1 /*
2  * ipg.c: Device Driver for the IP1000 Gigabit Ethernet Adapter
3  *
4  * Copyright (C) 2003, 2007  IC Plus Corp
5  *
6  * Original Author:
7  *
8  *   Craig Rich
9  *   Sundance Technology, Inc.
10  *   www.sundanceti.com
11  *   craig_rich@sundanceti.com
12  *
13  * Current Maintainer:
14  *
15  *   Sorbica Shieh.
16  *   http://www.icplus.com.tw
17  *   sorbica@icplus.com.tw
18  *
19  *   Jesse Huang
20  *   http://www.icplus.com.tw
21  *   jesse@icplus.com.tw
22  */
23 
24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25 
26 #include <linux/crc32.h>
27 #include <linux/ethtool.h>
28 #include <linux/interrupt.h>
29 #include <linux/gfp.h>
30 #include <linux/mii.h>
31 #include <linux/mutex.h>
32 
33 #include <asm/div64.h>
34 
35 #define IPG_RX_RING_BYTES	(sizeof(struct ipg_rx) * IPG_RFDLIST_LENGTH)
36 #define IPG_TX_RING_BYTES	(sizeof(struct ipg_tx) * IPG_TFDLIST_LENGTH)
37 #define IPG_RESET_MASK \
38 	(IPG_AC_GLOBAL_RESET | IPG_AC_RX_RESET | IPG_AC_TX_RESET | \
39 	 IPG_AC_DMA | IPG_AC_FIFO | IPG_AC_NETWORK | IPG_AC_HOST | \
40 	 IPG_AC_AUTO_INIT)
41 
42 #define ipg_w32(val32, reg)	iowrite32((val32), ioaddr + (reg))
43 #define ipg_w16(val16, reg)	iowrite16((val16), ioaddr + (reg))
44 #define ipg_w8(val8, reg)	iowrite8((val8), ioaddr + (reg))
45 
46 #define ipg_r32(reg)		ioread32(ioaddr + (reg))
47 #define ipg_r16(reg)		ioread16(ioaddr + (reg))
48 #define ipg_r8(reg)		ioread8(ioaddr + (reg))
49 
50 enum {
51 	netdev_io_size = 128
52 };
53 
54 #include "ipg.h"
55 #define DRV_NAME	"ipg"
56 
57 MODULE_AUTHOR("IC Plus Corp. 2003");
58 MODULE_DESCRIPTION("IC Plus IP1000 Gigabit Ethernet Adapter Linux Driver");
59 MODULE_LICENSE("GPL");
60 
61 /*
62  * Defaults
63  */
64 #define IPG_MAX_RXFRAME_SIZE	0x0600
65 #define IPG_RXFRAG_SIZE		0x0600
66 #define IPG_RXSUPPORT_SIZE	0x0600
67 #define IPG_IS_JUMBO		false
68 
69 /*
70  * Variable record -- index by leading revision/length
71  * Revision/Length(=N*4), Address1, Data1, Address2, Data2,...,AddressN,DataN
72  */
73 static const unsigned short DefaultPhyParam[] = {
74 	/* 11/12/03 IP1000A v1-3 rev=0x40 */
75 	/*--------------------------------------------------------------------------
76 	(0x4000|(15*4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 22, 0x85bd, 24, 0xfff2,
77 				 27, 0x0c10, 28, 0x0c10, 29, 0x2c10, 31, 0x0003, 23, 0x92f6,
78 				 31, 0x0000, 23, 0x003d, 30, 0x00de, 20, 0x20e7,  9, 0x0700,
79 	  --------------------------------------------------------------------------*/
80 	/* 12/17/03 IP1000A v1-4 rev=0x40 */
81 	(0x4000 | (07 * 4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 27, 0xeb8e, 31,
82 	    0x0000,
83 	30, 0x005e, 9, 0x0700,
84 	/* 01/09/04 IP1000A v1-5 rev=0x41 */
85 	(0x4100 | (07 * 4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 27, 0xeb8e, 31,
86 	    0x0000,
87 	30, 0x005e, 9, 0x0700,
88 	0x0000
89 };
90 
91 static const char * const ipg_brand_name[] = {
92 	"IC PLUS IP1000 1000/100/10 based NIC",
93 	"Sundance Technology ST2021 based NIC",
94 	"Tamarack Microelectronics TC9020/9021 based NIC",
95 	"D-Link NIC IP1000A"
96 };
97 
98 static DEFINE_PCI_DEVICE_TABLE(ipg_pci_tbl) = {
99 	{ PCI_VDEVICE(SUNDANCE,	0x1023), 0 },
100 	{ PCI_VDEVICE(SUNDANCE,	0x2021), 1 },
101 	{ PCI_VDEVICE(DLINK,	0x9021), 2 },
102 	{ PCI_VDEVICE(DLINK,	0x4020), 3 },
103 	{ 0, }
104 };
105 
106 MODULE_DEVICE_TABLE(pci, ipg_pci_tbl);
107 
ipg_ioaddr(struct net_device * dev)108 static inline void __iomem *ipg_ioaddr(struct net_device *dev)
109 {
110 	struct ipg_nic_private *sp = netdev_priv(dev);
111 	return sp->ioaddr;
112 }
113 
114 #ifdef IPG_DEBUG
ipg_dump_rfdlist(struct net_device * dev)115 static void ipg_dump_rfdlist(struct net_device *dev)
116 {
117 	struct ipg_nic_private *sp = netdev_priv(dev);
118 	void __iomem *ioaddr = sp->ioaddr;
119 	unsigned int i;
120 	u32 offset;
121 
122 	IPG_DEBUG_MSG("_dump_rfdlist\n");
123 
124 	netdev_info(dev, "rx_current = %02x\n", sp->rx_current);
125 	netdev_info(dev, "rx_dirty   = %02x\n", sp->rx_dirty);
126 	netdev_info(dev, "RFDList start address = %016lx\n",
127 		    (unsigned long)sp->rxd_map);
128 	netdev_info(dev, "RFDListPtr register   = %08x%08x\n",
129 		    ipg_r32(IPG_RFDLISTPTR1), ipg_r32(IPG_RFDLISTPTR0));
130 
131 	for (i = 0; i < IPG_RFDLIST_LENGTH; i++) {
132 		offset = (u32) &sp->rxd[i].next_desc - (u32) sp->rxd;
133 		netdev_info(dev, "%02x %04x RFDNextPtr = %016lx\n",
134 			    i, offset, (unsigned long)sp->rxd[i].next_desc);
135 		offset = (u32) &sp->rxd[i].rfs - (u32) sp->rxd;
136 		netdev_info(dev, "%02x %04x RFS        = %016lx\n",
137 			    i, offset, (unsigned long)sp->rxd[i].rfs);
138 		offset = (u32) &sp->rxd[i].frag_info - (u32) sp->rxd;
139 		netdev_info(dev, "%02x %04x frag_info   = %016lx\n",
140 			    i, offset, (unsigned long)sp->rxd[i].frag_info);
141 	}
142 }
143 
ipg_dump_tfdlist(struct net_device * dev)144 static void ipg_dump_tfdlist(struct net_device *dev)
145 {
146 	struct ipg_nic_private *sp = netdev_priv(dev);
147 	void __iomem *ioaddr = sp->ioaddr;
148 	unsigned int i;
149 	u32 offset;
150 
151 	IPG_DEBUG_MSG("_dump_tfdlist\n");
152 
153 	netdev_info(dev, "tx_current         = %02x\n", sp->tx_current);
154 	netdev_info(dev, "tx_dirty = %02x\n", sp->tx_dirty);
155 	netdev_info(dev, "TFDList start address = %016lx\n",
156 		    (unsigned long) sp->txd_map);
157 	netdev_info(dev, "TFDListPtr register   = %08x%08x\n",
158 		    ipg_r32(IPG_TFDLISTPTR1), ipg_r32(IPG_TFDLISTPTR0));
159 
160 	for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
161 		offset = (u32) &sp->txd[i].next_desc - (u32) sp->txd;
162 		netdev_info(dev, "%02x %04x TFDNextPtr = %016lx\n",
163 			    i, offset, (unsigned long)sp->txd[i].next_desc);
164 
165 		offset = (u32) &sp->txd[i].tfc - (u32) sp->txd;
166 		netdev_info(dev, "%02x %04x TFC        = %016lx\n",
167 			    i, offset, (unsigned long) sp->txd[i].tfc);
168 		offset = (u32) &sp->txd[i].frag_info - (u32) sp->txd;
169 		netdev_info(dev, "%02x %04x frag_info   = %016lx\n",
170 			    i, offset, (unsigned long) sp->txd[i].frag_info);
171 	}
172 }
173 #endif
174 
ipg_write_phy_ctl(void __iomem * ioaddr,u8 data)175 static void ipg_write_phy_ctl(void __iomem *ioaddr, u8 data)
176 {
177 	ipg_w8(IPG_PC_RSVD_MASK & data, PHY_CTRL);
178 	ndelay(IPG_PC_PHYCTRLWAIT_NS);
179 }
180 
ipg_drive_phy_ctl_low_high(void __iomem * ioaddr,u8 data)181 static void ipg_drive_phy_ctl_low_high(void __iomem *ioaddr, u8 data)
182 {
183 	ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | data);
184 	ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | data);
185 }
186 
send_three_state(void __iomem * ioaddr,u8 phyctrlpolarity)187 static void send_three_state(void __iomem *ioaddr, u8 phyctrlpolarity)
188 {
189 	phyctrlpolarity |= (IPG_PC_MGMTDATA & 0) | IPG_PC_MGMTDIR;
190 
191 	ipg_drive_phy_ctl_low_high(ioaddr, phyctrlpolarity);
192 }
193 
send_end(void __iomem * ioaddr,u8 phyctrlpolarity)194 static void send_end(void __iomem *ioaddr, u8 phyctrlpolarity)
195 {
196 	ipg_w8((IPG_PC_MGMTCLK_LO | (IPG_PC_MGMTDATA & 0) | IPG_PC_MGMTDIR |
197 		phyctrlpolarity) & IPG_PC_RSVD_MASK, PHY_CTRL);
198 }
199 
read_phy_bit(void __iomem * ioaddr,u8 phyctrlpolarity)200 static u16 read_phy_bit(void __iomem *ioaddr, u8 phyctrlpolarity)
201 {
202 	u16 bit_data;
203 
204 	ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | phyctrlpolarity);
205 
206 	bit_data = ((ipg_r8(PHY_CTRL) & IPG_PC_MGMTDATA) >> 1) & 1;
207 
208 	ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | phyctrlpolarity);
209 
210 	return bit_data;
211 }
212 
213 /*
214  * Read a register from the Physical Layer device located
215  * on the IPG NIC, using the IPG PHYCTRL register.
216  */
mdio_read(struct net_device * dev,int phy_id,int phy_reg)217 static int mdio_read(struct net_device *dev, int phy_id, int phy_reg)
218 {
219 	void __iomem *ioaddr = ipg_ioaddr(dev);
220 	/*
221 	 * The GMII mangement frame structure for a read is as follows:
222 	 *
223 	 * |Preamble|st|op|phyad|regad|ta|      data      |idle|
224 	 * |< 32 1s>|01|10|AAAAA|RRRRR|z0|DDDDDDDDDDDDDDDD|z   |
225 	 *
226 	 * <32 1s> = 32 consecutive logic 1 values
227 	 * A = bit of Physical Layer device address (MSB first)
228 	 * R = bit of register address (MSB first)
229 	 * z = High impedance state
230 	 * D = bit of read data (MSB first)
231 	 *
232 	 * Transmission order is 'Preamble' field first, bits transmitted
233 	 * left to right (first to last).
234 	 */
235 	struct {
236 		u32 field;
237 		unsigned int len;
238 	} p[] = {
239 		{ GMII_PREAMBLE,	32 },	/* Preamble */
240 		{ GMII_ST,		2  },	/* ST */
241 		{ GMII_READ,		2  },	/* OP */
242 		{ phy_id,		5  },	/* PHYAD */
243 		{ phy_reg,		5  },	/* REGAD */
244 		{ 0x0000,		2  },	/* TA */
245 		{ 0x0000,		16 },	/* DATA */
246 		{ 0x0000,		1  }	/* IDLE */
247 	};
248 	unsigned int i, j;
249 	u8 polarity, data;
250 
251 	polarity  = ipg_r8(PHY_CTRL);
252 	polarity &= (IPG_PC_DUPLEX_POLARITY | IPG_PC_LINK_POLARITY);
253 
254 	/* Create the Preamble, ST, OP, PHYAD, and REGAD field. */
255 	for (j = 0; j < 5; j++) {
256 		for (i = 0; i < p[j].len; i++) {
257 			/* For each variable length field, the MSB must be
258 			 * transmitted first. Rotate through the field bits,
259 			 * starting with the MSB, and move each bit into the
260 			 * the 1st (2^1) bit position (this is the bit position
261 			 * corresponding to the MgmtData bit of the PhyCtrl
262 			 * register for the IPG).
263 			 *
264 			 * Example: ST = 01;
265 			 *
266 			 *          First write a '0' to bit 1 of the PhyCtrl
267 			 *          register, then write a '1' to bit 1 of the
268 			 *          PhyCtrl register.
269 			 *
270 			 * To do this, right shift the MSB of ST by the value:
271 			 * [field length - 1 - #ST bits already written]
272 			 * then left shift this result by 1.
273 			 */
274 			data  = (p[j].field >> (p[j].len - 1 - i)) << 1;
275 			data &= IPG_PC_MGMTDATA;
276 			data |= polarity | IPG_PC_MGMTDIR;
277 
278 			ipg_drive_phy_ctl_low_high(ioaddr, data);
279 		}
280 	}
281 
282 	send_three_state(ioaddr, polarity);
283 
284 	read_phy_bit(ioaddr, polarity);
285 
286 	/*
287 	 * For a read cycle, the bits for the next two fields (TA and
288 	 * DATA) are driven by the PHY (the IPG reads these bits).
289 	 */
290 	for (i = 0; i < p[6].len; i++) {
291 		p[6].field |=
292 		    (read_phy_bit(ioaddr, polarity) << (p[6].len - 1 - i));
293 	}
294 
295 	send_three_state(ioaddr, polarity);
296 	send_three_state(ioaddr, polarity);
297 	send_three_state(ioaddr, polarity);
298 	send_end(ioaddr, polarity);
299 
300 	/* Return the value of the DATA field. */
301 	return p[6].field;
302 }
303 
304 /*
305  * Write to a register from the Physical Layer device located
306  * on the IPG NIC, using the IPG PHYCTRL register.
307  */
mdio_write(struct net_device * dev,int phy_id,int phy_reg,int val)308 static void mdio_write(struct net_device *dev, int phy_id, int phy_reg, int val)
309 {
310 	void __iomem *ioaddr = ipg_ioaddr(dev);
311 	/*
312 	 * The GMII mangement frame structure for a read is as follows:
313 	 *
314 	 * |Preamble|st|op|phyad|regad|ta|      data      |idle|
315 	 * |< 32 1s>|01|10|AAAAA|RRRRR|z0|DDDDDDDDDDDDDDDD|z   |
316 	 *
317 	 * <32 1s> = 32 consecutive logic 1 values
318 	 * A = bit of Physical Layer device address (MSB first)
319 	 * R = bit of register address (MSB first)
320 	 * z = High impedance state
321 	 * D = bit of write data (MSB first)
322 	 *
323 	 * Transmission order is 'Preamble' field first, bits transmitted
324 	 * left to right (first to last).
325 	 */
326 	struct {
327 		u32 field;
328 		unsigned int len;
329 	} p[] = {
330 		{ GMII_PREAMBLE,	32 },	/* Preamble */
331 		{ GMII_ST,		2  },	/* ST */
332 		{ GMII_WRITE,		2  },	/* OP */
333 		{ phy_id,		5  },	/* PHYAD */
334 		{ phy_reg,		5  },	/* REGAD */
335 		{ 0x0002,		2  },	/* TA */
336 		{ val & 0xffff,		16 },	/* DATA */
337 		{ 0x0000,		1  }	/* IDLE */
338 	};
339 	unsigned int i, j;
340 	u8 polarity, data;
341 
342 	polarity  = ipg_r8(PHY_CTRL);
343 	polarity &= (IPG_PC_DUPLEX_POLARITY | IPG_PC_LINK_POLARITY);
344 
345 	/* Create the Preamble, ST, OP, PHYAD, and REGAD field. */
346 	for (j = 0; j < 7; j++) {
347 		for (i = 0; i < p[j].len; i++) {
348 			/* For each variable length field, the MSB must be
349 			 * transmitted first. Rotate through the field bits,
350 			 * starting with the MSB, and move each bit into the
351 			 * the 1st (2^1) bit position (this is the bit position
352 			 * corresponding to the MgmtData bit of the PhyCtrl
353 			 * register for the IPG).
354 			 *
355 			 * Example: ST = 01;
356 			 *
357 			 *          First write a '0' to bit 1 of the PhyCtrl
358 			 *          register, then write a '1' to bit 1 of the
359 			 *          PhyCtrl register.
360 			 *
361 			 * To do this, right shift the MSB of ST by the value:
362 			 * [field length - 1 - #ST bits already written]
363 			 * then left shift this result by 1.
364 			 */
365 			data  = (p[j].field >> (p[j].len - 1 - i)) << 1;
366 			data &= IPG_PC_MGMTDATA;
367 			data |= polarity | IPG_PC_MGMTDIR;
368 
369 			ipg_drive_phy_ctl_low_high(ioaddr, data);
370 		}
371 	}
372 
373 	/* The last cycle is a tri-state, so read from the PHY. */
374 	ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | polarity);
375 	ipg_r8(PHY_CTRL);
376 	ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | polarity);
377 }
378 
ipg_set_led_mode(struct net_device * dev)379 static void ipg_set_led_mode(struct net_device *dev)
380 {
381 	struct ipg_nic_private *sp = netdev_priv(dev);
382 	void __iomem *ioaddr = sp->ioaddr;
383 	u32 mode;
384 
385 	mode = ipg_r32(ASIC_CTRL);
386 	mode &= ~(IPG_AC_LED_MODE_BIT_1 | IPG_AC_LED_MODE | IPG_AC_LED_SPEED);
387 
388 	if ((sp->led_mode & 0x03) > 1)
389 		mode |= IPG_AC_LED_MODE_BIT_1;	/* Write Asic Control Bit 29 */
390 
391 	if ((sp->led_mode & 0x01) == 1)
392 		mode |= IPG_AC_LED_MODE;	/* Write Asic Control Bit 14 */
393 
394 	if ((sp->led_mode & 0x08) == 8)
395 		mode |= IPG_AC_LED_SPEED;	/* Write Asic Control Bit 27 */
396 
397 	ipg_w32(mode, ASIC_CTRL);
398 }
399 
ipg_set_phy_set(struct net_device * dev)400 static void ipg_set_phy_set(struct net_device *dev)
401 {
402 	struct ipg_nic_private *sp = netdev_priv(dev);
403 	void __iomem *ioaddr = sp->ioaddr;
404 	int physet;
405 
406 	physet = ipg_r8(PHY_SET);
407 	physet &= ~(IPG_PS_MEM_LENB9B | IPG_PS_MEM_LEN9 | IPG_PS_NON_COMPDET);
408 	physet |= ((sp->led_mode & 0x70) >> 4);
409 	ipg_w8(physet, PHY_SET);
410 }
411 
ipg_reset(struct net_device * dev,u32 resetflags)412 static int ipg_reset(struct net_device *dev, u32 resetflags)
413 {
414 	/* Assert functional resets via the IPG AsicCtrl
415 	 * register as specified by the 'resetflags' input
416 	 * parameter.
417 	 */
418 	void __iomem *ioaddr = ipg_ioaddr(dev);
419 	unsigned int timeout_count = 0;
420 
421 	IPG_DEBUG_MSG("_reset\n");
422 
423 	ipg_w32(ipg_r32(ASIC_CTRL) | resetflags, ASIC_CTRL);
424 
425 	/* Delay added to account for problem with 10Mbps reset. */
426 	mdelay(IPG_AC_RESETWAIT);
427 
428 	while (IPG_AC_RESET_BUSY & ipg_r32(ASIC_CTRL)) {
429 		mdelay(IPG_AC_RESETWAIT);
430 		if (++timeout_count > IPG_AC_RESET_TIMEOUT)
431 			return -ETIME;
432 	}
433 	/* Set LED Mode in Asic Control */
434 	ipg_set_led_mode(dev);
435 
436 	/* Set PHYSet Register Value */
437 	ipg_set_phy_set(dev);
438 	return 0;
439 }
440 
441 /* Find the GMII PHY address. */
ipg_find_phyaddr(struct net_device * dev)442 static int ipg_find_phyaddr(struct net_device *dev)
443 {
444 	unsigned int phyaddr, i;
445 
446 	for (i = 0; i < 32; i++) {
447 		u32 status;
448 
449 		/* Search for the correct PHY address among 32 possible. */
450 		phyaddr = (IPG_NIC_PHY_ADDRESS + i) % 32;
451 
452 		/* 10/22/03 Grace change verify from GMII_PHY_STATUS to
453 		   GMII_PHY_ID1
454 		 */
455 
456 		status = mdio_read(dev, phyaddr, MII_BMSR);
457 
458 		if ((status != 0xFFFF) && (status != 0))
459 			return phyaddr;
460 	}
461 
462 	return 0x1f;
463 }
464 
465 /*
466  * Configure IPG based on result of IEEE 802.3 PHY
467  * auto-negotiation.
468  */
ipg_config_autoneg(struct net_device * dev)469 static int ipg_config_autoneg(struct net_device *dev)
470 {
471 	struct ipg_nic_private *sp = netdev_priv(dev);
472 	void __iomem *ioaddr = sp->ioaddr;
473 	unsigned int txflowcontrol;
474 	unsigned int rxflowcontrol;
475 	unsigned int fullduplex;
476 	u32 mac_ctrl_val;
477 	u32 asicctrl;
478 	u8 phyctrl;
479 	const char *speed;
480 	const char *duplex;
481 	const char *tx_desc;
482 	const char *rx_desc;
483 
484 	IPG_DEBUG_MSG("_config_autoneg\n");
485 
486 	asicctrl = ipg_r32(ASIC_CTRL);
487 	phyctrl = ipg_r8(PHY_CTRL);
488 	mac_ctrl_val = ipg_r32(MAC_CTRL);
489 
490 	/* Set flags for use in resolving auto-negotiation, assuming
491 	 * non-1000Mbps, half duplex, no flow control.
492 	 */
493 	fullduplex = 0;
494 	txflowcontrol = 0;
495 	rxflowcontrol = 0;
496 
497 	/* To accommodate a problem in 10Mbps operation,
498 	 * set a global flag if PHY running in 10Mbps mode.
499 	 */
500 	sp->tenmbpsmode = 0;
501 
502 	/* Determine actual speed of operation. */
503 	switch (phyctrl & IPG_PC_LINK_SPEED) {
504 	case IPG_PC_LINK_SPEED_10MBPS:
505 		speed = "10Mbps";
506 		sp->tenmbpsmode = 1;
507 		break;
508 	case IPG_PC_LINK_SPEED_100MBPS:
509 		speed = "100Mbps";
510 		break;
511 	case IPG_PC_LINK_SPEED_1000MBPS:
512 		speed = "1000Mbps";
513 		break;
514 	default:
515 		speed = "undefined!";
516 		return 0;
517 	}
518 
519 	netdev_info(dev, "Link speed = %s\n", speed);
520 	if (sp->tenmbpsmode == 1)
521 		netdev_info(dev, "10Mbps operational mode enabled\n");
522 
523 	if (phyctrl & IPG_PC_DUPLEX_STATUS) {
524 		fullduplex = 1;
525 		txflowcontrol = 1;
526 		rxflowcontrol = 1;
527 	}
528 
529 	/* Configure full duplex, and flow control. */
530 	if (fullduplex == 1) {
531 
532 		/* Configure IPG for full duplex operation. */
533 
534 		duplex = "full";
535 
536 		mac_ctrl_val |= IPG_MC_DUPLEX_SELECT_FD;
537 
538 		if (txflowcontrol == 1) {
539 			tx_desc  = "";
540 			mac_ctrl_val |= IPG_MC_TX_FLOW_CONTROL_ENABLE;
541 		} else {
542 			tx_desc = "no ";
543 			mac_ctrl_val &= ~IPG_MC_TX_FLOW_CONTROL_ENABLE;
544 		}
545 
546 		if (rxflowcontrol == 1) {
547 			rx_desc = "";
548 			mac_ctrl_val |= IPG_MC_RX_FLOW_CONTROL_ENABLE;
549 		} else {
550 			rx_desc = "no ";
551 			mac_ctrl_val &= ~IPG_MC_RX_FLOW_CONTROL_ENABLE;
552 		}
553 	} else {
554 		duplex = "half";
555 		tx_desc = "no ";
556 		rx_desc = "no ";
557 		mac_ctrl_val &= (~IPG_MC_DUPLEX_SELECT_FD &
558 				 ~IPG_MC_TX_FLOW_CONTROL_ENABLE &
559 				 ~IPG_MC_RX_FLOW_CONTROL_ENABLE);
560 	}
561 
562 	netdev_info(dev, "setting %s duplex, %sTX, %sRX flow control\n",
563 		    duplex, tx_desc, rx_desc);
564 	ipg_w32(mac_ctrl_val, MAC_CTRL);
565 
566 	return 0;
567 }
568 
569 /* Determine and configure multicast operation and set
570  * receive mode for IPG.
571  */
ipg_nic_set_multicast_list(struct net_device * dev)572 static void ipg_nic_set_multicast_list(struct net_device *dev)
573 {
574 	void __iomem *ioaddr = ipg_ioaddr(dev);
575 	struct netdev_hw_addr *ha;
576 	unsigned int hashindex;
577 	u32 hashtable[2];
578 	u8 receivemode;
579 
580 	IPG_DEBUG_MSG("_nic_set_multicast_list\n");
581 
582 	receivemode = IPG_RM_RECEIVEUNICAST | IPG_RM_RECEIVEBROADCAST;
583 
584 	if (dev->flags & IFF_PROMISC) {
585 		/* NIC to be configured in promiscuous mode. */
586 		receivemode = IPG_RM_RECEIVEALLFRAMES;
587 	} else if ((dev->flags & IFF_ALLMULTI) ||
588 		   ((dev->flags & IFF_MULTICAST) &&
589 		    (netdev_mc_count(dev) > IPG_MULTICAST_HASHTABLE_SIZE))) {
590 		/* NIC to be configured to receive all multicast
591 		 * frames. */
592 		receivemode |= IPG_RM_RECEIVEMULTICAST;
593 	} else if ((dev->flags & IFF_MULTICAST) && !netdev_mc_empty(dev)) {
594 		/* NIC to be configured to receive selected
595 		 * multicast addresses. */
596 		receivemode |= IPG_RM_RECEIVEMULTICASTHASH;
597 	}
598 
599 	/* Calculate the bits to set for the 64 bit, IPG HASHTABLE.
600 	 * The IPG applies a cyclic-redundancy-check (the same CRC
601 	 * used to calculate the frame data FCS) to the destination
602 	 * address all incoming multicast frames whose destination
603 	 * address has the multicast bit set. The least significant
604 	 * 6 bits of the CRC result are used as an addressing index
605 	 * into the hash table. If the value of the bit addressed by
606 	 * this index is a 1, the frame is passed to the host system.
607 	 */
608 
609 	/* Clear hashtable. */
610 	hashtable[0] = 0x00000000;
611 	hashtable[1] = 0x00000000;
612 
613 	/* Cycle through all multicast addresses to filter. */
614 	netdev_for_each_mc_addr(ha, dev) {
615 		/* Calculate CRC result for each multicast address. */
616 		hashindex = crc32_le(0xffffffff, ha->addr,
617 				     ETH_ALEN);
618 
619 		/* Use only the least significant 6 bits. */
620 		hashindex = hashindex & 0x3F;
621 
622 		/* Within "hashtable", set bit number "hashindex"
623 		 * to a logic 1.
624 		 */
625 		set_bit(hashindex, (void *)hashtable);
626 	}
627 
628 	/* Write the value of the hashtable, to the 4, 16 bit
629 	 * HASHTABLE IPG registers.
630 	 */
631 	ipg_w32(hashtable[0], HASHTABLE_0);
632 	ipg_w32(hashtable[1], HASHTABLE_1);
633 
634 	ipg_w8(IPG_RM_RSVD_MASK & receivemode, RECEIVE_MODE);
635 
636 	IPG_DEBUG_MSG("ReceiveMode = %x\n", ipg_r8(RECEIVE_MODE));
637 }
638 
ipg_io_config(struct net_device * dev)639 static int ipg_io_config(struct net_device *dev)
640 {
641 	struct ipg_nic_private *sp = netdev_priv(dev);
642 	void __iomem *ioaddr = ipg_ioaddr(dev);
643 	u32 origmacctrl;
644 	u32 restoremacctrl;
645 
646 	IPG_DEBUG_MSG("_io_config\n");
647 
648 	origmacctrl = ipg_r32(MAC_CTRL);
649 
650 	restoremacctrl = origmacctrl | IPG_MC_STATISTICS_ENABLE;
651 
652 	/* Based on compilation option, determine if FCS is to be
653 	 * stripped on receive frames by IPG.
654 	 */
655 	if (!IPG_STRIP_FCS_ON_RX)
656 		restoremacctrl |= IPG_MC_RCV_FCS;
657 
658 	/* Determine if transmitter and/or receiver are
659 	 * enabled so we may restore MACCTRL correctly.
660 	 */
661 	if (origmacctrl & IPG_MC_TX_ENABLED)
662 		restoremacctrl |= IPG_MC_TX_ENABLE;
663 
664 	if (origmacctrl & IPG_MC_RX_ENABLED)
665 		restoremacctrl |= IPG_MC_RX_ENABLE;
666 
667 	/* Transmitter and receiver must be disabled before setting
668 	 * IFSSelect.
669 	 */
670 	ipg_w32((origmacctrl & (IPG_MC_RX_DISABLE | IPG_MC_TX_DISABLE)) &
671 		IPG_MC_RSVD_MASK, MAC_CTRL);
672 
673 	/* Now that transmitter and receiver are disabled, write
674 	 * to IFSSelect.
675 	 */
676 	ipg_w32((origmacctrl & IPG_MC_IFS_96BIT) & IPG_MC_RSVD_MASK, MAC_CTRL);
677 
678 	/* Set RECEIVEMODE register. */
679 	ipg_nic_set_multicast_list(dev);
680 
681 	ipg_w16(sp->max_rxframe_size, MAX_FRAME_SIZE);
682 
683 	ipg_w8(IPG_RXDMAPOLLPERIOD_VALUE,   RX_DMA_POLL_PERIOD);
684 	ipg_w8(IPG_RXDMAURGENTTHRESH_VALUE, RX_DMA_URGENT_THRESH);
685 	ipg_w8(IPG_RXDMABURSTTHRESH_VALUE,  RX_DMA_BURST_THRESH);
686 	ipg_w8(IPG_TXDMAPOLLPERIOD_VALUE,   TX_DMA_POLL_PERIOD);
687 	ipg_w8(IPG_TXDMAURGENTTHRESH_VALUE, TX_DMA_URGENT_THRESH);
688 	ipg_w8(IPG_TXDMABURSTTHRESH_VALUE,  TX_DMA_BURST_THRESH);
689 	ipg_w16((IPG_IE_HOST_ERROR | IPG_IE_TX_DMA_COMPLETE |
690 		 IPG_IE_TX_COMPLETE | IPG_IE_INT_REQUESTED |
691 		 IPG_IE_UPDATE_STATS | IPG_IE_LINK_EVENT |
692 		 IPG_IE_RX_DMA_COMPLETE | IPG_IE_RX_DMA_PRIORITY), INT_ENABLE);
693 	ipg_w16(IPG_FLOWONTHRESH_VALUE,  FLOW_ON_THRESH);
694 	ipg_w16(IPG_FLOWOFFTHRESH_VALUE, FLOW_OFF_THRESH);
695 
696 	/* IPG multi-frag frame bug workaround.
697 	 * Per silicon revision B3 eratta.
698 	 */
699 	ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0200, DEBUG_CTRL);
700 
701 	/* IPG TX poll now bug workaround.
702 	 * Per silicon revision B3 eratta.
703 	 */
704 	ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0010, DEBUG_CTRL);
705 
706 	/* IPG RX poll now bug workaround.
707 	 * Per silicon revision B3 eratta.
708 	 */
709 	ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0020, DEBUG_CTRL);
710 
711 	/* Now restore MACCTRL to original setting. */
712 	ipg_w32(IPG_MC_RSVD_MASK & restoremacctrl, MAC_CTRL);
713 
714 	/* Disable unused RMON statistics. */
715 	ipg_w32(IPG_RZ_ALL, RMON_STATISTICS_MASK);
716 
717 	/* Disable unused MIB statistics. */
718 	ipg_w32(IPG_SM_MACCONTROLFRAMESXMTD | IPG_SM_MACCONTROLFRAMESRCVD |
719 		IPG_SM_BCSTOCTETXMTOK_BCSTFRAMESXMTDOK | IPG_SM_TXJUMBOFRAMES |
720 		IPG_SM_MCSTOCTETXMTOK_MCSTFRAMESXMTDOK | IPG_SM_RXJUMBOFRAMES |
721 		IPG_SM_BCSTOCTETRCVDOK_BCSTFRAMESRCVDOK |
722 		IPG_SM_UDPCHECKSUMERRORS | IPG_SM_TCPCHECKSUMERRORS |
723 		IPG_SM_IPCHECKSUMERRORS, STATISTICS_MASK);
724 
725 	return 0;
726 }
727 
728 /*
729  * Create a receive buffer within system memory and update
730  * NIC private structure appropriately.
731  */
ipg_get_rxbuff(struct net_device * dev,int entry)732 static int ipg_get_rxbuff(struct net_device *dev, int entry)
733 {
734 	struct ipg_nic_private *sp = netdev_priv(dev);
735 	struct ipg_rx *rxfd = sp->rxd + entry;
736 	struct sk_buff *skb;
737 	u64 rxfragsize;
738 
739 	IPG_DEBUG_MSG("_get_rxbuff\n");
740 
741 	skb = netdev_alloc_skb_ip_align(dev, sp->rxsupport_size);
742 	if (!skb) {
743 		sp->rx_buff[entry] = NULL;
744 		return -ENOMEM;
745 	}
746 
747 	/* Associate the receive buffer with the IPG NIC. */
748 	skb->dev = dev;
749 
750 	/* Save the address of the sk_buff structure. */
751 	sp->rx_buff[entry] = skb;
752 
753 	rxfd->frag_info = cpu_to_le64(pci_map_single(sp->pdev, skb->data,
754 		sp->rx_buf_sz, PCI_DMA_FROMDEVICE));
755 
756 	/* Set the RFD fragment length. */
757 	rxfragsize = sp->rxfrag_size;
758 	rxfd->frag_info |= cpu_to_le64((rxfragsize << 48) & IPG_RFI_FRAGLEN);
759 
760 	return 0;
761 }
762 
init_rfdlist(struct net_device * dev)763 static int init_rfdlist(struct net_device *dev)
764 {
765 	struct ipg_nic_private *sp = netdev_priv(dev);
766 	void __iomem *ioaddr = sp->ioaddr;
767 	unsigned int i;
768 
769 	IPG_DEBUG_MSG("_init_rfdlist\n");
770 
771 	for (i = 0; i < IPG_RFDLIST_LENGTH; i++) {
772 		struct ipg_rx *rxfd = sp->rxd + i;
773 
774 		if (sp->rx_buff[i]) {
775 			pci_unmap_single(sp->pdev,
776 				le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
777 				sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
778 			dev_kfree_skb_irq(sp->rx_buff[i]);
779 			sp->rx_buff[i] = NULL;
780 		}
781 
782 		/* Clear out the RFS field. */
783 		rxfd->rfs = 0x0000000000000000;
784 
785 		if (ipg_get_rxbuff(dev, i) < 0) {
786 			/*
787 			 * A receive buffer was not ready, break the
788 			 * RFD list here.
789 			 */
790 			IPG_DEBUG_MSG("Cannot allocate Rx buffer\n");
791 
792 			/* Just in case we cannot allocate a single RFD.
793 			 * Should not occur.
794 			 */
795 			if (i == 0) {
796 				netdev_err(dev, "No memory available for RFD list\n");
797 				return -ENOMEM;
798 			}
799 		}
800 
801 		rxfd->next_desc = cpu_to_le64(sp->rxd_map +
802 			sizeof(struct ipg_rx)*(i + 1));
803 	}
804 	sp->rxd[i - 1].next_desc = cpu_to_le64(sp->rxd_map);
805 
806 	sp->rx_current = 0;
807 	sp->rx_dirty = 0;
808 
809 	/* Write the location of the RFDList to the IPG. */
810 	ipg_w32((u32) sp->rxd_map, RFD_LIST_PTR_0);
811 	ipg_w32(0x00000000, RFD_LIST_PTR_1);
812 
813 	return 0;
814 }
815 
init_tfdlist(struct net_device * dev)816 static void init_tfdlist(struct net_device *dev)
817 {
818 	struct ipg_nic_private *sp = netdev_priv(dev);
819 	void __iomem *ioaddr = sp->ioaddr;
820 	unsigned int i;
821 
822 	IPG_DEBUG_MSG("_init_tfdlist\n");
823 
824 	for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
825 		struct ipg_tx *txfd = sp->txd + i;
826 
827 		txfd->tfc = cpu_to_le64(IPG_TFC_TFDDONE);
828 
829 		if (sp->tx_buff[i]) {
830 			dev_kfree_skb_irq(sp->tx_buff[i]);
831 			sp->tx_buff[i] = NULL;
832 		}
833 
834 		txfd->next_desc = cpu_to_le64(sp->txd_map +
835 			sizeof(struct ipg_tx)*(i + 1));
836 	}
837 	sp->txd[i - 1].next_desc = cpu_to_le64(sp->txd_map);
838 
839 	sp->tx_current = 0;
840 	sp->tx_dirty = 0;
841 
842 	/* Write the location of the TFDList to the IPG. */
843 	IPG_DDEBUG_MSG("Starting TFDListPtr = %08x\n",
844 		       (u32) sp->txd_map);
845 	ipg_w32((u32) sp->txd_map, TFD_LIST_PTR_0);
846 	ipg_w32(0x00000000, TFD_LIST_PTR_1);
847 
848 	sp->reset_current_tfd = 1;
849 }
850 
851 /*
852  * Free all transmit buffers which have already been transferred
853  * via DMA to the IPG.
854  */
ipg_nic_txfree(struct net_device * dev)855 static void ipg_nic_txfree(struct net_device *dev)
856 {
857 	struct ipg_nic_private *sp = netdev_priv(dev);
858 	unsigned int released, pending, dirty;
859 
860 	IPG_DEBUG_MSG("_nic_txfree\n");
861 
862 	pending = sp->tx_current - sp->tx_dirty;
863 	dirty = sp->tx_dirty % IPG_TFDLIST_LENGTH;
864 
865 	for (released = 0; released < pending; released++) {
866 		struct sk_buff *skb = sp->tx_buff[dirty];
867 		struct ipg_tx *txfd = sp->txd + dirty;
868 
869 		IPG_DEBUG_MSG("TFC = %016lx\n", (unsigned long) txfd->tfc);
870 
871 		/* Look at each TFD's TFC field beginning
872 		 * at the last freed TFD up to the current TFD.
873 		 * If the TFDDone bit is set, free the associated
874 		 * buffer.
875 		 */
876 		if (!(txfd->tfc & cpu_to_le64(IPG_TFC_TFDDONE)))
877                         break;
878 
879 		/* Free the transmit buffer. */
880 		if (skb) {
881 			pci_unmap_single(sp->pdev,
882 				le64_to_cpu(txfd->frag_info) & ~IPG_TFI_FRAGLEN,
883 				skb->len, PCI_DMA_TODEVICE);
884 
885 			dev_kfree_skb_irq(skb);
886 
887 			sp->tx_buff[dirty] = NULL;
888 		}
889 		dirty = (dirty + 1) % IPG_TFDLIST_LENGTH;
890 	}
891 
892 	sp->tx_dirty += released;
893 
894 	if (netif_queue_stopped(dev) &&
895 	    (sp->tx_current != (sp->tx_dirty + IPG_TFDLIST_LENGTH))) {
896 		netif_wake_queue(dev);
897 	}
898 }
899 
ipg_tx_timeout(struct net_device * dev)900 static void ipg_tx_timeout(struct net_device *dev)
901 {
902 	struct ipg_nic_private *sp = netdev_priv(dev);
903 	void __iomem *ioaddr = sp->ioaddr;
904 
905 	ipg_reset(dev, IPG_AC_TX_RESET | IPG_AC_DMA | IPG_AC_NETWORK |
906 		  IPG_AC_FIFO);
907 
908 	spin_lock_irq(&sp->lock);
909 
910 	/* Re-configure after DMA reset. */
911 	if (ipg_io_config(dev) < 0)
912 		netdev_info(dev, "Error during re-configuration\n");
913 
914 	init_tfdlist(dev);
915 
916 	spin_unlock_irq(&sp->lock);
917 
918 	ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) & IPG_MC_RSVD_MASK,
919 		MAC_CTRL);
920 }
921 
922 /*
923  * For TxComplete interrupts, free all transmit
924  * buffers which have already been transferred via DMA
925  * to the IPG.
926  */
ipg_nic_txcleanup(struct net_device * dev)927 static void ipg_nic_txcleanup(struct net_device *dev)
928 {
929 	struct ipg_nic_private *sp = netdev_priv(dev);
930 	void __iomem *ioaddr = sp->ioaddr;
931 	unsigned int i;
932 
933 	IPG_DEBUG_MSG("_nic_txcleanup\n");
934 
935 	for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
936 		/* Reading the TXSTATUS register clears the
937 		 * TX_COMPLETE interrupt.
938 		 */
939 		u32 txstatusdword = ipg_r32(TX_STATUS);
940 
941 		IPG_DEBUG_MSG("TxStatus = %08x\n", txstatusdword);
942 
943 		/* Check for Transmit errors. Error bits only valid if
944 		 * TX_COMPLETE bit in the TXSTATUS register is a 1.
945 		 */
946 		if (!(txstatusdword & IPG_TS_TX_COMPLETE))
947 			break;
948 
949 		/* If in 10Mbps mode, indicate transmit is ready. */
950 		if (sp->tenmbpsmode) {
951 			netif_wake_queue(dev);
952 		}
953 
954 		/* Transmit error, increment stat counters. */
955 		if (txstatusdword & IPG_TS_TX_ERROR) {
956 			IPG_DEBUG_MSG("Transmit error\n");
957 			sp->stats.tx_errors++;
958 		}
959 
960 		/* Late collision, re-enable transmitter. */
961 		if (txstatusdword & IPG_TS_LATE_COLLISION) {
962 			IPG_DEBUG_MSG("Late collision on transmit\n");
963 			ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) &
964 				IPG_MC_RSVD_MASK, MAC_CTRL);
965 		}
966 
967 		/* Maximum collisions, re-enable transmitter. */
968 		if (txstatusdword & IPG_TS_TX_MAX_COLL) {
969 			IPG_DEBUG_MSG("Maximum collisions on transmit\n");
970 			ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) &
971 				IPG_MC_RSVD_MASK, MAC_CTRL);
972 		}
973 
974 		/* Transmit underrun, reset and re-enable
975 		 * transmitter.
976 		 */
977 		if (txstatusdword & IPG_TS_TX_UNDERRUN) {
978 			IPG_DEBUG_MSG("Transmitter underrun\n");
979 			sp->stats.tx_fifo_errors++;
980 			ipg_reset(dev, IPG_AC_TX_RESET | IPG_AC_DMA |
981 				  IPG_AC_NETWORK | IPG_AC_FIFO);
982 
983 			/* Re-configure after DMA reset. */
984 			if (ipg_io_config(dev) < 0) {
985 				netdev_info(dev, "Error during re-configuration\n");
986 			}
987 			init_tfdlist(dev);
988 
989 			ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) &
990 				IPG_MC_RSVD_MASK, MAC_CTRL);
991 		}
992 	}
993 
994 	ipg_nic_txfree(dev);
995 }
996 
997 /* Provides statistical information about the IPG NIC. */
ipg_nic_get_stats(struct net_device * dev)998 static struct net_device_stats *ipg_nic_get_stats(struct net_device *dev)
999 {
1000 	struct ipg_nic_private *sp = netdev_priv(dev);
1001 	void __iomem *ioaddr = sp->ioaddr;
1002 	u16 temp1;
1003 	u16 temp2;
1004 
1005 	IPG_DEBUG_MSG("_nic_get_stats\n");
1006 
1007 	/* Check to see if the NIC has been initialized via nic_open,
1008 	 * before trying to read statistic registers.
1009 	 */
1010 	if (!test_bit(__LINK_STATE_START, &dev->state))
1011 		return &sp->stats;
1012 
1013 	sp->stats.rx_packets += ipg_r32(IPG_FRAMESRCVDOK);
1014 	sp->stats.tx_packets += ipg_r32(IPG_FRAMESXMTDOK);
1015 	sp->stats.rx_bytes += ipg_r32(IPG_OCTETRCVOK);
1016 	sp->stats.tx_bytes += ipg_r32(IPG_OCTETXMTOK);
1017 	temp1 = ipg_r16(IPG_FRAMESLOSTRXERRORS);
1018 	sp->stats.rx_errors += temp1;
1019 	sp->stats.rx_missed_errors += temp1;
1020 	temp1 = ipg_r32(IPG_SINGLECOLFRAMES) + ipg_r32(IPG_MULTICOLFRAMES) +
1021 		ipg_r32(IPG_LATECOLLISIONS);
1022 	temp2 = ipg_r16(IPG_CARRIERSENSEERRORS);
1023 	sp->stats.collisions += temp1;
1024 	sp->stats.tx_dropped += ipg_r16(IPG_FRAMESABORTXSCOLLS);
1025 	sp->stats.tx_errors += ipg_r16(IPG_FRAMESWEXDEFERRAL) +
1026 		ipg_r32(IPG_FRAMESWDEFERREDXMT) + temp1 + temp2;
1027 	sp->stats.multicast += ipg_r32(IPG_MCSTOCTETRCVDOK);
1028 
1029 	/* detailed tx_errors */
1030 	sp->stats.tx_carrier_errors += temp2;
1031 
1032 	/* detailed rx_errors */
1033 	sp->stats.rx_length_errors += ipg_r16(IPG_INRANGELENGTHERRORS) +
1034 		ipg_r16(IPG_FRAMETOOLONGERRRORS);
1035 	sp->stats.rx_crc_errors += ipg_r16(IPG_FRAMECHECKSEQERRORS);
1036 
1037 	/* Unutilized IPG statistic registers. */
1038 	ipg_r32(IPG_MCSTFRAMESRCVDOK);
1039 
1040 	return &sp->stats;
1041 }
1042 
1043 /* Restore used receive buffers. */
ipg_nic_rxrestore(struct net_device * dev)1044 static int ipg_nic_rxrestore(struct net_device *dev)
1045 {
1046 	struct ipg_nic_private *sp = netdev_priv(dev);
1047 	const unsigned int curr = sp->rx_current;
1048 	unsigned int dirty = sp->rx_dirty;
1049 
1050 	IPG_DEBUG_MSG("_nic_rxrestore\n");
1051 
1052 	for (dirty = sp->rx_dirty; curr - dirty > 0; dirty++) {
1053 		unsigned int entry = dirty % IPG_RFDLIST_LENGTH;
1054 
1055 		/* rx_copybreak may poke hole here and there. */
1056 		if (sp->rx_buff[entry])
1057 			continue;
1058 
1059 		/* Generate a new receive buffer to replace the
1060 		 * current buffer (which will be released by the
1061 		 * Linux system).
1062 		 */
1063 		if (ipg_get_rxbuff(dev, entry) < 0) {
1064 			IPG_DEBUG_MSG("Cannot allocate new Rx buffer\n");
1065 
1066 			break;
1067 		}
1068 
1069 		/* Reset the RFS field. */
1070 		sp->rxd[entry].rfs = 0x0000000000000000;
1071 	}
1072 	sp->rx_dirty = dirty;
1073 
1074 	return 0;
1075 }
1076 
1077 /* use jumboindex and jumbosize to control jumbo frame status
1078  * initial status is jumboindex=-1 and jumbosize=0
1079  * 1. jumboindex = -1 and jumbosize=0 : previous jumbo frame has been done.
1080  * 2. jumboindex != -1 and jumbosize != 0 : jumbo frame is not over size and receiving
1081  * 3. jumboindex = -1 and jumbosize != 0 : jumbo frame is over size, already dump
1082  *               previous receiving and need to continue dumping the current one
1083  */
1084 enum {
1085 	NORMAL_PACKET,
1086 	ERROR_PACKET
1087 };
1088 
1089 enum {
1090 	FRAME_NO_START_NO_END	= 0,
1091 	FRAME_WITH_START		= 1,
1092 	FRAME_WITH_END		= 10,
1093 	FRAME_WITH_START_WITH_END = 11
1094 };
1095 
ipg_nic_rx_free_skb(struct net_device * dev)1096 static void ipg_nic_rx_free_skb(struct net_device *dev)
1097 {
1098 	struct ipg_nic_private *sp = netdev_priv(dev);
1099 	unsigned int entry = sp->rx_current % IPG_RFDLIST_LENGTH;
1100 
1101 	if (sp->rx_buff[entry]) {
1102 		struct ipg_rx *rxfd = sp->rxd + entry;
1103 
1104 		pci_unmap_single(sp->pdev,
1105 			le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
1106 			sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1107 		dev_kfree_skb_irq(sp->rx_buff[entry]);
1108 		sp->rx_buff[entry] = NULL;
1109 	}
1110 }
1111 
ipg_nic_rx_check_frame_type(struct net_device * dev)1112 static int ipg_nic_rx_check_frame_type(struct net_device *dev)
1113 {
1114 	struct ipg_nic_private *sp = netdev_priv(dev);
1115 	struct ipg_rx *rxfd = sp->rxd + (sp->rx_current % IPG_RFDLIST_LENGTH);
1116 	int type = FRAME_NO_START_NO_END;
1117 
1118 	if (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMESTART)
1119 		type += FRAME_WITH_START;
1120 	if (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMEEND)
1121 		type += FRAME_WITH_END;
1122 	return type;
1123 }
1124 
ipg_nic_rx_check_error(struct net_device * dev)1125 static int ipg_nic_rx_check_error(struct net_device *dev)
1126 {
1127 	struct ipg_nic_private *sp = netdev_priv(dev);
1128 	unsigned int entry = sp->rx_current % IPG_RFDLIST_LENGTH;
1129 	struct ipg_rx *rxfd = sp->rxd + entry;
1130 
1131 	if (IPG_DROP_ON_RX_ETH_ERRORS && (le64_to_cpu(rxfd->rfs) &
1132 	     (IPG_RFS_RXFIFOOVERRUN | IPG_RFS_RXRUNTFRAME |
1133 	      IPG_RFS_RXALIGNMENTERROR | IPG_RFS_RXFCSERROR |
1134 	      IPG_RFS_RXOVERSIZEDFRAME | IPG_RFS_RXLENGTHERROR))) {
1135 		IPG_DEBUG_MSG("Rx error, RFS = %016lx\n",
1136 			      (unsigned long) rxfd->rfs);
1137 
1138 		/* Increment general receive error statistic. */
1139 		sp->stats.rx_errors++;
1140 
1141 		/* Increment detailed receive error statistics. */
1142 		if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFIFOOVERRUN) {
1143 			IPG_DEBUG_MSG("RX FIFO overrun occurred\n");
1144 
1145 			sp->stats.rx_fifo_errors++;
1146 		}
1147 
1148 		if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXRUNTFRAME) {
1149 			IPG_DEBUG_MSG("RX runt occurred\n");
1150 			sp->stats.rx_length_errors++;
1151 		}
1152 
1153 		/* Do nothing for IPG_RFS_RXOVERSIZEDFRAME,
1154 		 * error count handled by a IPG statistic register.
1155 		 */
1156 
1157 		if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXALIGNMENTERROR) {
1158 			IPG_DEBUG_MSG("RX alignment error occurred\n");
1159 			sp->stats.rx_frame_errors++;
1160 		}
1161 
1162 		/* Do nothing for IPG_RFS_RXFCSERROR, error count
1163 		 * handled by a IPG statistic register.
1164 		 */
1165 
1166 		/* Free the memory associated with the RX
1167 		 * buffer since it is erroneous and we will
1168 		 * not pass it to higher layer processes.
1169 		 */
1170 		if (sp->rx_buff[entry]) {
1171 			pci_unmap_single(sp->pdev,
1172 				le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
1173 				sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1174 
1175 			dev_kfree_skb_irq(sp->rx_buff[entry]);
1176 			sp->rx_buff[entry] = NULL;
1177 		}
1178 		return ERROR_PACKET;
1179 	}
1180 	return NORMAL_PACKET;
1181 }
1182 
ipg_nic_rx_with_start_and_end(struct net_device * dev,struct ipg_nic_private * sp,struct ipg_rx * rxfd,unsigned entry)1183 static void ipg_nic_rx_with_start_and_end(struct net_device *dev,
1184 					  struct ipg_nic_private *sp,
1185 					  struct ipg_rx *rxfd, unsigned entry)
1186 {
1187 	struct ipg_jumbo *jumbo = &sp->jumbo;
1188 	struct sk_buff *skb;
1189 	int framelen;
1190 
1191 	if (jumbo->found_start) {
1192 		dev_kfree_skb_irq(jumbo->skb);
1193 		jumbo->found_start = 0;
1194 		jumbo->current_size = 0;
1195 		jumbo->skb = NULL;
1196 	}
1197 
1198 	/* 1: found error, 0 no error */
1199 	if (ipg_nic_rx_check_error(dev) != NORMAL_PACKET)
1200 		return;
1201 
1202 	skb = sp->rx_buff[entry];
1203 	if (!skb)
1204 		return;
1205 
1206 	/* accept this frame and send to upper layer */
1207 	framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN;
1208 	if (framelen > sp->rxfrag_size)
1209 		framelen = sp->rxfrag_size;
1210 
1211 	skb_put(skb, framelen);
1212 	skb->protocol = eth_type_trans(skb, dev);
1213 	skb_checksum_none_assert(skb);
1214 	netif_rx(skb);
1215 	sp->rx_buff[entry] = NULL;
1216 }
1217 
ipg_nic_rx_with_start(struct net_device * dev,struct ipg_nic_private * sp,struct ipg_rx * rxfd,unsigned entry)1218 static void ipg_nic_rx_with_start(struct net_device *dev,
1219 				  struct ipg_nic_private *sp,
1220 				  struct ipg_rx *rxfd, unsigned entry)
1221 {
1222 	struct ipg_jumbo *jumbo = &sp->jumbo;
1223 	struct pci_dev *pdev = sp->pdev;
1224 	struct sk_buff *skb;
1225 
1226 	/* 1: found error, 0 no error */
1227 	if (ipg_nic_rx_check_error(dev) != NORMAL_PACKET)
1228 		return;
1229 
1230 	/* accept this frame and send to upper layer */
1231 	skb = sp->rx_buff[entry];
1232 	if (!skb)
1233 		return;
1234 
1235 	if (jumbo->found_start)
1236 		dev_kfree_skb_irq(jumbo->skb);
1237 
1238 	pci_unmap_single(pdev, le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
1239 			 sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1240 
1241 	skb_put(skb, sp->rxfrag_size);
1242 
1243 	jumbo->found_start = 1;
1244 	jumbo->current_size = sp->rxfrag_size;
1245 	jumbo->skb = skb;
1246 
1247 	sp->rx_buff[entry] = NULL;
1248 }
1249 
ipg_nic_rx_with_end(struct net_device * dev,struct ipg_nic_private * sp,struct ipg_rx * rxfd,unsigned entry)1250 static void ipg_nic_rx_with_end(struct net_device *dev,
1251 				struct ipg_nic_private *sp,
1252 				struct ipg_rx *rxfd, unsigned entry)
1253 {
1254 	struct ipg_jumbo *jumbo = &sp->jumbo;
1255 
1256 	/* 1: found error, 0 no error */
1257 	if (ipg_nic_rx_check_error(dev) == NORMAL_PACKET) {
1258 		struct sk_buff *skb = sp->rx_buff[entry];
1259 
1260 		if (!skb)
1261 			return;
1262 
1263 		if (jumbo->found_start) {
1264 			int framelen, endframelen;
1265 
1266 			framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN;
1267 
1268 			endframelen = framelen - jumbo->current_size;
1269 			if (framelen > sp->rxsupport_size)
1270 				dev_kfree_skb_irq(jumbo->skb);
1271 			else {
1272 				memcpy(skb_put(jumbo->skb, endframelen),
1273 				       skb->data, endframelen);
1274 
1275 				jumbo->skb->protocol =
1276 				    eth_type_trans(jumbo->skb, dev);
1277 
1278 				skb_checksum_none_assert(jumbo->skb);
1279 				netif_rx(jumbo->skb);
1280 			}
1281 		}
1282 
1283 		jumbo->found_start = 0;
1284 		jumbo->current_size = 0;
1285 		jumbo->skb = NULL;
1286 
1287 		ipg_nic_rx_free_skb(dev);
1288 	} else {
1289 		dev_kfree_skb_irq(jumbo->skb);
1290 		jumbo->found_start = 0;
1291 		jumbo->current_size = 0;
1292 		jumbo->skb = NULL;
1293 	}
1294 }
1295 
ipg_nic_rx_no_start_no_end(struct net_device * dev,struct ipg_nic_private * sp,struct ipg_rx * rxfd,unsigned entry)1296 static void ipg_nic_rx_no_start_no_end(struct net_device *dev,
1297 				       struct ipg_nic_private *sp,
1298 				       struct ipg_rx *rxfd, unsigned entry)
1299 {
1300 	struct ipg_jumbo *jumbo = &sp->jumbo;
1301 
1302 	/* 1: found error, 0 no error */
1303 	if (ipg_nic_rx_check_error(dev) == NORMAL_PACKET) {
1304 		struct sk_buff *skb = sp->rx_buff[entry];
1305 
1306 		if (skb) {
1307 			if (jumbo->found_start) {
1308 				jumbo->current_size += sp->rxfrag_size;
1309 				if (jumbo->current_size <= sp->rxsupport_size) {
1310 					memcpy(skb_put(jumbo->skb,
1311 						       sp->rxfrag_size),
1312 					       skb->data, sp->rxfrag_size);
1313 				}
1314 			}
1315 			ipg_nic_rx_free_skb(dev);
1316 		}
1317 	} else {
1318 		dev_kfree_skb_irq(jumbo->skb);
1319 		jumbo->found_start = 0;
1320 		jumbo->current_size = 0;
1321 		jumbo->skb = NULL;
1322 	}
1323 }
1324 
ipg_nic_rx_jumbo(struct net_device * dev)1325 static int ipg_nic_rx_jumbo(struct net_device *dev)
1326 {
1327 	struct ipg_nic_private *sp = netdev_priv(dev);
1328 	unsigned int curr = sp->rx_current;
1329 	void __iomem *ioaddr = sp->ioaddr;
1330 	unsigned int i;
1331 
1332 	IPG_DEBUG_MSG("_nic_rx\n");
1333 
1334 	for (i = 0; i < IPG_MAXRFDPROCESS_COUNT; i++, curr++) {
1335 		unsigned int entry = curr % IPG_RFDLIST_LENGTH;
1336 		struct ipg_rx *rxfd = sp->rxd + entry;
1337 
1338 		if (!(rxfd->rfs & cpu_to_le64(IPG_RFS_RFDDONE)))
1339 			break;
1340 
1341 		switch (ipg_nic_rx_check_frame_type(dev)) {
1342 		case FRAME_WITH_START_WITH_END:
1343 			ipg_nic_rx_with_start_and_end(dev, sp, rxfd, entry);
1344 			break;
1345 		case FRAME_WITH_START:
1346 			ipg_nic_rx_with_start(dev, sp, rxfd, entry);
1347 			break;
1348 		case FRAME_WITH_END:
1349 			ipg_nic_rx_with_end(dev, sp, rxfd, entry);
1350 			break;
1351 		case FRAME_NO_START_NO_END:
1352 			ipg_nic_rx_no_start_no_end(dev, sp, rxfd, entry);
1353 			break;
1354 		}
1355 	}
1356 
1357 	sp->rx_current = curr;
1358 
1359 	if (i == IPG_MAXRFDPROCESS_COUNT) {
1360 		/* There are more RFDs to process, however the
1361 		 * allocated amount of RFD processing time has
1362 		 * expired. Assert Interrupt Requested to make
1363 		 * sure we come back to process the remaining RFDs.
1364 		 */
1365 		ipg_w32(ipg_r32(ASIC_CTRL) | IPG_AC_INT_REQUEST, ASIC_CTRL);
1366 	}
1367 
1368 	ipg_nic_rxrestore(dev);
1369 
1370 	return 0;
1371 }
1372 
ipg_nic_rx(struct net_device * dev)1373 static int ipg_nic_rx(struct net_device *dev)
1374 {
1375 	/* Transfer received Ethernet frames to higher network layers. */
1376 	struct ipg_nic_private *sp = netdev_priv(dev);
1377 	unsigned int curr = sp->rx_current;
1378 	void __iomem *ioaddr = sp->ioaddr;
1379 	struct ipg_rx *rxfd;
1380 	unsigned int i;
1381 
1382 	IPG_DEBUG_MSG("_nic_rx\n");
1383 
1384 #define __RFS_MASK \
1385 	cpu_to_le64(IPG_RFS_RFDDONE | IPG_RFS_FRAMESTART | IPG_RFS_FRAMEEND)
1386 
1387 	for (i = 0; i < IPG_MAXRFDPROCESS_COUNT; i++, curr++) {
1388 		unsigned int entry = curr % IPG_RFDLIST_LENGTH;
1389 		struct sk_buff *skb = sp->rx_buff[entry];
1390 		unsigned int framelen;
1391 
1392 		rxfd = sp->rxd + entry;
1393 
1394 		if (((rxfd->rfs & __RFS_MASK) != __RFS_MASK) || !skb)
1395 			break;
1396 
1397 		/* Get received frame length. */
1398 		framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN;
1399 
1400 		/* Check for jumbo frame arrival with too small
1401 		 * RXFRAG_SIZE.
1402 		 */
1403 		if (framelen > sp->rxfrag_size) {
1404 			IPG_DEBUG_MSG
1405 			    ("RFS FrameLen > allocated fragment size\n");
1406 
1407 			framelen = sp->rxfrag_size;
1408 		}
1409 
1410 		if ((IPG_DROP_ON_RX_ETH_ERRORS && (le64_to_cpu(rxfd->rfs) &
1411 		       (IPG_RFS_RXFIFOOVERRUN | IPG_RFS_RXRUNTFRAME |
1412 			IPG_RFS_RXALIGNMENTERROR | IPG_RFS_RXFCSERROR |
1413 			IPG_RFS_RXOVERSIZEDFRAME | IPG_RFS_RXLENGTHERROR)))) {
1414 
1415 			IPG_DEBUG_MSG("Rx error, RFS = %016lx\n",
1416 				      (unsigned long int) rxfd->rfs);
1417 
1418 			/* Increment general receive error statistic. */
1419 			sp->stats.rx_errors++;
1420 
1421 			/* Increment detailed receive error statistics. */
1422 			if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFIFOOVERRUN) {
1423 				IPG_DEBUG_MSG("RX FIFO overrun occurred\n");
1424 				sp->stats.rx_fifo_errors++;
1425 			}
1426 
1427 			if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXRUNTFRAME) {
1428 				IPG_DEBUG_MSG("RX runt occurred\n");
1429 				sp->stats.rx_length_errors++;
1430 			}
1431 
1432 			if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXOVERSIZEDFRAME) ;
1433 			/* Do nothing, error count handled by a IPG
1434 			 * statistic register.
1435 			 */
1436 
1437 			if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXALIGNMENTERROR) {
1438 				IPG_DEBUG_MSG("RX alignment error occurred\n");
1439 				sp->stats.rx_frame_errors++;
1440 			}
1441 
1442 			if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFCSERROR) ;
1443 			/* Do nothing, error count handled by a IPG
1444 			 * statistic register.
1445 			 */
1446 
1447 			/* Free the memory associated with the RX
1448 			 * buffer since it is erroneous and we will
1449 			 * not pass it to higher layer processes.
1450 			 */
1451 			if (skb) {
1452 				__le64 info = rxfd->frag_info;
1453 
1454 				pci_unmap_single(sp->pdev,
1455 					le64_to_cpu(info) & ~IPG_RFI_FRAGLEN,
1456 					sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1457 
1458 				dev_kfree_skb_irq(skb);
1459 			}
1460 		} else {
1461 
1462 			/* Adjust the new buffer length to accommodate the size
1463 			 * of the received frame.
1464 			 */
1465 			skb_put(skb, framelen);
1466 
1467 			/* Set the buffer's protocol field to Ethernet. */
1468 			skb->protocol = eth_type_trans(skb, dev);
1469 
1470 			/* The IPG encountered an error with (or
1471 			 * there were no) IP/TCP/UDP checksums.
1472 			 * This may or may not indicate an invalid
1473 			 * IP/TCP/UDP frame was received. Let the
1474 			 * upper layer decide.
1475 			 */
1476 			skb_checksum_none_assert(skb);
1477 
1478 			/* Hand off frame for higher layer processing.
1479 			 * The function netif_rx() releases the sk_buff
1480 			 * when processing completes.
1481 			 */
1482 			netif_rx(skb);
1483 		}
1484 
1485 		/* Assure RX buffer is not reused by IPG. */
1486 		sp->rx_buff[entry] = NULL;
1487 	}
1488 
1489 	/*
1490 	 * If there are more RFDs to process and the allocated amount of RFD
1491 	 * processing time has expired, assert Interrupt Requested to make
1492 	 * sure we come back to process the remaining RFDs.
1493 	 */
1494 	if (i == IPG_MAXRFDPROCESS_COUNT)
1495 		ipg_w32(ipg_r32(ASIC_CTRL) | IPG_AC_INT_REQUEST, ASIC_CTRL);
1496 
1497 #ifdef IPG_DEBUG
1498 	/* Check if the RFD list contained no receive frame data. */
1499 	if (!i)
1500 		sp->EmptyRFDListCount++;
1501 #endif
1502 	while ((le64_to_cpu(rxfd->rfs) & IPG_RFS_RFDDONE) &&
1503 	       !((le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMESTART) &&
1504 		 (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMEEND))) {
1505 		unsigned int entry = curr++ % IPG_RFDLIST_LENGTH;
1506 
1507 		rxfd = sp->rxd + entry;
1508 
1509 		IPG_DEBUG_MSG("Frame requires multiple RFDs\n");
1510 
1511 		/* An unexpected event, additional code needed to handle
1512 		 * properly. So for the time being, just disregard the
1513 		 * frame.
1514 		 */
1515 
1516 		/* Free the memory associated with the RX
1517 		 * buffer since it is erroneous and we will
1518 		 * not pass it to higher layer processes.
1519 		 */
1520 		if (sp->rx_buff[entry]) {
1521 			pci_unmap_single(sp->pdev,
1522 				le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
1523 				sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1524 			dev_kfree_skb_irq(sp->rx_buff[entry]);
1525 		}
1526 
1527 		/* Assure RX buffer is not reused by IPG. */
1528 		sp->rx_buff[entry] = NULL;
1529 	}
1530 
1531 	sp->rx_current = curr;
1532 
1533 	/* Check to see if there are a minimum number of used
1534 	 * RFDs before restoring any (should improve performance.)
1535 	 */
1536 	if ((curr - sp->rx_dirty) >= IPG_MINUSEDRFDSTOFREE)
1537 		ipg_nic_rxrestore(dev);
1538 
1539 	return 0;
1540 }
1541 
ipg_reset_after_host_error(struct work_struct * work)1542 static void ipg_reset_after_host_error(struct work_struct *work)
1543 {
1544 	struct ipg_nic_private *sp =
1545 		container_of(work, struct ipg_nic_private, task.work);
1546 	struct net_device *dev = sp->dev;
1547 
1548 	/*
1549 	 * Acknowledge HostError interrupt by resetting
1550 	 * IPG DMA and HOST.
1551 	 */
1552 	ipg_reset(dev, IPG_AC_GLOBAL_RESET | IPG_AC_HOST | IPG_AC_DMA);
1553 
1554 	init_rfdlist(dev);
1555 	init_tfdlist(dev);
1556 
1557 	if (ipg_io_config(dev) < 0) {
1558 		netdev_info(dev, "Cannot recover from PCI error\n");
1559 		schedule_delayed_work(&sp->task, HZ);
1560 	}
1561 }
1562 
ipg_interrupt_handler(int irq,void * dev_inst)1563 static irqreturn_t ipg_interrupt_handler(int irq, void *dev_inst)
1564 {
1565 	struct net_device *dev = dev_inst;
1566 	struct ipg_nic_private *sp = netdev_priv(dev);
1567 	void __iomem *ioaddr = sp->ioaddr;
1568 	unsigned int handled = 0;
1569 	u16 status;
1570 
1571 	IPG_DEBUG_MSG("_interrupt_handler\n");
1572 
1573 	if (sp->is_jumbo)
1574 		ipg_nic_rxrestore(dev);
1575 
1576 	spin_lock(&sp->lock);
1577 
1578 	/* Get interrupt source information, and acknowledge
1579 	 * some (i.e. TxDMAComplete, RxDMAComplete, RxEarly,
1580 	 * IntRequested, MacControlFrame, LinkEvent) interrupts
1581 	 * if issued. Also, all IPG interrupts are disabled by
1582 	 * reading IntStatusAck.
1583 	 */
1584 	status = ipg_r16(INT_STATUS_ACK);
1585 
1586 	IPG_DEBUG_MSG("IntStatusAck = %04x\n", status);
1587 
1588 	/* Shared IRQ of remove event. */
1589 	if (!(status & IPG_IS_RSVD_MASK))
1590 		goto out_enable;
1591 
1592 	handled = 1;
1593 
1594 	if (unlikely(!netif_running(dev)))
1595 		goto out_unlock;
1596 
1597 	/* If RFDListEnd interrupt, restore all used RFDs. */
1598 	if (status & IPG_IS_RFD_LIST_END) {
1599 		IPG_DEBUG_MSG("RFDListEnd Interrupt\n");
1600 
1601 		/* The RFD list end indicates an RFD was encountered
1602 		 * with a 0 NextPtr, or with an RFDDone bit set to 1
1603 		 * (indicating the RFD is not read for use by the
1604 		 * IPG.) Try to restore all RFDs.
1605 		 */
1606 		ipg_nic_rxrestore(dev);
1607 
1608 #ifdef IPG_DEBUG
1609 		/* Increment the RFDlistendCount counter. */
1610 		sp->RFDlistendCount++;
1611 #endif
1612 	}
1613 
1614 	/* If RFDListEnd, RxDMAPriority, RxDMAComplete, or
1615 	 * IntRequested interrupt, process received frames. */
1616 	if ((status & IPG_IS_RX_DMA_PRIORITY) ||
1617 	    (status & IPG_IS_RFD_LIST_END) ||
1618 	    (status & IPG_IS_RX_DMA_COMPLETE) ||
1619 	    (status & IPG_IS_INT_REQUESTED)) {
1620 #ifdef IPG_DEBUG
1621 		/* Increment the RFD list checked counter if interrupted
1622 		 * only to check the RFD list. */
1623 		if (status & (~(IPG_IS_RX_DMA_PRIORITY | IPG_IS_RFD_LIST_END |
1624 				IPG_IS_RX_DMA_COMPLETE | IPG_IS_INT_REQUESTED) &
1625 			       (IPG_IS_HOST_ERROR | IPG_IS_TX_DMA_COMPLETE |
1626 				IPG_IS_LINK_EVENT | IPG_IS_TX_COMPLETE |
1627 				IPG_IS_UPDATE_STATS)))
1628 			sp->RFDListCheckedCount++;
1629 #endif
1630 
1631 		if (sp->is_jumbo)
1632 			ipg_nic_rx_jumbo(dev);
1633 		else
1634 			ipg_nic_rx(dev);
1635 	}
1636 
1637 	/* If TxDMAComplete interrupt, free used TFDs. */
1638 	if (status & IPG_IS_TX_DMA_COMPLETE)
1639 		ipg_nic_txfree(dev);
1640 
1641 	/* TxComplete interrupts indicate one of numerous actions.
1642 	 * Determine what action to take based on TXSTATUS register.
1643 	 */
1644 	if (status & IPG_IS_TX_COMPLETE)
1645 		ipg_nic_txcleanup(dev);
1646 
1647 	/* If UpdateStats interrupt, update Linux Ethernet statistics */
1648 	if (status & IPG_IS_UPDATE_STATS)
1649 		ipg_nic_get_stats(dev);
1650 
1651 	/* If HostError interrupt, reset IPG. */
1652 	if (status & IPG_IS_HOST_ERROR) {
1653 		IPG_DDEBUG_MSG("HostError Interrupt\n");
1654 
1655 		schedule_delayed_work(&sp->task, 0);
1656 	}
1657 
1658 	/* If LinkEvent interrupt, resolve autonegotiation. */
1659 	if (status & IPG_IS_LINK_EVENT) {
1660 		if (ipg_config_autoneg(dev) < 0)
1661 			netdev_info(dev, "Auto-negotiation error\n");
1662 	}
1663 
1664 	/* If MACCtrlFrame interrupt, do nothing. */
1665 	if (status & IPG_IS_MAC_CTRL_FRAME)
1666 		IPG_DEBUG_MSG("MACCtrlFrame interrupt\n");
1667 
1668 	/* If RxComplete interrupt, do nothing. */
1669 	if (status & IPG_IS_RX_COMPLETE)
1670 		IPG_DEBUG_MSG("RxComplete interrupt\n");
1671 
1672 	/* If RxEarly interrupt, do nothing. */
1673 	if (status & IPG_IS_RX_EARLY)
1674 		IPG_DEBUG_MSG("RxEarly interrupt\n");
1675 
1676 out_enable:
1677 	/* Re-enable IPG interrupts. */
1678 	ipg_w16(IPG_IE_TX_DMA_COMPLETE | IPG_IE_RX_DMA_COMPLETE |
1679 		IPG_IE_HOST_ERROR | IPG_IE_INT_REQUESTED | IPG_IE_TX_COMPLETE |
1680 		IPG_IE_LINK_EVENT | IPG_IE_UPDATE_STATS, INT_ENABLE);
1681 out_unlock:
1682 	spin_unlock(&sp->lock);
1683 
1684 	return IRQ_RETVAL(handled);
1685 }
1686 
ipg_rx_clear(struct ipg_nic_private * sp)1687 static void ipg_rx_clear(struct ipg_nic_private *sp)
1688 {
1689 	unsigned int i;
1690 
1691 	for (i = 0; i < IPG_RFDLIST_LENGTH; i++) {
1692 		if (sp->rx_buff[i]) {
1693 			struct ipg_rx *rxfd = sp->rxd + i;
1694 
1695 			dev_kfree_skb_irq(sp->rx_buff[i]);
1696 			sp->rx_buff[i] = NULL;
1697 			pci_unmap_single(sp->pdev,
1698 				le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
1699 				sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1700 		}
1701 	}
1702 }
1703 
ipg_tx_clear(struct ipg_nic_private * sp)1704 static void ipg_tx_clear(struct ipg_nic_private *sp)
1705 {
1706 	unsigned int i;
1707 
1708 	for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
1709 		if (sp->tx_buff[i]) {
1710 			struct ipg_tx *txfd = sp->txd + i;
1711 
1712 			pci_unmap_single(sp->pdev,
1713 				le64_to_cpu(txfd->frag_info) & ~IPG_TFI_FRAGLEN,
1714 				sp->tx_buff[i]->len, PCI_DMA_TODEVICE);
1715 
1716 			dev_kfree_skb_irq(sp->tx_buff[i]);
1717 
1718 			sp->tx_buff[i] = NULL;
1719 		}
1720 	}
1721 }
1722 
ipg_nic_open(struct net_device * dev)1723 static int ipg_nic_open(struct net_device *dev)
1724 {
1725 	struct ipg_nic_private *sp = netdev_priv(dev);
1726 	void __iomem *ioaddr = sp->ioaddr;
1727 	struct pci_dev *pdev = sp->pdev;
1728 	int rc;
1729 
1730 	IPG_DEBUG_MSG("_nic_open\n");
1731 
1732 	sp->rx_buf_sz = sp->rxsupport_size;
1733 
1734 	/* Check for interrupt line conflicts, and request interrupt
1735 	 * line for IPG.
1736 	 *
1737 	 * IMPORTANT: Disable IPG interrupts prior to registering
1738 	 *            IRQ.
1739 	 */
1740 	ipg_w16(0x0000, INT_ENABLE);
1741 
1742 	/* Register the interrupt line to be used by the IPG within
1743 	 * the Linux system.
1744 	 */
1745 	rc = request_irq(pdev->irq, ipg_interrupt_handler, IRQF_SHARED,
1746 			 dev->name, dev);
1747 	if (rc < 0) {
1748 		netdev_info(dev, "Error when requesting interrupt\n");
1749 		goto out;
1750 	}
1751 
1752 	dev->irq = pdev->irq;
1753 
1754 	rc = -ENOMEM;
1755 
1756 	sp->rxd = dma_alloc_coherent(&pdev->dev, IPG_RX_RING_BYTES,
1757 				     &sp->rxd_map, GFP_KERNEL);
1758 	if (!sp->rxd)
1759 		goto err_free_irq_0;
1760 
1761 	sp->txd = dma_alloc_coherent(&pdev->dev, IPG_TX_RING_BYTES,
1762 				     &sp->txd_map, GFP_KERNEL);
1763 	if (!sp->txd)
1764 		goto err_free_rx_1;
1765 
1766 	rc = init_rfdlist(dev);
1767 	if (rc < 0) {
1768 		netdev_info(dev, "Error during configuration\n");
1769 		goto err_free_tx_2;
1770 	}
1771 
1772 	init_tfdlist(dev);
1773 
1774 	rc = ipg_io_config(dev);
1775 	if (rc < 0) {
1776 		netdev_info(dev, "Error during configuration\n");
1777 		goto err_release_tfdlist_3;
1778 	}
1779 
1780 	/* Resolve autonegotiation. */
1781 	if (ipg_config_autoneg(dev) < 0)
1782 		netdev_info(dev, "Auto-negotiation error\n");
1783 
1784 	/* initialize JUMBO Frame control variable */
1785 	sp->jumbo.found_start = 0;
1786 	sp->jumbo.current_size = 0;
1787 	sp->jumbo.skb = NULL;
1788 
1789 	/* Enable transmit and receive operation of the IPG. */
1790 	ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_RX_ENABLE | IPG_MC_TX_ENABLE) &
1791 		 IPG_MC_RSVD_MASK, MAC_CTRL);
1792 
1793 	netif_start_queue(dev);
1794 out:
1795 	return rc;
1796 
1797 err_release_tfdlist_3:
1798 	ipg_tx_clear(sp);
1799 	ipg_rx_clear(sp);
1800 err_free_tx_2:
1801 	dma_free_coherent(&pdev->dev, IPG_TX_RING_BYTES, sp->txd, sp->txd_map);
1802 err_free_rx_1:
1803 	dma_free_coherent(&pdev->dev, IPG_RX_RING_BYTES, sp->rxd, sp->rxd_map);
1804 err_free_irq_0:
1805 	free_irq(pdev->irq, dev);
1806 	goto out;
1807 }
1808 
ipg_nic_stop(struct net_device * dev)1809 static int ipg_nic_stop(struct net_device *dev)
1810 {
1811 	struct ipg_nic_private *sp = netdev_priv(dev);
1812 	void __iomem *ioaddr = sp->ioaddr;
1813 	struct pci_dev *pdev = sp->pdev;
1814 
1815 	IPG_DEBUG_MSG("_nic_stop\n");
1816 
1817 	netif_stop_queue(dev);
1818 
1819 	IPG_DUMPTFDLIST(dev);
1820 
1821 	do {
1822 		(void) ipg_r16(INT_STATUS_ACK);
1823 
1824 		ipg_reset(dev, IPG_AC_GLOBAL_RESET | IPG_AC_HOST | IPG_AC_DMA);
1825 
1826 		synchronize_irq(pdev->irq);
1827 	} while (ipg_r16(INT_ENABLE) & IPG_IE_RSVD_MASK);
1828 
1829 	ipg_rx_clear(sp);
1830 
1831 	ipg_tx_clear(sp);
1832 
1833 	pci_free_consistent(pdev, IPG_RX_RING_BYTES, sp->rxd, sp->rxd_map);
1834 	pci_free_consistent(pdev, IPG_TX_RING_BYTES, sp->txd, sp->txd_map);
1835 
1836 	free_irq(pdev->irq, dev);
1837 
1838 	return 0;
1839 }
1840 
ipg_nic_hard_start_xmit(struct sk_buff * skb,struct net_device * dev)1841 static netdev_tx_t ipg_nic_hard_start_xmit(struct sk_buff *skb,
1842 					   struct net_device *dev)
1843 {
1844 	struct ipg_nic_private *sp = netdev_priv(dev);
1845 	void __iomem *ioaddr = sp->ioaddr;
1846 	unsigned int entry = sp->tx_current % IPG_TFDLIST_LENGTH;
1847 	unsigned long flags;
1848 	struct ipg_tx *txfd;
1849 
1850 	IPG_DDEBUG_MSG("_nic_hard_start_xmit\n");
1851 
1852 	/* If in 10Mbps mode, stop the transmit queue so
1853 	 * no more transmit frames are accepted.
1854 	 */
1855 	if (sp->tenmbpsmode)
1856 		netif_stop_queue(dev);
1857 
1858 	if (sp->reset_current_tfd) {
1859 		sp->reset_current_tfd = 0;
1860 		entry = 0;
1861 	}
1862 
1863 	txfd = sp->txd + entry;
1864 
1865 	sp->tx_buff[entry] = skb;
1866 
1867 	/* Clear all TFC fields, except TFDDONE. */
1868 	txfd->tfc = cpu_to_le64(IPG_TFC_TFDDONE);
1869 
1870 	/* Specify the TFC field within the TFD. */
1871 	txfd->tfc |= cpu_to_le64(IPG_TFC_WORDALIGNDISABLED |
1872 		(IPG_TFC_FRAMEID & sp->tx_current) |
1873 		(IPG_TFC_FRAGCOUNT & (1 << 24)));
1874 	/*
1875 	 * 16--17 (WordAlign) <- 3 (disable),
1876 	 * 0--15 (FrameId) <- sp->tx_current,
1877 	 * 24--27 (FragCount) <- 1
1878 	 */
1879 
1880 	/* Request TxComplete interrupts at an interval defined
1881 	 * by the constant IPG_FRAMESBETWEENTXCOMPLETES.
1882 	 * Request TxComplete interrupt for every frame
1883 	 * if in 10Mbps mode to accommodate problem with 10Mbps
1884 	 * processing.
1885 	 */
1886 	if (sp->tenmbpsmode)
1887 		txfd->tfc |= cpu_to_le64(IPG_TFC_TXINDICATE);
1888 	txfd->tfc |= cpu_to_le64(IPG_TFC_TXDMAINDICATE);
1889 	/* Based on compilation option, determine if FCS is to be
1890 	 * appended to transmit frame by IPG.
1891 	 */
1892 	if (!(IPG_APPEND_FCS_ON_TX))
1893 		txfd->tfc |= cpu_to_le64(IPG_TFC_FCSAPPENDDISABLE);
1894 
1895 	/* Based on compilation option, determine if IP, TCP and/or
1896 	 * UDP checksums are to be added to transmit frame by IPG.
1897 	 */
1898 	if (IPG_ADD_IPCHECKSUM_ON_TX)
1899 		txfd->tfc |= cpu_to_le64(IPG_TFC_IPCHECKSUMENABLE);
1900 
1901 	if (IPG_ADD_TCPCHECKSUM_ON_TX)
1902 		txfd->tfc |= cpu_to_le64(IPG_TFC_TCPCHECKSUMENABLE);
1903 
1904 	if (IPG_ADD_UDPCHECKSUM_ON_TX)
1905 		txfd->tfc |= cpu_to_le64(IPG_TFC_UDPCHECKSUMENABLE);
1906 
1907 	/* Based on compilation option, determine if VLAN tag info is to be
1908 	 * inserted into transmit frame by IPG.
1909 	 */
1910 	if (IPG_INSERT_MANUAL_VLAN_TAG) {
1911 		txfd->tfc |= cpu_to_le64(IPG_TFC_VLANTAGINSERT |
1912 			((u64) IPG_MANUAL_VLAN_VID << 32) |
1913 			((u64) IPG_MANUAL_VLAN_CFI << 44) |
1914 			((u64) IPG_MANUAL_VLAN_USERPRIORITY << 45));
1915 	}
1916 
1917 	/* The fragment start location within system memory is defined
1918 	 * by the sk_buff structure's data field. The physical address
1919 	 * of this location within the system's virtual memory space
1920 	 * is determined using the IPG_HOST2BUS_MAP function.
1921 	 */
1922 	txfd->frag_info = cpu_to_le64(pci_map_single(sp->pdev, skb->data,
1923 		skb->len, PCI_DMA_TODEVICE));
1924 
1925 	/* The length of the fragment within system memory is defined by
1926 	 * the sk_buff structure's len field.
1927 	 */
1928 	txfd->frag_info |= cpu_to_le64(IPG_TFI_FRAGLEN &
1929 		((u64) (skb->len & 0xffff) << 48));
1930 
1931 	/* Clear the TFDDone bit last to indicate the TFD is ready
1932 	 * for transfer to the IPG.
1933 	 */
1934 	txfd->tfc &= cpu_to_le64(~IPG_TFC_TFDDONE);
1935 
1936 	spin_lock_irqsave(&sp->lock, flags);
1937 
1938 	sp->tx_current++;
1939 
1940 	mmiowb();
1941 
1942 	ipg_w32(IPG_DC_TX_DMA_POLL_NOW, DMA_CTRL);
1943 
1944 	if (sp->tx_current == (sp->tx_dirty + IPG_TFDLIST_LENGTH))
1945 		netif_stop_queue(dev);
1946 
1947 	spin_unlock_irqrestore(&sp->lock, flags);
1948 
1949 	return NETDEV_TX_OK;
1950 }
1951 
ipg_set_phy_default_param(unsigned char rev,struct net_device * dev,int phy_address)1952 static void ipg_set_phy_default_param(unsigned char rev,
1953 				      struct net_device *dev, int phy_address)
1954 {
1955 	unsigned short length;
1956 	unsigned char revision;
1957 	const unsigned short *phy_param;
1958 	unsigned short address, value;
1959 
1960 	phy_param = &DefaultPhyParam[0];
1961 	length = *phy_param & 0x00FF;
1962 	revision = (unsigned char)((*phy_param) >> 8);
1963 	phy_param++;
1964 	while (length != 0) {
1965 		if (rev == revision) {
1966 			while (length > 1) {
1967 				address = *phy_param;
1968 				value = *(phy_param + 1);
1969 				phy_param += 2;
1970 				mdio_write(dev, phy_address, address, value);
1971 				length -= 4;
1972 			}
1973 			break;
1974 		} else {
1975 			phy_param += length / 2;
1976 			length = *phy_param & 0x00FF;
1977 			revision = (unsigned char)((*phy_param) >> 8);
1978 			phy_param++;
1979 		}
1980 	}
1981 }
1982 
read_eeprom(struct net_device * dev,int eep_addr)1983 static int read_eeprom(struct net_device *dev, int eep_addr)
1984 {
1985 	void __iomem *ioaddr = ipg_ioaddr(dev);
1986 	unsigned int i;
1987 	int ret = 0;
1988 	u16 value;
1989 
1990 	value = IPG_EC_EEPROM_READOPCODE | (eep_addr & 0xff);
1991 	ipg_w16(value, EEPROM_CTRL);
1992 
1993 	for (i = 0; i < 1000; i++) {
1994 		u16 data;
1995 
1996 		mdelay(10);
1997 		data = ipg_r16(EEPROM_CTRL);
1998 		if (!(data & IPG_EC_EEPROM_BUSY)) {
1999 			ret = ipg_r16(EEPROM_DATA);
2000 			break;
2001 		}
2002 	}
2003 	return ret;
2004 }
2005 
ipg_init_mii(struct net_device * dev)2006 static void ipg_init_mii(struct net_device *dev)
2007 {
2008 	struct ipg_nic_private *sp = netdev_priv(dev);
2009 	struct mii_if_info *mii_if = &sp->mii_if;
2010 	int phyaddr;
2011 
2012 	mii_if->dev          = dev;
2013 	mii_if->mdio_read    = mdio_read;
2014 	mii_if->mdio_write   = mdio_write;
2015 	mii_if->phy_id_mask  = 0x1f;
2016 	mii_if->reg_num_mask = 0x1f;
2017 
2018 	mii_if->phy_id = phyaddr = ipg_find_phyaddr(dev);
2019 
2020 	if (phyaddr != 0x1f) {
2021 		u16 mii_phyctrl, mii_1000cr;
2022 
2023 		mii_1000cr  = mdio_read(dev, phyaddr, MII_CTRL1000);
2024 		mii_1000cr |= ADVERTISE_1000FULL | ADVERTISE_1000HALF |
2025 			GMII_PHY_1000BASETCONTROL_PreferMaster;
2026 		mdio_write(dev, phyaddr, MII_CTRL1000, mii_1000cr);
2027 
2028 		mii_phyctrl = mdio_read(dev, phyaddr, MII_BMCR);
2029 
2030 		/* Set default phyparam */
2031 		ipg_set_phy_default_param(sp->pdev->revision, dev, phyaddr);
2032 
2033 		/* Reset PHY */
2034 		mii_phyctrl |= BMCR_RESET | BMCR_ANRESTART;
2035 		mdio_write(dev, phyaddr, MII_BMCR, mii_phyctrl);
2036 
2037 	}
2038 }
2039 
ipg_hw_init(struct net_device * dev)2040 static int ipg_hw_init(struct net_device *dev)
2041 {
2042 	struct ipg_nic_private *sp = netdev_priv(dev);
2043 	void __iomem *ioaddr = sp->ioaddr;
2044 	unsigned int i;
2045 	int rc;
2046 
2047 	/* Read/Write and Reset EEPROM Value */
2048 	/* Read LED Mode Configuration from EEPROM */
2049 	sp->led_mode = read_eeprom(dev, 6);
2050 
2051 	/* Reset all functions within the IPG. Do not assert
2052 	 * RST_OUT as not compatible with some PHYs.
2053 	 */
2054 	rc = ipg_reset(dev, IPG_RESET_MASK);
2055 	if (rc < 0)
2056 		goto out;
2057 
2058 	ipg_init_mii(dev);
2059 
2060 	/* Read MAC Address from EEPROM */
2061 	for (i = 0; i < 3; i++)
2062 		sp->station_addr[i] = read_eeprom(dev, 16 + i);
2063 
2064 	for (i = 0; i < 3; i++)
2065 		ipg_w16(sp->station_addr[i], STATION_ADDRESS_0 + 2*i);
2066 
2067 	/* Set station address in ethernet_device structure. */
2068 	dev->dev_addr[0] =  ipg_r16(STATION_ADDRESS_0) & 0x00ff;
2069 	dev->dev_addr[1] = (ipg_r16(STATION_ADDRESS_0) & 0xff00) >> 8;
2070 	dev->dev_addr[2] =  ipg_r16(STATION_ADDRESS_1) & 0x00ff;
2071 	dev->dev_addr[3] = (ipg_r16(STATION_ADDRESS_1) & 0xff00) >> 8;
2072 	dev->dev_addr[4] =  ipg_r16(STATION_ADDRESS_2) & 0x00ff;
2073 	dev->dev_addr[5] = (ipg_r16(STATION_ADDRESS_2) & 0xff00) >> 8;
2074 out:
2075 	return rc;
2076 }
2077 
ipg_ioctl(struct net_device * dev,struct ifreq * ifr,int cmd)2078 static int ipg_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2079 {
2080 	struct ipg_nic_private *sp = netdev_priv(dev);
2081 	int rc;
2082 
2083 	mutex_lock(&sp->mii_mutex);
2084 	rc = generic_mii_ioctl(&sp->mii_if, if_mii(ifr), cmd, NULL);
2085 	mutex_unlock(&sp->mii_mutex);
2086 
2087 	return rc;
2088 }
2089 
ipg_nic_change_mtu(struct net_device * dev,int new_mtu)2090 static int ipg_nic_change_mtu(struct net_device *dev, int new_mtu)
2091 {
2092 	struct ipg_nic_private *sp = netdev_priv(dev);
2093 	int err;
2094 
2095 	/* Function to accommodate changes to Maximum Transfer Unit
2096 	 * (or MTU) of IPG NIC. Cannot use default function since
2097 	 * the default will not allow for MTU > 1500 bytes.
2098 	 */
2099 
2100 	IPG_DEBUG_MSG("_nic_change_mtu\n");
2101 
2102 	/*
2103 	 * Check that the new MTU value is between 68 (14 byte header, 46 byte
2104 	 * payload, 4 byte FCS) and 10 KB, which is the largest supported MTU.
2105 	 */
2106 	if (new_mtu < 68 || new_mtu > 10240)
2107 		return -EINVAL;
2108 
2109 	err = ipg_nic_stop(dev);
2110 	if (err)
2111 		return err;
2112 
2113 	dev->mtu = new_mtu;
2114 
2115 	sp->max_rxframe_size = new_mtu;
2116 
2117 	sp->rxfrag_size = new_mtu;
2118 	if (sp->rxfrag_size > 4088)
2119 		sp->rxfrag_size = 4088;
2120 
2121 	sp->rxsupport_size = sp->max_rxframe_size;
2122 
2123 	if (new_mtu > 0x0600)
2124 		sp->is_jumbo = true;
2125 	else
2126 		sp->is_jumbo = false;
2127 
2128 	return ipg_nic_open(dev);
2129 }
2130 
ipg_get_settings(struct net_device * dev,struct ethtool_cmd * cmd)2131 static int ipg_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2132 {
2133 	struct ipg_nic_private *sp = netdev_priv(dev);
2134 	int rc;
2135 
2136 	mutex_lock(&sp->mii_mutex);
2137 	rc = mii_ethtool_gset(&sp->mii_if, cmd);
2138 	mutex_unlock(&sp->mii_mutex);
2139 
2140 	return rc;
2141 }
2142 
ipg_set_settings(struct net_device * dev,struct ethtool_cmd * cmd)2143 static int ipg_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2144 {
2145 	struct ipg_nic_private *sp = netdev_priv(dev);
2146 	int rc;
2147 
2148 	mutex_lock(&sp->mii_mutex);
2149 	rc = mii_ethtool_sset(&sp->mii_if, cmd);
2150 	mutex_unlock(&sp->mii_mutex);
2151 
2152 	return rc;
2153 }
2154 
ipg_nway_reset(struct net_device * dev)2155 static int ipg_nway_reset(struct net_device *dev)
2156 {
2157 	struct ipg_nic_private *sp = netdev_priv(dev);
2158 	int rc;
2159 
2160 	mutex_lock(&sp->mii_mutex);
2161 	rc = mii_nway_restart(&sp->mii_if);
2162 	mutex_unlock(&sp->mii_mutex);
2163 
2164 	return rc;
2165 }
2166 
2167 static const struct ethtool_ops ipg_ethtool_ops = {
2168 	.get_settings = ipg_get_settings,
2169 	.set_settings = ipg_set_settings,
2170 	.nway_reset   = ipg_nway_reset,
2171 };
2172 
ipg_remove(struct pci_dev * pdev)2173 static void __devexit ipg_remove(struct pci_dev *pdev)
2174 {
2175 	struct net_device *dev = pci_get_drvdata(pdev);
2176 	struct ipg_nic_private *sp = netdev_priv(dev);
2177 
2178 	IPG_DEBUG_MSG("_remove\n");
2179 
2180 	/* Un-register Ethernet device. */
2181 	unregister_netdev(dev);
2182 
2183 	pci_iounmap(pdev, sp->ioaddr);
2184 
2185 	pci_release_regions(pdev);
2186 
2187 	free_netdev(dev);
2188 	pci_disable_device(pdev);
2189 	pci_set_drvdata(pdev, NULL);
2190 }
2191 
2192 static const struct net_device_ops ipg_netdev_ops = {
2193 	.ndo_open		= ipg_nic_open,
2194 	.ndo_stop		= ipg_nic_stop,
2195 	.ndo_start_xmit		= ipg_nic_hard_start_xmit,
2196 	.ndo_get_stats		= ipg_nic_get_stats,
2197 	.ndo_set_rx_mode	= ipg_nic_set_multicast_list,
2198 	.ndo_do_ioctl		= ipg_ioctl,
2199 	.ndo_tx_timeout 	= ipg_tx_timeout,
2200 	.ndo_change_mtu 	= ipg_nic_change_mtu,
2201 	.ndo_set_mac_address	= eth_mac_addr,
2202 	.ndo_validate_addr	= eth_validate_addr,
2203 };
2204 
ipg_probe(struct pci_dev * pdev,const struct pci_device_id * id)2205 static int __devinit ipg_probe(struct pci_dev *pdev,
2206 			       const struct pci_device_id *id)
2207 {
2208 	unsigned int i = id->driver_data;
2209 	struct ipg_nic_private *sp;
2210 	struct net_device *dev;
2211 	void __iomem *ioaddr;
2212 	int rc;
2213 
2214 	rc = pci_enable_device(pdev);
2215 	if (rc < 0)
2216 		goto out;
2217 
2218 	pr_info("%s: %s\n", pci_name(pdev), ipg_brand_name[i]);
2219 
2220 	pci_set_master(pdev);
2221 
2222 	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(40));
2223 	if (rc < 0) {
2224 		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2225 		if (rc < 0) {
2226 			pr_err("%s: DMA config failed\n", pci_name(pdev));
2227 			goto err_disable_0;
2228 		}
2229 	}
2230 
2231 	/*
2232 	 * Initialize net device.
2233 	 */
2234 	dev = alloc_etherdev(sizeof(struct ipg_nic_private));
2235 	if (!dev) {
2236 		pr_err("%s: alloc_etherdev failed\n", pci_name(pdev));
2237 		rc = -ENOMEM;
2238 		goto err_disable_0;
2239 	}
2240 
2241 	sp = netdev_priv(dev);
2242 	spin_lock_init(&sp->lock);
2243 	mutex_init(&sp->mii_mutex);
2244 
2245 	sp->is_jumbo = IPG_IS_JUMBO;
2246 	sp->rxfrag_size = IPG_RXFRAG_SIZE;
2247 	sp->rxsupport_size = IPG_RXSUPPORT_SIZE;
2248 	sp->max_rxframe_size = IPG_MAX_RXFRAME_SIZE;
2249 
2250 	/* Declare IPG NIC functions for Ethernet device methods.
2251 	 */
2252 	dev->netdev_ops = &ipg_netdev_ops;
2253 	SET_NETDEV_DEV(dev, &pdev->dev);
2254 	SET_ETHTOOL_OPS(dev, &ipg_ethtool_ops);
2255 
2256 	rc = pci_request_regions(pdev, DRV_NAME);
2257 	if (rc)
2258 		goto err_free_dev_1;
2259 
2260 	ioaddr = pci_iomap(pdev, 1, pci_resource_len(pdev, 1));
2261 	if (!ioaddr) {
2262 		pr_err("%s: cannot map MMIO\n", pci_name(pdev));
2263 		rc = -EIO;
2264 		goto err_release_regions_2;
2265 	}
2266 
2267 	/* Save the pointer to the PCI device information. */
2268 	sp->ioaddr = ioaddr;
2269 	sp->pdev = pdev;
2270 	sp->dev = dev;
2271 
2272 	INIT_DELAYED_WORK(&sp->task, ipg_reset_after_host_error);
2273 
2274 	pci_set_drvdata(pdev, dev);
2275 
2276 	rc = ipg_hw_init(dev);
2277 	if (rc < 0)
2278 		goto err_unmap_3;
2279 
2280 	rc = register_netdev(dev);
2281 	if (rc < 0)
2282 		goto err_unmap_3;
2283 
2284 	netdev_info(dev, "Ethernet device registered\n");
2285 out:
2286 	return rc;
2287 
2288 err_unmap_3:
2289 	pci_iounmap(pdev, ioaddr);
2290 err_release_regions_2:
2291 	pci_release_regions(pdev);
2292 err_free_dev_1:
2293 	free_netdev(dev);
2294 err_disable_0:
2295 	pci_disable_device(pdev);
2296 	goto out;
2297 }
2298 
2299 static struct pci_driver ipg_pci_driver = {
2300 	.name		= IPG_DRIVER_NAME,
2301 	.id_table	= ipg_pci_tbl,
2302 	.probe		= ipg_probe,
2303 	.remove		= __devexit_p(ipg_remove),
2304 };
2305 
ipg_init_module(void)2306 static int __init ipg_init_module(void)
2307 {
2308 	return pci_register_driver(&ipg_pci_driver);
2309 }
2310 
ipg_exit_module(void)2311 static void __exit ipg_exit_module(void)
2312 {
2313 	pci_unregister_driver(&ipg_pci_driver);
2314 }
2315 
2316 module_init(ipg_init_module);
2317 module_exit(ipg_exit_module);
2318