1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/pagewalk.h>
3 #include <linux/vmacache.h>
4 #include <linux/hugetlb.h>
5 #include <linux/huge_mm.h>
6 #include <linux/mount.h>
7 #include <linux/seq_file.h>
8 #include <linux/highmem.h>
9 #include <linux/ptrace.h>
10 #include <linux/slab.h>
11 #include <linux/pagemap.h>
12 #include <linux/mempolicy.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/sched/mm.h>
16 #include <linux/swapops.h>
17 #include <linux/mmu_notifier.h>
18 #include <linux/page_idle.h>
19 #include <linux/shmem_fs.h>
20 #include <linux/uaccess.h>
21 #include <linux/pkeys.h>
22
23 #include <asm/elf.h>
24 #include <asm/tlb.h>
25 #include <asm/tlbflush.h>
26 #include "internal.h"
27
28 #define SEQ_PUT_DEC(str, val) \
29 seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8)
task_mem(struct seq_file * m,struct mm_struct * mm)30 void task_mem(struct seq_file *m, struct mm_struct *mm)
31 {
32 unsigned long text, lib, swap, anon, file, shmem;
33 unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
34
35 anon = get_mm_counter(mm, MM_ANONPAGES);
36 file = get_mm_counter(mm, MM_FILEPAGES);
37 shmem = get_mm_counter(mm, MM_SHMEMPAGES);
38
39 /*
40 * Note: to minimize their overhead, mm maintains hiwater_vm and
41 * hiwater_rss only when about to *lower* total_vm or rss. Any
42 * collector of these hiwater stats must therefore get total_vm
43 * and rss too, which will usually be the higher. Barriers? not
44 * worth the effort, such snapshots can always be inconsistent.
45 */
46 hiwater_vm = total_vm = mm->total_vm;
47 if (hiwater_vm < mm->hiwater_vm)
48 hiwater_vm = mm->hiwater_vm;
49 hiwater_rss = total_rss = anon + file + shmem;
50 if (hiwater_rss < mm->hiwater_rss)
51 hiwater_rss = mm->hiwater_rss;
52
53 /* split executable areas between text and lib */
54 text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK);
55 text = min(text, mm->exec_vm << PAGE_SHIFT);
56 lib = (mm->exec_vm << PAGE_SHIFT) - text;
57
58 swap = get_mm_counter(mm, MM_SWAPENTS);
59 SEQ_PUT_DEC("VmPeak:\t", hiwater_vm);
60 SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm);
61 SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm);
62 SEQ_PUT_DEC(" kB\nVmPin:\t", atomic64_read(&mm->pinned_vm));
63 SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss);
64 SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss);
65 SEQ_PUT_DEC(" kB\nRssAnon:\t", anon);
66 SEQ_PUT_DEC(" kB\nRssFile:\t", file);
67 SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem);
68 SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm);
69 SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm);
70 seq_put_decimal_ull_width(m,
71 " kB\nVmExe:\t", text >> 10, 8);
72 seq_put_decimal_ull_width(m,
73 " kB\nVmLib:\t", lib >> 10, 8);
74 seq_put_decimal_ull_width(m,
75 " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8);
76 SEQ_PUT_DEC(" kB\nVmSwap:\t", swap);
77 seq_puts(m, " kB\n");
78 hugetlb_report_usage(m, mm);
79 }
80 #undef SEQ_PUT_DEC
81
task_vsize(struct mm_struct * mm)82 unsigned long task_vsize(struct mm_struct *mm)
83 {
84 return PAGE_SIZE * mm->total_vm;
85 }
86
task_statm(struct mm_struct * mm,unsigned long * shared,unsigned long * text,unsigned long * data,unsigned long * resident)87 unsigned long task_statm(struct mm_struct *mm,
88 unsigned long *shared, unsigned long *text,
89 unsigned long *data, unsigned long *resident)
90 {
91 *shared = get_mm_counter(mm, MM_FILEPAGES) +
92 get_mm_counter(mm, MM_SHMEMPAGES);
93 *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
94 >> PAGE_SHIFT;
95 *data = mm->data_vm + mm->stack_vm;
96 *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
97 return mm->total_vm;
98 }
99
100 #ifdef CONFIG_NUMA
101 /*
102 * Save get_task_policy() for show_numa_map().
103 */
hold_task_mempolicy(struct proc_maps_private * priv)104 static void hold_task_mempolicy(struct proc_maps_private *priv)
105 {
106 struct task_struct *task = priv->task;
107
108 task_lock(task);
109 priv->task_mempolicy = get_task_policy(task);
110 mpol_get(priv->task_mempolicy);
111 task_unlock(task);
112 }
release_task_mempolicy(struct proc_maps_private * priv)113 static void release_task_mempolicy(struct proc_maps_private *priv)
114 {
115 mpol_put(priv->task_mempolicy);
116 }
117 #else
hold_task_mempolicy(struct proc_maps_private * priv)118 static void hold_task_mempolicy(struct proc_maps_private *priv)
119 {
120 }
release_task_mempolicy(struct proc_maps_private * priv)121 static void release_task_mempolicy(struct proc_maps_private *priv)
122 {
123 }
124 #endif
125
m_start(struct seq_file * m,loff_t * ppos)126 static void *m_start(struct seq_file *m, loff_t *ppos)
127 {
128 struct proc_maps_private *priv = m->private;
129 unsigned long last_addr = *ppos;
130 struct mm_struct *mm;
131 struct vm_area_struct *vma;
132
133 /* See m_next(). Zero at the start or after lseek. */
134 if (last_addr == -1UL)
135 return NULL;
136
137 priv->task = get_proc_task(priv->inode);
138 if (!priv->task)
139 return ERR_PTR(-ESRCH);
140
141 mm = priv->mm;
142 if (!mm || !mmget_not_zero(mm)) {
143 put_task_struct(priv->task);
144 priv->task = NULL;
145 return NULL;
146 }
147
148 if (mmap_read_lock_killable(mm)) {
149 mmput(mm);
150 put_task_struct(priv->task);
151 priv->task = NULL;
152 return ERR_PTR(-EINTR);
153 }
154
155 hold_task_mempolicy(priv);
156 priv->tail_vma = get_gate_vma(mm);
157
158 vma = find_vma(mm, last_addr);
159 if (vma)
160 return vma;
161
162 return priv->tail_vma;
163 }
164
m_next(struct seq_file * m,void * v,loff_t * ppos)165 static void *m_next(struct seq_file *m, void *v, loff_t *ppos)
166 {
167 struct proc_maps_private *priv = m->private;
168 struct vm_area_struct *next, *vma = v;
169
170 if (vma == priv->tail_vma)
171 next = NULL;
172 else if (vma->vm_next)
173 next = vma->vm_next;
174 else
175 next = priv->tail_vma;
176
177 *ppos = next ? next->vm_start : -1UL;
178
179 return next;
180 }
181
m_stop(struct seq_file * m,void * v)182 static void m_stop(struct seq_file *m, void *v)
183 {
184 struct proc_maps_private *priv = m->private;
185 struct mm_struct *mm = priv->mm;
186
187 if (!priv->task)
188 return;
189
190 release_task_mempolicy(priv);
191 mmap_read_unlock(mm);
192 mmput(mm);
193 put_task_struct(priv->task);
194 priv->task = NULL;
195 }
196
proc_maps_open(struct inode * inode,struct file * file,const struct seq_operations * ops,int psize)197 static int proc_maps_open(struct inode *inode, struct file *file,
198 const struct seq_operations *ops, int psize)
199 {
200 struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
201
202 if (!priv)
203 return -ENOMEM;
204
205 priv->inode = inode;
206 priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
207 if (IS_ERR(priv->mm)) {
208 int err = PTR_ERR(priv->mm);
209
210 seq_release_private(inode, file);
211 return err;
212 }
213
214 return 0;
215 }
216
proc_map_release(struct inode * inode,struct file * file)217 static int proc_map_release(struct inode *inode, struct file *file)
218 {
219 struct seq_file *seq = file->private_data;
220 struct proc_maps_private *priv = seq->private;
221
222 if (priv->mm)
223 mmdrop(priv->mm);
224
225 return seq_release_private(inode, file);
226 }
227
do_maps_open(struct inode * inode,struct file * file,const struct seq_operations * ops)228 static int do_maps_open(struct inode *inode, struct file *file,
229 const struct seq_operations *ops)
230 {
231 return proc_maps_open(inode, file, ops,
232 sizeof(struct proc_maps_private));
233 }
234
235 /*
236 * Indicate if the VMA is a stack for the given task; for
237 * /proc/PID/maps that is the stack of the main task.
238 */
is_stack(struct vm_area_struct * vma)239 static int is_stack(struct vm_area_struct *vma)
240 {
241 /*
242 * We make no effort to guess what a given thread considers to be
243 * its "stack". It's not even well-defined for programs written
244 * languages like Go.
245 */
246 return vma->vm_start <= vma->vm_mm->start_stack &&
247 vma->vm_end >= vma->vm_mm->start_stack;
248 }
249
show_vma_header_prefix(struct seq_file * m,unsigned long start,unsigned long end,vm_flags_t flags,unsigned long long pgoff,dev_t dev,unsigned long ino)250 static void show_vma_header_prefix(struct seq_file *m,
251 unsigned long start, unsigned long end,
252 vm_flags_t flags, unsigned long long pgoff,
253 dev_t dev, unsigned long ino)
254 {
255 seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
256 seq_put_hex_ll(m, NULL, start, 8);
257 seq_put_hex_ll(m, "-", end, 8);
258 seq_putc(m, ' ');
259 seq_putc(m, flags & VM_READ ? 'r' : '-');
260 seq_putc(m, flags & VM_WRITE ? 'w' : '-');
261 seq_putc(m, flags & VM_EXEC ? 'x' : '-');
262 seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p');
263 seq_put_hex_ll(m, " ", pgoff, 8);
264 seq_put_hex_ll(m, " ", MAJOR(dev), 2);
265 seq_put_hex_ll(m, ":", MINOR(dev), 2);
266 seq_put_decimal_ull(m, " ", ino);
267 seq_putc(m, ' ');
268 }
269
270 static void
show_map_vma(struct seq_file * m,struct vm_area_struct * vma)271 show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
272 {
273 struct mm_struct *mm = vma->vm_mm;
274 struct file *file = vma->vm_file;
275 vm_flags_t flags = vma->vm_flags;
276 unsigned long ino = 0;
277 unsigned long long pgoff = 0;
278 unsigned long start, end;
279 dev_t dev = 0;
280 const char *name = NULL;
281
282 if (file) {
283 struct inode *inode = file_inode(vma->vm_file);
284 dev = inode->i_sb->s_dev;
285 ino = inode->i_ino;
286 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
287 }
288
289 start = vma->vm_start;
290 end = vma->vm_end;
291 show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino);
292
293 /*
294 * Print the dentry name for named mappings, and a
295 * special [heap] marker for the heap:
296 */
297 if (file) {
298 seq_pad(m, ' ');
299 seq_file_path(m, file, "\n");
300 goto done;
301 }
302
303 if (vma->vm_ops && vma->vm_ops->name) {
304 name = vma->vm_ops->name(vma);
305 if (name)
306 goto done;
307 }
308
309 name = arch_vma_name(vma);
310 if (!name) {
311 if (!mm) {
312 name = "[vdso]";
313 goto done;
314 }
315
316 if (vma->vm_start <= mm->brk &&
317 vma->vm_end >= mm->start_brk) {
318 name = "[heap]";
319 goto done;
320 }
321
322 if (is_stack(vma))
323 name = "[stack]";
324 }
325
326 done:
327 if (name) {
328 seq_pad(m, ' ');
329 seq_puts(m, name);
330 }
331 seq_putc(m, '\n');
332 }
333
show_map(struct seq_file * m,void * v)334 static int show_map(struct seq_file *m, void *v)
335 {
336 show_map_vma(m, v);
337 return 0;
338 }
339
340 static const struct seq_operations proc_pid_maps_op = {
341 .start = m_start,
342 .next = m_next,
343 .stop = m_stop,
344 .show = show_map
345 };
346
pid_maps_open(struct inode * inode,struct file * file)347 static int pid_maps_open(struct inode *inode, struct file *file)
348 {
349 return do_maps_open(inode, file, &proc_pid_maps_op);
350 }
351
352 const struct file_operations proc_pid_maps_operations = {
353 .open = pid_maps_open,
354 .read = seq_read,
355 .llseek = seq_lseek,
356 .release = proc_map_release,
357 };
358
359 /*
360 * Proportional Set Size(PSS): my share of RSS.
361 *
362 * PSS of a process is the count of pages it has in memory, where each
363 * page is divided by the number of processes sharing it. So if a
364 * process has 1000 pages all to itself, and 1000 shared with one other
365 * process, its PSS will be 1500.
366 *
367 * To keep (accumulated) division errors low, we adopt a 64bit
368 * fixed-point pss counter to minimize division errors. So (pss >>
369 * PSS_SHIFT) would be the real byte count.
370 *
371 * A shift of 12 before division means (assuming 4K page size):
372 * - 1M 3-user-pages add up to 8KB errors;
373 * - supports mapcount up to 2^24, or 16M;
374 * - supports PSS up to 2^52 bytes, or 4PB.
375 */
376 #define PSS_SHIFT 12
377
378 #ifdef CONFIG_PROC_PAGE_MONITOR
379 struct mem_size_stats {
380 unsigned long resident;
381 unsigned long shared_clean;
382 unsigned long shared_dirty;
383 unsigned long private_clean;
384 unsigned long private_dirty;
385 unsigned long referenced;
386 unsigned long anonymous;
387 unsigned long lazyfree;
388 unsigned long anonymous_thp;
389 unsigned long shmem_thp;
390 unsigned long file_thp;
391 unsigned long swap;
392 unsigned long shared_hugetlb;
393 unsigned long private_hugetlb;
394 u64 pss;
395 u64 pss_anon;
396 u64 pss_file;
397 u64 pss_shmem;
398 u64 pss_locked;
399 u64 swap_pss;
400 bool check_shmem_swap;
401 };
402
smaps_page_accumulate(struct mem_size_stats * mss,struct page * page,unsigned long size,unsigned long pss,bool dirty,bool locked,bool private)403 static void smaps_page_accumulate(struct mem_size_stats *mss,
404 struct page *page, unsigned long size, unsigned long pss,
405 bool dirty, bool locked, bool private)
406 {
407 mss->pss += pss;
408
409 if (PageAnon(page))
410 mss->pss_anon += pss;
411 else if (PageSwapBacked(page))
412 mss->pss_shmem += pss;
413 else
414 mss->pss_file += pss;
415
416 if (locked)
417 mss->pss_locked += pss;
418
419 if (dirty || PageDirty(page)) {
420 if (private)
421 mss->private_dirty += size;
422 else
423 mss->shared_dirty += size;
424 } else {
425 if (private)
426 mss->private_clean += size;
427 else
428 mss->shared_clean += size;
429 }
430 }
431
smaps_account(struct mem_size_stats * mss,struct page * page,bool compound,bool young,bool dirty,bool locked)432 static void smaps_account(struct mem_size_stats *mss, struct page *page,
433 bool compound, bool young, bool dirty, bool locked)
434 {
435 int i, nr = compound ? compound_nr(page) : 1;
436 unsigned long size = nr * PAGE_SIZE;
437
438 /*
439 * First accumulate quantities that depend only on |size| and the type
440 * of the compound page.
441 */
442 if (PageAnon(page)) {
443 mss->anonymous += size;
444 if (!PageSwapBacked(page) && !dirty && !PageDirty(page))
445 mss->lazyfree += size;
446 }
447
448 mss->resident += size;
449 /* Accumulate the size in pages that have been accessed. */
450 if (young || page_is_young(page) || PageReferenced(page))
451 mss->referenced += size;
452
453 /*
454 * Then accumulate quantities that may depend on sharing, or that may
455 * differ page-by-page.
456 *
457 * page_count(page) == 1 guarantees the page is mapped exactly once.
458 * If any subpage of the compound page mapped with PTE it would elevate
459 * page_count().
460 */
461 if (page_count(page) == 1) {
462 smaps_page_accumulate(mss, page, size, size << PSS_SHIFT, dirty,
463 locked, true);
464 return;
465 }
466 for (i = 0; i < nr; i++, page++) {
467 int mapcount = page_mapcount(page);
468 unsigned long pss = PAGE_SIZE << PSS_SHIFT;
469 if (mapcount >= 2)
470 pss /= mapcount;
471 smaps_page_accumulate(mss, page, PAGE_SIZE, pss, dirty, locked,
472 mapcount < 2);
473 }
474 }
475
476 #ifdef CONFIG_SHMEM
smaps_pte_hole(unsigned long addr,unsigned long end,__always_unused int depth,struct mm_walk * walk)477 static int smaps_pte_hole(unsigned long addr, unsigned long end,
478 __always_unused int depth, struct mm_walk *walk)
479 {
480 struct mem_size_stats *mss = walk->private;
481
482 mss->swap += shmem_partial_swap_usage(
483 walk->vma->vm_file->f_mapping, addr, end);
484
485 return 0;
486 }
487 #else
488 #define smaps_pte_hole NULL
489 #endif /* CONFIG_SHMEM */
490
smaps_pte_entry(pte_t * pte,unsigned long addr,struct mm_walk * walk)491 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
492 struct mm_walk *walk)
493 {
494 struct mem_size_stats *mss = walk->private;
495 struct vm_area_struct *vma = walk->vma;
496 bool locked = !!(vma->vm_flags & VM_LOCKED);
497 struct page *page = NULL;
498
499 if (pte_present(*pte)) {
500 page = vm_normal_page(vma, addr, *pte);
501 } else if (is_swap_pte(*pte)) {
502 swp_entry_t swpent = pte_to_swp_entry(*pte);
503
504 if (!non_swap_entry(swpent)) {
505 int mapcount;
506
507 mss->swap += PAGE_SIZE;
508 mapcount = swp_swapcount(swpent);
509 if (mapcount >= 2) {
510 u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
511
512 do_div(pss_delta, mapcount);
513 mss->swap_pss += pss_delta;
514 } else {
515 mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
516 }
517 } else if (is_migration_entry(swpent))
518 page = migration_entry_to_page(swpent);
519 else if (is_device_private_entry(swpent))
520 page = device_private_entry_to_page(swpent);
521 } else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap
522 && pte_none(*pte))) {
523 page = xa_load(&vma->vm_file->f_mapping->i_pages,
524 linear_page_index(vma, addr));
525 if (xa_is_value(page))
526 mss->swap += PAGE_SIZE;
527 return;
528 }
529
530 if (!page)
531 return;
532
533 smaps_account(mss, page, false, pte_young(*pte), pte_dirty(*pte), locked);
534 }
535
536 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
smaps_pmd_entry(pmd_t * pmd,unsigned long addr,struct mm_walk * walk)537 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
538 struct mm_walk *walk)
539 {
540 struct mem_size_stats *mss = walk->private;
541 struct vm_area_struct *vma = walk->vma;
542 bool locked = !!(vma->vm_flags & VM_LOCKED);
543 struct page *page = NULL;
544
545 if (pmd_present(*pmd)) {
546 /* FOLL_DUMP will return -EFAULT on huge zero page */
547 page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
548 } else if (unlikely(thp_migration_supported() && is_swap_pmd(*pmd))) {
549 swp_entry_t entry = pmd_to_swp_entry(*pmd);
550
551 if (is_migration_entry(entry))
552 page = migration_entry_to_page(entry);
553 }
554 if (IS_ERR_OR_NULL(page))
555 return;
556 if (PageAnon(page))
557 mss->anonymous_thp += HPAGE_PMD_SIZE;
558 else if (PageSwapBacked(page))
559 mss->shmem_thp += HPAGE_PMD_SIZE;
560 else if (is_zone_device_page(page))
561 /* pass */;
562 else
563 mss->file_thp += HPAGE_PMD_SIZE;
564 smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd), locked);
565 }
566 #else
smaps_pmd_entry(pmd_t * pmd,unsigned long addr,struct mm_walk * walk)567 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
568 struct mm_walk *walk)
569 {
570 }
571 #endif
572
smaps_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)573 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
574 struct mm_walk *walk)
575 {
576 struct vm_area_struct *vma = walk->vma;
577 pte_t *pte;
578 spinlock_t *ptl;
579
580 ptl = pmd_trans_huge_lock(pmd, vma);
581 if (ptl) {
582 smaps_pmd_entry(pmd, addr, walk);
583 spin_unlock(ptl);
584 goto out;
585 }
586
587 if (pmd_trans_unstable(pmd))
588 goto out;
589 /*
590 * The mmap_lock held all the way back in m_start() is what
591 * keeps khugepaged out of here and from collapsing things
592 * in here.
593 */
594 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
595 for (; addr != end; pte++, addr += PAGE_SIZE)
596 smaps_pte_entry(pte, addr, walk);
597 pte_unmap_unlock(pte - 1, ptl);
598 out:
599 cond_resched();
600 return 0;
601 }
602
show_smap_vma_flags(struct seq_file * m,struct vm_area_struct * vma)603 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
604 {
605 /*
606 * Don't forget to update Documentation/ on changes.
607 */
608 static const char mnemonics[BITS_PER_LONG][2] = {
609 /*
610 * In case if we meet a flag we don't know about.
611 */
612 [0 ... (BITS_PER_LONG-1)] = "??",
613
614 [ilog2(VM_READ)] = "rd",
615 [ilog2(VM_WRITE)] = "wr",
616 [ilog2(VM_EXEC)] = "ex",
617 [ilog2(VM_SHARED)] = "sh",
618 [ilog2(VM_MAYREAD)] = "mr",
619 [ilog2(VM_MAYWRITE)] = "mw",
620 [ilog2(VM_MAYEXEC)] = "me",
621 [ilog2(VM_MAYSHARE)] = "ms",
622 [ilog2(VM_GROWSDOWN)] = "gd",
623 [ilog2(VM_PFNMAP)] = "pf",
624 [ilog2(VM_DENYWRITE)] = "dw",
625 [ilog2(VM_LOCKED)] = "lo",
626 [ilog2(VM_IO)] = "io",
627 [ilog2(VM_SEQ_READ)] = "sr",
628 [ilog2(VM_RAND_READ)] = "rr",
629 [ilog2(VM_DONTCOPY)] = "dc",
630 [ilog2(VM_DONTEXPAND)] = "de",
631 [ilog2(VM_ACCOUNT)] = "ac",
632 [ilog2(VM_NORESERVE)] = "nr",
633 [ilog2(VM_HUGETLB)] = "ht",
634 [ilog2(VM_SYNC)] = "sf",
635 [ilog2(VM_ARCH_1)] = "ar",
636 [ilog2(VM_WIPEONFORK)] = "wf",
637 [ilog2(VM_DONTDUMP)] = "dd",
638 #ifdef CONFIG_ARM64_BTI
639 [ilog2(VM_ARM64_BTI)] = "bt",
640 #endif
641 #ifdef CONFIG_MEM_SOFT_DIRTY
642 [ilog2(VM_SOFTDIRTY)] = "sd",
643 #endif
644 [ilog2(VM_MIXEDMAP)] = "mm",
645 [ilog2(VM_HUGEPAGE)] = "hg",
646 [ilog2(VM_NOHUGEPAGE)] = "nh",
647 [ilog2(VM_MERGEABLE)] = "mg",
648 [ilog2(VM_UFFD_MISSING)]= "um",
649 [ilog2(VM_UFFD_WP)] = "uw",
650 #ifdef CONFIG_ARM64_MTE
651 [ilog2(VM_MTE)] = "mt",
652 [ilog2(VM_MTE_ALLOWED)] = "",
653 #endif
654 #ifdef CONFIG_ARCH_HAS_PKEYS
655 /* These come out via ProtectionKey: */
656 [ilog2(VM_PKEY_BIT0)] = "",
657 [ilog2(VM_PKEY_BIT1)] = "",
658 [ilog2(VM_PKEY_BIT2)] = "",
659 [ilog2(VM_PKEY_BIT3)] = "",
660 #if VM_PKEY_BIT4
661 [ilog2(VM_PKEY_BIT4)] = "",
662 #endif
663 #endif /* CONFIG_ARCH_HAS_PKEYS */
664 };
665 size_t i;
666
667 seq_puts(m, "VmFlags: ");
668 for (i = 0; i < BITS_PER_LONG; i++) {
669 if (!mnemonics[i][0])
670 continue;
671 if (vma->vm_flags & (1UL << i)) {
672 seq_putc(m, mnemonics[i][0]);
673 seq_putc(m, mnemonics[i][1]);
674 seq_putc(m, ' ');
675 }
676 }
677 seq_putc(m, '\n');
678 }
679
680 #ifdef CONFIG_HUGETLB_PAGE
smaps_hugetlb_range(pte_t * pte,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)681 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
682 unsigned long addr, unsigned long end,
683 struct mm_walk *walk)
684 {
685 struct mem_size_stats *mss = walk->private;
686 struct vm_area_struct *vma = walk->vma;
687 struct page *page = NULL;
688
689 if (pte_present(*pte)) {
690 page = vm_normal_page(vma, addr, *pte);
691 } else if (is_swap_pte(*pte)) {
692 swp_entry_t swpent = pte_to_swp_entry(*pte);
693
694 if (is_migration_entry(swpent))
695 page = migration_entry_to_page(swpent);
696 else if (is_device_private_entry(swpent))
697 page = device_private_entry_to_page(swpent);
698 }
699 if (page) {
700 int mapcount = page_mapcount(page);
701
702 if (mapcount >= 2)
703 mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
704 else
705 mss->private_hugetlb += huge_page_size(hstate_vma(vma));
706 }
707 return 0;
708 }
709 #else
710 #define smaps_hugetlb_range NULL
711 #endif /* HUGETLB_PAGE */
712
713 static const struct mm_walk_ops smaps_walk_ops = {
714 .pmd_entry = smaps_pte_range,
715 .hugetlb_entry = smaps_hugetlb_range,
716 };
717
718 static const struct mm_walk_ops smaps_shmem_walk_ops = {
719 .pmd_entry = smaps_pte_range,
720 .hugetlb_entry = smaps_hugetlb_range,
721 .pte_hole = smaps_pte_hole,
722 };
723
724 /*
725 * Gather mem stats from @vma with the indicated beginning
726 * address @start, and keep them in @mss.
727 *
728 * Use vm_start of @vma as the beginning address if @start is 0.
729 */
smap_gather_stats(struct vm_area_struct * vma,struct mem_size_stats * mss,unsigned long start)730 static void smap_gather_stats(struct vm_area_struct *vma,
731 struct mem_size_stats *mss, unsigned long start)
732 {
733 const struct mm_walk_ops *ops = &smaps_walk_ops;
734
735 /* Invalid start */
736 if (start >= vma->vm_end)
737 return;
738
739 #ifdef CONFIG_SHMEM
740 /* In case of smaps_rollup, reset the value from previous vma */
741 mss->check_shmem_swap = false;
742 if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
743 /*
744 * For shared or readonly shmem mappings we know that all
745 * swapped out pages belong to the shmem object, and we can
746 * obtain the swap value much more efficiently. For private
747 * writable mappings, we might have COW pages that are
748 * not affected by the parent swapped out pages of the shmem
749 * object, so we have to distinguish them during the page walk.
750 * Unless we know that the shmem object (or the part mapped by
751 * our VMA) has no swapped out pages at all.
752 */
753 unsigned long shmem_swapped = shmem_swap_usage(vma);
754
755 if (!start && (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
756 !(vma->vm_flags & VM_WRITE))) {
757 mss->swap += shmem_swapped;
758 } else {
759 mss->check_shmem_swap = true;
760 ops = &smaps_shmem_walk_ops;
761 }
762 }
763 #endif
764 /* mmap_lock is held in m_start */
765 if (!start)
766 walk_page_vma(vma, ops, mss);
767 else
768 walk_page_range(vma->vm_mm, start, vma->vm_end, ops, mss);
769 }
770
771 #define SEQ_PUT_DEC(str, val) \
772 seq_put_decimal_ull_width(m, str, (val) >> 10, 8)
773
774 /* Show the contents common for smaps and smaps_rollup */
__show_smap(struct seq_file * m,const struct mem_size_stats * mss,bool rollup_mode)775 static void __show_smap(struct seq_file *m, const struct mem_size_stats *mss,
776 bool rollup_mode)
777 {
778 SEQ_PUT_DEC("Rss: ", mss->resident);
779 SEQ_PUT_DEC(" kB\nPss: ", mss->pss >> PSS_SHIFT);
780 if (rollup_mode) {
781 /*
782 * These are meaningful only for smaps_rollup, otherwise two of
783 * them are zero, and the other one is the same as Pss.
784 */
785 SEQ_PUT_DEC(" kB\nPss_Anon: ",
786 mss->pss_anon >> PSS_SHIFT);
787 SEQ_PUT_DEC(" kB\nPss_File: ",
788 mss->pss_file >> PSS_SHIFT);
789 SEQ_PUT_DEC(" kB\nPss_Shmem: ",
790 mss->pss_shmem >> PSS_SHIFT);
791 }
792 SEQ_PUT_DEC(" kB\nShared_Clean: ", mss->shared_clean);
793 SEQ_PUT_DEC(" kB\nShared_Dirty: ", mss->shared_dirty);
794 SEQ_PUT_DEC(" kB\nPrivate_Clean: ", mss->private_clean);
795 SEQ_PUT_DEC(" kB\nPrivate_Dirty: ", mss->private_dirty);
796 SEQ_PUT_DEC(" kB\nReferenced: ", mss->referenced);
797 SEQ_PUT_DEC(" kB\nAnonymous: ", mss->anonymous);
798 SEQ_PUT_DEC(" kB\nLazyFree: ", mss->lazyfree);
799 SEQ_PUT_DEC(" kB\nAnonHugePages: ", mss->anonymous_thp);
800 SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp);
801 SEQ_PUT_DEC(" kB\nFilePmdMapped: ", mss->file_thp);
802 SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb);
803 seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ",
804 mss->private_hugetlb >> 10, 7);
805 SEQ_PUT_DEC(" kB\nSwap: ", mss->swap);
806 SEQ_PUT_DEC(" kB\nSwapPss: ",
807 mss->swap_pss >> PSS_SHIFT);
808 SEQ_PUT_DEC(" kB\nLocked: ",
809 mss->pss_locked >> PSS_SHIFT);
810 seq_puts(m, " kB\n");
811 }
812
show_smap(struct seq_file * m,void * v)813 static int show_smap(struct seq_file *m, void *v)
814 {
815 struct vm_area_struct *vma = v;
816 struct mem_size_stats mss;
817
818 memset(&mss, 0, sizeof(mss));
819
820 smap_gather_stats(vma, &mss, 0);
821
822 show_map_vma(m, vma);
823
824 SEQ_PUT_DEC("Size: ", vma->vm_end - vma->vm_start);
825 SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma));
826 SEQ_PUT_DEC(" kB\nMMUPageSize: ", vma_mmu_pagesize(vma));
827 seq_puts(m, " kB\n");
828
829 __show_smap(m, &mss, false);
830
831 seq_printf(m, "THPeligible: %d\n",
832 transparent_hugepage_enabled(vma));
833
834 if (arch_pkeys_enabled())
835 seq_printf(m, "ProtectionKey: %8u\n", vma_pkey(vma));
836 show_smap_vma_flags(m, vma);
837
838 return 0;
839 }
840
show_smaps_rollup(struct seq_file * m,void * v)841 static int show_smaps_rollup(struct seq_file *m, void *v)
842 {
843 struct proc_maps_private *priv = m->private;
844 struct mem_size_stats mss;
845 struct mm_struct *mm;
846 struct vm_area_struct *vma;
847 unsigned long last_vma_end = 0;
848 int ret = 0;
849
850 priv->task = get_proc_task(priv->inode);
851 if (!priv->task)
852 return -ESRCH;
853
854 mm = priv->mm;
855 if (!mm || !mmget_not_zero(mm)) {
856 ret = -ESRCH;
857 goto out_put_task;
858 }
859
860 memset(&mss, 0, sizeof(mss));
861
862 ret = mmap_read_lock_killable(mm);
863 if (ret)
864 goto out_put_mm;
865
866 hold_task_mempolicy(priv);
867
868 for (vma = priv->mm->mmap; vma;) {
869 smap_gather_stats(vma, &mss, 0);
870 last_vma_end = vma->vm_end;
871
872 /*
873 * Release mmap_lock temporarily if someone wants to
874 * access it for write request.
875 */
876 if (mmap_lock_is_contended(mm)) {
877 mmap_read_unlock(mm);
878 ret = mmap_read_lock_killable(mm);
879 if (ret) {
880 release_task_mempolicy(priv);
881 goto out_put_mm;
882 }
883
884 /*
885 * After dropping the lock, there are four cases to
886 * consider. See the following example for explanation.
887 *
888 * +------+------+-----------+
889 * | VMA1 | VMA2 | VMA3 |
890 * +------+------+-----------+
891 * | | | |
892 * 4k 8k 16k 400k
893 *
894 * Suppose we drop the lock after reading VMA2 due to
895 * contention, then we get:
896 *
897 * last_vma_end = 16k
898 *
899 * 1) VMA2 is freed, but VMA3 exists:
900 *
901 * find_vma(mm, 16k - 1) will return VMA3.
902 * In this case, just continue from VMA3.
903 *
904 * 2) VMA2 still exists:
905 *
906 * find_vma(mm, 16k - 1) will return VMA2.
907 * Iterate the loop like the original one.
908 *
909 * 3) No more VMAs can be found:
910 *
911 * find_vma(mm, 16k - 1) will return NULL.
912 * No more things to do, just break.
913 *
914 * 4) (last_vma_end - 1) is the middle of a vma (VMA'):
915 *
916 * find_vma(mm, 16k - 1) will return VMA' whose range
917 * contains last_vma_end.
918 * Iterate VMA' from last_vma_end.
919 */
920 vma = find_vma(mm, last_vma_end - 1);
921 /* Case 3 above */
922 if (!vma)
923 break;
924
925 /* Case 1 above */
926 if (vma->vm_start >= last_vma_end)
927 continue;
928
929 /* Case 4 above */
930 if (vma->vm_end > last_vma_end)
931 smap_gather_stats(vma, &mss, last_vma_end);
932 }
933 /* Case 2 above */
934 vma = vma->vm_next;
935 }
936
937 show_vma_header_prefix(m, priv->mm->mmap->vm_start,
938 last_vma_end, 0, 0, 0, 0);
939 seq_pad(m, ' ');
940 seq_puts(m, "[rollup]\n");
941
942 __show_smap(m, &mss, true);
943
944 release_task_mempolicy(priv);
945 mmap_read_unlock(mm);
946
947 out_put_mm:
948 mmput(mm);
949 out_put_task:
950 put_task_struct(priv->task);
951 priv->task = NULL;
952
953 return ret;
954 }
955 #undef SEQ_PUT_DEC
956
957 static const struct seq_operations proc_pid_smaps_op = {
958 .start = m_start,
959 .next = m_next,
960 .stop = m_stop,
961 .show = show_smap
962 };
963
pid_smaps_open(struct inode * inode,struct file * file)964 static int pid_smaps_open(struct inode *inode, struct file *file)
965 {
966 return do_maps_open(inode, file, &proc_pid_smaps_op);
967 }
968
smaps_rollup_open(struct inode * inode,struct file * file)969 static int smaps_rollup_open(struct inode *inode, struct file *file)
970 {
971 int ret;
972 struct proc_maps_private *priv;
973
974 priv = kzalloc(sizeof(*priv), GFP_KERNEL_ACCOUNT);
975 if (!priv)
976 return -ENOMEM;
977
978 ret = single_open(file, show_smaps_rollup, priv);
979 if (ret)
980 goto out_free;
981
982 priv->inode = inode;
983 priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
984 if (IS_ERR(priv->mm)) {
985 ret = PTR_ERR(priv->mm);
986
987 single_release(inode, file);
988 goto out_free;
989 }
990
991 return 0;
992
993 out_free:
994 kfree(priv);
995 return ret;
996 }
997
smaps_rollup_release(struct inode * inode,struct file * file)998 static int smaps_rollup_release(struct inode *inode, struct file *file)
999 {
1000 struct seq_file *seq = file->private_data;
1001 struct proc_maps_private *priv = seq->private;
1002
1003 if (priv->mm)
1004 mmdrop(priv->mm);
1005
1006 kfree(priv);
1007 return single_release(inode, file);
1008 }
1009
1010 const struct file_operations proc_pid_smaps_operations = {
1011 .open = pid_smaps_open,
1012 .read = seq_read,
1013 .llseek = seq_lseek,
1014 .release = proc_map_release,
1015 };
1016
1017 const struct file_operations proc_pid_smaps_rollup_operations = {
1018 .open = smaps_rollup_open,
1019 .read = seq_read,
1020 .llseek = seq_lseek,
1021 .release = smaps_rollup_release,
1022 };
1023
1024 enum clear_refs_types {
1025 CLEAR_REFS_ALL = 1,
1026 CLEAR_REFS_ANON,
1027 CLEAR_REFS_MAPPED,
1028 CLEAR_REFS_SOFT_DIRTY,
1029 CLEAR_REFS_MM_HIWATER_RSS,
1030 CLEAR_REFS_LAST,
1031 };
1032
1033 struct clear_refs_private {
1034 enum clear_refs_types type;
1035 };
1036
1037 #ifdef CONFIG_MEM_SOFT_DIRTY
clear_soft_dirty(struct vm_area_struct * vma,unsigned long addr,pte_t * pte)1038 static inline void clear_soft_dirty(struct vm_area_struct *vma,
1039 unsigned long addr, pte_t *pte)
1040 {
1041 /*
1042 * The soft-dirty tracker uses #PF-s to catch writes
1043 * to pages, so write-protect the pte as well. See the
1044 * Documentation/admin-guide/mm/soft-dirty.rst for full description
1045 * of how soft-dirty works.
1046 */
1047 pte_t ptent = *pte;
1048
1049 if (pte_present(ptent)) {
1050 pte_t old_pte;
1051
1052 old_pte = ptep_modify_prot_start(vma, addr, pte);
1053 ptent = pte_wrprotect(old_pte);
1054 ptent = pte_clear_soft_dirty(ptent);
1055 ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent);
1056 } else if (is_swap_pte(ptent)) {
1057 ptent = pte_swp_clear_soft_dirty(ptent);
1058 set_pte_at(vma->vm_mm, addr, pte, ptent);
1059 }
1060 }
1061 #else
clear_soft_dirty(struct vm_area_struct * vma,unsigned long addr,pte_t * pte)1062 static inline void clear_soft_dirty(struct vm_area_struct *vma,
1063 unsigned long addr, pte_t *pte)
1064 {
1065 }
1066 #endif
1067
1068 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
clear_soft_dirty_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1069 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1070 unsigned long addr, pmd_t *pmdp)
1071 {
1072 pmd_t old, pmd = *pmdp;
1073
1074 if (pmd_present(pmd)) {
1075 /* See comment in change_huge_pmd() */
1076 old = pmdp_invalidate(vma, addr, pmdp);
1077 if (pmd_dirty(old))
1078 pmd = pmd_mkdirty(pmd);
1079 if (pmd_young(old))
1080 pmd = pmd_mkyoung(pmd);
1081
1082 pmd = pmd_wrprotect(pmd);
1083 pmd = pmd_clear_soft_dirty(pmd);
1084
1085 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1086 } else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
1087 pmd = pmd_swp_clear_soft_dirty(pmd);
1088 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1089 }
1090 }
1091 #else
clear_soft_dirty_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1092 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1093 unsigned long addr, pmd_t *pmdp)
1094 {
1095 }
1096 #endif
1097
clear_refs_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)1098 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
1099 unsigned long end, struct mm_walk *walk)
1100 {
1101 struct clear_refs_private *cp = walk->private;
1102 struct vm_area_struct *vma = walk->vma;
1103 pte_t *pte, ptent;
1104 spinlock_t *ptl;
1105 struct page *page;
1106
1107 ptl = pmd_trans_huge_lock(pmd, vma);
1108 if (ptl) {
1109 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1110 clear_soft_dirty_pmd(vma, addr, pmd);
1111 goto out;
1112 }
1113
1114 if (!pmd_present(*pmd))
1115 goto out;
1116
1117 page = pmd_page(*pmd);
1118
1119 /* Clear accessed and referenced bits. */
1120 pmdp_test_and_clear_young(vma, addr, pmd);
1121 test_and_clear_page_young(page);
1122 ClearPageReferenced(page);
1123 out:
1124 spin_unlock(ptl);
1125 return 0;
1126 }
1127
1128 if (pmd_trans_unstable(pmd))
1129 return 0;
1130
1131 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1132 for (; addr != end; pte++, addr += PAGE_SIZE) {
1133 ptent = *pte;
1134
1135 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1136 clear_soft_dirty(vma, addr, pte);
1137 continue;
1138 }
1139
1140 if (!pte_present(ptent))
1141 continue;
1142
1143 page = vm_normal_page(vma, addr, ptent);
1144 if (!page)
1145 continue;
1146
1147 /* Clear accessed and referenced bits. */
1148 ptep_test_and_clear_young(vma, addr, pte);
1149 test_and_clear_page_young(page);
1150 ClearPageReferenced(page);
1151 }
1152 pte_unmap_unlock(pte - 1, ptl);
1153 cond_resched();
1154 return 0;
1155 }
1156
clear_refs_test_walk(unsigned long start,unsigned long end,struct mm_walk * walk)1157 static int clear_refs_test_walk(unsigned long start, unsigned long end,
1158 struct mm_walk *walk)
1159 {
1160 struct clear_refs_private *cp = walk->private;
1161 struct vm_area_struct *vma = walk->vma;
1162
1163 if (vma->vm_flags & VM_PFNMAP)
1164 return 1;
1165
1166 /*
1167 * Writing 1 to /proc/pid/clear_refs affects all pages.
1168 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
1169 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
1170 * Writing 4 to /proc/pid/clear_refs affects all pages.
1171 */
1172 if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
1173 return 1;
1174 if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
1175 return 1;
1176 return 0;
1177 }
1178
1179 static const struct mm_walk_ops clear_refs_walk_ops = {
1180 .pmd_entry = clear_refs_pte_range,
1181 .test_walk = clear_refs_test_walk,
1182 };
1183
clear_refs_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1184 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
1185 size_t count, loff_t *ppos)
1186 {
1187 struct task_struct *task;
1188 char buffer[PROC_NUMBUF];
1189 struct mm_struct *mm;
1190 struct vm_area_struct *vma;
1191 enum clear_refs_types type;
1192 struct mmu_gather tlb;
1193 int itype;
1194 int rv;
1195
1196 memset(buffer, 0, sizeof(buffer));
1197 if (count > sizeof(buffer) - 1)
1198 count = sizeof(buffer) - 1;
1199 if (copy_from_user(buffer, buf, count))
1200 return -EFAULT;
1201 rv = kstrtoint(strstrip(buffer), 10, &itype);
1202 if (rv < 0)
1203 return rv;
1204 type = (enum clear_refs_types)itype;
1205 if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1206 return -EINVAL;
1207
1208 task = get_proc_task(file_inode(file));
1209 if (!task)
1210 return -ESRCH;
1211 mm = get_task_mm(task);
1212 if (mm) {
1213 struct mmu_notifier_range range;
1214 struct clear_refs_private cp = {
1215 .type = type,
1216 };
1217
1218 if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1219 if (mmap_write_lock_killable(mm)) {
1220 count = -EINTR;
1221 goto out_mm;
1222 }
1223
1224 /*
1225 * Writing 5 to /proc/pid/clear_refs resets the peak
1226 * resident set size to this mm's current rss value.
1227 */
1228 reset_mm_hiwater_rss(mm);
1229 mmap_write_unlock(mm);
1230 goto out_mm;
1231 }
1232
1233 if (mmap_read_lock_killable(mm)) {
1234 count = -EINTR;
1235 goto out_mm;
1236 }
1237 tlb_gather_mmu(&tlb, mm, 0, -1);
1238 if (type == CLEAR_REFS_SOFT_DIRTY) {
1239 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1240 if (!(vma->vm_flags & VM_SOFTDIRTY))
1241 continue;
1242 mmap_read_unlock(mm);
1243 if (mmap_write_lock_killable(mm)) {
1244 count = -EINTR;
1245 goto out_mm;
1246 }
1247 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1248 vma->vm_flags &= ~VM_SOFTDIRTY;
1249 vma_set_page_prot(vma);
1250 }
1251 mmap_write_downgrade(mm);
1252 break;
1253 }
1254
1255 mmu_notifier_range_init(&range, MMU_NOTIFY_SOFT_DIRTY,
1256 0, NULL, mm, 0, -1UL);
1257 mmu_notifier_invalidate_range_start(&range);
1258 }
1259 walk_page_range(mm, 0, mm->highest_vm_end, &clear_refs_walk_ops,
1260 &cp);
1261 if (type == CLEAR_REFS_SOFT_DIRTY)
1262 mmu_notifier_invalidate_range_end(&range);
1263 tlb_finish_mmu(&tlb, 0, -1);
1264 mmap_read_unlock(mm);
1265 out_mm:
1266 mmput(mm);
1267 }
1268 put_task_struct(task);
1269
1270 return count;
1271 }
1272
1273 const struct file_operations proc_clear_refs_operations = {
1274 .write = clear_refs_write,
1275 .llseek = noop_llseek,
1276 };
1277
1278 typedef struct {
1279 u64 pme;
1280 } pagemap_entry_t;
1281
1282 struct pagemapread {
1283 int pos, len; /* units: PM_ENTRY_BYTES, not bytes */
1284 pagemap_entry_t *buffer;
1285 bool show_pfn;
1286 };
1287
1288 #define PAGEMAP_WALK_SIZE (PMD_SIZE)
1289 #define PAGEMAP_WALK_MASK (PMD_MASK)
1290
1291 #define PM_ENTRY_BYTES sizeof(pagemap_entry_t)
1292 #define PM_PFRAME_BITS 55
1293 #define PM_PFRAME_MASK GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1294 #define PM_SOFT_DIRTY BIT_ULL(55)
1295 #define PM_MMAP_EXCLUSIVE BIT_ULL(56)
1296 #define PM_FILE BIT_ULL(61)
1297 #define PM_SWAP BIT_ULL(62)
1298 #define PM_PRESENT BIT_ULL(63)
1299
1300 #define PM_END_OF_BUFFER 1
1301
make_pme(u64 frame,u64 flags)1302 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1303 {
1304 return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1305 }
1306
add_to_pagemap(unsigned long addr,pagemap_entry_t * pme,struct pagemapread * pm)1307 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1308 struct pagemapread *pm)
1309 {
1310 pm->buffer[pm->pos++] = *pme;
1311 if (pm->pos >= pm->len)
1312 return PM_END_OF_BUFFER;
1313 return 0;
1314 }
1315
pagemap_pte_hole(unsigned long start,unsigned long end,__always_unused int depth,struct mm_walk * walk)1316 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1317 __always_unused int depth, struct mm_walk *walk)
1318 {
1319 struct pagemapread *pm = walk->private;
1320 unsigned long addr = start;
1321 int err = 0;
1322
1323 while (addr < end) {
1324 struct vm_area_struct *vma = find_vma(walk->mm, addr);
1325 pagemap_entry_t pme = make_pme(0, 0);
1326 /* End of address space hole, which we mark as non-present. */
1327 unsigned long hole_end;
1328
1329 if (vma)
1330 hole_end = min(end, vma->vm_start);
1331 else
1332 hole_end = end;
1333
1334 for (; addr < hole_end; addr += PAGE_SIZE) {
1335 err = add_to_pagemap(addr, &pme, pm);
1336 if (err)
1337 goto out;
1338 }
1339
1340 if (!vma)
1341 break;
1342
1343 /* Addresses in the VMA. */
1344 if (vma->vm_flags & VM_SOFTDIRTY)
1345 pme = make_pme(0, PM_SOFT_DIRTY);
1346 for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1347 err = add_to_pagemap(addr, &pme, pm);
1348 if (err)
1349 goto out;
1350 }
1351 }
1352 out:
1353 return err;
1354 }
1355
pte_to_pagemap_entry(struct pagemapread * pm,struct vm_area_struct * vma,unsigned long addr,pte_t pte)1356 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1357 struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1358 {
1359 u64 frame = 0, flags = 0;
1360 struct page *page = NULL;
1361
1362 if (pte_present(pte)) {
1363 if (pm->show_pfn)
1364 frame = pte_pfn(pte);
1365 flags |= PM_PRESENT;
1366 page = vm_normal_page(vma, addr, pte);
1367 if (pte_soft_dirty(pte))
1368 flags |= PM_SOFT_DIRTY;
1369 } else if (is_swap_pte(pte)) {
1370 swp_entry_t entry;
1371 if (pte_swp_soft_dirty(pte))
1372 flags |= PM_SOFT_DIRTY;
1373 entry = pte_to_swp_entry(pte);
1374 if (pm->show_pfn)
1375 frame = swp_type(entry) |
1376 (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1377 flags |= PM_SWAP;
1378 if (is_migration_entry(entry))
1379 page = migration_entry_to_page(entry);
1380
1381 if (is_device_private_entry(entry))
1382 page = device_private_entry_to_page(entry);
1383 }
1384
1385 if (page && !PageAnon(page))
1386 flags |= PM_FILE;
1387 if (page && page_mapcount(page) == 1)
1388 flags |= PM_MMAP_EXCLUSIVE;
1389 if (vma->vm_flags & VM_SOFTDIRTY)
1390 flags |= PM_SOFT_DIRTY;
1391
1392 return make_pme(frame, flags);
1393 }
1394
pagemap_pmd_range(pmd_t * pmdp,unsigned long addr,unsigned long end,struct mm_walk * walk)1395 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1396 struct mm_walk *walk)
1397 {
1398 struct vm_area_struct *vma = walk->vma;
1399 struct pagemapread *pm = walk->private;
1400 spinlock_t *ptl;
1401 pte_t *pte, *orig_pte;
1402 int err = 0;
1403
1404 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1405 ptl = pmd_trans_huge_lock(pmdp, vma);
1406 if (ptl) {
1407 u64 flags = 0, frame = 0;
1408 pmd_t pmd = *pmdp;
1409 struct page *page = NULL;
1410
1411 if (vma->vm_flags & VM_SOFTDIRTY)
1412 flags |= PM_SOFT_DIRTY;
1413
1414 if (pmd_present(pmd)) {
1415 page = pmd_page(pmd);
1416
1417 flags |= PM_PRESENT;
1418 if (pmd_soft_dirty(pmd))
1419 flags |= PM_SOFT_DIRTY;
1420 if (pm->show_pfn)
1421 frame = pmd_pfn(pmd) +
1422 ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1423 }
1424 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1425 else if (is_swap_pmd(pmd)) {
1426 swp_entry_t entry = pmd_to_swp_entry(pmd);
1427 unsigned long offset;
1428
1429 if (pm->show_pfn) {
1430 offset = swp_offset(entry) +
1431 ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1432 frame = swp_type(entry) |
1433 (offset << MAX_SWAPFILES_SHIFT);
1434 }
1435 flags |= PM_SWAP;
1436 if (pmd_swp_soft_dirty(pmd))
1437 flags |= PM_SOFT_DIRTY;
1438 VM_BUG_ON(!is_pmd_migration_entry(pmd));
1439 page = migration_entry_to_page(entry);
1440 }
1441 #endif
1442
1443 if (page && page_mapcount(page) == 1)
1444 flags |= PM_MMAP_EXCLUSIVE;
1445
1446 for (; addr != end; addr += PAGE_SIZE) {
1447 pagemap_entry_t pme = make_pme(frame, flags);
1448
1449 err = add_to_pagemap(addr, &pme, pm);
1450 if (err)
1451 break;
1452 if (pm->show_pfn) {
1453 if (flags & PM_PRESENT)
1454 frame++;
1455 else if (flags & PM_SWAP)
1456 frame += (1 << MAX_SWAPFILES_SHIFT);
1457 }
1458 }
1459 spin_unlock(ptl);
1460 return err;
1461 }
1462
1463 if (pmd_trans_unstable(pmdp))
1464 return 0;
1465 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1466
1467 /*
1468 * We can assume that @vma always points to a valid one and @end never
1469 * goes beyond vma->vm_end.
1470 */
1471 orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1472 for (; addr < end; pte++, addr += PAGE_SIZE) {
1473 pagemap_entry_t pme;
1474
1475 pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1476 err = add_to_pagemap(addr, &pme, pm);
1477 if (err)
1478 break;
1479 }
1480 pte_unmap_unlock(orig_pte, ptl);
1481
1482 cond_resched();
1483
1484 return err;
1485 }
1486
1487 #ifdef CONFIG_HUGETLB_PAGE
1488 /* This function walks within one hugetlb entry in the single call */
pagemap_hugetlb_range(pte_t * ptep,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)1489 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1490 unsigned long addr, unsigned long end,
1491 struct mm_walk *walk)
1492 {
1493 struct pagemapread *pm = walk->private;
1494 struct vm_area_struct *vma = walk->vma;
1495 u64 flags = 0, frame = 0;
1496 int err = 0;
1497 pte_t pte;
1498
1499 if (vma->vm_flags & VM_SOFTDIRTY)
1500 flags |= PM_SOFT_DIRTY;
1501
1502 pte = huge_ptep_get(ptep);
1503 if (pte_present(pte)) {
1504 struct page *page = pte_page(pte);
1505
1506 if (!PageAnon(page))
1507 flags |= PM_FILE;
1508
1509 if (page_mapcount(page) == 1)
1510 flags |= PM_MMAP_EXCLUSIVE;
1511
1512 flags |= PM_PRESENT;
1513 if (pm->show_pfn)
1514 frame = pte_pfn(pte) +
1515 ((addr & ~hmask) >> PAGE_SHIFT);
1516 }
1517
1518 for (; addr != end; addr += PAGE_SIZE) {
1519 pagemap_entry_t pme = make_pme(frame, flags);
1520
1521 err = add_to_pagemap(addr, &pme, pm);
1522 if (err)
1523 return err;
1524 if (pm->show_pfn && (flags & PM_PRESENT))
1525 frame++;
1526 }
1527
1528 cond_resched();
1529
1530 return err;
1531 }
1532 #else
1533 #define pagemap_hugetlb_range NULL
1534 #endif /* HUGETLB_PAGE */
1535
1536 static const struct mm_walk_ops pagemap_ops = {
1537 .pmd_entry = pagemap_pmd_range,
1538 .pte_hole = pagemap_pte_hole,
1539 .hugetlb_entry = pagemap_hugetlb_range,
1540 };
1541
1542 /*
1543 * /proc/pid/pagemap - an array mapping virtual pages to pfns
1544 *
1545 * For each page in the address space, this file contains one 64-bit entry
1546 * consisting of the following:
1547 *
1548 * Bits 0-54 page frame number (PFN) if present
1549 * Bits 0-4 swap type if swapped
1550 * Bits 5-54 swap offset if swapped
1551 * Bit 55 pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst)
1552 * Bit 56 page exclusively mapped
1553 * Bits 57-60 zero
1554 * Bit 61 page is file-page or shared-anon
1555 * Bit 62 page swapped
1556 * Bit 63 page present
1557 *
1558 * If the page is not present but in swap, then the PFN contains an
1559 * encoding of the swap file number and the page's offset into the
1560 * swap. Unmapped pages return a null PFN. This allows determining
1561 * precisely which pages are mapped (or in swap) and comparing mapped
1562 * pages between processes.
1563 *
1564 * Efficient users of this interface will use /proc/pid/maps to
1565 * determine which areas of memory are actually mapped and llseek to
1566 * skip over unmapped regions.
1567 */
pagemap_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1568 static ssize_t pagemap_read(struct file *file, char __user *buf,
1569 size_t count, loff_t *ppos)
1570 {
1571 struct mm_struct *mm = file->private_data;
1572 struct pagemapread pm;
1573 unsigned long src;
1574 unsigned long svpfn;
1575 unsigned long start_vaddr;
1576 unsigned long end_vaddr;
1577 int ret = 0, copied = 0;
1578
1579 if (!mm || !mmget_not_zero(mm))
1580 goto out;
1581
1582 ret = -EINVAL;
1583 /* file position must be aligned */
1584 if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1585 goto out_mm;
1586
1587 ret = 0;
1588 if (!count)
1589 goto out_mm;
1590
1591 /* do not disclose physical addresses: attack vector */
1592 pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1593
1594 pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1595 pm.buffer = kmalloc_array(pm.len, PM_ENTRY_BYTES, GFP_KERNEL);
1596 ret = -ENOMEM;
1597 if (!pm.buffer)
1598 goto out_mm;
1599
1600 src = *ppos;
1601 svpfn = src / PM_ENTRY_BYTES;
1602 end_vaddr = mm->task_size;
1603
1604 /* watch out for wraparound */
1605 start_vaddr = end_vaddr;
1606 if (svpfn <= (ULONG_MAX >> PAGE_SHIFT))
1607 start_vaddr = untagged_addr(svpfn << PAGE_SHIFT);
1608
1609 /* Ensure the address is inside the task */
1610 if (start_vaddr > mm->task_size)
1611 start_vaddr = end_vaddr;
1612
1613 /*
1614 * The odds are that this will stop walking way
1615 * before end_vaddr, because the length of the
1616 * user buffer is tracked in "pm", and the walk
1617 * will stop when we hit the end of the buffer.
1618 */
1619 ret = 0;
1620 while (count && (start_vaddr < end_vaddr)) {
1621 int len;
1622 unsigned long end;
1623
1624 pm.pos = 0;
1625 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1626 /* overflow ? */
1627 if (end < start_vaddr || end > end_vaddr)
1628 end = end_vaddr;
1629 ret = mmap_read_lock_killable(mm);
1630 if (ret)
1631 goto out_free;
1632 ret = walk_page_range(mm, start_vaddr, end, &pagemap_ops, &pm);
1633 mmap_read_unlock(mm);
1634 start_vaddr = end;
1635
1636 len = min(count, PM_ENTRY_BYTES * pm.pos);
1637 if (copy_to_user(buf, pm.buffer, len)) {
1638 ret = -EFAULT;
1639 goto out_free;
1640 }
1641 copied += len;
1642 buf += len;
1643 count -= len;
1644 }
1645 *ppos += copied;
1646 if (!ret || ret == PM_END_OF_BUFFER)
1647 ret = copied;
1648
1649 out_free:
1650 kfree(pm.buffer);
1651 out_mm:
1652 mmput(mm);
1653 out:
1654 return ret;
1655 }
1656
pagemap_open(struct inode * inode,struct file * file)1657 static int pagemap_open(struct inode *inode, struct file *file)
1658 {
1659 struct mm_struct *mm;
1660
1661 mm = proc_mem_open(inode, PTRACE_MODE_READ);
1662 if (IS_ERR(mm))
1663 return PTR_ERR(mm);
1664 file->private_data = mm;
1665 return 0;
1666 }
1667
pagemap_release(struct inode * inode,struct file * file)1668 static int pagemap_release(struct inode *inode, struct file *file)
1669 {
1670 struct mm_struct *mm = file->private_data;
1671
1672 if (mm)
1673 mmdrop(mm);
1674 return 0;
1675 }
1676
1677 const struct file_operations proc_pagemap_operations = {
1678 .llseek = mem_lseek, /* borrow this */
1679 .read = pagemap_read,
1680 .open = pagemap_open,
1681 .release = pagemap_release,
1682 };
1683 #endif /* CONFIG_PROC_PAGE_MONITOR */
1684
1685 #ifdef CONFIG_NUMA
1686
1687 struct numa_maps {
1688 unsigned long pages;
1689 unsigned long anon;
1690 unsigned long active;
1691 unsigned long writeback;
1692 unsigned long mapcount_max;
1693 unsigned long dirty;
1694 unsigned long swapcache;
1695 unsigned long node[MAX_NUMNODES];
1696 };
1697
1698 struct numa_maps_private {
1699 struct proc_maps_private proc_maps;
1700 struct numa_maps md;
1701 };
1702
gather_stats(struct page * page,struct numa_maps * md,int pte_dirty,unsigned long nr_pages)1703 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1704 unsigned long nr_pages)
1705 {
1706 int count = page_mapcount(page);
1707
1708 md->pages += nr_pages;
1709 if (pte_dirty || PageDirty(page))
1710 md->dirty += nr_pages;
1711
1712 if (PageSwapCache(page))
1713 md->swapcache += nr_pages;
1714
1715 if (PageActive(page) || PageUnevictable(page))
1716 md->active += nr_pages;
1717
1718 if (PageWriteback(page))
1719 md->writeback += nr_pages;
1720
1721 if (PageAnon(page))
1722 md->anon += nr_pages;
1723
1724 if (count > md->mapcount_max)
1725 md->mapcount_max = count;
1726
1727 md->node[page_to_nid(page)] += nr_pages;
1728 }
1729
can_gather_numa_stats(pte_t pte,struct vm_area_struct * vma,unsigned long addr)1730 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1731 unsigned long addr)
1732 {
1733 struct page *page;
1734 int nid;
1735
1736 if (!pte_present(pte))
1737 return NULL;
1738
1739 page = vm_normal_page(vma, addr, pte);
1740 if (!page)
1741 return NULL;
1742
1743 if (PageReserved(page))
1744 return NULL;
1745
1746 nid = page_to_nid(page);
1747 if (!node_isset(nid, node_states[N_MEMORY]))
1748 return NULL;
1749
1750 return page;
1751 }
1752
1753 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
can_gather_numa_stats_pmd(pmd_t pmd,struct vm_area_struct * vma,unsigned long addr)1754 static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
1755 struct vm_area_struct *vma,
1756 unsigned long addr)
1757 {
1758 struct page *page;
1759 int nid;
1760
1761 if (!pmd_present(pmd))
1762 return NULL;
1763
1764 page = vm_normal_page_pmd(vma, addr, pmd);
1765 if (!page)
1766 return NULL;
1767
1768 if (PageReserved(page))
1769 return NULL;
1770
1771 nid = page_to_nid(page);
1772 if (!node_isset(nid, node_states[N_MEMORY]))
1773 return NULL;
1774
1775 return page;
1776 }
1777 #endif
1778
gather_pte_stats(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)1779 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1780 unsigned long end, struct mm_walk *walk)
1781 {
1782 struct numa_maps *md = walk->private;
1783 struct vm_area_struct *vma = walk->vma;
1784 spinlock_t *ptl;
1785 pte_t *orig_pte;
1786 pte_t *pte;
1787
1788 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1789 ptl = pmd_trans_huge_lock(pmd, vma);
1790 if (ptl) {
1791 struct page *page;
1792
1793 page = can_gather_numa_stats_pmd(*pmd, vma, addr);
1794 if (page)
1795 gather_stats(page, md, pmd_dirty(*pmd),
1796 HPAGE_PMD_SIZE/PAGE_SIZE);
1797 spin_unlock(ptl);
1798 return 0;
1799 }
1800
1801 if (pmd_trans_unstable(pmd))
1802 return 0;
1803 #endif
1804 orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1805 do {
1806 struct page *page = can_gather_numa_stats(*pte, vma, addr);
1807 if (!page)
1808 continue;
1809 gather_stats(page, md, pte_dirty(*pte), 1);
1810
1811 } while (pte++, addr += PAGE_SIZE, addr != end);
1812 pte_unmap_unlock(orig_pte, ptl);
1813 cond_resched();
1814 return 0;
1815 }
1816 #ifdef CONFIG_HUGETLB_PAGE
gather_hugetlb_stats(pte_t * pte,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)1817 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1818 unsigned long addr, unsigned long end, struct mm_walk *walk)
1819 {
1820 pte_t huge_pte = huge_ptep_get(pte);
1821 struct numa_maps *md;
1822 struct page *page;
1823
1824 if (!pte_present(huge_pte))
1825 return 0;
1826
1827 page = pte_page(huge_pte);
1828 if (!page)
1829 return 0;
1830
1831 md = walk->private;
1832 gather_stats(page, md, pte_dirty(huge_pte), 1);
1833 return 0;
1834 }
1835
1836 #else
gather_hugetlb_stats(pte_t * pte,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)1837 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1838 unsigned long addr, unsigned long end, struct mm_walk *walk)
1839 {
1840 return 0;
1841 }
1842 #endif
1843
1844 static const struct mm_walk_ops show_numa_ops = {
1845 .hugetlb_entry = gather_hugetlb_stats,
1846 .pmd_entry = gather_pte_stats,
1847 };
1848
1849 /*
1850 * Display pages allocated per node and memory policy via /proc.
1851 */
show_numa_map(struct seq_file * m,void * v)1852 static int show_numa_map(struct seq_file *m, void *v)
1853 {
1854 struct numa_maps_private *numa_priv = m->private;
1855 struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1856 struct vm_area_struct *vma = v;
1857 struct numa_maps *md = &numa_priv->md;
1858 struct file *file = vma->vm_file;
1859 struct mm_struct *mm = vma->vm_mm;
1860 struct mempolicy *pol;
1861 char buffer[64];
1862 int nid;
1863
1864 if (!mm)
1865 return 0;
1866
1867 /* Ensure we start with an empty set of numa_maps statistics. */
1868 memset(md, 0, sizeof(*md));
1869
1870 pol = __get_vma_policy(vma, vma->vm_start);
1871 if (pol) {
1872 mpol_to_str(buffer, sizeof(buffer), pol);
1873 mpol_cond_put(pol);
1874 } else {
1875 mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1876 }
1877
1878 seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1879
1880 if (file) {
1881 seq_puts(m, " file=");
1882 seq_file_path(m, file, "\n\t= ");
1883 } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1884 seq_puts(m, " heap");
1885 } else if (is_stack(vma)) {
1886 seq_puts(m, " stack");
1887 }
1888
1889 if (is_vm_hugetlb_page(vma))
1890 seq_puts(m, " huge");
1891
1892 /* mmap_lock is held by m_start */
1893 walk_page_vma(vma, &show_numa_ops, md);
1894
1895 if (!md->pages)
1896 goto out;
1897
1898 if (md->anon)
1899 seq_printf(m, " anon=%lu", md->anon);
1900
1901 if (md->dirty)
1902 seq_printf(m, " dirty=%lu", md->dirty);
1903
1904 if (md->pages != md->anon && md->pages != md->dirty)
1905 seq_printf(m, " mapped=%lu", md->pages);
1906
1907 if (md->mapcount_max > 1)
1908 seq_printf(m, " mapmax=%lu", md->mapcount_max);
1909
1910 if (md->swapcache)
1911 seq_printf(m, " swapcache=%lu", md->swapcache);
1912
1913 if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1914 seq_printf(m, " active=%lu", md->active);
1915
1916 if (md->writeback)
1917 seq_printf(m, " writeback=%lu", md->writeback);
1918
1919 for_each_node_state(nid, N_MEMORY)
1920 if (md->node[nid])
1921 seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1922
1923 seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
1924 out:
1925 seq_putc(m, '\n');
1926 return 0;
1927 }
1928
1929 static const struct seq_operations proc_pid_numa_maps_op = {
1930 .start = m_start,
1931 .next = m_next,
1932 .stop = m_stop,
1933 .show = show_numa_map,
1934 };
1935
pid_numa_maps_open(struct inode * inode,struct file * file)1936 static int pid_numa_maps_open(struct inode *inode, struct file *file)
1937 {
1938 return proc_maps_open(inode, file, &proc_pid_numa_maps_op,
1939 sizeof(struct numa_maps_private));
1940 }
1941
1942 const struct file_operations proc_pid_numa_maps_operations = {
1943 .open = pid_numa_maps_open,
1944 .read = seq_read,
1945 .llseek = seq_lseek,
1946 .release = proc_map_release,
1947 };
1948
1949 #endif /* CONFIG_NUMA */
1950