xref: /qemu/block/nvme.c (revision 6b18f6e34246ae62aefcaaa56585f14cd1a15295)
1 /*
2  * NVMe block driver based on vfio
3  *
4  * Copyright 2016 - 2018 Red Hat, Inc.
5  *
6  * Authors:
7  *   Fam Zheng <famz@redhat.com>
8  *   Paolo Bonzini <pbonzini@redhat.com>
9  *
10  * This work is licensed under the terms of the GNU GPL, version 2 or later.
11  * See the COPYING file in the top-level directory.
12  */
13 
14 #include "qemu/osdep.h"
15 #include <linux/vfio.h>
16 #include "qapi/error.h"
17 #include "qobject/qdict.h"
18 #include "qobject/qstring.h"
19 #include "qemu/defer-call.h"
20 #include "qemu/error-report.h"
21 #include "qemu/host-pci-mmio.h"
22 #include "qemu/main-loop.h"
23 #include "qemu/module.h"
24 #include "qemu/cutils.h"
25 #include "qemu/option.h"
26 #include "qemu/memalign.h"
27 #include "qemu/vfio-helpers.h"
28 #include "block/block-io.h"
29 #include "block/block_int.h"
30 #include "system/block-backend.h"
31 #include "system/replay.h"
32 #include "trace.h"
33 
34 #include "block/nvme.h"
35 
36 #define NVME_SQ_ENTRY_BYTES 64
37 #define NVME_CQ_ENTRY_BYTES 16
38 #define NVME_QUEUE_SIZE 128
39 #define NVME_DOORBELL_SIZE 4096
40 
41 /*
42  * We have to leave one slot empty as that is the full queue case where
43  * head == tail + 1.
44  */
45 #define NVME_NUM_REQS (NVME_QUEUE_SIZE - 1)
46 
47 typedef struct BDRVNVMeState BDRVNVMeState;
48 
49 /* Same index is used for queues and IRQs */
50 #define INDEX_ADMIN     0
51 #define INDEX_IO(n)     (1 + n)
52 
53 /* This driver shares a single MSIX IRQ for the admin and I/O queues */
54 enum {
55     MSIX_SHARED_IRQ_IDX = 0,
56     MSIX_IRQ_COUNT = 1
57 };
58 
59 typedef struct {
60     int32_t  head, tail;
61     uint8_t  *queue;
62     uint64_t iova;
63     /* Hardware MMIO register */
64     uint32_t *doorbell;
65 } NVMeQueue;
66 
67 typedef struct {
68     BlockCompletionFunc *cb;
69     void *opaque;
70     int cid;
71     void *prp_list_page;
72     uint64_t prp_list_iova;
73     int free_req_next; /* q->reqs[] index of next free req */
74 } NVMeRequest;
75 
76 typedef struct {
77     QemuMutex   lock;
78 
79     /* Read from I/O code path, initialized under BQL */
80     BDRVNVMeState   *s;
81     int             index;
82 
83     /* Fields protected by BQL */
84     uint8_t     *prp_list_pages;
85 
86     /* Fields protected by @lock */
87     CoQueue     free_req_queue;
88     NVMeQueue   sq, cq;
89     int         cq_phase;
90     int         free_req_head;
91     NVMeRequest reqs[NVME_NUM_REQS];
92     int         need_kick;
93     int         inflight;
94 
95     /* Thread-safe, no lock necessary */
96     QEMUBH      *completion_bh;
97 } NVMeQueuePair;
98 
99 struct BDRVNVMeState {
100     AioContext *aio_context;
101     QEMUVFIOState *vfio;
102     void *bar0_wo_map;
103     /* Memory mapped registers */
104     struct {
105         uint32_t sq_tail;
106         uint32_t cq_head;
107     } *doorbells;
108     /* The submission/completion queue pairs.
109      * [0]: admin queue.
110      * [1..]: io queues.
111      */
112     NVMeQueuePair **queues;
113     unsigned queue_count;
114     size_t page_size;
115     /* How many uint32_t elements does each doorbell entry take. */
116     size_t doorbell_scale;
117     bool write_cache_supported;
118     EventNotifier irq_notifier[MSIX_IRQ_COUNT];
119 
120     uint64_t nsze; /* Namespace size reported by identify command */
121     int nsid;      /* The namespace id to read/write data. */
122     int blkshift;
123 
124     uint64_t max_transfer;
125 
126     bool supports_write_zeroes;
127     bool supports_discard;
128 
129     CoMutex dma_map_lock;
130     CoQueue dma_flush_queue;
131 
132     /* Total size of mapped qiov, accessed under dma_map_lock */
133     int dma_map_count;
134 
135     /* PCI address (required for nvme_refresh_filename()) */
136     char *device;
137 
138     struct {
139         uint64_t completion_errors;
140         uint64_t aligned_accesses;
141         uint64_t unaligned_accesses;
142     } stats;
143 };
144 
145 #define NVME_BLOCK_OPT_DEVICE "device"
146 #define NVME_BLOCK_OPT_NAMESPACE "namespace"
147 
148 static void nvme_process_completion_bh(void *opaque);
149 
150 static QemuOptsList runtime_opts = {
151     .name = "nvme",
152     .head = QTAILQ_HEAD_INITIALIZER(runtime_opts.head),
153     .desc = {
154         {
155             .name = NVME_BLOCK_OPT_DEVICE,
156             .type = QEMU_OPT_STRING,
157             .help = "NVMe PCI device address",
158         },
159         {
160             .name = NVME_BLOCK_OPT_NAMESPACE,
161             .type = QEMU_OPT_NUMBER,
162             .help = "NVMe namespace",
163         },
164         { /* end of list */ }
165     },
166 };
167 
168 /* Returns true on success, false on failure. */
nvme_init_queue(BDRVNVMeState * s,NVMeQueue * q,unsigned nentries,size_t entry_bytes,Error ** errp)169 static bool nvme_init_queue(BDRVNVMeState *s, NVMeQueue *q,
170                             unsigned nentries, size_t entry_bytes, Error **errp)
171 {
172     ERRP_GUARD();
173     size_t bytes;
174     int r;
175 
176     bytes = ROUND_UP(nentries * entry_bytes, qemu_real_host_page_size());
177     q->head = q->tail = 0;
178     q->queue = qemu_try_memalign(qemu_real_host_page_size(), bytes);
179     if (!q->queue) {
180         error_setg(errp, "Cannot allocate queue");
181         return false;
182     }
183     memset(q->queue, 0, bytes);
184     r = qemu_vfio_dma_map(s->vfio, q->queue, bytes, false, &q->iova, errp);
185     if (r) {
186         error_prepend(errp, "Cannot map queue: ");
187     }
188     return r == 0;
189 }
190 
nvme_free_queue(NVMeQueue * q)191 static void nvme_free_queue(NVMeQueue *q)
192 {
193     qemu_vfree(q->queue);
194 }
195 
nvme_free_queue_pair(NVMeQueuePair * q)196 static void nvme_free_queue_pair(NVMeQueuePair *q)
197 {
198     trace_nvme_free_queue_pair(q->index, q, &q->cq, &q->sq);
199     if (q->completion_bh) {
200         qemu_bh_delete(q->completion_bh);
201     }
202     nvme_free_queue(&q->sq);
203     nvme_free_queue(&q->cq);
204     qemu_vfree(q->prp_list_pages);
205     qemu_mutex_destroy(&q->lock);
206     g_free(q);
207 }
208 
nvme_free_req_queue_cb(void * opaque)209 static void nvme_free_req_queue_cb(void *opaque)
210 {
211     NVMeQueuePair *q = opaque;
212 
213     qemu_mutex_lock(&q->lock);
214     while (q->free_req_head != -1 &&
215            qemu_co_enter_next(&q->free_req_queue, &q->lock)) {
216         /* Retry waiting requests */
217     }
218     qemu_mutex_unlock(&q->lock);
219 }
220 
nvme_create_queue_pair(BDRVNVMeState * s,AioContext * aio_context,unsigned idx,size_t size,Error ** errp)221 static NVMeQueuePair *nvme_create_queue_pair(BDRVNVMeState *s,
222                                              AioContext *aio_context,
223                                              unsigned idx, size_t size,
224                                              Error **errp)
225 {
226     ERRP_GUARD();
227     int i, r;
228     NVMeQueuePair *q;
229     uint64_t prp_list_iova;
230     size_t bytes;
231 
232     q = g_try_new0(NVMeQueuePair, 1);
233     if (!q) {
234         error_setg(errp, "Cannot allocate queue pair");
235         return NULL;
236     }
237     trace_nvme_create_queue_pair(idx, q, size, aio_context,
238                                  event_notifier_get_fd(s->irq_notifier));
239     bytes = QEMU_ALIGN_UP(s->page_size * NVME_NUM_REQS,
240                           qemu_real_host_page_size());
241     q->prp_list_pages = qemu_try_memalign(qemu_real_host_page_size(), bytes);
242     if (!q->prp_list_pages) {
243         error_setg(errp, "Cannot allocate PRP page list");
244         goto fail;
245     }
246     memset(q->prp_list_pages, 0, bytes);
247     qemu_mutex_init(&q->lock);
248     q->s = s;
249     q->index = idx;
250     qemu_co_queue_init(&q->free_req_queue);
251     q->completion_bh = aio_bh_new(aio_context, nvme_process_completion_bh, q);
252     r = qemu_vfio_dma_map(s->vfio, q->prp_list_pages, bytes,
253                           false, &prp_list_iova, errp);
254     if (r) {
255         error_prepend(errp, "Cannot map buffer for DMA: ");
256         goto fail;
257     }
258     q->free_req_head = -1;
259     for (i = 0; i < NVME_NUM_REQS; i++) {
260         NVMeRequest *req = &q->reqs[i];
261         req->cid = i + 1;
262         req->free_req_next = q->free_req_head;
263         q->free_req_head = i;
264         req->prp_list_page = q->prp_list_pages + i * s->page_size;
265         req->prp_list_iova = prp_list_iova + i * s->page_size;
266     }
267 
268     if (!nvme_init_queue(s, &q->sq, size, NVME_SQ_ENTRY_BYTES, errp)) {
269         goto fail;
270     }
271     q->sq.doorbell = &s->doorbells[idx * s->doorbell_scale].sq_tail;
272 
273     if (!nvme_init_queue(s, &q->cq, size, NVME_CQ_ENTRY_BYTES, errp)) {
274         goto fail;
275     }
276     q->cq.doorbell = &s->doorbells[idx * s->doorbell_scale].cq_head;
277 
278     return q;
279 fail:
280     nvme_free_queue_pair(q);
281     return NULL;
282 }
283 
284 /* With q->lock */
nvme_kick(NVMeQueuePair * q)285 static void nvme_kick(NVMeQueuePair *q)
286 {
287     BDRVNVMeState *s = q->s;
288 
289     if (!q->need_kick) {
290         return;
291     }
292     trace_nvme_kick(s, q->index);
293     assert(!(q->sq.tail & 0xFF00));
294     /* Fence the write to submission queue entry before notifying the device. */
295     smp_wmb();
296     host_pci_stl_le_p(q->sq.doorbell, q->sq.tail);
297     q->inflight += q->need_kick;
298     q->need_kick = 0;
299 }
300 
nvme_get_free_req_nofail_locked(NVMeQueuePair * q)301 static NVMeRequest *nvme_get_free_req_nofail_locked(NVMeQueuePair *q)
302 {
303     NVMeRequest *req;
304 
305     req = &q->reqs[q->free_req_head];
306     q->free_req_head = req->free_req_next;
307     req->free_req_next = -1;
308     return req;
309 }
310 
311 /* Return a free request element if any, otherwise return NULL.  */
nvme_get_free_req_nowait(NVMeQueuePair * q)312 static NVMeRequest *nvme_get_free_req_nowait(NVMeQueuePair *q)
313 {
314     QEMU_LOCK_GUARD(&q->lock);
315     if (q->free_req_head == -1) {
316         return NULL;
317     }
318     return nvme_get_free_req_nofail_locked(q);
319 }
320 
321 /*
322  * Wait for a free request to become available if necessary, then
323  * return it.
324  */
nvme_get_free_req(NVMeQueuePair * q)325 static coroutine_fn NVMeRequest *nvme_get_free_req(NVMeQueuePair *q)
326 {
327     QEMU_LOCK_GUARD(&q->lock);
328 
329     while (q->free_req_head == -1) {
330         trace_nvme_free_req_queue_wait(q->s, q->index);
331         qemu_co_queue_wait(&q->free_req_queue, &q->lock);
332     }
333 
334     return nvme_get_free_req_nofail_locked(q);
335 }
336 
337 /* With q->lock */
nvme_put_free_req_locked(NVMeQueuePair * q,NVMeRequest * req)338 static void nvme_put_free_req_locked(NVMeQueuePair *q, NVMeRequest *req)
339 {
340     req->free_req_next = q->free_req_head;
341     q->free_req_head = req - q->reqs;
342 }
343 
344 /* With q->lock */
nvme_wake_free_req_locked(NVMeQueuePair * q)345 static void nvme_wake_free_req_locked(NVMeQueuePair *q)
346 {
347     if (!qemu_co_queue_empty(&q->free_req_queue)) {
348         replay_bh_schedule_oneshot_event(q->s->aio_context,
349                 nvme_free_req_queue_cb, q);
350     }
351 }
352 
353 /* Insert a request in the freelist and wake waiters */
nvme_put_free_req_and_wake(NVMeQueuePair * q,NVMeRequest * req)354 static void nvme_put_free_req_and_wake(NVMeQueuePair *q, NVMeRequest *req)
355 {
356     qemu_mutex_lock(&q->lock);
357     nvme_put_free_req_locked(q, req);
358     nvme_wake_free_req_locked(q);
359     qemu_mutex_unlock(&q->lock);
360 }
361 
nvme_translate_error(const NvmeCqe * c)362 static inline int nvme_translate_error(const NvmeCqe *c)
363 {
364     uint16_t status = (le16_to_cpu(c->status) >> 1) & 0xFF;
365     if (status) {
366         trace_nvme_error(le32_to_cpu(c->result),
367                          le16_to_cpu(c->sq_head),
368                          le16_to_cpu(c->sq_id),
369                          le16_to_cpu(c->cid),
370                          le16_to_cpu(status));
371     }
372     switch (status) {
373     case 0:
374         return 0;
375     case 1:
376         return -ENOSYS;
377     case 2:
378         return -EINVAL;
379     default:
380         return -EIO;
381     }
382 }
383 
384 /* With q->lock */
nvme_process_completion(NVMeQueuePair * q)385 static bool nvme_process_completion(NVMeQueuePair *q)
386 {
387     BDRVNVMeState *s = q->s;
388     bool progress = false;
389     NVMeRequest *preq;
390     NVMeRequest req;
391     NvmeCqe *c;
392 
393     trace_nvme_process_completion(s, q->index, q->inflight);
394 
395     /*
396      * Support re-entrancy when a request cb() function invokes aio_poll().
397      * Pending completions must be visible to aio_poll() so that a cb()
398      * function can wait for the completion of another request.
399      *
400      * The aio_poll() loop will execute our BH and we'll resume completion
401      * processing there.
402      */
403     qemu_bh_schedule(q->completion_bh);
404 
405     assert(q->inflight >= 0);
406     while (q->inflight) {
407         int ret;
408         int16_t cid;
409 
410         c = (NvmeCqe *)&q->cq.queue[q->cq.head * NVME_CQ_ENTRY_BYTES];
411         if ((le16_to_cpu(c->status) & 0x1) == q->cq_phase) {
412             break;
413         }
414         ret = nvme_translate_error(c);
415         if (ret) {
416             s->stats.completion_errors++;
417         }
418         q->cq.head = (q->cq.head + 1) % NVME_QUEUE_SIZE;
419         if (!q->cq.head) {
420             q->cq_phase = !q->cq_phase;
421         }
422         cid = le16_to_cpu(c->cid);
423         if (cid == 0 || cid > NVME_NUM_REQS) {
424             warn_report("NVMe: Unexpected CID in completion queue: %" PRIu32
425                         ", should be within: 1..%u inclusively", cid,
426                         NVME_NUM_REQS);
427             continue;
428         }
429         trace_nvme_complete_command(s, q->index, cid);
430         preq = &q->reqs[cid - 1];
431         req = *preq;
432         assert(req.cid == cid);
433         assert(req.cb);
434         nvme_put_free_req_locked(q, preq);
435         preq->cb = preq->opaque = NULL;
436         q->inflight--;
437         qemu_mutex_unlock(&q->lock);
438         req.cb(req.opaque, ret);
439         qemu_mutex_lock(&q->lock);
440         progress = true;
441     }
442     if (progress) {
443         /* Notify the device so it can post more completions. */
444         smp_mb_release();
445         host_pci_stl_le_p(q->cq.doorbell, q->cq.head);
446         nvme_wake_free_req_locked(q);
447     }
448 
449     qemu_bh_cancel(q->completion_bh);
450 
451     return progress;
452 }
453 
nvme_process_completion_bh(void * opaque)454 static void nvme_process_completion_bh(void *opaque)
455 {
456     NVMeQueuePair *q = opaque;
457 
458     /*
459      * We're being invoked because a nvme_process_completion() cb() function
460      * called aio_poll(). The callback may be waiting for further completions
461      * so notify the device that it has space to fill in more completions now.
462      */
463     smp_mb_release();
464     host_pci_stl_le_p(q->cq.doorbell, q->cq.head);
465     nvme_wake_free_req_locked(q);
466 
467     nvme_process_completion(q);
468 }
469 
nvme_trace_command(const NvmeCmd * cmd)470 static void nvme_trace_command(const NvmeCmd *cmd)
471 {
472     int i;
473 
474     if (!trace_event_get_state_backends(TRACE_NVME_SUBMIT_COMMAND_RAW)) {
475         return;
476     }
477     for (i = 0; i < 8; ++i) {
478         uint8_t *cmdp = (uint8_t *)cmd + i * 8;
479         trace_nvme_submit_command_raw(cmdp[0], cmdp[1], cmdp[2], cmdp[3],
480                                       cmdp[4], cmdp[5], cmdp[6], cmdp[7]);
481     }
482 }
483 
nvme_deferred_fn(void * opaque)484 static void nvme_deferred_fn(void *opaque)
485 {
486     NVMeQueuePair *q = opaque;
487 
488     QEMU_LOCK_GUARD(&q->lock);
489     nvme_kick(q);
490     nvme_process_completion(q);
491 }
492 
nvme_submit_command(NVMeQueuePair * q,NVMeRequest * req,NvmeCmd * cmd,BlockCompletionFunc cb,void * opaque)493 static void nvme_submit_command(NVMeQueuePair *q, NVMeRequest *req,
494                                 NvmeCmd *cmd, BlockCompletionFunc cb,
495                                 void *opaque)
496 {
497     assert(!req->cb);
498     req->cb = cb;
499     req->opaque = opaque;
500     cmd->cid = cpu_to_le16(req->cid);
501 
502     trace_nvme_submit_command(q->s, q->index, req->cid);
503     nvme_trace_command(cmd);
504     qemu_mutex_lock(&q->lock);
505     memcpy((uint8_t *)q->sq.queue +
506            q->sq.tail * NVME_SQ_ENTRY_BYTES, cmd, sizeof(*cmd));
507     q->sq.tail = (q->sq.tail + 1) % NVME_QUEUE_SIZE;
508     q->need_kick++;
509     qemu_mutex_unlock(&q->lock);
510 
511     defer_call(nvme_deferred_fn, q);
512 }
513 
nvme_admin_cmd_sync_cb(void * opaque,int ret)514 static void nvme_admin_cmd_sync_cb(void *opaque, int ret)
515 {
516     int *pret = opaque;
517     *pret = ret;
518     aio_wait_kick();
519 }
520 
nvme_admin_cmd_sync(BlockDriverState * bs,NvmeCmd * cmd)521 static int nvme_admin_cmd_sync(BlockDriverState *bs, NvmeCmd *cmd)
522 {
523     BDRVNVMeState *s = bs->opaque;
524     NVMeQueuePair *q = s->queues[INDEX_ADMIN];
525     AioContext *aio_context = bdrv_get_aio_context(bs);
526     NVMeRequest *req;
527     int ret = -EINPROGRESS;
528     req = nvme_get_free_req_nowait(q);
529     if (!req) {
530         return -EBUSY;
531     }
532     nvme_submit_command(q, req, cmd, nvme_admin_cmd_sync_cb, &ret);
533 
534     AIO_WAIT_WHILE(aio_context, ret == -EINPROGRESS);
535     return ret;
536 }
537 
538 /* Returns true on success, false on failure. */
nvme_identify(BlockDriverState * bs,int namespace,Error ** errp)539 static bool nvme_identify(BlockDriverState *bs, int namespace, Error **errp)
540 {
541     ERRP_GUARD();
542     BDRVNVMeState *s = bs->opaque;
543     bool ret = false;
544     QEMU_AUTO_VFREE union {
545         NvmeIdCtrl ctrl;
546         NvmeIdNs ns;
547     } *id = NULL;
548     NvmeLBAF *lbaf;
549     uint16_t oncs;
550     int r;
551     uint64_t iova;
552     NvmeCmd cmd = {
553         .opcode = NVME_ADM_CMD_IDENTIFY,
554         .cdw10 = cpu_to_le32(0x1),
555     };
556     size_t id_size = QEMU_ALIGN_UP(sizeof(*id), qemu_real_host_page_size());
557 
558     id = qemu_try_memalign(qemu_real_host_page_size(), id_size);
559     if (!id) {
560         error_setg(errp, "Cannot allocate buffer for identify response");
561         goto out;
562     }
563     r = qemu_vfio_dma_map(s->vfio, id, id_size, true, &iova, errp);
564     if (r) {
565         error_prepend(errp, "Cannot map buffer for DMA: ");
566         goto out;
567     }
568 
569     memset(id, 0, id_size);
570     cmd.dptr.prp1 = cpu_to_le64(iova);
571     if (nvme_admin_cmd_sync(bs, &cmd)) {
572         error_setg(errp, "Failed to identify controller");
573         goto out;
574     }
575 
576     if (le32_to_cpu(id->ctrl.nn) < namespace) {
577         error_setg(errp, "Invalid namespace");
578         goto out;
579     }
580     s->write_cache_supported = le32_to_cpu(id->ctrl.vwc) & 0x1;
581     s->max_transfer = (id->ctrl.mdts ? 1 << id->ctrl.mdts : 0) * s->page_size;
582     /* For now the page list buffer per command is one page, to hold at most
583      * s->page_size / sizeof(uint64_t) entries. */
584     s->max_transfer = MIN_NON_ZERO(s->max_transfer,
585                           s->page_size / sizeof(uint64_t) * s->page_size);
586 
587     oncs = le16_to_cpu(id->ctrl.oncs);
588     s->supports_write_zeroes = !!(oncs & NVME_ONCS_WRITE_ZEROES);
589     s->supports_discard = !!(oncs & NVME_ONCS_DSM);
590 
591     memset(id, 0, id_size);
592     cmd.cdw10 = 0;
593     cmd.nsid = cpu_to_le32(namespace);
594     if (nvme_admin_cmd_sync(bs, &cmd)) {
595         error_setg(errp, "Failed to identify namespace");
596         goto out;
597     }
598 
599     s->nsze = le64_to_cpu(id->ns.nsze);
600     lbaf = &id->ns.lbaf[NVME_ID_NS_FLBAS_INDEX(id->ns.flbas)];
601 
602     if (NVME_ID_NS_DLFEAT_WRITE_ZEROES(id->ns.dlfeat) &&
603             NVME_ID_NS_DLFEAT_READ_BEHAVIOR(id->ns.dlfeat) ==
604                     NVME_ID_NS_DLFEAT_READ_BEHAVIOR_ZEROES) {
605         bs->supported_write_flags |= BDRV_REQ_MAY_UNMAP;
606     }
607 
608     if (lbaf->ms) {
609         error_setg(errp, "Namespaces with metadata are not yet supported");
610         goto out;
611     }
612 
613     if (lbaf->ds < BDRV_SECTOR_BITS || lbaf->ds > 12 ||
614         (1 << lbaf->ds) > s->page_size)
615     {
616         error_setg(errp, "Namespace has unsupported block size (2^%d)",
617                    lbaf->ds);
618         goto out;
619     }
620 
621     ret = true;
622     s->blkshift = lbaf->ds;
623 out:
624     qemu_vfio_dma_unmap(s->vfio, id);
625 
626     return ret;
627 }
628 
nvme_poll_queue(NVMeQueuePair * q)629 static void nvme_poll_queue(NVMeQueuePair *q)
630 {
631     const size_t cqe_offset = q->cq.head * NVME_CQ_ENTRY_BYTES;
632     NvmeCqe *cqe = (NvmeCqe *)&q->cq.queue[cqe_offset];
633 
634     trace_nvme_poll_queue(q->s, q->index);
635     /*
636      * Do an early check for completions. q->lock isn't needed because
637      * nvme_process_completion() only runs in the event loop thread and
638      * cannot race with itself.
639      */
640     if ((le16_to_cpu(cqe->status) & 0x1) == q->cq_phase) {
641         return;
642     }
643 
644     qemu_mutex_lock(&q->lock);
645     while (nvme_process_completion(q)) {
646         /* Keep polling */
647     }
648     qemu_mutex_unlock(&q->lock);
649 }
650 
nvme_poll_queues(BDRVNVMeState * s)651 static void nvme_poll_queues(BDRVNVMeState *s)
652 {
653     int i;
654 
655     for (i = 0; i < s->queue_count; i++) {
656         nvme_poll_queue(s->queues[i]);
657     }
658 }
659 
nvme_handle_event(EventNotifier * n)660 static void nvme_handle_event(EventNotifier *n)
661 {
662     BDRVNVMeState *s = container_of(n, BDRVNVMeState,
663                                     irq_notifier[MSIX_SHARED_IRQ_IDX]);
664 
665     trace_nvme_handle_event(s);
666     event_notifier_test_and_clear(n);
667     nvme_poll_queues(s);
668 }
669 
nvme_add_io_queue(BlockDriverState * bs,Error ** errp)670 static bool nvme_add_io_queue(BlockDriverState *bs, Error **errp)
671 {
672     BDRVNVMeState *s = bs->opaque;
673     unsigned n = s->queue_count;
674     NVMeQueuePair *q;
675     NvmeCmd cmd;
676     unsigned queue_size = NVME_QUEUE_SIZE;
677 
678     assert(n <= UINT16_MAX);
679     q = nvme_create_queue_pair(s, bdrv_get_aio_context(bs),
680                                n, queue_size, errp);
681     if (!q) {
682         return false;
683     }
684     cmd = (NvmeCmd) {
685         .opcode = NVME_ADM_CMD_CREATE_CQ,
686         .dptr.prp1 = cpu_to_le64(q->cq.iova),
687         .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | n),
688         .cdw11 = cpu_to_le32(NVME_CQ_IEN | NVME_CQ_PC),
689     };
690     if (nvme_admin_cmd_sync(bs, &cmd)) {
691         error_setg(errp, "Failed to create CQ io queue [%u]", n);
692         goto out_error;
693     }
694     cmd = (NvmeCmd) {
695         .opcode = NVME_ADM_CMD_CREATE_SQ,
696         .dptr.prp1 = cpu_to_le64(q->sq.iova),
697         .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | n),
698         .cdw11 = cpu_to_le32(NVME_SQ_PC | (n << 16)),
699     };
700     if (nvme_admin_cmd_sync(bs, &cmd)) {
701         error_setg(errp, "Failed to create SQ io queue [%u]", n);
702         goto out_error;
703     }
704     s->queues = g_renew(NVMeQueuePair *, s->queues, n + 1);
705     s->queues[n] = q;
706     s->queue_count++;
707     return true;
708 out_error:
709     nvme_free_queue_pair(q);
710     return false;
711 }
712 
nvme_poll_cb(void * opaque)713 static bool nvme_poll_cb(void *opaque)
714 {
715     EventNotifier *e = opaque;
716     BDRVNVMeState *s = container_of(e, BDRVNVMeState,
717                                     irq_notifier[MSIX_SHARED_IRQ_IDX]);
718     int i;
719 
720     for (i = 0; i < s->queue_count; i++) {
721         NVMeQueuePair *q = s->queues[i];
722         const size_t cqe_offset = q->cq.head * NVME_CQ_ENTRY_BYTES;
723         NvmeCqe *cqe = (NvmeCqe *)&q->cq.queue[cqe_offset];
724 
725         /*
726          * q->lock isn't needed because nvme_process_completion() only runs in
727          * the event loop thread and cannot race with itself.
728          */
729         if ((le16_to_cpu(cqe->status) & 0x1) != q->cq_phase) {
730             return true;
731         }
732     }
733     return false;
734 }
735 
nvme_poll_ready(EventNotifier * e)736 static void nvme_poll_ready(EventNotifier *e)
737 {
738     BDRVNVMeState *s = container_of(e, BDRVNVMeState,
739                                     irq_notifier[MSIX_SHARED_IRQ_IDX]);
740 
741     nvme_poll_queues(s);
742 }
743 
nvme_init(BlockDriverState * bs,const char * device,int namespace,Error ** errp)744 static int nvme_init(BlockDriverState *bs, const char *device, int namespace,
745                      Error **errp)
746 {
747     BDRVNVMeState *s = bs->opaque;
748     NVMeQueuePair *q;
749     AioContext *aio_context = bdrv_get_aio_context(bs);
750     int ret;
751     uint64_t cap;
752     uint32_t ver;
753     uint32_t cc;
754     uint64_t timeout_ms;
755     uint64_t deadline, now;
756     NvmeBar *regs = NULL;
757 
758     qemu_co_mutex_init(&s->dma_map_lock);
759     qemu_co_queue_init(&s->dma_flush_queue);
760     s->device = g_strdup(device);
761     s->nsid = namespace;
762     s->aio_context = bdrv_get_aio_context(bs);
763     ret = event_notifier_init(&s->irq_notifier[MSIX_SHARED_IRQ_IDX], 0);
764     if (ret) {
765         error_setg(errp, "Failed to init event notifier");
766         return ret;
767     }
768 
769     s->vfio = qemu_vfio_open_pci(device, errp);
770     if (!s->vfio) {
771         ret = -EINVAL;
772         goto out;
773     }
774 
775     regs = qemu_vfio_pci_map_bar(s->vfio, 0, 0, sizeof(NvmeBar),
776                                  PROT_READ | PROT_WRITE, errp);
777     if (!regs) {
778         ret = -EINVAL;
779         goto out;
780     }
781     /* Perform initialize sequence as described in NVMe spec "7.6.1
782      * Initialization". */
783 
784     cap = host_pci_ldq_le_p(&regs->cap);
785     trace_nvme_controller_capability_raw(cap);
786     trace_nvme_controller_capability("Maximum Queue Entries Supported",
787                                      1 + NVME_CAP_MQES(cap));
788     trace_nvme_controller_capability("Contiguous Queues Required",
789                                      NVME_CAP_CQR(cap));
790     trace_nvme_controller_capability("Doorbell Stride",
791                                      1 << (2 + NVME_CAP_DSTRD(cap)));
792     trace_nvme_controller_capability("Subsystem Reset Supported",
793                                      NVME_CAP_NSSRS(cap));
794     trace_nvme_controller_capability("Memory Page Size Minimum",
795                                      1 << (12 + NVME_CAP_MPSMIN(cap)));
796     trace_nvme_controller_capability("Memory Page Size Maximum",
797                                      1 << (12 + NVME_CAP_MPSMAX(cap)));
798     if (!NVME_CAP_CSS(cap)) {
799         error_setg(errp, "Device doesn't support NVMe command set");
800         ret = -EINVAL;
801         goto out;
802     }
803 
804     s->page_size = 1u << (12 + NVME_CAP_MPSMIN(cap));
805     s->doorbell_scale = (4 << NVME_CAP_DSTRD(cap)) / sizeof(uint32_t);
806     bs->bl.opt_mem_alignment = s->page_size;
807     bs->bl.request_alignment = s->page_size;
808     timeout_ms = MIN(500 * NVME_CAP_TO(cap), 30000);
809 
810     ver = host_pci_ldl_le_p(&regs->vs);
811     trace_nvme_controller_spec_version(extract32(ver, 16, 16),
812                                        extract32(ver, 8, 8),
813                                        extract32(ver, 0, 8));
814 
815     /* Reset device to get a clean state. */
816     cc = host_pci_ldl_le_p(&regs->cc);
817     host_pci_stl_le_p(&regs->cc, cc & 0xFE);
818     /* Wait for CSTS.RDY = 0. */
819     deadline = qemu_clock_get_ns(QEMU_CLOCK_REALTIME) + timeout_ms * SCALE_MS;
820     while (NVME_CSTS_RDY(host_pci_ldl_le_p(&regs->csts))) {
821         if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) {
822             error_setg(errp, "Timeout while waiting for device to reset (%"
823                              PRId64 " ms)",
824                        timeout_ms);
825             ret = -ETIMEDOUT;
826             goto out;
827         }
828     }
829 
830     s->bar0_wo_map = qemu_vfio_pci_map_bar(s->vfio, 0, 0,
831                                            sizeof(NvmeBar) + NVME_DOORBELL_SIZE,
832                                            PROT_WRITE, errp);
833     s->doorbells = (void *)((uintptr_t)s->bar0_wo_map + sizeof(NvmeBar));
834     if (!s->doorbells) {
835         ret = -EINVAL;
836         goto out;
837     }
838 
839     /* Set up admin queue. */
840     s->queues = g_new(NVMeQueuePair *, 1);
841     q = nvme_create_queue_pair(s, aio_context, 0, NVME_QUEUE_SIZE, errp);
842     if (!q) {
843         ret = -EINVAL;
844         goto out;
845     }
846     s->queues[INDEX_ADMIN] = q;
847     s->queue_count = 1;
848     QEMU_BUILD_BUG_ON((NVME_QUEUE_SIZE - 1) & 0xF000);
849     host_pci_stl_le_p(&regs->aqa,
850                         ((NVME_QUEUE_SIZE - 1) << AQA_ACQS_SHIFT) |
851                         ((NVME_QUEUE_SIZE - 1) << AQA_ASQS_SHIFT));
852     host_pci_stq_le_p(&regs->asq, q->sq.iova);
853     host_pci_stq_le_p(&regs->acq, q->cq.iova);
854 
855     /* After setting up all control registers we can enable device now. */
856     host_pci_stl_le_p(&regs->cc,
857                       (ctz32(NVME_CQ_ENTRY_BYTES) << CC_IOCQES_SHIFT) |
858                       (ctz32(NVME_SQ_ENTRY_BYTES) << CC_IOSQES_SHIFT) |
859                       CC_EN_MASK);
860     /* Wait for CSTS.RDY = 1. */
861     now = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
862     deadline = now + timeout_ms * SCALE_MS;
863     while (!NVME_CSTS_RDY(host_pci_ldl_le_p(&regs->csts))) {
864         if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) {
865             error_setg(errp, "Timeout while waiting for device to start (%"
866                              PRId64 " ms)",
867                        timeout_ms);
868             ret = -ETIMEDOUT;
869             goto out;
870         }
871     }
872 
873     ret = qemu_vfio_pci_init_irq(s->vfio, s->irq_notifier,
874                                  VFIO_PCI_MSIX_IRQ_INDEX, errp);
875     if (ret) {
876         goto out;
877     }
878     aio_set_event_notifier(bdrv_get_aio_context(bs),
879                            &s->irq_notifier[MSIX_SHARED_IRQ_IDX],
880                            nvme_handle_event, nvme_poll_cb,
881                            nvme_poll_ready);
882 
883     if (!nvme_identify(bs, namespace, errp)) {
884         ret = -EIO;
885         goto out;
886     }
887 
888     /* Set up command queues. */
889     if (!nvme_add_io_queue(bs, errp)) {
890         ret = -EIO;
891     }
892 out:
893     if (regs) {
894         qemu_vfio_pci_unmap_bar(s->vfio, 0, (void *)regs, 0, sizeof(NvmeBar));
895     }
896 
897     /* Cleaning up is done in nvme_open() upon error. */
898     return ret;
899 }
900 
901 /* Parse a filename in the format of nvme://XXXX:XX:XX.X/X. Example:
902  *
903  *     nvme://0000:44:00.0/1
904  *
905  * where the "nvme://" is a fixed form of the protocol prefix, the middle part
906  * is the PCI address, and the last part is the namespace number starting from
907  * 1 according to the NVMe spec. */
nvme_parse_filename(const char * filename,QDict * options,Error ** errp)908 static void nvme_parse_filename(const char *filename, QDict *options,
909                                 Error **errp)
910 {
911     int pref = strlen("nvme://");
912 
913     if (strlen(filename) > pref && !strncmp(filename, "nvme://", pref)) {
914         const char *tmp = filename + pref;
915         char *device;
916         const char *namespace;
917         unsigned long ns;
918         const char *slash = strchr(tmp, '/');
919         if (!slash) {
920             qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, tmp);
921             return;
922         }
923         device = g_strndup(tmp, slash - tmp);
924         qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, device);
925         g_free(device);
926         namespace = slash + 1;
927         if (*namespace && qemu_strtoul(namespace, NULL, 10, &ns)) {
928             error_setg(errp, "Invalid namespace '%s', positive number expected",
929                        namespace);
930             return;
931         }
932         qdict_put_str(options, NVME_BLOCK_OPT_NAMESPACE,
933                       *namespace ? namespace : "1");
934     }
935 }
936 
nvme_enable_disable_write_cache(BlockDriverState * bs,bool enable,Error ** errp)937 static int nvme_enable_disable_write_cache(BlockDriverState *bs, bool enable,
938                                            Error **errp)
939 {
940     int ret;
941     BDRVNVMeState *s = bs->opaque;
942     NvmeCmd cmd = {
943         .opcode = NVME_ADM_CMD_SET_FEATURES,
944         .nsid = cpu_to_le32(s->nsid),
945         .cdw10 = cpu_to_le32(0x06),
946         .cdw11 = cpu_to_le32(enable ? 0x01 : 0x00),
947     };
948 
949     ret = nvme_admin_cmd_sync(bs, &cmd);
950     if (ret) {
951         error_setg(errp, "Failed to configure NVMe write cache");
952     }
953     return ret;
954 }
955 
nvme_close(BlockDriverState * bs)956 static void nvme_close(BlockDriverState *bs)
957 {
958     BDRVNVMeState *s = bs->opaque;
959 
960     for (unsigned i = 0; i < s->queue_count; ++i) {
961         nvme_free_queue_pair(s->queues[i]);
962     }
963     g_free(s->queues);
964     aio_set_event_notifier(bdrv_get_aio_context(bs),
965                            &s->irq_notifier[MSIX_SHARED_IRQ_IDX],
966                            NULL, NULL, NULL);
967     event_notifier_cleanup(&s->irq_notifier[MSIX_SHARED_IRQ_IDX]);
968     qemu_vfio_pci_unmap_bar(s->vfio, 0, s->bar0_wo_map,
969                             0, sizeof(NvmeBar) + NVME_DOORBELL_SIZE);
970     qemu_vfio_close(s->vfio);
971 
972     g_free(s->device);
973 }
974 
nvme_open(BlockDriverState * bs,QDict * options,int flags,Error ** errp)975 static int nvme_open(BlockDriverState *bs, QDict *options, int flags,
976                      Error **errp)
977 {
978     const char *device;
979     QemuOpts *opts;
980     int namespace;
981     int ret;
982     BDRVNVMeState *s = bs->opaque;
983 
984     bs->supported_write_flags = BDRV_REQ_FUA;
985 
986     opts = qemu_opts_create(&runtime_opts, NULL, 0, &error_abort);
987     qemu_opts_absorb_qdict(opts, options, &error_abort);
988     device = qemu_opt_get(opts, NVME_BLOCK_OPT_DEVICE);
989     if (!device) {
990         error_setg(errp, "'" NVME_BLOCK_OPT_DEVICE "' option is required");
991         qemu_opts_del(opts);
992         return -EINVAL;
993     }
994 
995     namespace = qemu_opt_get_number(opts, NVME_BLOCK_OPT_NAMESPACE, 1);
996     ret = nvme_init(bs, device, namespace, errp);
997     qemu_opts_del(opts);
998     if (ret) {
999         goto fail;
1000     }
1001     if (flags & BDRV_O_NOCACHE) {
1002         if (!s->write_cache_supported) {
1003             error_setg(errp,
1004                        "NVMe controller doesn't support write cache configuration");
1005             ret = -EINVAL;
1006         } else {
1007             ret = nvme_enable_disable_write_cache(bs, !(flags & BDRV_O_NOCACHE),
1008                                                   errp);
1009         }
1010         if (ret) {
1011             goto fail;
1012         }
1013     }
1014     return 0;
1015 fail:
1016     nvme_close(bs);
1017     return ret;
1018 }
1019 
nvme_co_getlength(BlockDriverState * bs)1020 static int64_t coroutine_fn nvme_co_getlength(BlockDriverState *bs)
1021 {
1022     BDRVNVMeState *s = bs->opaque;
1023     return s->nsze << s->blkshift;
1024 }
1025 
nvme_get_blocksize(BlockDriverState * bs)1026 static uint32_t nvme_get_blocksize(BlockDriverState *bs)
1027 {
1028     BDRVNVMeState *s = bs->opaque;
1029     assert(s->blkshift >= BDRV_SECTOR_BITS && s->blkshift <= 12);
1030     return UINT32_C(1) << s->blkshift;
1031 }
1032 
nvme_probe_blocksizes(BlockDriverState * bs,BlockSizes * bsz)1033 static int nvme_probe_blocksizes(BlockDriverState *bs, BlockSizes *bsz)
1034 {
1035     uint32_t blocksize = nvme_get_blocksize(bs);
1036     bsz->phys = blocksize;
1037     bsz->log = blocksize;
1038     return 0;
1039 }
1040 
1041 /* Called with s->dma_map_lock */
nvme_cmd_unmap_qiov(BlockDriverState * bs,QEMUIOVector * qiov)1042 static coroutine_fn int nvme_cmd_unmap_qiov(BlockDriverState *bs,
1043                                             QEMUIOVector *qiov)
1044 {
1045     int r = 0;
1046     BDRVNVMeState *s = bs->opaque;
1047 
1048     s->dma_map_count -= qiov->size;
1049     if (!s->dma_map_count && !qemu_co_queue_empty(&s->dma_flush_queue)) {
1050         r = qemu_vfio_dma_reset_temporary(s->vfio);
1051         if (!r) {
1052             qemu_co_queue_restart_all(&s->dma_flush_queue);
1053         }
1054     }
1055     return r;
1056 }
1057 
1058 /* Called with s->dma_map_lock */
nvme_cmd_map_qiov(BlockDriverState * bs,NvmeCmd * cmd,NVMeRequest * req,QEMUIOVector * qiov)1059 static coroutine_fn int nvme_cmd_map_qiov(BlockDriverState *bs, NvmeCmd *cmd,
1060                                           NVMeRequest *req, QEMUIOVector *qiov)
1061 {
1062     BDRVNVMeState *s = bs->opaque;
1063     uint64_t *pagelist = req->prp_list_page;
1064     int i, j, r;
1065     int entries = 0;
1066     Error *local_err = NULL, **errp = NULL;
1067 
1068     assert(qiov->size);
1069     assert(QEMU_IS_ALIGNED(qiov->size, s->page_size));
1070     assert(qiov->size / s->page_size <= s->page_size / sizeof(uint64_t));
1071     for (i = 0; i < qiov->niov; ++i) {
1072         bool retry = true;
1073         uint64_t iova;
1074         size_t len = QEMU_ALIGN_UP(qiov->iov[i].iov_len,
1075                                    qemu_real_host_page_size());
1076 try_map:
1077         r = qemu_vfio_dma_map(s->vfio,
1078                               qiov->iov[i].iov_base,
1079                               len, true, &iova, errp);
1080         if (r == -ENOSPC) {
1081             /*
1082              * In addition to the -ENOMEM error, the VFIO_IOMMU_MAP_DMA
1083              * ioctl returns -ENOSPC to signal the user exhausted the DMA
1084              * mappings available for a container since Linux kernel commit
1085              * 492855939bdb ("vfio/type1: Limit DMA mappings per container",
1086              * April 2019, see CVE-2019-3882).
1087              *
1088              * This block driver already handles this error path by checking
1089              * for the -ENOMEM error, so we directly replace -ENOSPC by
1090              * -ENOMEM. Beside, -ENOSPC has a specific meaning for blockdev
1091              * coroutines: it triggers BLOCKDEV_ON_ERROR_ENOSPC and
1092              * BLOCK_ERROR_ACTION_STOP which stops the VM, asking the operator
1093              * to add more storage to the blockdev. Not something we can do
1094              * easily with an IOMMU :)
1095              */
1096             r = -ENOMEM;
1097         }
1098         if (r == -ENOMEM && retry) {
1099             /*
1100              * We exhausted the DMA mappings available for our container:
1101              * recycle the volatile IOVA mappings.
1102              */
1103             retry = false;
1104             trace_nvme_dma_flush_queue_wait(s);
1105             if (s->dma_map_count) {
1106                 trace_nvme_dma_map_flush(s);
1107                 qemu_co_queue_wait(&s->dma_flush_queue, &s->dma_map_lock);
1108             } else {
1109                 r = qemu_vfio_dma_reset_temporary(s->vfio);
1110                 if (r) {
1111                     goto fail;
1112                 }
1113             }
1114             errp = &local_err;
1115 
1116             goto try_map;
1117         }
1118         if (r) {
1119             goto fail;
1120         }
1121 
1122         for (j = 0; j < qiov->iov[i].iov_len / s->page_size; j++) {
1123             pagelist[entries++] = cpu_to_le64(iova + j * s->page_size);
1124         }
1125         trace_nvme_cmd_map_qiov_iov(s, i, qiov->iov[i].iov_base,
1126                                     qiov->iov[i].iov_len / s->page_size);
1127     }
1128 
1129     s->dma_map_count += qiov->size;
1130 
1131     assert(entries <= s->page_size / sizeof(uint64_t));
1132     switch (entries) {
1133     case 0:
1134         abort();
1135     case 1:
1136         cmd->dptr.prp1 = pagelist[0];
1137         cmd->dptr.prp2 = 0;
1138         break;
1139     case 2:
1140         cmd->dptr.prp1 = pagelist[0];
1141         cmd->dptr.prp2 = pagelist[1];
1142         break;
1143     default:
1144         cmd->dptr.prp1 = pagelist[0];
1145         cmd->dptr.prp2 = cpu_to_le64(req->prp_list_iova + sizeof(uint64_t));
1146         break;
1147     }
1148     trace_nvme_cmd_map_qiov(s, cmd, req, qiov, entries);
1149     for (i = 0; i < entries; ++i) {
1150         trace_nvme_cmd_map_qiov_pages(s, i, pagelist[i]);
1151     }
1152     return 0;
1153 fail:
1154     /* No need to unmap [0 - i) iovs even if we've failed, since we don't
1155      * increment s->dma_map_count. This is okay for fixed mapping memory areas
1156      * because they are already mapped before calling this function; for
1157      * temporary mappings, a later nvme_cmd_(un)map_qiov will reclaim by
1158      * calling qemu_vfio_dma_reset_temporary when necessary. */
1159     if (local_err) {
1160         error_reportf_err(local_err, "Cannot map buffer for DMA: ");
1161     }
1162     return r;
1163 }
1164 
1165 typedef struct {
1166     Coroutine *co;
1167     int ret;
1168     AioContext *ctx;
1169 } NVMeCoData;
1170 
nvme_rw_cb_bh(void * opaque)1171 static void nvme_rw_cb_bh(void *opaque)
1172 {
1173     NVMeCoData *data = opaque;
1174     qemu_coroutine_enter(data->co);
1175 }
1176 
nvme_rw_cb(void * opaque,int ret)1177 static void nvme_rw_cb(void *opaque, int ret)
1178 {
1179     NVMeCoData *data = opaque;
1180     data->ret = ret;
1181     if (!data->co) {
1182         /* The rw coroutine hasn't yielded, don't try to enter. */
1183         return;
1184     }
1185     replay_bh_schedule_oneshot_event(data->ctx, nvme_rw_cb_bh, data);
1186 }
1187 
nvme_co_prw_aligned(BlockDriverState * bs,uint64_t offset,uint64_t bytes,QEMUIOVector * qiov,bool is_write,int flags)1188 static coroutine_fn int nvme_co_prw_aligned(BlockDriverState *bs,
1189                                             uint64_t offset, uint64_t bytes,
1190                                             QEMUIOVector *qiov,
1191                                             bool is_write,
1192                                             int flags)
1193 {
1194     int r;
1195     BDRVNVMeState *s = bs->opaque;
1196     NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
1197     NVMeRequest *req;
1198 
1199     uint32_t cdw12 = (((bytes >> s->blkshift) - 1) & 0xFFFF) |
1200                        (flags & BDRV_REQ_FUA ? 1 << 30 : 0);
1201     NvmeCmd cmd = {
1202         .opcode = is_write ? NVME_CMD_WRITE : NVME_CMD_READ,
1203         .nsid = cpu_to_le32(s->nsid),
1204         .cdw10 = cpu_to_le32((offset >> s->blkshift) & 0xFFFFFFFF),
1205         .cdw11 = cpu_to_le32(((offset >> s->blkshift) >> 32) & 0xFFFFFFFF),
1206         .cdw12 = cpu_to_le32(cdw12),
1207     };
1208     NVMeCoData data = {
1209         .ctx = bdrv_get_aio_context(bs),
1210         .ret = -EINPROGRESS,
1211     };
1212 
1213     trace_nvme_prw_aligned(s, is_write, offset, bytes, flags, qiov->niov);
1214     assert(s->queue_count > 1);
1215     req = nvme_get_free_req(ioq);
1216     assert(req);
1217 
1218     qemu_co_mutex_lock(&s->dma_map_lock);
1219     r = nvme_cmd_map_qiov(bs, &cmd, req, qiov);
1220     qemu_co_mutex_unlock(&s->dma_map_lock);
1221     if (r) {
1222         nvme_put_free_req_and_wake(ioq, req);
1223         return r;
1224     }
1225     nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
1226 
1227     data.co = qemu_coroutine_self();
1228     while (data.ret == -EINPROGRESS) {
1229         qemu_coroutine_yield();
1230     }
1231 
1232     qemu_co_mutex_lock(&s->dma_map_lock);
1233     r = nvme_cmd_unmap_qiov(bs, qiov);
1234     qemu_co_mutex_unlock(&s->dma_map_lock);
1235     if (r) {
1236         return r;
1237     }
1238 
1239     trace_nvme_rw_done(s, is_write, offset, bytes, data.ret);
1240     return data.ret;
1241 }
1242 
nvme_qiov_aligned(BlockDriverState * bs,const QEMUIOVector * qiov)1243 static inline bool nvme_qiov_aligned(BlockDriverState *bs,
1244                                      const QEMUIOVector *qiov)
1245 {
1246     int i;
1247     BDRVNVMeState *s = bs->opaque;
1248 
1249     for (i = 0; i < qiov->niov; ++i) {
1250         if (!QEMU_PTR_IS_ALIGNED(qiov->iov[i].iov_base,
1251                                  qemu_real_host_page_size()) ||
1252             !QEMU_IS_ALIGNED(qiov->iov[i].iov_len, qemu_real_host_page_size())) {
1253             trace_nvme_qiov_unaligned(qiov, i, qiov->iov[i].iov_base,
1254                                       qiov->iov[i].iov_len, s->page_size);
1255             return false;
1256         }
1257     }
1258     return true;
1259 }
1260 
nvme_co_prw(BlockDriverState * bs,uint64_t offset,uint64_t bytes,QEMUIOVector * qiov,bool is_write,int flags)1261 static coroutine_fn int nvme_co_prw(BlockDriverState *bs,
1262                                     uint64_t offset, uint64_t bytes,
1263                                     QEMUIOVector *qiov, bool is_write,
1264                                     int flags)
1265 {
1266     BDRVNVMeState *s = bs->opaque;
1267     int r;
1268     QEMU_AUTO_VFREE uint8_t *buf = NULL;
1269     QEMUIOVector local_qiov;
1270     size_t len = QEMU_ALIGN_UP(bytes, qemu_real_host_page_size());
1271     assert(QEMU_IS_ALIGNED(offset, s->page_size));
1272     assert(QEMU_IS_ALIGNED(bytes, s->page_size));
1273     assert(bytes <= s->max_transfer);
1274     if (nvme_qiov_aligned(bs, qiov)) {
1275         s->stats.aligned_accesses++;
1276         return nvme_co_prw_aligned(bs, offset, bytes, qiov, is_write, flags);
1277     }
1278     s->stats.unaligned_accesses++;
1279     trace_nvme_prw_buffered(s, offset, bytes, qiov->niov, is_write);
1280     buf = qemu_try_memalign(qemu_real_host_page_size(), len);
1281 
1282     if (!buf) {
1283         return -ENOMEM;
1284     }
1285     qemu_iovec_init(&local_qiov, 1);
1286     if (is_write) {
1287         qemu_iovec_to_buf(qiov, 0, buf, bytes);
1288     }
1289     qemu_iovec_add(&local_qiov, buf, bytes);
1290     r = nvme_co_prw_aligned(bs, offset, bytes, &local_qiov, is_write, flags);
1291     qemu_iovec_destroy(&local_qiov);
1292     if (!r && !is_write) {
1293         qemu_iovec_from_buf(qiov, 0, buf, bytes);
1294     }
1295     return r;
1296 }
1297 
nvme_co_preadv(BlockDriverState * bs,int64_t offset,int64_t bytes,QEMUIOVector * qiov,BdrvRequestFlags flags)1298 static coroutine_fn int nvme_co_preadv(BlockDriverState *bs,
1299                                        int64_t offset, int64_t bytes,
1300                                        QEMUIOVector *qiov,
1301                                        BdrvRequestFlags flags)
1302 {
1303     return nvme_co_prw(bs, offset, bytes, qiov, false, flags);
1304 }
1305 
nvme_co_pwritev(BlockDriverState * bs,int64_t offset,int64_t bytes,QEMUIOVector * qiov,BdrvRequestFlags flags)1306 static coroutine_fn int nvme_co_pwritev(BlockDriverState *bs,
1307                                         int64_t offset, int64_t bytes,
1308                                         QEMUIOVector *qiov,
1309                                         BdrvRequestFlags flags)
1310 {
1311     return nvme_co_prw(bs, offset, bytes, qiov, true, flags);
1312 }
1313 
nvme_co_flush(BlockDriverState * bs)1314 static coroutine_fn int nvme_co_flush(BlockDriverState *bs)
1315 {
1316     BDRVNVMeState *s = bs->opaque;
1317     NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
1318     NVMeRequest *req;
1319     NvmeCmd cmd = {
1320         .opcode = NVME_CMD_FLUSH,
1321         .nsid = cpu_to_le32(s->nsid),
1322     };
1323     NVMeCoData data = {
1324         .ctx = bdrv_get_aio_context(bs),
1325         .ret = -EINPROGRESS,
1326     };
1327 
1328     assert(s->queue_count > 1);
1329     req = nvme_get_free_req(ioq);
1330     assert(req);
1331     nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
1332 
1333     data.co = qemu_coroutine_self();
1334     if (data.ret == -EINPROGRESS) {
1335         qemu_coroutine_yield();
1336     }
1337 
1338     return data.ret;
1339 }
1340 
1341 
nvme_co_pwrite_zeroes(BlockDriverState * bs,int64_t offset,int64_t bytes,BdrvRequestFlags flags)1342 static coroutine_fn int nvme_co_pwrite_zeroes(BlockDriverState *bs,
1343                                               int64_t offset,
1344                                               int64_t bytes,
1345                                               BdrvRequestFlags flags)
1346 {
1347     BDRVNVMeState *s = bs->opaque;
1348     NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
1349     NVMeRequest *req;
1350     uint32_t cdw12;
1351 
1352     if (!s->supports_write_zeroes) {
1353         return -ENOTSUP;
1354     }
1355 
1356     if (bytes == 0) {
1357         return 0;
1358     }
1359 
1360     cdw12 = ((bytes >> s->blkshift) - 1) & 0xFFFF;
1361     /*
1362      * We should not lose information. pwrite_zeroes_alignment and
1363      * max_pwrite_zeroes guarantees it.
1364      */
1365     assert(((cdw12 + 1) << s->blkshift) == bytes);
1366 
1367     NvmeCmd cmd = {
1368         .opcode = NVME_CMD_WRITE_ZEROES,
1369         .nsid = cpu_to_le32(s->nsid),
1370         .cdw10 = cpu_to_le32((offset >> s->blkshift) & 0xFFFFFFFF),
1371         .cdw11 = cpu_to_le32(((offset >> s->blkshift) >> 32) & 0xFFFFFFFF),
1372     };
1373 
1374     NVMeCoData data = {
1375         .ctx = bdrv_get_aio_context(bs),
1376         .ret = -EINPROGRESS,
1377     };
1378 
1379     if (flags & BDRV_REQ_MAY_UNMAP) {
1380         cdw12 |= (1 << 25);
1381     }
1382 
1383     if (flags & BDRV_REQ_FUA) {
1384         cdw12 |= (1 << 30);
1385     }
1386 
1387     cmd.cdw12 = cpu_to_le32(cdw12);
1388 
1389     trace_nvme_write_zeroes(s, offset, bytes, flags);
1390     assert(s->queue_count > 1);
1391     req = nvme_get_free_req(ioq);
1392     assert(req);
1393 
1394     nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
1395 
1396     data.co = qemu_coroutine_self();
1397     while (data.ret == -EINPROGRESS) {
1398         qemu_coroutine_yield();
1399     }
1400 
1401     trace_nvme_rw_done(s, true, offset, bytes, data.ret);
1402     return data.ret;
1403 }
1404 
1405 
nvme_co_pdiscard(BlockDriverState * bs,int64_t offset,int64_t bytes)1406 static int coroutine_fn nvme_co_pdiscard(BlockDriverState *bs,
1407                                          int64_t offset,
1408                                          int64_t bytes)
1409 {
1410     BDRVNVMeState *s = bs->opaque;
1411     NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
1412     NVMeRequest *req;
1413     QEMU_AUTO_VFREE NvmeDsmRange *buf = NULL;
1414     QEMUIOVector local_qiov;
1415     int ret;
1416 
1417     NvmeCmd cmd = {
1418         .opcode = NVME_CMD_DSM,
1419         .nsid = cpu_to_le32(s->nsid),
1420         .cdw10 = cpu_to_le32(0), /*number of ranges - 0 based*/
1421         .cdw11 = cpu_to_le32(1 << 2), /*deallocate bit*/
1422     };
1423 
1424     NVMeCoData data = {
1425         .ctx = bdrv_get_aio_context(bs),
1426         .ret = -EINPROGRESS,
1427     };
1428 
1429     if (!s->supports_discard) {
1430         return -ENOTSUP;
1431     }
1432 
1433     assert(s->queue_count > 1);
1434 
1435     /*
1436      * Filling the @buf requires @offset and @bytes to satisfy restrictions
1437      * defined in nvme_refresh_limits().
1438      */
1439     assert(QEMU_IS_ALIGNED(bytes, 1UL << s->blkshift));
1440     assert(QEMU_IS_ALIGNED(offset, 1UL << s->blkshift));
1441     assert((bytes >> s->blkshift) <= UINT32_MAX);
1442 
1443     buf = qemu_try_memalign(s->page_size, s->page_size);
1444     if (!buf) {
1445         return -ENOMEM;
1446     }
1447     memset(buf, 0, s->page_size);
1448     buf->nlb = cpu_to_le32(bytes >> s->blkshift);
1449     buf->slba = cpu_to_le64(offset >> s->blkshift);
1450     buf->cattr = 0;
1451 
1452     qemu_iovec_init(&local_qiov, 1);
1453     qemu_iovec_add(&local_qiov, buf, 4096);
1454 
1455     req = nvme_get_free_req(ioq);
1456     assert(req);
1457 
1458     qemu_co_mutex_lock(&s->dma_map_lock);
1459     ret = nvme_cmd_map_qiov(bs, &cmd, req, &local_qiov);
1460     qemu_co_mutex_unlock(&s->dma_map_lock);
1461 
1462     if (ret) {
1463         nvme_put_free_req_and_wake(ioq, req);
1464         goto out;
1465     }
1466 
1467     trace_nvme_dsm(s, offset, bytes);
1468 
1469     nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
1470 
1471     data.co = qemu_coroutine_self();
1472     while (data.ret == -EINPROGRESS) {
1473         qemu_coroutine_yield();
1474     }
1475 
1476     qemu_co_mutex_lock(&s->dma_map_lock);
1477     ret = nvme_cmd_unmap_qiov(bs, &local_qiov);
1478     qemu_co_mutex_unlock(&s->dma_map_lock);
1479 
1480     if (ret) {
1481         goto out;
1482     }
1483 
1484     ret = data.ret;
1485     trace_nvme_dsm_done(s, offset, bytes, ret);
1486 out:
1487     qemu_iovec_destroy(&local_qiov);
1488     return ret;
1489 
1490 }
1491 
nvme_co_truncate(BlockDriverState * bs,int64_t offset,bool exact,PreallocMode prealloc,BdrvRequestFlags flags,Error ** errp)1492 static int coroutine_fn nvme_co_truncate(BlockDriverState *bs, int64_t offset,
1493                                          bool exact, PreallocMode prealloc,
1494                                          BdrvRequestFlags flags, Error **errp)
1495 {
1496     int64_t cur_length;
1497 
1498     if (prealloc != PREALLOC_MODE_OFF) {
1499         error_setg(errp, "Unsupported preallocation mode '%s'",
1500                    PreallocMode_str(prealloc));
1501         return -ENOTSUP;
1502     }
1503 
1504     cur_length = nvme_co_getlength(bs);
1505     if (offset != cur_length && exact) {
1506         error_setg(errp, "Cannot resize NVMe devices");
1507         return -ENOTSUP;
1508     } else if (offset > cur_length) {
1509         error_setg(errp, "Cannot grow NVMe devices");
1510         return -EINVAL;
1511     }
1512 
1513     return 0;
1514 }
1515 
nvme_reopen_prepare(BDRVReopenState * reopen_state,BlockReopenQueue * queue,Error ** errp)1516 static int nvme_reopen_prepare(BDRVReopenState *reopen_state,
1517                                BlockReopenQueue *queue, Error **errp)
1518 {
1519     return 0;
1520 }
1521 
nvme_refresh_filename(BlockDriverState * bs)1522 static void nvme_refresh_filename(BlockDriverState *bs)
1523 {
1524     BDRVNVMeState *s = bs->opaque;
1525 
1526     snprintf(bs->exact_filename, sizeof(bs->exact_filename), "nvme://%s/%i",
1527              s->device, s->nsid);
1528 }
1529 
nvme_refresh_limits(BlockDriverState * bs,Error ** errp)1530 static void nvme_refresh_limits(BlockDriverState *bs, Error **errp)
1531 {
1532     BDRVNVMeState *s = bs->opaque;
1533 
1534     bs->bl.opt_mem_alignment = s->page_size;
1535     bs->bl.request_alignment = s->page_size;
1536     bs->bl.max_transfer = s->max_transfer;
1537 
1538     /*
1539      * Look at nvme_co_pwrite_zeroes: after shift and decrement we should get
1540      * at most 0xFFFF
1541      */
1542     bs->bl.max_pwrite_zeroes = 1ULL << (s->blkshift + 16);
1543     bs->bl.pwrite_zeroes_alignment = MAX(bs->bl.request_alignment,
1544                                          1UL << s->blkshift);
1545 
1546     bs->bl.max_pdiscard = (uint64_t)UINT32_MAX << s->blkshift;
1547     bs->bl.pdiscard_alignment = MAX(bs->bl.request_alignment,
1548                                     1UL << s->blkshift);
1549 }
1550 
nvme_detach_aio_context(BlockDriverState * bs)1551 static void nvme_detach_aio_context(BlockDriverState *bs)
1552 {
1553     BDRVNVMeState *s = bs->opaque;
1554 
1555     for (unsigned i = 0; i < s->queue_count; i++) {
1556         NVMeQueuePair *q = s->queues[i];
1557 
1558         qemu_bh_delete(q->completion_bh);
1559         q->completion_bh = NULL;
1560     }
1561 
1562     aio_set_event_notifier(bdrv_get_aio_context(bs),
1563                            &s->irq_notifier[MSIX_SHARED_IRQ_IDX],
1564                            NULL, NULL, NULL);
1565 }
1566 
nvme_attach_aio_context(BlockDriverState * bs,AioContext * new_context)1567 static void nvme_attach_aio_context(BlockDriverState *bs,
1568                                     AioContext *new_context)
1569 {
1570     BDRVNVMeState *s = bs->opaque;
1571 
1572     s->aio_context = new_context;
1573     aio_set_event_notifier(new_context, &s->irq_notifier[MSIX_SHARED_IRQ_IDX],
1574                            nvme_handle_event, nvme_poll_cb,
1575                            nvme_poll_ready);
1576 
1577     for (unsigned i = 0; i < s->queue_count; i++) {
1578         NVMeQueuePair *q = s->queues[i];
1579 
1580         q->completion_bh =
1581             aio_bh_new(new_context, nvme_process_completion_bh, q);
1582     }
1583 }
1584 
nvme_register_buf(BlockDriverState * bs,void * host,size_t size,Error ** errp)1585 static bool nvme_register_buf(BlockDriverState *bs, void *host, size_t size,
1586                               Error **errp)
1587 {
1588     int ret;
1589     BDRVNVMeState *s = bs->opaque;
1590 
1591     /*
1592      * FIXME: we may run out of IOVA addresses after repeated
1593      * bdrv_register_buf/bdrv_unregister_buf, because nvme_vfio_dma_unmap
1594      * doesn't reclaim addresses for fixed mappings.
1595      */
1596     ret = qemu_vfio_dma_map(s->vfio, host, size, false, NULL, errp);
1597     return ret == 0;
1598 }
1599 
nvme_unregister_buf(BlockDriverState * bs,void * host,size_t size)1600 static void nvme_unregister_buf(BlockDriverState *bs, void *host, size_t size)
1601 {
1602     BDRVNVMeState *s = bs->opaque;
1603 
1604     qemu_vfio_dma_unmap(s->vfio, host);
1605 }
1606 
nvme_get_specific_stats(BlockDriverState * bs)1607 static BlockStatsSpecific *nvme_get_specific_stats(BlockDriverState *bs)
1608 {
1609     BlockStatsSpecific *stats = g_new(BlockStatsSpecific, 1);
1610     BDRVNVMeState *s = bs->opaque;
1611 
1612     stats->driver = BLOCKDEV_DRIVER_NVME;
1613     stats->u.nvme = (BlockStatsSpecificNvme) {
1614         .completion_errors = s->stats.completion_errors,
1615         .aligned_accesses = s->stats.aligned_accesses,
1616         .unaligned_accesses = s->stats.unaligned_accesses,
1617     };
1618 
1619     return stats;
1620 }
1621 
1622 static const char *const nvme_strong_runtime_opts[] = {
1623     NVME_BLOCK_OPT_DEVICE,
1624     NVME_BLOCK_OPT_NAMESPACE,
1625 
1626     NULL
1627 };
1628 
1629 static BlockDriver bdrv_nvme = {
1630     .format_name              = "nvme",
1631     .protocol_name            = "nvme",
1632     .instance_size            = sizeof(BDRVNVMeState),
1633 
1634     .bdrv_co_create_opts      = bdrv_co_create_opts_simple,
1635     .create_opts              = &bdrv_create_opts_simple,
1636 
1637     .bdrv_parse_filename      = nvme_parse_filename,
1638     .bdrv_open                = nvme_open,
1639     .bdrv_close               = nvme_close,
1640     .bdrv_co_getlength        = nvme_co_getlength,
1641     .bdrv_probe_blocksizes    = nvme_probe_blocksizes,
1642     .bdrv_co_truncate         = nvme_co_truncate,
1643 
1644     .bdrv_co_preadv           = nvme_co_preadv,
1645     .bdrv_co_pwritev          = nvme_co_pwritev,
1646 
1647     .bdrv_co_pwrite_zeroes    = nvme_co_pwrite_zeroes,
1648     .bdrv_co_pdiscard         = nvme_co_pdiscard,
1649 
1650     .bdrv_co_flush_to_disk    = nvme_co_flush,
1651     .bdrv_reopen_prepare      = nvme_reopen_prepare,
1652 
1653     .bdrv_refresh_filename    = nvme_refresh_filename,
1654     .bdrv_refresh_limits      = nvme_refresh_limits,
1655     .strong_runtime_opts      = nvme_strong_runtime_opts,
1656     .bdrv_get_specific_stats  = nvme_get_specific_stats,
1657 
1658     .bdrv_detach_aio_context  = nvme_detach_aio_context,
1659     .bdrv_attach_aio_context  = nvme_attach_aio_context,
1660 
1661     .bdrv_register_buf        = nvme_register_buf,
1662     .bdrv_unregister_buf      = nvme_unregister_buf,
1663 };
1664 
bdrv_nvme_init(void)1665 static void bdrv_nvme_init(void)
1666 {
1667     bdrv_register(&bdrv_nvme);
1668 }
1669 
1670 block_init(bdrv_nvme_init);
1671