1 /*
2 * RAM allocation and memory access
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "exec/page-vary.h"
22 #include "qapi/error.h"
23
24 #include "qemu/cutils.h"
25 #include "qemu/cacheflush.h"
26 #include "qemu/hbitmap.h"
27 #include "qemu/madvise.h"
28 #include "qemu/lockable.h"
29
30 #ifdef CONFIG_TCG
31 #include "accel/tcg/cpu-ops.h"
32 #include "accel/tcg/iommu.h"
33 #endif /* CONFIG_TCG */
34
35 #include "exec/cputlb.h"
36 #include "exec/page-protection.h"
37 #include "exec/target_page.h"
38 #include "exec/translation-block.h"
39 #include "hw/qdev-core.h"
40 #include "hw/qdev-properties.h"
41 #include "hw/boards.h"
42 #include "system/xen.h"
43 #include "system/kvm.h"
44 #include "system/tcg.h"
45 #include "system/qtest.h"
46 #include "qemu/timer.h"
47 #include "qemu/config-file.h"
48 #include "qemu/error-report.h"
49 #include "qemu/qemu-print.h"
50 #include "qemu/log.h"
51 #include "qemu/memalign.h"
52 #include "qemu/memfd.h"
53 #include "system/memory.h"
54 #include "system/ioport.h"
55 #include "system/dma.h"
56 #include "system/hostmem.h"
57 #include "system/hw_accel.h"
58 #include "system/xen-mapcache.h"
59 #include "trace.h"
60
61 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
62 #include <linux/falloc.h>
63 #endif
64
65 #include "qemu/rcu_queue.h"
66 #include "qemu/main-loop.h"
67 #include "system/replay.h"
68
69 #include "system/ram_addr.h"
70
71 #include "qemu/pmem.h"
72
73 #include "qapi/qapi-types-migration.h"
74 #include "migration/blocker.h"
75 #include "migration/cpr.h"
76 #include "migration/options.h"
77 #include "migration/vmstate.h"
78
79 #include "qemu/range.h"
80 #ifndef _WIN32
81 #include "qemu/mmap-alloc.h"
82 #endif
83
84 #include "monitor/monitor.h"
85
86 #ifdef CONFIG_LIBDAXCTL
87 #include <daxctl/libdaxctl.h>
88 #endif
89
90 #include "memory-internal.h"
91
92 //#define DEBUG_SUBPAGE
93
94 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
95 * are protected by the ramlist lock.
96 */
97 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
98
99 static MemoryRegion *system_memory;
100 static MemoryRegion *system_io;
101
102 AddressSpace address_space_io;
103 AddressSpace address_space_memory;
104
105 static MemoryRegion io_mem_unassigned;
106
107 typedef struct PhysPageEntry PhysPageEntry;
108
109 struct PhysPageEntry {
110 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
111 uint32_t skip : 6;
112 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
113 uint32_t ptr : 26;
114 };
115
116 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
117
118 /* Size of the L2 (and L3, etc) page tables. */
119 #define ADDR_SPACE_BITS 64
120
121 #define P_L2_BITS 9
122 #define P_L2_SIZE (1 << P_L2_BITS)
123
124 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
125
126 typedef PhysPageEntry Node[P_L2_SIZE];
127
128 typedef struct PhysPageMap {
129 struct rcu_head rcu;
130
131 unsigned sections_nb;
132 unsigned sections_nb_alloc;
133 unsigned nodes_nb;
134 unsigned nodes_nb_alloc;
135 Node *nodes;
136 MemoryRegionSection *sections;
137 } PhysPageMap;
138
139 struct AddressSpaceDispatch {
140 MemoryRegionSection *mru_section;
141 /* This is a multi-level map on the physical address space.
142 * The bottom level has pointers to MemoryRegionSections.
143 */
144 PhysPageEntry phys_map;
145 PhysPageMap map;
146 };
147
148 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
149 typedef struct subpage_t {
150 MemoryRegion iomem;
151 FlatView *fv;
152 hwaddr base;
153 uint16_t sub_section[];
154 } subpage_t;
155
156 #define PHYS_SECTION_UNASSIGNED 0
157
158 static void io_mem_init(void);
159 static void memory_map_init(void);
160 static void tcg_log_global_after_sync(MemoryListener *listener);
161 static void tcg_commit(MemoryListener *listener);
162 static bool ram_is_cpr_compatible(RAMBlock *rb);
163
164 /**
165 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
166 * @cpu: the CPU whose AddressSpace this is
167 * @as: the AddressSpace itself
168 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
169 * @tcg_as_listener: listener for tracking changes to the AddressSpace
170 */
171 typedef struct CPUAddressSpace {
172 CPUState *cpu;
173 AddressSpace *as;
174 struct AddressSpaceDispatch *memory_dispatch;
175 MemoryListener tcg_as_listener;
176 } CPUAddressSpace;
177
178 struct DirtyBitmapSnapshot {
179 ram_addr_t start;
180 ram_addr_t end;
181 unsigned long dirty[];
182 };
183
phys_map_node_reserve(PhysPageMap * map,unsigned nodes)184 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
185 {
186 static unsigned alloc_hint = 16;
187 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
188 map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes);
189 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
190 alloc_hint = map->nodes_nb_alloc;
191 }
192 }
193
phys_map_node_alloc(PhysPageMap * map,bool leaf)194 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
195 {
196 unsigned i;
197 uint32_t ret;
198 PhysPageEntry e;
199 PhysPageEntry *p;
200
201 ret = map->nodes_nb++;
202 p = map->nodes[ret];
203 assert(ret != PHYS_MAP_NODE_NIL);
204 assert(ret != map->nodes_nb_alloc);
205
206 e.skip = leaf ? 0 : 1;
207 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
208 for (i = 0; i < P_L2_SIZE; ++i) {
209 memcpy(&p[i], &e, sizeof(e));
210 }
211 return ret;
212 }
213
phys_page_set_level(PhysPageMap * map,PhysPageEntry * lp,hwaddr * index,uint64_t * nb,uint16_t leaf,int level)214 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
215 hwaddr *index, uint64_t *nb, uint16_t leaf,
216 int level)
217 {
218 PhysPageEntry *p;
219 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
220
221 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
222 lp->ptr = phys_map_node_alloc(map, level == 0);
223 }
224 p = map->nodes[lp->ptr];
225 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
226
227 while (*nb && lp < &p[P_L2_SIZE]) {
228 if ((*index & (step - 1)) == 0 && *nb >= step) {
229 lp->skip = 0;
230 lp->ptr = leaf;
231 *index += step;
232 *nb -= step;
233 } else {
234 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
235 }
236 ++lp;
237 }
238 }
239
phys_page_set(AddressSpaceDispatch * d,hwaddr index,uint64_t nb,uint16_t leaf)240 static void phys_page_set(AddressSpaceDispatch *d,
241 hwaddr index, uint64_t nb,
242 uint16_t leaf)
243 {
244 /* Wildly overreserve - it doesn't matter much. */
245 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
246
247 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
248 }
249
250 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
251 * and update our entry so we can skip it and go directly to the destination.
252 */
phys_page_compact(PhysPageEntry * lp,Node * nodes)253 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
254 {
255 unsigned valid_ptr = P_L2_SIZE;
256 int valid = 0;
257 PhysPageEntry *p;
258 int i;
259
260 if (lp->ptr == PHYS_MAP_NODE_NIL) {
261 return;
262 }
263
264 p = nodes[lp->ptr];
265 for (i = 0; i < P_L2_SIZE; i++) {
266 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
267 continue;
268 }
269
270 valid_ptr = i;
271 valid++;
272 if (p[i].skip) {
273 phys_page_compact(&p[i], nodes);
274 }
275 }
276
277 /* We can only compress if there's only one child. */
278 if (valid != 1) {
279 return;
280 }
281
282 assert(valid_ptr < P_L2_SIZE);
283
284 /* Don't compress if it won't fit in the # of bits we have. */
285 if (P_L2_LEVELS >= (1 << 6) &&
286 lp->skip + p[valid_ptr].skip >= (1 << 6)) {
287 return;
288 }
289
290 lp->ptr = p[valid_ptr].ptr;
291 if (!p[valid_ptr].skip) {
292 /* If our only child is a leaf, make this a leaf. */
293 /* By design, we should have made this node a leaf to begin with so we
294 * should never reach here.
295 * But since it's so simple to handle this, let's do it just in case we
296 * change this rule.
297 */
298 lp->skip = 0;
299 } else {
300 lp->skip += p[valid_ptr].skip;
301 }
302 }
303
address_space_dispatch_compact(AddressSpaceDispatch * d)304 void address_space_dispatch_compact(AddressSpaceDispatch *d)
305 {
306 if (d->phys_map.skip) {
307 phys_page_compact(&d->phys_map, d->map.nodes);
308 }
309 }
310
section_covers_addr(const MemoryRegionSection * section,hwaddr addr)311 static inline bool section_covers_addr(const MemoryRegionSection *section,
312 hwaddr addr)
313 {
314 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
315 * the section must cover the entire address space.
316 */
317 return int128_gethi(section->size) ||
318 range_covers_byte(section->offset_within_address_space,
319 int128_getlo(section->size), addr);
320 }
321
phys_page_find(AddressSpaceDispatch * d,hwaddr addr)322 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
323 {
324 PhysPageEntry lp = d->phys_map, *p;
325 Node *nodes = d->map.nodes;
326 MemoryRegionSection *sections = d->map.sections;
327 hwaddr index = addr >> TARGET_PAGE_BITS;
328 int i;
329
330 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
331 if (lp.ptr == PHYS_MAP_NODE_NIL) {
332 return §ions[PHYS_SECTION_UNASSIGNED];
333 }
334 p = nodes[lp.ptr];
335 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
336 }
337
338 if (section_covers_addr(§ions[lp.ptr], addr)) {
339 return §ions[lp.ptr];
340 } else {
341 return §ions[PHYS_SECTION_UNASSIGNED];
342 }
343 }
344
345 /* Called from RCU critical section */
address_space_lookup_region(AddressSpaceDispatch * d,hwaddr addr,bool resolve_subpage)346 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
347 hwaddr addr,
348 bool resolve_subpage)
349 {
350 MemoryRegionSection *section = qatomic_read(&d->mru_section);
351 subpage_t *subpage;
352
353 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
354 !section_covers_addr(section, addr)) {
355 section = phys_page_find(d, addr);
356 qatomic_set(&d->mru_section, section);
357 }
358 if (resolve_subpage && section->mr->subpage) {
359 subpage = container_of(section->mr, subpage_t, iomem);
360 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
361 }
362 return section;
363 }
364
365 /* Called from RCU critical section */
366 static MemoryRegionSection *
address_space_translate_internal(AddressSpaceDispatch * d,hwaddr addr,hwaddr * xlat,hwaddr * plen,bool resolve_subpage)367 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
368 hwaddr *plen, bool resolve_subpage)
369 {
370 MemoryRegionSection *section;
371 MemoryRegion *mr;
372 Int128 diff;
373
374 section = address_space_lookup_region(d, addr, resolve_subpage);
375 /* Compute offset within MemoryRegionSection */
376 addr -= section->offset_within_address_space;
377
378 /* Compute offset within MemoryRegion */
379 *xlat = addr + section->offset_within_region;
380
381 mr = section->mr;
382
383 /* MMIO registers can be expected to perform full-width accesses based only
384 * on their address, without considering adjacent registers that could
385 * decode to completely different MemoryRegions. When such registers
386 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
387 * regions overlap wildly. For this reason we cannot clamp the accesses
388 * here.
389 *
390 * If the length is small (as is the case for address_space_ldl/stl),
391 * everything works fine. If the incoming length is large, however,
392 * the caller really has to do the clamping through memory_access_size.
393 */
394 if (memory_region_is_ram(mr)) {
395 diff = int128_sub(section->size, int128_make64(addr));
396 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
397 }
398 return section;
399 }
400
401 /**
402 * address_space_translate_iommu - translate an address through an IOMMU
403 * memory region and then through the target address space.
404 *
405 * @iommu_mr: the IOMMU memory region that we start the translation from
406 * @addr: the address to be translated through the MMU
407 * @xlat: the translated address offset within the destination memory region.
408 * It cannot be %NULL.
409 * @plen_out: valid read/write length of the translated address. It
410 * cannot be %NULL.
411 * @page_mask_out: page mask for the translated address. This
412 * should only be meaningful for IOMMU translated
413 * addresses, since there may be huge pages that this bit
414 * would tell. It can be %NULL if we don't care about it.
415 * @is_write: whether the translation operation is for write
416 * @is_mmio: whether this can be MMIO, set true if it can
417 * @target_as: the address space targeted by the IOMMU
418 * @attrs: transaction attributes
419 *
420 * This function is called from RCU critical section. It is the common
421 * part of flatview_do_translate and address_space_translate_cached.
422 */
address_space_translate_iommu(IOMMUMemoryRegion * iommu_mr,hwaddr * xlat,hwaddr * plen_out,hwaddr * page_mask_out,bool is_write,bool is_mmio,AddressSpace ** target_as,MemTxAttrs attrs)423 static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
424 hwaddr *xlat,
425 hwaddr *plen_out,
426 hwaddr *page_mask_out,
427 bool is_write,
428 bool is_mmio,
429 AddressSpace **target_as,
430 MemTxAttrs attrs)
431 {
432 MemoryRegionSection *section;
433 hwaddr page_mask = (hwaddr)-1;
434
435 do {
436 hwaddr addr = *xlat;
437 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
438 int iommu_idx = 0;
439 IOMMUTLBEntry iotlb;
440
441 if (imrc->attrs_to_index) {
442 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
443 }
444
445 iotlb = imrc->translate(iommu_mr, addr, is_write ?
446 IOMMU_WO : IOMMU_RO, iommu_idx);
447
448 if (!(iotlb.perm & (1 << is_write))) {
449 goto unassigned;
450 }
451
452 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
453 | (addr & iotlb.addr_mask));
454 page_mask &= iotlb.addr_mask;
455 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
456 *target_as = iotlb.target_as;
457
458 section = address_space_translate_internal(
459 address_space_to_dispatch(iotlb.target_as), addr, xlat,
460 plen_out, is_mmio);
461
462 iommu_mr = memory_region_get_iommu(section->mr);
463 } while (unlikely(iommu_mr));
464
465 if (page_mask_out) {
466 *page_mask_out = page_mask;
467 }
468 return *section;
469
470 unassigned:
471 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
472 }
473
474 /**
475 * flatview_do_translate - translate an address in FlatView
476 *
477 * @fv: the flat view that we want to translate on
478 * @addr: the address to be translated in above address space
479 * @xlat: the translated address offset within memory region. It
480 * cannot be @NULL.
481 * @plen_out: valid read/write length of the translated address. It
482 * can be @NULL when we don't care about it.
483 * @page_mask_out: page mask for the translated address. This
484 * should only be meaningful for IOMMU translated
485 * addresses, since there may be huge pages that this bit
486 * would tell. It can be @NULL if we don't care about it.
487 * @is_write: whether the translation operation is for write
488 * @is_mmio: whether this can be MMIO, set true if it can
489 * @target_as: the address space targeted by the IOMMU
490 * @attrs: memory transaction attributes
491 *
492 * This function is called from RCU critical section
493 */
flatview_do_translate(FlatView * fv,hwaddr addr,hwaddr * xlat,hwaddr * plen_out,hwaddr * page_mask_out,bool is_write,bool is_mmio,AddressSpace ** target_as,MemTxAttrs attrs)494 static MemoryRegionSection flatview_do_translate(FlatView *fv,
495 hwaddr addr,
496 hwaddr *xlat,
497 hwaddr *plen_out,
498 hwaddr *page_mask_out,
499 bool is_write,
500 bool is_mmio,
501 AddressSpace **target_as,
502 MemTxAttrs attrs)
503 {
504 MemoryRegionSection *section;
505 IOMMUMemoryRegion *iommu_mr;
506 hwaddr plen = (hwaddr)(-1);
507
508 if (!plen_out) {
509 plen_out = &plen;
510 }
511
512 section = address_space_translate_internal(
513 flatview_to_dispatch(fv), addr, xlat,
514 plen_out, is_mmio);
515
516 iommu_mr = memory_region_get_iommu(section->mr);
517 if (unlikely(iommu_mr)) {
518 return address_space_translate_iommu(iommu_mr, xlat,
519 plen_out, page_mask_out,
520 is_write, is_mmio,
521 target_as, attrs);
522 }
523 if (page_mask_out) {
524 /* Not behind an IOMMU, use default page size. */
525 *page_mask_out = ~TARGET_PAGE_MASK;
526 }
527
528 return *section;
529 }
530
531 /* Called from RCU critical section */
address_space_get_iotlb_entry(AddressSpace * as,hwaddr addr,bool is_write,MemTxAttrs attrs)532 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
533 bool is_write, MemTxAttrs attrs)
534 {
535 MemoryRegionSection section;
536 hwaddr xlat, page_mask;
537
538 /*
539 * This can never be MMIO, and we don't really care about plen,
540 * but page mask.
541 */
542 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
543 NULL, &page_mask, is_write, false, &as,
544 attrs);
545
546 /* Illegal translation */
547 if (section.mr == &io_mem_unassigned) {
548 goto iotlb_fail;
549 }
550
551 /* Convert memory region offset into address space offset */
552 xlat += section.offset_within_address_space -
553 section.offset_within_region;
554
555 return (IOMMUTLBEntry) {
556 .target_as = as,
557 .iova = addr & ~page_mask,
558 .translated_addr = xlat & ~page_mask,
559 .addr_mask = page_mask,
560 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
561 .perm = IOMMU_RW,
562 };
563
564 iotlb_fail:
565 return (IOMMUTLBEntry) {0};
566 }
567
568 /* Called from RCU critical section */
flatview_translate(FlatView * fv,hwaddr addr,hwaddr * xlat,hwaddr * plen,bool is_write,MemTxAttrs attrs)569 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
570 hwaddr *plen, bool is_write,
571 MemTxAttrs attrs)
572 {
573 MemoryRegion *mr;
574 MemoryRegionSection section;
575 AddressSpace *as = NULL;
576
577 /* This can be MMIO, so setup MMIO bit. */
578 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
579 is_write, true, &as, attrs);
580 mr = section.mr;
581
582 if (xen_enabled() && memory_access_is_direct(mr, is_write, attrs)) {
583 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
584 *plen = MIN(page, *plen);
585 }
586
587 return mr;
588 }
589
590 #ifdef CONFIG_TCG
591
592 typedef struct TCGIOMMUNotifier {
593 IOMMUNotifier n;
594 MemoryRegion *mr;
595 CPUState *cpu;
596 int iommu_idx;
597 bool active;
598 } TCGIOMMUNotifier;
599
tcg_iommu_unmap_notify(IOMMUNotifier * n,IOMMUTLBEntry * iotlb)600 static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
601 {
602 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
603
604 if (!notifier->active) {
605 return;
606 }
607 tlb_flush(notifier->cpu);
608 notifier->active = false;
609 /* We leave the notifier struct on the list to avoid reallocating it later.
610 * Generally the number of IOMMUs a CPU deals with will be small.
611 * In any case we can't unregister the iommu notifier from a notify
612 * callback.
613 */
614 }
615
tcg_register_iommu_notifier(CPUState * cpu,IOMMUMemoryRegion * iommu_mr,int iommu_idx)616 static void tcg_register_iommu_notifier(CPUState *cpu,
617 IOMMUMemoryRegion *iommu_mr,
618 int iommu_idx)
619 {
620 /* Make sure this CPU has an IOMMU notifier registered for this
621 * IOMMU/IOMMU index combination, so that we can flush its TLB
622 * when the IOMMU tells us the mappings we've cached have changed.
623 */
624 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
625 TCGIOMMUNotifier *notifier = NULL;
626 int i;
627
628 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
629 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
630 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
631 break;
632 }
633 }
634 if (i == cpu->iommu_notifiers->len) {
635 /* Not found, add a new entry at the end of the array */
636 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
637 notifier = g_new0(TCGIOMMUNotifier, 1);
638 g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
639
640 notifier->mr = mr;
641 notifier->iommu_idx = iommu_idx;
642 notifier->cpu = cpu;
643 /* Rather than trying to register interest in the specific part
644 * of the iommu's address space that we've accessed and then
645 * expand it later as subsequent accesses touch more of it, we
646 * just register interest in the whole thing, on the assumption
647 * that iommu reconfiguration will be rare.
648 */
649 iommu_notifier_init(¬ifier->n,
650 tcg_iommu_unmap_notify,
651 IOMMU_NOTIFIER_UNMAP,
652 0,
653 HWADDR_MAX,
654 iommu_idx);
655 memory_region_register_iommu_notifier(notifier->mr, ¬ifier->n,
656 &error_fatal);
657 }
658
659 if (!notifier->active) {
660 notifier->active = true;
661 }
662 }
663
tcg_iommu_free_notifier_list(CPUState * cpu)664 void tcg_iommu_free_notifier_list(CPUState *cpu)
665 {
666 /* Destroy the CPU's notifier list */
667 int i;
668 TCGIOMMUNotifier *notifier;
669
670 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
671 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
672 memory_region_unregister_iommu_notifier(notifier->mr, ¬ifier->n);
673 g_free(notifier);
674 }
675 g_array_free(cpu->iommu_notifiers, true);
676 }
677
tcg_iommu_init_notifier_list(CPUState * cpu)678 void tcg_iommu_init_notifier_list(CPUState *cpu)
679 {
680 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
681 }
682
683 /* Called from RCU critical section */
684 MemoryRegionSection *
address_space_translate_for_iotlb(CPUState * cpu,int asidx,hwaddr orig_addr,hwaddr * xlat,hwaddr * plen,MemTxAttrs attrs,int * prot)685 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr orig_addr,
686 hwaddr *xlat, hwaddr *plen,
687 MemTxAttrs attrs, int *prot)
688 {
689 MemoryRegionSection *section;
690 IOMMUMemoryRegion *iommu_mr;
691 IOMMUMemoryRegionClass *imrc;
692 IOMMUTLBEntry iotlb;
693 int iommu_idx;
694 hwaddr addr = orig_addr;
695 AddressSpaceDispatch *d = cpu->cpu_ases[asidx].memory_dispatch;
696
697 for (;;) {
698 section = address_space_translate_internal(d, addr, &addr, plen, false);
699
700 iommu_mr = memory_region_get_iommu(section->mr);
701 if (!iommu_mr) {
702 break;
703 }
704
705 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
706
707 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
708 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
709 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
710 * doesn't short-cut its translation table walk.
711 */
712 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
713 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
714 | (addr & iotlb.addr_mask));
715 /* Update the caller's prot bits to remove permissions the IOMMU
716 * is giving us a failure response for. If we get down to no
717 * permissions left at all we can give up now.
718 */
719 if (!(iotlb.perm & IOMMU_RO)) {
720 *prot &= ~(PAGE_READ | PAGE_EXEC);
721 }
722 if (!(iotlb.perm & IOMMU_WO)) {
723 *prot &= ~PAGE_WRITE;
724 }
725
726 if (!*prot) {
727 goto translate_fail;
728 }
729
730 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
731 }
732
733 assert(!memory_region_is_iommu(section->mr));
734 *xlat = addr;
735 return section;
736
737 translate_fail:
738 /*
739 * We should be given a page-aligned address -- certainly
740 * tlb_set_page_with_attrs() does so. The page offset of xlat
741 * is used to index sections[], and PHYS_SECTION_UNASSIGNED = 0.
742 * The page portion of xlat will be logged by memory_region_access_valid()
743 * when this memory access is rejected, so use the original untranslated
744 * physical address.
745 */
746 assert((orig_addr & ~TARGET_PAGE_MASK) == 0);
747 *xlat = orig_addr;
748 return &d->map.sections[PHYS_SECTION_UNASSIGNED];
749 }
750
iotlb_to_section(CPUState * cpu,hwaddr index,MemTxAttrs attrs)751 MemoryRegionSection *iotlb_to_section(CPUState *cpu,
752 hwaddr index, MemTxAttrs attrs)
753 {
754 int asidx = cpu_asidx_from_attrs(cpu, attrs);
755 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
756 AddressSpaceDispatch *d = cpuas->memory_dispatch;
757 int section_index = index & ~TARGET_PAGE_MASK;
758 MemoryRegionSection *ret;
759
760 assert(section_index < d->map.sections_nb);
761 ret = d->map.sections + section_index;
762 assert(ret->mr);
763 assert(ret->mr->ops);
764
765 return ret;
766 }
767
768 /* Called from RCU critical section */
memory_region_section_get_iotlb(CPUState * cpu,MemoryRegionSection * section)769 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
770 MemoryRegionSection *section)
771 {
772 AddressSpaceDispatch *d = flatview_to_dispatch(section->fv);
773 return section - d->map.sections;
774 }
775
776 #endif /* CONFIG_TCG */
777
cpu_address_space_init(CPUState * cpu,int asidx,const char * prefix,MemoryRegion * mr)778 void cpu_address_space_init(CPUState *cpu, int asidx,
779 const char *prefix, MemoryRegion *mr)
780 {
781 CPUAddressSpace *newas;
782 AddressSpace *as = g_new0(AddressSpace, 1);
783 char *as_name;
784
785 assert(mr);
786 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
787 address_space_init(as, mr, as_name);
788 g_free(as_name);
789
790 /* Target code should have set num_ases before calling us */
791 assert(asidx < cpu->num_ases);
792
793 if (asidx == 0) {
794 /* address space 0 gets the convenience alias */
795 cpu->as = as;
796 }
797
798 /* KVM cannot currently support multiple address spaces. */
799 assert(asidx == 0 || !kvm_enabled());
800
801 if (!cpu->cpu_ases) {
802 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
803 cpu->cpu_ases_count = cpu->num_ases;
804 }
805
806 newas = &cpu->cpu_ases[asidx];
807 newas->cpu = cpu;
808 newas->as = as;
809 if (tcg_enabled()) {
810 newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync;
811 newas->tcg_as_listener.commit = tcg_commit;
812 newas->tcg_as_listener.name = "tcg";
813 memory_listener_register(&newas->tcg_as_listener, as);
814 }
815 }
816
cpu_address_space_destroy(CPUState * cpu,int asidx)817 void cpu_address_space_destroy(CPUState *cpu, int asidx)
818 {
819 CPUAddressSpace *cpuas;
820
821 assert(cpu->cpu_ases);
822 assert(asidx >= 0 && asidx < cpu->num_ases);
823 /* KVM cannot currently support multiple address spaces. */
824 assert(asidx == 0 || !kvm_enabled());
825
826 cpuas = &cpu->cpu_ases[asidx];
827 if (tcg_enabled()) {
828 memory_listener_unregister(&cpuas->tcg_as_listener);
829 }
830
831 address_space_destroy(cpuas->as);
832 g_free_rcu(cpuas->as, rcu);
833
834 if (asidx == 0) {
835 /* reset the convenience alias for address space 0 */
836 cpu->as = NULL;
837 }
838
839 if (--cpu->cpu_ases_count == 0) {
840 g_free(cpu->cpu_ases);
841 cpu->cpu_ases = NULL;
842 }
843 }
844
cpu_get_address_space(CPUState * cpu,int asidx)845 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
846 {
847 /* Return the AddressSpace corresponding to the specified index */
848 return cpu->cpu_ases[asidx].as;
849 }
850
851 /* Called from RCU critical section */
qemu_get_ram_block(ram_addr_t addr)852 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
853 {
854 RAMBlock *block;
855
856 block = qatomic_rcu_read(&ram_list.mru_block);
857 if (block && addr - block->offset < block->max_length) {
858 return block;
859 }
860 RAMBLOCK_FOREACH(block) {
861 if (addr - block->offset < block->max_length) {
862 goto found;
863 }
864 }
865
866 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
867 abort();
868
869 found:
870 /* It is safe to write mru_block outside the BQL. This
871 * is what happens:
872 *
873 * mru_block = xxx
874 * rcu_read_unlock()
875 * xxx removed from list
876 * rcu_read_lock()
877 * read mru_block
878 * mru_block = NULL;
879 * call_rcu(reclaim_ramblock, xxx);
880 * rcu_read_unlock()
881 *
882 * qatomic_rcu_set is not needed here. The block was already published
883 * when it was placed into the list. Here we're just making an extra
884 * copy of the pointer.
885 */
886 ram_list.mru_block = block;
887 return block;
888 }
889
tlb_reset_dirty_range_all(ram_addr_t start,ram_addr_t length)890 void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
891 {
892 CPUState *cpu;
893 ram_addr_t start1;
894 RAMBlock *block;
895 ram_addr_t end;
896
897 assert(tcg_enabled());
898 end = TARGET_PAGE_ALIGN(start + length);
899 start &= TARGET_PAGE_MASK;
900
901 RCU_READ_LOCK_GUARD();
902 block = qemu_get_ram_block(start);
903 assert(block == qemu_get_ram_block(end - 1));
904 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
905 CPU_FOREACH(cpu) {
906 tlb_reset_dirty(cpu, start1, length);
907 }
908 }
909
910 /* Note: start and end must be within the same ram block. */
cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,ram_addr_t length,unsigned client)911 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
912 ram_addr_t length,
913 unsigned client)
914 {
915 DirtyMemoryBlocks *blocks;
916 unsigned long end, page, start_page;
917 bool dirty = false;
918 RAMBlock *ramblock;
919 uint64_t mr_offset, mr_size;
920
921 if (length == 0) {
922 return false;
923 }
924
925 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
926 start_page = start >> TARGET_PAGE_BITS;
927 page = start_page;
928
929 WITH_RCU_READ_LOCK_GUARD() {
930 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
931 ramblock = qemu_get_ram_block(start);
932 /* Range sanity check on the ramblock */
933 assert(start >= ramblock->offset &&
934 start + length <= ramblock->offset + ramblock->used_length);
935
936 while (page < end) {
937 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
938 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
939 unsigned long num = MIN(end - page,
940 DIRTY_MEMORY_BLOCK_SIZE - offset);
941
942 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
943 offset, num);
944 page += num;
945 }
946
947 mr_offset = (ram_addr_t)(start_page << TARGET_PAGE_BITS) - ramblock->offset;
948 mr_size = (end - start_page) << TARGET_PAGE_BITS;
949 memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size);
950 }
951
952 if (dirty) {
953 cpu_physical_memory_dirty_bits_cleared(start, length);
954 }
955
956 return dirty;
957 }
958
cpu_physical_memory_snapshot_and_clear_dirty(MemoryRegion * mr,hwaddr offset,hwaddr length,unsigned client)959 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
960 (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client)
961 {
962 DirtyMemoryBlocks *blocks;
963 ram_addr_t start, first, last;
964 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
965 DirtyBitmapSnapshot *snap;
966 unsigned long page, end, dest;
967
968 start = memory_region_get_ram_addr(mr);
969 /* We know we're only called for RAM MemoryRegions */
970 assert(start != RAM_ADDR_INVALID);
971 start += offset;
972
973 first = QEMU_ALIGN_DOWN(start, align);
974 last = QEMU_ALIGN_UP(start + length, align);
975
976 snap = g_malloc0(sizeof(*snap) +
977 ((last - first) >> (TARGET_PAGE_BITS + 3)));
978 snap->start = first;
979 snap->end = last;
980
981 page = first >> TARGET_PAGE_BITS;
982 end = last >> TARGET_PAGE_BITS;
983 dest = 0;
984
985 WITH_RCU_READ_LOCK_GUARD() {
986 blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
987
988 while (page < end) {
989 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
990 unsigned long ofs = page % DIRTY_MEMORY_BLOCK_SIZE;
991 unsigned long num = MIN(end - page,
992 DIRTY_MEMORY_BLOCK_SIZE - ofs);
993
994 assert(QEMU_IS_ALIGNED(ofs, (1 << BITS_PER_LEVEL)));
995 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
996 ofs >>= BITS_PER_LEVEL;
997
998 bitmap_copy_and_clear_atomic(snap->dirty + dest,
999 blocks->blocks[idx] + ofs,
1000 num);
1001 page += num;
1002 dest += num >> BITS_PER_LEVEL;
1003 }
1004 }
1005
1006 cpu_physical_memory_dirty_bits_cleared(start, length);
1007
1008 memory_region_clear_dirty_bitmap(mr, offset, length);
1009
1010 return snap;
1011 }
1012
cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot * snap,ram_addr_t start,ram_addr_t length)1013 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1014 ram_addr_t start,
1015 ram_addr_t length)
1016 {
1017 unsigned long page, end;
1018
1019 assert(start >= snap->start);
1020 assert(start + length <= snap->end);
1021
1022 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1023 page = (start - snap->start) >> TARGET_PAGE_BITS;
1024
1025 while (page < end) {
1026 if (test_bit(page, snap->dirty)) {
1027 return true;
1028 }
1029 page++;
1030 }
1031 return false;
1032 }
1033
1034 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
1035 uint16_t section);
1036 static subpage_t *subpage_init(FlatView *fv, hwaddr base);
1037
phys_section_add(PhysPageMap * map,MemoryRegionSection * section)1038 static uint16_t phys_section_add(PhysPageMap *map,
1039 MemoryRegionSection *section)
1040 {
1041 /* The physical section number is ORed with a page-aligned
1042 * pointer to produce the iotlb entries. Thus it should
1043 * never overflow into the page-aligned value.
1044 */
1045 assert(map->sections_nb < TARGET_PAGE_SIZE);
1046
1047 if (map->sections_nb == map->sections_nb_alloc) {
1048 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1049 map->sections = g_renew(MemoryRegionSection, map->sections,
1050 map->sections_nb_alloc);
1051 }
1052 map->sections[map->sections_nb] = *section;
1053 memory_region_ref(section->mr);
1054 return map->sections_nb++;
1055 }
1056
phys_section_destroy(MemoryRegion * mr)1057 static void phys_section_destroy(MemoryRegion *mr)
1058 {
1059 bool have_sub_page = mr->subpage;
1060
1061 memory_region_unref(mr);
1062
1063 if (have_sub_page) {
1064 subpage_t *subpage = container_of(mr, subpage_t, iomem);
1065 object_unref(OBJECT(&subpage->iomem));
1066 g_free(subpage);
1067 }
1068 }
1069
phys_sections_free(PhysPageMap * map)1070 static void phys_sections_free(PhysPageMap *map)
1071 {
1072 while (map->sections_nb > 0) {
1073 MemoryRegionSection *section = &map->sections[--map->sections_nb];
1074 phys_section_destroy(section->mr);
1075 }
1076 g_free(map->sections);
1077 g_free(map->nodes);
1078 }
1079
register_subpage(FlatView * fv,MemoryRegionSection * section)1080 static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1081 {
1082 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1083 subpage_t *subpage;
1084 hwaddr base = section->offset_within_address_space
1085 & TARGET_PAGE_MASK;
1086 MemoryRegionSection *existing = phys_page_find(d, base);
1087 MemoryRegionSection subsection = {
1088 .offset_within_address_space = base,
1089 .size = int128_make64(TARGET_PAGE_SIZE),
1090 };
1091 hwaddr start, end;
1092
1093 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1094
1095 if (!(existing->mr->subpage)) {
1096 subpage = subpage_init(fv, base);
1097 subsection.fv = fv;
1098 subsection.mr = &subpage->iomem;
1099 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1100 phys_section_add(&d->map, &subsection));
1101 } else {
1102 subpage = container_of(existing->mr, subpage_t, iomem);
1103 }
1104 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1105 end = start + int128_get64(section->size) - 1;
1106 subpage_register(subpage, start, end,
1107 phys_section_add(&d->map, section));
1108 }
1109
1110
register_multipage(FlatView * fv,MemoryRegionSection * section)1111 static void register_multipage(FlatView *fv,
1112 MemoryRegionSection *section)
1113 {
1114 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1115 hwaddr start_addr = section->offset_within_address_space;
1116 uint16_t section_index = phys_section_add(&d->map, section);
1117 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1118 TARGET_PAGE_BITS));
1119
1120 assert(num_pages);
1121 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1122 }
1123
1124 /*
1125 * The range in *section* may look like this:
1126 *
1127 * |s|PPPPPPP|s|
1128 *
1129 * where s stands for subpage and P for page.
1130 */
flatview_add_to_dispatch(FlatView * fv,MemoryRegionSection * section)1131 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1132 {
1133 MemoryRegionSection remain = *section;
1134 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1135
1136 /* register first subpage */
1137 if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1138 uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
1139 - remain.offset_within_address_space;
1140
1141 MemoryRegionSection now = remain;
1142 now.size = int128_min(int128_make64(left), now.size);
1143 register_subpage(fv, &now);
1144 if (int128_eq(remain.size, now.size)) {
1145 return;
1146 }
1147 remain.size = int128_sub(remain.size, now.size);
1148 remain.offset_within_address_space += int128_get64(now.size);
1149 remain.offset_within_region += int128_get64(now.size);
1150 }
1151
1152 /* register whole pages */
1153 if (int128_ge(remain.size, page_size)) {
1154 MemoryRegionSection now = remain;
1155 now.size = int128_and(now.size, int128_neg(page_size));
1156 register_multipage(fv, &now);
1157 if (int128_eq(remain.size, now.size)) {
1158 return;
1159 }
1160 remain.size = int128_sub(remain.size, now.size);
1161 remain.offset_within_address_space += int128_get64(now.size);
1162 remain.offset_within_region += int128_get64(now.size);
1163 }
1164
1165 /* register last subpage */
1166 register_subpage(fv, &remain);
1167 }
1168
qemu_flush_coalesced_mmio_buffer(void)1169 void qemu_flush_coalesced_mmio_buffer(void)
1170 {
1171 if (kvm_enabled())
1172 kvm_flush_coalesced_mmio_buffer();
1173 }
1174
qemu_mutex_lock_ramlist(void)1175 void qemu_mutex_lock_ramlist(void)
1176 {
1177 qemu_mutex_lock(&ram_list.mutex);
1178 }
1179
qemu_mutex_unlock_ramlist(void)1180 void qemu_mutex_unlock_ramlist(void)
1181 {
1182 qemu_mutex_unlock(&ram_list.mutex);
1183 }
1184
ram_block_format(void)1185 GString *ram_block_format(void)
1186 {
1187 RAMBlock *block;
1188 char *psize;
1189 GString *buf = g_string_new("");
1190
1191 RCU_READ_LOCK_GUARD();
1192 g_string_append_printf(buf, "%24s %8s %18s %18s %18s %18s %3s\n",
1193 "Block Name", "PSize", "Offset", "Used", "Total",
1194 "HVA", "RO");
1195
1196 RAMBLOCK_FOREACH(block) {
1197 psize = size_to_str(block->page_size);
1198 g_string_append_printf(buf, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1199 " 0x%016" PRIx64 " 0x%016" PRIx64 " %3s\n",
1200 block->idstr, psize,
1201 (uint64_t)block->offset,
1202 (uint64_t)block->used_length,
1203 (uint64_t)block->max_length,
1204 (uint64_t)(uintptr_t)block->host,
1205 block->mr->readonly ? "ro" : "rw");
1206
1207 g_free(psize);
1208 }
1209
1210 return buf;
1211 }
1212
find_min_backend_pagesize(Object * obj,void * opaque)1213 static int find_min_backend_pagesize(Object *obj, void *opaque)
1214 {
1215 long *hpsize_min = opaque;
1216
1217 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1218 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1219 long hpsize = host_memory_backend_pagesize(backend);
1220
1221 if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
1222 *hpsize_min = hpsize;
1223 }
1224 }
1225
1226 return 0;
1227 }
1228
find_max_backend_pagesize(Object * obj,void * opaque)1229 static int find_max_backend_pagesize(Object *obj, void *opaque)
1230 {
1231 long *hpsize_max = opaque;
1232
1233 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1234 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1235 long hpsize = host_memory_backend_pagesize(backend);
1236
1237 if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) {
1238 *hpsize_max = hpsize;
1239 }
1240 }
1241
1242 return 0;
1243 }
1244
1245 /*
1246 * TODO: We assume right now that all mapped host memory backends are
1247 * used as RAM, however some might be used for different purposes.
1248 */
qemu_minrampagesize(void)1249 long qemu_minrampagesize(void)
1250 {
1251 long hpsize = LONG_MAX;
1252 Object *memdev_root = object_resolve_path("/objects", NULL);
1253
1254 object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize);
1255 return hpsize;
1256 }
1257
qemu_maxrampagesize(void)1258 long qemu_maxrampagesize(void)
1259 {
1260 long pagesize = 0;
1261 Object *memdev_root = object_resolve_path("/objects", NULL);
1262
1263 object_child_foreach(memdev_root, find_max_backend_pagesize, &pagesize);
1264 return pagesize;
1265 }
1266
1267 #if defined(CONFIG_POSIX) && !defined(EMSCRIPTEN)
get_file_size(int fd)1268 static int64_t get_file_size(int fd)
1269 {
1270 int64_t size;
1271 #if defined(__linux__)
1272 struct stat st;
1273
1274 if (fstat(fd, &st) < 0) {
1275 return -errno;
1276 }
1277
1278 /* Special handling for devdax character devices */
1279 if (S_ISCHR(st.st_mode)) {
1280 g_autofree char *subsystem_path = NULL;
1281 g_autofree char *subsystem = NULL;
1282
1283 subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem",
1284 major(st.st_rdev), minor(st.st_rdev));
1285 subsystem = g_file_read_link(subsystem_path, NULL);
1286
1287 if (subsystem && g_str_has_suffix(subsystem, "/dax")) {
1288 g_autofree char *size_path = NULL;
1289 g_autofree char *size_str = NULL;
1290
1291 size_path = g_strdup_printf("/sys/dev/char/%d:%d/size",
1292 major(st.st_rdev), minor(st.st_rdev));
1293
1294 if (g_file_get_contents(size_path, &size_str, NULL, NULL)) {
1295 return g_ascii_strtoll(size_str, NULL, 0);
1296 }
1297 }
1298 }
1299 #endif /* defined(__linux__) */
1300
1301 /* st.st_size may be zero for special files yet lseek(2) works */
1302 size = lseek(fd, 0, SEEK_END);
1303 if (size < 0) {
1304 return -errno;
1305 }
1306 return size;
1307 }
1308
get_file_align(int fd)1309 static int64_t get_file_align(int fd)
1310 {
1311 int64_t align = -1;
1312 #if defined(__linux__) && defined(CONFIG_LIBDAXCTL)
1313 struct stat st;
1314
1315 if (fstat(fd, &st) < 0) {
1316 return -errno;
1317 }
1318
1319 /* Special handling for devdax character devices */
1320 if (S_ISCHR(st.st_mode)) {
1321 g_autofree char *path = NULL;
1322 g_autofree char *rpath = NULL;
1323 struct daxctl_ctx *ctx;
1324 struct daxctl_region *region;
1325 int rc = 0;
1326
1327 path = g_strdup_printf("/sys/dev/char/%d:%d",
1328 major(st.st_rdev), minor(st.st_rdev));
1329 rpath = realpath(path, NULL);
1330 if (!rpath) {
1331 return -errno;
1332 }
1333
1334 rc = daxctl_new(&ctx);
1335 if (rc) {
1336 return -1;
1337 }
1338
1339 daxctl_region_foreach(ctx, region) {
1340 if (strstr(rpath, daxctl_region_get_path(region))) {
1341 align = daxctl_region_get_align(region);
1342 break;
1343 }
1344 }
1345 daxctl_unref(ctx);
1346 }
1347 #endif /* defined(__linux__) && defined(CONFIG_LIBDAXCTL) */
1348
1349 return align;
1350 }
1351
file_ram_open(const char * path,const char * region_name,bool readonly,bool * created)1352 static int file_ram_open(const char *path,
1353 const char *region_name,
1354 bool readonly,
1355 bool *created)
1356 {
1357 char *filename;
1358 char *sanitized_name;
1359 char *c;
1360 int fd = -1;
1361
1362 *created = false;
1363 for (;;) {
1364 fd = open(path, readonly ? O_RDONLY : O_RDWR);
1365 if (fd >= 0) {
1366 /*
1367 * open(O_RDONLY) won't fail with EISDIR. Check manually if we
1368 * opened a directory and fail similarly to how we fail ENOENT
1369 * in readonly mode. Note that mkstemp() would imply O_RDWR.
1370 */
1371 if (readonly) {
1372 struct stat file_stat;
1373
1374 if (fstat(fd, &file_stat)) {
1375 close(fd);
1376 if (errno == EINTR) {
1377 continue;
1378 }
1379 return -errno;
1380 } else if (S_ISDIR(file_stat.st_mode)) {
1381 close(fd);
1382 return -EISDIR;
1383 }
1384 }
1385 /* @path names an existing file, use it */
1386 break;
1387 }
1388 if (errno == ENOENT) {
1389 if (readonly) {
1390 /* Refuse to create new, readonly files. */
1391 return -ENOENT;
1392 }
1393 /* @path names a file that doesn't exist, create it */
1394 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1395 if (fd >= 0) {
1396 *created = true;
1397 break;
1398 }
1399 } else if (errno == EISDIR) {
1400 /* @path names a directory, create a file there */
1401 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1402 sanitized_name = g_strdup(region_name);
1403 for (c = sanitized_name; *c != '\0'; c++) {
1404 if (*c == '/') {
1405 *c = '_';
1406 }
1407 }
1408
1409 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1410 sanitized_name);
1411 g_free(sanitized_name);
1412
1413 fd = mkstemp(filename);
1414 if (fd >= 0) {
1415 unlink(filename);
1416 g_free(filename);
1417 break;
1418 }
1419 g_free(filename);
1420 }
1421 if (errno != EEXIST && errno != EINTR) {
1422 return -errno;
1423 }
1424 /*
1425 * Try again on EINTR and EEXIST. The latter happens when
1426 * something else creates the file between our two open().
1427 */
1428 }
1429
1430 return fd;
1431 }
1432
file_ram_alloc(RAMBlock * block,ram_addr_t memory,int fd,bool truncate,off_t offset,Error ** errp)1433 static void *file_ram_alloc(RAMBlock *block,
1434 ram_addr_t memory,
1435 int fd,
1436 bool truncate,
1437 off_t offset,
1438 Error **errp)
1439 {
1440 uint32_t qemu_map_flags;
1441 void *area;
1442
1443 block->page_size = qemu_fd_getpagesize(fd);
1444 if (block->mr->align % block->page_size) {
1445 error_setg(errp, "alignment 0x%" PRIx64
1446 " must be multiples of page size 0x%zx",
1447 block->mr->align, block->page_size);
1448 return NULL;
1449 } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1450 error_setg(errp, "alignment 0x%" PRIx64
1451 " must be a power of two", block->mr->align);
1452 return NULL;
1453 } else if (offset % block->page_size) {
1454 error_setg(errp, "offset 0x%" PRIx64
1455 " must be multiples of page size 0x%zx",
1456 offset, block->page_size);
1457 return NULL;
1458 }
1459 block->mr->align = MAX(block->page_size, block->mr->align);
1460 #if defined(__s390x__)
1461 if (kvm_enabled()) {
1462 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1463 }
1464 #endif
1465
1466 if (memory < block->page_size) {
1467 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1468 "or larger than page size 0x%zx",
1469 memory, block->page_size);
1470 return NULL;
1471 }
1472
1473 memory = ROUND_UP(memory, block->page_size);
1474
1475 /*
1476 * ftruncate is not supported by hugetlbfs in older
1477 * hosts, so don't bother bailing out on errors.
1478 * If anything goes wrong with it under other filesystems,
1479 * mmap will fail.
1480 *
1481 * Do not truncate the non-empty backend file to avoid corrupting
1482 * the existing data in the file. Disabling shrinking is not
1483 * enough. For example, the current vNVDIMM implementation stores
1484 * the guest NVDIMM labels at the end of the backend file. If the
1485 * backend file is later extended, QEMU will not be able to find
1486 * those labels. Therefore, extending the non-empty backend file
1487 * is disabled as well.
1488 */
1489 if (truncate && ftruncate(fd, offset + memory)) {
1490 perror("ftruncate");
1491 }
1492
1493 qemu_map_flags = (block->flags & RAM_READONLY) ? QEMU_MAP_READONLY : 0;
1494 qemu_map_flags |= (block->flags & RAM_SHARED) ? QEMU_MAP_SHARED : 0;
1495 qemu_map_flags |= (block->flags & RAM_PMEM) ? QEMU_MAP_SYNC : 0;
1496 qemu_map_flags |= (block->flags & RAM_NORESERVE) ? QEMU_MAP_NORESERVE : 0;
1497 area = qemu_ram_mmap(fd, memory, block->mr->align, qemu_map_flags, offset);
1498 if (area == MAP_FAILED) {
1499 error_setg_errno(errp, errno,
1500 "unable to map backing store for guest RAM");
1501 return NULL;
1502 }
1503
1504 block->fd = fd;
1505 block->fd_offset = offset;
1506 return area;
1507 }
1508 #endif
1509
1510 /* Allocate space within the ram_addr_t space that governs the
1511 * dirty bitmaps.
1512 * Called with the ramlist lock held.
1513 */
find_ram_offset(ram_addr_t size)1514 static ram_addr_t find_ram_offset(ram_addr_t size)
1515 {
1516 RAMBlock *block, *next_block;
1517 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1518
1519 assert(size != 0); /* it would hand out same offset multiple times */
1520
1521 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1522 return 0;
1523 }
1524
1525 RAMBLOCK_FOREACH(block) {
1526 ram_addr_t candidate, next = RAM_ADDR_MAX;
1527
1528 /* Align blocks to start on a 'long' in the bitmap
1529 * which makes the bitmap sync'ing take the fast path.
1530 */
1531 candidate = block->offset + block->max_length;
1532 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
1533
1534 /* Search for the closest following block
1535 * and find the gap.
1536 */
1537 RAMBLOCK_FOREACH(next_block) {
1538 if (next_block->offset >= candidate) {
1539 next = MIN(next, next_block->offset);
1540 }
1541 }
1542
1543 /* If it fits remember our place and remember the size
1544 * of gap, but keep going so that we might find a smaller
1545 * gap to fill so avoiding fragmentation.
1546 */
1547 if (next - candidate >= size && next - candidate < mingap) {
1548 offset = candidate;
1549 mingap = next - candidate;
1550 }
1551
1552 trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
1553 }
1554
1555 if (offset == RAM_ADDR_MAX) {
1556 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1557 (uint64_t)size);
1558 abort();
1559 }
1560
1561 trace_find_ram_offset(size, offset);
1562
1563 return offset;
1564 }
1565
qemu_ram_setup_dump(void * addr,ram_addr_t size)1566 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1567 {
1568 int ret;
1569
1570 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1571 if (!machine_dump_guest_core(current_machine)) {
1572 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1573 if (ret) {
1574 perror("qemu_madvise");
1575 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1576 "but dump-guest-core=off specified\n");
1577 }
1578 }
1579 }
1580
qemu_ram_get_idstr(RAMBlock * rb)1581 const char *qemu_ram_get_idstr(RAMBlock *rb)
1582 {
1583 return rb->idstr;
1584 }
1585
qemu_ram_get_host_addr(RAMBlock * rb)1586 void *qemu_ram_get_host_addr(RAMBlock *rb)
1587 {
1588 return rb->host;
1589 }
1590
qemu_ram_get_offset(RAMBlock * rb)1591 ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
1592 {
1593 return rb->offset;
1594 }
1595
qemu_ram_get_used_length(RAMBlock * rb)1596 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
1597 {
1598 return rb->used_length;
1599 }
1600
qemu_ram_get_max_length(RAMBlock * rb)1601 ram_addr_t qemu_ram_get_max_length(RAMBlock *rb)
1602 {
1603 return rb->max_length;
1604 }
1605
qemu_ram_is_shared(RAMBlock * rb)1606 bool qemu_ram_is_shared(RAMBlock *rb)
1607 {
1608 return rb->flags & RAM_SHARED;
1609 }
1610
qemu_ram_is_noreserve(RAMBlock * rb)1611 bool qemu_ram_is_noreserve(RAMBlock *rb)
1612 {
1613 return rb->flags & RAM_NORESERVE;
1614 }
1615
1616 /* Note: Only set at the start of postcopy */
qemu_ram_is_uf_zeroable(RAMBlock * rb)1617 bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
1618 {
1619 return rb->flags & RAM_UF_ZEROPAGE;
1620 }
1621
qemu_ram_set_uf_zeroable(RAMBlock * rb)1622 void qemu_ram_set_uf_zeroable(RAMBlock *rb)
1623 {
1624 rb->flags |= RAM_UF_ZEROPAGE;
1625 }
1626
qemu_ram_is_migratable(RAMBlock * rb)1627 bool qemu_ram_is_migratable(RAMBlock *rb)
1628 {
1629 return rb->flags & RAM_MIGRATABLE;
1630 }
1631
qemu_ram_set_migratable(RAMBlock * rb)1632 void qemu_ram_set_migratable(RAMBlock *rb)
1633 {
1634 rb->flags |= RAM_MIGRATABLE;
1635 }
1636
qemu_ram_unset_migratable(RAMBlock * rb)1637 void qemu_ram_unset_migratable(RAMBlock *rb)
1638 {
1639 rb->flags &= ~RAM_MIGRATABLE;
1640 }
1641
qemu_ram_is_named_file(RAMBlock * rb)1642 bool qemu_ram_is_named_file(RAMBlock *rb)
1643 {
1644 return rb->flags & RAM_NAMED_FILE;
1645 }
1646
qemu_ram_get_fd(RAMBlock * rb)1647 int qemu_ram_get_fd(RAMBlock *rb)
1648 {
1649 return rb->fd;
1650 }
1651
1652 /* Called with the BQL held. */
qemu_ram_set_idstr(RAMBlock * new_block,const char * name,DeviceState * dev)1653 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
1654 {
1655 RAMBlock *block;
1656
1657 assert(new_block);
1658 assert(!new_block->idstr[0]);
1659
1660 if (dev) {
1661 char *id = qdev_get_dev_path(dev);
1662 if (id) {
1663 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1664 g_free(id);
1665 }
1666 }
1667 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1668
1669 RCU_READ_LOCK_GUARD();
1670 RAMBLOCK_FOREACH(block) {
1671 if (block != new_block &&
1672 !strcmp(block->idstr, new_block->idstr)) {
1673 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1674 new_block->idstr);
1675 abort();
1676 }
1677 }
1678 }
1679
1680 /* Called with the BQL held. */
qemu_ram_unset_idstr(RAMBlock * block)1681 void qemu_ram_unset_idstr(RAMBlock *block)
1682 {
1683 /* FIXME: arch_init.c assumes that this is not called throughout
1684 * migration. Ignore the problem since hot-unplug during migration
1685 * does not work anyway.
1686 */
1687 if (block) {
1688 memset(block->idstr, 0, sizeof(block->idstr));
1689 }
1690 }
1691
cpr_name(MemoryRegion * mr)1692 static char *cpr_name(MemoryRegion *mr)
1693 {
1694 const char *mr_name = memory_region_name(mr);
1695 g_autofree char *id = mr->dev ? qdev_get_dev_path(mr->dev) : NULL;
1696
1697 if (id) {
1698 return g_strdup_printf("%s/%s", id, mr_name);
1699 } else {
1700 return g_strdup(mr_name);
1701 }
1702 }
1703
qemu_ram_pagesize(RAMBlock * rb)1704 size_t qemu_ram_pagesize(RAMBlock *rb)
1705 {
1706 return rb->page_size;
1707 }
1708
1709 /* Returns the largest size of page in use */
qemu_ram_pagesize_largest(void)1710 size_t qemu_ram_pagesize_largest(void)
1711 {
1712 RAMBlock *block;
1713 size_t largest = 0;
1714
1715 RAMBLOCK_FOREACH(block) {
1716 largest = MAX(largest, qemu_ram_pagesize(block));
1717 }
1718
1719 return largest;
1720 }
1721
memory_try_enable_merging(void * addr,size_t len)1722 static int memory_try_enable_merging(void *addr, size_t len)
1723 {
1724 if (!machine_mem_merge(current_machine)) {
1725 /* disabled by the user */
1726 return 0;
1727 }
1728
1729 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1730 }
1731
1732 /*
1733 * Resizing RAM while migrating can result in the migration being canceled.
1734 * Care has to be taken if the guest might have already detected the memory.
1735 *
1736 * As memory core doesn't know how is memory accessed, it is up to
1737 * resize callback to update device state and/or add assertions to detect
1738 * misuse, if necessary.
1739 */
qemu_ram_resize(RAMBlock * block,ram_addr_t newsize,Error ** errp)1740 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
1741 {
1742 const ram_addr_t oldsize = block->used_length;
1743 const ram_addr_t unaligned_size = newsize;
1744
1745 assert(block);
1746
1747 newsize = TARGET_PAGE_ALIGN(newsize);
1748 newsize = REAL_HOST_PAGE_ALIGN(newsize);
1749
1750 if (block->used_length == newsize) {
1751 /*
1752 * We don't have to resize the ram block (which only knows aligned
1753 * sizes), however, we have to notify if the unaligned size changed.
1754 */
1755 if (unaligned_size != memory_region_size(block->mr)) {
1756 memory_region_set_size(block->mr, unaligned_size);
1757 if (block->resized) {
1758 block->resized(block->idstr, unaligned_size, block->host);
1759 }
1760 }
1761 return 0;
1762 }
1763
1764 if (!(block->flags & RAM_RESIZEABLE)) {
1765 error_setg_errno(errp, EINVAL,
1766 "Size mismatch: %s: 0x" RAM_ADDR_FMT
1767 " != 0x" RAM_ADDR_FMT, block->idstr,
1768 newsize, block->used_length);
1769 return -EINVAL;
1770 }
1771
1772 if (block->max_length < newsize) {
1773 error_setg_errno(errp, EINVAL,
1774 "Size too large: %s: 0x" RAM_ADDR_FMT
1775 " > 0x" RAM_ADDR_FMT, block->idstr,
1776 newsize, block->max_length);
1777 return -EINVAL;
1778 }
1779
1780 /* Notify before modifying the ram block and touching the bitmaps. */
1781 if (block->host) {
1782 ram_block_notify_resize(block->host, oldsize, newsize);
1783 }
1784
1785 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1786 block->used_length = newsize;
1787 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1788 DIRTY_CLIENTS_ALL);
1789 memory_region_set_size(block->mr, unaligned_size);
1790 if (block->resized) {
1791 block->resized(block->idstr, unaligned_size, block->host);
1792 }
1793 return 0;
1794 }
1795
1796 /*
1797 * Trigger sync on the given ram block for range [start, start + length]
1798 * with the backing store if one is available.
1799 * Otherwise no-op.
1800 * @Note: this is supposed to be a synchronous op.
1801 */
qemu_ram_msync(RAMBlock * block,ram_addr_t start,ram_addr_t length)1802 void qemu_ram_msync(RAMBlock *block, ram_addr_t start, ram_addr_t length)
1803 {
1804 /* The requested range should fit in within the block range */
1805 g_assert((start + length) <= block->used_length);
1806
1807 #ifdef CONFIG_LIBPMEM
1808 /* The lack of support for pmem should not block the sync */
1809 if (ramblock_is_pmem(block)) {
1810 void *addr = ramblock_ptr(block, start);
1811 pmem_persist(addr, length);
1812 return;
1813 }
1814 #endif
1815 if (block->fd >= 0) {
1816 /**
1817 * Case there is no support for PMEM or the memory has not been
1818 * specified as persistent (or is not one) - use the msync.
1819 * Less optimal but still achieves the same goal
1820 */
1821 void *addr = ramblock_ptr(block, start);
1822 if (qemu_msync(addr, length, block->fd)) {
1823 warn_report("%s: failed to sync memory range: start: "
1824 RAM_ADDR_FMT " length: " RAM_ADDR_FMT,
1825 __func__, start, length);
1826 }
1827 }
1828 }
1829
1830 /* Called with ram_list.mutex held */
dirty_memory_extend(ram_addr_t new_ram_size)1831 static void dirty_memory_extend(ram_addr_t new_ram_size)
1832 {
1833 unsigned int old_num_blocks = ram_list.num_dirty_blocks;
1834 unsigned int new_num_blocks = DIV_ROUND_UP(new_ram_size,
1835 DIRTY_MEMORY_BLOCK_SIZE);
1836 int i;
1837
1838 /* Only need to extend if block count increased */
1839 if (new_num_blocks <= old_num_blocks) {
1840 return;
1841 }
1842
1843 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1844 DirtyMemoryBlocks *old_blocks;
1845 DirtyMemoryBlocks *new_blocks;
1846 int j;
1847
1848 old_blocks = qatomic_rcu_read(&ram_list.dirty_memory[i]);
1849 new_blocks = g_malloc(sizeof(*new_blocks) +
1850 sizeof(new_blocks->blocks[0]) * new_num_blocks);
1851
1852 if (old_num_blocks) {
1853 memcpy(new_blocks->blocks, old_blocks->blocks,
1854 old_num_blocks * sizeof(old_blocks->blocks[0]));
1855 }
1856
1857 for (j = old_num_blocks; j < new_num_blocks; j++) {
1858 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1859 }
1860
1861 qatomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1862
1863 if (old_blocks) {
1864 g_free_rcu(old_blocks, rcu);
1865 }
1866 }
1867
1868 ram_list.num_dirty_blocks = new_num_blocks;
1869 }
1870
ram_block_add(RAMBlock * new_block,Error ** errp)1871 static void ram_block_add(RAMBlock *new_block, Error **errp)
1872 {
1873 const bool noreserve = qemu_ram_is_noreserve(new_block);
1874 const bool shared = qemu_ram_is_shared(new_block);
1875 RAMBlock *block;
1876 RAMBlock *last_block = NULL;
1877 bool free_on_error = false;
1878 ram_addr_t ram_size;
1879 Error *err = NULL;
1880
1881 qemu_mutex_lock_ramlist();
1882 new_block->offset = find_ram_offset(new_block->max_length);
1883
1884 if (!new_block->host) {
1885 if (xen_enabled()) {
1886 xen_ram_alloc(new_block->offset, new_block->max_length,
1887 new_block->mr, &err);
1888 if (err) {
1889 error_propagate(errp, err);
1890 qemu_mutex_unlock_ramlist();
1891 return;
1892 }
1893 } else {
1894 new_block->host = qemu_anon_ram_alloc(new_block->max_length,
1895 &new_block->mr->align,
1896 shared, noreserve);
1897 if (!new_block->host) {
1898 error_setg_errno(errp, errno,
1899 "cannot set up guest memory '%s'",
1900 memory_region_name(new_block->mr));
1901 qemu_mutex_unlock_ramlist();
1902 return;
1903 }
1904 memory_try_enable_merging(new_block->host, new_block->max_length);
1905 free_on_error = true;
1906 }
1907 }
1908
1909 if (new_block->flags & RAM_GUEST_MEMFD) {
1910 int ret;
1911
1912 if (!kvm_enabled()) {
1913 error_setg(errp, "cannot set up private guest memory for %s: KVM required",
1914 object_get_typename(OBJECT(current_machine->cgs)));
1915 goto out_free;
1916 }
1917 assert(new_block->guest_memfd < 0);
1918
1919 ret = ram_block_discard_require(true);
1920 if (ret < 0) {
1921 error_setg_errno(errp, -ret,
1922 "cannot set up private guest memory: discard currently blocked");
1923 error_append_hint(errp, "Are you using assigned devices?\n");
1924 goto out_free;
1925 }
1926
1927 new_block->guest_memfd = kvm_create_guest_memfd(new_block->max_length,
1928 0, errp);
1929 if (new_block->guest_memfd < 0) {
1930 qemu_mutex_unlock_ramlist();
1931 goto out_free;
1932 }
1933
1934 /*
1935 * Add a specific guest_memfd blocker if a generic one would not be
1936 * added by ram_block_add_cpr_blocker.
1937 */
1938 if (ram_is_cpr_compatible(new_block)) {
1939 error_setg(&new_block->cpr_blocker,
1940 "Memory region %s uses guest_memfd, "
1941 "which is not supported with CPR.",
1942 memory_region_name(new_block->mr));
1943 migrate_add_blocker_modes(&new_block->cpr_blocker, errp,
1944 MIG_MODE_CPR_TRANSFER, -1);
1945 }
1946 }
1947
1948 ram_size = (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS;
1949 dirty_memory_extend(ram_size);
1950 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1951 * QLIST (which has an RCU-friendly variant) does not have insertion at
1952 * tail, so save the last element in last_block.
1953 */
1954 RAMBLOCK_FOREACH(block) {
1955 last_block = block;
1956 if (block->max_length < new_block->max_length) {
1957 break;
1958 }
1959 }
1960 if (block) {
1961 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
1962 } else if (last_block) {
1963 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
1964 } else { /* list is empty */
1965 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
1966 }
1967 ram_list.mru_block = NULL;
1968
1969 /* Write list before version */
1970 smp_wmb();
1971 ram_list.version++;
1972 qemu_mutex_unlock_ramlist();
1973
1974 cpu_physical_memory_set_dirty_range(new_block->offset,
1975 new_block->used_length,
1976 DIRTY_CLIENTS_ALL);
1977
1978 if (new_block->host) {
1979 qemu_ram_setup_dump(new_block->host, new_block->max_length);
1980 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
1981 /*
1982 * MADV_DONTFORK is also needed by KVM in absence of synchronous MMU
1983 * Configure it unless the machine is a qtest server, in which case
1984 * KVM is not used and it may be forked (eg for fuzzing purposes).
1985 */
1986 if (!qtest_enabled()) {
1987 qemu_madvise(new_block->host, new_block->max_length,
1988 QEMU_MADV_DONTFORK);
1989 }
1990 ram_block_notify_add(new_block->host, new_block->used_length,
1991 new_block->max_length);
1992 }
1993 return;
1994
1995 out_free:
1996 if (free_on_error) {
1997 qemu_anon_ram_free(new_block->host, new_block->max_length);
1998 new_block->host = NULL;
1999 }
2000 }
2001
2002 #if defined(CONFIG_POSIX) && !defined(EMSCRIPTEN)
qemu_ram_alloc_from_fd(ram_addr_t size,ram_addr_t max_size,qemu_ram_resize_cb resized,MemoryRegion * mr,uint32_t ram_flags,int fd,off_t offset,bool grow,Error ** errp)2003 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, ram_addr_t max_size,
2004 qemu_ram_resize_cb resized, MemoryRegion *mr,
2005 uint32_t ram_flags, int fd, off_t offset,
2006 bool grow,
2007 Error **errp)
2008 {
2009 ERRP_GUARD();
2010 RAMBlock *new_block;
2011 Error *local_err = NULL;
2012 int64_t file_size, file_align, share_flags;
2013
2014 share_flags = ram_flags & (RAM_PRIVATE | RAM_SHARED);
2015 assert(share_flags != (RAM_SHARED | RAM_PRIVATE));
2016 ram_flags &= ~RAM_PRIVATE;
2017
2018 /* Just support these ram flags by now. */
2019 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM | RAM_NORESERVE |
2020 RAM_PROTECTED | RAM_NAMED_FILE | RAM_READONLY |
2021 RAM_READONLY_FD | RAM_GUEST_MEMFD |
2022 RAM_RESIZEABLE)) == 0);
2023 assert(max_size >= size);
2024
2025 if (xen_enabled()) {
2026 error_setg(errp, "-mem-path not supported with Xen");
2027 return NULL;
2028 }
2029
2030 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2031 error_setg(errp,
2032 "host lacks kvm mmu notifiers, -mem-path unsupported");
2033 return NULL;
2034 }
2035
2036 size = TARGET_PAGE_ALIGN(size);
2037 size = REAL_HOST_PAGE_ALIGN(size);
2038 max_size = TARGET_PAGE_ALIGN(max_size);
2039 max_size = REAL_HOST_PAGE_ALIGN(max_size);
2040
2041 file_size = get_file_size(fd);
2042 if (file_size && file_size < offset + max_size && !grow) {
2043 error_setg(errp, "%s backing store size 0x%" PRIx64
2044 " is too small for 'size' option 0x" RAM_ADDR_FMT
2045 " plus 'offset' option 0x%" PRIx64,
2046 memory_region_name(mr), file_size, max_size,
2047 (uint64_t)offset);
2048 return NULL;
2049 }
2050
2051 file_align = get_file_align(fd);
2052 if (file_align > 0 && file_align > mr->align) {
2053 error_setg(errp, "backing store align 0x%" PRIx64
2054 " is larger than 'align' option 0x%" PRIx64,
2055 file_align, mr->align);
2056 return NULL;
2057 }
2058
2059 new_block = g_malloc0(sizeof(*new_block));
2060 new_block->mr = mr;
2061 new_block->used_length = size;
2062 new_block->max_length = max_size;
2063 new_block->resized = resized;
2064 new_block->flags = ram_flags;
2065 new_block->guest_memfd = -1;
2066 new_block->host = file_ram_alloc(new_block, max_size, fd,
2067 file_size < offset + max_size,
2068 offset, errp);
2069 if (!new_block->host) {
2070 g_free(new_block);
2071 return NULL;
2072 }
2073
2074 ram_block_add(new_block, &local_err);
2075 if (local_err) {
2076 g_free(new_block);
2077 error_propagate(errp, local_err);
2078 return NULL;
2079 }
2080 return new_block;
2081
2082 }
2083
2084
qemu_ram_alloc_from_file(ram_addr_t size,MemoryRegion * mr,uint32_t ram_flags,const char * mem_path,off_t offset,Error ** errp)2085 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2086 uint32_t ram_flags, const char *mem_path,
2087 off_t offset, Error **errp)
2088 {
2089 int fd;
2090 bool created;
2091 RAMBlock *block;
2092
2093 fd = file_ram_open(mem_path, memory_region_name(mr),
2094 !!(ram_flags & RAM_READONLY_FD), &created);
2095 if (fd < 0) {
2096 error_setg_errno(errp, -fd, "can't open backing store %s for guest RAM",
2097 mem_path);
2098 if (!(ram_flags & RAM_READONLY_FD) && !(ram_flags & RAM_SHARED) &&
2099 fd == -EACCES) {
2100 /*
2101 * If we can open the file R/O (note: will never create a new file)
2102 * and we are dealing with a private mapping, there are still ways
2103 * to consume such files and get RAM instead of ROM.
2104 */
2105 fd = file_ram_open(mem_path, memory_region_name(mr), true,
2106 &created);
2107 if (fd < 0) {
2108 return NULL;
2109 }
2110 assert(!created);
2111 close(fd);
2112 error_append_hint(errp, "Consider opening the backing store"
2113 " read-only but still creating writable RAM using"
2114 " '-object memory-backend-file,readonly=on,rom=off...'"
2115 " (see \"VM templating\" documentation)\n");
2116 }
2117 return NULL;
2118 }
2119
2120 block = qemu_ram_alloc_from_fd(size, size, NULL, mr, ram_flags, fd, offset,
2121 false, errp);
2122 if (!block) {
2123 if (created) {
2124 unlink(mem_path);
2125 }
2126 close(fd);
2127 return NULL;
2128 }
2129
2130 return block;
2131 }
2132 #endif
2133
2134 #ifdef CONFIG_POSIX
2135 /*
2136 * Create MAP_SHARED RAMBlocks by mmap'ing a file descriptor, so it can be
2137 * shared with another process if CPR is being used. Use memfd if available
2138 * because it has no size limits, else use POSIX shm.
2139 */
qemu_ram_get_shared_fd(const char * name,bool * reused,Error ** errp)2140 static int qemu_ram_get_shared_fd(const char *name, bool *reused, Error **errp)
2141 {
2142 int fd = cpr_find_fd(name, 0);
2143
2144 if (fd >= 0) {
2145 *reused = true;
2146 return fd;
2147 }
2148
2149 if (qemu_memfd_check(0)) {
2150 fd = qemu_memfd_create(name, 0, 0, 0, 0, errp);
2151 } else {
2152 fd = qemu_shm_alloc(0, errp);
2153 }
2154
2155 if (fd >= 0) {
2156 cpr_save_fd(name, 0, fd);
2157 }
2158 *reused = false;
2159 return fd;
2160 }
2161 #endif
2162
2163 static
qemu_ram_alloc_internal(ram_addr_t size,ram_addr_t max_size,qemu_ram_resize_cb resized,void * host,uint32_t ram_flags,MemoryRegion * mr,Error ** errp)2164 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2165 qemu_ram_resize_cb resized,
2166 void *host, uint32_t ram_flags,
2167 MemoryRegion *mr, Error **errp)
2168 {
2169 RAMBlock *new_block;
2170 Error *local_err = NULL;
2171 int align, share_flags;
2172
2173 share_flags = ram_flags & (RAM_PRIVATE | RAM_SHARED);
2174 assert(share_flags != (RAM_SHARED | RAM_PRIVATE));
2175 ram_flags &= ~RAM_PRIVATE;
2176
2177 assert((ram_flags & ~(RAM_SHARED | RAM_RESIZEABLE | RAM_PREALLOC |
2178 RAM_NORESERVE | RAM_GUEST_MEMFD)) == 0);
2179 assert(!host ^ (ram_flags & RAM_PREALLOC));
2180 assert(max_size >= size);
2181
2182 /* ignore RAM_SHARED for Windows and emscripten*/
2183 #if defined(CONFIG_POSIX) && !defined(EMSCRIPTEN)
2184 if (!host) {
2185 if (!share_flags && current_machine->aux_ram_share) {
2186 ram_flags |= RAM_SHARED;
2187 }
2188 if (ram_flags & RAM_SHARED) {
2189 bool reused;
2190 g_autofree char *name = cpr_name(mr);
2191 int fd = qemu_ram_get_shared_fd(name, &reused, errp);
2192
2193 if (fd < 0) {
2194 return NULL;
2195 }
2196
2197 /* Use same alignment as qemu_anon_ram_alloc */
2198 mr->align = QEMU_VMALLOC_ALIGN;
2199
2200 /*
2201 * This can fail if the shm mount size is too small, or alloc from
2202 * fd is not supported, but previous QEMU versions that called
2203 * qemu_anon_ram_alloc for anonymous shared memory could have
2204 * succeeded. Quietly fail and fall back.
2205 *
2206 * After cpr-transfer, new QEMU could create a memory region
2207 * with a larger max size than old, so pass reused to grow the
2208 * region if necessary. The extra space will be usable after a
2209 * guest reset.
2210 */
2211 new_block = qemu_ram_alloc_from_fd(size, max_size, resized, mr,
2212 ram_flags, fd, 0, reused, NULL);
2213 if (new_block) {
2214 trace_qemu_ram_alloc_shared(name, new_block->used_length,
2215 new_block->max_length, fd,
2216 new_block->host);
2217 return new_block;
2218 }
2219
2220 cpr_delete_fd(name, 0);
2221 close(fd);
2222 /* fall back to anon allocation */
2223 }
2224 }
2225 #endif
2226
2227 align = qemu_real_host_page_size();
2228 align = MAX(align, TARGET_PAGE_SIZE);
2229 size = ROUND_UP(size, align);
2230 max_size = ROUND_UP(max_size, align);
2231
2232 new_block = g_malloc0(sizeof(*new_block));
2233 new_block->mr = mr;
2234 new_block->resized = resized;
2235 new_block->used_length = size;
2236 new_block->max_length = max_size;
2237 new_block->fd = -1;
2238 new_block->guest_memfd = -1;
2239 new_block->page_size = qemu_real_host_page_size();
2240 new_block->host = host;
2241 new_block->flags = ram_flags;
2242 ram_block_add(new_block, &local_err);
2243 if (local_err) {
2244 g_free(new_block);
2245 error_propagate(errp, local_err);
2246 return NULL;
2247 }
2248 return new_block;
2249 }
2250
qemu_ram_alloc_from_ptr(ram_addr_t size,void * host,MemoryRegion * mr,Error ** errp)2251 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2252 MemoryRegion *mr, Error **errp)
2253 {
2254 return qemu_ram_alloc_internal(size, size, NULL, host, RAM_PREALLOC, mr,
2255 errp);
2256 }
2257
qemu_ram_alloc(ram_addr_t size,uint32_t ram_flags,MemoryRegion * mr,Error ** errp)2258 RAMBlock *qemu_ram_alloc(ram_addr_t size, uint32_t ram_flags,
2259 MemoryRegion *mr, Error **errp)
2260 {
2261 assert((ram_flags & ~(RAM_SHARED | RAM_NORESERVE | RAM_GUEST_MEMFD |
2262 RAM_PRIVATE)) == 0);
2263 return qemu_ram_alloc_internal(size, size, NULL, NULL, ram_flags, mr, errp);
2264 }
2265
qemu_ram_alloc_resizeable(ram_addr_t size,ram_addr_t maxsz,qemu_ram_resize_cb resized,MemoryRegion * mr,Error ** errp)2266 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2267 qemu_ram_resize_cb resized,
2268 MemoryRegion *mr, Error **errp)
2269 {
2270 return qemu_ram_alloc_internal(size, maxsz, resized, NULL,
2271 RAM_RESIZEABLE, mr, errp);
2272 }
2273
reclaim_ramblock(RAMBlock * block)2274 static void reclaim_ramblock(RAMBlock *block)
2275 {
2276 if (block->flags & RAM_PREALLOC) {
2277 ;
2278 } else if (xen_enabled()) {
2279 xen_invalidate_map_cache_entry(block->host);
2280 #if !defined(_WIN32) && !defined(EMSCRIPTEN)
2281 } else if (block->fd >= 0) {
2282 qemu_ram_munmap(block->fd, block->host, block->max_length);
2283 close(block->fd);
2284 #endif
2285 } else {
2286 qemu_anon_ram_free(block->host, block->max_length);
2287 }
2288
2289 if (block->guest_memfd >= 0) {
2290 close(block->guest_memfd);
2291 ram_block_discard_require(false);
2292 }
2293
2294 g_free(block);
2295 }
2296
qemu_ram_free(RAMBlock * block)2297 void qemu_ram_free(RAMBlock *block)
2298 {
2299 g_autofree char *name = NULL;
2300
2301 if (!block) {
2302 return;
2303 }
2304
2305 if (block->host) {
2306 ram_block_notify_remove(block->host, block->used_length,
2307 block->max_length);
2308 }
2309
2310 qemu_mutex_lock_ramlist();
2311 name = cpr_name(block->mr);
2312 cpr_delete_fd(name, 0);
2313 QLIST_REMOVE_RCU(block, next);
2314 ram_list.mru_block = NULL;
2315 /* Write list before version */
2316 smp_wmb();
2317 ram_list.version++;
2318 call_rcu(block, reclaim_ramblock, rcu);
2319 qemu_mutex_unlock_ramlist();
2320 }
2321
2322 #ifndef _WIN32
2323 /* Simply remap the given VM memory location from start to start+length */
qemu_ram_remap_mmap(RAMBlock * block,uint64_t start,size_t length)2324 static int qemu_ram_remap_mmap(RAMBlock *block, uint64_t start, size_t length)
2325 {
2326 int flags, prot;
2327 void *area;
2328 void *host_startaddr = block->host + start;
2329
2330 assert(block->fd < 0);
2331 flags = MAP_FIXED | MAP_ANONYMOUS;
2332 flags |= block->flags & RAM_SHARED ? MAP_SHARED : MAP_PRIVATE;
2333 flags |= block->flags & RAM_NORESERVE ? MAP_NORESERVE : 0;
2334 prot = PROT_READ;
2335 prot |= block->flags & RAM_READONLY ? 0 : PROT_WRITE;
2336 area = mmap(host_startaddr, length, prot, flags, -1, 0);
2337 return area != host_startaddr ? -errno : 0;
2338 }
2339
2340 /*
2341 * qemu_ram_remap - remap a single RAM page
2342 *
2343 * @addr: address in ram_addr_t address space.
2344 *
2345 * This function will try remapping a single page of guest RAM identified by
2346 * @addr, essentially discarding memory to recover from previously poisoned
2347 * memory (MCE). The page size depends on the RAMBlock (i.e., hugetlb). @addr
2348 * does not have to point at the start of the page.
2349 *
2350 * This function is only to be used during system resets; it will kill the
2351 * VM if remapping failed.
2352 */
qemu_ram_remap(ram_addr_t addr)2353 void qemu_ram_remap(ram_addr_t addr)
2354 {
2355 RAMBlock *block;
2356 uint64_t offset;
2357 void *vaddr;
2358 size_t page_size;
2359
2360 RAMBLOCK_FOREACH(block) {
2361 offset = addr - block->offset;
2362 if (offset < block->max_length) {
2363 /* Respect the pagesize of our RAMBlock */
2364 page_size = qemu_ram_pagesize(block);
2365 offset = QEMU_ALIGN_DOWN(offset, page_size);
2366
2367 vaddr = ramblock_ptr(block, offset);
2368 if (block->flags & RAM_PREALLOC) {
2369 ;
2370 } else if (xen_enabled()) {
2371 abort();
2372 } else {
2373 if (ram_block_discard_range(block, offset, page_size) != 0) {
2374 /*
2375 * Fall back to using mmap() only for anonymous mapping,
2376 * as if a backing file is associated we may not be able
2377 * to recover the memory in all cases.
2378 * So don't take the risk of using only mmap and fail now.
2379 */
2380 if (block->fd >= 0) {
2381 error_report("Could not remap RAM %s:%" PRIx64 "+%"
2382 PRIx64 " +%zx", block->idstr, offset,
2383 block->fd_offset, page_size);
2384 exit(1);
2385 }
2386 if (qemu_ram_remap_mmap(block, offset, page_size) != 0) {
2387 error_report("Could not remap RAM %s:%" PRIx64 " +%zx",
2388 block->idstr, offset, page_size);
2389 exit(1);
2390 }
2391 }
2392 memory_try_enable_merging(vaddr, page_size);
2393 qemu_ram_setup_dump(vaddr, page_size);
2394 }
2395
2396 break;
2397 }
2398 }
2399 }
2400 #endif /* !_WIN32 */
2401
2402 /*
2403 * Return a host pointer to guest's ram.
2404 * For Xen, foreign mappings get created if they don't already exist.
2405 *
2406 * @block: block for the RAM to lookup (optional and may be NULL).
2407 * @addr: address within the memory region.
2408 * @size: pointer to requested size (optional and may be NULL).
2409 * size may get modified and return a value smaller than
2410 * what was requested.
2411 * @lock: wether to lock the mapping in xen-mapcache until invalidated.
2412 * @is_write: hint wether to map RW or RO in the xen-mapcache.
2413 * (optional and may always be set to true).
2414 *
2415 * Called within RCU critical section.
2416 */
qemu_ram_ptr_length(RAMBlock * block,ram_addr_t addr,hwaddr * size,bool lock,bool is_write)2417 static void *qemu_ram_ptr_length(RAMBlock *block, ram_addr_t addr,
2418 hwaddr *size, bool lock,
2419 bool is_write)
2420 {
2421 hwaddr len = 0;
2422
2423 if (size && *size == 0) {
2424 return NULL;
2425 }
2426
2427 if (block == NULL) {
2428 block = qemu_get_ram_block(addr);
2429 addr -= block->offset;
2430 }
2431 if (size) {
2432 *size = MIN(*size, block->max_length - addr);
2433 len = *size;
2434 }
2435
2436 if (xen_enabled() && block->host == NULL) {
2437 /* We need to check if the requested address is in the RAM
2438 * because we don't want to map the entire memory in QEMU.
2439 * In that case just map the requested area.
2440 */
2441 if (xen_mr_is_memory(block->mr)) {
2442 return xen_map_cache(block->mr, block->offset + addr,
2443 len, block->offset,
2444 lock, lock, is_write);
2445 }
2446
2447 block->host = xen_map_cache(block->mr, block->offset,
2448 block->max_length,
2449 block->offset,
2450 1, lock, is_write);
2451 }
2452
2453 return ramblock_ptr(block, addr);
2454 }
2455
2456 /*
2457 * Return a host pointer to ram allocated with qemu_ram_alloc.
2458 * This should not be used for general purpose DMA. Use address_space_map
2459 * or address_space_rw instead. For local memory (e.g. video ram) that the
2460 * device owns, use memory_region_get_ram_ptr.
2461 *
2462 * Called within RCU critical section.
2463 */
qemu_map_ram_ptr(RAMBlock * ram_block,ram_addr_t addr)2464 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2465 {
2466 return qemu_ram_ptr_length(ram_block, addr, NULL, false, true);
2467 }
2468
2469 /* Return the offset of a hostpointer within a ramblock */
qemu_ram_block_host_offset(RAMBlock * rb,void * host)2470 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2471 {
2472 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2473 assert((uintptr_t)host >= (uintptr_t)rb->host);
2474 assert(res < rb->max_length);
2475
2476 return res;
2477 }
2478
qemu_ram_block_from_host(void * ptr,bool round_offset,ram_addr_t * offset)2479 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2480 ram_addr_t *offset)
2481 {
2482 RAMBlock *block;
2483 uint8_t *host = ptr;
2484
2485 if (xen_enabled()) {
2486 ram_addr_t ram_addr;
2487 RCU_READ_LOCK_GUARD();
2488 ram_addr = xen_ram_addr_from_mapcache(ptr);
2489 if (ram_addr == RAM_ADDR_INVALID) {
2490 return NULL;
2491 }
2492
2493 block = qemu_get_ram_block(ram_addr);
2494 if (block) {
2495 *offset = ram_addr - block->offset;
2496 }
2497 return block;
2498 }
2499
2500 RCU_READ_LOCK_GUARD();
2501 block = qatomic_rcu_read(&ram_list.mru_block);
2502 if (block && block->host && host - block->host < block->max_length) {
2503 goto found;
2504 }
2505
2506 RAMBLOCK_FOREACH(block) {
2507 /* This case append when the block is not mapped. */
2508 if (block->host == NULL) {
2509 continue;
2510 }
2511 if (host - block->host < block->max_length) {
2512 goto found;
2513 }
2514 }
2515
2516 return NULL;
2517
2518 found:
2519 *offset = (host - block->host);
2520 if (round_offset) {
2521 *offset &= TARGET_PAGE_MASK;
2522 }
2523 return block;
2524 }
2525
2526 /*
2527 * Finds the named RAMBlock
2528 *
2529 * name: The name of RAMBlock to find
2530 *
2531 * Returns: RAMBlock (or NULL if not found)
2532 */
qemu_ram_block_by_name(const char * name)2533 RAMBlock *qemu_ram_block_by_name(const char *name)
2534 {
2535 RAMBlock *block;
2536
2537 RAMBLOCK_FOREACH(block) {
2538 if (!strcmp(name, block->idstr)) {
2539 return block;
2540 }
2541 }
2542
2543 return NULL;
2544 }
2545
2546 /*
2547 * Some of the system routines need to translate from a host pointer
2548 * (typically a TLB entry) back to a ram offset.
2549 */
qemu_ram_addr_from_host(void * ptr)2550 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2551 {
2552 RAMBlock *block;
2553 ram_addr_t offset;
2554
2555 block = qemu_ram_block_from_host(ptr, false, &offset);
2556 if (!block) {
2557 return RAM_ADDR_INVALID;
2558 }
2559
2560 return block->offset + offset;
2561 }
2562
qemu_ram_addr_from_host_nofail(void * ptr)2563 ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
2564 {
2565 ram_addr_t ram_addr;
2566
2567 ram_addr = qemu_ram_addr_from_host(ptr);
2568 if (ram_addr == RAM_ADDR_INVALID) {
2569 error_report("Bad ram pointer %p", ptr);
2570 abort();
2571 }
2572 return ram_addr;
2573 }
2574
2575 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2576 MemTxAttrs attrs, void *buf, hwaddr len);
2577 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2578 const void *buf, hwaddr len);
2579 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
2580 bool is_write, MemTxAttrs attrs);
2581
subpage_read(void * opaque,hwaddr addr,uint64_t * data,unsigned len,MemTxAttrs attrs)2582 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2583 unsigned len, MemTxAttrs attrs)
2584 {
2585 subpage_t *subpage = opaque;
2586 uint8_t buf[8];
2587 MemTxResult res;
2588
2589 #if defined(DEBUG_SUBPAGE)
2590 printf("%s: subpage %p len %u addr " HWADDR_FMT_plx "\n", __func__,
2591 subpage, len, addr);
2592 #endif
2593 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2594 if (res) {
2595 return res;
2596 }
2597 *data = ldn_p(buf, len);
2598 return MEMTX_OK;
2599 }
2600
subpage_write(void * opaque,hwaddr addr,uint64_t value,unsigned len,MemTxAttrs attrs)2601 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2602 uint64_t value, unsigned len, MemTxAttrs attrs)
2603 {
2604 subpage_t *subpage = opaque;
2605 uint8_t buf[8];
2606
2607 #if defined(DEBUG_SUBPAGE)
2608 printf("%s: subpage %p len %u addr " HWADDR_FMT_plx
2609 " value %"PRIx64"\n",
2610 __func__, subpage, len, addr, value);
2611 #endif
2612 stn_p(buf, len, value);
2613 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2614 }
2615
subpage_accepts(void * opaque,hwaddr addr,unsigned len,bool is_write,MemTxAttrs attrs)2616 static bool subpage_accepts(void *opaque, hwaddr addr,
2617 unsigned len, bool is_write,
2618 MemTxAttrs attrs)
2619 {
2620 subpage_t *subpage = opaque;
2621 #if defined(DEBUG_SUBPAGE)
2622 printf("%s: subpage %p %c len %u addr " HWADDR_FMT_plx "\n",
2623 __func__, subpage, is_write ? 'w' : 'r', len, addr);
2624 #endif
2625
2626 return flatview_access_valid(subpage->fv, addr + subpage->base,
2627 len, is_write, attrs);
2628 }
2629
2630 static const MemoryRegionOps subpage_ops = {
2631 .read_with_attrs = subpage_read,
2632 .write_with_attrs = subpage_write,
2633 .impl.min_access_size = 1,
2634 .impl.max_access_size = 8,
2635 .valid.min_access_size = 1,
2636 .valid.max_access_size = 8,
2637 .valid.accepts = subpage_accepts,
2638 .endianness = DEVICE_NATIVE_ENDIAN,
2639 };
2640
subpage_register(subpage_t * mmio,uint32_t start,uint32_t end,uint16_t section)2641 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
2642 uint16_t section)
2643 {
2644 int idx, eidx;
2645
2646 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2647 return -1;
2648 idx = SUBPAGE_IDX(start);
2649 eidx = SUBPAGE_IDX(end);
2650 #if defined(DEBUG_SUBPAGE)
2651 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2652 __func__, mmio, start, end, idx, eidx, section);
2653 #endif
2654 for (; idx <= eidx; idx++) {
2655 mmio->sub_section[idx] = section;
2656 }
2657
2658 return 0;
2659 }
2660
subpage_init(FlatView * fv,hwaddr base)2661 static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2662 {
2663 subpage_t *mmio;
2664
2665 /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */
2666 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2667 mmio->fv = fv;
2668 mmio->base = base;
2669 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2670 NULL, TARGET_PAGE_SIZE);
2671 mmio->iomem.subpage = true;
2672 #if defined(DEBUG_SUBPAGE)
2673 printf("%s: %p base " HWADDR_FMT_plx " len %08x\n", __func__,
2674 mmio, base, TARGET_PAGE_SIZE);
2675 #endif
2676
2677 return mmio;
2678 }
2679
dummy_section(PhysPageMap * map,FlatView * fv,MemoryRegion * mr)2680 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2681 {
2682 assert(fv);
2683 MemoryRegionSection section = {
2684 .fv = fv,
2685 .mr = mr,
2686 .offset_within_address_space = 0,
2687 .offset_within_region = 0,
2688 .size = int128_2_64(),
2689 };
2690
2691 return phys_section_add(map, §ion);
2692 }
2693
io_mem_init(void)2694 static void io_mem_init(void)
2695 {
2696 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2697 NULL, UINT64_MAX);
2698 }
2699
address_space_dispatch_new(FlatView * fv)2700 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
2701 {
2702 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2703 uint16_t n;
2704
2705 n = dummy_section(&d->map, fv, &io_mem_unassigned);
2706 assert(n == PHYS_SECTION_UNASSIGNED);
2707
2708 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2709
2710 return d;
2711 }
2712
address_space_dispatch_free(AddressSpaceDispatch * d)2713 void address_space_dispatch_free(AddressSpaceDispatch *d)
2714 {
2715 phys_sections_free(&d->map);
2716 g_free(d);
2717 }
2718
do_nothing(CPUState * cpu,run_on_cpu_data d)2719 static void do_nothing(CPUState *cpu, run_on_cpu_data d)
2720 {
2721 }
2722
tcg_log_global_after_sync(MemoryListener * listener)2723 static void tcg_log_global_after_sync(MemoryListener *listener)
2724 {
2725 CPUAddressSpace *cpuas;
2726
2727 /* Wait for the CPU to end the current TB. This avoids the following
2728 * incorrect race:
2729 *
2730 * vCPU migration
2731 * ---------------------- -------------------------
2732 * TLB check -> slow path
2733 * notdirty_mem_write
2734 * write to RAM
2735 * mark dirty
2736 * clear dirty flag
2737 * TLB check -> fast path
2738 * read memory
2739 * write to RAM
2740 *
2741 * by pushing the migration thread's memory read after the vCPU thread has
2742 * written the memory.
2743 */
2744 if (replay_mode == REPLAY_MODE_NONE) {
2745 /*
2746 * VGA can make calls to this function while updating the screen.
2747 * In record/replay mode this causes a deadlock, because
2748 * run_on_cpu waits for rr mutex. Therefore no races are possible
2749 * in this case and no need for making run_on_cpu when
2750 * record/replay is enabled.
2751 */
2752 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2753 run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL);
2754 }
2755 }
2756
tcg_commit_cpu(CPUState * cpu,run_on_cpu_data data)2757 static void tcg_commit_cpu(CPUState *cpu, run_on_cpu_data data)
2758 {
2759 CPUAddressSpace *cpuas = data.host_ptr;
2760
2761 cpuas->memory_dispatch = address_space_to_dispatch(cpuas->as);
2762 tlb_flush(cpu);
2763 }
2764
tcg_commit(MemoryListener * listener)2765 static void tcg_commit(MemoryListener *listener)
2766 {
2767 CPUAddressSpace *cpuas;
2768 CPUState *cpu;
2769
2770 assert(tcg_enabled());
2771 /* since each CPU stores ram addresses in its TLB cache, we must
2772 reset the modified entries */
2773 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2774 cpu = cpuas->cpu;
2775
2776 /*
2777 * Defer changes to as->memory_dispatch until the cpu is quiescent.
2778 * Otherwise we race between (1) other cpu threads and (2) ongoing
2779 * i/o for the current cpu thread, with data cached by mmu_lookup().
2780 *
2781 * In addition, queueing the work function will kick the cpu back to
2782 * the main loop, which will end the RCU critical section and reclaim
2783 * the memory data structures.
2784 *
2785 * That said, the listener is also called during realize, before
2786 * all of the tcg machinery for run-on is initialized: thus halt_cond.
2787 */
2788 if (cpu->halt_cond) {
2789 async_run_on_cpu(cpu, tcg_commit_cpu, RUN_ON_CPU_HOST_PTR(cpuas));
2790 } else {
2791 tcg_commit_cpu(cpu, RUN_ON_CPU_HOST_PTR(cpuas));
2792 }
2793 }
2794
memory_map_init(void)2795 static void memory_map_init(void)
2796 {
2797 system_memory = g_malloc(sizeof(*system_memory));
2798
2799 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
2800 address_space_init(&address_space_memory, system_memory, "memory");
2801
2802 system_io = g_malloc(sizeof(*system_io));
2803 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2804 65536);
2805 address_space_init(&address_space_io, system_io, "I/O");
2806 }
2807
get_system_memory(void)2808 MemoryRegion *get_system_memory(void)
2809 {
2810 return system_memory;
2811 }
2812
get_system_io(void)2813 MemoryRegion *get_system_io(void)
2814 {
2815 return system_io;
2816 }
2817
invalidate_and_set_dirty(MemoryRegion * mr,hwaddr addr,hwaddr length)2818 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
2819 hwaddr length)
2820 {
2821 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
2822 ram_addr_t ramaddr = memory_region_get_ram_addr(mr);
2823
2824 /* We know we're only called for RAM MemoryRegions */
2825 assert(ramaddr != RAM_ADDR_INVALID);
2826 addr += ramaddr;
2827
2828 /* No early return if dirty_log_mask is or becomes 0, because
2829 * cpu_physical_memory_set_dirty_range will still call
2830 * xen_modified_memory.
2831 */
2832 if (dirty_log_mask) {
2833 dirty_log_mask =
2834 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2835 }
2836 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
2837 assert(tcg_enabled());
2838 tb_invalidate_phys_range(NULL, addr, addr + length - 1);
2839 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
2840 }
2841 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
2842 }
2843
memory_region_flush_rom_device(MemoryRegion * mr,hwaddr addr,hwaddr size)2844 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
2845 {
2846 /*
2847 * In principle this function would work on other memory region types too,
2848 * but the ROM device use case is the only one where this operation is
2849 * necessary. Other memory regions should use the
2850 * address_space_read/write() APIs.
2851 */
2852 assert(memory_region_is_romd(mr));
2853
2854 invalidate_and_set_dirty(mr, addr, size);
2855 }
2856
memory_access_size(MemoryRegion * mr,unsigned l,hwaddr addr)2857 int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
2858 {
2859 unsigned access_size_max = mr->ops->valid.max_access_size;
2860
2861 /* Regions are assumed to support 1-4 byte accesses unless
2862 otherwise specified. */
2863 if (access_size_max == 0) {
2864 access_size_max = 4;
2865 }
2866
2867 /* Bound the maximum access by the alignment of the address. */
2868 if (!mr->ops->impl.unaligned) {
2869 unsigned align_size_max = addr & -addr;
2870 if (align_size_max != 0 && align_size_max < access_size_max) {
2871 access_size_max = align_size_max;
2872 }
2873 }
2874
2875 /* Don't attempt accesses larger than the maximum. */
2876 if (l > access_size_max) {
2877 l = access_size_max;
2878 }
2879 l = pow2floor(l);
2880
2881 return l;
2882 }
2883
prepare_mmio_access(MemoryRegion * mr)2884 bool prepare_mmio_access(MemoryRegion *mr)
2885 {
2886 bool release_lock = false;
2887
2888 if (!bql_locked()) {
2889 bql_lock();
2890 release_lock = true;
2891 }
2892 if (mr->flush_coalesced_mmio) {
2893 qemu_flush_coalesced_mmio_buffer();
2894 }
2895
2896 return release_lock;
2897 }
2898
2899 /**
2900 * flatview_access_allowed
2901 * @mr: #MemoryRegion to be accessed
2902 * @attrs: memory transaction attributes
2903 * @addr: address within that memory region
2904 * @len: the number of bytes to access
2905 *
2906 * Check if a memory transaction is allowed.
2907 *
2908 * Returns: true if transaction is allowed, false if denied.
2909 */
flatview_access_allowed(MemoryRegion * mr,MemTxAttrs attrs,hwaddr addr,hwaddr len)2910 static bool flatview_access_allowed(MemoryRegion *mr, MemTxAttrs attrs,
2911 hwaddr addr, hwaddr len)
2912 {
2913 if (likely(!attrs.memory)) {
2914 return true;
2915 }
2916 if (memory_region_is_ram(mr)) {
2917 return true;
2918 }
2919 qemu_log_mask(LOG_INVALID_MEM,
2920 "Invalid access to non-RAM device at "
2921 "addr 0x%" HWADDR_PRIX ", size %" HWADDR_PRIu ", "
2922 "region '%s'\n", addr, len, memory_region_name(mr));
2923 return false;
2924 }
2925
flatview_write_continue_step(MemTxAttrs attrs,const uint8_t * buf,hwaddr len,hwaddr mr_addr,hwaddr * l,MemoryRegion * mr)2926 static MemTxResult flatview_write_continue_step(MemTxAttrs attrs,
2927 const uint8_t *buf,
2928 hwaddr len, hwaddr mr_addr,
2929 hwaddr *l, MemoryRegion *mr)
2930 {
2931 if (!flatview_access_allowed(mr, attrs, mr_addr, *l)) {
2932 return MEMTX_ACCESS_ERROR;
2933 }
2934
2935 if (!memory_access_is_direct(mr, true, attrs)) {
2936 uint64_t val;
2937 MemTxResult result;
2938 bool release_lock = prepare_mmio_access(mr);
2939
2940 *l = memory_access_size(mr, *l, mr_addr);
2941 /*
2942 * XXX: could force current_cpu to NULL to avoid
2943 * potential bugs
2944 */
2945
2946 /*
2947 * Assure Coverity (and ourselves) that we are not going to OVERRUN
2948 * the buffer by following ldn_he_p().
2949 */
2950 #ifdef QEMU_STATIC_ANALYSIS
2951 assert((*l == 1 && len >= 1) ||
2952 (*l == 2 && len >= 2) ||
2953 (*l == 4 && len >= 4) ||
2954 (*l == 8 && len >= 8));
2955 #endif
2956 val = ldn_he_p(buf, *l);
2957 result = memory_region_dispatch_write(mr, mr_addr, val,
2958 size_memop(*l), attrs);
2959 if (release_lock) {
2960 bql_unlock();
2961 }
2962
2963 return result;
2964 } else {
2965 /* RAM case */
2966 uint8_t *ram_ptr = qemu_ram_ptr_length(mr->ram_block, mr_addr, l,
2967 false, true);
2968
2969 memmove(ram_ptr, buf, *l);
2970 invalidate_and_set_dirty(mr, mr_addr, *l);
2971
2972 return MEMTX_OK;
2973 }
2974 }
2975
2976 /* Called within RCU critical section. */
flatview_write_continue(FlatView * fv,hwaddr addr,MemTxAttrs attrs,const void * ptr,hwaddr len,hwaddr mr_addr,hwaddr l,MemoryRegion * mr)2977 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
2978 MemTxAttrs attrs,
2979 const void *ptr,
2980 hwaddr len, hwaddr mr_addr,
2981 hwaddr l, MemoryRegion *mr)
2982 {
2983 MemTxResult result = MEMTX_OK;
2984 const uint8_t *buf = ptr;
2985
2986 for (;;) {
2987 result |= flatview_write_continue_step(attrs, buf, len, mr_addr, &l,
2988 mr);
2989
2990 len -= l;
2991 buf += l;
2992 addr += l;
2993
2994 if (!len) {
2995 break;
2996 }
2997
2998 l = len;
2999 mr = flatview_translate(fv, addr, &mr_addr, &l, true, attrs);
3000 }
3001
3002 return result;
3003 }
3004
3005 /* Called from RCU critical section. */
flatview_write(FlatView * fv,hwaddr addr,MemTxAttrs attrs,const void * buf,hwaddr len)3006 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
3007 const void *buf, hwaddr len)
3008 {
3009 hwaddr l;
3010 hwaddr mr_addr;
3011 MemoryRegion *mr;
3012
3013 l = len;
3014 mr = flatview_translate(fv, addr, &mr_addr, &l, true, attrs);
3015 if (!flatview_access_allowed(mr, attrs, addr, len)) {
3016 return MEMTX_ACCESS_ERROR;
3017 }
3018 return flatview_write_continue(fv, addr, attrs, buf, len,
3019 mr_addr, l, mr);
3020 }
3021
flatview_read_continue_step(MemTxAttrs attrs,uint8_t * buf,hwaddr len,hwaddr mr_addr,hwaddr * l,MemoryRegion * mr)3022 static MemTxResult flatview_read_continue_step(MemTxAttrs attrs, uint8_t *buf,
3023 hwaddr len, hwaddr mr_addr,
3024 hwaddr *l,
3025 MemoryRegion *mr)
3026 {
3027 if (!flatview_access_allowed(mr, attrs, mr_addr, *l)) {
3028 return MEMTX_ACCESS_ERROR;
3029 }
3030
3031 if (!memory_access_is_direct(mr, false, attrs)) {
3032 /* I/O case */
3033 uint64_t val;
3034 MemTxResult result;
3035 bool release_lock = prepare_mmio_access(mr);
3036
3037 *l = memory_access_size(mr, *l, mr_addr);
3038 result = memory_region_dispatch_read(mr, mr_addr, &val, size_memop(*l),
3039 attrs);
3040
3041 /*
3042 * Assure Coverity (and ourselves) that we are not going to OVERRUN
3043 * the buffer by following stn_he_p().
3044 */
3045 #ifdef QEMU_STATIC_ANALYSIS
3046 assert((*l == 1 && len >= 1) ||
3047 (*l == 2 && len >= 2) ||
3048 (*l == 4 && len >= 4) ||
3049 (*l == 8 && len >= 8));
3050 #endif
3051 stn_he_p(buf, *l, val);
3052
3053 if (release_lock) {
3054 bql_unlock();
3055 }
3056 return result;
3057 } else {
3058 /* RAM case */
3059 uint8_t *ram_ptr = qemu_ram_ptr_length(mr->ram_block, mr_addr, l,
3060 false, false);
3061
3062 memcpy(buf, ram_ptr, *l);
3063
3064 return MEMTX_OK;
3065 }
3066 }
3067
3068 /* Called within RCU critical section. */
flatview_read_continue(FlatView * fv,hwaddr addr,MemTxAttrs attrs,void * ptr,hwaddr len,hwaddr mr_addr,hwaddr l,MemoryRegion * mr)3069 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
3070 MemTxAttrs attrs, void *ptr,
3071 hwaddr len, hwaddr mr_addr, hwaddr l,
3072 MemoryRegion *mr)
3073 {
3074 MemTxResult result = MEMTX_OK;
3075 uint8_t *buf = ptr;
3076
3077 fuzz_dma_read_cb(addr, len, mr);
3078 for (;;) {
3079 result |= flatview_read_continue_step(attrs, buf, len, mr_addr, &l, mr);
3080
3081 len -= l;
3082 buf += l;
3083 addr += l;
3084
3085 if (!len) {
3086 break;
3087 }
3088
3089 l = len;
3090 mr = flatview_translate(fv, addr, &mr_addr, &l, false, attrs);
3091 }
3092
3093 return result;
3094 }
3095
3096 /* Called from RCU critical section. */
flatview_read(FlatView * fv,hwaddr addr,MemTxAttrs attrs,void * buf,hwaddr len)3097 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
3098 MemTxAttrs attrs, void *buf, hwaddr len)
3099 {
3100 hwaddr l;
3101 hwaddr mr_addr;
3102 MemoryRegion *mr;
3103
3104 l = len;
3105 mr = flatview_translate(fv, addr, &mr_addr, &l, false, attrs);
3106 if (!flatview_access_allowed(mr, attrs, addr, len)) {
3107 return MEMTX_ACCESS_ERROR;
3108 }
3109 return flatview_read_continue(fv, addr, attrs, buf, len,
3110 mr_addr, l, mr);
3111 }
3112
address_space_read_full(AddressSpace * as,hwaddr addr,MemTxAttrs attrs,void * buf,hwaddr len)3113 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
3114 MemTxAttrs attrs, void *buf, hwaddr len)
3115 {
3116 MemTxResult result = MEMTX_OK;
3117 FlatView *fv;
3118
3119 if (len > 0) {
3120 RCU_READ_LOCK_GUARD();
3121 fv = address_space_to_flatview(as);
3122 result = flatview_read(fv, addr, attrs, buf, len);
3123 }
3124
3125 return result;
3126 }
3127
address_space_write(AddressSpace * as,hwaddr addr,MemTxAttrs attrs,const void * buf,hwaddr len)3128 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
3129 MemTxAttrs attrs,
3130 const void *buf, hwaddr len)
3131 {
3132 MemTxResult result = MEMTX_OK;
3133 FlatView *fv;
3134
3135 if (len > 0) {
3136 RCU_READ_LOCK_GUARD();
3137 fv = address_space_to_flatview(as);
3138 result = flatview_write(fv, addr, attrs, buf, len);
3139 }
3140
3141 return result;
3142 }
3143
address_space_rw(AddressSpace * as,hwaddr addr,MemTxAttrs attrs,void * buf,hwaddr len,bool is_write)3144 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
3145 void *buf, hwaddr len, bool is_write)
3146 {
3147 if (is_write) {
3148 return address_space_write(as, addr, attrs, buf, len);
3149 } else {
3150 return address_space_read_full(as, addr, attrs, buf, len);
3151 }
3152 }
3153
address_space_set(AddressSpace * as,hwaddr addr,uint8_t c,hwaddr len,MemTxAttrs attrs)3154 MemTxResult address_space_set(AddressSpace *as, hwaddr addr,
3155 uint8_t c, hwaddr len, MemTxAttrs attrs)
3156 {
3157 #define FILLBUF_SIZE 512
3158 uint8_t fillbuf[FILLBUF_SIZE];
3159 int l;
3160 MemTxResult error = MEMTX_OK;
3161
3162 memset(fillbuf, c, FILLBUF_SIZE);
3163 while (len > 0) {
3164 l = len < FILLBUF_SIZE ? len : FILLBUF_SIZE;
3165 error |= address_space_write(as, addr, attrs, fillbuf, l);
3166 len -= l;
3167 addr += l;
3168 }
3169
3170 return error;
3171 }
3172
cpu_physical_memory_rw(hwaddr addr,void * buf,hwaddr len,bool is_write)3173 void cpu_physical_memory_rw(hwaddr addr, void *buf,
3174 hwaddr len, bool is_write)
3175 {
3176 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3177 buf, len, is_write);
3178 }
3179
3180 enum write_rom_type {
3181 WRITE_DATA,
3182 FLUSH_CACHE,
3183 };
3184
address_space_write_rom_internal(AddressSpace * as,hwaddr addr,MemTxAttrs attrs,const void * ptr,hwaddr len,enum write_rom_type type)3185 static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
3186 hwaddr addr,
3187 MemTxAttrs attrs,
3188 const void *ptr,
3189 hwaddr len,
3190 enum write_rom_type type)
3191 {
3192 hwaddr l;
3193 uint8_t *ram_ptr;
3194 hwaddr addr1;
3195 MemoryRegion *mr;
3196 const uint8_t *buf = ptr;
3197
3198 RCU_READ_LOCK_GUARD();
3199 while (len > 0) {
3200 l = len;
3201 mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
3202
3203 if (!memory_region_supports_direct_access(mr)) {
3204 l = memory_access_size(mr, l, addr1);
3205 } else {
3206 /* ROM/RAM case */
3207 ram_ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3208 switch (type) {
3209 case WRITE_DATA:
3210 memcpy(ram_ptr, buf, l);
3211 invalidate_and_set_dirty(mr, addr1, l);
3212 break;
3213 case FLUSH_CACHE:
3214 flush_idcache_range((uintptr_t)ram_ptr, (uintptr_t)ram_ptr, l);
3215 break;
3216 }
3217 }
3218 len -= l;
3219 buf += l;
3220 addr += l;
3221 }
3222 return MEMTX_OK;
3223 }
3224
3225 /* used for ROM loading : can write in RAM and ROM */
address_space_write_rom(AddressSpace * as,hwaddr addr,MemTxAttrs attrs,const void * buf,hwaddr len)3226 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
3227 MemTxAttrs attrs,
3228 const void *buf, hwaddr len)
3229 {
3230 return address_space_write_rom_internal(as, addr, attrs,
3231 buf, len, WRITE_DATA);
3232 }
3233
cpu_flush_icache_range(hwaddr start,hwaddr len)3234 void cpu_flush_icache_range(hwaddr start, hwaddr len)
3235 {
3236 /*
3237 * This function should do the same thing as an icache flush that was
3238 * triggered from within the guest. For TCG we are always cache coherent,
3239 * so there is no need to flush anything. For KVM / Xen we need to flush
3240 * the host's instruction cache at least.
3241 */
3242 if (tcg_enabled()) {
3243 return;
3244 }
3245
3246 address_space_write_rom_internal(&address_space_memory,
3247 start, MEMTXATTRS_UNSPECIFIED,
3248 NULL, len, FLUSH_CACHE);
3249 }
3250
3251 /*
3252 * A magic value stored in the first 8 bytes of the bounce buffer struct. Used
3253 * to detect illegal pointers passed to address_space_unmap.
3254 */
3255 #define BOUNCE_BUFFER_MAGIC 0xb4017ceb4ffe12ed
3256
3257 typedef struct {
3258 uint64_t magic;
3259 MemoryRegion *mr;
3260 hwaddr addr;
3261 size_t len;
3262 uint8_t buffer[];
3263 } BounceBuffer;
3264
3265 static void
address_space_unregister_map_client_do(AddressSpaceMapClient * client)3266 address_space_unregister_map_client_do(AddressSpaceMapClient *client)
3267 {
3268 QLIST_REMOVE(client, link);
3269 g_free(client);
3270 }
3271
address_space_notify_map_clients_locked(AddressSpace * as)3272 static void address_space_notify_map_clients_locked(AddressSpace *as)
3273 {
3274 AddressSpaceMapClient *client;
3275
3276 while (!QLIST_EMPTY(&as->map_client_list)) {
3277 client = QLIST_FIRST(&as->map_client_list);
3278 qemu_bh_schedule(client->bh);
3279 address_space_unregister_map_client_do(client);
3280 }
3281 }
3282
address_space_register_map_client(AddressSpace * as,QEMUBH * bh)3283 void address_space_register_map_client(AddressSpace *as, QEMUBH *bh)
3284 {
3285 AddressSpaceMapClient *client = g_malloc(sizeof(*client));
3286
3287 QEMU_LOCK_GUARD(&as->map_client_list_lock);
3288 client->bh = bh;
3289 QLIST_INSERT_HEAD(&as->map_client_list, client, link);
3290 /* Write map_client_list before reading bounce_buffer_size. */
3291 smp_mb();
3292 if (qatomic_read(&as->bounce_buffer_size) < as->max_bounce_buffer_size) {
3293 address_space_notify_map_clients_locked(as);
3294 }
3295 }
3296
cpu_exec_init_all(void)3297 void cpu_exec_init_all(void)
3298 {
3299 qemu_mutex_init(&ram_list.mutex);
3300 /* The data structures we set up here depend on knowing the page size,
3301 * so no more changes can be made after this point.
3302 * In an ideal world, nothing we did before we had finished the
3303 * machine setup would care about the target page size, and we could
3304 * do this much later, rather than requiring board models to state
3305 * up front what their requirements are.
3306 */
3307 finalize_target_page_bits();
3308 io_mem_init();
3309 memory_map_init();
3310 }
3311
address_space_unregister_map_client(AddressSpace * as,QEMUBH * bh)3312 void address_space_unregister_map_client(AddressSpace *as, QEMUBH *bh)
3313 {
3314 AddressSpaceMapClient *client;
3315
3316 QEMU_LOCK_GUARD(&as->map_client_list_lock);
3317 QLIST_FOREACH(client, &as->map_client_list, link) {
3318 if (client->bh == bh) {
3319 address_space_unregister_map_client_do(client);
3320 break;
3321 }
3322 }
3323 }
3324
address_space_notify_map_clients(AddressSpace * as)3325 static void address_space_notify_map_clients(AddressSpace *as)
3326 {
3327 QEMU_LOCK_GUARD(&as->map_client_list_lock);
3328 address_space_notify_map_clients_locked(as);
3329 }
3330
flatview_access_valid(FlatView * fv,hwaddr addr,hwaddr len,bool is_write,MemTxAttrs attrs)3331 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
3332 bool is_write, MemTxAttrs attrs)
3333 {
3334 MemoryRegion *mr;
3335 hwaddr l, xlat;
3336
3337 while (len > 0) {
3338 l = len;
3339 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3340 if (!memory_access_is_direct(mr, is_write, attrs)) {
3341 l = memory_access_size(mr, l, addr);
3342 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
3343 return false;
3344 }
3345 }
3346
3347 len -= l;
3348 addr += l;
3349 }
3350 return true;
3351 }
3352
address_space_access_valid(AddressSpace * as,hwaddr addr,hwaddr len,bool is_write,MemTxAttrs attrs)3353 bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3354 hwaddr len, bool is_write,
3355 MemTxAttrs attrs)
3356 {
3357 FlatView *fv;
3358
3359 RCU_READ_LOCK_GUARD();
3360 fv = address_space_to_flatview(as);
3361 return flatview_access_valid(fv, addr, len, is_write, attrs);
3362 }
3363
3364 static hwaddr
flatview_extend_translation(FlatView * fv,hwaddr addr,hwaddr target_len,MemoryRegion * mr,hwaddr base,hwaddr len,bool is_write,MemTxAttrs attrs)3365 flatview_extend_translation(FlatView *fv, hwaddr addr,
3366 hwaddr target_len,
3367 MemoryRegion *mr, hwaddr base, hwaddr len,
3368 bool is_write, MemTxAttrs attrs)
3369 {
3370 hwaddr done = 0;
3371 hwaddr xlat;
3372 MemoryRegion *this_mr;
3373
3374 for (;;) {
3375 target_len -= len;
3376 addr += len;
3377 done += len;
3378 if (target_len == 0) {
3379 return done;
3380 }
3381
3382 len = target_len;
3383 this_mr = flatview_translate(fv, addr, &xlat,
3384 &len, is_write, attrs);
3385 if (this_mr != mr || xlat != base + done) {
3386 return done;
3387 }
3388 }
3389 }
3390
3391 /* Map a physical memory region into a host virtual address.
3392 * May map a subset of the requested range, given by and returned in *plen.
3393 * May return NULL if resources needed to perform the mapping are exhausted.
3394 * Use only for reads OR writes - not for read-modify-write operations.
3395 * Use address_space_register_map_client() to know when retrying the map
3396 * operation is likely to succeed.
3397 */
address_space_map(AddressSpace * as,hwaddr addr,hwaddr * plen,bool is_write,MemTxAttrs attrs)3398 void *address_space_map(AddressSpace *as,
3399 hwaddr addr,
3400 hwaddr *plen,
3401 bool is_write,
3402 MemTxAttrs attrs)
3403 {
3404 hwaddr len = *plen;
3405 hwaddr l, xlat;
3406 MemoryRegion *mr;
3407 FlatView *fv;
3408
3409 trace_address_space_map(as, addr, len, is_write, *(uint32_t *) &attrs);
3410
3411 if (len == 0) {
3412 return NULL;
3413 }
3414
3415 l = len;
3416 RCU_READ_LOCK_GUARD();
3417 fv = address_space_to_flatview(as);
3418 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3419
3420 if (!memory_access_is_direct(mr, is_write, attrs)) {
3421 size_t used = qatomic_read(&as->bounce_buffer_size);
3422 for (;;) {
3423 hwaddr alloc = MIN(as->max_bounce_buffer_size - used, l);
3424 size_t new_size = used + alloc;
3425 size_t actual =
3426 qatomic_cmpxchg(&as->bounce_buffer_size, used, new_size);
3427 if (actual == used) {
3428 l = alloc;
3429 break;
3430 }
3431 used = actual;
3432 }
3433
3434 if (l == 0) {
3435 *plen = 0;
3436 return NULL;
3437 }
3438
3439 BounceBuffer *bounce = g_malloc0(l + sizeof(BounceBuffer));
3440 bounce->magic = BOUNCE_BUFFER_MAGIC;
3441 memory_region_ref(mr);
3442 bounce->mr = mr;
3443 bounce->addr = addr;
3444 bounce->len = l;
3445
3446 if (!is_write) {
3447 flatview_read(fv, addr, attrs,
3448 bounce->buffer, l);
3449 }
3450
3451 *plen = l;
3452 return bounce->buffer;
3453 }
3454
3455 memory_region_ref(mr);
3456 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3457 l, is_write, attrs);
3458 fuzz_dma_read_cb(addr, *plen, mr);
3459 return qemu_ram_ptr_length(mr->ram_block, xlat, plen, true, is_write);
3460 }
3461
3462 /* Unmaps a memory region previously mapped by address_space_map().
3463 * Will also mark the memory as dirty if is_write is true. access_len gives
3464 * the amount of memory that was actually read or written by the caller.
3465 */
address_space_unmap(AddressSpace * as,void * buffer,hwaddr len,bool is_write,hwaddr access_len)3466 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3467 bool is_write, hwaddr access_len)
3468 {
3469 MemoryRegion *mr;
3470 ram_addr_t addr1;
3471
3472 mr = memory_region_from_host(buffer, &addr1);
3473 if (mr != NULL) {
3474 if (is_write) {
3475 invalidate_and_set_dirty(mr, addr1, access_len);
3476 }
3477 if (xen_enabled()) {
3478 xen_invalidate_map_cache_entry(buffer);
3479 }
3480 memory_region_unref(mr);
3481 return;
3482 }
3483
3484
3485 BounceBuffer *bounce = container_of(buffer, BounceBuffer, buffer);
3486 assert(bounce->magic == BOUNCE_BUFFER_MAGIC);
3487
3488 if (is_write) {
3489 address_space_write(as, bounce->addr, MEMTXATTRS_UNSPECIFIED,
3490 bounce->buffer, access_len);
3491 }
3492
3493 qatomic_sub(&as->bounce_buffer_size, bounce->len);
3494 bounce->magic = ~BOUNCE_BUFFER_MAGIC;
3495 memory_region_unref(bounce->mr);
3496 g_free(bounce);
3497 /* Write bounce_buffer_size before reading map_client_list. */
3498 smp_mb();
3499 address_space_notify_map_clients(as);
3500 }
3501
cpu_physical_memory_map(hwaddr addr,hwaddr * plen,bool is_write)3502 void *cpu_physical_memory_map(hwaddr addr,
3503 hwaddr *plen,
3504 bool is_write)
3505 {
3506 return address_space_map(&address_space_memory, addr, plen, is_write,
3507 MEMTXATTRS_UNSPECIFIED);
3508 }
3509
cpu_physical_memory_unmap(void * buffer,hwaddr len,bool is_write,hwaddr access_len)3510 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3511 bool is_write, hwaddr access_len)
3512 {
3513 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3514 }
3515
3516 #define ARG1_DECL AddressSpace *as
3517 #define ARG1 as
3518 #define SUFFIX
3519 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3520 #define RCU_READ_LOCK(...) rcu_read_lock()
3521 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3522 #include "memory_ldst.c.inc"
3523
address_space_cache_init(MemoryRegionCache * cache,AddressSpace * as,hwaddr addr,hwaddr len,bool is_write)3524 int64_t address_space_cache_init(MemoryRegionCache *cache,
3525 AddressSpace *as,
3526 hwaddr addr,
3527 hwaddr len,
3528 bool is_write)
3529 {
3530 AddressSpaceDispatch *d;
3531 hwaddr l;
3532 MemoryRegion *mr;
3533 Int128 diff;
3534
3535 assert(len > 0);
3536
3537 l = len;
3538 cache->fv = address_space_get_flatview(as);
3539 d = flatview_to_dispatch(cache->fv);
3540 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3541
3542 /*
3543 * cache->xlat is now relative to cache->mrs.mr, not to the section itself.
3544 * Take that into account to compute how many bytes are there between
3545 * cache->xlat and the end of the section.
3546 */
3547 diff = int128_sub(cache->mrs.size,
3548 int128_make64(cache->xlat - cache->mrs.offset_within_region));
3549 l = int128_get64(int128_min(diff, int128_make64(l)));
3550
3551 mr = cache->mrs.mr;
3552 memory_region_ref(mr);
3553 if (memory_access_is_direct(mr, is_write, MEMTXATTRS_UNSPECIFIED)) {
3554 /* We don't care about the memory attributes here as we're only
3555 * doing this if we found actual RAM, which behaves the same
3556 * regardless of attributes; so UNSPECIFIED is fine.
3557 */
3558 l = flatview_extend_translation(cache->fv, addr, len, mr,
3559 cache->xlat, l, is_write,
3560 MEMTXATTRS_UNSPECIFIED);
3561 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true,
3562 is_write);
3563 } else {
3564 cache->ptr = NULL;
3565 }
3566
3567 cache->len = l;
3568 cache->is_write = is_write;
3569 return l;
3570 }
3571
address_space_cache_invalidate(MemoryRegionCache * cache,hwaddr addr,hwaddr access_len)3572 void address_space_cache_invalidate(MemoryRegionCache *cache,
3573 hwaddr addr,
3574 hwaddr access_len)
3575 {
3576 assert(cache->is_write);
3577 if (likely(cache->ptr)) {
3578 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3579 }
3580 }
3581
address_space_cache_destroy(MemoryRegionCache * cache)3582 void address_space_cache_destroy(MemoryRegionCache *cache)
3583 {
3584 if (!cache->mrs.mr) {
3585 return;
3586 }
3587
3588 if (xen_enabled()) {
3589 xen_invalidate_map_cache_entry(cache->ptr);
3590 }
3591 memory_region_unref(cache->mrs.mr);
3592 flatview_unref(cache->fv);
3593 cache->mrs.mr = NULL;
3594 cache->fv = NULL;
3595 }
3596
3597 /* Called from RCU critical section. This function has the same
3598 * semantics as address_space_translate, but it only works on a
3599 * predefined range of a MemoryRegion that was mapped with
3600 * address_space_cache_init.
3601 */
address_space_translate_cached(MemoryRegionCache * cache,hwaddr addr,hwaddr * xlat,hwaddr * plen,bool is_write,MemTxAttrs attrs)3602 static inline MemoryRegion *address_space_translate_cached(
3603 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3604 hwaddr *plen, bool is_write, MemTxAttrs attrs)
3605 {
3606 MemoryRegionSection section;
3607 MemoryRegion *mr;
3608 IOMMUMemoryRegion *iommu_mr;
3609 AddressSpace *target_as;
3610
3611 assert(!cache->ptr);
3612 *xlat = addr + cache->xlat;
3613
3614 mr = cache->mrs.mr;
3615 iommu_mr = memory_region_get_iommu(mr);
3616 if (!iommu_mr) {
3617 /* MMIO region. */
3618 return mr;
3619 }
3620
3621 section = address_space_translate_iommu(iommu_mr, xlat, plen,
3622 NULL, is_write, true,
3623 &target_as, attrs);
3624 return section.mr;
3625 }
3626
3627 /* Called within RCU critical section. */
address_space_write_continue_cached(MemTxAttrs attrs,const void * ptr,hwaddr len,hwaddr mr_addr,hwaddr l,MemoryRegion * mr)3628 static MemTxResult address_space_write_continue_cached(MemTxAttrs attrs,
3629 const void *ptr,
3630 hwaddr len,
3631 hwaddr mr_addr,
3632 hwaddr l,
3633 MemoryRegion *mr)
3634 {
3635 MemTxResult result = MEMTX_OK;
3636 const uint8_t *buf = ptr;
3637
3638 for (;;) {
3639 result |= flatview_write_continue_step(attrs, buf, len, mr_addr, &l,
3640 mr);
3641
3642 len -= l;
3643 buf += l;
3644 mr_addr += l;
3645
3646 if (!len) {
3647 break;
3648 }
3649
3650 l = len;
3651 }
3652
3653 return result;
3654 }
3655
3656 /* Called within RCU critical section. */
address_space_read_continue_cached(MemTxAttrs attrs,void * ptr,hwaddr len,hwaddr mr_addr,hwaddr l,MemoryRegion * mr)3657 static MemTxResult address_space_read_continue_cached(MemTxAttrs attrs,
3658 void *ptr, hwaddr len,
3659 hwaddr mr_addr, hwaddr l,
3660 MemoryRegion *mr)
3661 {
3662 MemTxResult result = MEMTX_OK;
3663 uint8_t *buf = ptr;
3664
3665 for (;;) {
3666 result |= flatview_read_continue_step(attrs, buf, len, mr_addr, &l, mr);
3667 len -= l;
3668 buf += l;
3669 mr_addr += l;
3670
3671 if (!len) {
3672 break;
3673 }
3674 l = len;
3675 }
3676
3677 return result;
3678 }
3679
3680 /* Called from RCU critical section. address_space_read_cached uses this
3681 * out of line function when the target is an MMIO or IOMMU region.
3682 */
3683 MemTxResult
address_space_read_cached_slow(MemoryRegionCache * cache,hwaddr addr,void * buf,hwaddr len)3684 address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3685 void *buf, hwaddr len)
3686 {
3687 hwaddr mr_addr, l;
3688 MemoryRegion *mr;
3689
3690 l = len;
3691 mr = address_space_translate_cached(cache, addr, &mr_addr, &l, false,
3692 MEMTXATTRS_UNSPECIFIED);
3693 return address_space_read_continue_cached(MEMTXATTRS_UNSPECIFIED,
3694 buf, len, mr_addr, l, mr);
3695 }
3696
3697 /* Called from RCU critical section. address_space_write_cached uses this
3698 * out of line function when the target is an MMIO or IOMMU region.
3699 */
3700 MemTxResult
address_space_write_cached_slow(MemoryRegionCache * cache,hwaddr addr,const void * buf,hwaddr len)3701 address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3702 const void *buf, hwaddr len)
3703 {
3704 hwaddr mr_addr, l;
3705 MemoryRegion *mr;
3706
3707 l = len;
3708 mr = address_space_translate_cached(cache, addr, &mr_addr, &l, true,
3709 MEMTXATTRS_UNSPECIFIED);
3710 return address_space_write_continue_cached(MEMTXATTRS_UNSPECIFIED,
3711 buf, len, mr_addr, l, mr);
3712 }
3713
3714 #define ARG1_DECL MemoryRegionCache *cache
3715 #define ARG1 cache
3716 #define SUFFIX _cached_slow
3717 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
3718 #define RCU_READ_LOCK() ((void)0)
3719 #define RCU_READ_UNLOCK() ((void)0)
3720 #include "memory_ldst.c.inc"
3721
3722 /* virtual memory access for debug (includes writing to ROM) */
cpu_memory_rw_debug(CPUState * cpu,vaddr addr,void * ptr,size_t len,bool is_write)3723 int cpu_memory_rw_debug(CPUState *cpu, vaddr addr,
3724 void *ptr, size_t len, bool is_write)
3725 {
3726 hwaddr phys_addr;
3727 vaddr l, page;
3728 uint8_t *buf = ptr;
3729
3730 cpu_synchronize_state(cpu);
3731 while (len > 0) {
3732 int asidx;
3733 MemTxAttrs attrs;
3734 MemTxResult res;
3735
3736 page = addr & TARGET_PAGE_MASK;
3737 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3738 asidx = cpu_asidx_from_attrs(cpu, attrs);
3739 /* if no physical page mapped, return an error */
3740 if (phys_addr == -1)
3741 return -1;
3742 l = (page + TARGET_PAGE_SIZE) - addr;
3743 if (l > len)
3744 l = len;
3745 phys_addr += (addr & ~TARGET_PAGE_MASK);
3746 res = address_space_rw(cpu->cpu_ases[asidx].as, phys_addr, attrs, buf,
3747 l, is_write);
3748 if (res != MEMTX_OK) {
3749 return -1;
3750 }
3751 len -= l;
3752 buf += l;
3753 addr += l;
3754 }
3755 return 0;
3756 }
3757
cpu_physical_memory_is_io(hwaddr phys_addr)3758 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3759 {
3760 MemoryRegion*mr;
3761 hwaddr l = 1;
3762
3763 RCU_READ_LOCK_GUARD();
3764 mr = address_space_translate(&address_space_memory,
3765 phys_addr, &phys_addr, &l, false,
3766 MEMTXATTRS_UNSPECIFIED);
3767
3768 return !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3769 }
3770
qemu_ram_foreach_block(RAMBlockIterFunc func,void * opaque)3771 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3772 {
3773 RAMBlock *block;
3774 int ret = 0;
3775
3776 RCU_READ_LOCK_GUARD();
3777 RAMBLOCK_FOREACH(block) {
3778 ret = func(block, opaque);
3779 if (ret) {
3780 break;
3781 }
3782 }
3783 return ret;
3784 }
3785
3786 /*
3787 * Unmap pages of memory from start to start+length such that
3788 * they a) read as 0, b) Trigger whatever fault mechanism
3789 * the OS provides for postcopy.
3790 * The pages must be unmapped by the end of the function.
3791 * Returns: 0 on success, none-0 on failure
3792 *
3793 */
ram_block_discard_range(RAMBlock * rb,uint64_t start,size_t length)3794 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3795 {
3796 int ret = -1;
3797
3798 uint8_t *host_startaddr = rb->host + start;
3799
3800 if (!QEMU_PTR_IS_ALIGNED(host_startaddr, rb->page_size)) {
3801 error_report("%s: Unaligned start address: %p",
3802 __func__, host_startaddr);
3803 goto err;
3804 }
3805
3806 if ((start + length) <= rb->max_length) {
3807 bool need_madvise, need_fallocate;
3808 if (!QEMU_IS_ALIGNED(length, rb->page_size)) {
3809 error_report("%s: Unaligned length: %zx", __func__, length);
3810 goto err;
3811 }
3812
3813 errno = ENOTSUP; /* If we are missing MADVISE etc */
3814
3815 /* The logic here is messy;
3816 * madvise DONTNEED fails for hugepages
3817 * fallocate works on hugepages and shmem
3818 * shared anonymous memory requires madvise REMOVE
3819 */
3820 need_madvise = (rb->page_size == qemu_real_host_page_size());
3821 need_fallocate = rb->fd != -1;
3822 if (need_fallocate) {
3823 /* For a file, this causes the area of the file to be zero'd
3824 * if read, and for hugetlbfs also causes it to be unmapped
3825 * so a userfault will trigger.
3826 */
3827 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3828 /*
3829 * fallocate() will fail with readonly files. Let's print a
3830 * proper error message.
3831 */
3832 if (rb->flags & RAM_READONLY_FD) {
3833 error_report("%s: Discarding RAM with readonly files is not"
3834 " supported", __func__);
3835 goto err;
3836
3837 }
3838 /*
3839 * We'll discard data from the actual file, even though we only
3840 * have a MAP_PRIVATE mapping, possibly messing with other
3841 * MAP_PRIVATE/MAP_SHARED mappings. There is no easy way to
3842 * change that behavior whithout violating the promised
3843 * semantics of ram_block_discard_range().
3844 *
3845 * Only warn, because it works as long as nobody else uses that
3846 * file.
3847 */
3848 if (!qemu_ram_is_shared(rb)) {
3849 warn_report_once("%s: Discarding RAM"
3850 " in private file mappings is possibly"
3851 " dangerous, because it will modify the"
3852 " underlying file and will affect other"
3853 " users of the file", __func__);
3854 }
3855
3856 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3857 start + rb->fd_offset, length);
3858 if (ret) {
3859 ret = -errno;
3860 error_report("%s: Failed to fallocate %s:%" PRIx64 "+%" PRIx64
3861 " +%zx (%d)", __func__, rb->idstr, start,
3862 rb->fd_offset, length, ret);
3863 goto err;
3864 }
3865 #else
3866 ret = -ENOSYS;
3867 error_report("%s: fallocate not available/file"
3868 "%s:%" PRIx64 "+%" PRIx64 " +%zx (%d)", __func__,
3869 rb->idstr, start, rb->fd_offset, length, ret);
3870 goto err;
3871 #endif
3872 }
3873 if (need_madvise) {
3874 /* For normal RAM this causes it to be unmapped,
3875 * for shared memory it causes the local mapping to disappear
3876 * and to fall back on the file contents (which we just
3877 * fallocate'd away).
3878 */
3879 #if defined(CONFIG_MADVISE)
3880 if (qemu_ram_is_shared(rb) && rb->fd < 0) {
3881 ret = madvise(host_startaddr, length, QEMU_MADV_REMOVE);
3882 } else {
3883 ret = madvise(host_startaddr, length, QEMU_MADV_DONTNEED);
3884 }
3885 if (ret) {
3886 ret = -errno;
3887 error_report("%s: Failed to discard range "
3888 "%s:%" PRIx64 " +%zx (%d)",
3889 __func__, rb->idstr, start, length, ret);
3890 goto err;
3891 }
3892 #else
3893 ret = -ENOSYS;
3894 error_report("%s: MADVISE not available %s:%" PRIx64 " +%zx (%d)",
3895 __func__, rb->idstr, start, length, ret);
3896 goto err;
3897 #endif
3898 }
3899 trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
3900 need_madvise, need_fallocate, ret);
3901 } else {
3902 error_report("%s: Overrun block '%s' (%" PRIu64 "/%zx/" RAM_ADDR_FMT")",
3903 __func__, rb->idstr, start, length, rb->max_length);
3904 }
3905
3906 err:
3907 return ret;
3908 }
3909
ram_block_discard_guest_memfd_range(RAMBlock * rb,uint64_t start,size_t length)3910 int ram_block_discard_guest_memfd_range(RAMBlock *rb, uint64_t start,
3911 size_t length)
3912 {
3913 int ret = -1;
3914
3915 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3916 /* ignore fd_offset with guest_memfd */
3917 ret = fallocate(rb->guest_memfd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3918 start, length);
3919
3920 if (ret) {
3921 ret = -errno;
3922 error_report("%s: Failed to fallocate %s:%" PRIx64 " +%zx (%d)",
3923 __func__, rb->idstr, start, length, ret);
3924 }
3925 #else
3926 ret = -ENOSYS;
3927 error_report("%s: fallocate not available %s:%" PRIx64 " +%zx (%d)",
3928 __func__, rb->idstr, start, length, ret);
3929 #endif
3930
3931 return ret;
3932 }
3933
ramblock_is_pmem(RAMBlock * rb)3934 bool ramblock_is_pmem(RAMBlock *rb)
3935 {
3936 return rb->flags & RAM_PMEM;
3937 }
3938
mtree_print_phys_entries(int start,int end,int skip,int ptr)3939 static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
3940 {
3941 if (start == end - 1) {
3942 qemu_printf("\t%3d ", start);
3943 } else {
3944 qemu_printf("\t%3d..%-3d ", start, end - 1);
3945 }
3946 qemu_printf(" skip=%d ", skip);
3947 if (ptr == PHYS_MAP_NODE_NIL) {
3948 qemu_printf(" ptr=NIL");
3949 } else if (!skip) {
3950 qemu_printf(" ptr=#%d", ptr);
3951 } else {
3952 qemu_printf(" ptr=[%d]", ptr);
3953 }
3954 qemu_printf("\n");
3955 }
3956
3957 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
3958 int128_sub((size), int128_one())) : 0)
3959
mtree_print_dispatch(AddressSpaceDispatch * d,MemoryRegion * root)3960 void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
3961 {
3962 int i;
3963
3964 qemu_printf(" Dispatch\n");
3965 qemu_printf(" Physical sections\n");
3966
3967 for (i = 0; i < d->map.sections_nb; ++i) {
3968 MemoryRegionSection *s = d->map.sections + i;
3969 const char *names[] = { " [unassigned]", " [not dirty]",
3970 " [ROM]", " [watch]" };
3971
3972 qemu_printf(" #%d @" HWADDR_FMT_plx ".." HWADDR_FMT_plx
3973 " %s%s%s%s%s",
3974 i,
3975 s->offset_within_address_space,
3976 s->offset_within_address_space + MR_SIZE(s->size),
3977 s->mr->name ? s->mr->name : "(noname)",
3978 i < ARRAY_SIZE(names) ? names[i] : "",
3979 s->mr == root ? " [ROOT]" : "",
3980 s == d->mru_section ? " [MRU]" : "",
3981 s->mr->is_iommu ? " [iommu]" : "");
3982
3983 if (s->mr->alias) {
3984 qemu_printf(" alias=%s", s->mr->alias->name ?
3985 s->mr->alias->name : "noname");
3986 }
3987 qemu_printf("\n");
3988 }
3989
3990 qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
3991 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
3992 for (i = 0; i < d->map.nodes_nb; ++i) {
3993 int j, jprev;
3994 PhysPageEntry prev;
3995 Node *n = d->map.nodes + i;
3996
3997 qemu_printf(" [%d]\n", i);
3998
3999 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
4000 PhysPageEntry *pe = *n + j;
4001
4002 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
4003 continue;
4004 }
4005
4006 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
4007
4008 jprev = j;
4009 prev = *pe;
4010 }
4011
4012 if (jprev != ARRAY_SIZE(*n)) {
4013 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
4014 }
4015 }
4016 }
4017
4018 /* Require any discards to work. */
4019 static unsigned int ram_block_discard_required_cnt;
4020 /* Require only coordinated discards to work. */
4021 static unsigned int ram_block_coordinated_discard_required_cnt;
4022 /* Disable any discards. */
4023 static unsigned int ram_block_discard_disabled_cnt;
4024 /* Disable only uncoordinated discards. */
4025 static unsigned int ram_block_uncoordinated_discard_disabled_cnt;
4026 static QemuMutex ram_block_discard_disable_mutex;
4027
ram_block_discard_disable_mutex_lock(void)4028 static void ram_block_discard_disable_mutex_lock(void)
4029 {
4030 static gsize initialized;
4031
4032 if (g_once_init_enter(&initialized)) {
4033 qemu_mutex_init(&ram_block_discard_disable_mutex);
4034 g_once_init_leave(&initialized, 1);
4035 }
4036 qemu_mutex_lock(&ram_block_discard_disable_mutex);
4037 }
4038
ram_block_discard_disable_mutex_unlock(void)4039 static void ram_block_discard_disable_mutex_unlock(void)
4040 {
4041 qemu_mutex_unlock(&ram_block_discard_disable_mutex);
4042 }
4043
ram_block_discard_disable(bool state)4044 int ram_block_discard_disable(bool state)
4045 {
4046 int ret = 0;
4047
4048 ram_block_discard_disable_mutex_lock();
4049 if (!state) {
4050 ram_block_discard_disabled_cnt--;
4051 } else if (ram_block_discard_required_cnt ||
4052 ram_block_coordinated_discard_required_cnt) {
4053 ret = -EBUSY;
4054 } else {
4055 ram_block_discard_disabled_cnt++;
4056 }
4057 ram_block_discard_disable_mutex_unlock();
4058 return ret;
4059 }
4060
ram_block_uncoordinated_discard_disable(bool state)4061 int ram_block_uncoordinated_discard_disable(bool state)
4062 {
4063 int ret = 0;
4064
4065 ram_block_discard_disable_mutex_lock();
4066 if (!state) {
4067 ram_block_uncoordinated_discard_disabled_cnt--;
4068 } else if (ram_block_discard_required_cnt) {
4069 ret = -EBUSY;
4070 } else {
4071 ram_block_uncoordinated_discard_disabled_cnt++;
4072 }
4073 ram_block_discard_disable_mutex_unlock();
4074 return ret;
4075 }
4076
ram_block_discard_require(bool state)4077 int ram_block_discard_require(bool state)
4078 {
4079 int ret = 0;
4080
4081 ram_block_discard_disable_mutex_lock();
4082 if (!state) {
4083 ram_block_discard_required_cnt--;
4084 } else if (ram_block_discard_disabled_cnt ||
4085 ram_block_uncoordinated_discard_disabled_cnt) {
4086 ret = -EBUSY;
4087 } else {
4088 ram_block_discard_required_cnt++;
4089 }
4090 ram_block_discard_disable_mutex_unlock();
4091 return ret;
4092 }
4093
ram_block_coordinated_discard_require(bool state)4094 int ram_block_coordinated_discard_require(bool state)
4095 {
4096 int ret = 0;
4097
4098 ram_block_discard_disable_mutex_lock();
4099 if (!state) {
4100 ram_block_coordinated_discard_required_cnt--;
4101 } else if (ram_block_discard_disabled_cnt) {
4102 ret = -EBUSY;
4103 } else {
4104 ram_block_coordinated_discard_required_cnt++;
4105 }
4106 ram_block_discard_disable_mutex_unlock();
4107 return ret;
4108 }
4109
ram_block_discard_is_disabled(void)4110 bool ram_block_discard_is_disabled(void)
4111 {
4112 return qatomic_read(&ram_block_discard_disabled_cnt) ||
4113 qatomic_read(&ram_block_uncoordinated_discard_disabled_cnt);
4114 }
4115
ram_block_discard_is_required(void)4116 bool ram_block_discard_is_required(void)
4117 {
4118 return qatomic_read(&ram_block_discard_required_cnt) ||
4119 qatomic_read(&ram_block_coordinated_discard_required_cnt);
4120 }
4121
4122 /*
4123 * Return true if ram is compatible with CPR. Do not exclude rom,
4124 * because the rom file could change in new QEMU.
4125 */
ram_is_cpr_compatible(RAMBlock * rb)4126 static bool ram_is_cpr_compatible(RAMBlock *rb)
4127 {
4128 MemoryRegion *mr = rb->mr;
4129
4130 if (!mr || !memory_region_is_ram(mr)) {
4131 return true;
4132 }
4133
4134 /* Ram device is remapped in new QEMU */
4135 if (memory_region_is_ram_device(mr)) {
4136 return true;
4137 }
4138
4139 /*
4140 * A file descriptor is passed to new QEMU and remapped, or its backing
4141 * file is reopened and mapped. It must be shared to avoid COW.
4142 */
4143 if (rb->fd >= 0 && qemu_ram_is_shared(rb)) {
4144 return true;
4145 }
4146
4147 return false;
4148 }
4149
4150 /*
4151 * Add a blocker for each volatile ram block. This function should only be
4152 * called after we know that the block is migratable. Non-migratable blocks
4153 * are either re-created in new QEMU, or are handled specially, or are covered
4154 * by a device-level CPR blocker.
4155 */
ram_block_add_cpr_blocker(RAMBlock * rb,Error ** errp)4156 void ram_block_add_cpr_blocker(RAMBlock *rb, Error **errp)
4157 {
4158 assert(qemu_ram_is_migratable(rb));
4159
4160 if (ram_is_cpr_compatible(rb)) {
4161 return;
4162 }
4163
4164 error_setg(&rb->cpr_blocker,
4165 "Memory region %s is not compatible with CPR. share=on is "
4166 "required for memory-backend objects, and aux-ram-share=on is "
4167 "required.", memory_region_name(rb->mr));
4168 migrate_add_blocker_modes(&rb->cpr_blocker, errp, MIG_MODE_CPR_TRANSFER,
4169 -1);
4170 }
4171
ram_block_del_cpr_blocker(RAMBlock * rb)4172 void ram_block_del_cpr_blocker(RAMBlock *rb)
4173 {
4174 migrate_del_blocker(&rb->cpr_blocker);
4175 }
4176