xref: /qemu/hw/ppc/pnv.c (revision 06b40d250ecfa1633209c2e431a7a38acfd03a98) !
1 /*
2  * QEMU PowerPC PowerNV machine model
3  *
4  * Copyright (c) 2016-2024, IBM Corporation.
5  *
6  * SPDX-License-Identifier: GPL-2.0-or-later
7  *
8  * This library is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU Lesser General Public
10  * License as published by the Free Software Foundation; either
11  * version 2.1 of the License, or (at your option) any later version.
12  *
13  * This library is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * Lesser General Public License for more details.
17  *
18  * You should have received a copy of the GNU Lesser General Public
19  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20  */
21 
22 #include "qemu/osdep.h"
23 #include "qemu/datadir.h"
24 #include "qemu/units.h"
25 #include "qemu/cutils.h"
26 #include "qapi/error.h"
27 #include "system/qtest.h"
28 #include "system/system.h"
29 #include "system/numa.h"
30 #include "system/reset.h"
31 #include "system/runstate.h"
32 #include "system/cpus.h"
33 #include "system/device_tree.h"
34 #include "system/hw_accel.h"
35 #include "target/ppc/cpu.h"
36 #include "hw/ppc/fdt.h"
37 #include "hw/ppc/ppc.h"
38 #include "hw/ppc/pnv.h"
39 #include "hw/ppc/pnv_core.h"
40 #include "hw/loader.h"
41 #include "hw/nmi.h"
42 #include "qapi/visitor.h"
43 #include "hw/intc/intc.h"
44 #include "hw/ipmi/ipmi.h"
45 #include "target/ppc/mmu-hash64.h"
46 #include "hw/pci/msi.h"
47 #include "hw/pci-host/pnv_phb.h"
48 #include "hw/pci-host/pnv_phb3.h"
49 #include "hw/pci-host/pnv_phb4.h"
50 
51 #include "hw/ppc/xics.h"
52 #include "hw/qdev-properties.h"
53 #include "hw/ppc/pnv_chip.h"
54 #include "hw/ppc/pnv_xscom.h"
55 #include "hw/ppc/pnv_pnor.h"
56 
57 #include "hw/isa/isa.h"
58 #include "hw/char/serial-isa.h"
59 #include "hw/rtc/mc146818rtc.h"
60 
61 #include <libfdt.h>
62 
63 #define FDT_MAX_SIZE            (1 * MiB)
64 
65 #define FW_FILE_NAME            "skiboot.lid"
66 #define FW_LOAD_ADDR            0x0
67 #define FW_MAX_SIZE             (16 * MiB)
68 
69 #define PNOR_FILE_NAME          "pnv-pnor.bin"
70 
71 #define KERNEL_LOAD_ADDR        0x20000000
72 #define KERNEL_MAX_SIZE         (128 * MiB)
73 #define INITRD_LOAD_ADDR        0x28000000
74 #define INITRD_MAX_SIZE         (128 * MiB)
75 
pnv_chip_core_typename(const PnvChip * o)76 static const char *pnv_chip_core_typename(const PnvChip *o)
77 {
78     const char *chip_type = object_class_get_name(object_get_class(OBJECT(o)));
79     int len = strlen(chip_type) - strlen(PNV_CHIP_TYPE_SUFFIX);
80     char *s = g_strdup_printf(PNV_CORE_TYPE_NAME("%.*s"), len, chip_type);
81     const char *core_type = object_class_get_name(object_class_by_name(s));
82     g_free(s);
83     return core_type;
84 }
85 
86 /*
87  * On Power Systems E880 (POWER8), the max cpus (threads) should be :
88  *     4 * 4 sockets * 12 cores * 8 threads = 1536
89  * Let's make it 2^11
90  */
91 #define MAX_CPUS                2048
92 
93 /*
94  * Memory nodes are created by hostboot, one for each range of memory
95  * that has a different "affinity". In practice, it means one range
96  * per chip.
97  */
pnv_dt_memory(void * fdt,int chip_id,hwaddr start,hwaddr size)98 static void pnv_dt_memory(void *fdt, int chip_id, hwaddr start, hwaddr size)
99 {
100     char *mem_name;
101     uint64_t mem_reg_property[2];
102     int off;
103 
104     mem_reg_property[0] = cpu_to_be64(start);
105     mem_reg_property[1] = cpu_to_be64(size);
106 
107     mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start);
108     off = fdt_add_subnode(fdt, 0, mem_name);
109     g_free(mem_name);
110 
111     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
112     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
113                        sizeof(mem_reg_property))));
114     _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id)));
115 }
116 
get_cpus_node(void * fdt)117 static int get_cpus_node(void *fdt)
118 {
119     int cpus_offset = fdt_path_offset(fdt, "/cpus");
120 
121     if (cpus_offset < 0) {
122         cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
123         if (cpus_offset) {
124             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
125             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
126         }
127     }
128     _FDT(cpus_offset);
129     return cpus_offset;
130 }
131 
132 /*
133  * The PowerNV cores (and threads) need to use real HW ids and not an
134  * incremental index like it has been done on other platforms. This HW
135  * id is stored in the CPU PIR, it is used to create cpu nodes in the
136  * device tree, used in XSCOM to address cores and in interrupt
137  * servers.
138  */
pnv_dt_core(PnvChip * chip,PnvCore * pc,void * fdt)139 static int pnv_dt_core(PnvChip *chip, PnvCore *pc, void *fdt)
140 {
141     PowerPCCPU *cpu = pc->threads[0];
142     CPUState *cs = CPU(cpu);
143     DeviceClass *dc = DEVICE_GET_CLASS(cs);
144     int smt_threads = CPU_CORE(pc)->nr_threads;
145     CPUPPCState *env = &cpu->env;
146     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
147     PnvChipClass *pnv_cc = PNV_CHIP_GET_CLASS(chip);
148     uint32_t *servers_prop;
149     int i;
150     uint32_t pir, tir;
151     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
152                        0xffffffff, 0xffffffff};
153     uint32_t tbfreq = PNV_TIMEBASE_FREQ;
154     uint32_t cpufreq = 1000000000;
155     uint32_t page_sizes_prop[64];
156     size_t page_sizes_prop_size;
157     int offset;
158     char *nodename;
159     int cpus_offset = get_cpus_node(fdt);
160 
161     pnv_cc->get_pir_tir(chip, pc->hwid, 0, &pir, &tir);
162 
163     /* Only one DT node per (big) core */
164     g_assert(tir == 0);
165 
166     nodename = g_strdup_printf("%s@%x", dc->fw_name, pir);
167     offset = fdt_add_subnode(fdt, cpus_offset, nodename);
168     _FDT(offset);
169     g_free(nodename);
170 
171     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id)));
172 
173     _FDT((fdt_setprop_cell(fdt, offset, "reg", pir)));
174     _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pir)));
175     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
176 
177     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
178     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
179                             env->dcache_line_size)));
180     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
181                             env->dcache_line_size)));
182     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
183                             env->icache_line_size)));
184     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
185                             env->icache_line_size)));
186 
187     if (pcc->l1_dcache_size) {
188         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
189                                pcc->l1_dcache_size)));
190     } else {
191         warn_report("Unknown L1 dcache size for cpu");
192     }
193     if (pcc->l1_icache_size) {
194         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
195                                pcc->l1_icache_size)));
196     } else {
197         warn_report("Unknown L1 icache size for cpu");
198     }
199 
200     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
201     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
202     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size",
203                            cpu->hash64_opts->slb_size)));
204     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
205     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
206 
207     if (ppc_has_spr(cpu, SPR_PURR)) {
208         _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
209     }
210 
211     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
212         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
213                            segs, sizeof(segs))));
214     }
215 
216     /*
217      * Advertise VMX/VSX (vector extensions) if available
218      *   0 / no property == no vector extensions
219      *   1               == VMX / Altivec available
220      *   2               == VSX available
221      */
222     if (env->insns_flags & PPC_ALTIVEC) {
223         uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
224 
225         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
226     }
227 
228     /*
229      * Advertise DFP (Decimal Floating Point) if available
230      *   0 / no property == no DFP
231      *   1               == DFP available
232      */
233     if (env->insns_flags2 & PPC2_DFP) {
234         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
235     }
236 
237     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
238                                                       sizeof(page_sizes_prop));
239     if (page_sizes_prop_size) {
240         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
241                            page_sizes_prop, page_sizes_prop_size)));
242     }
243 
244     /* Build interrupt servers properties */
245     if (pc->big_core) {
246         servers_prop = g_new(uint32_t, smt_threads * 2);
247         for (i = 0; i < smt_threads; i++) {
248             pnv_cc->get_pir_tir(chip, pc->hwid, i, &pir, NULL);
249             servers_prop[i * 2] = cpu_to_be32(pir);
250 
251             pnv_cc->get_pir_tir(chip, pc->hwid + 1, i, &pir, NULL);
252             servers_prop[i * 2 + 1] = cpu_to_be32(pir);
253         }
254         _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
255                           servers_prop, sizeof(*servers_prop) * smt_threads
256                                         * 2)));
257     } else {
258         servers_prop = g_new(uint32_t, smt_threads);
259         for (i = 0; i < smt_threads; i++) {
260             pnv_cc->get_pir_tir(chip, pc->hwid, i, &pir, NULL);
261             servers_prop[i] = cpu_to_be32(pir);
262         }
263         _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
264                           servers_prop, sizeof(*servers_prop) * smt_threads)));
265     }
266     g_free(servers_prop);
267 
268     return offset;
269 }
270 
pnv_dt_icp(PnvChip * chip,void * fdt,uint32_t hwid,uint32_t nr_threads)271 static void pnv_dt_icp(PnvChip *chip, void *fdt, uint32_t hwid,
272                        uint32_t nr_threads)
273 {
274     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
275     uint32_t pir;
276     uint64_t addr;
277     char *name;
278     const char compat[] = "IBM,power8-icp\0IBM,ppc-xicp";
279     uint32_t irange[2], i, rsize;
280     uint64_t *reg;
281     int offset;
282 
283     pcc->get_pir_tir(chip, hwid, 0, &pir, NULL);
284     addr = PNV_ICP_BASE(chip) | (pir << 12);
285 
286     irange[0] = cpu_to_be32(pir);
287     irange[1] = cpu_to_be32(nr_threads);
288 
289     rsize = sizeof(uint64_t) * 2 * nr_threads;
290     reg = g_malloc(rsize);
291     for (i = 0; i < nr_threads; i++) {
292         /* We know P8 PIR is linear with thread id */
293         reg[i * 2] = cpu_to_be64(addr | ((pir + i) * 0x1000));
294         reg[i * 2 + 1] = cpu_to_be64(0x1000);
295     }
296 
297     name = g_strdup_printf("interrupt-controller@%"PRIX64, addr);
298     offset = fdt_add_subnode(fdt, 0, name);
299     _FDT(offset);
300     g_free(name);
301 
302     _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat))));
303     _FDT((fdt_setprop(fdt, offset, "reg", reg, rsize)));
304     _FDT((fdt_setprop_string(fdt, offset, "device_type",
305                               "PowerPC-External-Interrupt-Presentation")));
306     _FDT((fdt_setprop(fdt, offset, "interrupt-controller", NULL, 0)));
307     _FDT((fdt_setprop(fdt, offset, "ibm,interrupt-server-ranges",
308                        irange, sizeof(irange))));
309     _FDT((fdt_setprop_cell(fdt, offset, "#interrupt-cells", 1)));
310     _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0)));
311     g_free(reg);
312 }
313 
314 /*
315  * Adds a PnvPHB to the chip on P8.
316  * Implemented here, like for defaults PHBs
317  */
pnv_chip_add_phb(PnvChip * chip,PnvPHB * phb)318 PnvChip *pnv_chip_add_phb(PnvChip *chip, PnvPHB *phb)
319 {
320     Pnv8Chip *chip8 = PNV8_CHIP(chip);
321 
322     phb->chip = chip;
323 
324     chip8->phbs[chip8->num_phbs] = phb;
325     chip8->num_phbs++;
326     return chip;
327 }
328 
329 /*
330  * Same as spapr pa_features_207 except pnv always enables CI largepages bit.
331  * HTM is always enabled because TCG does implement HTM, it's just a
332  * degenerate implementation.
333  */
334 static const uint8_t pa_features_207[] = { 24, 0,
335                  0xf6, 0x3f, 0xc7, 0xc0, 0x00, 0xf0,
336                  0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
337                  0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
338                  0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
339 
pnv_chip_power8_dt_populate(PnvChip * chip,void * fdt)340 static void pnv_chip_power8_dt_populate(PnvChip *chip, void *fdt)
341 {
342     static const char compat[] = "ibm,power8-xscom\0ibm,xscom";
343     int i;
344 
345     pnv_dt_xscom(chip, fdt, 0,
346                  cpu_to_be64(PNV_XSCOM_BASE(chip)),
347                  cpu_to_be64(PNV_XSCOM_SIZE),
348                  compat, sizeof(compat));
349 
350     for (i = 0; i < chip->nr_cores; i++) {
351         PnvCore *pnv_core = chip->cores[i];
352         int offset;
353 
354         offset = pnv_dt_core(chip, pnv_core, fdt);
355 
356         _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
357                            pa_features_207, sizeof(pa_features_207))));
358 
359         /* Interrupt Control Presenters (ICP). One per core. */
360         pnv_dt_icp(chip, fdt, pnv_core->hwid, CPU_CORE(pnv_core)->nr_threads);
361     }
362 
363     if (chip->ram_size) {
364         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
365     }
366 }
367 
368 /*
369  * Same as spapr pa_features_300 except pnv always enables CI largepages bit.
370  */
371 static const uint8_t pa_features_300[] = { 66, 0,
372     /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: CILRG|fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
373     /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, 5: LE|CFAR|EB|LSQ */
374     0xf6, 0x3f, 0xc7, 0xc0, 0x00, 0xf0, /* 0 - 5 */
375     /* 6: DS207 */
376     0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
377     /* 16: Vector */
378     0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
379     /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
380     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 18 - 23 */
381     /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
382     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
383     /* 32: LE atomic, 34: EBB + ext EBB */
384     0x00, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
385     /* 40: Radix MMU */
386     0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 36 - 41 */
387     /* 42: PM, 44: PC RA, 46: SC vec'd */
388     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
389     /* 48: SIMD, 50: QP BFP, 52: String */
390     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
391     /* 54: DecFP, 56: DecI, 58: SHA */
392     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
393     /* 60: NM atomic, 62: RNG */
394     0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
395 };
396 
pnv_chip_power9_dt_populate(PnvChip * chip,void * fdt)397 static void pnv_chip_power9_dt_populate(PnvChip *chip, void *fdt)
398 {
399     static const char compat[] = "ibm,power9-xscom\0ibm,xscom";
400     int i;
401 
402     pnv_dt_xscom(chip, fdt, 0,
403                  cpu_to_be64(PNV9_XSCOM_BASE(chip)),
404                  cpu_to_be64(PNV9_XSCOM_SIZE),
405                  compat, sizeof(compat));
406 
407     for (i = 0; i < chip->nr_cores; i++) {
408         PnvCore *pnv_core = chip->cores[i];
409         int offset;
410 
411         offset = pnv_dt_core(chip, pnv_core, fdt);
412 
413         _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
414                            pa_features_300, sizeof(pa_features_300))));
415 
416         if (pnv_core->big_core) {
417             i++; /* Big-core groups two QEMU cores */
418         }
419     }
420 
421     if (chip->ram_size) {
422         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
423     }
424 
425     pnv_dt_lpc(chip, fdt, 0, PNV9_LPCM_BASE(chip), PNV9_LPCM_SIZE);
426 }
427 
428 /*
429  * Same as spapr pa_features_31 except pnv always enables CI largepages bit,
430  * always disables copy/paste.
431  */
432 static const uint8_t pa_features_31[] = { 74, 0,
433     /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: CILRG|fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
434     /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, 5: LE|CFAR|EB|LSQ */
435     0xf6, 0x3f, 0xc7, 0xc0, 0x00, 0xf0, /* 0 - 5 */
436     /* 6: DS207 */
437     0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
438     /* 16: Vector */
439     0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
440     /* 18: Vec. Scalar, 20: Vec. XOR */
441     0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
442     /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
443     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
444     /* 32: LE atomic, 34: EBB + ext EBB */
445     0x00, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
446     /* 40: Radix MMU */
447     0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 36 - 41 */
448     /* 42: PM, 44: PC RA, 46: SC vec'd */
449     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
450     /* 48: SIMD, 50: QP BFP, 52: String */
451     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
452     /* 54: DecFP, 56: DecI, 58: SHA */
453     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
454     /* 60: NM atomic, 62: RNG */
455     0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
456     /* 68: DEXCR[SBHE|IBRTPDUS|SRAPD|NPHIE|PHIE] */
457     0x00, 0x00, 0xce, 0x00, 0x00, 0x00, /* 66 - 71 */
458     /* 72: [P]HASHST/[P]HASHCHK */
459     0x80, 0x00,                         /* 72 - 73 */
460 };
461 
pnv_chip_power10_dt_populate(PnvChip * chip,void * fdt)462 static void pnv_chip_power10_dt_populate(PnvChip *chip, void *fdt)
463 {
464     static const char compat[] = "ibm,power10-xscom\0ibm,xscom";
465     int i;
466 
467     pnv_dt_xscom(chip, fdt, 0,
468                  cpu_to_be64(PNV10_XSCOM_BASE(chip)),
469                  cpu_to_be64(PNV10_XSCOM_SIZE),
470                  compat, sizeof(compat));
471 
472     for (i = 0; i < chip->nr_cores; i++) {
473         PnvCore *pnv_core = chip->cores[i];
474         int offset;
475 
476         offset = pnv_dt_core(chip, pnv_core, fdt);
477 
478         _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
479                            pa_features_31, sizeof(pa_features_31))));
480 
481         if (pnv_core->big_core) {
482             i++; /* Big-core groups two QEMU cores */
483         }
484     }
485 
486     if (chip->ram_size) {
487         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
488     }
489 
490     pnv_dt_lpc(chip, fdt, 0, PNV10_LPCM_BASE(chip), PNV10_LPCM_SIZE);
491 }
492 
pnv_dt_rtc(ISADevice * d,void * fdt,int lpc_off)493 static void pnv_dt_rtc(ISADevice *d, void *fdt, int lpc_off)
494 {
495     uint32_t io_base = d->ioport_id;
496     uint32_t io_regs[] = {
497         cpu_to_be32(1),
498         cpu_to_be32(io_base),
499         cpu_to_be32(2)
500     };
501     char *name;
502     int node;
503 
504     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
505     node = fdt_add_subnode(fdt, lpc_off, name);
506     _FDT(node);
507     g_free(name);
508 
509     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
510     _FDT((fdt_setprop_string(fdt, node, "compatible", "pnpPNP,b00")));
511 }
512 
pnv_dt_serial(ISADevice * d,void * fdt,int lpc_off)513 static void pnv_dt_serial(ISADevice *d, void *fdt, int lpc_off)
514 {
515     const char compatible[] = "ns16550\0pnpPNP,501";
516     uint32_t io_base = d->ioport_id;
517     uint32_t io_regs[] = {
518         cpu_to_be32(1),
519         cpu_to_be32(io_base),
520         cpu_to_be32(8)
521     };
522     uint32_t irq;
523     char *name;
524     int node;
525 
526     irq = object_property_get_uint(OBJECT(d), "irq", &error_fatal);
527 
528     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
529     node = fdt_add_subnode(fdt, lpc_off, name);
530     _FDT(node);
531     g_free(name);
532 
533     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
534     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
535                       sizeof(compatible))));
536 
537     _FDT((fdt_setprop_cell(fdt, node, "clock-frequency", 1843200)));
538     _FDT((fdt_setprop_cell(fdt, node, "current-speed", 115200)));
539     _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
540     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
541                            fdt_get_phandle(fdt, lpc_off))));
542 
543     /* This is needed by Linux */
544     _FDT((fdt_setprop_string(fdt, node, "device_type", "serial")));
545 }
546 
pnv_dt_ipmi_bt(ISADevice * d,void * fdt,int lpc_off)547 static void pnv_dt_ipmi_bt(ISADevice *d, void *fdt, int lpc_off)
548 {
549     const char compatible[] = "bt\0ipmi-bt";
550     uint32_t io_base;
551     uint32_t io_regs[] = {
552         cpu_to_be32(1),
553         0, /* 'io_base' retrieved from the 'ioport' property of 'isa-ipmi-bt' */
554         cpu_to_be32(3)
555     };
556     uint32_t irq;
557     char *name;
558     int node;
559 
560     io_base = object_property_get_int(OBJECT(d), "ioport", &error_fatal);
561     io_regs[1] = cpu_to_be32(io_base);
562 
563     irq = object_property_get_int(OBJECT(d), "irq", &error_fatal);
564 
565     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
566     node = fdt_add_subnode(fdt, lpc_off, name);
567     _FDT(node);
568     g_free(name);
569 
570     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
571     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
572                       sizeof(compatible))));
573 
574     /* Mark it as reserved to avoid Linux trying to claim it */
575     _FDT((fdt_setprop_string(fdt, node, "status", "reserved")));
576     _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
577     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
578                            fdt_get_phandle(fdt, lpc_off))));
579 }
580 
581 typedef struct ForeachPopulateArgs {
582     void *fdt;
583     int offset;
584 } ForeachPopulateArgs;
585 
pnv_dt_isa_device(DeviceState * dev,void * opaque)586 static int pnv_dt_isa_device(DeviceState *dev, void *opaque)
587 {
588     ForeachPopulateArgs *args = opaque;
589     ISADevice *d = ISA_DEVICE(dev);
590 
591     if (object_dynamic_cast(OBJECT(dev), TYPE_MC146818_RTC)) {
592         pnv_dt_rtc(d, args->fdt, args->offset);
593     } else if (object_dynamic_cast(OBJECT(dev), TYPE_ISA_SERIAL)) {
594         pnv_dt_serial(d, args->fdt, args->offset);
595     } else if (object_dynamic_cast(OBJECT(dev), "isa-ipmi-bt")) {
596         pnv_dt_ipmi_bt(d, args->fdt, args->offset);
597     } else {
598         error_report("unknown isa device %s@i%x", qdev_fw_name(dev),
599                      d->ioport_id);
600     }
601 
602     return 0;
603 }
604 
605 /*
606  * The default LPC bus of a multichip system is on chip 0. It's
607  * recognized by the firmware (skiboot) using a "primary" property.
608  */
pnv_dt_isa(PnvMachineState * pnv,void * fdt)609 static void pnv_dt_isa(PnvMachineState *pnv, void *fdt)
610 {
611     int isa_offset = fdt_path_offset(fdt, pnv->chips[0]->dt_isa_nodename);
612     ForeachPopulateArgs args = {
613         .fdt = fdt,
614         .offset = isa_offset,
615     };
616     uint32_t phandle;
617 
618     _FDT((fdt_setprop(fdt, isa_offset, "primary", NULL, 0)));
619 
620     phandle = qemu_fdt_alloc_phandle(fdt);
621     assert(phandle > 0);
622     _FDT((fdt_setprop_cell(fdt, isa_offset, "phandle", phandle)));
623 
624     /*
625      * ISA devices are not necessarily parented to the ISA bus so we
626      * can not use object_child_foreach()
627      */
628     qbus_walk_children(BUS(pnv->isa_bus), pnv_dt_isa_device, NULL, NULL, NULL,
629                        &args);
630 }
631 
pnv_dt_power_mgt(PnvMachineState * pnv,void * fdt)632 static void pnv_dt_power_mgt(PnvMachineState *pnv, void *fdt)
633 {
634     int off;
635 
636     off = fdt_add_subnode(fdt, 0, "ibm,opal");
637     off = fdt_add_subnode(fdt, off, "power-mgt");
638 
639     _FDT(fdt_setprop_cell(fdt, off, "ibm,enabled-stop-levels", 0xc0000000));
640 }
641 
pnv_dt_create(MachineState * machine)642 static void *pnv_dt_create(MachineState *machine)
643 {
644     PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine);
645     PnvMachineState *pnv = PNV_MACHINE(machine);
646     void *fdt;
647     char *buf;
648     int off;
649     int i;
650 
651     fdt = g_malloc0(FDT_MAX_SIZE);
652     _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
653 
654     /* /qemu node */
655     _FDT((fdt_add_subnode(fdt, 0, "qemu")));
656 
657     /* Root node */
658     _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2)));
659     _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2)));
660     _FDT((fdt_setprop_string(fdt, 0, "model",
661                              "IBM PowerNV (emulated by qemu)")));
662     _FDT((fdt_setprop(fdt, 0, "compatible", pmc->compat, pmc->compat_size)));
663 
664     buf =  qemu_uuid_unparse_strdup(&qemu_uuid);
665     _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf)));
666     if (qemu_uuid_set) {
667         _FDT((fdt_setprop_string(fdt, 0, "system-id", buf)));
668     }
669     g_free(buf);
670 
671     off = fdt_add_subnode(fdt, 0, "chosen");
672     if (machine->kernel_cmdline) {
673         _FDT((fdt_setprop_string(fdt, off, "bootargs",
674                                  machine->kernel_cmdline)));
675     }
676 
677     if (pnv->initrd_size) {
678         uint32_t start_prop = cpu_to_be32(pnv->initrd_base);
679         uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size);
680 
681         _FDT((fdt_setprop(fdt, off, "linux,initrd-start",
682                                &start_prop, sizeof(start_prop))));
683         _FDT((fdt_setprop(fdt, off, "linux,initrd-end",
684                                &end_prop, sizeof(end_prop))));
685     }
686 
687     /* Populate device tree for each chip */
688     for (i = 0; i < pnv->num_chips; i++) {
689         PNV_CHIP_GET_CLASS(pnv->chips[i])->dt_populate(pnv->chips[i], fdt);
690     }
691 
692     /* Populate ISA devices on chip 0 */
693     pnv_dt_isa(pnv, fdt);
694 
695     if (pnv->bmc) {
696         pnv_dt_bmc_sensors(pnv->bmc, fdt);
697     }
698 
699     /* Create an extra node for power management on machines that support it */
700     if (pmc->dt_power_mgt) {
701         pmc->dt_power_mgt(pnv, fdt);
702     }
703 
704     return fdt;
705 }
706 
pnv_powerdown_notify(Notifier * n,void * opaque)707 static void pnv_powerdown_notify(Notifier *n, void *opaque)
708 {
709     PnvMachineState *pnv = container_of(n, PnvMachineState, powerdown_notifier);
710 
711     if (pnv->bmc) {
712         pnv_bmc_powerdown(pnv->bmc);
713     }
714 }
715 
pnv_reset(MachineState * machine,ResetType type)716 static void pnv_reset(MachineState *machine, ResetType type)
717 {
718     PnvMachineState *pnv = PNV_MACHINE(machine);
719     IPMIBmc *bmc;
720     void *fdt;
721 
722     qemu_devices_reset(type);
723 
724     /*
725      * The machine should provide by default an internal BMC simulator.
726      * If not, try to use the BMC device that was provided on the command
727      * line.
728      */
729     bmc = pnv_bmc_find(&error_fatal);
730     if (!pnv->bmc) {
731         if (!bmc) {
732             if (!qtest_enabled()) {
733                 warn_report("machine has no BMC device. Use '-device "
734                             "ipmi-bmc-sim,id=bmc0 -device isa-ipmi-bt,bmc=bmc0,irq=10' "
735                             "to define one");
736             }
737         } else {
738             pnv_bmc_set_pnor(bmc, pnv->pnor);
739             pnv->bmc = bmc;
740         }
741     }
742 
743     if (machine->fdt) {
744         fdt = machine->fdt;
745     } else {
746         fdt = pnv_dt_create(machine);
747         /* Pack resulting tree */
748         _FDT((fdt_pack(fdt)));
749     }
750 
751     cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt));
752 
753     /* Update machine->fdt with latest fdt */
754     if (machine->fdt != fdt) {
755         /*
756          * Set machine->fdt for 'dumpdtb' QMP/HMP command. Free
757          * the existing machine->fdt to avoid leaking it during
758          * a reset.
759          */
760         g_free(machine->fdt);
761         machine->fdt = fdt;
762     }
763 }
764 
pnv_chip_power8_isa_create(PnvChip * chip,Error ** errp)765 static ISABus *pnv_chip_power8_isa_create(PnvChip *chip, Error **errp)
766 {
767     Pnv8Chip *chip8 = PNV8_CHIP(chip);
768     qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip8->psi), PSIHB_IRQ_EXTERNAL);
769 
770     qdev_connect_gpio_out_named(DEVICE(&chip8->lpc), "LPCHC", 0, irq);
771 
772     return pnv_lpc_isa_create(&chip8->lpc, true, errp);
773 }
774 
pnv_chip_power8nvl_isa_create(PnvChip * chip,Error ** errp)775 static ISABus *pnv_chip_power8nvl_isa_create(PnvChip *chip, Error **errp)
776 {
777     Pnv8Chip *chip8 = PNV8_CHIP(chip);
778     qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip8->psi), PSIHB_IRQ_LPC_I2C);
779 
780     qdev_connect_gpio_out_named(DEVICE(&chip8->lpc), "LPCHC", 0, irq);
781 
782     return pnv_lpc_isa_create(&chip8->lpc, false, errp);
783 }
784 
pnv_chip_power9_isa_create(PnvChip * chip,Error ** errp)785 static ISABus *pnv_chip_power9_isa_create(PnvChip *chip, Error **errp)
786 {
787     Pnv9Chip *chip9 = PNV9_CHIP(chip);
788     qemu_irq irq;
789 
790     irq = qdev_get_gpio_in(DEVICE(&chip9->psi), PSIHB9_IRQ_LPCHC);
791     qdev_connect_gpio_out_named(DEVICE(&chip9->lpc), "LPCHC", 0, irq);
792 
793     irq = qdev_get_gpio_in(DEVICE(&chip9->psi), PSIHB9_IRQ_LPC_SIRQ0);
794     qdev_connect_gpio_out_named(DEVICE(&chip9->lpc), "SERIRQ", 0, irq);
795     irq = qdev_get_gpio_in(DEVICE(&chip9->psi), PSIHB9_IRQ_LPC_SIRQ1);
796     qdev_connect_gpio_out_named(DEVICE(&chip9->lpc), "SERIRQ", 1, irq);
797     irq = qdev_get_gpio_in(DEVICE(&chip9->psi), PSIHB9_IRQ_LPC_SIRQ2);
798     qdev_connect_gpio_out_named(DEVICE(&chip9->lpc), "SERIRQ", 2, irq);
799     irq = qdev_get_gpio_in(DEVICE(&chip9->psi), PSIHB9_IRQ_LPC_SIRQ3);
800     qdev_connect_gpio_out_named(DEVICE(&chip9->lpc), "SERIRQ", 3, irq);
801 
802     return pnv_lpc_isa_create(&chip9->lpc, false, errp);
803 }
804 
pnv_chip_power10_isa_create(PnvChip * chip,Error ** errp)805 static ISABus *pnv_chip_power10_isa_create(PnvChip *chip, Error **errp)
806 {
807     Pnv10Chip *chip10 = PNV10_CHIP(chip);
808     qemu_irq irq;
809 
810     irq = qdev_get_gpio_in(DEVICE(&chip10->psi), PSIHB9_IRQ_LPCHC);
811     qdev_connect_gpio_out_named(DEVICE(&chip10->lpc), "LPCHC", 0, irq);
812 
813     irq = qdev_get_gpio_in(DEVICE(&chip10->psi), PSIHB9_IRQ_LPC_SIRQ0);
814     qdev_connect_gpio_out_named(DEVICE(&chip10->lpc), "SERIRQ", 0, irq);
815     irq = qdev_get_gpio_in(DEVICE(&chip10->psi), PSIHB9_IRQ_LPC_SIRQ1);
816     qdev_connect_gpio_out_named(DEVICE(&chip10->lpc), "SERIRQ", 1, irq);
817     irq = qdev_get_gpio_in(DEVICE(&chip10->psi), PSIHB9_IRQ_LPC_SIRQ2);
818     qdev_connect_gpio_out_named(DEVICE(&chip10->lpc), "SERIRQ", 2, irq);
819     irq = qdev_get_gpio_in(DEVICE(&chip10->psi), PSIHB9_IRQ_LPC_SIRQ3);
820     qdev_connect_gpio_out_named(DEVICE(&chip10->lpc), "SERIRQ", 3, irq);
821 
822     return pnv_lpc_isa_create(&chip10->lpc, false, errp);
823 }
824 
pnv_isa_create(PnvChip * chip,Error ** errp)825 static ISABus *pnv_isa_create(PnvChip *chip, Error **errp)
826 {
827     return PNV_CHIP_GET_CLASS(chip)->isa_create(chip, errp);
828 }
829 
pnv_chip_power8_pic_print_info(PnvChip * chip,GString * buf)830 static void pnv_chip_power8_pic_print_info(PnvChip *chip, GString *buf)
831 {
832     Pnv8Chip *chip8 = PNV8_CHIP(chip);
833     int i;
834 
835     ics_pic_print_info(&chip8->psi.ics, buf);
836 
837     for (i = 0; i < chip8->num_phbs; i++) {
838         PnvPHB *phb = chip8->phbs[i];
839         PnvPHB3 *phb3 = PNV_PHB3(phb->backend);
840 
841         pnv_phb3_msi_pic_print_info(&phb3->msis, buf);
842         ics_pic_print_info(&phb3->lsis, buf);
843     }
844 }
845 
pnv_chip_power9_pic_print_info_child(Object * child,void * opaque)846 static int pnv_chip_power9_pic_print_info_child(Object *child, void *opaque)
847 {
848     GString *buf = opaque;
849     PnvPHB *phb =  (PnvPHB *) object_dynamic_cast(child, TYPE_PNV_PHB);
850 
851     if (!phb) {
852         return 0;
853     }
854 
855     pnv_phb4_pic_print_info(PNV_PHB4(phb->backend), buf);
856 
857     return 0;
858 }
859 
pnv_chip_power9_pic_print_info(PnvChip * chip,GString * buf)860 static void pnv_chip_power9_pic_print_info(PnvChip *chip, GString *buf)
861 {
862     Pnv9Chip *chip9 = PNV9_CHIP(chip);
863 
864     pnv_xive_pic_print_info(&chip9->xive, buf);
865     pnv_psi_pic_print_info(&chip9->psi, buf);
866     object_child_foreach_recursive(OBJECT(chip),
867                          pnv_chip_power9_pic_print_info_child, buf);
868 }
869 
pnv_chip_power8_xscom_core_base(PnvChip * chip,uint32_t core_id)870 static uint64_t pnv_chip_power8_xscom_core_base(PnvChip *chip,
871                                                 uint32_t core_id)
872 {
873     return PNV_XSCOM_EX_BASE(core_id);
874 }
875 
pnv_chip_power9_xscom_core_base(PnvChip * chip,uint32_t core_id)876 static uint64_t pnv_chip_power9_xscom_core_base(PnvChip *chip,
877                                                 uint32_t core_id)
878 {
879     return PNV9_XSCOM_EC_BASE(core_id);
880 }
881 
pnv_chip_power10_xscom_core_base(PnvChip * chip,uint32_t core_id)882 static uint64_t pnv_chip_power10_xscom_core_base(PnvChip *chip,
883                                                  uint32_t core_id)
884 {
885     return PNV10_XSCOM_EC_BASE(core_id);
886 }
887 
pnv_match_cpu(const char * default_type,const char * cpu_type)888 static bool pnv_match_cpu(const char *default_type, const char *cpu_type)
889 {
890     PowerPCCPUClass *ppc_default =
891         POWERPC_CPU_CLASS(object_class_by_name(default_type));
892     PowerPCCPUClass *ppc =
893         POWERPC_CPU_CLASS(object_class_by_name(cpu_type));
894 
895     return ppc_default->pvr_match(ppc_default, ppc->pvr, false);
896 }
897 
pnv_ipmi_bt_init(ISABus * bus,IPMIBmc * bmc,uint32_t irq)898 static void pnv_ipmi_bt_init(ISABus *bus, IPMIBmc *bmc, uint32_t irq)
899 {
900     ISADevice *dev = isa_new("isa-ipmi-bt");
901 
902     object_property_set_link(OBJECT(dev), "bmc", OBJECT(bmc), &error_fatal);
903     object_property_set_int(OBJECT(dev), "irq", irq, &error_fatal);
904     isa_realize_and_unref(dev, bus, &error_fatal);
905 }
906 
pnv_chip_power10_pic_print_info(PnvChip * chip,GString * buf)907 static void pnv_chip_power10_pic_print_info(PnvChip *chip, GString *buf)
908 {
909     Pnv10Chip *chip10 = PNV10_CHIP(chip);
910 
911     pnv_xive2_pic_print_info(&chip10->xive, buf);
912     pnv_psi_pic_print_info(&chip10->psi, buf);
913     object_child_foreach_recursive(OBJECT(chip),
914                          pnv_chip_power9_pic_print_info_child, buf);
915 }
916 
917 /* Always give the first 1GB to chip 0 else we won't boot */
pnv_chip_get_ram_size(PnvMachineState * pnv,int chip_id)918 static uint64_t pnv_chip_get_ram_size(PnvMachineState *pnv, int chip_id)
919 {
920     MachineState *machine = MACHINE(pnv);
921     uint64_t ram_per_chip;
922 
923     assert(machine->ram_size >= 1 * GiB);
924 
925     ram_per_chip = machine->ram_size / pnv->num_chips;
926     if (ram_per_chip >= 1 * GiB) {
927         return QEMU_ALIGN_DOWN(ram_per_chip, 1 * MiB);
928     }
929 
930     assert(pnv->num_chips > 1);
931 
932     ram_per_chip = (machine->ram_size - 1 * GiB) / (pnv->num_chips - 1);
933     return chip_id == 0 ? 1 * GiB : QEMU_ALIGN_DOWN(ram_per_chip, 1 * MiB);
934 }
935 
pnv_init(MachineState * machine)936 static void pnv_init(MachineState *machine)
937 {
938     const char *bios_name = machine->firmware ?: FW_FILE_NAME;
939     PnvMachineState *pnv = PNV_MACHINE(machine);
940     MachineClass *mc = MACHINE_GET_CLASS(machine);
941     PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine);
942     int max_smt_threads = pmc->max_smt_threads;
943     char *fw_filename;
944     long fw_size;
945     uint64_t chip_ram_start = 0;
946     int i;
947     char *chip_typename;
948     DriveInfo *pnor;
949     DeviceState *dev;
950 
951     if (kvm_enabled()) {
952         error_report("machine %s does not support the KVM accelerator",
953                      mc->name);
954         exit(EXIT_FAILURE);
955     }
956 
957     /* allocate RAM */
958     if (machine->ram_size < mc->default_ram_size) {
959         char *sz = size_to_str(mc->default_ram_size);
960         error_report("Invalid RAM size, should be bigger than %s", sz);
961         g_free(sz);
962         exit(EXIT_FAILURE);
963     }
964 
965     /* checks for invalid option combinations */
966     if (machine->dtb && (strlen(machine->kernel_cmdline) != 0)) {
967         error_report("-append and -dtb cannot be used together, as passed"
968                 " command line is ignored in case of custom dtb");
969         exit(EXIT_FAILURE);
970     }
971 
972     memory_region_add_subregion(get_system_memory(), 0, machine->ram);
973 
974     /*
975      * Create our simple PNOR device
976      */
977     dev = qdev_new(TYPE_PNV_PNOR);
978     pnor = drive_get(IF_MTD, 0, 0);
979     if (!pnor && defaults_enabled()) {
980         fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, PNOR_FILE_NAME);
981         if (!fw_filename) {
982             warn_report("Could not find PNOR '%s'", PNOR_FILE_NAME);
983         } else {
984             QemuOpts *opts;
985             opts = drive_add(IF_MTD, -1, fw_filename, "format=raw,readonly=on");
986             pnor = drive_new(opts, IF_MTD, &error_fatal);
987             g_free(fw_filename);
988         }
989     }
990     if (pnor) {
991         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(pnor));
992     }
993     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
994     pnv->pnor = PNV_PNOR(dev);
995 
996     /* load skiboot firmware  */
997     fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
998     if (!fw_filename) {
999         error_report("Could not find OPAL firmware '%s'", bios_name);
1000         exit(1);
1001     }
1002 
1003     fw_size = load_image_targphys(fw_filename, pnv->fw_load_addr, FW_MAX_SIZE);
1004     if (fw_size < 0) {
1005         error_report("Could not load OPAL firmware '%s'", fw_filename);
1006         exit(1);
1007     }
1008     g_free(fw_filename);
1009 
1010     /* load kernel */
1011     if (machine->kernel_filename) {
1012         long kernel_size;
1013 
1014         kernel_size = load_image_targphys(machine->kernel_filename,
1015                                           KERNEL_LOAD_ADDR, KERNEL_MAX_SIZE);
1016         if (kernel_size < 0) {
1017             error_report("Could not load kernel '%s'",
1018                          machine->kernel_filename);
1019             exit(1);
1020         }
1021     }
1022 
1023     /* load initrd */
1024     if (machine->initrd_filename) {
1025         pnv->initrd_base = INITRD_LOAD_ADDR;
1026         pnv->initrd_size = load_image_targphys(machine->initrd_filename,
1027                                   pnv->initrd_base, INITRD_MAX_SIZE);
1028         if (pnv->initrd_size < 0) {
1029             error_report("Could not load initial ram disk '%s'",
1030                          machine->initrd_filename);
1031             exit(1);
1032         }
1033     }
1034 
1035     /* load dtb if passed */
1036     if (machine->dtb) {
1037         int fdt_size;
1038 
1039         warn_report("with manually passed dtb, some options like '-append'"
1040                 " will get ignored and the dtb passed will be used as-is");
1041 
1042         /* read the file 'machine->dtb', and load it into 'fdt' buffer */
1043         machine->fdt = load_device_tree(machine->dtb, &fdt_size);
1044         if (!machine->fdt) {
1045             error_report("Could not load dtb '%s'", machine->dtb);
1046             exit(1);
1047         }
1048     }
1049 
1050     /* MSIs are supported on this platform */
1051     msi_nonbroken = true;
1052 
1053     /*
1054      * Check compatibility of the specified CPU with the machine
1055      * default.
1056      */
1057     if (!pnv_match_cpu(mc->default_cpu_type, machine->cpu_type)) {
1058         error_report("invalid CPU model '%s' for %s machine",
1059                      machine->cpu_type, mc->name);
1060         exit(1);
1061     }
1062 
1063     /* Create the processor chips */
1064     i = strlen(machine->cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX);
1065     chip_typename = g_strdup_printf(PNV_CHIP_TYPE_NAME("%.*s"),
1066                                     i, machine->cpu_type);
1067     if (!object_class_by_name(chip_typename)) {
1068         error_report("invalid chip model '%.*s' for %s machine",
1069                      i, machine->cpu_type, mc->name);
1070         exit(1);
1071     }
1072 
1073     /* Set lpar-per-core mode if lpar-per-thread is not supported */
1074     if (!pmc->has_lpar_per_thread) {
1075         pnv->lpar_per_core = true;
1076     }
1077 
1078     pnv->num_chips =
1079         machine->smp.max_cpus / (machine->smp.cores * machine->smp.threads);
1080 
1081     if (pnv->big_core) {
1082         if (machine->smp.threads % 2 == 1) {
1083             error_report("Cannot support %d threads with big-core option "
1084                          "because it must be an even number",
1085                          machine->smp.threads);
1086             exit(1);
1087         }
1088         max_smt_threads *= 2;
1089     }
1090 
1091     if (machine->smp.threads > max_smt_threads) {
1092         error_report("Cannot support more than %d threads/core "
1093                      "on %s machine", max_smt_threads, mc->desc);
1094         if (pmc->max_smt_threads == 4) {
1095             error_report("(use big-core=on for 8 threads per core)");
1096         }
1097         exit(1);
1098     }
1099 
1100     if (pnv->big_core) {
1101         /*
1102          * powernv models PnvCore as a SMT4 core. Big-core requires 2xPnvCore
1103          * per core, so adjust topology here. pnv_dt_core() processor
1104          * device-tree and TCG SMT code make the 2 cores appear as one big core
1105          * from software point of view. pnv pervasive models and xscoms tend to
1106          * see the big core as 2 small core halves.
1107          */
1108         machine->smp.cores *= 2;
1109         machine->smp.threads /= 2;
1110     }
1111 
1112     if (!is_power_of_2(machine->smp.threads)) {
1113         error_report("Cannot support %d threads/core on a powernv "
1114                      "machine because it must be a power of 2",
1115                      machine->smp.threads);
1116         exit(1);
1117     }
1118 
1119     /*
1120      * TODO: should we decide on how many chips we can create based
1121      * on #cores and Venice vs. Murano vs. Naples chip type etc...,
1122      */
1123     if (!is_power_of_2(pnv->num_chips) || pnv->num_chips > 16) {
1124         error_report("invalid number of chips: '%d'", pnv->num_chips);
1125         error_printf(
1126             "Try '-smp sockets=N'. Valid values are : 1, 2, 4, 8 and 16.\n");
1127         exit(1);
1128     }
1129 
1130     pnv->chips = g_new0(PnvChip *, pnv->num_chips);
1131     for (i = 0; i < pnv->num_chips; i++) {
1132         char chip_name[32];
1133         Object *chip = OBJECT(qdev_new(chip_typename));
1134         uint64_t chip_ram_size =  pnv_chip_get_ram_size(pnv, i);
1135 
1136         pnv->chips[i] = PNV_CHIP(chip);
1137 
1138         /* Distribute RAM among the chips  */
1139         object_property_set_int(chip, "ram-start", chip_ram_start,
1140                                 &error_fatal);
1141         object_property_set_int(chip, "ram-size", chip_ram_size,
1142                                 &error_fatal);
1143         chip_ram_start += chip_ram_size;
1144 
1145         snprintf(chip_name, sizeof(chip_name), "chip[%d]", i);
1146         object_property_add_child(OBJECT(pnv), chip_name, chip);
1147         object_property_set_int(chip, "chip-id", i, &error_fatal);
1148         object_property_set_int(chip, "nr-cores", machine->smp.cores,
1149                                 &error_fatal);
1150         object_property_set_int(chip, "nr-threads", machine->smp.threads,
1151                                 &error_fatal);
1152         object_property_set_bool(chip, "big-core", pnv->big_core,
1153                                 &error_fatal);
1154         object_property_set_bool(chip, "lpar-per-core", pnv->lpar_per_core,
1155                                 &error_fatal);
1156         /*
1157          * The POWER8 machine use the XICS interrupt interface.
1158          * Propagate the XICS fabric to the chip and its controllers.
1159          */
1160         if (object_dynamic_cast(OBJECT(pnv), TYPE_XICS_FABRIC)) {
1161             object_property_set_link(chip, "xics", OBJECT(pnv), &error_abort);
1162         }
1163         if (object_dynamic_cast(OBJECT(pnv), TYPE_XIVE_FABRIC)) {
1164             object_property_set_link(chip, "xive-fabric", OBJECT(pnv),
1165                                      &error_abort);
1166         }
1167         sysbus_realize_and_unref(SYS_BUS_DEVICE(chip), &error_fatal);
1168     }
1169     g_free(chip_typename);
1170 
1171     /* Instantiate ISA bus on chip 0 */
1172     pnv->isa_bus = pnv_isa_create(pnv->chips[0], &error_fatal);
1173 
1174     /* Create serial port */
1175     serial_hds_isa_init(pnv->isa_bus, 0, MAX_ISA_SERIAL_PORTS);
1176 
1177     /* Create an RTC ISA device too */
1178     mc146818_rtc_init(pnv->isa_bus, 2000, NULL);
1179 
1180     /*
1181      * Create the machine BMC simulator and the IPMI BT device for
1182      * communication with the BMC
1183      */
1184     if (defaults_enabled()) {
1185         pnv->bmc = pnv_bmc_create(pnv->pnor);
1186         pnv_ipmi_bt_init(pnv->isa_bus, pnv->bmc, 10);
1187     }
1188 
1189     /*
1190      * The PNOR is mapped on the LPC FW address space by the BMC.
1191      * Since we can not reach the remote BMC machine with LPC memops,
1192      * map it always for now.
1193      */
1194     memory_region_add_subregion(pnv->chips[0]->fw_mr, pnv->pnor->lpc_address,
1195                                 &pnv->pnor->mmio);
1196 
1197     /*
1198      * OpenPOWER systems use a IPMI SEL Event message to notify the
1199      * host to powerdown
1200      */
1201     pnv->powerdown_notifier.notify = pnv_powerdown_notify;
1202     qemu_register_powerdown_notifier(&pnv->powerdown_notifier);
1203 
1204     /*
1205      * Create/Connect any machine-specific I2C devices
1206      */
1207     if (pmc->i2c_init) {
1208         pmc->i2c_init(pnv);
1209     }
1210 }
1211 
1212 /*
1213  *    0:21  Reserved - Read as zeros
1214  *   22:24  Chip ID
1215  *   25:28  Core number
1216  *   29:31  Thread ID
1217  */
pnv_get_pir_tir_p8(PnvChip * chip,uint32_t core_id,uint32_t thread_id,uint32_t * pir,uint32_t * tir)1218 static void pnv_get_pir_tir_p8(PnvChip *chip,
1219                                 uint32_t core_id, uint32_t thread_id,
1220                                 uint32_t *pir, uint32_t *tir)
1221 {
1222     if (pir) {
1223         *pir = (chip->chip_id << 7) | (core_id << 3) | thread_id;
1224     }
1225     if (tir) {
1226         *tir = thread_id;
1227     }
1228 }
1229 
pnv_chip_power8_intc_create(PnvChip * chip,PowerPCCPU * cpu,Error ** errp)1230 static void pnv_chip_power8_intc_create(PnvChip *chip, PowerPCCPU *cpu,
1231                                         Error **errp)
1232 {
1233     Pnv8Chip *chip8 = PNV8_CHIP(chip);
1234     Error *local_err = NULL;
1235     Object *obj;
1236     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1237 
1238     obj = icp_create(OBJECT(cpu), TYPE_PNV_ICP, chip8->xics, &local_err);
1239     if (local_err) {
1240         error_propagate(errp, local_err);
1241         return;
1242     }
1243 
1244     pnv_cpu->intc = obj;
1245 }
1246 
1247 
pnv_chip_power8_intc_reset(PnvChip * chip,PowerPCCPU * cpu)1248 static void pnv_chip_power8_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1249 {
1250     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1251 
1252     icp_reset(ICP(pnv_cpu->intc));
1253 }
1254 
pnv_chip_power8_intc_destroy(PnvChip * chip,PowerPCCPU * cpu)1255 static void pnv_chip_power8_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1256 {
1257     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1258 
1259     icp_destroy(ICP(pnv_cpu->intc));
1260     pnv_cpu->intc = NULL;
1261 }
1262 
pnv_chip_power8_intc_print_info(PnvChip * chip,PowerPCCPU * cpu,GString * buf)1263 static void pnv_chip_power8_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1264                                             GString *buf)
1265 {
1266     icp_pic_print_info(ICP(pnv_cpu_state(cpu)->intc), buf);
1267 }
1268 
1269 /*
1270  *    0:48  Reserved - Read as zeroes
1271  *   49:52  Node ID
1272  *   53:55  Chip ID
1273  *   56     Reserved - Read as zero
1274  *   57:61  Core number
1275  *   62:63  Thread ID
1276  *
1277  * We only care about the lower bits. uint32_t is fine for the moment.
1278  */
pnv_get_pir_tir_p9(PnvChip * chip,uint32_t core_id,uint32_t thread_id,uint32_t * pir,uint32_t * tir)1279 static void pnv_get_pir_tir_p9(PnvChip *chip,
1280                                 uint32_t core_id, uint32_t thread_id,
1281                                 uint32_t *pir, uint32_t *tir)
1282 {
1283     if (chip->big_core) {
1284         /* Big-core interleaves thread ID between small-cores */
1285         thread_id <<= 1;
1286         thread_id |= core_id & 1;
1287         core_id >>= 1;
1288 
1289         if (pir) {
1290             *pir = (chip->chip_id << 8) | (core_id << 3) | thread_id;
1291         }
1292     } else {
1293         if (pir) {
1294             *pir = (chip->chip_id << 8) | (core_id << 2) | thread_id;
1295         }
1296     }
1297     if (tir) {
1298         *tir = thread_id;
1299     }
1300 }
1301 
1302 /*
1303  *    0:48  Reserved - Read as zeroes
1304  *   49:52  Node ID
1305  *   53:55  Chip ID
1306  *   56     Reserved - Read as zero
1307  *   57:59  Quad ID
1308  *   60     Core Chiplet Pair ID
1309  *   61:63  Thread/Core Chiplet ID t0-t2
1310  *
1311  * We only care about the lower bits. uint32_t is fine for the moment.
1312  */
pnv_get_pir_tir_p10(PnvChip * chip,uint32_t core_id,uint32_t thread_id,uint32_t * pir,uint32_t * tir)1313 static void pnv_get_pir_tir_p10(PnvChip *chip,
1314                                 uint32_t core_id, uint32_t thread_id,
1315                                 uint32_t *pir, uint32_t *tir)
1316 {
1317     if (chip->big_core) {
1318         /* Big-core interleaves thread ID between small-cores */
1319         thread_id <<= 1;
1320         thread_id |= core_id & 1;
1321         core_id >>= 1;
1322 
1323         if (pir) {
1324             *pir = (chip->chip_id << 8) | (core_id << 3) | thread_id;
1325         }
1326     } else {
1327         if (pir) {
1328             *pir = (chip->chip_id << 8) | (core_id << 2) | thread_id;
1329         }
1330     }
1331     if (tir) {
1332         *tir = thread_id;
1333     }
1334 }
1335 
pnv_chip_power9_intc_create(PnvChip * chip,PowerPCCPU * cpu,Error ** errp)1336 static void pnv_chip_power9_intc_create(PnvChip *chip, PowerPCCPU *cpu,
1337                                         Error **errp)
1338 {
1339     Pnv9Chip *chip9 = PNV9_CHIP(chip);
1340     Error *local_err = NULL;
1341     Object *obj;
1342     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1343 
1344     /*
1345      * The core creates its interrupt presenter but the XIVE interrupt
1346      * controller object is initialized afterwards. Hopefully, it's
1347      * only used at runtime.
1348      */
1349     obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip9->xive),
1350                            &local_err);
1351     if (local_err) {
1352         error_propagate(errp, local_err);
1353         return;
1354     }
1355 
1356     pnv_cpu->intc = obj;
1357 }
1358 
pnv_chip_power9_intc_reset(PnvChip * chip,PowerPCCPU * cpu)1359 static void pnv_chip_power9_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1360 {
1361     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1362 
1363     xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
1364 }
1365 
pnv_chip_power9_intc_destroy(PnvChip * chip,PowerPCCPU * cpu)1366 static void pnv_chip_power9_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1367 {
1368     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1369 
1370     xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
1371     pnv_cpu->intc = NULL;
1372 }
1373 
pnv_chip_power9_intc_print_info(PnvChip * chip,PowerPCCPU * cpu,GString * buf)1374 static void pnv_chip_power9_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1375                                             GString *buf)
1376 {
1377     xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), buf);
1378 }
1379 
pnv_chip_power10_intc_create(PnvChip * chip,PowerPCCPU * cpu,Error ** errp)1380 static void pnv_chip_power10_intc_create(PnvChip *chip, PowerPCCPU *cpu,
1381                                         Error **errp)
1382 {
1383     Pnv10Chip *chip10 = PNV10_CHIP(chip);
1384     Error *local_err = NULL;
1385     Object *obj;
1386     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1387 
1388     /*
1389      * The core creates its interrupt presenter but the XIVE2 interrupt
1390      * controller object is initialized afterwards. Hopefully, it's
1391      * only used at runtime.
1392      */
1393     obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip10->xive),
1394                            &local_err);
1395     if (local_err) {
1396         error_propagate(errp, local_err);
1397         return;
1398     }
1399 
1400     pnv_cpu->intc = obj;
1401 }
1402 
pnv_chip_power10_intc_reset(PnvChip * chip,PowerPCCPU * cpu)1403 static void pnv_chip_power10_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1404 {
1405     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1406 
1407     xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
1408 }
1409 
pnv_chip_power10_intc_destroy(PnvChip * chip,PowerPCCPU * cpu)1410 static void pnv_chip_power10_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1411 {
1412     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1413 
1414     xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
1415     pnv_cpu->intc = NULL;
1416 }
1417 
pnv_chip_power10_intc_print_info(PnvChip * chip,PowerPCCPU * cpu,GString * buf)1418 static void pnv_chip_power10_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1419                                              GString *buf)
1420 {
1421     xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), buf);
1422 }
1423 
1424 /*
1425  * Allowed core identifiers on a POWER8 Processor Chip :
1426  *
1427  * <EX0 reserved>
1428  *  EX1  - Venice only
1429  *  EX2  - Venice only
1430  *  EX3  - Venice only
1431  *  EX4
1432  *  EX5
1433  *  EX6
1434  * <EX7,8 reserved> <reserved>
1435  *  EX9  - Venice only
1436  *  EX10 - Venice only
1437  *  EX11 - Venice only
1438  *  EX12
1439  *  EX13
1440  *  EX14
1441  * <EX15 reserved>
1442  */
1443 #define POWER8E_CORE_MASK  (0x7070ull)
1444 #define POWER8_CORE_MASK   (0x7e7eull)
1445 
1446 /*
1447  * POWER9 has 24 cores, ids starting at 0x0
1448  */
1449 #define POWER9_CORE_MASK   (0xffffffffffffffull)
1450 
1451 
1452 #define POWER10_CORE_MASK  (0xffffffffffffffull)
1453 
pnv_chip_power8_instance_init(Object * obj)1454 static void pnv_chip_power8_instance_init(Object *obj)
1455 {
1456     Pnv8Chip *chip8 = PNV8_CHIP(obj);
1457     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1458     int i;
1459 
1460     object_property_add_link(obj, "xics", TYPE_XICS_FABRIC,
1461                              (Object **)&chip8->xics,
1462                              object_property_allow_set_link,
1463                              OBJ_PROP_LINK_STRONG);
1464 
1465     object_initialize_child(obj, "psi", &chip8->psi, TYPE_PNV8_PSI);
1466 
1467     object_initialize_child(obj, "lpc", &chip8->lpc, TYPE_PNV8_LPC);
1468 
1469     object_initialize_child(obj, "occ", &chip8->occ, TYPE_PNV8_OCC);
1470 
1471     object_initialize_child(obj, "homer", &chip8->homer, TYPE_PNV8_HOMER);
1472 
1473     if (defaults_enabled()) {
1474         chip8->num_phbs = pcc->num_phbs;
1475 
1476         for (i = 0; i < chip8->num_phbs; i++) {
1477             Object *phb = object_new(TYPE_PNV_PHB);
1478 
1479             /*
1480              * We need the chip to parent the PHB to allow the DT
1481              * to build correctly (via pnv_xscom_dt()).
1482              *
1483              * TODO: the PHB should be parented by a PEC device that, at
1484              * this moment, is not modelled powernv8/phb3.
1485              */
1486             object_property_add_child(obj, "phb[*]", phb);
1487             chip8->phbs[i] = PNV_PHB(phb);
1488         }
1489     }
1490 
1491 }
1492 
pnv_chip_icp_realize(Pnv8Chip * chip8,Error ** errp)1493 static void pnv_chip_icp_realize(Pnv8Chip *chip8, Error **errp)
1494  {
1495     PnvChip *chip = PNV_CHIP(chip8);
1496     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1497     int i, j;
1498     char *name;
1499 
1500     name = g_strdup_printf("icp-%x", chip->chip_id);
1501     memory_region_init(&chip8->icp_mmio, OBJECT(chip), name, PNV_ICP_SIZE);
1502     g_free(name);
1503     memory_region_add_subregion(get_system_memory(), PNV_ICP_BASE(chip),
1504                                 &chip8->icp_mmio);
1505 
1506     /* Map the ICP registers for each thread */
1507     for (i = 0; i < chip->nr_cores; i++) {
1508         PnvCore *pnv_core = chip->cores[i];
1509         int core_hwid = CPU_CORE(pnv_core)->core_id;
1510 
1511         for (j = 0; j < CPU_CORE(pnv_core)->nr_threads; j++) {
1512             uint32_t pir;
1513             PnvICPState *icp;
1514 
1515             pcc->get_pir_tir(chip, core_hwid, j, &pir, NULL);
1516             icp = PNV_ICP(xics_icp_get(chip8->xics, pir));
1517 
1518             memory_region_add_subregion(&chip8->icp_mmio, pir << 12,
1519                                         &icp->mmio);
1520         }
1521     }
1522 }
1523 
pnv_chip_power8_realize(DeviceState * dev,Error ** errp)1524 static void pnv_chip_power8_realize(DeviceState *dev, Error **errp)
1525 {
1526     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1527     PnvChip *chip = PNV_CHIP(dev);
1528     Pnv8Chip *chip8 = PNV8_CHIP(dev);
1529     Pnv8Psi *psi8 = &chip8->psi;
1530     Error *local_err = NULL;
1531     int i;
1532 
1533     assert(chip8->xics);
1534 
1535     /* XSCOM bridge is first */
1536     pnv_xscom_init(chip, PNV_XSCOM_SIZE, PNV_XSCOM_BASE(chip));
1537 
1538     pcc->parent_realize(dev, &local_err);
1539     if (local_err) {
1540         error_propagate(errp, local_err);
1541         return;
1542     }
1543 
1544     /* Processor Service Interface (PSI) Host Bridge */
1545     object_property_set_int(OBJECT(psi8), "bar", PNV_PSIHB_BASE(chip),
1546                             &error_fatal);
1547     object_property_set_link(OBJECT(psi8), ICS_PROP_XICS,
1548                              OBJECT(chip8->xics), &error_abort);
1549     if (!qdev_realize(DEVICE(psi8), NULL, errp)) {
1550         return;
1551     }
1552     pnv_xscom_add_subregion(chip, PNV_XSCOM_PSIHB_BASE,
1553                             &PNV_PSI(psi8)->xscom_regs);
1554 
1555     /* Create LPC controller */
1556     qdev_realize(DEVICE(&chip8->lpc), NULL, &error_fatal);
1557     pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip8->lpc.xscom_regs);
1558 
1559     chip->fw_mr = &chip8->lpc.isa_fw;
1560     chip->dt_isa_nodename = g_strdup_printf("/xscom@%" PRIx64 "/isa@%x",
1561                                             (uint64_t) PNV_XSCOM_BASE(chip),
1562                                             PNV_XSCOM_LPC_BASE);
1563 
1564     /*
1565      * Interrupt Management Area. This is the memory region holding
1566      * all the Interrupt Control Presenter (ICP) registers
1567      */
1568     pnv_chip_icp_realize(chip8, &local_err);
1569     if (local_err) {
1570         error_propagate(errp, local_err);
1571         return;
1572     }
1573 
1574     /* HOMER (must be created before OCC) */
1575     object_property_set_link(OBJECT(&chip8->homer), "chip", OBJECT(chip),
1576                              &error_abort);
1577     if (!qdev_realize(DEVICE(&chip8->homer), NULL, errp)) {
1578         return;
1579     }
1580     /* Homer Xscom region */
1581     pnv_xscom_add_subregion(chip, PNV_XSCOM_PBA_BASE, &chip8->homer.pba_regs);
1582     /* Homer RAM region */
1583     memory_region_add_subregion(get_system_memory(), chip8->homer.base,
1584                                 &chip8->homer.mem);
1585 
1586     /* Create the simplified OCC model */
1587     object_property_set_link(OBJECT(&chip8->occ), "homer",
1588                              OBJECT(&chip8->homer), &error_abort);
1589     if (!qdev_realize(DEVICE(&chip8->occ), NULL, errp)) {
1590         return;
1591     }
1592     pnv_xscom_add_subregion(chip, PNV_XSCOM_OCC_BASE, &chip8->occ.xscom_regs);
1593     qdev_connect_gpio_out(DEVICE(&chip8->occ), 0,
1594                           qdev_get_gpio_in(DEVICE(psi8), PSIHB_IRQ_OCC));
1595 
1596     /* OCC SRAM model */
1597     memory_region_add_subregion(get_system_memory(), PNV_OCC_SENSOR_BASE(chip),
1598                                 &chip8->occ.sram_regs);
1599 
1600     /* PHB controllers */
1601     for (i = 0; i < chip8->num_phbs; i++) {
1602         PnvPHB *phb = chip8->phbs[i];
1603 
1604         object_property_set_int(OBJECT(phb), "index", i, &error_fatal);
1605         object_property_set_int(OBJECT(phb), "chip-id", chip->chip_id,
1606                                 &error_fatal);
1607         object_property_set_link(OBJECT(phb), "chip", OBJECT(chip),
1608                                  &error_fatal);
1609         if (!sysbus_realize(SYS_BUS_DEVICE(phb), errp)) {
1610             return;
1611         }
1612     }
1613 }
1614 
pnv_chip_power8_xscom_pcba(PnvChip * chip,uint64_t addr)1615 static uint32_t pnv_chip_power8_xscom_pcba(PnvChip *chip, uint64_t addr)
1616 {
1617     addr &= (PNV_XSCOM_SIZE - 1);
1618     return ((addr >> 4) & ~0xfull) | ((addr >> 3) & 0xf);
1619 }
1620 
pnv_chip_power8e_class_init(ObjectClass * klass,const void * data)1621 static void pnv_chip_power8e_class_init(ObjectClass *klass, const void *data)
1622 {
1623     DeviceClass *dc = DEVICE_CLASS(klass);
1624     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1625 
1626     k->chip_cfam_id = 0x221ef04980000000ull;  /* P8 Murano DD2.1 */
1627     k->cores_mask = POWER8E_CORE_MASK;
1628     k->num_phbs = 3;
1629     k->get_pir_tir = pnv_get_pir_tir_p8;
1630     k->intc_create = pnv_chip_power8_intc_create;
1631     k->intc_reset = pnv_chip_power8_intc_reset;
1632     k->intc_destroy = pnv_chip_power8_intc_destroy;
1633     k->intc_print_info = pnv_chip_power8_intc_print_info;
1634     k->isa_create = pnv_chip_power8_isa_create;
1635     k->dt_populate = pnv_chip_power8_dt_populate;
1636     k->pic_print_info = pnv_chip_power8_pic_print_info;
1637     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1638     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1639     dc->desc = "PowerNV Chip POWER8E";
1640 
1641     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1642                                     &k->parent_realize);
1643 }
1644 
pnv_chip_power8_class_init(ObjectClass * klass,const void * data)1645 static void pnv_chip_power8_class_init(ObjectClass *klass, const void *data)
1646 {
1647     DeviceClass *dc = DEVICE_CLASS(klass);
1648     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1649 
1650     k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */
1651     k->cores_mask = POWER8_CORE_MASK;
1652     k->num_phbs = 3;
1653     k->get_pir_tir = pnv_get_pir_tir_p8;
1654     k->intc_create = pnv_chip_power8_intc_create;
1655     k->intc_reset = pnv_chip_power8_intc_reset;
1656     k->intc_destroy = pnv_chip_power8_intc_destroy;
1657     k->intc_print_info = pnv_chip_power8_intc_print_info;
1658     k->isa_create = pnv_chip_power8_isa_create;
1659     k->dt_populate = pnv_chip_power8_dt_populate;
1660     k->pic_print_info = pnv_chip_power8_pic_print_info;
1661     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1662     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1663     dc->desc = "PowerNV Chip POWER8";
1664 
1665     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1666                                     &k->parent_realize);
1667 }
1668 
pnv_chip_power8nvl_class_init(ObjectClass * klass,const void * data)1669 static void pnv_chip_power8nvl_class_init(ObjectClass *klass, const void *data)
1670 {
1671     DeviceClass *dc = DEVICE_CLASS(klass);
1672     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1673 
1674     k->chip_cfam_id = 0x120d304980000000ull;  /* P8 Naples DD1.0 */
1675     k->cores_mask = POWER8_CORE_MASK;
1676     k->num_phbs = 4;
1677     k->get_pir_tir = pnv_get_pir_tir_p8;
1678     k->intc_create = pnv_chip_power8_intc_create;
1679     k->intc_reset = pnv_chip_power8_intc_reset;
1680     k->intc_destroy = pnv_chip_power8_intc_destroy;
1681     k->intc_print_info = pnv_chip_power8_intc_print_info;
1682     k->isa_create = pnv_chip_power8nvl_isa_create;
1683     k->dt_populate = pnv_chip_power8_dt_populate;
1684     k->pic_print_info = pnv_chip_power8_pic_print_info;
1685     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1686     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1687     dc->desc = "PowerNV Chip POWER8NVL";
1688 
1689     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1690                                     &k->parent_realize);
1691 }
1692 
pnv_chip_power9_instance_init(Object * obj)1693 static void pnv_chip_power9_instance_init(Object *obj)
1694 {
1695     PnvChip *chip = PNV_CHIP(obj);
1696     Pnv9Chip *chip9 = PNV9_CHIP(obj);
1697     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1698     int i;
1699 
1700     object_initialize_child(obj, "adu",  &chip9->adu, TYPE_PNV_ADU);
1701     object_initialize_child(obj, "xive", &chip9->xive, TYPE_PNV_XIVE);
1702     object_property_add_alias(obj, "xive-fabric", OBJECT(&chip9->xive),
1703                               "xive-fabric");
1704 
1705     object_initialize_child(obj, "psi", &chip9->psi, TYPE_PNV9_PSI);
1706 
1707     object_initialize_child(obj, "lpc", &chip9->lpc, TYPE_PNV9_LPC);
1708 
1709     object_initialize_child(obj, "chiptod", &chip9->chiptod, TYPE_PNV9_CHIPTOD);
1710 
1711     object_initialize_child(obj, "occ", &chip9->occ, TYPE_PNV9_OCC);
1712 
1713     object_initialize_child(obj, "sbe", &chip9->sbe, TYPE_PNV9_SBE);
1714 
1715     object_initialize_child(obj, "homer", &chip9->homer, TYPE_PNV9_HOMER);
1716 
1717     /* Number of PECs is the chip default */
1718     chip->num_pecs = pcc->num_pecs;
1719 
1720     for (i = 0; i < chip->num_pecs; i++) {
1721         object_initialize_child(obj, "pec[*]", &chip9->pecs[i],
1722                                 TYPE_PNV_PHB4_PEC);
1723     }
1724 
1725     for (i = 0; i < pcc->i2c_num_engines; i++) {
1726         object_initialize_child(obj, "i2c[*]", &chip9->i2c[i], TYPE_PNV_I2C);
1727     }
1728 }
1729 
pnv_chip_quad_realize_one(PnvChip * chip,PnvQuad * eq,PnvCore * pnv_core,const char * type)1730 static void pnv_chip_quad_realize_one(PnvChip *chip, PnvQuad *eq,
1731                                       PnvCore *pnv_core,
1732                                       const char *type)
1733 {
1734     char eq_name[32];
1735     int core_id = CPU_CORE(pnv_core)->core_id;
1736 
1737     snprintf(eq_name, sizeof(eq_name), "eq[%d]", core_id);
1738     object_initialize_child_with_props(OBJECT(chip), eq_name, eq,
1739                                        sizeof(*eq), type,
1740                                        &error_fatal, NULL);
1741 
1742     object_property_set_int(OBJECT(eq), "quad-id", core_id, &error_fatal);
1743     qdev_realize(DEVICE(eq), NULL, &error_fatal);
1744 }
1745 
pnv_chip_quad_realize(Pnv9Chip * chip9,Error ** errp)1746 static void pnv_chip_quad_realize(Pnv9Chip *chip9, Error **errp)
1747 {
1748     PnvChip *chip = PNV_CHIP(chip9);
1749     int i;
1750 
1751     chip9->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1752     chip9->quads = g_new0(PnvQuad, chip9->nr_quads);
1753 
1754     for (i = 0; i < chip9->nr_quads; i++) {
1755         PnvQuad *eq = &chip9->quads[i];
1756 
1757         pnv_chip_quad_realize_one(chip, eq, chip->cores[i * 4],
1758                                   PNV_QUAD_TYPE_NAME("power9"));
1759 
1760         pnv_xscom_add_subregion(chip, PNV9_XSCOM_EQ_BASE(eq->quad_id),
1761                                 &eq->xscom_regs);
1762     }
1763 }
1764 
pnv_chip_power9_pec_realize(PnvChip * chip,Error ** errp)1765 static void pnv_chip_power9_pec_realize(PnvChip *chip, Error **errp)
1766 {
1767     Pnv9Chip *chip9 = PNV9_CHIP(chip);
1768     int i;
1769 
1770     for (i = 0; i < chip->num_pecs; i++) {
1771         PnvPhb4PecState *pec = &chip9->pecs[i];
1772         PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
1773         uint32_t pec_cplt_base;
1774         uint32_t pec_nest_base;
1775         uint32_t pec_pci_base;
1776 
1777         object_property_set_int(OBJECT(pec), "index", i, &error_fatal);
1778         object_property_set_int(OBJECT(pec), "chip-id", chip->chip_id,
1779                                 &error_fatal);
1780         object_property_set_link(OBJECT(pec), "chip", OBJECT(chip),
1781                                  &error_fatal);
1782         if (!qdev_realize(DEVICE(pec), NULL, errp)) {
1783             return;
1784         }
1785 
1786         pec_cplt_base = pecc->xscom_cplt_base(pec);
1787         pec_nest_base = pecc->xscom_nest_base(pec);
1788         pec_pci_base = pecc->xscom_pci_base(pec);
1789 
1790         pnv_xscom_add_subregion(chip, pec_cplt_base,
1791                  &pec->nest_pervasive.xscom_ctrl_regs_mr);
1792         pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr);
1793         pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr);
1794     }
1795 }
1796 
pnv_chip_power9_realize(DeviceState * dev,Error ** errp)1797 static void pnv_chip_power9_realize(DeviceState *dev, Error **errp)
1798 {
1799     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1800     Pnv9Chip *chip9 = PNV9_CHIP(dev);
1801     PnvChip *chip = PNV_CHIP(dev);
1802     Pnv9Psi *psi9 = &chip9->psi;
1803     Error *local_err = NULL;
1804     int i;
1805 
1806     /* XSCOM bridge is first */
1807     pnv_xscom_init(chip, PNV9_XSCOM_SIZE, PNV9_XSCOM_BASE(chip));
1808 
1809     pcc->parent_realize(dev, &local_err);
1810     if (local_err) {
1811         error_propagate(errp, local_err);
1812         return;
1813     }
1814 
1815     /* ADU */
1816     object_property_set_link(OBJECT(&chip9->adu), "lpc", OBJECT(&chip9->lpc),
1817                              &error_abort);
1818     if (!qdev_realize(DEVICE(&chip9->adu), NULL, errp)) {
1819         return;
1820     }
1821     pnv_xscom_add_subregion(chip, PNV9_XSCOM_ADU_BASE,
1822                             &chip9->adu.xscom_regs);
1823 
1824     pnv_chip_quad_realize(chip9, &local_err);
1825     if (local_err) {
1826         error_propagate(errp, local_err);
1827         return;
1828     }
1829 
1830     /* XIVE interrupt controller (POWER9) */
1831     object_property_set_int(OBJECT(&chip9->xive), "ic-bar",
1832                             PNV9_XIVE_IC_BASE(chip), &error_fatal);
1833     object_property_set_int(OBJECT(&chip9->xive), "vc-bar",
1834                             PNV9_XIVE_VC_BASE(chip), &error_fatal);
1835     object_property_set_int(OBJECT(&chip9->xive), "pc-bar",
1836                             PNV9_XIVE_PC_BASE(chip), &error_fatal);
1837     object_property_set_int(OBJECT(&chip9->xive), "tm-bar",
1838                             PNV9_XIVE_TM_BASE(chip), &error_fatal);
1839     object_property_set_link(OBJECT(&chip9->xive), "chip", OBJECT(chip),
1840                              &error_abort);
1841     if (!sysbus_realize(SYS_BUS_DEVICE(&chip9->xive), errp)) {
1842         return;
1843     }
1844     pnv_xscom_add_subregion(chip, PNV9_XSCOM_XIVE_BASE,
1845                             &chip9->xive.xscom_regs);
1846 
1847     /* Processor Service Interface (PSI) Host Bridge */
1848     object_property_set_int(OBJECT(psi9), "bar", PNV9_PSIHB_BASE(chip),
1849                             &error_fatal);
1850     /* This is the only device with 4k ESB pages */
1851     object_property_set_int(OBJECT(psi9), "shift", XIVE_ESB_4K,
1852                             &error_fatal);
1853     if (!qdev_realize(DEVICE(psi9), NULL, errp)) {
1854         return;
1855     }
1856     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PSIHB_BASE,
1857                             &PNV_PSI(psi9)->xscom_regs);
1858 
1859     /* LPC */
1860     if (!qdev_realize(DEVICE(&chip9->lpc), NULL, errp)) {
1861         return;
1862     }
1863     memory_region_add_subregion(get_system_memory(), PNV9_LPCM_BASE(chip),
1864                                 &chip9->lpc.xscom_regs);
1865 
1866     chip->fw_mr = &chip9->lpc.isa_fw;
1867     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1868                                             (uint64_t) PNV9_LPCM_BASE(chip));
1869 
1870     /* ChipTOD */
1871     object_property_set_bool(OBJECT(&chip9->chiptod), "primary",
1872                              chip->chip_id == 0, &error_abort);
1873     object_property_set_bool(OBJECT(&chip9->chiptod), "secondary",
1874                              chip->chip_id == 1, &error_abort);
1875     object_property_set_link(OBJECT(&chip9->chiptod), "chip", OBJECT(chip),
1876                              &error_abort);
1877     if (!qdev_realize(DEVICE(&chip9->chiptod), NULL, errp)) {
1878         return;
1879     }
1880     pnv_xscom_add_subregion(chip, PNV9_XSCOM_CHIPTOD_BASE,
1881                             &chip9->chiptod.xscom_regs);
1882 
1883     /* SBE */
1884     if (!qdev_realize(DEVICE(&chip9->sbe), NULL, errp)) {
1885         return;
1886     }
1887     pnv_xscom_add_subregion(chip, PNV9_XSCOM_SBE_CTRL_BASE,
1888                             &chip9->sbe.xscom_ctrl_regs);
1889     pnv_xscom_add_subregion(chip, PNV9_XSCOM_SBE_MBOX_BASE,
1890                             &chip9->sbe.xscom_mbox_regs);
1891     qdev_connect_gpio_out(DEVICE(&chip9->sbe), 0, qdev_get_gpio_in(
1892                               DEVICE(psi9), PSIHB9_IRQ_PSU));
1893 
1894     /* HOMER (must be created before OCC) */
1895     object_property_set_link(OBJECT(&chip9->homer), "chip", OBJECT(chip),
1896                              &error_abort);
1897     if (!qdev_realize(DEVICE(&chip9->homer), NULL, errp)) {
1898         return;
1899     }
1900     /* Homer Xscom region */
1901     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PBA_BASE, &chip9->homer.pba_regs);
1902     /* Homer RAM region */
1903     memory_region_add_subregion(get_system_memory(), chip9->homer.base,
1904                                 &chip9->homer.mem);
1905 
1906     /* Create the simplified OCC model */
1907     object_property_set_link(OBJECT(&chip9->occ), "homer",
1908                              OBJECT(&chip9->homer), &error_abort);
1909     if (!qdev_realize(DEVICE(&chip9->occ), NULL, errp)) {
1910         return;
1911     }
1912     pnv_xscom_add_subregion(chip, PNV9_XSCOM_OCC_BASE, &chip9->occ.xscom_regs);
1913     qdev_connect_gpio_out(DEVICE(&chip9->occ), 0, qdev_get_gpio_in(
1914                               DEVICE(psi9), PSIHB9_IRQ_OCC));
1915 
1916     /* OCC SRAM model */
1917     memory_region_add_subregion(get_system_memory(), PNV9_OCC_SENSOR_BASE(chip),
1918                                 &chip9->occ.sram_regs);
1919 
1920     /* PEC PHBs */
1921     pnv_chip_power9_pec_realize(chip, &local_err);
1922     if (local_err) {
1923         error_propagate(errp, local_err);
1924         return;
1925     }
1926 
1927     /*
1928      * I2C
1929      */
1930     for (i = 0; i < pcc->i2c_num_engines; i++) {
1931         Object *obj =  OBJECT(&chip9->i2c[i]);
1932 
1933         object_property_set_int(obj, "engine", i + 1, &error_fatal);
1934         object_property_set_int(obj, "num-busses",
1935                                 pcc->i2c_ports_per_engine[i],
1936                                 &error_fatal);
1937         object_property_set_link(obj, "chip", OBJECT(chip), &error_abort);
1938         if (!qdev_realize(DEVICE(obj), NULL, errp)) {
1939             return;
1940         }
1941         pnv_xscom_add_subregion(chip, PNV9_XSCOM_I2CM_BASE +
1942                                 (chip9->i2c[i].engine - 1) *
1943                                         PNV9_XSCOM_I2CM_SIZE,
1944                                 &chip9->i2c[i].xscom_regs);
1945         qdev_connect_gpio_out(DEVICE(&chip9->i2c[i]), 0,
1946                               qdev_get_gpio_in(DEVICE(psi9),
1947                                                PSIHB9_IRQ_SBE_I2C));
1948     }
1949 }
1950 
pnv_chip_power9_xscom_pcba(PnvChip * chip,uint64_t addr)1951 static uint32_t pnv_chip_power9_xscom_pcba(PnvChip *chip, uint64_t addr)
1952 {
1953     addr &= (PNV9_XSCOM_SIZE - 1);
1954     return addr >> 3;
1955 }
1956 
pnv_chip_power9_class_init(ObjectClass * klass,const void * data)1957 static void pnv_chip_power9_class_init(ObjectClass *klass, const void *data)
1958 {
1959     DeviceClass *dc = DEVICE_CLASS(klass);
1960     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1961     static const int i2c_ports_per_engine[PNV9_CHIP_MAX_I2C] = {2, 13, 2, 2};
1962 
1963     k->chip_cfam_id = 0x220d104900008000ull; /* P9 Nimbus DD2.0 */
1964     k->cores_mask = POWER9_CORE_MASK;
1965     k->get_pir_tir = pnv_get_pir_tir_p9;
1966     k->intc_create = pnv_chip_power9_intc_create;
1967     k->intc_reset = pnv_chip_power9_intc_reset;
1968     k->intc_destroy = pnv_chip_power9_intc_destroy;
1969     k->intc_print_info = pnv_chip_power9_intc_print_info;
1970     k->isa_create = pnv_chip_power9_isa_create;
1971     k->dt_populate = pnv_chip_power9_dt_populate;
1972     k->pic_print_info = pnv_chip_power9_pic_print_info;
1973     k->xscom_core_base = pnv_chip_power9_xscom_core_base;
1974     k->xscom_pcba = pnv_chip_power9_xscom_pcba;
1975     dc->desc = "PowerNV Chip POWER9";
1976     k->num_pecs = PNV9_CHIP_MAX_PEC;
1977     k->i2c_num_engines = PNV9_CHIP_MAX_I2C;
1978     k->i2c_ports_per_engine = i2c_ports_per_engine;
1979 
1980     device_class_set_parent_realize(dc, pnv_chip_power9_realize,
1981                                     &k->parent_realize);
1982 }
1983 
pnv_chip_power10_instance_init(Object * obj)1984 static void pnv_chip_power10_instance_init(Object *obj)
1985 {
1986     PnvChip *chip = PNV_CHIP(obj);
1987     Pnv10Chip *chip10 = PNV10_CHIP(obj);
1988     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1989     int i;
1990 
1991     object_initialize_child(obj, "adu",  &chip10->adu, TYPE_PNV_ADU);
1992     object_initialize_child(obj, "xive", &chip10->xive, TYPE_PNV_XIVE2);
1993     object_property_add_alias(obj, "xive-fabric", OBJECT(&chip10->xive),
1994                               "xive-fabric");
1995     object_initialize_child(obj, "psi", &chip10->psi, TYPE_PNV10_PSI);
1996     object_initialize_child(obj, "lpc", &chip10->lpc, TYPE_PNV10_LPC);
1997     object_initialize_child(obj, "chiptod", &chip10->chiptod,
1998                             TYPE_PNV10_CHIPTOD);
1999     object_initialize_child(obj, "occ",  &chip10->occ, TYPE_PNV10_OCC);
2000     object_initialize_child(obj, "sbe",  &chip10->sbe, TYPE_PNV10_SBE);
2001     object_initialize_child(obj, "homer", &chip10->homer, TYPE_PNV10_HOMER);
2002     object_initialize_child(obj, "n1-chiplet", &chip10->n1_chiplet,
2003                             TYPE_PNV_N1_CHIPLET);
2004 
2005     chip->num_pecs = pcc->num_pecs;
2006 
2007     for (i = 0; i < chip->num_pecs; i++) {
2008         object_initialize_child(obj, "pec[*]", &chip10->pecs[i],
2009                                 TYPE_PNV_PHB5_PEC);
2010     }
2011 
2012     for (i = 0; i < pcc->i2c_num_engines; i++) {
2013         object_initialize_child(obj, "i2c[*]", &chip10->i2c[i], TYPE_PNV_I2C);
2014     }
2015 
2016     for (i = 0; i < PNV10_CHIP_MAX_PIB_SPIC; i++) {
2017         object_initialize_child(obj, "pib_spic[*]", &chip10->pib_spic[i],
2018                                 TYPE_PNV_SPI);
2019     }
2020 }
2021 
pnv_chip_power10_quad_realize(Pnv10Chip * chip10,Error ** errp)2022 static void pnv_chip_power10_quad_realize(Pnv10Chip *chip10, Error **errp)
2023 {
2024     PnvChip *chip = PNV_CHIP(chip10);
2025     int i;
2026 
2027     chip10->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
2028     chip10->quads = g_new0(PnvQuad, chip10->nr_quads);
2029 
2030     for (i = 0; i < chip10->nr_quads; i++) {
2031         PnvQuad *eq = &chip10->quads[i];
2032 
2033         pnv_chip_quad_realize_one(chip, eq, chip->cores[i * 4],
2034                                   PNV_QUAD_TYPE_NAME("power10"));
2035 
2036         pnv_xscom_add_subregion(chip, PNV10_XSCOM_EQ_BASE(eq->quad_id),
2037                                 &eq->xscom_regs);
2038 
2039         pnv_xscom_add_subregion(chip, PNV10_XSCOM_QME_BASE(eq->quad_id),
2040                                 &eq->xscom_qme_regs);
2041     }
2042 }
2043 
pnv_chip_power10_phb_realize(PnvChip * chip,Error ** errp)2044 static void pnv_chip_power10_phb_realize(PnvChip *chip, Error **errp)
2045 {
2046     Pnv10Chip *chip10 = PNV10_CHIP(chip);
2047     int i;
2048 
2049     for (i = 0; i < chip->num_pecs; i++) {
2050         PnvPhb4PecState *pec = &chip10->pecs[i];
2051         PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
2052         uint32_t pec_cplt_base;
2053         uint32_t pec_nest_base;
2054         uint32_t pec_pci_base;
2055 
2056         object_property_set_int(OBJECT(pec), "index", i, &error_fatal);
2057         object_property_set_int(OBJECT(pec), "chip-id", chip->chip_id,
2058                                 &error_fatal);
2059         object_property_set_link(OBJECT(pec), "chip", OBJECT(chip),
2060                                  &error_fatal);
2061         if (!qdev_realize(DEVICE(pec), NULL, errp)) {
2062             return;
2063         }
2064 
2065         pec_cplt_base = pecc->xscom_cplt_base(pec);
2066         pec_nest_base = pecc->xscom_nest_base(pec);
2067         pec_pci_base = pecc->xscom_pci_base(pec);
2068 
2069         pnv_xscom_add_subregion(chip, pec_cplt_base,
2070                  &pec->nest_pervasive.xscom_ctrl_regs_mr);
2071         pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr);
2072         pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr);
2073     }
2074 }
2075 
pnv_chip_power10_realize(DeviceState * dev,Error ** errp)2076 static void pnv_chip_power10_realize(DeviceState *dev, Error **errp)
2077 {
2078     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
2079     PnvChip *chip = PNV_CHIP(dev);
2080     Pnv10Chip *chip10 = PNV10_CHIP(dev);
2081     Error *local_err = NULL;
2082     int i;
2083 
2084     /* XSCOM bridge is first */
2085     pnv_xscom_init(chip, PNV10_XSCOM_SIZE, PNV10_XSCOM_BASE(chip));
2086 
2087     pcc->parent_realize(dev, &local_err);
2088     if (local_err) {
2089         error_propagate(errp, local_err);
2090         return;
2091     }
2092 
2093     /* ADU */
2094     object_property_set_link(OBJECT(&chip10->adu), "lpc", OBJECT(&chip10->lpc),
2095                              &error_abort);
2096     if (!qdev_realize(DEVICE(&chip10->adu), NULL, errp)) {
2097         return;
2098     }
2099     pnv_xscom_add_subregion(chip, PNV10_XSCOM_ADU_BASE,
2100                             &chip10->adu.xscom_regs);
2101 
2102     pnv_chip_power10_quad_realize(chip10, &local_err);
2103     if (local_err) {
2104         error_propagate(errp, local_err);
2105         return;
2106     }
2107 
2108     /* XIVE2 interrupt controller (POWER10) */
2109     object_property_set_int(OBJECT(&chip10->xive), "ic-bar",
2110                             PNV10_XIVE2_IC_BASE(chip), &error_fatal);
2111     object_property_set_int(OBJECT(&chip10->xive), "esb-bar",
2112                             PNV10_XIVE2_ESB_BASE(chip), &error_fatal);
2113     object_property_set_int(OBJECT(&chip10->xive), "end-bar",
2114                             PNV10_XIVE2_END_BASE(chip), &error_fatal);
2115     object_property_set_int(OBJECT(&chip10->xive), "nvpg-bar",
2116                             PNV10_XIVE2_NVPG_BASE(chip), &error_fatal);
2117     object_property_set_int(OBJECT(&chip10->xive), "nvc-bar",
2118                             PNV10_XIVE2_NVC_BASE(chip), &error_fatal);
2119     object_property_set_int(OBJECT(&chip10->xive), "tm-bar",
2120                             PNV10_XIVE2_TM_BASE(chip), &error_fatal);
2121     object_property_set_link(OBJECT(&chip10->xive), "chip", OBJECT(chip),
2122                              &error_abort);
2123     if (!sysbus_realize(SYS_BUS_DEVICE(&chip10->xive), errp)) {
2124         return;
2125     }
2126     pnv_xscom_add_subregion(chip, PNV10_XSCOM_XIVE2_BASE,
2127                             &chip10->xive.xscom_regs);
2128 
2129     /* Processor Service Interface (PSI) Host Bridge */
2130     object_property_set_int(OBJECT(&chip10->psi), "bar",
2131                             PNV10_PSIHB_BASE(chip), &error_fatal);
2132     /* PSI can now be configured to use 64k ESB pages on POWER10 */
2133     object_property_set_int(OBJECT(&chip10->psi), "shift", XIVE_ESB_64K,
2134                             &error_fatal);
2135     if (!qdev_realize(DEVICE(&chip10->psi), NULL, errp)) {
2136         return;
2137     }
2138     pnv_xscom_add_subregion(chip, PNV10_XSCOM_PSIHB_BASE,
2139                             &PNV_PSI(&chip10->psi)->xscom_regs);
2140 
2141     /* LPC */
2142     if (!qdev_realize(DEVICE(&chip10->lpc), NULL, errp)) {
2143         return;
2144     }
2145     memory_region_add_subregion(get_system_memory(), PNV10_LPCM_BASE(chip),
2146                                 &chip10->lpc.xscom_regs);
2147 
2148     chip->fw_mr = &chip10->lpc.isa_fw;
2149     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
2150                                             (uint64_t) PNV10_LPCM_BASE(chip));
2151 
2152     /* ChipTOD */
2153     object_property_set_bool(OBJECT(&chip10->chiptod), "primary",
2154                              chip->chip_id == 0, &error_abort);
2155     object_property_set_bool(OBJECT(&chip10->chiptod), "secondary",
2156                              chip->chip_id == 1, &error_abort);
2157     object_property_set_link(OBJECT(&chip10->chiptod), "chip", OBJECT(chip),
2158                              &error_abort);
2159     if (!qdev_realize(DEVICE(&chip10->chiptod), NULL, errp)) {
2160         return;
2161     }
2162     pnv_xscom_add_subregion(chip, PNV10_XSCOM_CHIPTOD_BASE,
2163                             &chip10->chiptod.xscom_regs);
2164 
2165     /* HOMER (must be created before OCC) */
2166     object_property_set_link(OBJECT(&chip10->homer), "chip", OBJECT(chip),
2167                              &error_abort);
2168     if (!qdev_realize(DEVICE(&chip10->homer), NULL, errp)) {
2169         return;
2170     }
2171     /* Homer Xscom region */
2172     pnv_xscom_add_subregion(chip, PNV10_XSCOM_PBA_BASE,
2173                             &chip10->homer.pba_regs);
2174     /* Homer RAM region */
2175     memory_region_add_subregion(get_system_memory(), chip10->homer.base,
2176                                 &chip10->homer.mem);
2177 
2178     /* Create the simplified OCC model */
2179     object_property_set_link(OBJECT(&chip10->occ), "homer",
2180                              OBJECT(&chip10->homer), &error_abort);
2181     if (!qdev_realize(DEVICE(&chip10->occ), NULL, errp)) {
2182         return;
2183     }
2184     pnv_xscom_add_subregion(chip, PNV10_XSCOM_OCC_BASE,
2185                             &chip10->occ.xscom_regs);
2186     qdev_connect_gpio_out(DEVICE(&chip10->occ), 0, qdev_get_gpio_in(
2187                               DEVICE(&chip10->psi), PSIHB9_IRQ_OCC));
2188 
2189     /* OCC SRAM model */
2190     memory_region_add_subregion(get_system_memory(),
2191                                 PNV10_OCC_SENSOR_BASE(chip),
2192                                 &chip10->occ.sram_regs);
2193 
2194     /* SBE */
2195     if (!qdev_realize(DEVICE(&chip10->sbe), NULL, errp)) {
2196         return;
2197     }
2198     pnv_xscom_add_subregion(chip, PNV10_XSCOM_SBE_CTRL_BASE,
2199                             &chip10->sbe.xscom_ctrl_regs);
2200     pnv_xscom_add_subregion(chip, PNV10_XSCOM_SBE_MBOX_BASE,
2201                             &chip10->sbe.xscom_mbox_regs);
2202     qdev_connect_gpio_out(DEVICE(&chip10->sbe), 0, qdev_get_gpio_in(
2203                               DEVICE(&chip10->psi), PSIHB9_IRQ_PSU));
2204 
2205     /* N1 chiplet */
2206     if (!qdev_realize(DEVICE(&chip10->n1_chiplet), NULL, errp)) {
2207         return;
2208     }
2209     pnv_xscom_add_subregion(chip, PNV10_XSCOM_N1_CHIPLET_CTRL_REGS_BASE,
2210              &chip10->n1_chiplet.nest_pervasive.xscom_ctrl_regs_mr);
2211 
2212     pnv_xscom_add_subregion(chip, PNV10_XSCOM_N1_PB_SCOM_EQ_BASE,
2213                            &chip10->n1_chiplet.xscom_pb_eq_mr);
2214 
2215     pnv_xscom_add_subregion(chip, PNV10_XSCOM_N1_PB_SCOM_ES_BASE,
2216                            &chip10->n1_chiplet.xscom_pb_es_mr);
2217 
2218     /* PHBs */
2219     pnv_chip_power10_phb_realize(chip, &local_err);
2220     if (local_err) {
2221         error_propagate(errp, local_err);
2222         return;
2223     }
2224 
2225 
2226     /*
2227      * I2C
2228      */
2229     for (i = 0; i < pcc->i2c_num_engines; i++) {
2230         Object *obj =  OBJECT(&chip10->i2c[i]);
2231 
2232         object_property_set_int(obj, "engine", i + 1, &error_fatal);
2233         object_property_set_int(obj, "num-busses",
2234                                 pcc->i2c_ports_per_engine[i],
2235                                 &error_fatal);
2236         object_property_set_link(obj, "chip", OBJECT(chip), &error_abort);
2237         if (!qdev_realize(DEVICE(obj), NULL, errp)) {
2238             return;
2239         }
2240         pnv_xscom_add_subregion(chip, PNV10_XSCOM_I2CM_BASE +
2241                                 (chip10->i2c[i].engine - 1) *
2242                                         PNV10_XSCOM_I2CM_SIZE,
2243                                 &chip10->i2c[i].xscom_regs);
2244         qdev_connect_gpio_out(DEVICE(&chip10->i2c[i]), 0,
2245                               qdev_get_gpio_in(DEVICE(&chip10->psi),
2246                                                PSIHB9_IRQ_SBE_I2C));
2247     }
2248     /* PIB SPI Controller */
2249     for (i = 0; i < PNV10_CHIP_MAX_PIB_SPIC; i++) {
2250         object_property_set_int(OBJECT(&chip10->pib_spic[i]), "spic_num",
2251                                 i, &error_fatal);
2252         /* pib_spic[2] connected to 25csm04 which implements 1 byte transfer */
2253         object_property_set_int(OBJECT(&chip10->pib_spic[i]), "transfer_len",
2254                                 (i == 2) ? 1 : 4, &error_fatal);
2255         object_property_set_int(OBJECT(&chip10->pib_spic[i]), "chip-id",
2256                                 chip->chip_id, &error_fatal);
2257         if (!sysbus_realize(SYS_BUS_DEVICE(OBJECT
2258                                         (&chip10->pib_spic[i])), errp)) {
2259             return;
2260         }
2261         pnv_xscom_add_subregion(chip, PNV10_XSCOM_PIB_SPIC_BASE +
2262                                 i * PNV10_XSCOM_PIB_SPIC_SIZE,
2263                                 &chip10->pib_spic[i].xscom_spic_regs);
2264     }
2265 }
2266 
pnv_rainier_i2c_init(PnvMachineState * pnv)2267 static void pnv_rainier_i2c_init(PnvMachineState *pnv)
2268 {
2269     int i;
2270     for (i = 0; i < pnv->num_chips; i++) {
2271         Pnv10Chip *chip10 = PNV10_CHIP(pnv->chips[i]);
2272 
2273         /*
2274          * Add a PCA9552 I2C device for PCIe hotplug control
2275          * to engine 2, bus 1, address 0x63
2276          */
2277         I2CSlave *dev = i2c_slave_create_simple(chip10->i2c[2].busses[1],
2278                                                 "pca9552", 0x63);
2279 
2280         /*
2281          * Connect PCA9552 GPIO pins 0-4 (SLOTx_EN) outputs to GPIO pins 5-9
2282          * (SLOTx_PG) inputs in order to fake the pgood state of PCIe slots
2283          * after hypervisor code sets a SLOTx_EN pin high.
2284          */
2285         qdev_connect_gpio_out(DEVICE(dev), 0, qdev_get_gpio_in(DEVICE(dev), 5));
2286         qdev_connect_gpio_out(DEVICE(dev), 1, qdev_get_gpio_in(DEVICE(dev), 6));
2287         qdev_connect_gpio_out(DEVICE(dev), 2, qdev_get_gpio_in(DEVICE(dev), 7));
2288         qdev_connect_gpio_out(DEVICE(dev), 3, qdev_get_gpio_in(DEVICE(dev), 8));
2289         qdev_connect_gpio_out(DEVICE(dev), 4, qdev_get_gpio_in(DEVICE(dev), 9));
2290 
2291         /*
2292          * Add a PCA9554 I2C device for cable card presence detection
2293          * to engine 2, bus 1, address 0x25
2294          */
2295         i2c_slave_create_simple(chip10->i2c[2].busses[1], "pca9554", 0x25);
2296     }
2297 }
2298 
pnv_chip_power10_xscom_pcba(PnvChip * chip,uint64_t addr)2299 static uint32_t pnv_chip_power10_xscom_pcba(PnvChip *chip, uint64_t addr)
2300 {
2301     addr &= (PNV10_XSCOM_SIZE - 1);
2302     return addr >> 3;
2303 }
2304 
pnv_chip_power10_class_init(ObjectClass * klass,const void * data)2305 static void pnv_chip_power10_class_init(ObjectClass *klass, const void *data)
2306 {
2307     DeviceClass *dc = DEVICE_CLASS(klass);
2308     PnvChipClass *k = PNV_CHIP_CLASS(klass);
2309     static const int i2c_ports_per_engine[PNV10_CHIP_MAX_I2C] = {14, 14, 2, 16};
2310 
2311     k->chip_cfam_id = 0x220da04980000000ull; /* P10 DD2.0 (with NX) */
2312     k->cores_mask = POWER10_CORE_MASK;
2313     k->get_pir_tir = pnv_get_pir_tir_p10;
2314     k->intc_create = pnv_chip_power10_intc_create;
2315     k->intc_reset = pnv_chip_power10_intc_reset;
2316     k->intc_destroy = pnv_chip_power10_intc_destroy;
2317     k->intc_print_info = pnv_chip_power10_intc_print_info;
2318     k->isa_create = pnv_chip_power10_isa_create;
2319     k->dt_populate = pnv_chip_power10_dt_populate;
2320     k->pic_print_info = pnv_chip_power10_pic_print_info;
2321     k->xscom_core_base = pnv_chip_power10_xscom_core_base;
2322     k->xscom_pcba = pnv_chip_power10_xscom_pcba;
2323     dc->desc = "PowerNV Chip POWER10";
2324     k->num_pecs = PNV10_CHIP_MAX_PEC;
2325     k->i2c_num_engines = PNV10_CHIP_MAX_I2C;
2326     k->i2c_ports_per_engine = i2c_ports_per_engine;
2327 
2328     device_class_set_parent_realize(dc, pnv_chip_power10_realize,
2329                                     &k->parent_realize);
2330 }
2331 
pnv_chip_core_sanitize(PnvMachineState * pnv,PnvChip * chip,Error ** errp)2332 static void pnv_chip_core_sanitize(PnvMachineState *pnv, PnvChip *chip,
2333                                    Error **errp)
2334 {
2335     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
2336     int cores_max;
2337 
2338     /*
2339      * No custom mask for this chip, let's use the default one from *
2340      * the chip class
2341      */
2342     if (!chip->cores_mask) {
2343         chip->cores_mask = pcc->cores_mask;
2344     }
2345 
2346     /* filter alien core ids ! some are reserved */
2347     if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) {
2348         error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !",
2349                    chip->cores_mask);
2350         return;
2351     }
2352     chip->cores_mask &= pcc->cores_mask;
2353 
2354     /* Ensure small-cores a paired up in big-core mode */
2355     if (pnv->big_core) {
2356         uint64_t even_cores = chip->cores_mask & 0x5555555555555555ULL;
2357         uint64_t odd_cores = chip->cores_mask & 0xaaaaaaaaaaaaaaaaULL;
2358 
2359         if (even_cores ^ (odd_cores >> 1)) {
2360             error_setg(errp, "warning: unpaired cores in big-core mode !");
2361             return;
2362         }
2363     }
2364 
2365     /* now that we have a sane layout, let check the number of cores */
2366     cores_max = ctpop64(chip->cores_mask);
2367     if (chip->nr_cores > cores_max) {
2368         error_setg(errp, "warning: too many cores for chip ! Limit is %d",
2369                    cores_max);
2370         return;
2371     }
2372 }
2373 
pnv_chip_core_realize(PnvChip * chip,Error ** errp)2374 static void pnv_chip_core_realize(PnvChip *chip, Error **errp)
2375 {
2376     PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
2377     PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(pnv);
2378     Error *error = NULL;
2379     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
2380     const char *typename = pnv_chip_core_typename(chip);
2381     int i, core_hwid;
2382 
2383     if (!object_class_by_name(typename)) {
2384         error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename);
2385         return;
2386     }
2387 
2388     /* Cores */
2389     pnv_chip_core_sanitize(pnv, chip, &error);
2390     if (error) {
2391         error_propagate(errp, error);
2392         return;
2393     }
2394 
2395     chip->cores = g_new0(PnvCore *, chip->nr_cores);
2396 
2397     for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8)
2398              && (i < chip->nr_cores); core_hwid++) {
2399         char core_name[32];
2400         PnvCore *pnv_core;
2401         uint64_t xscom_core_base;
2402 
2403         if (!(chip->cores_mask & (1ull << core_hwid))) {
2404             continue;
2405         }
2406 
2407         pnv_core = PNV_CORE(object_new(typename));
2408 
2409         snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid);
2410         object_property_add_child(OBJECT(chip), core_name, OBJECT(pnv_core));
2411         chip->cores[i] = pnv_core;
2412         object_property_set_int(OBJECT(pnv_core), "nr-threads",
2413                                 chip->nr_threads, &error_fatal);
2414         object_property_set_int(OBJECT(pnv_core), CPU_CORE_PROP_CORE_ID,
2415                                 core_hwid, &error_fatal);
2416         object_property_set_int(OBJECT(pnv_core), "hwid", core_hwid,
2417                                 &error_fatal);
2418         object_property_set_int(OBJECT(pnv_core), "hrmor", pnv->fw_load_addr,
2419                                 &error_fatal);
2420         object_property_set_bool(OBJECT(pnv_core), "big-core", chip->big_core,
2421                                 &error_fatal);
2422         object_property_set_bool(OBJECT(pnv_core), "quirk-tb-big-core",
2423                                 pmc->quirk_tb_big_core, &error_fatal);
2424         object_property_set_bool(OBJECT(pnv_core), "lpar-per-core",
2425                                 chip->lpar_per_core, &error_fatal);
2426         object_property_set_link(OBJECT(pnv_core), "chip", OBJECT(chip),
2427                                  &error_abort);
2428 
2429         qdev_realize(DEVICE(pnv_core), NULL, &error_fatal);
2430 
2431         /* Each core has an XSCOM MMIO region */
2432         xscom_core_base = pcc->xscom_core_base(chip, core_hwid);
2433 
2434         pnv_xscom_add_subregion(chip, xscom_core_base,
2435                                 &pnv_core->xscom_regs);
2436         i++;
2437     }
2438 }
2439 
pnv_chip_realize(DeviceState * dev,Error ** errp)2440 static void pnv_chip_realize(DeviceState *dev, Error **errp)
2441 {
2442     PnvChip *chip = PNV_CHIP(dev);
2443     Error *error = NULL;
2444 
2445     /* Cores */
2446     pnv_chip_core_realize(chip, &error);
2447     if (error) {
2448         error_propagate(errp, error);
2449         return;
2450     }
2451 }
2452 
2453 static const Property pnv_chip_properties[] = {
2454     DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0),
2455     DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0),
2456     DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0),
2457     DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1),
2458     DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0),
2459     DEFINE_PROP_UINT32("nr-threads", PnvChip, nr_threads, 1),
2460     DEFINE_PROP_BOOL("big-core", PnvChip, big_core, false),
2461     DEFINE_PROP_BOOL("lpar-per-core", PnvChip, lpar_per_core, false),
2462 };
2463 
pnv_chip_class_init(ObjectClass * klass,const void * data)2464 static void pnv_chip_class_init(ObjectClass *klass, const void *data)
2465 {
2466     DeviceClass *dc = DEVICE_CLASS(klass);
2467 
2468     set_bit(DEVICE_CATEGORY_CPU, dc->categories);
2469     dc->realize = pnv_chip_realize;
2470     device_class_set_props(dc, pnv_chip_properties);
2471     dc->desc = "PowerNV Chip";
2472 }
2473 
pnv_chip_find_core(PnvChip * chip,uint32_t core_id)2474 PnvCore *pnv_chip_find_core(PnvChip *chip, uint32_t core_id)
2475 {
2476     int i;
2477 
2478     for (i = 0; i < chip->nr_cores; i++) {
2479         PnvCore *pc = chip->cores[i];
2480         CPUCore *cc = CPU_CORE(pc);
2481 
2482         if (cc->core_id == core_id) {
2483             return pc;
2484         }
2485     }
2486     return NULL;
2487 }
2488 
pnv_chip_find_cpu(PnvChip * chip,uint32_t pir)2489 PowerPCCPU *pnv_chip_find_cpu(PnvChip *chip, uint32_t pir)
2490 {
2491     int i, j;
2492 
2493     for (i = 0; i < chip->nr_cores; i++) {
2494         PnvCore *pc = chip->cores[i];
2495         CPUCore *cc = CPU_CORE(pc);
2496 
2497         for (j = 0; j < cc->nr_threads; j++) {
2498             if (ppc_cpu_pir(pc->threads[j]) == pir) {
2499                 return pc->threads[j];
2500             }
2501         }
2502     }
2503     return NULL;
2504 }
2505 
pnv_chip_foreach_cpu(PnvChip * chip,void (* fn)(PnvChip * chip,PowerPCCPU * cpu,void * opaque),void * opaque)2506 static void pnv_chip_foreach_cpu(PnvChip *chip,
2507                    void (*fn)(PnvChip *chip, PowerPCCPU *cpu, void *opaque),
2508                    void *opaque)
2509 {
2510     int i, j;
2511 
2512     for (i = 0; i < chip->nr_cores; i++) {
2513         PnvCore *pc = chip->cores[i];
2514 
2515         for (j = 0; j < CPU_CORE(pc)->nr_threads; j++) {
2516             fn(chip, pc->threads[j], opaque);
2517         }
2518     }
2519 }
2520 
pnv_ics_get(XICSFabric * xi,int irq)2521 static ICSState *pnv_ics_get(XICSFabric *xi, int irq)
2522 {
2523     PnvMachineState *pnv = PNV_MACHINE(xi);
2524     int i, j;
2525 
2526     for (i = 0; i < pnv->num_chips; i++) {
2527         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
2528 
2529         if (ics_valid_irq(&chip8->psi.ics, irq)) {
2530             return &chip8->psi.ics;
2531         }
2532 
2533         for (j = 0; j < chip8->num_phbs; j++) {
2534             PnvPHB *phb = chip8->phbs[j];
2535             PnvPHB3 *phb3 = PNV_PHB3(phb->backend);
2536 
2537             if (ics_valid_irq(&phb3->lsis, irq)) {
2538                 return &phb3->lsis;
2539             }
2540 
2541             if (ics_valid_irq(ICS(&phb3->msis), irq)) {
2542                 return ICS(&phb3->msis);
2543             }
2544         }
2545     }
2546     return NULL;
2547 }
2548 
pnv_get_chip(PnvMachineState * pnv,uint32_t chip_id)2549 PnvChip *pnv_get_chip(PnvMachineState *pnv, uint32_t chip_id)
2550 {
2551     int i;
2552 
2553     for (i = 0; i < pnv->num_chips; i++) {
2554         PnvChip *chip = pnv->chips[i];
2555         if (chip->chip_id == chip_id) {
2556             return chip;
2557         }
2558     }
2559     return NULL;
2560 }
2561 
pnv_ics_resend(XICSFabric * xi)2562 static void pnv_ics_resend(XICSFabric *xi)
2563 {
2564     PnvMachineState *pnv = PNV_MACHINE(xi);
2565     int i, j;
2566 
2567     for (i = 0; i < pnv->num_chips; i++) {
2568         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
2569 
2570         ics_resend(&chip8->psi.ics);
2571 
2572         for (j = 0; j < chip8->num_phbs; j++) {
2573             PnvPHB *phb = chip8->phbs[j];
2574             PnvPHB3 *phb3 = PNV_PHB3(phb->backend);
2575 
2576             ics_resend(&phb3->lsis);
2577             ics_resend(ICS(&phb3->msis));
2578         }
2579     }
2580 }
2581 
pnv_icp_get(XICSFabric * xi,int pir)2582 static ICPState *pnv_icp_get(XICSFabric *xi, int pir)
2583 {
2584     PowerPCCPU *cpu = ppc_get_vcpu_by_pir(pir);
2585 
2586     return cpu ? ICP(pnv_cpu_state(cpu)->intc) : NULL;
2587 }
2588 
pnv_pic_intc_print_info(PnvChip * chip,PowerPCCPU * cpu,void * opaque)2589 static void pnv_pic_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
2590                                     void *opaque)
2591 {
2592     PNV_CHIP_GET_CLASS(chip)->intc_print_info(chip, cpu, opaque);
2593 }
2594 
pnv_pic_print_info(InterruptStatsProvider * obj,GString * buf)2595 static void pnv_pic_print_info(InterruptStatsProvider *obj, GString *buf)
2596 {
2597     PnvMachineState *pnv = PNV_MACHINE(obj);
2598     int i;
2599 
2600     for (i = 0; i < pnv->num_chips; i++) {
2601         PnvChip *chip = pnv->chips[i];
2602 
2603         /* First CPU presenters */
2604         pnv_chip_foreach_cpu(chip, pnv_pic_intc_print_info, buf);
2605 
2606         /* Then other devices, PHB, PSI, XIVE */
2607         PNV_CHIP_GET_CLASS(chip)->pic_print_info(chip, buf);
2608     }
2609 }
2610 
pnv_match_nvt(XiveFabric * xfb,uint8_t format,uint8_t nvt_blk,uint32_t nvt_idx,bool crowd,bool cam_ignore,uint8_t priority,uint32_t logic_serv,XiveTCTXMatch * match)2611 static int pnv_match_nvt(XiveFabric *xfb, uint8_t format,
2612                          uint8_t nvt_blk, uint32_t nvt_idx,
2613                          bool crowd, bool cam_ignore, uint8_t priority,
2614                          uint32_t logic_serv,
2615                          XiveTCTXMatch *match)
2616 {
2617     PnvMachineState *pnv = PNV_MACHINE(xfb);
2618     int total_count = 0;
2619     int i;
2620 
2621     for (i = 0; i < pnv->num_chips; i++) {
2622         Pnv9Chip *chip9 = PNV9_CHIP(pnv->chips[i]);
2623         XivePresenter *xptr = XIVE_PRESENTER(&chip9->xive);
2624         XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
2625         int count;
2626 
2627         count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, crowd,
2628                                cam_ignore, priority, logic_serv, match);
2629 
2630         if (count < 0) {
2631             return count;
2632         }
2633 
2634         total_count += count;
2635     }
2636 
2637     return total_count;
2638 }
2639 
pnv10_xive_match_nvt(XiveFabric * xfb,uint8_t format,uint8_t nvt_blk,uint32_t nvt_idx,bool crowd,bool cam_ignore,uint8_t priority,uint32_t logic_serv,XiveTCTXMatch * match)2640 static int pnv10_xive_match_nvt(XiveFabric *xfb, uint8_t format,
2641                                 uint8_t nvt_blk, uint32_t nvt_idx,
2642                                 bool crowd, bool cam_ignore, uint8_t priority,
2643                                 uint32_t logic_serv,
2644                                 XiveTCTXMatch *match)
2645 {
2646     PnvMachineState *pnv = PNV_MACHINE(xfb);
2647     int total_count = 0;
2648     int i;
2649 
2650     for (i = 0; i < pnv->num_chips; i++) {
2651         Pnv10Chip *chip10 = PNV10_CHIP(pnv->chips[i]);
2652         XivePresenter *xptr = XIVE_PRESENTER(&chip10->xive);
2653         XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
2654         int count;
2655 
2656         count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, crowd,
2657                                cam_ignore, priority, logic_serv, match);
2658 
2659         if (count < 0) {
2660             return count;
2661         }
2662 
2663         total_count += count;
2664     }
2665 
2666     return total_count;
2667 }
2668 
pnv10_xive_broadcast(XiveFabric * xfb,uint8_t nvt_blk,uint32_t nvt_idx,bool crowd,bool cam_ignore,uint8_t priority)2669 static int pnv10_xive_broadcast(XiveFabric *xfb,
2670                                 uint8_t nvt_blk, uint32_t nvt_idx,
2671                                 bool crowd, bool cam_ignore,
2672                                 uint8_t priority)
2673 {
2674     PnvMachineState *pnv = PNV_MACHINE(xfb);
2675     int i;
2676 
2677     for (i = 0; i < pnv->num_chips; i++) {
2678         Pnv10Chip *chip10 = PNV10_CHIP(pnv->chips[i]);
2679         XivePresenter *xptr = XIVE_PRESENTER(&chip10->xive);
2680         XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
2681 
2682         xpc->broadcast(xptr, nvt_blk, nvt_idx, crowd, cam_ignore, priority);
2683     }
2684     return 0;
2685 }
2686 
pnv_machine_get_big_core(Object * obj,Error ** errp)2687 static bool pnv_machine_get_big_core(Object *obj, Error **errp)
2688 {
2689     PnvMachineState *pnv = PNV_MACHINE(obj);
2690     return pnv->big_core;
2691 }
2692 
pnv_machine_set_big_core(Object * obj,bool value,Error ** errp)2693 static void pnv_machine_set_big_core(Object *obj, bool value, Error **errp)
2694 {
2695     PnvMachineState *pnv = PNV_MACHINE(obj);
2696     pnv->big_core = value;
2697 }
2698 
pnv_machine_get_lpar_per_core(Object * obj,Error ** errp)2699 static bool pnv_machine_get_lpar_per_core(Object *obj, Error **errp)
2700 {
2701     PnvMachineState *pnv = PNV_MACHINE(obj);
2702     return pnv->lpar_per_core;
2703 }
2704 
pnv_machine_set_lpar_per_core(Object * obj,bool value,Error ** errp)2705 static void pnv_machine_set_lpar_per_core(Object *obj, bool value, Error **errp)
2706 {
2707     PnvMachineState *pnv = PNV_MACHINE(obj);
2708     pnv->lpar_per_core = value;
2709 }
2710 
pnv_machine_get_hb(Object * obj,Error ** errp)2711 static bool pnv_machine_get_hb(Object *obj, Error **errp)
2712 {
2713     PnvMachineState *pnv = PNV_MACHINE(obj);
2714 
2715     return !!pnv->fw_load_addr;
2716 }
2717 
pnv_machine_set_hb(Object * obj,bool value,Error ** errp)2718 static void pnv_machine_set_hb(Object *obj, bool value, Error **errp)
2719 {
2720     PnvMachineState *pnv = PNV_MACHINE(obj);
2721 
2722     if (value) {
2723         pnv->fw_load_addr = 0x8000000;
2724     }
2725 }
2726 
pnv_machine_power8_class_init(ObjectClass * oc,const void * data)2727 static void pnv_machine_power8_class_init(ObjectClass *oc, const void *data)
2728 {
2729     MachineClass *mc = MACHINE_CLASS(oc);
2730     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
2731     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2732     static const char compat[] = "qemu,powernv8\0qemu,powernv\0ibm,powernv";
2733 
2734     static GlobalProperty phb_compat[] = {
2735         { TYPE_PNV_PHB, "version", "3" },
2736         { TYPE_PNV_PHB_ROOT_PORT, "version", "3" },
2737     };
2738 
2739     mc->desc = "IBM PowerNV (Non-Virtualized) POWER8";
2740     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
2741     compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat));
2742 
2743     xic->icp_get = pnv_icp_get;
2744     xic->ics_get = pnv_ics_get;
2745     xic->ics_resend = pnv_ics_resend;
2746 
2747     pmc->compat = compat;
2748     pmc->compat_size = sizeof(compat);
2749     pmc->max_smt_threads = 8;
2750     /* POWER8 is always lpar-per-core mode */
2751     pmc->has_lpar_per_thread = false;
2752 
2753     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB);
2754 }
2755 
pnv_machine_power9_class_init(ObjectClass * oc,const void * data)2756 static void pnv_machine_power9_class_init(ObjectClass *oc, const void *data)
2757 {
2758     MachineClass *mc = MACHINE_CLASS(oc);
2759     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
2760     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2761     static const char compat[] = "qemu,powernv9\0ibm,powernv";
2762 
2763     static GlobalProperty phb_compat[] = {
2764         { TYPE_PNV_PHB, "version", "4" },
2765         { TYPE_PNV_PHB_ROOT_PORT, "version", "4" },
2766     };
2767 
2768     mc->desc = "IBM PowerNV (Non-Virtualized) POWER9";
2769     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.2");
2770     compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat));
2771 
2772     xfc->match_nvt = pnv_match_nvt;
2773 
2774     pmc->compat = compat;
2775     pmc->compat_size = sizeof(compat);
2776     pmc->max_smt_threads = 4;
2777     pmc->has_lpar_per_thread = true;
2778     pmc->dt_power_mgt = pnv_dt_power_mgt;
2779 
2780     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB);
2781 
2782     object_class_property_add_bool(oc, "big-core",
2783                                    pnv_machine_get_big_core,
2784                                    pnv_machine_set_big_core);
2785     object_class_property_set_description(oc, "big-core",
2786                               "Use big-core (aka fused-core) mode");
2787 
2788     object_class_property_add_bool(oc, "lpar-per-core",
2789                                    pnv_machine_get_lpar_per_core,
2790                                    pnv_machine_set_lpar_per_core);
2791     object_class_property_set_description(oc, "lpar-per-core",
2792                               "Use 1 LPAR per core mode");
2793 }
2794 
pnv_machine_p10_common_class_init(ObjectClass * oc,const void * data)2795 static void pnv_machine_p10_common_class_init(ObjectClass *oc, const void *data)
2796 {
2797     MachineClass *mc = MACHINE_CLASS(oc);
2798     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2799     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
2800     static const char compat[] = "qemu,powernv10\0ibm,powernv";
2801 
2802     static GlobalProperty phb_compat[] = {
2803         { TYPE_PNV_PHB, "version", "5" },
2804         { TYPE_PNV_PHB_ROOT_PORT, "version", "5" },
2805     };
2806 
2807     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power10_v2.0");
2808     compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat));
2809 
2810     mc->alias = "powernv";
2811 
2812     pmc->compat = compat;
2813     pmc->compat_size = sizeof(compat);
2814     pmc->max_smt_threads = 4;
2815     pmc->has_lpar_per_thread = true;
2816     pmc->quirk_tb_big_core = true;
2817     pmc->dt_power_mgt = pnv_dt_power_mgt;
2818 
2819     xfc->match_nvt = pnv10_xive_match_nvt;
2820     xfc->broadcast = pnv10_xive_broadcast;
2821 
2822     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB);
2823 }
2824 
pnv_machine_power10_class_init(ObjectClass * oc,const void * data)2825 static void pnv_machine_power10_class_init(ObjectClass *oc, const void *data)
2826 {
2827     MachineClass *mc = MACHINE_CLASS(oc);
2828 
2829     pnv_machine_p10_common_class_init(oc, data);
2830     mc->desc = "IBM PowerNV (Non-Virtualized) POWER10";
2831 
2832     /*
2833      * This is the parent of POWER10 Rainier class, so properies go here
2834      * rather than common init (which would add them to both parent and
2835      * child which is invalid).
2836      */
2837     object_class_property_add_bool(oc, "big-core",
2838                                    pnv_machine_get_big_core,
2839                                    pnv_machine_set_big_core);
2840     object_class_property_set_description(oc, "big-core",
2841                               "Use big-core (aka fused-core) mode");
2842 
2843     object_class_property_add_bool(oc, "lpar-per-core",
2844                                    pnv_machine_get_lpar_per_core,
2845                                    pnv_machine_set_lpar_per_core);
2846     object_class_property_set_description(oc, "lpar-per-core",
2847                               "Use 1 LPAR per core mode");
2848 }
2849 
pnv_machine_p10_rainier_class_init(ObjectClass * oc,const void * data)2850 static void pnv_machine_p10_rainier_class_init(ObjectClass *oc,
2851                                                const void *data)
2852 {
2853     MachineClass *mc = MACHINE_CLASS(oc);
2854     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2855 
2856     pnv_machine_p10_common_class_init(oc, data);
2857     mc->desc = "IBM PowerNV (Non-Virtualized) POWER10 Rainier";
2858     pmc->i2c_init = pnv_rainier_i2c_init;
2859 }
2860 
pnv_cpu_do_nmi_on_cpu(CPUState * cs,run_on_cpu_data arg)2861 static void pnv_cpu_do_nmi_on_cpu(CPUState *cs, run_on_cpu_data arg)
2862 {
2863     CPUPPCState *env = cpu_env(cs);
2864 
2865     cpu_synchronize_state(cs);
2866     ppc_cpu_do_system_reset(cs);
2867     if (env->spr[SPR_SRR1] & SRR1_WAKESTATE) {
2868         /*
2869          * Power-save wakeups, as indicated by non-zero SRR1[46:47] put the
2870          * wakeup reason in SRR1[42:45], system reset is indicated with 0b0100
2871          * (PPC_BIT(43)).
2872          */
2873         if (!(env->spr[SPR_SRR1] & SRR1_WAKERESET)) {
2874             warn_report("ppc_cpu_do_system_reset does not set system reset wakeup reason");
2875             env->spr[SPR_SRR1] |= SRR1_WAKERESET;
2876         }
2877     } else {
2878         /*
2879          * For non-powersave system resets, SRR1[42:45] are defined to be
2880          * implementation-dependent. The POWER9 User Manual specifies that
2881          * an external (SCOM driven, which may come from a BMC nmi command or
2882          * another CPU requesting a NMI IPI) system reset exception should be
2883          * 0b0010 (PPC_BIT(44)).
2884          */
2885         env->spr[SPR_SRR1] |= SRR1_WAKESCOM;
2886     }
2887     if (arg.host_int == 1) {
2888         cpu_resume(cs);
2889     }
2890 }
2891 
2892 /*
2893  * Send a SRESET (NMI) interrupt to the CPU, and resume execution if it was
2894  * paused.
2895  */
pnv_cpu_do_nmi_resume(CPUState * cs)2896 void pnv_cpu_do_nmi_resume(CPUState *cs)
2897 {
2898     async_run_on_cpu(cs, pnv_cpu_do_nmi_on_cpu, RUN_ON_CPU_HOST_INT(1));
2899 }
2900 
pnv_cpu_do_nmi(PnvChip * chip,PowerPCCPU * cpu,void * opaque)2901 static void pnv_cpu_do_nmi(PnvChip *chip, PowerPCCPU *cpu, void *opaque)
2902 {
2903     async_run_on_cpu(CPU(cpu), pnv_cpu_do_nmi_on_cpu, RUN_ON_CPU_HOST_INT(0));
2904 }
2905 
pnv_nmi(NMIState * n,int cpu_index,Error ** errp)2906 static void pnv_nmi(NMIState *n, int cpu_index, Error **errp)
2907 {
2908     PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
2909     int i;
2910 
2911     for (i = 0; i < pnv->num_chips; i++) {
2912         pnv_chip_foreach_cpu(pnv->chips[i], pnv_cpu_do_nmi, NULL);
2913     }
2914 }
2915 
pnv_machine_class_init(ObjectClass * oc,const void * data)2916 static void pnv_machine_class_init(ObjectClass *oc, const void *data)
2917 {
2918     MachineClass *mc = MACHINE_CLASS(oc);
2919     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
2920     NMIClass *nc = NMI_CLASS(oc);
2921 
2922     mc->desc = "IBM PowerNV (Non-Virtualized)";
2923     mc->init = pnv_init;
2924     mc->reset = pnv_reset;
2925     mc->max_cpus = MAX_CPUS;
2926     /* Pnv provides a AHCI device for storage */
2927     mc->block_default_type = IF_IDE;
2928     mc->no_parallel = 1;
2929     mc->default_boot_order = NULL;
2930     /*
2931      * RAM defaults to less than 2048 for 32-bit hosts, and large
2932      * enough to fit the maximum initrd size at it's load address
2933      */
2934     mc->default_ram_size = 1 * GiB;
2935     mc->default_ram_id = "pnv.ram";
2936     ispc->print_info = pnv_pic_print_info;
2937     nc->nmi_monitor_handler = pnv_nmi;
2938 
2939     object_class_property_add_bool(oc, "hb-mode",
2940                                    pnv_machine_get_hb, pnv_machine_set_hb);
2941     object_class_property_set_description(oc, "hb-mode",
2942                               "Use a hostboot like boot loader");
2943 }
2944 
2945 #define DEFINE_PNV8_CHIP_TYPE(type, class_initfn) \
2946     {                                             \
2947         .name          = type,                    \
2948         .class_init    = class_initfn,            \
2949         .parent        = TYPE_PNV8_CHIP,          \
2950     }
2951 
2952 #define DEFINE_PNV9_CHIP_TYPE(type, class_initfn) \
2953     {                                             \
2954         .name          = type,                    \
2955         .class_init    = class_initfn,            \
2956         .parent        = TYPE_PNV9_CHIP,          \
2957     }
2958 
2959 #define DEFINE_PNV10_CHIP_TYPE(type, class_initfn) \
2960     {                                              \
2961         .name          = type,                     \
2962         .class_init    = class_initfn,             \
2963         .parent        = TYPE_PNV10_CHIP,          \
2964     }
2965 
2966 static const TypeInfo types[] = {
2967     {
2968         .name          = MACHINE_TYPE_NAME("powernv10-rainier"),
2969         .parent        = MACHINE_TYPE_NAME("powernv10"),
2970         .class_init    = pnv_machine_p10_rainier_class_init,
2971     },
2972     {
2973         .name          = MACHINE_TYPE_NAME("powernv10"),
2974         .parent        = TYPE_PNV_MACHINE,
2975         .class_init    = pnv_machine_power10_class_init,
2976         .interfaces = (const InterfaceInfo[]) {
2977             { TYPE_XIVE_FABRIC },
2978             { },
2979         },
2980     },
2981     {
2982         .name          = MACHINE_TYPE_NAME("powernv9"),
2983         .parent        = TYPE_PNV_MACHINE,
2984         .class_init    = pnv_machine_power9_class_init,
2985         .interfaces = (const InterfaceInfo[]) {
2986             { TYPE_XIVE_FABRIC },
2987             { },
2988         },
2989     },
2990     {
2991         .name          = MACHINE_TYPE_NAME("powernv8"),
2992         .parent        = TYPE_PNV_MACHINE,
2993         .class_init    = pnv_machine_power8_class_init,
2994         .interfaces = (const InterfaceInfo[]) {
2995             { TYPE_XICS_FABRIC },
2996             { },
2997         },
2998     },
2999     {
3000         .name          = TYPE_PNV_MACHINE,
3001         .parent        = TYPE_MACHINE,
3002         .abstract       = true,
3003         .instance_size = sizeof(PnvMachineState),
3004         .class_init    = pnv_machine_class_init,
3005         .class_size    = sizeof(PnvMachineClass),
3006         .interfaces = (const InterfaceInfo[]) {
3007             { TYPE_INTERRUPT_STATS_PROVIDER },
3008             { TYPE_NMI },
3009             { },
3010         },
3011     },
3012     {
3013         .name          = TYPE_PNV_CHIP,
3014         .parent        = TYPE_SYS_BUS_DEVICE,
3015         .class_init    = pnv_chip_class_init,
3016         .instance_size = sizeof(PnvChip),
3017         .class_size    = sizeof(PnvChipClass),
3018         .abstract      = true,
3019     },
3020 
3021     /*
3022      * P10 chip and variants
3023      */
3024     {
3025         .name          = TYPE_PNV10_CHIP,
3026         .parent        = TYPE_PNV_CHIP,
3027         .instance_init = pnv_chip_power10_instance_init,
3028         .instance_size = sizeof(Pnv10Chip),
3029     },
3030     DEFINE_PNV10_CHIP_TYPE(TYPE_PNV_CHIP_POWER10, pnv_chip_power10_class_init),
3031 
3032     /*
3033      * P9 chip and variants
3034      */
3035     {
3036         .name          = TYPE_PNV9_CHIP,
3037         .parent        = TYPE_PNV_CHIP,
3038         .instance_init = pnv_chip_power9_instance_init,
3039         .instance_size = sizeof(Pnv9Chip),
3040     },
3041     DEFINE_PNV9_CHIP_TYPE(TYPE_PNV_CHIP_POWER9, pnv_chip_power9_class_init),
3042 
3043     /*
3044      * P8 chip and variants
3045      */
3046     {
3047         .name          = TYPE_PNV8_CHIP,
3048         .parent        = TYPE_PNV_CHIP,
3049         .instance_init = pnv_chip_power8_instance_init,
3050         .instance_size = sizeof(Pnv8Chip),
3051     },
3052     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8, pnv_chip_power8_class_init),
3053     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8E, pnv_chip_power8e_class_init),
3054     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8NVL,
3055                           pnv_chip_power8nvl_class_init),
3056 };
3057 
3058 DEFINE_TYPES(types)
3059