1 /*
2 * Copyright 2012-15 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: AMD
23 *
24 */
25
26 #include "dm_services.h"
27 #include "basics/dc_common.h"
28 #include "dc.h"
29 #include "core_types.h"
30 #include "resource.h"
31 #include "ipp.h"
32 #include "timing_generator.h"
33 #include "dc_dmub_srv.h"
34 #include "dc_state_priv.h"
35 #include "dc_stream_priv.h"
36
37 #define DC_LOGGER dc->ctx->logger
38 #ifndef MIN
39 #define MIN(X, Y) ((X) < (Y) ? (X) : (Y))
40 #endif
41 #ifndef MAX
42 #define MAX(x, y) ((x > y) ? x : y)
43 #endif
44
45 /*******************************************************************************
46 * Private functions
47 ******************************************************************************/
update_stream_signal(struct dc_stream_state * stream,struct dc_sink * sink)48 void update_stream_signal(struct dc_stream_state *stream, struct dc_sink *sink)
49 {
50 if (sink->sink_signal == SIGNAL_TYPE_NONE)
51 stream->signal = stream->link->connector_signal;
52 else
53 stream->signal = sink->sink_signal;
54
55 if (dc_is_dvi_signal(stream->signal)) {
56 if (stream->ctx->dc->caps.dual_link_dvi &&
57 (stream->timing.pix_clk_100hz / 10) > TMDS_MAX_PIXEL_CLOCK &&
58 sink->sink_signal != SIGNAL_TYPE_DVI_SINGLE_LINK)
59 stream->signal = SIGNAL_TYPE_DVI_DUAL_LINK;
60 else
61 stream->signal = SIGNAL_TYPE_DVI_SINGLE_LINK;
62 }
63 }
64
dc_stream_construct(struct dc_stream_state * stream,struct dc_sink * dc_sink_data)65 bool dc_stream_construct(struct dc_stream_state *stream,
66 struct dc_sink *dc_sink_data)
67 {
68 uint32_t i = 0;
69
70 stream->sink = dc_sink_data;
71 dc_sink_retain(dc_sink_data);
72
73 stream->ctx = dc_sink_data->ctx;
74 stream->link = dc_sink_data->link;
75 stream->sink_patches = dc_sink_data->edid_caps.panel_patch;
76 stream->converter_disable_audio = dc_sink_data->converter_disable_audio;
77 stream->qs_bit = dc_sink_data->edid_caps.qs_bit;
78 stream->qy_bit = dc_sink_data->edid_caps.qy_bit;
79
80 /* Copy audio modes */
81 /* TODO - Remove this translation */
82 for (i = 0; i < (dc_sink_data->edid_caps.audio_mode_count); i++) {
83 stream->audio_info.modes[i].channel_count = dc_sink_data->edid_caps.audio_modes[i].channel_count;
84 stream->audio_info.modes[i].format_code = dc_sink_data->edid_caps.audio_modes[i].format_code;
85 stream->audio_info.modes[i].sample_rates.all = dc_sink_data->edid_caps.audio_modes[i].sample_rate;
86 stream->audio_info.modes[i].sample_size = dc_sink_data->edid_caps.audio_modes[i].sample_size;
87 }
88 stream->audio_info.mode_count = dc_sink_data->edid_caps.audio_mode_count;
89 stream->audio_info.audio_latency = dc_sink_data->edid_caps.audio_latency;
90 stream->audio_info.video_latency = dc_sink_data->edid_caps.video_latency;
91 memmove(
92 stream->audio_info.display_name,
93 dc_sink_data->edid_caps.display_name,
94 AUDIO_INFO_DISPLAY_NAME_SIZE_IN_CHARS);
95 stream->audio_info.manufacture_id = dc_sink_data->edid_caps.manufacturer_id;
96 stream->audio_info.product_id = dc_sink_data->edid_caps.product_id;
97 stream->audio_info.flags.all = dc_sink_data->edid_caps.speaker_flags;
98
99 if (dc_sink_data->dc_container_id != NULL) {
100 struct dc_container_id *dc_container_id = dc_sink_data->dc_container_id;
101
102 stream->audio_info.port_id[0] = dc_container_id->portId[0];
103 stream->audio_info.port_id[1] = dc_container_id->portId[1];
104 } else {
105 /* TODO - WindowDM has implemented,
106 other DMs need Unhardcode port_id */
107 stream->audio_info.port_id[0] = 0x5558859e;
108 stream->audio_info.port_id[1] = 0xd989449;
109 }
110
111 /* EDID CAP translation for HDMI 2.0 */
112 stream->timing.flags.LTE_340MCSC_SCRAMBLE = dc_sink_data->edid_caps.lte_340mcsc_scramble;
113
114 memset(&stream->timing.dsc_cfg, 0, sizeof(stream->timing.dsc_cfg));
115 stream->timing.dsc_cfg.num_slices_h = 0;
116 stream->timing.dsc_cfg.num_slices_v = 0;
117 stream->timing.dsc_cfg.bits_per_pixel = 128;
118 stream->timing.dsc_cfg.block_pred_enable = 1;
119 stream->timing.dsc_cfg.linebuf_depth = 9;
120 stream->timing.dsc_cfg.version_minor = 2;
121 stream->timing.dsc_cfg.ycbcr422_simple = 0;
122
123 update_stream_signal(stream, dc_sink_data);
124
125 stream->out_transfer_func.type = TF_TYPE_BYPASS;
126
127 dc_stream_assign_stream_id(stream);
128
129 return true;
130 }
131
dc_stream_destruct(struct dc_stream_state * stream)132 void dc_stream_destruct(struct dc_stream_state *stream)
133 {
134 dc_sink_release(stream->sink);
135 }
136
dc_stream_assign_stream_id(struct dc_stream_state * stream)137 void dc_stream_assign_stream_id(struct dc_stream_state *stream)
138 {
139 /* MSB is reserved to indicate phantoms */
140 stream->stream_id = stream->ctx->dc_stream_id_count;
141 stream->ctx->dc_stream_id_count++;
142 }
143
dc_stream_retain(struct dc_stream_state * stream)144 void dc_stream_retain(struct dc_stream_state *stream)
145 {
146 kref_get(&stream->refcount);
147 }
148
dc_stream_free(struct kref * kref)149 static void dc_stream_free(struct kref *kref)
150 {
151 struct dc_stream_state *stream = container_of(kref, struct dc_stream_state, refcount);
152
153 dc_stream_destruct(stream);
154 kfree(stream);
155 }
156
dc_stream_release(struct dc_stream_state * stream)157 void dc_stream_release(struct dc_stream_state *stream)
158 {
159 if (stream != NULL) {
160 kref_put(&stream->refcount, dc_stream_free);
161 }
162 }
163
dc_create_stream_for_sink(struct dc_sink * sink)164 struct dc_stream_state *dc_create_stream_for_sink(
165 struct dc_sink *sink)
166 {
167 struct dc_stream_state *stream;
168
169 if (sink == NULL)
170 return NULL;
171
172 stream = kzalloc(sizeof(struct dc_stream_state), GFP_KERNEL);
173 if (stream == NULL)
174 goto alloc_fail;
175
176 if (dc_stream_construct(stream, sink) == false)
177 goto construct_fail;
178
179 kref_init(&stream->refcount);
180
181 return stream;
182
183 construct_fail:
184 kfree(stream);
185
186 alloc_fail:
187 return NULL;
188 }
189
dc_copy_stream(const struct dc_stream_state * stream)190 struct dc_stream_state *dc_copy_stream(const struct dc_stream_state *stream)
191 {
192 struct dc_stream_state *new_stream;
193
194 new_stream = kmemdup(stream, sizeof(struct dc_stream_state), GFP_KERNEL);
195 if (!new_stream)
196 return NULL;
197
198 if (new_stream->sink)
199 dc_sink_retain(new_stream->sink);
200
201 dc_stream_assign_stream_id(new_stream);
202
203 /* If using dynamic encoder assignment, wait till stream committed to assign encoder. */
204 if (new_stream->ctx->dc->res_pool->funcs->link_encs_assign &&
205 !new_stream->ctx->dc->config.unify_link_enc_assignment)
206 new_stream->link_enc = NULL;
207
208 kref_init(&new_stream->refcount);
209
210 return new_stream;
211 }
212
213 /**
214 * dc_stream_get_status() - Get current stream status of the given stream state
215 * @stream: The stream to get the stream status for.
216 *
217 * The given stream is expected to exist in dc->current_state. Otherwise, NULL
218 * will be returned.
219 */
dc_stream_get_status(struct dc_stream_state * stream)220 struct dc_stream_status *dc_stream_get_status(
221 struct dc_stream_state *stream)
222 {
223 struct dc *dc = stream->ctx->dc;
224 return dc_state_get_stream_status(dc->current_state, stream);
225 }
226
program_cursor_attributes(struct dc * dc,struct dc_stream_state * stream)227 void program_cursor_attributes(
228 struct dc *dc,
229 struct dc_stream_state *stream)
230 {
231 int i;
232 struct resource_context *res_ctx;
233 struct pipe_ctx *pipe_to_program = NULL;
234
235 if (!stream)
236 return;
237
238 res_ctx = &dc->current_state->res_ctx;
239
240 for (i = 0; i < MAX_PIPES; i++) {
241 struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[i];
242
243 if (pipe_ctx->stream != stream)
244 continue;
245
246 if (!pipe_to_program) {
247 pipe_to_program = pipe_ctx;
248 dc->hwss.cursor_lock(dc, pipe_to_program, true);
249 if (pipe_to_program->next_odm_pipe)
250 dc->hwss.cursor_lock(dc, pipe_to_program->next_odm_pipe, true);
251 }
252
253 dc->hwss.set_cursor_attribute(pipe_ctx);
254 if (dc->ctx->dmub_srv)
255 dc_send_update_cursor_info_to_dmu(pipe_ctx, i);
256 if (dc->hwss.set_cursor_sdr_white_level)
257 dc->hwss.set_cursor_sdr_white_level(pipe_ctx);
258 }
259
260 if (pipe_to_program) {
261 dc->hwss.cursor_lock(dc, pipe_to_program, false);
262 if (pipe_to_program->next_odm_pipe)
263 dc->hwss.cursor_lock(dc, pipe_to_program->next_odm_pipe, false);
264 }
265 }
266
267 /*
268 * dc_stream_set_cursor_attributes() - Update cursor attributes and set cursor surface address
269 */
dc_stream_set_cursor_attributes(struct dc_stream_state * stream,const struct dc_cursor_attributes * attributes)270 bool dc_stream_set_cursor_attributes(
271 struct dc_stream_state *stream,
272 const struct dc_cursor_attributes *attributes)
273 {
274 struct dc *dc;
275
276 if (NULL == stream) {
277 dm_error("DC: dc_stream is NULL!\n");
278 return false;
279 }
280 if (NULL == attributes) {
281 dm_error("DC: attributes is NULL!\n");
282 return false;
283 }
284
285 if (attributes->address.quad_part == 0) {
286 dm_output_to_console("DC: Cursor address is 0!\n");
287 return false;
288 }
289
290 dc = stream->ctx->dc;
291
292 /* SubVP is not compatible with HW cursor larger than 64 x 64 x 4.
293 * Therefore, if cursor is greater than 64 x 64 x 4, fallback to SW cursor in the following case:
294 * 1. If the config is a candidate for SubVP high refresh (both single an dual display configs)
295 * 2. If not subvp high refresh, for single display cases, if resolution is >= 5K and refresh rate < 120hz
296 * 3. If not subvp high refresh, for multi display cases, if resolution is >= 4K and refresh rate < 120hz
297 */
298 if (dc->debug.allow_sw_cursor_fallback &&
299 attributes->height * attributes->width * 4 > 16384 &&
300 !stream->hw_cursor_req) {
301 if (check_subvp_sw_cursor_fallback_req(dc, stream))
302 return false;
303 }
304
305 stream->cursor_attributes = *attributes;
306
307 return true;
308 }
309
dc_stream_program_cursor_attributes(struct dc_stream_state * stream,const struct dc_cursor_attributes * attributes)310 bool dc_stream_program_cursor_attributes(
311 struct dc_stream_state *stream,
312 const struct dc_cursor_attributes *attributes)
313 {
314 struct dc *dc;
315 bool reset_idle_optimizations = false;
316
317 dc = stream ? stream->ctx->dc : NULL;
318
319 if (dc_stream_set_cursor_attributes(stream, attributes)) {
320 dc_z10_restore(dc);
321 /* disable idle optimizations while updating cursor */
322 if (dc->idle_optimizations_allowed) {
323 dc_allow_idle_optimizations(dc, false);
324 reset_idle_optimizations = true;
325 }
326
327 program_cursor_attributes(dc, stream);
328
329 /* re-enable idle optimizations if necessary */
330 if (reset_idle_optimizations && !dc->debug.disable_dmub_reallow_idle)
331 dc_allow_idle_optimizations(dc, true);
332
333 return true;
334 }
335
336 return false;
337 }
338
program_cursor_position(struct dc * dc,struct dc_stream_state * stream)339 void program_cursor_position(
340 struct dc *dc,
341 struct dc_stream_state *stream)
342 {
343 int i;
344 struct resource_context *res_ctx;
345 struct pipe_ctx *pipe_to_program = NULL;
346
347 if (!stream)
348 return;
349
350 res_ctx = &dc->current_state->res_ctx;
351
352 for (i = 0; i < MAX_PIPES; i++) {
353 struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[i];
354
355 if (pipe_ctx->stream != stream ||
356 (!pipe_ctx->plane_res.mi && !pipe_ctx->plane_res.hubp) ||
357 !pipe_ctx->plane_state ||
358 (!pipe_ctx->plane_res.xfm && !pipe_ctx->plane_res.dpp) ||
359 (!pipe_ctx->plane_res.ipp && !pipe_ctx->plane_res.dpp))
360 continue;
361
362 if (!pipe_to_program) {
363 pipe_to_program = pipe_ctx;
364 dc->hwss.cursor_lock(dc, pipe_to_program, true);
365 }
366
367 dc->hwss.set_cursor_position(pipe_ctx);
368 if (dc->ctx->dmub_srv)
369 dc_send_update_cursor_info_to_dmu(pipe_ctx, i);
370 }
371
372 if (pipe_to_program)
373 dc->hwss.cursor_lock(dc, pipe_to_program, false);
374 }
375
dc_stream_set_cursor_position(struct dc_stream_state * stream,const struct dc_cursor_position * position)376 bool dc_stream_set_cursor_position(
377 struct dc_stream_state *stream,
378 const struct dc_cursor_position *position)
379 {
380 if (NULL == stream) {
381 dm_error("DC: dc_stream is NULL!\n");
382 return false;
383 }
384
385 if (NULL == position) {
386 dm_error("DC: cursor position is NULL!\n");
387 return false;
388 }
389
390 stream->cursor_position = *position;
391
392
393 return true;
394 }
395
dc_stream_program_cursor_position(struct dc_stream_state * stream,const struct dc_cursor_position * position)396 bool dc_stream_program_cursor_position(
397 struct dc_stream_state *stream,
398 const struct dc_cursor_position *position)
399 {
400 struct dc *dc;
401 bool reset_idle_optimizations = false;
402 const struct dc_cursor_position *old_position;
403
404 if (!stream)
405 return false;
406
407 old_position = &stream->cursor_position;
408 dc = stream->ctx->dc;
409
410 if (dc_stream_set_cursor_position(stream, position)) {
411 dc_z10_restore(dc);
412
413 /* disable idle optimizations if enabling cursor */
414 if (dc->idle_optimizations_allowed &&
415 (!old_position->enable || dc->debug.exit_idle_opt_for_cursor_updates) &&
416 position->enable) {
417 dc_allow_idle_optimizations(dc, false);
418 reset_idle_optimizations = true;
419 }
420
421 program_cursor_position(dc, stream);
422 /* re-enable idle optimizations if necessary */
423 if (reset_idle_optimizations && !dc->debug.disable_dmub_reallow_idle)
424 dc_allow_idle_optimizations(dc, true);
425
426 /* apply/update visual confirm */
427 if (dc->debug.visual_confirm == VISUAL_CONFIRM_HW_CURSOR) {
428 /* update software state */
429 int i;
430
431 for (i = 0; i < dc->res_pool->pipe_count; i++) {
432 struct pipe_ctx *pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
433
434 /* adjust visual confirm color for all pipes with current stream */
435 if (stream == pipe_ctx->stream) {
436 get_cursor_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
437
438 /* programming hardware */
439 if (pipe_ctx->plane_state)
440 dc->hwss.update_visual_confirm_color(dc, pipe_ctx,
441 pipe_ctx->plane_res.hubp->mpcc_id);
442 }
443 }
444 }
445
446 return true;
447 }
448
449 return false;
450 }
451
dc_stream_add_writeback(struct dc * dc,struct dc_stream_state * stream,struct dc_writeback_info * wb_info)452 bool dc_stream_add_writeback(struct dc *dc,
453 struct dc_stream_state *stream,
454 struct dc_writeback_info *wb_info)
455 {
456 bool isDrc = false;
457 int i = 0;
458 struct dwbc *dwb;
459
460 if (stream == NULL) {
461 dm_error("DC: dc_stream is NULL!\n");
462 return false;
463 }
464
465 if (wb_info == NULL) {
466 dm_error("DC: dc_writeback_info is NULL!\n");
467 return false;
468 }
469
470 if (wb_info->dwb_pipe_inst >= MAX_DWB_PIPES) {
471 dm_error("DC: writeback pipe is invalid!\n");
472 return false;
473 }
474
475 dc_exit_ips_for_hw_access(dc);
476
477 wb_info->dwb_params.out_transfer_func = &stream->out_transfer_func;
478
479 dwb = dc->res_pool->dwbc[wb_info->dwb_pipe_inst];
480 dwb->dwb_is_drc = false;
481
482 /* recalculate and apply DML parameters */
483
484 for (i = 0; i < stream->num_wb_info; i++) {
485 /*dynamic update*/
486 if (stream->writeback_info[i].wb_enabled &&
487 stream->writeback_info[i].dwb_pipe_inst == wb_info->dwb_pipe_inst) {
488 stream->writeback_info[i] = *wb_info;
489 isDrc = true;
490 }
491 }
492
493 if (!isDrc) {
494 ASSERT(stream->num_wb_info + 1 <= MAX_DWB_PIPES);
495 stream->writeback_info[stream->num_wb_info++] = *wb_info;
496 }
497
498 if (dc->hwss.enable_writeback) {
499 struct dc_stream_status *stream_status = dc_stream_get_status(stream);
500 struct dwbc *dwb = dc->res_pool->dwbc[wb_info->dwb_pipe_inst];
501 if (stream_status)
502 dwb->otg_inst = stream_status->primary_otg_inst;
503 }
504
505 if (!dc->hwss.update_bandwidth(dc, dc->current_state)) {
506 dm_error("DC: update_bandwidth failed!\n");
507 return false;
508 }
509
510 /* enable writeback */
511 if (dc->hwss.enable_writeback) {
512 struct dwbc *dwb = dc->res_pool->dwbc[wb_info->dwb_pipe_inst];
513
514 if (dwb->funcs->is_enabled(dwb)) {
515 /* writeback pipe already enabled, only need to update */
516 dc->hwss.update_writeback(dc, wb_info, dc->current_state);
517 } else {
518 /* Enable writeback pipe from scratch*/
519 dc->hwss.enable_writeback(dc, wb_info, dc->current_state);
520 }
521 }
522
523 return true;
524 }
525
dc_stream_fc_disable_writeback(struct dc * dc,struct dc_stream_state * stream,uint32_t dwb_pipe_inst)526 bool dc_stream_fc_disable_writeback(struct dc *dc,
527 struct dc_stream_state *stream,
528 uint32_t dwb_pipe_inst)
529 {
530 struct dwbc *dwb = dc->res_pool->dwbc[dwb_pipe_inst];
531
532 if (stream == NULL) {
533 dm_error("DC: dc_stream is NULL!\n");
534 return false;
535 }
536
537 if (dwb_pipe_inst >= MAX_DWB_PIPES) {
538 dm_error("DC: writeback pipe is invalid!\n");
539 return false;
540 }
541
542 if (stream->num_wb_info > MAX_DWB_PIPES) {
543 dm_error("DC: num_wb_info is invalid!\n");
544 return false;
545 }
546
547 dc_exit_ips_for_hw_access(dc);
548
549 if (dwb->funcs->set_fc_enable)
550 dwb->funcs->set_fc_enable(dwb, DWB_FRAME_CAPTURE_DISABLE);
551
552 return true;
553 }
554
dc_stream_remove_writeback(struct dc * dc,struct dc_stream_state * stream,uint32_t dwb_pipe_inst)555 bool dc_stream_remove_writeback(struct dc *dc,
556 struct dc_stream_state *stream,
557 uint32_t dwb_pipe_inst)
558 {
559 unsigned int i, j;
560 if (stream == NULL) {
561 dm_error("DC: dc_stream is NULL!\n");
562 return false;
563 }
564
565 if (dwb_pipe_inst >= MAX_DWB_PIPES) {
566 dm_error("DC: writeback pipe is invalid!\n");
567 return false;
568 }
569
570 if (stream->num_wb_info > MAX_DWB_PIPES) {
571 dm_error("DC: num_wb_info is invalid!\n");
572 return false;
573 }
574
575 /* remove writeback info for disabled writeback pipes from stream */
576 for (i = 0, j = 0; i < stream->num_wb_info; i++) {
577 if (stream->writeback_info[i].wb_enabled) {
578
579 if (stream->writeback_info[i].dwb_pipe_inst == dwb_pipe_inst)
580 stream->writeback_info[i].wb_enabled = false;
581
582 /* trim the array */
583 if (j < i) {
584 memcpy(&stream->writeback_info[j], &stream->writeback_info[i],
585 sizeof(struct dc_writeback_info));
586 j++;
587 }
588 }
589 }
590 stream->num_wb_info = j;
591
592 /* recalculate and apply DML parameters */
593 if (!dc->hwss.update_bandwidth(dc, dc->current_state)) {
594 dm_error("DC: update_bandwidth failed!\n");
595 return false;
596 }
597
598 dc_exit_ips_for_hw_access(dc);
599
600 /* disable writeback */
601 if (dc->hwss.disable_writeback) {
602 struct dwbc *dwb = dc->res_pool->dwbc[dwb_pipe_inst];
603
604 if (dwb->funcs->is_enabled(dwb))
605 dc->hwss.disable_writeback(dc, dwb_pipe_inst);
606 }
607
608 return true;
609 }
610
dc_stream_get_vblank_counter(const struct dc_stream_state * stream)611 uint32_t dc_stream_get_vblank_counter(const struct dc_stream_state *stream)
612 {
613 uint8_t i;
614 struct dc *dc = stream->ctx->dc;
615 struct resource_context *res_ctx =
616 &dc->current_state->res_ctx;
617
618 dc_exit_ips_for_hw_access(dc);
619
620 for (i = 0; i < MAX_PIPES; i++) {
621 struct timing_generator *tg = res_ctx->pipe_ctx[i].stream_res.tg;
622
623 if (res_ctx->pipe_ctx[i].stream != stream || !tg)
624 continue;
625
626 return tg->funcs->get_frame_count(tg);
627 }
628
629 return 0;
630 }
631
dc_stream_send_dp_sdp(const struct dc_stream_state * stream,const uint8_t * custom_sdp_message,unsigned int sdp_message_size)632 bool dc_stream_send_dp_sdp(const struct dc_stream_state *stream,
633 const uint8_t *custom_sdp_message,
634 unsigned int sdp_message_size)
635 {
636 int i;
637 struct dc *dc;
638 struct resource_context *res_ctx;
639
640 if (stream == NULL) {
641 dm_error("DC: dc_stream is NULL!\n");
642 return false;
643 }
644
645 dc = stream->ctx->dc;
646 res_ctx = &dc->current_state->res_ctx;
647
648 dc_exit_ips_for_hw_access(dc);
649
650 for (i = 0; i < MAX_PIPES; i++) {
651 struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[i];
652
653 if (pipe_ctx->stream != stream)
654 continue;
655
656 if (dc->hwss.send_immediate_sdp_message != NULL)
657 dc->hwss.send_immediate_sdp_message(pipe_ctx,
658 custom_sdp_message,
659 sdp_message_size);
660 else
661 DC_LOG_WARNING("%s:send_immediate_sdp_message not implemented on this ASIC\n",
662 __func__);
663
664 }
665
666 return true;
667 }
668
dc_stream_get_scanoutpos(const struct dc_stream_state * stream,uint32_t * v_blank_start,uint32_t * v_blank_end,uint32_t * h_position,uint32_t * v_position)669 bool dc_stream_get_scanoutpos(const struct dc_stream_state *stream,
670 uint32_t *v_blank_start,
671 uint32_t *v_blank_end,
672 uint32_t *h_position,
673 uint32_t *v_position)
674 {
675 uint8_t i;
676 bool ret = false;
677 struct dc *dc = stream->ctx->dc;
678 struct resource_context *res_ctx =
679 &dc->current_state->res_ctx;
680
681 dc_exit_ips_for_hw_access(dc);
682
683 for (i = 0; i < MAX_PIPES; i++) {
684 struct timing_generator *tg = res_ctx->pipe_ctx[i].stream_res.tg;
685
686 if (res_ctx->pipe_ctx[i].stream != stream || !tg)
687 continue;
688
689 tg->funcs->get_scanoutpos(tg,
690 v_blank_start,
691 v_blank_end,
692 h_position,
693 v_position);
694
695 ret = true;
696 break;
697 }
698
699 return ret;
700 }
701
dc_stream_dmdata_status_done(struct dc * dc,struct dc_stream_state * stream)702 bool dc_stream_dmdata_status_done(struct dc *dc, struct dc_stream_state *stream)
703 {
704 struct pipe_ctx *pipe = NULL;
705 int i;
706
707 if (!dc->hwss.dmdata_status_done)
708 return false;
709
710 for (i = 0; i < MAX_PIPES; i++) {
711 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
712 if (pipe->stream == stream)
713 break;
714 }
715 /* Stream not found, by default we'll assume HUBP fetched dm data */
716 if (i == MAX_PIPES)
717 return true;
718
719 dc_exit_ips_for_hw_access(dc);
720
721 return dc->hwss.dmdata_status_done(pipe);
722 }
723
dc_stream_set_dynamic_metadata(struct dc * dc,struct dc_stream_state * stream,struct dc_dmdata_attributes * attr)724 bool dc_stream_set_dynamic_metadata(struct dc *dc,
725 struct dc_stream_state *stream,
726 struct dc_dmdata_attributes *attr)
727 {
728 struct pipe_ctx *pipe_ctx = NULL;
729 struct hubp *hubp;
730 int i;
731
732 /* Dynamic metadata is only supported on HDMI or DP */
733 if (!dc_is_hdmi_signal(stream->signal) && !dc_is_dp_signal(stream->signal))
734 return false;
735
736 /* Check hardware support */
737 if (!dc->hwss.program_dmdata_engine)
738 return false;
739
740 for (i = 0; i < MAX_PIPES; i++) {
741 pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
742 if (pipe_ctx->stream == stream)
743 break;
744 }
745
746 if (i == MAX_PIPES)
747 return false;
748
749 hubp = pipe_ctx->plane_res.hubp;
750 if (hubp == NULL)
751 return false;
752
753 pipe_ctx->stream->dmdata_address = attr->address;
754
755 dc_exit_ips_for_hw_access(dc);
756
757 dc->hwss.program_dmdata_engine(pipe_ctx);
758
759 if (hubp->funcs->dmdata_set_attributes != NULL &&
760 pipe_ctx->stream->dmdata_address.quad_part != 0) {
761 hubp->funcs->dmdata_set_attributes(hubp, attr);
762 }
763
764 return true;
765 }
766
dc_stream_add_dsc_to_resource(struct dc * dc,struct dc_state * state,struct dc_stream_state * stream)767 enum dc_status dc_stream_add_dsc_to_resource(struct dc *dc,
768 struct dc_state *state,
769 struct dc_stream_state *stream)
770 {
771 if (dc->res_pool->funcs->add_dsc_to_stream_resource) {
772 return dc->res_pool->funcs->add_dsc_to_stream_resource(dc, state, stream);
773 } else {
774 return DC_NO_DSC_RESOURCE;
775 }
776 }
777
dc_stream_get_pipe_ctx(struct dc_stream_state * stream)778 struct pipe_ctx *dc_stream_get_pipe_ctx(struct dc_stream_state *stream)
779 {
780 int i = 0;
781
782 for (i = 0; i < MAX_PIPES; i++) {
783 struct pipe_ctx *pipe = &stream->ctx->dc->current_state->res_ctx.pipe_ctx[i];
784
785 if (pipe->stream == stream)
786 return pipe;
787 }
788
789 return NULL;
790 }
791
dc_stream_log(const struct dc * dc,const struct dc_stream_state * stream)792 void dc_stream_log(const struct dc *dc, const struct dc_stream_state *stream)
793 {
794 DC_LOG_DC(
795 "core_stream 0x%p: src: %d, %d, %d, %d; dst: %d, %d, %d, %d, colorSpace:%d\n",
796 stream,
797 stream->src.x,
798 stream->src.y,
799 stream->src.width,
800 stream->src.height,
801 stream->dst.x,
802 stream->dst.y,
803 stream->dst.width,
804 stream->dst.height,
805 stream->output_color_space);
806 DC_LOG_DC(
807 "\tpix_clk_khz: %d, h_total: %d, v_total: %d, pixel_encoding:%s, color_depth:%s\n",
808 stream->timing.pix_clk_100hz / 10,
809 stream->timing.h_total,
810 stream->timing.v_total,
811 dc_pixel_encoding_to_str(stream->timing.pixel_encoding),
812 dc_color_depth_to_str(stream->timing.display_color_depth));
813 DC_LOG_DC(
814 "\tlink: %d\n",
815 stream->link->link_index);
816
817 DC_LOG_DC(
818 "\tdsc: %d, mst_pbn: %d\n",
819 stream->timing.flags.DSC,
820 stream->timing.dsc_cfg.mst_pbn);
821
822 if (stream->sink) {
823 if (stream->sink->sink_signal != SIGNAL_TYPE_VIRTUAL &&
824 stream->sink->sink_signal != SIGNAL_TYPE_NONE) {
825
826 DC_LOG_DC(
827 "\tdispname: %s signal: %x\n",
828 stream->sink->edid_caps.display_name,
829 stream->signal);
830 }
831 }
832 }
833
834 /*
835 * Finds the greatest index in refresh_rate_hz that contains a value <= refresh
836 */
dc_stream_get_nearest_smallest_index(struct dc_stream_state * stream,int refresh)837 static int dc_stream_get_nearest_smallest_index(struct dc_stream_state *stream, int refresh)
838 {
839 for (int i = 0; i < (LUMINANCE_DATA_TABLE_SIZE - 1); ++i) {
840 if ((stream->lumin_data.refresh_rate_hz[i] <= refresh) && (refresh < stream->lumin_data.refresh_rate_hz[i + 1])) {
841 return i;
842 }
843 }
844 return 9;
845 }
846
847 /*
848 * Finds a corresponding brightness for a given refresh rate between 2 given indices, where index1 < index2
849 */
dc_stream_get_brightness_millinits_linear_interpolation(struct dc_stream_state * stream,int index1,int index2,int refresh_hz)850 static int dc_stream_get_brightness_millinits_linear_interpolation (struct dc_stream_state *stream,
851 int index1,
852 int index2,
853 int refresh_hz)
854 {
855 long long slope = 0;
856 if (stream->lumin_data.refresh_rate_hz[index2] != stream->lumin_data.refresh_rate_hz[index1]) {
857 slope = (stream->lumin_data.luminance_millinits[index2] - stream->lumin_data.luminance_millinits[index1]) /
858 (stream->lumin_data.refresh_rate_hz[index2] - stream->lumin_data.refresh_rate_hz[index1]);
859 }
860
861 int y_intercept = stream->lumin_data.luminance_millinits[index2] - slope * stream->lumin_data.refresh_rate_hz[index2];
862
863 return (y_intercept + refresh_hz * slope);
864 }
865
866 /*
867 * Finds a corresponding refresh rate for a given brightness between 2 given indices, where index1 < index2
868 */
dc_stream_get_refresh_hz_linear_interpolation(struct dc_stream_state * stream,int index1,int index2,int brightness_millinits)869 static int dc_stream_get_refresh_hz_linear_interpolation (struct dc_stream_state *stream,
870 int index1,
871 int index2,
872 int brightness_millinits)
873 {
874 long long slope = 1;
875 if (stream->lumin_data.refresh_rate_hz[index2] != stream->lumin_data.refresh_rate_hz[index1]) {
876 slope = (stream->lumin_data.luminance_millinits[index2] - stream->lumin_data.luminance_millinits[index1]) /
877 (stream->lumin_data.refresh_rate_hz[index2] - stream->lumin_data.refresh_rate_hz[index1]);
878 }
879
880 int y_intercept = stream->lumin_data.luminance_millinits[index2] - slope * stream->lumin_data.refresh_rate_hz[index2];
881
882 return ((int)div64_s64((brightness_millinits - y_intercept), slope));
883 }
884
885 /*
886 * Finds the current brightness in millinits given a refresh rate
887 */
dc_stream_get_brightness_millinits_from_refresh(struct dc_stream_state * stream,int refresh_hz)888 static int dc_stream_get_brightness_millinits_from_refresh (struct dc_stream_state *stream, int refresh_hz)
889 {
890 int nearest_smallest_index = dc_stream_get_nearest_smallest_index(stream, refresh_hz);
891 int nearest_smallest_value = stream->lumin_data.refresh_rate_hz[nearest_smallest_index];
892
893 if (nearest_smallest_value == refresh_hz)
894 return stream->lumin_data.luminance_millinits[nearest_smallest_index];
895
896 if (nearest_smallest_index >= 9)
897 return dc_stream_get_brightness_millinits_linear_interpolation(stream, nearest_smallest_index - 1, nearest_smallest_index, refresh_hz);
898
899 if (nearest_smallest_value == stream->lumin_data.refresh_rate_hz[nearest_smallest_index + 1])
900 return stream->lumin_data.luminance_millinits[nearest_smallest_index];
901
902 return dc_stream_get_brightness_millinits_linear_interpolation(stream, nearest_smallest_index, nearest_smallest_index + 1, refresh_hz);
903 }
904
905 /*
906 * Finds the lowest/highest refresh rate (depending on search_for_max_increase)
907 * that can be achieved from starting_refresh_hz while staying
908 * within flicker criteria
909 */
dc_stream_calculate_flickerless_refresh_rate(struct dc_stream_state * stream,int current_brightness,int starting_refresh_hz,bool is_gaming,bool search_for_max_increase)910 static int dc_stream_calculate_flickerless_refresh_rate(struct dc_stream_state *stream,
911 int current_brightness,
912 int starting_refresh_hz,
913 bool is_gaming,
914 bool search_for_max_increase)
915 {
916 int nearest_smallest_index = dc_stream_get_nearest_smallest_index(stream, starting_refresh_hz);
917
918 int flicker_criteria_millinits = is_gaming ?
919 stream->lumin_data.flicker_criteria_milli_nits_GAMING :
920 stream->lumin_data.flicker_criteria_milli_nits_STATIC;
921
922 int safe_upper_bound = current_brightness + flicker_criteria_millinits;
923 int safe_lower_bound = current_brightness - flicker_criteria_millinits;
924 int lumin_millinits_temp = 0;
925
926 int offset = -1;
927 if (search_for_max_increase) {
928 offset = 1;
929 }
930
931 /*
932 * Increments up or down by 1 depending on search_for_max_increase
933 */
934 for (int i = nearest_smallest_index; (i > 0 && !search_for_max_increase) || (i < (LUMINANCE_DATA_TABLE_SIZE - 1) && search_for_max_increase); i += offset) {
935
936 lumin_millinits_temp = stream->lumin_data.luminance_millinits[i + offset];
937
938 if ((lumin_millinits_temp >= safe_upper_bound) || (lumin_millinits_temp <= safe_lower_bound)) {
939
940 if (stream->lumin_data.refresh_rate_hz[i + offset] == stream->lumin_data.refresh_rate_hz[i])
941 return stream->lumin_data.refresh_rate_hz[i];
942
943 int target_brightness = (stream->lumin_data.luminance_millinits[i + offset] >= (current_brightness + flicker_criteria_millinits)) ?
944 current_brightness + flicker_criteria_millinits :
945 current_brightness - flicker_criteria_millinits;
946
947 int refresh = 0;
948
949 /*
950 * Need the second input to be < third input for dc_stream_get_refresh_hz_linear_interpolation
951 */
952 if (search_for_max_increase)
953 refresh = dc_stream_get_refresh_hz_linear_interpolation(stream, i, i + offset, target_brightness);
954 else
955 refresh = dc_stream_get_refresh_hz_linear_interpolation(stream, i + offset, i, target_brightness);
956
957 if (refresh == stream->lumin_data.refresh_rate_hz[i + offset])
958 return stream->lumin_data.refresh_rate_hz[i + offset];
959
960 return refresh;
961 }
962 }
963
964 if (search_for_max_increase)
965 return (int)div64_s64((long long)stream->timing.pix_clk_100hz*100, stream->timing.v_total*(long long)stream->timing.h_total);
966 else
967 return stream->lumin_data.refresh_rate_hz[0];
968 }
969
970 /*
971 * Gets the max delta luminance within a specified refresh range
972 */
dc_stream_get_max_delta_lumin_millinits(struct dc_stream_state * stream,int hz1,int hz2,bool isGaming)973 static int dc_stream_get_max_delta_lumin_millinits(struct dc_stream_state *stream, int hz1, int hz2, bool isGaming)
974 {
975 int lower_refresh_brightness = dc_stream_get_brightness_millinits_from_refresh (stream, hz1);
976 int higher_refresh_brightness = dc_stream_get_brightness_millinits_from_refresh (stream, hz2);
977
978 int min = lower_refresh_brightness;
979 int max = higher_refresh_brightness;
980
981 /*
982 * Static screen, therefore no need to scan through array
983 */
984 if (!isGaming) {
985 if (lower_refresh_brightness >= higher_refresh_brightness) {
986 return lower_refresh_brightness - higher_refresh_brightness;
987 }
988 return higher_refresh_brightness - lower_refresh_brightness;
989 }
990
991 min = MIN(lower_refresh_brightness, higher_refresh_brightness);
992 max = MAX(lower_refresh_brightness, higher_refresh_brightness);
993
994 int nearest_smallest_index = dc_stream_get_nearest_smallest_index(stream, hz1);
995
996 for (; nearest_smallest_index < (LUMINANCE_DATA_TABLE_SIZE - 1) &&
997 stream->lumin_data.refresh_rate_hz[nearest_smallest_index + 1] <= hz2 ; nearest_smallest_index++) {
998 min = MIN(min, stream->lumin_data.luminance_millinits[nearest_smallest_index + 1]);
999 max = MAX(max, stream->lumin_data.luminance_millinits[nearest_smallest_index + 1]);
1000 }
1001
1002 return (max - min);
1003 }
1004
1005 /*
1006 * Determines the max flickerless instant vtotal delta for a stream.
1007 * Determines vtotal increase/decrease based on the bool "increase"
1008 */
dc_stream_get_max_flickerless_instant_vtotal_delta(struct dc_stream_state * stream,bool is_gaming,bool increase)1009 static unsigned int dc_stream_get_max_flickerless_instant_vtotal_delta(struct dc_stream_state *stream, bool is_gaming, bool increase)
1010 {
1011 if (stream->timing.v_total * stream->timing.h_total == 0)
1012 return 0;
1013
1014 int current_refresh_hz = (int)div64_s64((long long)stream->timing.pix_clk_100hz*100, stream->timing.v_total*(long long)stream->timing.h_total);
1015
1016 int safe_refresh_hz = dc_stream_calculate_flickerless_refresh_rate(stream,
1017 dc_stream_get_brightness_millinits_from_refresh(stream, current_refresh_hz),
1018 current_refresh_hz,
1019 is_gaming,
1020 increase);
1021
1022 int safe_refresh_v_total = (int)div64_s64((long long)stream->timing.pix_clk_100hz*100, safe_refresh_hz*(long long)stream->timing.h_total);
1023
1024 if (increase)
1025 return (((int) stream->timing.v_total - safe_refresh_v_total) >= 0) ? (stream->timing.v_total - safe_refresh_v_total) : 0;
1026
1027 return ((safe_refresh_v_total - (int) stream->timing.v_total) >= 0) ? (safe_refresh_v_total - stream->timing.v_total) : 0;
1028 }
1029
1030 /*
1031 * Finds the highest refresh rate that can be achieved
1032 * from starting_refresh_hz while staying within flicker criteria
1033 */
dc_stream_calculate_max_flickerless_refresh_rate(struct dc_stream_state * stream,int starting_refresh_hz,bool is_gaming)1034 int dc_stream_calculate_max_flickerless_refresh_rate(struct dc_stream_state *stream, int starting_refresh_hz, bool is_gaming)
1035 {
1036 if (!stream->lumin_data.is_valid)
1037 return 0;
1038
1039 int current_brightness = dc_stream_get_brightness_millinits_from_refresh(stream, starting_refresh_hz);
1040
1041 return dc_stream_calculate_flickerless_refresh_rate(stream,
1042 current_brightness,
1043 starting_refresh_hz,
1044 is_gaming,
1045 true);
1046 }
1047
1048 /*
1049 * Finds the lowest refresh rate that can be achieved
1050 * from starting_refresh_hz while staying within flicker criteria
1051 */
dc_stream_calculate_min_flickerless_refresh_rate(struct dc_stream_state * stream,int starting_refresh_hz,bool is_gaming)1052 int dc_stream_calculate_min_flickerless_refresh_rate(struct dc_stream_state *stream, int starting_refresh_hz, bool is_gaming)
1053 {
1054 if (!stream->lumin_data.is_valid)
1055 return 0;
1056
1057 int current_brightness = dc_stream_get_brightness_millinits_from_refresh(stream, starting_refresh_hz);
1058
1059 return dc_stream_calculate_flickerless_refresh_rate(stream,
1060 current_brightness,
1061 starting_refresh_hz,
1062 is_gaming,
1063 false);
1064 }
1065
1066 /*
1067 * Determines if there will be a flicker when moving between 2 refresh rates
1068 */
dc_stream_is_refresh_rate_range_flickerless(struct dc_stream_state * stream,int hz1,int hz2,bool is_gaming)1069 bool dc_stream_is_refresh_rate_range_flickerless(struct dc_stream_state *stream, int hz1, int hz2, bool is_gaming)
1070 {
1071
1072 /*
1073 * Assume that we wont flicker if there is invalid data
1074 */
1075 if (!stream->lumin_data.is_valid)
1076 return false;
1077
1078 int dl = dc_stream_get_max_delta_lumin_millinits(stream, hz1, hz2, is_gaming);
1079
1080 int flicker_criteria_millinits = (is_gaming) ?
1081 stream->lumin_data.flicker_criteria_milli_nits_GAMING :
1082 stream->lumin_data.flicker_criteria_milli_nits_STATIC;
1083
1084 return (dl <= flicker_criteria_millinits);
1085 }
1086
1087 /*
1088 * Determines the max instant vtotal delta increase that can be applied without
1089 * flickering for a given stream
1090 */
dc_stream_get_max_flickerless_instant_vtotal_decrease(struct dc_stream_state * stream,bool is_gaming)1091 unsigned int dc_stream_get_max_flickerless_instant_vtotal_decrease(struct dc_stream_state *stream,
1092 bool is_gaming)
1093 {
1094 if (!stream->lumin_data.is_valid)
1095 return 0;
1096
1097 return dc_stream_get_max_flickerless_instant_vtotal_delta(stream, is_gaming, true);
1098 }
1099
1100 /*
1101 * Determines the max instant vtotal delta decrease that can be applied without
1102 * flickering for a given stream
1103 */
dc_stream_get_max_flickerless_instant_vtotal_increase(struct dc_stream_state * stream,bool is_gaming)1104 unsigned int dc_stream_get_max_flickerless_instant_vtotal_increase(struct dc_stream_state *stream,
1105 bool is_gaming)
1106 {
1107 if (!stream->lumin_data.is_valid)
1108 return 0;
1109
1110 return dc_stream_get_max_flickerless_instant_vtotal_delta(stream, is_gaming, false);
1111 }
1112