_eeprom(bp);
1679 if (!bp->has_eeprom_data)
1680 return 0;
1681 }
1682
1683 sprintf(buf, "%pM", bp->serial);
1684 err = devlink_info_serial_number_put(req, buf);
1685 if (err)
1686 return err;
1687
1688 err = devlink_info_version_fixed_put(req,
1689 DEVLINK_INFO_VERSION_GENERIC_BOARD_ID,
1690 bp->board_id);
1691 if (err)
1692 return err;
1693
1694 return 0;
1695 }
1696
1697 static const struct devlink_ops ptp_ocp_devlink_ops = {
1698 .flash_update = ptp_ocp_devlink_flash_update,
1699 .info_get = ptp_ocp_devlink_info_get,
1700 };
1701
1702 static void __iomem *
__ptp_ocp_get_mem(struct ptp_ocp * bp,resource_size_t start,int size)1703 __ptp_ocp_get_mem(struct ptp_ocp *bp, resource_size_t start, int size)
1704 {
1705 struct resource res = DEFINE_RES_MEM_NAMED(start, size, "ptp_ocp");
1706
1707 return devm_ioremap_resource(&bp->pdev->dev, &res);
1708 }
1709
1710 static void __iomem *
ptp_ocp_get_mem(struct ptp_ocp * bp,struct ocp_resource * r)1711 ptp_ocp_get_mem(struct ptp_ocp *bp, struct ocp_resource *r)
1712 {
1713 resource_size_t start;
1714
1715 start = pci_resource_start(bp->pdev, 0) + r->offset;
1716 return __ptp_ocp_get_mem(bp, start, r->size);
1717 }
1718
1719 static int
ptp_ocp_register_spi(struct ptp_ocp * bp,struct ocp_resource * r)1720 ptp_ocp_register_spi(struct ptp_ocp *bp, struct ocp_resource *r)
1721 {
1722 struct ptp_ocp_flash_info *info;
1723 struct pci_dev *pdev = bp->pdev;
1724 struct platform_device *p;
1725 struct resource res[2];
1726 resource_size_t start;
1727 int id;
1728
1729 start = pci_resource_start(pdev, 0) + r->offset;
1730 res[0] = DEFINE_RES_MEM(start, r->size);
1731 res[1] = DEFINE_RES_IRQ(pci_irq_vector(pdev, r->irq_vec));
1732
1733 info = r->extra;
1734 id = pci_dev_id(pdev) << 1;
1735 id += info->pci_offset;
1736
1737 p = platform_device_register_resndata(&pdev->dev, info->name, id,
1738 res, ARRAY_SIZE(res), info->data,
1739 info->data_size);
1740 if (IS_ERR(p))
1741 return PTR_ERR(p);
1742
1743 bp_assign_entry(bp, r, p);
1744
1745 return 0;
1746 }
1747
1748 static struct platform_device *
ptp_ocp_i2c_bus(struct pci_dev * pdev,struct ocp_resource * r,int id)1749 ptp_ocp_i2c_bus(struct pci_dev *pdev, struct ocp_resource *r, int id)
1750 {
1751 struct ptp_ocp_i2c_info *info;
1752 struct resource res[2];
1753 resource_size_t start;
1754
1755 info = r->extra;
1756 start = pci_resource_start(pdev, 0) + r->offset;
1757 res[0] = DEFINE_RES_MEM(start, r->size);
1758 res[1] = DEFINE_RES_IRQ(pci_irq_vector(pdev, r->irq_vec));
1759
1760 return platform_device_register_resndata(&pdev->dev, info->name,
1761 id, res, ARRAY_SIZE(res),
1762 info->data, info->data_size);
1763 }
1764
1765 static int
ptp_ocp_register_i2c(struct ptp_ocp * bp,struct ocp_resource * r)1766 ptp_ocp_register_i2c(struct ptp_ocp *bp, struct ocp_resource *r)
1767 {
1768 struct pci_dev *pdev = bp->pdev;
1769 struct ptp_ocp_i2c_info *info;
1770 struct platform_device *p;
1771 struct clk_hw *clk;
1772 char buf[32];
1773 int id;
1774
1775 info = r->extra;
1776 id = pci_dev_id(bp->pdev);
1777
1778 sprintf(buf, "AXI.%d", id);
1779 clk = clk_hw_register_fixed_rate(&pdev->dev, buf, NULL, 0,
1780 info->fixed_rate);
1781 if (IS_ERR(clk))
1782 return PTR_ERR(clk);
1783 bp->i2c_clk = clk;
1784
1785 sprintf(buf, "%s.%d", info->name, id);
1786 devm_clk_hw_register_clkdev(&pdev->dev, clk, NULL, buf);
1787 p = ptp_ocp_i2c_bus(bp->pdev, r, id);
1788 if (IS_ERR(p))
1789 return PTR_ERR(p);
1790
1791 bp_assign_entry(bp, r, p);
1792
1793 return 0;
1794 }
1795
1796 /* The expectation is that this is triggered only on error. */
1797 static irqreturn_t
ptp_ocp_signal_irq(int irq,void * priv)1798 ptp_ocp_signal_irq(int irq, void *priv)
1799 {
1800 struct ptp_ocp_ext_src *ext = priv;
1801 struct signal_reg __iomem *reg = ext->mem;
1802 struct ptp_ocp *bp = ext->bp;
1803 u32 enable, status;
1804 int gen;
1805
1806 gen = ext->info->index - 1;
1807
1808 enable = ioread32(®->enable);
1809 status = ioread32(®->status);
1810
1811 /* disable generator on error */
1812 if (status || !enable) {
1813 iowrite32(0, ®->intr_mask);
1814 iowrite32(0, ®->enable);
1815 bp->signal[gen].running = false;
1816 }
1817
1818 iowrite32(0, ®->intr); /* ack interrupt */
1819
1820 return IRQ_HANDLED;
1821 }
1822
1823 static int
ptp_ocp_signal_set(struct ptp_ocp * bp,int gen,struct ptp_ocp_signal * s)1824 ptp_ocp_signal_set(struct ptp_ocp *bp, int gen, struct ptp_ocp_signal *s)
1825 {
1826 struct ptp_system_timestamp sts;
1827 struct timespec64 ts;
1828 ktime_t start_ns;
1829 int err;
1830
1831 if (!s->period)
1832 return 0;
1833
1834 if (!s->pulse)
1835 s->pulse = ktime_divns(s->period * s->duty, 100);
1836
1837 err = ptp_ocp_gettimex(&bp->ptp_info, &ts, &sts);
1838 if (err)
1839 return err;
1840
1841 start_ns = ktime_set(ts.tv_sec, ts.tv_nsec) + NSEC_PER_MSEC;
1842 if (!s->start) {
1843 /* roundup() does not work on 32-bit systems */
1844 s->start = DIV64_U64_ROUND_UP(start_ns, s->period);
1845 s->start = ktime_add(s->start, s->phase);
1846 }
1847
1848 if (s->duty < 1 || s->duty > 99)
1849 return -EINVAL;
1850
1851 if (s->pulse < 1 || s->pulse > s->period)
1852 return -EINVAL;
1853
1854 if (s->start < start_ns)
1855 return -EINVAL;
1856
1857 bp->signal[gen] = *s;
1858
1859 return 0;
1860 }
1861
1862 static int
ptp_ocp_signal_from_perout(struct ptp_ocp * bp,int gen,struct ptp_perout_request * req)1863 ptp_ocp_signal_from_perout(struct ptp_ocp *bp, int gen,
1864 struct ptp_perout_request *req)
1865 {
1866 struct ptp_ocp_signal s = { };
1867
1868 s.polarity = bp->signal[gen].polarity;
1869 s.period = ktime_set(req->period.sec, req->period.nsec);
1870 if (!s.period)
1871 return 0;
1872
1873 if (req->flags & PTP_PEROUT_DUTY_CYCLE) {
1874 s.pulse = ktime_set(req->on.sec, req->on.nsec);
1875 s.duty = ktime_divns(s.pulse * 100, s.period);
1876 }
1877
1878 if (req->flags & PTP_PEROUT_PHASE)
1879 s.phase = ktime_set(req->phase.sec, req->phase.nsec);
1880 else
1881 s.start = ktime_set(req->start.sec, req->start.nsec);
1882
1883 return ptp_ocp_signal_set(bp, gen, &s);
1884 }
1885
1886 static int
ptp_ocp_signal_enable(void * priv,u32 req,bool enable)1887 ptp_ocp_signal_enable(void *priv, u32 req, bool enable)
1888 {
1889 struct ptp_ocp_ext_src *ext = priv;
1890 struct signal_reg __iomem *reg = ext->mem;
1891 struct ptp_ocp *bp = ext->bp;
1892 struct timespec64 ts;
1893 int gen;
1894
1895 gen = ext->info->index - 1;
1896
1897 iowrite32(0, ®->intr_mask);
1898 iowrite32(0, ®->enable);
1899 bp->signal[gen].running = false;
1900 if (!enable)
1901 return 0;
1902
1903 ts = ktime_to_timespec64(bp->signal[gen].start);
1904 iowrite32(ts.tv_sec, ®->start_sec);
1905 iowrite32(ts.tv_nsec, ®->start_ns);
1906
1907 ts = ktime_to_timespec64(bp->signal[gen].period);
1908 iowrite32(ts.tv_sec, ®->period_sec);
1909 iowrite32(ts.tv_nsec, ®->period_ns);
1910
1911 ts = ktime_to_timespec64(bp->signal[gen].pulse);
1912 iowrite32(ts.tv_sec, ®->pulse_sec);
1913 iowrite32(ts.tv_nsec, ®->pulse_ns);
1914
1915 iowrite32(bp->signal[gen].polarity, ®->polarity);
1916 iowrite32(0, ®->repeat_count);
1917
1918 iowrite32(0, ®->intr); /* clear interrupt state */
1919 iowrite32(1, ®->intr_mask); /* enable interrupt */
1920 iowrite32(3, ®->enable); /* valid & enable */
1921
1922 bp->signal[gen].running = true;
1923
1924 return 0;
1925 }
1926
1927 static irqreturn_t
ptp_ocp_ts_irq(int irq,void * priv)1928 ptp_ocp_ts_irq(int irq, void *priv)
1929 {
1930 struct ptp_ocp_ext_src *ext = priv;
1931 struct ts_reg __iomem *reg = ext->mem;
1932 struct ptp_clock_event ev;
1933 u32 sec, nsec;
1934
1935 if (ext == ext->bp->pps) {
1936 if (ext->bp->pps_req_map & OCP_REQ_PPS) {
1937 ev.type = PTP_CLOCK_PPS;
1938 ptp_clock_event(ext->bp->ptp, &ev);
1939 }
1940
1941 if ((ext->bp->pps_req_map & ~OCP_REQ_PPS) == 0)
1942 goto out;
1943 }
1944
1945 /* XXX should fix API - this converts s/ns -> ts -> s/ns */
1946 sec = ioread32(®->time_sec);
1947 nsec = ioread32(®->time_ns);
1948
1949 ev.type = PTP_CLOCK_EXTTS;
1950 ev.index = ext->info->index;
1951 ev.timestamp = sec * NSEC_PER_SEC + nsec;
1952
1953 ptp_clock_event(ext->bp->ptp, &ev);
1954
1955 out:
1956 iowrite32(1, ®->intr); /* write 1 to ack */
1957
1958 return IRQ_HANDLED;
1959 }
1960
1961 static int
ptp_ocp_ts_enable(void * priv,u32 req,bool enable)1962 ptp_ocp_ts_enable(void *priv, u32 req, bool enable)
1963 {
1964 struct ptp_ocp_ext_src *ext = priv;
1965 struct ts_reg __iomem *reg = ext->mem;
1966 struct ptp_ocp *bp = ext->bp;
1967
1968 if (ext == bp->pps) {
1969 u32 old_map = bp->pps_req_map;
1970
1971 if (enable)
1972 bp->pps_req_map |= req;
1973 else
1974 bp->pps_req_map &= ~req;
1975
1976 /* if no state change, just return */
1977 if ((!!old_map ^ !!bp->pps_req_map) == 0)
1978 return 0;
1979 }
1980
1981 if (enable) {
1982 iowrite32(1, ®->enable);
1983 iowrite32(1, ®->intr_mask);
1984 iowrite32(1, ®->intr);
1985 } else {
1986 iowrite32(0, ®->intr_mask);
1987 iowrite32(0, ®->enable);
1988 }
1989
1990 return 0;
1991 }
1992
1993 static void
ptp_ocp_unregister_ext(struct ptp_ocp_ext_src * ext)1994 ptp_ocp_unregister_ext(struct ptp_ocp_ext_src *ext)
1995 {
1996 ext->info->enable(ext, ~0, false);
1997 pci_free_irq(ext->bp->pdev, ext->irq_vec, ext);
1998 kfree(ext);
1999 }
2000
2001 static int
ptp_ocp_register_ext(struct ptp_ocp * bp,struct ocp_resource * r)2002 ptp_ocp_register_ext(struct ptp_ocp *bp, struct ocp_resource *r)
2003 {
2004 struct pci_dev *pdev = bp->pdev;
2005 struct ptp_ocp_ext_src *ext;
2006 int err;
2007
2008 ext = kzalloc(sizeof(*ext), GFP_KERNEL);
2009 if (!ext)
2010 return -ENOMEM;
2011
2012 ext->mem = ptp_ocp_get_mem(bp, r);
2013 if (IS_ERR(ext->mem)) {
2014 err = PTR_ERR(ext->mem);
2015 goto out;
2016 }
2017
2018 ext->bp = bp;
2019 ext->info = r->extra;
2020 ext->irq_vec = r->irq_vec;
2021
2022 err = pci_request_irq(pdev, r->irq_vec, ext->info->irq_fcn, NULL,
2023 ext, "ocp%d.%s", bp->id, r->name);
2024 if (err) {
2025 dev_err(&pdev->dev, "Could not get irq %d\n", r->irq_vec);
2026 goto out;
2027 }
2028
2029 bp_assign_entry(bp, r, ext);
2030
2031 return 0;
2032
2033 out:
2034 kfree(ext);
2035 return err;
2036 }
2037
2038 static int
ptp_ocp_serial_line(struct ptp_ocp * bp,struct ocp_resource * r)2039 ptp_ocp_serial_line(struct ptp_ocp *bp, struct ocp_resource *r)
2040 {
2041 struct pci_dev *pdev = bp->pdev;
2042 struct uart_8250_port uart;
2043
2044 /* Setting UPF_IOREMAP and leaving port.membase unspecified lets
2045 * the serial port device claim and release the pci resource.
2046 */
2047 memset(&uart, 0, sizeof(uart));
2048 uart.port.dev = &pdev->dev;
2049 uart.port.iotype = UPIO_MEM;
2050 uart.port.regshift = 2;
2051 uart.port.mapbase = pci_resource_start(pdev, 0) + r->offset;
2052 uart.port.irq = pci_irq_vector(pdev, r->irq_vec);
2053 uart.port.uartclk = 50000000;
2054 uart.port.flags = UPF_FIXED_TYPE | UPF_IOREMAP | UPF_NO_THRE_TEST;
2055 uart.port.type = PORT_16550A;
2056
2057 return serial8250_register_8250_port(&uart);
2058 }
2059
2060 static int
ptp_ocp_register_serial(struct ptp_ocp * bp,struct ocp_resource * r)2061 ptp_ocp_register_serial(struct ptp_ocp *bp, struct ocp_resource *r)
2062 {
2063 struct ptp_ocp_serial_port *p = (struct ptp_ocp_serial_port *)r->extra;
2064 struct ptp_ocp_serial_port port = {};
2065
2066 port.line = ptp_ocp_serial_line(bp, r);
2067 if (port.line < 0)
2068 return port.line;
2069
2070 if (p)
2071 port.baud = p->baud;
2072
2073 bp_assign_entry(bp, r, port);
2074
2075 return 0;
2076 }
2077
2078 static int
ptp_ocp_register_mem(struct ptp_ocp * bp,struct ocp_resource * r)2079 ptp_ocp_register_mem(struct ptp_ocp *bp, struct ocp_resource *r)
2080 {
2081 void __iomem *mem;
2082
2083 mem = ptp_ocp_get_mem(bp, r);
2084 if (IS_ERR(mem))
2085 return PTR_ERR(mem);
2086
2087 bp_assign_entry(bp, r, mem);
2088
2089 return 0;
2090 }
2091
2092 static void
ptp_ocp_nmea_out_init(struct ptp_ocp * bp)2093 ptp_ocp_nmea_out_init(struct ptp_ocp *bp)
2094 {
2095 if (!bp->nmea_out)
2096 return;
2097
2098 iowrite32(0, &bp->nmea_out->ctrl); /* disable */
2099 iowrite32(7, &bp->nmea_out->uart_baud); /* 115200 */
2100 iowrite32(1, &bp->nmea_out->ctrl); /* enable */
2101 }
2102
2103 static void
_ptp_ocp_signal_init(struct ptp_ocp_signal * s,struct signal_reg __iomem * reg)2104 _ptp_ocp_signal_init(struct ptp_ocp_signal *s, struct signal_reg __iomem *reg)
2105 {
2106 u32 val;
2107
2108 iowrite32(0, ®->enable); /* disable */
2109
2110 val = ioread32(®->polarity);
2111 s->polarity = val ? true : false;
2112 s->duty = 50;
2113 }
2114
2115 static void
ptp_ocp_signal_init(struct ptp_ocp * bp)2116 ptp_ocp_signal_init(struct ptp_ocp *bp)
2117 {
2118 int i;
2119
2120 for (i = 0; i < 4; i++)
2121 if (bp->signal_out[i])
2122 _ptp_ocp_signal_init(&bp->signal[i],
2123 bp->signal_out[i]->mem);
2124 }
2125
2126 static void
ptp_ocp_attr_group_del(struct ptp_ocp * bp)2127 ptp_ocp_attr_group_del(struct ptp_ocp *bp)
2128 {
2129 sysfs_remove_groups(&bp->dev.kobj, bp->attr_group);
2130 kfree(bp->attr_group);
2131 }
2132
2133 static int
ptp_ocp_attr_group_add(struct ptp_ocp * bp,const struct ocp_attr_group * attr_tbl)2134 ptp_ocp_attr_group_add(struct ptp_ocp *bp,
2135 const struct ocp_attr_group *attr_tbl)
2136 {
2137 int count, i;
2138 int err;
2139
2140 count = 0;
2141 for (i = 0; attr_tbl[i].cap; i++)
2142 if (attr_tbl[i].cap & bp->fw_cap)
2143 count++;
2144
2145 bp->attr_group = kcalloc(count + 1, sizeof(struct attribute_group *),
2146 GFP_KERNEL);
2147 if (!bp->attr_group)
2148 return -ENOMEM;
2149
2150 count = 0;
2151 for (i = 0; attr_tbl[i].cap; i++)
2152 if (attr_tbl[i].cap & bp->fw_cap)
2153 bp->attr_group[count++] = attr_tbl[i].group;
2154
2155 err = sysfs_create_groups(&bp->dev.kobj, bp->attr_group);
2156 if (err)
2157 bp->attr_group[0] = NULL;
2158
2159 return err;
2160 }
2161
2162 static void
ptp_ocp_enable_fpga(u32 __iomem * reg,u32 bit,bool enable)2163 ptp_ocp_enable_fpga(u32 __iomem *reg, u32 bit, bool enable)
2164 {
2165 u32 ctrl;
2166 bool on;
2167
2168 ctrl = ioread32(reg);
2169 on = ctrl & bit;
2170 if (on ^ enable) {
2171 ctrl &= ~bit;
2172 ctrl |= enable ? bit : 0;
2173 iowrite32(ctrl, reg);
2174 }
2175 }
2176
2177 static void
ptp_ocp_irig_out(struct ptp_ocp * bp,bool enable)2178 ptp_ocp_irig_out(struct ptp_ocp *bp, bool enable)
2179 {
2180 return ptp_ocp_enable_fpga(&bp->irig_out->ctrl,
2181 IRIG_M_CTRL_ENABLE, enable);
2182 }
2183
2184 static void
ptp_ocp_irig_in(struct ptp_ocp * bp,bool enable)2185 ptp_ocp_irig_in(struct ptp_ocp *bp, bool enable)
2186 {
2187 return ptp_ocp_enable_fpga(&bp->irig_in->ctrl,
2188 IRIG_S_CTRL_ENABLE, enable);
2189 }
2190
2191 static void
ptp_ocp_dcf_out(struct ptp_ocp * bp,bool enable)2192 ptp_ocp_dcf_out(struct ptp_ocp *bp, bool enable)
2193 {
2194 return ptp_ocp_enable_fpga(&bp->dcf_out->ctrl,
2195 DCF_M_CTRL_ENABLE, enable);
2196 }
2197
2198 static void
ptp_ocp_dcf_in(struct ptp_ocp * bp,bool enable)2199 ptp_ocp_dcf_in(struct ptp_ocp *bp, bool enable)
2200 {
2201 return ptp_ocp_enable_fpga(&bp->dcf_in->ctrl,
2202 DCF_S_CTRL_ENABLE, enable);
2203 }
2204
2205 static void
__handle_signal_outputs(struct ptp_ocp * bp,u32 val)2206 __handle_signal_outputs(struct ptp_ocp *bp, u32 val)
2207 {
2208 ptp_ocp_irig_out(bp, val & 0x00100010);
2209 ptp_ocp_dcf_out(bp, val & 0x00200020);
2210 }
2211
2212 static void
__handle_signal_inputs(struct ptp_ocp * bp,u32 val)2213 __handle_signal_inputs(struct ptp_ocp *bp, u32 val)
2214 {
2215 ptp_ocp_irig_in(bp, val & 0x00100010);
2216 ptp_ocp_dcf_in(bp, val & 0x00200020);
2217 }
2218
2219 static u32
ptp_ocp_sma_fb_get(struct ptp_ocp * bp,int sma_nr)2220 ptp_ocp_sma_fb_get(struct ptp_ocp *bp, int sma_nr)
2221 {
2222 u32 __iomem *gpio;
2223 u32 shift;
2224
2225 if (bp->sma[sma_nr - 1].fixed_fcn)
2226 return (sma_nr - 1) & 1;
2227
2228 if (bp->sma[sma_nr - 1].mode == SMA_MODE_IN)
2229 gpio = sma_nr > 2 ? &bp->sma_map2->gpio1 : &bp->sma_map1->gpio1;
2230 else
2231 gpio = sma_nr > 2 ? &bp->sma_map1->gpio2 : &bp->sma_map2->gpio2;
2232 shift = sma_nr & 1 ? 0 : 16;
2233
2234 return (ioread32(gpio) >> shift) & 0xffff;
2235 }
2236
2237 static int
ptp_ocp_sma_fb_set_output(struct ptp_ocp * bp,int sma_nr,u32 val)2238 ptp_ocp_sma_fb_set_output(struct ptp_ocp *bp, int sma_nr, u32 val)
2239 {
2240 u32 reg, mask, shift;
2241 unsigned long flags;
2242 u32 __iomem *gpio;
2243
2244 gpio = sma_nr > 2 ? &bp->sma_map1->gpio2 : &bp->sma_map2->gpio2;
2245 shift = sma_nr & 1 ? 0 : 16;
2246
2247 mask = 0xffff << (16 - shift);
2248
2249 spin_lock_irqsave(&bp->lock, flags);
2250
2251 reg = ioread32(gpio);
2252 reg = (reg & mask) | (val << shift);
2253
2254 __handle_signal_outputs(bp, reg);
2255
2256 iowrite32(reg, gpio);
2257
2258 spin_unlock_irqrestore(&bp->lock, flags);
2259
2260 return 0;
2261 }
2262
2263 static int
ptp_ocp_sma_fb_set_inputs(struct ptp_ocp * bp,int sma_nr,u32 val)2264 ptp_ocp_sma_fb_set_inputs(struct ptp_ocp *bp, int sma_nr, u32 val)
2265 {
2266 u32 reg, mask, shift;
2267 unsigned long flags;
2268 u32 __iomem *gpio;
2269
2270 gpio = sma_nr > 2 ? &bp->sma_map2->gpio1 : &bp->sma_map1->gpio1;
2271 shift = sma_nr & 1 ? 0 : 16;
2272
2273 mask = 0xffff << (16 - shift);
2274
2275 spin_lock_irqsave(&bp->lock, flags);
2276
2277 reg = ioread32(gpio);
2278 reg = (reg & mask) | (val << shift);
2279
2280 __handle_signal_inputs(bp, reg);
2281
2282 iowrite32(reg, gpio);
2283
2284 spin_unlock_irqrestore(&bp->lock, flags);
2285
2286 return 0;
2287 }
2288
2289 static void
ptp_ocp_sma_fb_init(struct ptp_ocp * bp)2290 ptp_ocp_sma_fb_init(struct ptp_ocp *bp)
2291 {
2292 struct dpll_pin_properties prop = {
2293 .board_label = NULL,
2294 .type = DPLL_PIN_TYPE_EXT,
2295 .capabilities = DPLL_PIN_CAPABILITIES_DIRECTION_CAN_CHANGE,
2296 .freq_supported_num = ARRAY_SIZE(ptp_ocp_sma_freq),
2297 .freq_supported = ptp_ocp_sma_freq,
2298
2299 };
2300 u32 reg;
2301 int i;
2302
2303 /* defaults */
2304 for (i = 0; i < OCP_SMA_NUM; i++) {
2305 bp->sma[i].default_fcn = i & 1;
2306 bp->sma[i].dpll_prop = prop;
2307 bp->sma[i].dpll_prop.board_label =
2308 bp->ptp_info.pin_config[i].name;
2309 }
2310 bp->sma[0].mode = SMA_MODE_IN;
2311 bp->sma[1].mode = SMA_MODE_IN;
2312 bp->sma[2].mode = SMA_MODE_OUT;
2313 bp->sma[3].mode = SMA_MODE_OUT;
2314 /* If no SMA1 map, the pin functions and directions are fixed. */
2315 if (!bp->sma_map1) {
2316 for (i = 0; i < OCP_SMA_NUM; i++) {
2317 bp->sma[i].fixed_fcn = true;
2318 bp->sma[i].fixed_dir = true;
2319 bp->sma[1].dpll_prop.capabilities &=
2320 ~DPLL_PIN_CAPABILITIES_DIRECTION_CAN_CHANGE;
2321 }
2322 return;
2323 }
2324
2325 /* If SMA2 GPIO output map is all 1, it is not present.
2326 * This indicates the firmware has fixed direction SMA pins.
2327 */
2328 reg = ioread32(&bp->sma_map2->gpio2);
2329 if (reg == 0xffffffff) {
2330 for (i = 0; i < OCP_SMA_NUM; i++)
2331 bp->sma[i].fixed_dir = true;
2332 } else {
2333 reg = ioread32(&bp->sma_map1->gpio1);
2334 bp->sma[0].mode = reg & BIT(15) ? SMA_MODE_IN : SMA_MODE_OUT;
2335 bp->sma[1].mode = reg & BIT(31) ? SMA_MODE_IN : SMA_MODE_OUT;
2336
2337 reg = ioread32(&bp->sma_map1->gpio2);
2338 bp->sma[2].mode = reg & BIT(15) ? SMA_MODE_OUT : SMA_MODE_IN;
2339 bp->sma[3].mode = reg & BIT(31) ? SMA_MODE_OUT : SMA_MODE_IN;
2340 }
2341 }
2342
2343 static const struct ocp_sma_op ocp_fb_sma_op = {
2344 .tbl = { ptp_ocp_sma_in, ptp_ocp_sma_out },
2345 .init = ptp_ocp_sma_fb_init,
2346 .get = ptp_ocp_sma_fb_get,
2347 .set_inputs = ptp_ocp_sma_fb_set_inputs,
2348 .set_output = ptp_ocp_sma_fb_set_output,
2349 };
2350
2351 static int
ptp_ocp_set_pins(struct ptp_ocp * bp)2352 ptp_ocp_set_pins(struct ptp_ocp *bp)
2353 {
2354 struct ptp_pin_desc *config;
2355 int i;
2356
2357 config = kcalloc(4, sizeof(*config), GFP_KERNEL);
2358 if (!config)
2359 return -ENOMEM;
2360
2361 for (i = 0; i < 4; i++) {
2362 sprintf(config[i].name, "sma%d", i + 1);
2363 config[i].index = i;
2364 }
2365
2366 bp->ptp_info.n_pins = 4;
2367 bp->ptp_info.pin_config = config;
2368
2369 return 0;
2370 }
2371
2372 static void
ptp_ocp_fb_set_version(struct ptp_ocp * bp)2373 ptp_ocp_fb_set_version(struct ptp_ocp *bp)
2374 {
2375 u64 cap = OCP_CAP_BASIC;
2376 u32 version;
2377
2378 version = ioread32(&bp->image->version);
2379
2380 /* if lower 16 bits are empty, this is the fw loader. */
2381 if ((version & 0xffff) == 0) {
2382 version = version >> 16;
2383 bp->fw_loader = true;
2384 }
2385
2386 bp->fw_tag = version >> 15;
2387 bp->fw_version = version & 0x7fff;
2388
2389 if (bp->fw_tag) {
2390 /* FPGA firmware */
2391 if (version >= 5)
2392 cap |= OCP_CAP_SIGNAL | OCP_CAP_FREQ;
2393 } else {
2394 /* SOM firmware */
2395 if (version >= 19)
2396 cap |= OCP_CAP_SIGNAL;
2397 if (version >= 20)
2398 cap |= OCP_CAP_FREQ;
2399 }
2400
2401 bp->fw_cap = cap;
2402 }
2403
2404 /* FB specific board initializers; last "resource" registered. */
2405 static int
ptp_ocp_fb_board_init(struct ptp_ocp * bp,struct ocp_resource * r)2406 ptp_ocp_fb_board_init(struct ptp_ocp *bp, struct ocp_resource *r)
2407 {
2408 int err;
2409
2410 bp->flash_start = 1024 * 4096;
2411 bp->eeprom_map = fb_eeprom_map;
2412 bp->fw_version = ioread32(&bp->image->version);
2413 bp->sma_op = &ocp_fb_sma_op;
2414
2415 ptp_ocp_fb_set_version(bp);
2416
2417 ptp_ocp_tod_init(bp);
2418 ptp_ocp_nmea_out_init(bp);
2419 ptp_ocp_signal_init(bp);
2420
2421 err = ptp_ocp_attr_group_add(bp, fb_timecard_groups);
2422 if (err)
2423 return err;
2424
2425 err = ptp_ocp_set_pins(bp);
2426 if (err)
2427 return err;
2428 ptp_ocp_sma_init(bp);
2429
2430 return ptp_ocp_init_clock(bp);
2431 }
2432
2433 static bool
ptp_ocp_allow_irq(struct ptp_ocp * bp,struct ocp_resource * r)2434 ptp_ocp_allow_irq(struct ptp_ocp *bp, struct ocp_resource *r)
2435 {
2436 bool allow = !r->irq_vec || r->irq_vec < bp->n_irqs;
2437
2438 if (!allow)
2439 dev_err(&bp->pdev->dev, "irq %d out of range, skipping %s\n",
2440 r->irq_vec, r->name);
2441 return allow;
2442 }
2443
2444 static int
ptp_ocp_register_resources(struct ptp_ocp * bp,kernel_ulong_t driver_data)2445 ptp_ocp_register_resources(struct ptp_ocp *bp, kernel_ulong_t driver_data)
2446 {
2447 struct ocp_resource *r, *table;
2448 int err = 0;
2449
2450 table = (struct ocp_resource *)driver_data;
2451 for (r = table; r->setup; r++) {
2452 if (!ptp_ocp_allow_irq(bp, r))
2453 continue;
2454 err = r->setup(bp, r);
2455 if (err) {
2456 dev_err(&bp->pdev->dev,
2457 "Could not register %s: err %d\n",
2458 r->name, err);
2459 break;
2460 }
2461 }
2462 return err;
2463 }
2464
2465 static void
ptp_ocp_art_sma_init(struct ptp_ocp * bp)2466 ptp_ocp_art_sma_init(struct ptp_ocp *bp)
2467 {
2468 struct dpll_pin_properties prop = {
2469 .board_label = NULL,
2470 .type = DPLL_PIN_TYPE_EXT,
2471 .capabilities = 0,
2472 .freq_supported_num = ARRAY_SIZE(ptp_ocp_sma_freq),
2473 .freq_supported = ptp_ocp_sma_freq,
2474
2475 };
2476 u32 reg;
2477 int i;
2478
2479 /* defaults */
2480 bp->sma[0].mode = SMA_MODE_IN;
2481 bp->sma[1].mode = SMA_MODE_IN;
2482 bp->sma[2].mode = SMA_MODE_OUT;
2483 bp->sma[3].mode = SMA_MODE_OUT;
2484
2485 bp->sma[0].default_fcn = 0x08; /* IN: 10Mhz */
2486 bp->sma[1].default_fcn = 0x01; /* IN: PPS1 */
2487 bp->sma[2].default_fcn = 0x10; /* OUT: 10Mhz */
2488 bp->sma[3].default_fcn = 0x02; /* OUT: PHC */
2489
2490 for (i = 0; i < OCP_SMA_NUM; i++) {
2491 /* If no SMA map, the pin functions and directions are fixed. */
2492 bp->sma[i].dpll_prop = prop;
2493 bp->sma[i].dpll_prop.board_label =
2494 bp->ptp_info.pin_config[i].name;
2495 if (!bp->art_sma) {
2496 bp->sma[i].fixed_fcn = true;
2497 bp->sma[i].fixed_dir = true;
2498 continue;
2499 }
2500 reg = ioread32(&bp->art_sma->map[i].gpio);
2501
2502 switch (reg & 0xff) {
2503 case 0:
2504 bp->sma[i].fixed_fcn = true;
2505 bp->sma[i].fixed_dir = true;
2506 break;
2507 case 1:
2508 case 8:
2509 bp->sma[i].mode = SMA_MODE_IN;
2510 bp->sma[i].dpll_prop.capabilities =
2511 DPLL_PIN_CAPABILITIES_DIRECTION_CAN_CHANGE;
2512 break;
2513 default:
2514 bp->sma[i].mode = SMA_MODE_OUT;
2515 bp->sma[i].dpll_prop.capabilities =
2516 DPLL_PIN_CAPABILITIES_DIRECTION_CAN_CHANGE;
2517 break;
2518 }
2519 }
2520 }
2521
2522 static u32
ptp_ocp_art_sma_get(struct ptp_ocp * bp,int sma_nr)2523 ptp_ocp_art_sma_get(struct ptp_ocp *bp, int sma_nr)
2524 {
2525 if (bp->sma[sma_nr - 1].fixed_fcn)
2526 return bp->sma[sma_nr - 1].default_fcn;
2527
2528 return ioread32(&bp->art_sma->map[sma_nr - 1].gpio) & 0xff;
2529 }
2530
2531 /* note: store 0 is considered invalid. */
2532 static int
ptp_ocp_art_sma_set(struct ptp_ocp * bp,int sma_nr,u32 val)2533 ptp_ocp_art_sma_set(struct ptp_ocp *bp, int sma_nr, u32 val)
2534 {
2535 unsigned long flags;
2536 u32 __iomem *gpio;
2537 int err = 0;
2538 u32 reg;
2539
2540 val &= SMA_SELECT_MASK;
2541 if (hweight32(val) > 1)
2542 return -EINVAL;
2543
2544 gpio = &bp->art_sma->map[sma_nr - 1].gpio;
2545
2546 spin_lock_irqsave(&bp->lock, flags);
2547 reg = ioread32(gpio);
2548 if (((reg >> 16) & val) == 0) {
2549 err = -EOPNOTSUPP;
2550 } else {
2551 reg = (reg & 0xff00) | (val & 0xff);
2552 iowrite32(reg, gpio);
2553 }
2554 spin_unlock_irqrestore(&bp->lock, flags);
2555
2556 return err;
2557 }
2558
2559 static const struct ocp_sma_op ocp_art_sma_op = {
2560 .tbl = { ptp_ocp_art_sma_in, ptp_ocp_art_sma_out },
2561 .init = ptp_ocp_art_sma_init,
2562 .get = ptp_ocp_art_sma_get,
2563 .set_inputs = ptp_ocp_art_sma_set,
2564 .set_output = ptp_ocp_art_sma_set,
2565 };
2566
2567 /* ART specific board initializers; last "resource" registered. */
2568 static int
ptp_ocp_art_board_init(struct ptp_ocp * bp,struct ocp_resource * r)2569 ptp_ocp_art_board_init(struct ptp_ocp *bp, struct ocp_resource *r)
2570 {
2571 int err;
2572
2573 bp->flash_start = 0x1000000;
2574 bp->eeprom_map = art_eeprom_map;
2575 bp->fw_cap = OCP_CAP_BASIC;
2576 bp->fw_version = ioread32(&bp->reg->version);
2577 bp->fw_tag = 2;
2578 bp->sma_op = &ocp_art_sma_op;
2579
2580 /* Enable MAC serial port during initialisation */
2581 iowrite32(1, &bp->board_config->mro50_serial_activate);
2582
2583 err = ptp_ocp_set_pins(bp);
2584 if (err)
2585 return err;
2586 ptp_ocp_sma_init(bp);
2587
2588 err = ptp_ocp_attr_group_add(bp, art_timecard_groups);
2589 if (err)
2590 return err;
2591
2592 return ptp_ocp_init_clock(bp);
2593 }
2594
2595 static ssize_t
ptp_ocp_show_output(const struct ocp_selector * tbl,u32 val,char * buf,int def_val)2596 ptp_ocp_show_output(const struct ocp_selector *tbl, u32 val, char *buf,
2597 int def_val)
2598 {
2599 const char *name;
2600 ssize_t count;
2601
2602 count = sysfs_emit(buf, "OUT: ");
2603 name = ptp_ocp_select_name_from_val(tbl, val);
2604 if (!name)
2605 name = ptp_ocp_select_name_from_val(tbl, def_val);
2606 count += sysfs_emit_at(buf, count, "%s\n", name);
2607 return count;
2608 }
2609
2610 static ssize_t
ptp_ocp_show_inputs(const struct ocp_selector * tbl,u32 val,char * buf,int def_val)2611 ptp_ocp_show_inputs(const struct ocp_selector *tbl, u32 val, char *buf,
2612 int def_val)
2613 {
2614 const char *name;
2615 ssize_t count;
2616 int i;
2617
2618 count = sysfs_emit(buf, "IN: ");
2619 for (i = 0; tbl[i].name; i++) {
2620 if (val & tbl[i].value) {
2621 name = tbl[i].name;
2622 count += sysfs_emit_at(buf, count, "%s ", name);
2623 }
2624 }
2625 if (!val && def_val >= 0) {
2626 name = ptp_ocp_select_name_from_val(tbl, def_val);
2627 count += sysfs_emit_at(buf, count, "%s ", name);
2628 }
2629 if (count)
2630 count--;
2631 count += sysfs_emit_at(buf, count, "\n");
2632 return count;
2633 }
2634
2635 static int
sma_parse_inputs(const struct ocp_selector * const tbl[],const char * buf,enum ptp_ocp_sma_mode * mode)2636 sma_parse_inputs(const struct ocp_selector * const tbl[], const char *buf,
2637 enum ptp_ocp_sma_mode *mode)
2638 {
2639 int idx, count, dir;
2640 char **argv;
2641 int ret;
2642
2643 argv = argv_split(GFP_KERNEL, buf, &count);
2644 if (!argv)
2645 return -ENOMEM;
2646
2647 ret = -EINVAL;
2648 if (!count)
2649 goto out;
2650
2651 idx = 0;
2652 dir = *mode == SMA_MODE_IN ? 0 : 1;
2653 if (!strcasecmp("IN:", argv[0])) {
2654 dir = 0;
2655 idx++;
2656 }
2657 if (!strcasecmp("OUT:", argv[0])) {
2658 dir = 1;
2659 idx++;
2660 }
2661 *mode = dir == 0 ? SMA_MODE_IN : SMA_MODE_OUT;
2662
2663 ret = 0;
2664 for (; idx < count; idx++)
2665 ret |= ptp_ocp_select_val_from_name(tbl[dir], argv[idx]);
2666 if (ret < 0)
2667 ret = -EINVAL;
2668
2669 out:
2670 argv_free(argv);
2671 return ret;
2672 }
2673
2674 static ssize_t
ptp_ocp_sma_show(struct ptp_ocp * bp,int sma_nr,char * buf,int default_in_val,int default_out_val)2675 ptp_ocp_sma_show(struct ptp_ocp *bp, int sma_nr, char *buf,
2676 int default_in_val, int default_out_val)
2677 {
2678 struct ptp_ocp_sma_connector *sma = &bp->sma[sma_nr - 1];
2679 const struct ocp_selector * const *tbl;
2680 u32 val;
2681
2682 tbl = bp->sma_op->tbl;
2683 val = ptp_ocp_sma_get(bp, sma_nr) & SMA_SELECT_MASK;
2684
2685 if (sma->mode == SMA_MODE_IN) {
2686 if (sma->disabled)
2687 val = SMA_DISABLE;
2688 return ptp_ocp_show_inputs(tbl[0], val, buf, default_in_val);
2689 }
2690
2691 return ptp_ocp_show_output(tbl[1], val, buf, default_out_val);
2692 }
2693
2694 static ssize_t
sma1_show(struct device * dev,struct device_attribute * attr,char * buf)2695 sma1_show(struct device *dev, struct device_attribute *attr, char *buf)
2696 {
2697 struct ptp_ocp *bp = dev_get_drvdata(dev);
2698
2699 return ptp_ocp_sma_show(bp, 1, buf, 0, 1);
2700 }
2701
2702 static ssize_t
sma2_show(struct device * dev,struct device_attribute * attr,char * buf)2703 sma2_show(struct device *dev, struct device_attribute *attr, char *buf)
2704 {
2705 struct ptp_ocp *bp = dev_get_drvdata(dev);
2706
2707 return ptp_ocp_sma_show(bp, 2, buf, -1, 1);
2708 }
2709
2710 static ssize_t
sma3_show(struct device * dev,struct device_attribute * attr,char * buf)2711 sma3_show(struct device *dev, struct device_attribute *attr, char *buf)
2712 {
2713 struct ptp_ocp *bp = dev_get_drvdata(dev);
2714
2715 return ptp_ocp_sma_show(bp, 3, buf, -1, 0);
2716 }
2717
2718 static ssize_t
sma4_show(struct device * dev,struct device_attribute * attr,char * buf)2719 sma4_show(struct device *dev, struct device_attribute *attr, char *buf)
2720 {
2721 struct ptp_ocp *bp = dev_get_drvdata(dev);
2722
2723 return ptp_ocp_sma_show(bp, 4, buf, -1, 1);
2724 }
2725
2726 static int
ptp_ocp_sma_store_val(struct ptp_ocp * bp,int val,enum ptp_ocp_sma_mode mode,int sma_nr)2727 ptp_ocp_sma_store_val(struct ptp_ocp *bp, int val, enum ptp_ocp_sma_mode mode, int sma_nr)
2728 {
2729 struct ptp_ocp_sma_connector *sma = &bp->sma[sma_nr - 1];
2730
2731 if (sma->fixed_dir && (mode != sma->mode || val & SMA_DISABLE))
2732 return -EOPNOTSUPP;
2733
2734 if (sma->fixed_fcn) {
2735 if (val != sma->default_fcn)
2736 return -EOPNOTSUPP;
2737 return 0;
2738 }
2739
2740 sma->disabled = !!(val & SMA_DISABLE);
2741
2742 if (mode != sma->mode) {
2743 if (mode == SMA_MODE_IN)
2744 ptp_ocp_sma_set_output(bp, sma_nr, 0);
2745 else
2746 ptp_ocp_sma_set_inputs(bp, sma_nr, 0);
2747 sma->mode = mode;
2748 }
2749
2750 if (!sma->fixed_dir)
2751 val |= SMA_ENABLE; /* add enable bit */
2752
2753 if (sma->disabled)
2754 val = 0;
2755
2756 if (mode == SMA_MODE_IN)
2757 val = ptp_ocp_sma_set_inputs(bp, sma_nr, val);
2758 else
2759 val = ptp_ocp_sma_set_output(bp, sma_nr, val);
2760
2761 return val;
2762 }
2763
2764 static int
ptp_ocp_sma_store(struct ptp_ocp * bp,const char * buf,int sma_nr)2765 ptp_ocp_sma_store(struct ptp_ocp *bp, const char *buf, int sma_nr)
2766 {
2767 struct ptp_ocp_sma_connector *sma = &bp->sma[sma_nr - 1];
2768 enum ptp_ocp_sma_mode mode;
2769 int val;
2770
2771 mode = sma->mode;
2772 val = sma_parse_inputs(bp->sma_op->tbl, buf, &mode);
2773 if (val < 0)
2774 return val;
2775 return ptp_ocp_sma_store_val(bp, val, mode, sma_nr);
2776 }
2777
2778 static ssize_t
sma1_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2779 sma1_store(struct device *dev, struct device_attribute *attr,
2780 const char *buf, size_t count)
2781 {
2782 struct ptp_ocp *bp = dev_get_drvdata(dev);
2783 int err;
2784
2785 err = ptp_ocp_sma_store(bp, buf, 1);
2786 return err ? err : count;
2787 }
2788
2789 static ssize_t
sma2_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2790 sma2_store(struct device *dev, struct device_attribute *attr,
2791 const char *buf, size_t count)
2792 {
2793 struct ptp_ocp *bp = dev_get_drvdata(dev);
2794 int err;
2795
2796 err = ptp_ocp_sma_store(bp, buf, 2);
2797 return err ? err : count;
2798 }
2799
2800 static ssize_t
sma3_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2801 sma3_store(struct device *dev, struct device_attribute *attr,
2802 const char *buf, size_t count)
2803 {
2804 struct ptp_ocp *bp = dev_get_drvdata(dev);
2805 int err;
2806
2807 err = ptp_ocp_sma_store(bp, buf, 3);
2808 return err ? err : count;
2809 }
2810
2811 static ssize_t
sma4_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2812 sma4_store(struct device *dev, struct device_attribute *attr,
2813 const char *buf, size_t count)
2814 {
2815 struct ptp_ocp *bp = dev_get_drvdata(dev);
2816 int err;
2817
2818 err = ptp_ocp_sma_store(bp, buf, 4);
2819 return err ? err : count;
2820 }
2821 static DEVICE_ATTR_RW(sma1);
2822 static DEVICE_ATTR_RW(sma2);
2823 static DEVICE_ATTR_RW(sma3);
2824 static DEVICE_ATTR_RW(sma4);
2825
2826 static ssize_t
available_sma_inputs_show(struct device * dev,struct device_attribute * attr,char * buf)2827 available_sma_inputs_show(struct device *dev,
2828 struct device_attribute *attr, char *buf)
2829 {
2830 struct ptp_ocp *bp = dev_get_drvdata(dev);
2831
2832 return ptp_ocp_select_table_show(bp->sma_op->tbl[0], buf);
2833 }
2834 static DEVICE_ATTR_RO(available_sma_inputs);
2835
2836 static ssize_t
available_sma_outputs_show(struct device * dev,struct device_attribute * attr,char * buf)2837 available_sma_outputs_show(struct device *dev,
2838 struct device_attribute *attr, char *buf)
2839 {
2840 struct ptp_ocp *bp = dev_get_drvdata(dev);
2841
2842 return ptp_ocp_select_table_show(bp->sma_op->tbl[1], buf);
2843 }
2844 static DEVICE_ATTR_RO(available_sma_outputs);
2845
2846 #define EXT_ATTR_RO(_group, _name, _val) \
2847 struct dev_ext_attribute dev_attr_##_group##_val##_##_name = \
2848 { __ATTR_RO(_name), (void *)_val }
2849 #define EXT_ATTR_RW(_group, _name, _val) \
2850 struct dev_ext_attribute dev_attr_##_group##_val##_##_name = \
2851 { __ATTR_RW(_name), (void *)_val }
2852 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
2853
2854 /* period [duty [phase [polarity]]] */
2855 static ssize_t
signal_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2856 signal_store(struct device *dev, struct device_attribute *attr,
2857 const char *buf, size_t count)
2858 {
2859 struct dev_ext_attribute *ea = to_ext_attr(attr);
2860 struct ptp_ocp *bp = dev_get_drvdata(dev);
2861 struct ptp_ocp_signal s = { };
2862 int gen = (uintptr_t)ea->var;
2863 int argc, err;
2864 char **argv;
2865
2866 argv = argv_split(GFP_KERNEL, buf, &argc);
2867 if (!argv)
2868 return -ENOMEM;
2869
2870 err = -EINVAL;
2871 s.duty = bp->signal[gen].duty;
2872 s.phase = bp->signal[gen].phase;
2873 s.period = bp->signal[gen].period;
2874 s.polarity = bp->signal[gen].polarity;
2875
2876 switch (argc) {
2877 case 4:
2878 argc--;
2879 err = kstrtobool(argv[argc], &s.polarity);
2880 if (err)
2881 goto out;
2882 fallthrough;
2883 case 3:
2884 argc--;
2885 err = kstrtou64(argv[argc], 0, &s.phase);
2886 if (err)
2887 goto out;
2888 fallthrough;
2889 case 2:
2890 argc--;
2891 err = kstrtoint(argv[argc], 0, &s.duty);
2892 if (err)
2893 goto out;
2894 fallthrough;
2895 case 1:
2896 argc--;
2897 err = kstrtou64(argv[argc], 0, &s.period);
2898 if (err)
2899 goto out;
2900 break;
2901 default:
2902 goto out;
2903 }
2904
2905 err = ptp_ocp_signal_set(bp, gen, &s);
2906 if (err)
2907 goto out;
2908
2909 err = ptp_ocp_signal_enable(bp->signal_out[gen], gen, s.period != 0);
2910
2911 out:
2912 argv_free(argv);
2913 return err ? err : count;
2914 }
2915
2916 static ssize_t
signal_show(struct device * dev,struct device_attribute * attr,char * buf)2917 signal_show(struct device *dev, struct device_attribute *attr, char *buf)
2918 {
2919 struct dev_ext_attribute *ea = to_ext_attr(attr);
2920 struct ptp_ocp *bp = dev_get_drvdata(dev);
2921 struct ptp_ocp_signal *signal;
2922 struct timespec64 ts;
2923 ssize_t count;
2924 int i;
2925
2926 i = (uintptr_t)ea->var;
2927 signal = &bp->signal[i];
2928
2929 count = sysfs_emit(buf, "%llu %d %llu %d", signal->period,
2930 signal->duty, signal->phase, signal->polarity);
2931
2932 ts = ktime_to_timespec64(signal->start);
2933 count += sysfs_emit_at(buf, count, " %ptT TAI\n", &ts);
2934
2935 return count;
2936 }
2937 static EXT_ATTR_RW(signal, signal, 0);
2938 static EXT_ATTR_RW(signal, signal, 1);
2939 static EXT_ATTR_RW(signal, signal, 2);
2940 static EXT_ATTR_RW(signal, signal, 3);
2941
2942 static ssize_t
duty_show(struct device * dev,struct device_attribute * attr,char * buf)2943 duty_show(struct device *dev, struct device_attribute *attr, char *buf)
2944 {
2945 struct dev_ext_attribute *ea = to_ext_attr(attr);
2946 struct ptp_ocp *bp = dev_get_drvdata(dev);
2947 int i = (uintptr_t)ea->var;
2948
2949 return sysfs_emit(buf, "%d\n", bp->signal[i].duty);
2950 }
2951 static EXT_ATTR_RO(signal, duty, 0);
2952 static EXT_ATTR_RO(signal, duty, 1);
2953 static EXT_ATTR_RO(signal, duty, 2);
2954 static EXT_ATTR_RO(signal, duty, 3);
2955
2956 static ssize_t
period_show(struct device * dev,struct device_attribute * attr,char * buf)2957 period_show(struct device *dev, struct device_attribute *attr, char *buf)
2958 {
2959 struct dev_ext_attribute *ea = to_ext_attr(attr);
2960 struct ptp_ocp *bp = dev_get_drvdata(dev);
2961 int i = (uintptr_t)ea->var;
2962
2963 return sysfs_emit(buf, "%llu\n", bp->signal[i].period);
2964 }
2965 static EXT_ATTR_RO(signal, period, 0);
2966 static EXT_ATTR_RO(signal, period, 1);
2967 static EXT_ATTR_RO(signal, period, 2);
2968 static EXT_ATTR_RO(signal, period, 3);
2969
2970 static ssize_t
phase_show(struct device * dev,struct device_attribute * attr,char * buf)2971 phase_show(struct device *dev, struct device_attribute *attr, char *buf)
2972 {
2973 struct dev_ext_attribute *ea = to_ext_attr(attr);
2974 struct ptp_ocp *bp = dev_get_drvdata(dev);
2975 int i = (uintptr_t)ea->var;
2976
2977 return sysfs_emit(buf, "%llu\n", bp->signal[i].phase);
2978 }
2979 static EXT_ATTR_RO(signal, phase, 0);
2980 static EXT_ATTR_RO(signal, phase, 1);
2981 static EXT_ATTR_RO(signal, phase, 2);
2982 static EXT_ATTR_RO(signal, phase, 3);
2983
2984 static ssize_t
polarity_show(struct device * dev,struct device_attribute * attr,char * buf)2985 polarity_show(struct device *dev, struct device_attribute *attr,
2986 char *buf)
2987 {
2988 struct dev_ext_attribute *ea = to_ext_attr(attr);
2989 struct ptp_ocp *bp = dev_get_drvdata(dev);
2990 int i = (uintptr_t)ea->var;
2991
2992 return sysfs_emit(buf, "%d\n", bp->signal[i].polarity);
2993 }
2994 static EXT_ATTR_RO(signal, polarity, 0);
2995 static EXT_ATTR_RO(signal, polarity, 1);
2996 static EXT_ATTR_RO(signal, polarity, 2);
2997 static EXT_ATTR_RO(signal, polarity, 3);
2998
2999 static ssize_t
running_show(struct device * dev,struct device_attribute * attr,char * buf)3000 running_show(struct device *dev, struct device_attribute *attr, char *buf)
3001 {
3002 struct dev_ext_attribute *ea = to_ext_attr(attr);
3003 struct ptp_ocp *bp = dev_get_drvdata(dev);
3004 int i = (uintptr_t)ea->var;
3005
3006 return sysfs_emit(buf, "%d\n", bp->signal[i].running);
3007 }
3008 static EXT_ATTR_RO(signal, running, 0);
3009 static EXT_ATTR_RO(signal, running, 1);
3010 static EXT_ATTR_RO(signal, running, 2);
3011 static EXT_ATTR_RO(signal, running, 3);
3012
3013 static ssize_t
start_show(struct device * dev,struct device_attribute * attr,char * buf)3014 start_show(struct device *dev, struct device_attribute *attr, char *buf)
3015 {
3016 struct dev_ext_attribute *ea = to_ext_attr(attr);
3017 struct ptp_ocp *bp = dev_get_drvdata(dev);
3018 int i = (uintptr_t)ea->var;
3019 struct timespec64 ts;
3020
3021 ts = ktime_to_timespec64(bp->signal[i].start);
3022 return sysfs_emit(buf, "%llu.%lu\n", ts.tv_sec, ts.tv_nsec);
3023 }
3024 static EXT_ATTR_RO(signal, start, 0);
3025 static EXT_ATTR_RO(signal, start, 1);
3026 static EXT_ATTR_RO(signal, start, 2);
3027 static EXT_ATTR_RO(signal, start, 3);
3028
3029 static ssize_t
seconds_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3030 seconds_store(struct device *dev, struct device_attribute *attr,
3031 const char *buf, size_t count)
3032 {
3033 struct dev_ext_attribute *ea = to_ext_attr(attr);
3034 struct ptp_ocp *bp = dev_get_drvdata(dev);
3035 int idx = (uintptr_t)ea->var;
3036 u32 val;
3037 int err;
3038
3039 err = kstrtou32(buf, 0, &val);
3040 if (err)
3041 return err;
3042 if (val > 0xff)
3043 return -EINVAL;
3044
3045 if (val)
3046 val = (val << 8) | 0x1;
3047
3048 iowrite32(val, &bp->freq_in[idx]->ctrl);
3049
3050 return count;
3051 }
3052
3053 static ssize_t
seconds_show(struct device * dev,struct device_attribute * attr,char * buf)3054 seconds_show(struct device *dev, struct device_attribute *attr, char *buf)
3055 {
3056 struct dev_ext_attribute *ea = to_ext_attr(attr);
3057 struct ptp_ocp *bp = dev_get_drvdata(dev);
3058 int idx = (uintptr_t)ea->var;
3059 u32 val;
3060
3061 val = ioread32(&bp->freq_in[idx]->ctrl);
3062 if (val & 1)
3063 val = (val >> 8) & 0xff;
3064 else
3065 val = 0;
3066
3067 return sysfs_emit(buf, "%u\n", val);
3068 }
3069 static EXT_ATTR_RW(freq, seconds, 0);
3070 static EXT_ATTR_RW(freq, seconds, 1);
3071 static EXT_ATTR_RW(freq, seconds, 2);
3072 static EXT_ATTR_RW(freq, seconds, 3);
3073
3074 static ssize_t
frequency_show(struct device * dev,struct device_attribute * attr,char * buf)3075 frequency_show(struct device *dev, struct device_attribute *attr, char *buf)
3076 {
3077 struct dev_ext_attribute *ea = to_ext_attr(attr);
3078 struct ptp_ocp *bp = dev_get_drvdata(dev);
3079 int idx = (uintptr_t)ea->var;
3080 u32 val;
3081
3082 val = ioread32(&bp->freq_in[idx]->status);
3083 if (val & FREQ_STATUS_ERROR)
3084 return sysfs_emit(buf, "error\n");
3085 if (val & FREQ_STATUS_OVERRUN)
3086 return sysfs_emit(buf, "overrun\n");
3087 if (val & FREQ_STATUS_VALID)
3088 return sysfs_emit(buf, "%lu\n", val & FREQ_STATUS_MASK);
3089 return 0;
3090 }
3091 static EXT_ATTR_RO(freq, frequency, 0);
3092 static EXT_ATTR_RO(freq, frequency, 1);
3093 static EXT_ATTR_RO(freq, frequency, 2);
3094 static EXT_ATTR_RO(freq, frequency, 3);
3095
3096 static ssize_t
serialnum_show(struct device * dev,struct device_attribute * attr,char * buf)3097 serialnum_show(struct device *dev, struct device_attribute *attr, char *buf)
3098 {
3099 struct ptp_ocp *bp = dev_get_drvdata(dev);
3100
3101 if (!bp->has_eeprom_data)
3102 ptp_ocp_read_eeprom(bp);
3103
3104 return sysfs_emit(buf, "%pM\n", bp->serial);
3105 }
3106 static DEVICE_ATTR_RO(serialnum);
3107
3108 static ssize_t
gnss_sync_show(struct device * dev,struct device_attribute * attr,char * buf)3109 gnss_sync_show(struct device *dev, struct device_attribute *attr, char *buf)
3110 {
3111 struct ptp_ocp *bp = dev_get_drvdata(dev);
3112 ssize_t ret;
3113
3114 if (bp->gnss_lost)
3115 ret = sysfs_emit(buf, "LOST @ %ptT\n", &bp->gnss_lost);
3116 else
3117 ret = sysfs_emit(buf, "SYNC\n");
3118
3119 return ret;
3120 }
3121 static DEVICE_ATTR_RO(gnss_sync);
3122
3123 static ssize_t
utc_tai_offset_show(struct device * dev,struct device_attribute * attr,char * buf)3124 utc_tai_offset_show(struct device *dev,
3125 struct device_attribute *attr, char *buf)
3126 {
3127 struct ptp_ocp *bp = dev_get_drvdata(dev);
3128
3129 return sysfs_emit(buf, "%d\n", bp->utc_tai_offset);
3130 }
3131
3132 static ssize_t
utc_tai_offset_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3133 utc_tai_offset_store(struct device *dev,
3134 struct device_attribute *attr,
3135 const char *buf, size_t count)
3136 {
3137 struct ptp_ocp *bp = dev_get_drvdata(dev);
3138 int err;
3139 u32 val;
3140
3141 err = kstrtou32(buf, 0, &val);
3142 if (err)
3143 return err;
3144
3145 ptp_ocp_utc_distribute(bp, val);
3146
3147 return count;
3148 }
3149 static DEVICE_ATTR_RW(utc_tai_offset);
3150
3151 static ssize_t
ts_window_adjust_show(struct device * dev,struct device_attribute * attr,char * buf)3152 ts_window_adjust_show(struct device *dev,
3153 struct device_attribute *attr, char *buf)
3154 {
3155 struct ptp_ocp *bp = dev_get_drvdata(dev);
3156
3157 return sysfs_emit(buf, "%d\n", bp->ts_window_adjust);
3158 }
3159
3160 static ssize_t
ts_window_adjust_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3161 ts_window_adjust_store(struct device *dev,
3162 struct device_attribute *attr,
3163 const char *buf, size_t count)
3164 {
3165 struct ptp_ocp *bp = dev_get_drvdata(dev);
3166 int err;
3167 u32 val;
3168
3169 err = kstrtou32(buf, 0, &val);
3170 if (err)
3171 return err;
3172
3173 bp->ts_window_adjust = val;
3174
3175 return count;
3176 }
3177 static DEVICE_ATTR_RW(ts_window_adjust);
3178
3179 static ssize_t
irig_b_mode_show(struct device * dev,struct device_attribute * attr,char * buf)3180 irig_b_mode_show(struct device *dev, struct device_attribute *attr, char *buf)
3181 {
3182 struct ptp_ocp *bp = dev_get_drvdata(dev);
3183 u32 val;
3184
3185 val = ioread32(&bp->irig_out->ctrl);
3186 val = (val >> 16) & 0x07;
3187 return sysfs_emit(buf, "%d\n", val);
3188 }
3189
3190 static ssize_t
irig_b_mode_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3191 irig_b_mode_store(struct device *dev,
3192 struct device_attribute *attr,
3193 const char *buf, size_t count)
3194 {
3195 struct ptp_ocp *bp = dev_get_drvdata(dev);
3196 unsigned long flags;
3197 int err;
3198 u32 reg;
3199 u8 val;
3200
3201 err = kstrtou8(buf, 0, &val);
3202 if (err)
3203 return err;
3204 if (val > 7)
3205 return -EINVAL;
3206
3207 reg = ((val & 0x7) << 16);
3208
3209 spin_lock_irqsave(&bp->lock, flags);
3210 iowrite32(0, &bp->irig_out->ctrl); /* disable */
3211 iowrite32(reg, &bp->irig_out->ctrl); /* change mode */
3212 iowrite32(reg | IRIG_M_CTRL_ENABLE, &bp->irig_out->ctrl);
3213 spin_unlock_irqrestore(&bp->lock, flags);
3214
3215 return count;
3216 }
3217 static DEVICE_ATTR_RW(irig_b_mode);
3218
3219 static ssize_t
clock_source_show(struct device * dev,struct device_attribute * attr,char * buf)3220 clock_source_show(struct device *dev, struct device_attribute *attr, char *buf)
3221 {
3222 struct ptp_ocp *bp = dev_get_drvdata(dev);
3223 const char *p;
3224 u32 select;
3225
3226 select = ioread32(&bp->reg->select);
3227 p = ptp_ocp_select_name_from_val(ptp_ocp_clock, select >> 16);
3228
3229 return sysfs_emit(buf, "%s\n", p);
3230 }
3231
3232 static ssize_t
clock_source_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3233 clock_source_store(struct device *dev, struct device_attribute *attr,
3234 const char *buf, size_t count)
3235 {
3236 struct ptp_ocp *bp = dev_get_drvdata(dev);
3237 unsigned long flags;
3238 int val;
3239
3240 val = ptp_ocp_select_val_from_name(ptp_ocp_clock, buf);
3241 if (val < 0)
3242 return val;
3243
3244 spin_lock_irqsave(&bp->lock, flags);
3245 iowrite32(val, &bp->reg->select);
3246 spin_unlock_irqrestore(&bp->lock, flags);
3247
3248 return count;
3249 }
3250 static DEVICE_ATTR_RW(clock_source);
3251
3252 static ssize_t
available_clock_sources_show(struct device * dev,struct device_attribute * attr,char * buf)3253 available_clock_sources_show(struct device *dev,
3254 struct device_attribute *attr, char *buf)
3255 {
3256 return ptp_ocp_select_table_show(ptp_ocp_clock, buf);
3257 }
3258 static DEVICE_ATTR_RO(available_clock_sources);
3259
3260 static ssize_t
clock_status_drift_show(struct device * dev,struct device_attribute * attr,char * buf)3261 clock_status_drift_show(struct device *dev,
3262 struct device_attribute *attr, char *buf)
3263 {
3264 struct ptp_ocp *bp = dev_get_drvdata(dev);
3265 u32 val;
3266 int res;
3267
3268 val = ioread32(&bp->reg->status_drift);
3269 res = (val & ~INT_MAX) ? -1 : 1;
3270 res *= (val & INT_MAX);
3271 return sysfs_emit(buf, "%d\n", res);
3272 }
3273 static DEVICE_ATTR_RO(clock_status_drift);
3274
3275 static ssize_t
clock_status_offset_show(struct device * dev,struct device_attribute * attr,char * buf)3276 clock_status_offset_show(struct device *dev,
3277 struct device_attribute *attr, char *buf)
3278 {
3279 struct ptp_ocp *bp = dev_get_drvdata(dev);
3280 u32 val;
3281 int res;
3282
3283 val = ioread32(&bp->reg->status_offset);
3284 res = (val & ~INT_MAX) ? -1 : 1;
3285 res *= (val & INT_MAX);
3286 return sysfs_emit(buf, "%d\n", res);
3287 }
3288 static DEVICE_ATTR_RO(clock_status_offset);
3289
3290 static ssize_t
tod_correction_show(struct device * dev,struct device_attribute * attr,char * buf)3291 tod_correction_show(struct device *dev,
3292 struct device_attribute *attr, char *buf)
3293 {
3294 struct ptp_ocp *bp = dev_get_drvdata(dev);
3295 u32 val;
3296 int res;
3297
3298 val = ioread32(&bp->tod->adj_sec);
3299 res = (val & ~INT_MAX) ? -1 : 1;
3300 res *= (val & INT_MAX);
3301 return sysfs_emit(buf, "%d\n", res);
3302 }
3303
3304 static ssize_t
tod_correction_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3305 tod_correction_store(struct device *dev, struct device_attribute *attr,
3306 const char *buf, size_t count)
3307 {
3308 struct ptp_ocp *bp = dev_get_drvdata(dev);
3309 unsigned long flags;
3310 int err, res;
3311 u32 val = 0;
3312
3313 err = kstrtos32(buf, 0, &res);
3314 if (err)
3315 return err;
3316 if (res < 0) {
3317 res *= -1;
3318 val |= BIT(31);
3319 }
3320 val |= res;
3321
3322 spin_lock_irqsave(&bp->lock, flags);
3323 iowrite32(val, &bp->tod->adj_sec);
3324 spin_unlock_irqrestore(&bp->lock, flags);
3325
3326 return count;
3327 }
3328 static DEVICE_ATTR_RW(tod_correction);
3329
3330 #define _DEVICE_SIGNAL_GROUP_ATTRS(_nr) \
3331 static struct attribute *fb_timecard_signal##_nr##_attrs[] = { \
3332 &dev_attr_signal##_nr##_signal.attr.attr, \
3333 &dev_attr_signal##_nr##_duty.attr.attr, \
3334 &dev_attr_signal##_nr##_phase.attr.attr, \
3335 &dev_attr_signal##_nr##_period.attr.attr, \
3336 &dev_attr_signal##_nr##_polarity.attr.attr, \
3337 &dev_attr_signal##_nr##_running.attr.attr, \
3338 &dev_attr_signal##_nr##_start.attr.attr, \
3339 NULL, \
3340 }
3341
3342 #define DEVICE_SIGNAL_GROUP(_name, _nr) \
3343 _DEVICE_SIGNAL_GROUP_ATTRS(_nr); \
3344 static const struct attribute_group \
3345 fb_timecard_signal##_nr##_group = { \
3346 .name = #_name, \
3347 .attrs = fb_timecard_signal##_nr##_attrs, \
3348 }
3349
3350 DEVICE_SIGNAL_GROUP(gen1, 0);
3351 DEVICE_SIGNAL_GROUP(gen2, 1);
3352 DEVICE_SIGNAL_GROUP(gen3, 2);
3353 DEVICE_SIGNAL_GROUP(gen4, 3);
3354
3355 #define _DEVICE_FREQ_GROUP_ATTRS(_nr) \
3356 static struct attribute *fb_timecard_freq##_nr##_attrs[] = { \
3357 &dev_attr_freq##_nr##_seconds.attr.attr, \
3358 &dev_attr_freq##_nr##_frequency.attr.attr, \
3359 NULL, \
3360 }
3361
3362 #define DEVICE_FREQ_GROUP(_name, _nr) \
3363 _DEVICE_FREQ_GROUP_ATTRS(_nr); \
3364 static const struct attribute_group \
3365 fb_timecard_freq##_nr##_group = { \
3366 .name = #_name, \
3367 .attrs = fb_timecard_freq##_nr##_attrs, \
3368 }
3369
3370 DEVICE_FREQ_GROUP(freq1, 0);
3371 DEVICE_FREQ_GROUP(freq2, 1);
3372 DEVICE_FREQ_GROUP(freq3, 2);
3373 DEVICE_FREQ_GROUP(freq4, 3);
3374
3375 static ssize_t
disciplining_config_read(struct file * filp,struct kobject * kobj,struct bin_attribute * bin_attr,char * buf,loff_t off,size_t count)3376 disciplining_config_read(struct file *filp, struct kobject *kobj,
3377 struct bin_attribute *bin_attr, char *buf,
3378 loff_t off, size_t count)
3379 {
3380 struct ptp_ocp *bp = dev_get_drvdata(kobj_to_dev(kobj));
3381 size_t size = OCP_ART_CONFIG_SIZE;
3382 struct nvmem_device *nvmem;
3383 ssize_t err;
3384
3385 nvmem = ptp_ocp_nvmem_device_get(bp, NULL);
3386 if (IS_ERR(nvmem))
3387 return PTR_ERR(nvmem);
3388
3389 if (off > size) {
3390 err = 0;
3391 goto out;
3392 }
3393
3394 if (off + count > size)
3395 count = size - off;
3396
3397 // the configuration is in the very beginning of the EEPROM
3398 err = nvmem_device_read(nvmem, off, count, buf);
3399 if (err != count) {
3400 err = -EFAULT;
3401 goto out;
3402 }
3403
3404 out:
3405 ptp_ocp_nvmem_device_put(&nvmem);
3406
3407 return err;
3408 }
3409
3410 static ssize_t
disciplining_config_write(struct file * filp,struct kobject * kobj,struct bin_attribute * bin_attr,char * buf,loff_t off,size_t count)3411 disciplining_config_write(struct file *filp, struct kobject *kobj,
3412 struct bin_attribute *bin_attr, char *buf,
3413 loff_t off, size_t count)
3414 {
3415 struct ptp_ocp *bp = dev_get_drvdata(kobj_to_dev(kobj));
3416 struct nvmem_device *nvmem;
3417 ssize_t err;
3418
3419 /* Allow write of the whole area only */
3420 if (off || count != OCP_ART_CONFIG_SIZE)
3421 return -EFAULT;
3422
3423 nvmem = ptp_ocp_nvmem_device_get(bp, NULL);
3424 if (IS_ERR(nvmem))
3425 return PTR_ERR(nvmem);
3426
3427 err = nvmem_device_write(nvmem, 0x00, count, buf);
3428 if (err != count)
3429 err = -EFAULT;
3430
3431 ptp_ocp_nvmem_device_put(&nvmem);
3432
3433 return err;
3434 }
3435 static BIN_ATTR_RW(disciplining_config, OCP_ART_CONFIG_SIZE);
3436
3437 static ssize_t
temperature_table_read(struct file * filp,struct kobject * kobj,struct bin_attribute * bin_attr,char * buf,loff_t off,size_t count)3438 temperature_table_read(struct file *filp, struct kobject *kobj,
3439 struct bin_attribute *bin_attr, char *buf,
3440 loff_t off, size_t count)
3441 {
3442 struct ptp_ocp *bp = dev_get_drvdata(kobj_to_dev(kobj));
3443 size_t size = OCP_ART_TEMP_TABLE_SIZE;
3444 struct nvmem_device *nvmem;
3445 ssize_t err;
3446
3447 nvmem = ptp_ocp_nvmem_device_get(bp, NULL);
3448 if (IS_ERR(nvmem))
3449 return PTR_ERR(nvmem);
3450
3451 if (off > size) {
3452 err = 0;
3453 goto out;
3454 }
3455
3456 if (off + count > size)
3457 count = size - off;
3458
3459 // the configuration is in the very beginning of the EEPROM
3460 err = nvmem_device_read(nvmem, 0x90 + off, count, buf);
3461 if (err != count) {
3462 err = -EFAULT;
3463 goto out;
3464 }
3465
3466 out:
3467 ptp_ocp_nvmem_device_put(&nvmem);
3468
3469 return err;
3470 }
3471
3472 static ssize_t
temperature_table_write(struct file * filp,struct kobject * kobj,struct bin_attribute * bin_attr,char * buf,loff_t off,size_t count)3473 temperature_table_write(struct file *filp, struct kobject *kobj,
3474 struct bin_attribute *bin_attr, char *buf,
3475 loff_t off, size_t count)
3476 {
3477 struct ptp_ocp *bp = dev_get_drvdata(kobj_to_dev(kobj));
3478 struct nvmem_device *nvmem;
3479 ssize_t err;
3480
3481 /* Allow write of the whole area only */
3482 if (off || count != OCP_ART_TEMP_TABLE_SIZE)
3483 return -EFAULT;
3484
3485 nvmem = ptp_ocp_nvmem_device_get(bp, NULL);
3486 if (IS_ERR(nvmem))
3487 return PTR_ERR(nvmem);
3488
3489 err = nvmem_device_write(nvmem, 0x90, count, buf);
3490 if (err != count)
3491 err = -EFAULT;
3492
3493 ptp_ocp_nvmem_device_put(&nvmem);
3494
3495 return err;
3496 }
3497 static BIN_ATTR_RW(temperature_table, OCP_ART_TEMP_TABLE_SIZE);
3498
3499 static struct attribute *fb_timecard_attrs[] = {
3500 &dev_attr_serialnum.attr,
3501 &dev_attr_gnss_sync.attr,
3502 &dev_attr_clock_source.attr,
3503 &dev_attr_available_clock_sources.attr,
3504 &dev_attr_sma1.attr,
3505 &dev_attr_sma2.attr,
3506 &dev_attr_sma3.attr,
3507 &dev_attr_sma4.attr,
3508 &dev_attr_available_sma_inputs.attr,
3509 &dev_attr_available_sma_outputs.attr,
3510 &dev_attr_clock_status_drift.attr,
3511 &dev_attr_clock_status_offset.attr,
3512 &dev_attr_irig_b_mode.attr,
3513 &dev_attr_utc_tai_offset.attr,
3514 &dev_attr_ts_window_adjust.attr,
3515 &dev_attr_tod_correction.attr,
3516 NULL,
3517 };
3518
3519 static const struct attribute_group fb_timecard_group = {
3520 .attrs = fb_timecard_attrs,
3521 };
3522
3523 static const struct ocp_attr_group fb_timecard_groups[] = {
3524 { .cap = OCP_CAP_BASIC, .group = &fb_timecard_group },
3525 { .cap = OCP_CAP_SIGNAL, .group = &fb_timecard_signal0_group },
3526 { .cap = OCP_CAP_SIGNAL, .group = &fb_timecard_signal1_group },
3527 { .cap = OCP_CAP_SIGNAL, .group = &fb_timecard_signal2_group },
3528 { .cap = OCP_CAP_SIGNAL, .group = &fb_timecard_signal3_group },
3529 { .cap = OCP_CAP_FREQ, .group = &fb_timecard_freq0_group },
3530 { .cap = OCP_CAP_FREQ, .group = &fb_timecard_freq1_group },
3531 { .cap = OCP_CAP_FREQ, .group = &fb_timecard_freq2_group },
3532 { .cap = OCP_CAP_FREQ, .group = &fb_timecard_freq3_group },
3533 { },
3534 };
3535
3536 static struct attribute *art_timecard_attrs[] = {
3537 &dev_attr_serialnum.attr,
3538 &dev_attr_clock_source.attr,
3539 &dev_attr_available_clock_sources.attr,
3540 &dev_attr_utc_tai_offset.attr,
3541 &dev_attr_ts_window_adjust.attr,
3542 &dev_attr_sma1.attr,
3543 &dev_attr_sma2.attr,
3544 &dev_attr_sma3.attr,
3545 &dev_attr_sma4.attr,
3546 &dev_attr_available_sma_inputs.attr,
3547 &dev_attr_available_sma_outputs.attr,
3548 NULL,
3549 };
3550
3551 static struct bin_attribute *bin_art_timecard_attrs[] = {
3552 &bin_attr_disciplining_config,
3553 &bin_attr_temperature_table,
3554 NULL,
3555 };
3556
3557 static const struct attribute_group art_timecard_group = {
3558 .attrs = art_timecard_attrs,
3559 .bin_attrs = bin_art_timecard_attrs,
3560 };
3561
3562 static const struct ocp_attr_group art_timecard_groups[] = {
3563 { .cap = OCP_CAP_BASIC, .group = &art_timecard_group },
3564 { },
3565 };
3566
3567 static void
gpio_input_map(char * buf,struct ptp_ocp * bp,u16 map[][2],u16 bit,const char * def)3568 gpio_input_map(char *buf, struct ptp_ocp *bp, u16 map[][2], u16 bit,
3569 const char *def)
3570 {
3571 int i;
3572
3573 for (i = 0; i < 4; i++) {
3574 if (bp->sma[i].mode != SMA_MODE_IN)
3575 continue;
3576 if (map[i][0] & (1 << bit)) {
3577 sprintf(buf, "sma%d", i + 1);
3578 return;
3579 }
3580 }
3581 if (!def)
3582 def = "----";
3583 strcpy(buf, def);
3584 }
3585
3586 static void
gpio_output_map(char * buf,struct ptp_ocp * bp,u16 map[][2],u16 bit)3587 gpio_output_map(char *buf, struct ptp_ocp *bp, u16 map[][2], u16 bit)
3588 {
3589 char *ans = buf;
3590 int i;
3591
3592 strcpy(ans, "----");
3593 for (i = 0; i < 4; i++) {
3594 if (bp->sma[i].mode != SMA_MODE_OUT)
3595 continue;
3596 if (map[i][1] & (1 << bit))
3597 ans += sprintf(ans, "sma%d ", i + 1);
3598 }
3599 }
3600
3601 static void
_signal_summary_show(struct seq_file * s,struct ptp_ocp * bp,int nr)3602 _signal_summary_show(struct seq_file *s, struct ptp_ocp *bp, int nr)
3603 {
3604 struct signal_reg __iomem *reg = bp->signal_out[nr]->mem;
3605 struct ptp_ocp_signal *signal = &bp->signal[nr];
3606 char label[8];
3607 bool on;
3608 u32 val;
3609
3610 if (!signal)
3611 return;
3612
3613 on = signal->running;
3614 sprintf(label, "GEN%d", nr + 1);
3615 seq_printf(s, "%7s: %s, period:%llu duty:%d%% phase:%llu pol:%d",
3616 label, on ? " ON" : "OFF",
3617 signal->period, signal->duty, signal->phase,
3618 signal->polarity);
3619
3620 val = ioread32(®->enable);
3621 seq_printf(s, " [%x", val);
3622 val = ioread32(®->status);
3623 seq_printf(s, " %x]", val);
3624
3625 seq_printf(s, " start:%llu\n", signal->start);
3626 }
3627
3628 static void
_frequency_summary_show(struct seq_file * s,int nr,struct frequency_reg __iomem * reg)3629 _frequency_summary_show(struct seq_file *s, int nr,
3630 struct frequency_reg __iomem *reg)
3631 {
3632 char label[8];
3633 bool on;
3634 u32 val;
3635
3636 if (!reg)
3637 return;
3638
3639 sprintf(label, "FREQ%d", nr + 1);
3640 val = ioread32(®->ctrl);
3641 on = val & 1;
3642 val = (val >> 8) & 0xff;
3643 seq_printf(s, "%7s: %s, sec:%u",
3644 label,
3645 on ? " ON" : "OFF",
3646 val);
3647
3648 val = ioread32(®->status);
3649 if (val & FREQ_STATUS_ERROR)
3650 seq_printf(s, ", error");
3651 if (val & FREQ_STATUS_OVERRUN)
3652 seq_printf(s, ", overrun");
3653 if (val & FREQ_STATUS_VALID)
3654 seq_printf(s, ", freq %lu Hz", val & FREQ_STATUS_MASK);
3655 seq_printf(s, " reg:%x\n", val);
3656 }
3657
3658 static int
ptp_ocp_summary_show(struct seq_file * s,void * data)3659 ptp_ocp_summary_show(struct seq_file *s, void *data)
3660 {
3661 struct device *dev = s->private;
3662 struct ptp_system_timestamp sts;
3663 struct ts_reg __iomem *ts_reg;
3664 char *buf, *src, *mac_src;
3665 struct timespec64 ts;
3666 struct ptp_ocp *bp;
3667 u16 sma_val[4][2];
3668 u32 ctrl, val;
3669 bool on, map;
3670 int i;
3671
3672 buf = (char *)__get_free_page(GFP_KERNEL);
3673 if (!buf)
3674 return -ENOMEM;
3675
3676 bp = dev_get_drvdata(dev);
3677
3678 seq_printf(s, "%7s: /dev/ptp%d\n", "PTP", ptp_clock_index(bp->ptp));
3679 if (bp->gnss_port.line != -1)
3680 seq_printf(s, "%7s: /dev/ttyS%d\n", "GNSS1",
3681 bp->gnss_port.line);
3682 if (bp->gnss2_port.line != -1)
3683 seq_printf(s, "%7s: /dev/ttyS%d\n", "GNSS2",
3684 bp->gnss2_port.line);
3685 if (bp->mac_port.line != -1)
3686 seq_printf(s, "%7s: /dev/ttyS%d\n", "MAC", bp->mac_port.line);
3687 if (bp->nmea_port.line != -1)
3688 seq_printf(s, "%7s: /dev/ttyS%d\n", "NMEA", bp->nmea_port.line);
3689
3690 memset(sma_val, 0xff, sizeof(sma_val));
3691 if (bp->sma_map1) {
3692 u32 reg;
3693
3694 reg = ioread32(&bp->sma_map1->gpio1);
3695 sma_val[0][0] = reg & 0xffff;
3696 sma_val[1][0] = reg >> 16;
3697
3698 reg = ioread32(&bp->sma_map1->gpio2);
3699 sma_val[2][1] = reg & 0xffff;
3700 sma_val[3][1] = reg >> 16;
3701
3702 reg = ioread32(&bp->sma_map2->gpio1);
3703 sma_val[2][0] = reg & 0xffff;
3704 sma_val[3][0] = reg >> 16;
3705
3706 reg = ioread32(&bp->sma_map2->gpio2);
3707 sma_val[0][1] = reg & 0xffff;
3708 sma_val[1][1] = reg >> 16;
3709 }
3710
3711 sma1_show(dev, NULL, buf);
3712 seq_printf(s, " sma1: %04x,%04x %s",
3713 sma_val[0][0], sma_val[0][1], buf);
3714
3715 sma2_show(dev, NULL, buf);
3716 seq_printf(s, " sma2: %04x,%04x %s",
3717 sma_val[1][0], sma_val[1][1], buf);
3718
3719 sma3_show(dev, NULL, buf);
3720 seq_printf(s, " sma3: %04x,%04x %s",
3721 sma_val[2][0], sma_val[2][1], buf);
3722
3723 sma4_show(dev, NULL, buf);
3724 seq_printf(s, " sma4: %04x,%04x %s",
3725 sma_val[3][0], sma_val[3][1], buf);
3726
3727 if (bp->ts0) {
3728 ts_reg = bp->ts0->mem;
3729 on = ioread32(&ts_reg->enable);
3730 src = "GNSS1";
3731 seq_printf(s, "%7s: %s, src: %s\n", "TS0",
3732 on ? " ON" : "OFF", src);
3733 }
3734
3735 if (bp->ts1) {
3736 ts_reg = bp->ts1->mem;
3737 on = ioread32(&ts_reg->enable);
3738 gpio_input_map(buf, bp, sma_val, 2, NULL);
3739 seq_printf(s, "%7s: %s, src: %s\n", "TS1",
3740 on ? " ON" : "OFF", buf);
3741 }
3742
3743 if (bp->ts2) {
3744 ts_reg = bp->ts2->mem;
3745 on = ioread32(&ts_reg->enable);
3746 gpio_input_map(buf, bp, sma_val, 3, NULL);
3747 seq_printf(s, "%7s: %s, src: %s\n", "TS2",
3748 on ? " ON" : "OFF", buf);
3749 }
3750
3751 if (bp->ts3) {
3752 ts_reg = bp->ts3->mem;
3753 on = ioread32(&ts_reg->enable);
3754 gpio_input_map(buf, bp, sma_val, 6, NULL);
3755 seq_printf(s, "%7s: %s, src: %s\n", "TS3",
3756 on ? " ON" : "OFF", buf);
3757 }
3758
3759 if (bp->ts4) {
3760 ts_reg = bp->ts4->mem;
3761 on = ioread32(&ts_reg->enable);
3762 gpio_input_map(buf, bp, sma_val, 7, NULL);
3763 seq_printf(s, "%7s: %s, src: %s\n", "TS4",
3764 on ? " ON" : "OFF", buf);
3765 }
3766
3767 if (bp->pps) {
3768 ts_reg = bp->pps->mem;
3769 src = "PHC";
3770 on = ioread32(&ts_reg->enable);
3771 map = !!(bp->pps_req_map & OCP_REQ_TIMESTAMP);
3772 seq_printf(s, "%7s: %s, src: %s\n", "TS5",
3773 on && map ? " ON" : "OFF", src);
3774
3775 map = !!(bp->pps_req_map & OCP_REQ_PPS);
3776 seq_printf(s, "%7s: %s, src: %s\n", "PPS",
3777 on && map ? " ON" : "OFF", src);
3778 }
3779
3780 if (bp->fw_cap & OCP_CAP_SIGNAL)
3781 for (i = 0; i < 4; i++)
3782 _signal_summary_show(s, bp, i);
3783
3784 if (bp->fw_cap & OCP_CAP_FREQ)
3785 for (i = 0; i < 4; i++)
3786 _frequency_summary_show(s, i, bp->freq_in[i]);
3787
3788 if (bp->irig_out) {
3789 ctrl = ioread32(&bp->irig_out->ctrl);
3790 on = ctrl & IRIG_M_CTRL_ENABLE;
3791 val = ioread32(&bp->irig_out->status);
3792 gpio_output_map(buf, bp, sma_val, 4);
3793 seq_printf(s, "%7s: %s, error: %d, mode %d, out: %s\n", "IRIG",
3794 on ? " ON" : "OFF", val, (ctrl >> 16), buf);
3795 }
3796
3797 if (bp->irig_in) {
3798 on = ioread32(&bp->irig_in->ctrl) & IRIG_S_CTRL_ENABLE;
3799 val = ioread32(&bp->irig_in->status);
3800 gpio_input_map(buf, bp, sma_val, 4, NULL);
3801 seq_printf(s, "%7s: %s, error: %d, src: %s\n", "IRIG in",
3802 on ? " ON" : "OFF", val, buf);
3803 }
3804
3805 if (bp->dcf_out) {
3806 on = ioread32(&bp->dcf_out->ctrl) & DCF_M_CTRL_ENABLE;
3807 val = ioread32(&bp->dcf_out->status);
3808 gpio_output_map(buf, bp, sma_val, 5);
3809 seq_printf(s, "%7s: %s, error: %d, out: %s\n", "DCF",
3810 on ? " ON" : "OFF", val, buf);
3811 }
3812
3813 if (bp->dcf_in) {
3814 on = ioread32(&bp->dcf_in->ctrl) & DCF_S_CTRL_ENABLE;
3815 val = ioread32(&bp->dcf_in->status);
3816 gpio_input_map(buf, bp, sma_val, 5, NULL);
3817 seq_printf(s, "%7s: %s, error: %d, src: %s\n", "DCF in",
3818 on ? " ON" : "OFF", val, buf);
3819 }
3820
3821 if (bp->nmea_out) {
3822 on = ioread32(&bp->nmea_out->ctrl) & 1;
3823 val = ioread32(&bp->nmea_out->status);
3824 seq_printf(s, "%7s: %s, error: %d\n", "NMEA",
3825 on ? " ON" : "OFF", val);
3826 }
3827
3828 /* compute src for PPS1, used below. */
3829 if (bp->pps_select) {
3830 val = ioread32(&bp->pps_select->gpio1);
3831 src = &buf[80];
3832 mac_src = "GNSS1";
3833 if (val & 0x01) {
3834 gpio_input_map(src, bp, sma_val, 0, NULL);
3835 mac_src = src;
3836 } else if (val & 0x02) {
3837 src = "MAC";
3838 } else if (val & 0x04) {
3839 src = "GNSS1";
3840 } else {
3841 src = "----";
3842 mac_src = src;
3843 }
3844 } else {
3845 src = "?";
3846 mac_src = src;
3847 }
3848 seq_printf(s, "MAC PPS1 src: %s\n", mac_src);
3849
3850 gpio_input_map(buf, bp, sma_val, 1, "GNSS2");
3851 seq_printf(s, "MAC PPS2 src: %s\n", buf);
3852
3853 /* assumes automatic switchover/selection */
3854 val = ioread32(&bp->reg->select);
3855 switch (val >> 16) {
3856 case 0:
3857 sprintf(buf, "----");
3858 break;
3859 case 2:
3860 sprintf(buf, "IRIG");
3861 break;
3862 case 3:
3863 sprintf(buf, "%s via PPS1", src);
3864 break;
3865 case 6:
3866 sprintf(buf, "DCF");
3867 break;
3868 default:
3869 strcpy(buf, "unknown");
3870 break;
3871 }
3872 seq_printf(s, "%7s: %s, state: %s\n", "PHC src", buf,
3873 bp->sync ? "sync" : "unsynced");
3874
3875 if (!ptp_ocp_gettimex(&bp->ptp_info, &ts, &sts)) {
3876 struct timespec64 sys_ts;
3877 s64 pre_ns, post_ns, ns;
3878
3879 pre_ns = timespec64_to_ns(&sts.pre_ts);
3880 post_ns = timespec64_to_ns(&sts.post_ts);
3881 ns = (pre_ns + post_ns) / 2;
3882 ns += (s64)bp->utc_tai_offset * NSEC_PER_SEC;
3883 sys_ts = ns_to_timespec64(ns);
3884
3885 seq_printf(s, "%7s: %lld.%ld == %ptT TAI\n", "PHC",
3886 ts.tv_sec, ts.tv_nsec, &ts);
3887 seq_printf(s, "%7s: %lld.%ld == %ptT UTC offset %d\n", "SYS",
3888 sys_ts.tv_sec, sys_ts.tv_nsec, &sys_ts,
3889 bp->utc_tai_offset);
3890 seq_printf(s, "%7s: PHC:SYS offset: %lld window: %lld\n", "",
3891 timespec64_to_ns(&ts) - ns,
3892 post_ns - pre_ns);
3893 }
3894
3895 free_page((unsigned long)buf);
3896 return 0;
3897 }
3898 DEFINE_SHOW_ATTRIBUTE(ptp_ocp_summary);
3899
3900 static int
ptp_ocp_tod_status_show(struct seq_file * s,void * data)3901 ptp_ocp_tod_status_show(struct seq_file *s, void *data)
3902 {
3903 struct device *dev = s->private;
3904 struct ptp_ocp *bp;
3905 u32 val;
3906 int idx;
3907
3908 bp = dev_get_drvdata(dev);
3909
3910 val = ioread32(&bp->tod->ctrl);
3911 if (!(val & TOD_CTRL_ENABLE)) {
3912 seq_printf(s, "TOD Slave disabled\n");
3913 return 0;
3914 }
3915 seq_printf(s, "TOD Slave enabled, Control Register 0x%08X\n", val);
3916
3917 idx = val & TOD_CTRL_PROTOCOL ? 4 : 0;
3918 idx += (val >> 16) & 3;
3919 seq_printf(s, "Protocol %s\n", ptp_ocp_tod_proto_name(idx));
3920
3921 idx = (val >> TOD_CTRL_GNSS_SHIFT) & TOD_CTRL_GNSS_MASK;
3922 seq_printf(s, "GNSS %s\n", ptp_ocp_tod_gnss_name(idx));
3923
3924 val = ioread32(&bp->tod->version);
3925 seq_printf(s, "TOD Version %d.%d.%d\n",
3926 val >> 24, (val >> 16) & 0xff, val & 0xffff);
3927
3928 val = ioread32(&bp->tod->status);
3929 seq_printf(s, "Status register: 0x%08X\n", val);
3930
3931 val = ioread32(&bp->tod->adj_sec);
3932 idx = (val & ~INT_MAX) ? -1 : 1;
3933 idx *= (val & INT_MAX);
3934 seq_printf(s, "Correction seconds: %d\n", idx);
3935
3936 val = ioread32(&bp->tod->utc_status);
3937 seq_printf(s, "UTC status register: 0x%08X\n", val);
3938 seq_printf(s, "UTC offset: %ld valid:%d\n",
3939 val & TOD_STATUS_UTC_MASK, val & TOD_STATUS_UTC_VALID ? 1 : 0);
3940 seq_printf(s, "Leap second info valid:%d, Leap second announce %d\n",
3941 val & TOD_STATUS_LEAP_VALID ? 1 : 0,
3942 val & TOD_STATUS_LEAP_ANNOUNCE ? 1 : 0);
3943
3944 val = ioread32(&bp->tod->leap);
3945 seq_printf(s, "Time to next leap second (in sec): %d\n", (s32) val);
3946
3947 return 0;
3948 }
3949 DEFINE_SHOW_ATTRIBUTE(ptp_ocp_tod_status);
3950
3951 static struct dentry *ptp_ocp_debugfs_root;
3952
3953 static void
ptp_ocp_debugfs_add_device(struct ptp_ocp * bp)3954 ptp_ocp_debugfs_add_device(struct ptp_ocp *bp)
3955 {
3956 struct dentry *d;
3957
3958 d = debugfs_create_dir(dev_name(&bp->dev), ptp_ocp_debugfs_root);
3959 bp->debug_root = d;
3960 debugfs_create_file("summary", 0444, bp->debug_root,
3961 &bp->dev, &ptp_ocp_summary_fops);
3962 if (bp->tod)
3963 debugfs_create_file("tod_status", 0444, bp->debug_root,
3964 &bp->dev, &ptp_ocp_tod_status_fops);
3965 }
3966
3967 static void
ptp_ocp_debugfs_remove_device(struct ptp_ocp * bp)3968 ptp_ocp_debugfs_remove_device(struct ptp_ocp *bp)
3969 {
3970 debugfs_remove_recursive(bp->debug_root);
3971 }
3972
3973 static void
ptp_ocp_debugfs_init(void)3974 ptp_ocp_debugfs_init(void)
3975 {
3976 ptp_ocp_debugfs_root = debugfs_create_dir("timecard", NULL);
3977 }
3978
3979 static void
ptp_ocp_debugfs_fini(void)3980 ptp_ocp_debugfs_fini(void)
3981 {
3982 debugfs_remove_recursive(ptp_ocp_debugfs_root);
3983 }
3984
3985 static void
ptp_ocp_dev_release(struct device * dev)3986 ptp_ocp_dev_release(struct device *dev)
3987 {
3988 struct ptp_ocp *bp = dev_get_drvdata(dev);
3989
3990 mutex_lock(&ptp_ocp_lock);
3991 idr_remove(&ptp_ocp_idr, bp->id);
3992 mutex_unlock(&ptp_ocp_lock);
3993 }
3994
3995 static int
ptp_ocp_device_init(struct ptp_ocp * bp,struct pci_dev * pdev)3996 ptp_ocp_device_init(struct ptp_ocp *bp, struct pci_dev *pdev)
3997 {
3998 int err;
3999
4000 mutex_lock(&ptp_ocp_lock);
4001 err = idr_alloc(&ptp_ocp_idr, bp, 0, 0, GFP_KERNEL);
4002 mutex_unlock(&ptp_ocp_lock);
4003 if (err < 0) {
4004 dev_err(&pdev->dev, "idr_alloc failed: %d\n", err);
4005 return err;
4006 }
4007 bp->id = err;
4008
4009 bp->ptp_info = ptp_ocp_clock_info;
4010 spin_lock_init(&bp->lock);
4011 bp->gnss_port.line = -1;
4012 bp->gnss2_port.line = -1;
4013 bp->mac_port.line = -1;
4014 bp->nmea_port.line = -1;
4015 bp->pdev = pdev;
4016
4017 device_initialize(&bp->dev);
4018 dev_set_name(&bp->dev, "ocp%d", bp->id);
4019 bp->dev.class = &timecard_class;
4020 bp->dev.parent = &pdev->dev;
4021 bp->dev.release = ptp_ocp_dev_release;
4022 dev_set_drvdata(&bp->dev, bp);
4023
4024 err = device_add(&bp->dev);
4025 if (err) {
4026 dev_err(&bp->dev, "device add failed: %d\n", err);
4027 goto out;
4028 }
4029
4030 pci_set_drvdata(pdev, bp);
4031
4032 return 0;
4033
4034 out:
4035 put_device(&bp->dev);
4036 return err;
4037 }
4038
4039 static void
ptp_ocp_symlink(struct ptp_ocp * bp,struct device * child,const char * link)4040 ptp_ocp_symlink(struct ptp_ocp *bp, struct device *child, const char *link)
4041 {
4042 struct device *dev = &bp->dev;
4043
4044 if (sysfs_create_link(&dev->kobj, &child->kobj, link))
4045 dev_err(dev, "%s symlink failed\n", link);
4046 }
4047
4048 static void
ptp_ocp_link_child(struct ptp_ocp * bp,const char * name,const char * link)4049 ptp_ocp_link_child(struct ptp_ocp *bp, const char *name, const char *link)
4050 {
4051 struct device *dev, *child;
4052
4053 dev = &bp->pdev->dev;
4054
4055 child = device_find_child_by_name(dev, name);
4056 if (!child) {
4057 dev_err(dev, "Could not find device %s\n", name);
4058 return;
4059 }
4060
4061 ptp_ocp_symlink(bp, child, link);
4062 put_device(child);
4063 }
4064
4065 static int
ptp_ocp_complete(struct ptp_ocp * bp)4066 ptp_ocp_complete(struct ptp_ocp *bp)
4067 {
4068 struct pps_device *pps;
4069 char buf[32];
4070
4071 if (bp->gnss_port.line != -1) {
4072 sprintf(buf, "ttyS%d", bp->gnss_port.line);
4073 ptp_ocp_link_child(bp, buf, "ttyGNSS");
4074 }
4075 if (bp->gnss2_port.line != -1) {
4076 sprintf(buf, "ttyS%d", bp->gnss2_port.line);
4077 ptp_ocp_link_child(bp, buf, "ttyGNSS2");
4078 }
4079 if (bp->mac_port.line != -1) {
4080 sprintf(buf, "ttyS%d", bp->mac_port.line);
4081 ptp_ocp_link_child(bp, buf, "ttyMAC");
4082 }
4083 if (bp->nmea_port.line != -1) {
4084 sprintf(buf, "ttyS%d", bp->nmea_port.line);
4085 ptp_ocp_link_child(bp, buf, "ttyNMEA");
4086 }
4087 sprintf(buf, "ptp%d", ptp_clock_index(bp->ptp));
4088 ptp_ocp_link_child(bp, buf, "ptp");
4089
4090 pps = pps_lookup_dev(bp->ptp);
4091 if (pps)
4092 ptp_ocp_symlink(bp, pps->dev, "pps");
4093
4094 ptp_ocp_debugfs_add_device(bp);
4095
4096 return 0;
4097 }
4098
4099 static void
ptp_ocp_phc_info(struct ptp_ocp * bp)4100 ptp_ocp_phc_info(struct ptp_ocp *bp)
4101 {
4102 struct timespec64 ts;
4103 u32 version, select;
4104
4105 version = ioread32(&bp->reg->version);
4106 select = ioread32(&bp->reg->select);
4107 dev_info(&bp->pdev->dev, "Version %d.%d.%d, clock %s, device ptp%d\n",
4108 version >> 24, (version >> 16) & 0xff, version & 0xffff,
4109 ptp_ocp_select_name_from_val(ptp_ocp_clock, select >> 16),
4110 ptp_clock_index(bp->ptp));
4111
4112 if (!ptp_ocp_gettimex(&bp->ptp_info, &ts, NULL))
4113 dev_info(&bp->pdev->dev, "Time: %lld.%ld, %s\n",
4114 ts.tv_sec, ts.tv_nsec,
4115 bp->sync ? "in-sync" : "UNSYNCED");
4116 }
4117
4118 static void
ptp_ocp_serial_info(struct device * dev,const char * name,int port,int baud)4119 ptp_ocp_serial_info(struct device *dev, const char *name, int port, int baud)
4120 {
4121 if (port != -1)
4122 dev_info(dev, "%5s: /dev/ttyS%-2d @ %6d\n", name, port, baud);
4123 }
4124
4125 static void
ptp_ocp_info(struct ptp_ocp * bp)4126 ptp_ocp_info(struct ptp_ocp *bp)
4127 {
4128 static int nmea_baud[] = {
4129 1200, 2400, 4800, 9600, 19200, 38400,
4130 57600, 115200, 230400, 460800, 921600,
4131 1000000, 2000000
4132 };
4133 struct device *dev = &bp->pdev->dev;
4134 u32 reg;
4135
4136 ptp_ocp_phc_info(bp);
4137
4138 ptp_ocp_serial_info(dev, "GNSS", bp->gnss_port.line,
4139 bp->gnss_port.baud);
4140 ptp_ocp_serial_info(dev, "GNSS2", bp->gnss2_port.line,
4141 bp->gnss2_port.baud);
4142 ptp_ocp_serial_info(dev, "MAC", bp->mac_port.line, bp->mac_port.baud);
4143 if (bp->nmea_out && bp->nmea_port.line != -1) {
4144 bp->nmea_port.baud = -1;
4145
4146 reg = ioread32(&bp->nmea_out->uart_baud);
4147 if (reg < ARRAY_SIZE(nmea_baud))
4148 bp->nmea_port.baud = nmea_baud[reg];
4149
4150 ptp_ocp_serial_info(dev, "NMEA", bp->nmea_port.line,
4151 bp->nmea_port.baud);
4152 }
4153 }
4154
4155 static void
ptp_ocp_detach_sysfs(struct ptp_ocp * bp)4156 ptp_ocp_detach_sysfs(struct ptp_ocp *bp)
4157 {
4158 struct device *dev = &bp->dev;
4159
4160 sysfs_remove_link(&dev->kobj, "ttyGNSS");
4161 sysfs_remove_link(&dev->kobj, "ttyGNSS2");
4162 sysfs_remove_link(&dev->kobj, "ttyMAC");
4163 sysfs_remove_link(&dev->kobj, "ptp");
4164 sysfs_remove_link(&dev->kobj, "pps");
4165 }
4166
4167 static void
ptp_ocp_detach(struct ptp_ocp * bp)4168 ptp_ocp_detach(struct ptp_ocp *bp)
4169 {
4170 int i;
4171
4172 ptp_ocp_debugfs_remove_device(bp);
4173 ptp_ocp_detach_sysfs(bp);
4174 ptp_ocp_attr_group_del(bp);
4175 if (timer_pending(&bp->watchdog))
4176 del_timer_sync(&bp->watchdog);
4177 if (bp->ts0)
4178 ptp_ocp_unregister_ext(bp->ts0);
4179 if (bp->ts1)
4180 ptp_ocp_unregister_ext(bp->ts1);
4181 if (bp->ts2)
4182 ptp_ocp_unregister_ext(bp->ts2);
4183 if (bp->ts3)
4184 ptp_ocp_unregister_ext(bp->ts3);
4185 if (bp->ts4)
4186 ptp_ocp_unregister_ext(bp->ts4);
4187 if (bp->pps)
4188 ptp_ocp_unregister_ext(bp->pps);
4189 for (i = 0; i < 4; i++)
4190 if (bp->signal_out[i])
4191 ptp_ocp_unregister_ext(bp->signal_out[i]);
4192 if (bp->gnss_port.line != -1)
4193 serial8250_unregister_port(bp->gnss_port.line);
4194 if (bp->gnss2_port.line != -1)
4195 serial8250_unregister_port(bp->gnss2_port.line);
4196 if (bp->mac_port.line != -1)
4197 serial8250_unregister_port(bp->mac_port.line);
4198 if (bp->nmea_port.line != -1)
4199 serial8250_unregister_port(bp->nmea_port.line);
4200 platform_device_unregister(bp->spi_flash);
4201 platform_device_unregister(bp->i2c_ctrl);
4202 if (bp->i2c_clk)
4203 clk_hw_unregister_fixed_rate(bp->i2c_clk);
4204 if (bp->n_irqs)
4205 pci_free_irq_vectors(bp->pdev);
4206 if (bp->ptp)
4207 ptp_clock_unregister(bp->ptp);
4208 kfree(bp->ptp_info.pin_config);
4209 device_unregister(&bp->dev);
4210 }
4211
ptp_ocp_dpll_lock_status_get(const struct dpll_device * dpll,void * priv,enum dpll_lock_status * status,struct netlink_ext_ack * extack)4212 static int ptp_ocp_dpll_lock_status_get(const struct dpll_device *dpll,
4213 void *priv,
4214 enum dpll_lock_status *status,
4215 struct netlink_ext_ack *extack)
4216 {
4217 struct ptp_ocp *bp = priv;
4218
4219 *status = bp->sync ? DPLL_LOCK_STATUS_LOCKED : DPLL_LOCK_STATUS_UNLOCKED;
4220
4221 return 0;
4222 }
4223
ptp_ocp_dpll_state_get(const struct dpll_pin * pin,void * pin_priv,const struct dpll_device * dpll,void * priv,enum dpll_pin_state * state,struct netlink_ext_ack * extack)4224 static int ptp_ocp_dpll_state_get(const struct dpll_pin *pin, void *pin_priv,
4225 const struct dpll_device *dpll, void *priv,
4226 enum dpll_pin_state *state,
4227 struct netlink_ext_ack *extack)
4228 {
4229 struct ptp_ocp *bp = priv;
4230 int idx;
4231
4232 if (bp->pps_select) {
4233 idx = ioread32(&bp->pps_select->gpio1);
4234 *state = (&bp->sma[idx] == pin_priv) ? DPLL_PIN_STATE_CONNECTED :
4235 DPLL_PIN_STATE_SELECTABLE;
4236 return 0;
4237 }
4238 NL_SET_ERR_MSG(extack, "pin selection is not supported on current HW");
4239 return -EINVAL;
4240 }
4241
ptp_ocp_dpll_mode_get(const struct dpll_device * dpll,void * priv,enum dpll_mode * mode,struct netlink_ext_ack * extack)4242 static int ptp_ocp_dpll_mode_get(const struct dpll_device *dpll, void *priv,
4243 enum dpll_mode *mode, struct netlink_ext_ack *extack)
4244 {
4245 *mode = DPLL_MODE_AUTOMATIC;
4246 return 0;
4247 }
4248
ptp_ocp_dpll_direction_get(const struct dpll_pin * pin,void * pin_priv,const struct dpll_device * dpll,void * priv,enum dpll_pin_direction * direction,struct netlink_ext_ack * extack)4249 static int ptp_ocp_dpll_direction_get(const struct dpll_pin *pin,
4250 void *pin_priv,
4251 const struct dpll_device *dpll,
4252 void *priv,
4253 enum dpll_pin_direction *direction,
4254 struct netlink_ext_ack *extack)
4255 {
4256 struct ptp_ocp_sma_connector *sma = pin_priv;
4257
4258 *direction = sma->mode == SMA_MODE_IN ?
4259 DPLL_PIN_DIRECTION_INPUT :
4260 DPLL_PIN_DIRECTION_OUTPUT;
4261 return 0;
4262 }
4263
ptp_ocp_dpll_direction_set(const struct dpll_pin * pin,void * pin_priv,const struct dpll_device * dpll,void * dpll_priv,enum dpll_pin_direction direction,struct netlink_ext_ack * extack)4264 static int ptp_ocp_dpll_direction_set(const struct dpll_pin *pin,
4265 void *pin_priv,
4266 const struct dpll_device *dpll,
4267 void *dpll_priv,
4268 enum dpll_pin_direction direction,
4269 struct netlink_ext_ack *extack)
4270 {
4271 struct ptp_ocp_sma_connector *sma = pin_priv;
4272 struct ptp_ocp *bp = dpll_priv;
4273 enum ptp_ocp_sma_mode mode;
4274 int sma_nr = (sma - bp->sma);
4275
4276 if (sma->fixed_dir)
4277 return -EOPNOTSUPP;
4278 mode = direction == DPLL_PIN_DIRECTION_INPUT ?
4279 SMA_MODE_IN : SMA_MODE_OUT;
4280 return ptp_ocp_sma_store_val(bp, 0, mode, sma_nr);
4281 }
4282
ptp_ocp_dpll_frequency_set(const struct dpll_pin * pin,void * pin_priv,const struct dpll_device * dpll,void * dpll_priv,u64 frequency,struct netlink_ext_ack * extack)4283 static int ptp_ocp_dpll_frequency_set(const struct dpll_pin *pin,
4284 void *pin_priv,
4285 const struct dpll_device *dpll,
4286 void *dpll_priv, u64 frequency,
4287 struct netlink_ext_ack *extack)
4288 {
4289 struct ptp_ocp_sma_connector *sma = pin_priv;
4290 struct ptp_ocp *bp = dpll_priv;
4291 const struct ocp_selector *tbl;
4292 int sma_nr = (sma - bp->sma);
4293 int i;
4294
4295 if (sma->fixed_fcn)
4296 return -EOPNOTSUPP;
4297
4298 tbl = bp->sma_op->tbl[sma->mode];
4299 for (i = 0; tbl[i].name; i++)
4300 if (tbl[i].frequency == frequency)
4301 return ptp_ocp_sma_store_val(bp, i, sma->mode, sma_nr);
4302 return -EINVAL;
4303 }
4304
ptp_ocp_dpll_frequency_get(const struct dpll_pin * pin,void * pin_priv,const struct dpll_device * dpll,void * dpll_priv,u64 * frequency,struct netlink_ext_ack * extack)4305 static int ptp_ocp_dpll_frequency_get(const struct dpll_pin *pin,
4306 void *pin_priv,
4307 const struct dpll_device *dpll,
4308 void *dpll_priv, u64 *frequency,
4309 struct netlink_ext_ack *extack)
4310 {
4311 struct ptp_ocp_sma_connector *sma = pin_priv;
4312 struct ptp_ocp *bp = dpll_priv;
4313 const struct ocp_selector *tbl;
4314 int sma_nr = (sma - bp->sma);
4315 u32 val;
4316 int i;
4317
4318 val = bp->sma_op->get(bp, sma_nr);
4319 tbl = bp->sma_op->tbl[sma->mode];
4320 for (i = 0; tbl[i].name; i++)
4321 if (val == tbl[i].value) {
4322 *frequency = tbl[i].frequency;
4323 return 0;
4324 }
4325
4326 return -EINVAL;
4327 }
4328
4329 static const struct dpll_device_ops dpll_ops = {
4330 .lock_status_get = ptp_ocp_dpll_lock_status_get,
4331 .mode_get = ptp_ocp_dpll_mode_get,
4332 };
4333
4334 static const struct dpll_pin_ops dpll_pins_ops = {
4335 .frequency_get = ptp_ocp_dpll_frequency_get,
4336 .frequency_set = ptp_ocp_dpll_frequency_set,
4337 .direction_get = ptp_ocp_dpll_direction_get,
4338 .direction_set = ptp_ocp_dpll_direction_set,
4339 .state_on_dpll_get = ptp_ocp_dpll_state_get,
4340 };
4341
4342 static void
ptp_ocp_sync_work(struct work_struct * work)4343 ptp_ocp_sync_work(struct work_struct *work)
4344 {
4345 struct ptp_ocp *bp;
4346 bool sync;
4347
4348 bp = container_of(work, struct ptp_ocp, sync_work.work);
4349 sync = !!(ioread32(&bp->reg->status) & OCP_STATUS_IN_SYNC);
4350
4351 if (bp->sync != sync)
4352 dpll_device_change_ntf(bp->dpll);
4353
4354 bp->sync = sync;
4355
4356 queue_delayed_work(system_power_efficient_wq, &bp->sync_work, HZ);
4357 }
4358
4359 static int
ptp_ocp_probe(struct pci_dev * pdev,const struct pci_device_id * id)4360 ptp_ocp_probe(struct pci_dev *pdev, const struct pci_device_id *id)
4361 {
4362 struct devlink *devlink;
4363 struct ptp_ocp *bp;
4364 int err, i;
4365 u64 clkid;
4366
4367 devlink = devlink_alloc(&ptp_ocp_devlink_ops, sizeof(*bp), &pdev->dev);
4368 if (!devlink) {
4369 dev_err(&pdev->dev, "devlink_alloc failed\n");
4370 return -ENOMEM;
4371 }
4372
4373 err = pci_enable_device(pdev);
4374 if (err) {
4375 dev_err(&pdev->dev, "pci_enable_device\n");
4376 goto out_free;
4377 }
4378
4379 bp = devlink_priv(devlink);
4380 err = ptp_ocp_device_init(bp, pdev);
4381 if (err)
4382 goto out_disable;
4383
4384 INIT_DELAYED_WORK(&bp->sync_work, ptp_ocp_sync_work);
4385
4386 /* compat mode.
4387 * Older FPGA firmware only returns 2 irq's.
4388 * allow this - if not all of the IRQ's are returned, skip the
4389 * extra devices and just register the clock.
4390 */
4391 err = pci_alloc_irq_vectors(pdev, 1, 17, PCI_IRQ_MSI | PCI_IRQ_MSIX);
4392 if (err < 0) {
4393 dev_err(&pdev->dev, "alloc_irq_vectors err: %d\n", err);
4394 goto out;
4395 }
4396 bp->n_irqs = err;
4397 pci_set_master(pdev);
4398
4399 err = ptp_ocp_register_resources(bp, id->driver_data);
4400 if (err)
4401 goto out;
4402
4403 bp->ptp = ptp_clock_register(&bp->ptp_info, &pdev->dev);
4404 if (IS_ERR(bp->ptp)) {
4405 err = PTR_ERR(bp->ptp);
4406 dev_err(&pdev->dev, "ptp_clock_register: %d\n", err);
4407 bp->ptp = NULL;
4408 goto out;
4409 }
4410
4411 err = ptp_ocp_complete(bp);
4412 if (err)
4413 goto out;
4414
4415 ptp_ocp_info(bp);
4416 devlink_register(devlink);
4417
4418 clkid = pci_get_dsn(pdev);
4419 bp->dpll = dpll_device_get(clkid, 0, THIS_MODULE);
4420 if (IS_ERR(bp->dpll)) {
4421 err = PTR_ERR(bp->dpll);
4422 dev_err(&pdev->dev, "dpll_device_alloc failed\n");
4423 goto out;
4424 }
4425
4426 err = dpll_device_register(bp->dpll, DPLL_TYPE_PPS, &dpll_ops, bp);
4427 if (err)
4428 goto out;
4429
4430 for (i = 0; i < OCP_SMA_NUM; i++) {
4431 bp->sma[i].dpll_pin = dpll_pin_get(clkid, i, THIS_MODULE, &bp->sma[i].dpll_prop);
4432 if (IS_ERR(bp->sma[i].dpll_pin)) {
4433 err = PTR_ERR(bp->sma[i].dpll_pin);
4434 goto out_dpll;
4435 }
4436
4437 err = dpll_pin_register(bp->dpll, bp->sma[i].dpll_pin, &dpll_pins_ops,
4438 &bp->sma[i]);
4439 if (err) {
4440 dpll_pin_put(bp->sma[i].dpll_pin);
4441 goto out_dpll;
4442 }
4443 }
4444 queue_delayed_work(system_power_efficient_wq, &bp->sync_work, HZ);
4445
4446 return 0;
4447 out_dpll:
4448 while (i) {
4449 --i;
4450 dpll_pin_unregister(bp->dpll, bp->sma[i].dpll_pin, &dpll_pins_ops, &bp->sma[i]);
4451 dpll_pin_put(bp->sma[i].dpll_pin);
4452 }
4453 dpll_device_put(bp->dpll);
4454 out:
4455 ptp_ocp_detach(bp);
4456 out_disable:
4457 pci_disable_device(pdev);
4458 out_free:
4459 devlink_free(devlink);
4460 return err;
4461 }
4462
4463 static void
ptp_ocp_remove(struct pci_dev * pdev)4464 ptp_ocp_remove(struct pci_dev *pdev)
4465 {
4466 struct ptp_ocp *bp = pci_get_drvdata(pdev);
4467 struct devlink *devlink = priv_to_devlink(bp);
4468 int i;
4469
4470 cancel_delayed_work_sync(&bp->sync_work);
4471 for (i = 0; i < OCP_SMA_NUM; i++) {
4472 if (bp->sma[i].dpll_pin) {
4473 dpll_pin_unregister(bp->dpll, bp->sma[i].dpll_pin, &dpll_pins_ops, &bp->sma[i]);
4474 dpll_pin_put(bp->sma[i].dpll_pin);
4475 }
4476 }
4477 dpll_device_unregister(bp->dpll, &dpll_ops, bp);
4478 dpll_device_put(bp->dpll);
4479 devlink_unregister(devlink);
4480 ptp_ocp_detach(bp);
4481 pci_disable_device(pdev);
4482
4483 devlink_free(devlink);
4484 }
4485
4486 static struct pci_driver ptp_ocp_driver = {
4487 .name = KBUILD_MODNAME,
4488 .id_table = ptp_ocp_pcidev_id,
4489 .probe = ptp_ocp_probe,
4490 .remove = ptp_ocp_remove,
4491 };
4492
4493 static int
ptp_ocp_i2c_notifier_call(struct notifier_block * nb,unsigned long action,void * data)4494 ptp_ocp_i2c_notifier_call(struct notifier_block *nb,
4495 unsigned long action, void *data)
4496 {
4497 struct device *dev, *child = data;
4498 struct ptp_ocp *bp;
4499 bool add;
4500
4501 switch (action) {
4502 case BUS_NOTIFY_ADD_DEVICE:
4503 case BUS_NOTIFY_DEL_DEVICE:
4504 add = action == BUS_NOTIFY_ADD_DEVICE;
4505 break;
4506 default:
4507 return 0;
4508 }
4509
4510 if (!i2c_verify_adapter(child))
4511 return 0;
4512
4513 dev = child;
4514 while ((dev = dev->parent))
4515 if (dev->driver && !strcmp(dev->driver->name, KBUILD_MODNAME))
4516 goto found;
4517 return 0;
4518
4519 found:
4520 bp = dev_get_drvdata(dev);
4521 if (add)
4522 ptp_ocp_symlink(bp, child, "i2c");
4523 else
4524 sysfs_remove_link(&bp->dev.kobj, "i2c");
4525
4526 return 0;
4527 }
4528
4529 static struct notifier_block ptp_ocp_i2c_notifier = {
4530 .notifier_call = ptp_ocp_i2c_notifier_call,
4531 };
4532
4533 static int __init
ptp_ocp_init(void)4534 ptp_ocp_init(void)
4535 {
4536 const char *what;
4537 int err;
4538
4539 ptp_ocp_debugfs_init();
4540
4541 what = "timecard class";
4542 err = class_register(&timecard_class);
4543 if (err)
4544 goto out;
4545
4546 what = "i2c notifier";
4547 err = bus_register_notifier(&i2c_bus_type, &ptp_ocp_i2c_notifier);
4548 if (err)
4549 goto out_notifier;
4550
4551 what = "ptp_ocp driver";
4552 err = pci_register_driver(&ptp_ocp_driver);
4553 if (err)
4554 goto out_register;
4555
4556 return 0;
4557
4558 out_register:
4559 bus_unregister_notifier(&i2c_bus_type, &ptp_ocp_i2c_notifier);
4560 out_notifier:
4561 class_unregister(&timecard_class);
4562 out:
4563 ptp_ocp_debugfs_fini();
4564 pr_err(KBUILD_MODNAME ": failed to register %s: %d\n", what, err);
4565 return err;
4566 }
4567
4568 static void __exit
ptp_ocp_fini(void)4569 ptp_ocp_fini(void)
4570 {
4571 bus_unregister_notifier(&i2c_bus_type, &ptp_ocp_i2c_notifier);
4572 pci_unregister_driver(&ptp_ocp_driver);
4573 class_unregister(&timecard_class);
4574 ptp_ocp_debugfs_fini();
4575 }
4576
4577 module_init(ptp_ocp_init);
4578 module_exit(ptp_ocp_fini);
4579
4580 MODULE_DESCRIPTION("OpenCompute TimeCard driver");
4581 MODULE_LICENSE("GPL v2");
4582