1 // SPDX-License-Identifier: GPL-2.0
2 #include <errno.h>
3 #include <inttypes.h>
4 #include "string2.h"
5 #include <sys/param.h>
6 #include <sys/types.h>
7 #include <byteswap.h>
8 #include <unistd.h>
9 #include <regex.h>
10 #include <stdio.h>
11 #include <stdlib.h>
12 #include <linux/compiler.h>
13 #include <linux/list.h>
14 #include <linux/kernel.h>
15 #include <linux/bitops.h>
16 #include <linux/string.h>
17 #include <linux/stringify.h>
18 #include <linux/zalloc.h>
19 #include <sys/stat.h>
20 #include <sys/utsname.h>
21 #include <linux/time64.h>
22 #include <dirent.h>
23 #ifdef HAVE_LIBBPF_SUPPORT
24 #include <bpf/libbpf.h>
25 #endif
26 #include <perf/cpumap.h>
27 #include <tools/libc_compat.h> // reallocarray
28
29 #include "dso.h"
30 #include "evlist.h"
31 #include "evsel.h"
32 #include "util/evsel_fprintf.h"
33 #include "header.h"
34 #include "memswap.h"
35 #include "trace-event.h"
36 #include "session.h"
37 #include "symbol.h"
38 #include "debug.h"
39 #include "cpumap.h"
40 #include "pmu.h"
41 #include "pmus.h"
42 #include "vdso.h"
43 #include "strbuf.h"
44 #include "build-id.h"
45 #include "data.h"
46 #include <api/fs/fs.h>
47 #include <api/io_dir.h>
48 #include "asm/bug.h"
49 #include "tool.h"
50 #include "time-utils.h"
51 #include "units.h"
52 #include "util/util.h" // perf_exe()
53 #include "cputopo.h"
54 #include "bpf-event.h"
55 #include "bpf-utils.h"
56 #include "clockid.h"
57
58 #include <linux/ctype.h>
59 #include <internal/lib.h>
60
61 #ifdef HAVE_LIBTRACEEVENT
62 #include <event-parse.h>
63 #endif
64
65 /*
66 * magic2 = "PERFILE2"
67 * must be a numerical value to let the endianness
68 * determine the memory layout. That way we are able
69 * to detect endianness when reading the perf.data file
70 * back.
71 *
72 * we check for legacy (PERFFILE) format.
73 */
74 static const char *__perf_magic1 = "PERFFILE";
75 static const u64 __perf_magic2 = 0x32454c4946524550ULL;
76 static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
77
78 #define PERF_MAGIC __perf_magic2
79
80 const char perf_version_string[] = PERF_VERSION;
81
82 struct perf_file_attr {
83 struct perf_event_attr attr;
84 struct perf_file_section ids;
85 };
86
perf_header__set_feat(struct perf_header * header,int feat)87 void perf_header__set_feat(struct perf_header *header, int feat)
88 {
89 __set_bit(feat, header->adds_features);
90 }
91
perf_header__clear_feat(struct perf_header * header,int feat)92 void perf_header__clear_feat(struct perf_header *header, int feat)
93 {
94 __clear_bit(feat, header->adds_features);
95 }
96
perf_header__has_feat(const struct perf_header * header,int feat)97 bool perf_header__has_feat(const struct perf_header *header, int feat)
98 {
99 return test_bit(feat, header->adds_features);
100 }
101
__do_write_fd(struct feat_fd * ff,const void * buf,size_t size)102 static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
103 {
104 ssize_t ret = writen(ff->fd, buf, size);
105
106 if (ret != (ssize_t)size)
107 return ret < 0 ? (int)ret : -1;
108 return 0;
109 }
110
__do_write_buf(struct feat_fd * ff,const void * buf,size_t size)111 static int __do_write_buf(struct feat_fd *ff, const void *buf, size_t size)
112 {
113 /* struct perf_event_header::size is u16 */
114 const size_t max_size = 0xffff - sizeof(struct perf_event_header);
115 size_t new_size = ff->size;
116 void *addr;
117
118 if (size + ff->offset > max_size)
119 return -E2BIG;
120
121 while (size > (new_size - ff->offset))
122 new_size <<= 1;
123 new_size = min(max_size, new_size);
124
125 if (ff->size < new_size) {
126 addr = realloc(ff->buf, new_size);
127 if (!addr)
128 return -ENOMEM;
129 ff->buf = addr;
130 ff->size = new_size;
131 }
132
133 memcpy(ff->buf + ff->offset, buf, size);
134 ff->offset += size;
135
136 return 0;
137 }
138
139 /* Return: 0 if succeeded, -ERR if failed. */
do_write(struct feat_fd * ff,const void * buf,size_t size)140 int do_write(struct feat_fd *ff, const void *buf, size_t size)
141 {
142 if (!ff->buf)
143 return __do_write_fd(ff, buf, size);
144 return __do_write_buf(ff, buf, size);
145 }
146
147 /* Return: 0 if succeeded, -ERR if failed. */
do_write_bitmap(struct feat_fd * ff,unsigned long * set,u64 size)148 static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
149 {
150 u64 *p = (u64 *) set;
151 int i, ret;
152
153 ret = do_write(ff, &size, sizeof(size));
154 if (ret < 0)
155 return ret;
156
157 for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
158 ret = do_write(ff, p + i, sizeof(*p));
159 if (ret < 0)
160 return ret;
161 }
162
163 return 0;
164 }
165
166 /* Return: 0 if succeeded, -ERR if failed. */
write_padded(struct feat_fd * ff,const void * bf,size_t count,size_t count_aligned)167 int write_padded(struct feat_fd *ff, const void *bf,
168 size_t count, size_t count_aligned)
169 {
170 static const char zero_buf[NAME_ALIGN];
171 int err = do_write(ff, bf, count);
172
173 if (!err)
174 err = do_write(ff, zero_buf, count_aligned - count);
175
176 return err;
177 }
178
179 #define string_size(str) \
180 (PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))
181
182 /* Return: 0 if succeeded, -ERR if failed. */
do_write_string(struct feat_fd * ff,const char * str)183 static int do_write_string(struct feat_fd *ff, const char *str)
184 {
185 u32 len, olen;
186 int ret;
187
188 olen = strlen(str) + 1;
189 len = PERF_ALIGN(olen, NAME_ALIGN);
190
191 /* write len, incl. \0 */
192 ret = do_write(ff, &len, sizeof(len));
193 if (ret < 0)
194 return ret;
195
196 return write_padded(ff, str, olen, len);
197 }
198
__do_read_fd(struct feat_fd * ff,void * addr,ssize_t size)199 static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
200 {
201 ssize_t ret = readn(ff->fd, addr, size);
202
203 if (ret != size)
204 return ret < 0 ? (int)ret : -1;
205 return 0;
206 }
207
__do_read_buf(struct feat_fd * ff,void * addr,ssize_t size)208 static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
209 {
210 if (size > (ssize_t)ff->size - ff->offset)
211 return -1;
212
213 memcpy(addr, ff->buf + ff->offset, size);
214 ff->offset += size;
215
216 return 0;
217
218 }
219
__do_read(struct feat_fd * ff,void * addr,ssize_t size)220 static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
221 {
222 if (!ff->buf)
223 return __do_read_fd(ff, addr, size);
224 return __do_read_buf(ff, addr, size);
225 }
226
do_read_u32(struct feat_fd * ff,u32 * addr)227 static int do_read_u32(struct feat_fd *ff, u32 *addr)
228 {
229 int ret;
230
231 ret = __do_read(ff, addr, sizeof(*addr));
232 if (ret)
233 return ret;
234
235 if (ff->ph->needs_swap)
236 *addr = bswap_32(*addr);
237 return 0;
238 }
239
do_read_u64(struct feat_fd * ff,u64 * addr)240 static int do_read_u64(struct feat_fd *ff, u64 *addr)
241 {
242 int ret;
243
244 ret = __do_read(ff, addr, sizeof(*addr));
245 if (ret)
246 return ret;
247
248 if (ff->ph->needs_swap)
249 *addr = bswap_64(*addr);
250 return 0;
251 }
252
do_read_string(struct feat_fd * ff)253 static char *do_read_string(struct feat_fd *ff)
254 {
255 u32 len;
256 char *buf;
257
258 if (do_read_u32(ff, &len))
259 return NULL;
260
261 buf = malloc(len);
262 if (!buf)
263 return NULL;
264
265 if (!__do_read(ff, buf, len)) {
266 /*
267 * strings are padded by zeroes
268 * thus the actual strlen of buf
269 * may be less than len
270 */
271 return buf;
272 }
273
274 free(buf);
275 return NULL;
276 }
277
278 /* Return: 0 if succeeded, -ERR if failed. */
do_read_bitmap(struct feat_fd * ff,unsigned long ** pset,u64 * psize)279 static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
280 {
281 unsigned long *set;
282 u64 size, *p;
283 int i, ret;
284
285 ret = do_read_u64(ff, &size);
286 if (ret)
287 return ret;
288
289 set = bitmap_zalloc(size);
290 if (!set)
291 return -ENOMEM;
292
293 p = (u64 *) set;
294
295 for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
296 ret = do_read_u64(ff, p + i);
297 if (ret < 0) {
298 free(set);
299 return ret;
300 }
301 }
302
303 *pset = set;
304 *psize = size;
305 return 0;
306 }
307
308 #ifdef HAVE_LIBTRACEEVENT
write_tracing_data(struct feat_fd * ff,struct evlist * evlist)309 static int write_tracing_data(struct feat_fd *ff,
310 struct evlist *evlist)
311 {
312 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
313 return -1;
314
315 return read_tracing_data(ff->fd, &evlist->core.entries);
316 }
317 #endif
318
write_build_id(struct feat_fd * ff,struct evlist * evlist __maybe_unused)319 static int write_build_id(struct feat_fd *ff,
320 struct evlist *evlist __maybe_unused)
321 {
322 struct perf_session *session;
323 int err;
324
325 session = container_of(ff->ph, struct perf_session, header);
326
327 if (!perf_session__read_build_ids(session, true))
328 return -1;
329
330 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
331 return -1;
332
333 err = perf_session__write_buildid_table(session, ff);
334 if (err < 0) {
335 pr_debug("failed to write buildid table\n");
336 return err;
337 }
338 perf_session__cache_build_ids(session);
339
340 return 0;
341 }
342
write_hostname(struct feat_fd * ff,struct evlist * evlist __maybe_unused)343 static int write_hostname(struct feat_fd *ff,
344 struct evlist *evlist __maybe_unused)
345 {
346 struct utsname uts;
347 int ret;
348
349 ret = uname(&uts);
350 if (ret < 0)
351 return -1;
352
353 return do_write_string(ff, uts.nodename);
354 }
355
write_osrelease(struct feat_fd * ff,struct evlist * evlist __maybe_unused)356 static int write_osrelease(struct feat_fd *ff,
357 struct evlist *evlist __maybe_unused)
358 {
359 struct utsname uts;
360 int ret;
361
362 ret = uname(&uts);
363 if (ret < 0)
364 return -1;
365
366 return do_write_string(ff, uts.release);
367 }
368
write_arch(struct feat_fd * ff,struct evlist * evlist __maybe_unused)369 static int write_arch(struct feat_fd *ff,
370 struct evlist *evlist __maybe_unused)
371 {
372 struct utsname uts;
373 int ret;
374
375 ret = uname(&uts);
376 if (ret < 0)
377 return -1;
378
379 return do_write_string(ff, uts.machine);
380 }
381
write_version(struct feat_fd * ff,struct evlist * evlist __maybe_unused)382 static int write_version(struct feat_fd *ff,
383 struct evlist *evlist __maybe_unused)
384 {
385 return do_write_string(ff, perf_version_string);
386 }
387
__write_cpudesc(struct feat_fd * ff,const char * cpuinfo_proc)388 static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
389 {
390 FILE *file;
391 char *buf = NULL;
392 char *s, *p;
393 const char *search = cpuinfo_proc;
394 size_t len = 0;
395 int ret = -1;
396
397 if (!search)
398 return -1;
399
400 file = fopen("/proc/cpuinfo", "r");
401 if (!file)
402 return -1;
403
404 while (getline(&buf, &len, file) > 0) {
405 ret = strncmp(buf, search, strlen(search));
406 if (!ret)
407 break;
408 }
409
410 if (ret) {
411 ret = -1;
412 goto done;
413 }
414
415 s = buf;
416
417 p = strchr(buf, ':');
418 if (p && *(p+1) == ' ' && *(p+2))
419 s = p + 2;
420 p = strchr(s, '\n');
421 if (p)
422 *p = '\0';
423
424 /* squash extra space characters (branding string) */
425 p = s;
426 while (*p) {
427 if (isspace(*p)) {
428 char *r = p + 1;
429 char *q = skip_spaces(r);
430 *p = ' ';
431 if (q != (p+1))
432 while ((*r++ = *q++));
433 }
434 p++;
435 }
436 ret = do_write_string(ff, s);
437 done:
438 free(buf);
439 fclose(file);
440 return ret;
441 }
442
write_cpudesc(struct feat_fd * ff,struct evlist * evlist __maybe_unused)443 static int write_cpudesc(struct feat_fd *ff,
444 struct evlist *evlist __maybe_unused)
445 {
446 #if defined(__powerpc__) || defined(__hppa__) || defined(__sparc__)
447 #define CPUINFO_PROC { "cpu", }
448 #elif defined(__s390__)
449 #define CPUINFO_PROC { "vendor_id", }
450 #elif defined(__sh__)
451 #define CPUINFO_PROC { "cpu type", }
452 #elif defined(__alpha__) || defined(__mips__)
453 #define CPUINFO_PROC { "cpu model", }
454 #elif defined(__arm__)
455 #define CPUINFO_PROC { "model name", "Processor", }
456 #elif defined(__arc__)
457 #define CPUINFO_PROC { "Processor", }
458 #elif defined(__xtensa__)
459 #define CPUINFO_PROC { "core ID", }
460 #elif defined(__loongarch__)
461 #define CPUINFO_PROC { "Model Name", }
462 #else
463 #define CPUINFO_PROC { "model name", }
464 #endif
465 const char *cpuinfo_procs[] = CPUINFO_PROC;
466 #undef CPUINFO_PROC
467 unsigned int i;
468
469 for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
470 int ret;
471 ret = __write_cpudesc(ff, cpuinfo_procs[i]);
472 if (ret >= 0)
473 return ret;
474 }
475 return -1;
476 }
477
478
write_nrcpus(struct feat_fd * ff,struct evlist * evlist __maybe_unused)479 static int write_nrcpus(struct feat_fd *ff,
480 struct evlist *evlist __maybe_unused)
481 {
482 long nr;
483 u32 nrc, nra;
484 int ret;
485
486 nrc = cpu__max_present_cpu().cpu;
487
488 nr = sysconf(_SC_NPROCESSORS_ONLN);
489 if (nr < 0)
490 return -1;
491
492 nra = (u32)(nr & UINT_MAX);
493
494 ret = do_write(ff, &nrc, sizeof(nrc));
495 if (ret < 0)
496 return ret;
497
498 return do_write(ff, &nra, sizeof(nra));
499 }
500
write_event_desc(struct feat_fd * ff,struct evlist * evlist)501 static int write_event_desc(struct feat_fd *ff,
502 struct evlist *evlist)
503 {
504 struct evsel *evsel;
505 u32 nre, nri, sz;
506 int ret;
507
508 nre = evlist->core.nr_entries;
509
510 /*
511 * write number of events
512 */
513 ret = do_write(ff, &nre, sizeof(nre));
514 if (ret < 0)
515 return ret;
516
517 /*
518 * size of perf_event_attr struct
519 */
520 sz = (u32)sizeof(evsel->core.attr);
521 ret = do_write(ff, &sz, sizeof(sz));
522 if (ret < 0)
523 return ret;
524
525 evlist__for_each_entry(evlist, evsel) {
526 ret = do_write(ff, &evsel->core.attr, sz);
527 if (ret < 0)
528 return ret;
529 /*
530 * write number of unique id per event
531 * there is one id per instance of an event
532 *
533 * copy into an nri to be independent of the
534 * type of ids,
535 */
536 nri = evsel->core.ids;
537 ret = do_write(ff, &nri, sizeof(nri));
538 if (ret < 0)
539 return ret;
540
541 /*
542 * write event string as passed on cmdline
543 */
544 ret = do_write_string(ff, evsel__name(evsel));
545 if (ret < 0)
546 return ret;
547 /*
548 * write unique ids for this event
549 */
550 ret = do_write(ff, evsel->core.id, evsel->core.ids * sizeof(u64));
551 if (ret < 0)
552 return ret;
553 }
554 return 0;
555 }
556
write_cmdline(struct feat_fd * ff,struct evlist * evlist __maybe_unused)557 static int write_cmdline(struct feat_fd *ff,
558 struct evlist *evlist __maybe_unused)
559 {
560 char pbuf[MAXPATHLEN], *buf;
561 int i, ret, n;
562
563 /* actual path to perf binary */
564 buf = perf_exe(pbuf, MAXPATHLEN);
565
566 /* account for binary path */
567 n = perf_env.nr_cmdline + 1;
568
569 ret = do_write(ff, &n, sizeof(n));
570 if (ret < 0)
571 return ret;
572
573 ret = do_write_string(ff, buf);
574 if (ret < 0)
575 return ret;
576
577 for (i = 0 ; i < perf_env.nr_cmdline; i++) {
578 ret = do_write_string(ff, perf_env.cmdline_argv[i]);
579 if (ret < 0)
580 return ret;
581 }
582 return 0;
583 }
584
585
write_cpu_topology(struct feat_fd * ff,struct evlist * evlist __maybe_unused)586 static int write_cpu_topology(struct feat_fd *ff,
587 struct evlist *evlist __maybe_unused)
588 {
589 struct cpu_topology *tp;
590 u32 i;
591 int ret, j;
592
593 tp = cpu_topology__new();
594 if (!tp)
595 return -1;
596
597 ret = do_write(ff, &tp->package_cpus_lists, sizeof(tp->package_cpus_lists));
598 if (ret < 0)
599 goto done;
600
601 for (i = 0; i < tp->package_cpus_lists; i++) {
602 ret = do_write_string(ff, tp->package_cpus_list[i]);
603 if (ret < 0)
604 goto done;
605 }
606 ret = do_write(ff, &tp->core_cpus_lists, sizeof(tp->core_cpus_lists));
607 if (ret < 0)
608 goto done;
609
610 for (i = 0; i < tp->core_cpus_lists; i++) {
611 ret = do_write_string(ff, tp->core_cpus_list[i]);
612 if (ret < 0)
613 break;
614 }
615
616 ret = perf_env__read_cpu_topology_map(&perf_env);
617 if (ret < 0)
618 goto done;
619
620 for (j = 0; j < perf_env.nr_cpus_avail; j++) {
621 ret = do_write(ff, &perf_env.cpu[j].core_id,
622 sizeof(perf_env.cpu[j].core_id));
623 if (ret < 0)
624 return ret;
625 ret = do_write(ff, &perf_env.cpu[j].socket_id,
626 sizeof(perf_env.cpu[j].socket_id));
627 if (ret < 0)
628 return ret;
629 }
630
631 if (!tp->die_cpus_lists)
632 goto done;
633
634 ret = do_write(ff, &tp->die_cpus_lists, sizeof(tp->die_cpus_lists));
635 if (ret < 0)
636 goto done;
637
638 for (i = 0; i < tp->die_cpus_lists; i++) {
639 ret = do_write_string(ff, tp->die_cpus_list[i]);
640 if (ret < 0)
641 goto done;
642 }
643
644 for (j = 0; j < perf_env.nr_cpus_avail; j++) {
645 ret = do_write(ff, &perf_env.cpu[j].die_id,
646 sizeof(perf_env.cpu[j].die_id));
647 if (ret < 0)
648 return ret;
649 }
650
651 done:
652 cpu_topology__delete(tp);
653 return ret;
654 }
655
656
657
write_total_mem(struct feat_fd * ff,struct evlist * evlist __maybe_unused)658 static int write_total_mem(struct feat_fd *ff,
659 struct evlist *evlist __maybe_unused)
660 {
661 char *buf = NULL;
662 FILE *fp;
663 size_t len = 0;
664 int ret = -1, n;
665 uint64_t mem;
666
667 fp = fopen("/proc/meminfo", "r");
668 if (!fp)
669 return -1;
670
671 while (getline(&buf, &len, fp) > 0) {
672 ret = strncmp(buf, "MemTotal:", 9);
673 if (!ret)
674 break;
675 }
676 if (!ret) {
677 n = sscanf(buf, "%*s %"PRIu64, &mem);
678 if (n == 1)
679 ret = do_write(ff, &mem, sizeof(mem));
680 } else
681 ret = -1;
682 free(buf);
683 fclose(fp);
684 return ret;
685 }
686
write_numa_topology(struct feat_fd * ff,struct evlist * evlist __maybe_unused)687 static int write_numa_topology(struct feat_fd *ff,
688 struct evlist *evlist __maybe_unused)
689 {
690 struct numa_topology *tp;
691 int ret = -1;
692 u32 i;
693
694 tp = numa_topology__new();
695 if (!tp)
696 return -ENOMEM;
697
698 ret = do_write(ff, &tp->nr, sizeof(u32));
699 if (ret < 0)
700 goto err;
701
702 for (i = 0; i < tp->nr; i++) {
703 struct numa_topology_node *n = &tp->nodes[i];
704
705 ret = do_write(ff, &n->node, sizeof(u32));
706 if (ret < 0)
707 goto err;
708
709 ret = do_write(ff, &n->mem_total, sizeof(u64));
710 if (ret)
711 goto err;
712
713 ret = do_write(ff, &n->mem_free, sizeof(u64));
714 if (ret)
715 goto err;
716
717 ret = do_write_string(ff, n->cpus);
718 if (ret < 0)
719 goto err;
720 }
721
722 ret = 0;
723
724 err:
725 numa_topology__delete(tp);
726 return ret;
727 }
728
729 /*
730 * File format:
731 *
732 * struct pmu_mappings {
733 * u32 pmu_num;
734 * struct pmu_map {
735 * u32 type;
736 * char name[];
737 * }[pmu_num];
738 * };
739 */
740
write_pmu_mappings(struct feat_fd * ff,struct evlist * evlist __maybe_unused)741 static int write_pmu_mappings(struct feat_fd *ff,
742 struct evlist *evlist __maybe_unused)
743 {
744 struct perf_pmu *pmu = NULL;
745 u32 pmu_num = 0;
746 int ret;
747
748 /*
749 * Do a first pass to count number of pmu to avoid lseek so this
750 * works in pipe mode as well.
751 */
752 while ((pmu = perf_pmus__scan(pmu)))
753 pmu_num++;
754
755 ret = do_write(ff, &pmu_num, sizeof(pmu_num));
756 if (ret < 0)
757 return ret;
758
759 while ((pmu = perf_pmus__scan(pmu))) {
760 ret = do_write(ff, &pmu->type, sizeof(pmu->type));
761 if (ret < 0)
762 return ret;
763
764 ret = do_write_string(ff, pmu->name);
765 if (ret < 0)
766 return ret;
767 }
768
769 return 0;
770 }
771
772 /*
773 * File format:
774 *
775 * struct group_descs {
776 * u32 nr_groups;
777 * struct group_desc {
778 * char name[];
779 * u32 leader_idx;
780 * u32 nr_members;
781 * }[nr_groups];
782 * };
783 */
write_group_desc(struct feat_fd * ff,struct evlist * evlist)784 static int write_group_desc(struct feat_fd *ff,
785 struct evlist *evlist)
786 {
787 u32 nr_groups = evlist__nr_groups(evlist);
788 struct evsel *evsel;
789 int ret;
790
791 ret = do_write(ff, &nr_groups, sizeof(nr_groups));
792 if (ret < 0)
793 return ret;
794
795 evlist__for_each_entry(evlist, evsel) {
796 if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
797 const char *name = evsel->group_name ?: "{anon_group}";
798 u32 leader_idx = evsel->core.idx;
799 u32 nr_members = evsel->core.nr_members;
800
801 ret = do_write_string(ff, name);
802 if (ret < 0)
803 return ret;
804
805 ret = do_write(ff, &leader_idx, sizeof(leader_idx));
806 if (ret < 0)
807 return ret;
808
809 ret = do_write(ff, &nr_members, sizeof(nr_members));
810 if (ret < 0)
811 return ret;
812 }
813 }
814 return 0;
815 }
816
817 /*
818 * Return the CPU id as a raw string.
819 *
820 * Each architecture should provide a more precise id string that
821 * can be use to match the architecture's "mapfile".
822 */
get_cpuid_str(struct perf_cpu cpu __maybe_unused)823 char * __weak get_cpuid_str(struct perf_cpu cpu __maybe_unused)
824 {
825 return NULL;
826 }
827
get_cpuid_allow_env_override(struct perf_cpu cpu)828 char *get_cpuid_allow_env_override(struct perf_cpu cpu)
829 {
830 char *cpuid;
831 static bool printed;
832
833 cpuid = getenv("PERF_CPUID");
834 if (cpuid)
835 cpuid = strdup(cpuid);
836 if (!cpuid)
837 cpuid = get_cpuid_str(cpu);
838 if (!cpuid)
839 return NULL;
840
841 if (!printed) {
842 pr_debug("Using CPUID %s\n", cpuid);
843 printed = true;
844 }
845 return cpuid;
846 }
847
848 /* Return zero when the cpuid from the mapfile.csv matches the
849 * cpuid string generated on this platform.
850 * Otherwise return non-zero.
851 */
strcmp_cpuid_str(const char * mapcpuid,const char * cpuid)852 int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid)
853 {
854 regex_t re;
855 regmatch_t pmatch[1];
856 int match;
857
858 if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) {
859 /* Warn unable to generate match particular string. */
860 pr_info("Invalid regular expression %s\n", mapcpuid);
861 return 1;
862 }
863
864 match = !regexec(&re, cpuid, 1, pmatch, 0);
865 regfree(&re);
866 if (match) {
867 size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so);
868
869 /* Verify the entire string matched. */
870 if (match_len == strlen(cpuid))
871 return 0;
872 }
873 return 1;
874 }
875
876 /*
877 * default get_cpuid(): nothing gets recorded
878 * actual implementation must be in arch/$(SRCARCH)/util/header.c
879 */
get_cpuid(char * buffer __maybe_unused,size_t sz __maybe_unused,struct perf_cpu cpu __maybe_unused)880 int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused,
881 struct perf_cpu cpu __maybe_unused)
882 {
883 return ENOSYS; /* Not implemented */
884 }
885
write_cpuid(struct feat_fd * ff,struct evlist * evlist)886 static int write_cpuid(struct feat_fd *ff, struct evlist *evlist)
887 {
888 struct perf_cpu cpu = perf_cpu_map__min(evlist->core.all_cpus);
889 char buffer[64];
890 int ret;
891
892 ret = get_cpuid(buffer, sizeof(buffer), cpu);
893 if (ret)
894 return -1;
895
896 return do_write_string(ff, buffer);
897 }
898
write_branch_stack(struct feat_fd * ff __maybe_unused,struct evlist * evlist __maybe_unused)899 static int write_branch_stack(struct feat_fd *ff __maybe_unused,
900 struct evlist *evlist __maybe_unused)
901 {
902 return 0;
903 }
904
write_auxtrace(struct feat_fd * ff,struct evlist * evlist __maybe_unused)905 static int write_auxtrace(struct feat_fd *ff,
906 struct evlist *evlist __maybe_unused)
907 {
908 struct perf_session *session;
909 int err;
910
911 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
912 return -1;
913
914 session = container_of(ff->ph, struct perf_session, header);
915
916 err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
917 if (err < 0)
918 pr_err("Failed to write auxtrace index\n");
919 return err;
920 }
921
write_clockid(struct feat_fd * ff,struct evlist * evlist __maybe_unused)922 static int write_clockid(struct feat_fd *ff,
923 struct evlist *evlist __maybe_unused)
924 {
925 return do_write(ff, &ff->ph->env.clock.clockid_res_ns,
926 sizeof(ff->ph->env.clock.clockid_res_ns));
927 }
928
write_clock_data(struct feat_fd * ff,struct evlist * evlist __maybe_unused)929 static int write_clock_data(struct feat_fd *ff,
930 struct evlist *evlist __maybe_unused)
931 {
932 u64 *data64;
933 u32 data32;
934 int ret;
935
936 /* version */
937 data32 = 1;
938
939 ret = do_write(ff, &data32, sizeof(data32));
940 if (ret < 0)
941 return ret;
942
943 /* clockid */
944 data32 = ff->ph->env.clock.clockid;
945
946 ret = do_write(ff, &data32, sizeof(data32));
947 if (ret < 0)
948 return ret;
949
950 /* TOD ref time */
951 data64 = &ff->ph->env.clock.tod_ns;
952
953 ret = do_write(ff, data64, sizeof(*data64));
954 if (ret < 0)
955 return ret;
956
957 /* clockid ref time */
958 data64 = &ff->ph->env.clock.clockid_ns;
959
960 return do_write(ff, data64, sizeof(*data64));
961 }
962
write_hybrid_topology(struct feat_fd * ff,struct evlist * evlist __maybe_unused)963 static int write_hybrid_topology(struct feat_fd *ff,
964 struct evlist *evlist __maybe_unused)
965 {
966 struct hybrid_topology *tp;
967 int ret;
968 u32 i;
969
970 tp = hybrid_topology__new();
971 if (!tp)
972 return -ENOENT;
973
974 ret = do_write(ff, &tp->nr, sizeof(u32));
975 if (ret < 0)
976 goto err;
977
978 for (i = 0; i < tp->nr; i++) {
979 struct hybrid_topology_node *n = &tp->nodes[i];
980
981 ret = do_write_string(ff, n->pmu_name);
982 if (ret < 0)
983 goto err;
984
985 ret = do_write_string(ff, n->cpus);
986 if (ret < 0)
987 goto err;
988 }
989
990 ret = 0;
991
992 err:
993 hybrid_topology__delete(tp);
994 return ret;
995 }
996
write_dir_format(struct feat_fd * ff,struct evlist * evlist __maybe_unused)997 static int write_dir_format(struct feat_fd *ff,
998 struct evlist *evlist __maybe_unused)
999 {
1000 struct perf_session *session;
1001 struct perf_data *data;
1002
1003 session = container_of(ff->ph, struct perf_session, header);
1004 data = session->data;
1005
1006 if (WARN_ON(!perf_data__is_dir(data)))
1007 return -1;
1008
1009 return do_write(ff, &data->dir.version, sizeof(data->dir.version));
1010 }
1011
1012 #ifdef HAVE_LIBBPF_SUPPORT
write_bpf_prog_info(struct feat_fd * ff,struct evlist * evlist __maybe_unused)1013 static int write_bpf_prog_info(struct feat_fd *ff,
1014 struct evlist *evlist __maybe_unused)
1015 {
1016 struct perf_env *env = &ff->ph->env;
1017 struct rb_root *root;
1018 struct rb_node *next;
1019 int ret;
1020
1021 down_read(&env->bpf_progs.lock);
1022
1023 ret = do_write(ff, &env->bpf_progs.infos_cnt,
1024 sizeof(env->bpf_progs.infos_cnt));
1025 if (ret < 0)
1026 goto out;
1027
1028 root = &env->bpf_progs.infos;
1029 next = rb_first(root);
1030 while (next) {
1031 struct bpf_prog_info_node *node;
1032 size_t len;
1033
1034 node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1035 next = rb_next(&node->rb_node);
1036 len = sizeof(struct perf_bpil) +
1037 node->info_linear->data_len;
1038
1039 /* before writing to file, translate address to offset */
1040 bpil_addr_to_offs(node->info_linear);
1041 ret = do_write(ff, node->info_linear, len);
1042 /*
1043 * translate back to address even when do_write() fails,
1044 * so that this function never changes the data.
1045 */
1046 bpil_offs_to_addr(node->info_linear);
1047 if (ret < 0)
1048 goto out;
1049 }
1050 out:
1051 up_read(&env->bpf_progs.lock);
1052 return ret;
1053 }
1054
write_bpf_btf(struct feat_fd * ff,struct evlist * evlist __maybe_unused)1055 static int write_bpf_btf(struct feat_fd *ff,
1056 struct evlist *evlist __maybe_unused)
1057 {
1058 struct perf_env *env = &ff->ph->env;
1059 struct rb_root *root;
1060 struct rb_node *next;
1061 int ret;
1062
1063 down_read(&env->bpf_progs.lock);
1064
1065 ret = do_write(ff, &env->bpf_progs.btfs_cnt,
1066 sizeof(env->bpf_progs.btfs_cnt));
1067
1068 if (ret < 0)
1069 goto out;
1070
1071 root = &env->bpf_progs.btfs;
1072 next = rb_first(root);
1073 while (next) {
1074 struct btf_node *node;
1075
1076 node = rb_entry(next, struct btf_node, rb_node);
1077 next = rb_next(&node->rb_node);
1078 ret = do_write(ff, &node->id,
1079 sizeof(u32) * 2 + node->data_size);
1080 if (ret < 0)
1081 goto out;
1082 }
1083 out:
1084 up_read(&env->bpf_progs.lock);
1085 return ret;
1086 }
1087 #endif // HAVE_LIBBPF_SUPPORT
1088
cpu_cache_level__sort(const void * a,const void * b)1089 static int cpu_cache_level__sort(const void *a, const void *b)
1090 {
1091 struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
1092 struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;
1093
1094 return cache_a->level - cache_b->level;
1095 }
1096
cpu_cache_level__cmp(struct cpu_cache_level * a,struct cpu_cache_level * b)1097 static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
1098 {
1099 if (a->level != b->level)
1100 return false;
1101
1102 if (a->line_size != b->line_size)
1103 return false;
1104
1105 if (a->sets != b->sets)
1106 return false;
1107
1108 if (a->ways != b->ways)
1109 return false;
1110
1111 if (strcmp(a->type, b->type))
1112 return false;
1113
1114 if (strcmp(a->size, b->size))
1115 return false;
1116
1117 if (strcmp(a->map, b->map))
1118 return false;
1119
1120 return true;
1121 }
1122
cpu_cache_level__read(struct cpu_cache_level * cache,u32 cpu,u16 level)1123 static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
1124 {
1125 char path[PATH_MAX], file[PATH_MAX];
1126 struct stat st;
1127 size_t len;
1128
1129 scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
1130 scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);
1131
1132 if (stat(file, &st))
1133 return 1;
1134
1135 scnprintf(file, PATH_MAX, "%s/level", path);
1136 if (sysfs__read_int(file, (int *) &cache->level))
1137 return -1;
1138
1139 scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
1140 if (sysfs__read_int(file, (int *) &cache->line_size))
1141 return -1;
1142
1143 scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
1144 if (sysfs__read_int(file, (int *) &cache->sets))
1145 return -1;
1146
1147 scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
1148 if (sysfs__read_int(file, (int *) &cache->ways))
1149 return -1;
1150
1151 scnprintf(file, PATH_MAX, "%s/type", path);
1152 if (sysfs__read_str(file, &cache->type, &len))
1153 return -1;
1154
1155 cache->type[len] = 0;
1156 cache->type = strim(cache->type);
1157
1158 scnprintf(file, PATH_MAX, "%s/size", path);
1159 if (sysfs__read_str(file, &cache->size, &len)) {
1160 zfree(&cache->type);
1161 return -1;
1162 }
1163
1164 cache->size[len] = 0;
1165 cache->size = strim(cache->size);
1166
1167 scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
1168 if (sysfs__read_str(file, &cache->map, &len)) {
1169 zfree(&cache->size);
1170 zfree(&cache->type);
1171 return -1;
1172 }
1173
1174 cache->map[len] = 0;
1175 cache->map = strim(cache->map);
1176 return 0;
1177 }
1178
cpu_cache_level__fprintf(FILE * out,struct cpu_cache_level * c)1179 static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
1180 {
1181 fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
1182 }
1183
1184 /*
1185 * Build caches levels for a particular CPU from the data in
1186 * /sys/devices/system/cpu/cpu<cpu>/cache/
1187 * The cache level data is stored in caches[] from index at
1188 * *cntp.
1189 */
build_caches_for_cpu(u32 cpu,struct cpu_cache_level caches[],u32 * cntp)1190 int build_caches_for_cpu(u32 cpu, struct cpu_cache_level caches[], u32 *cntp)
1191 {
1192 u16 level;
1193
1194 for (level = 0; level < MAX_CACHE_LVL; level++) {
1195 struct cpu_cache_level c;
1196 int err;
1197 u32 i;
1198
1199 err = cpu_cache_level__read(&c, cpu, level);
1200 if (err < 0)
1201 return err;
1202
1203 if (err == 1)
1204 break;
1205
1206 for (i = 0; i < *cntp; i++) {
1207 if (cpu_cache_level__cmp(&c, &caches[i]))
1208 break;
1209 }
1210
1211 if (i == *cntp) {
1212 caches[*cntp] = c;
1213 *cntp = *cntp + 1;
1214 } else
1215 cpu_cache_level__free(&c);
1216 }
1217
1218 return 0;
1219 }
1220
build_caches(struct cpu_cache_level caches[],u32 * cntp)1221 static int build_caches(struct cpu_cache_level caches[], u32 *cntp)
1222 {
1223 u32 nr, cpu, cnt = 0;
1224
1225 nr = cpu__max_cpu().cpu;
1226
1227 for (cpu = 0; cpu < nr; cpu++) {
1228 int ret = build_caches_for_cpu(cpu, caches, &cnt);
1229
1230 if (ret)
1231 return ret;
1232 }
1233 *cntp = cnt;
1234 return 0;
1235 }
1236
write_cache(struct feat_fd * ff,struct evlist * evlist __maybe_unused)1237 static int write_cache(struct feat_fd *ff,
1238 struct evlist *evlist __maybe_unused)
1239 {
1240 u32 max_caches = cpu__max_cpu().cpu * MAX_CACHE_LVL;
1241 struct cpu_cache_level caches[max_caches];
1242 u32 cnt = 0, i, version = 1;
1243 int ret;
1244
1245 ret = build_caches(caches, &cnt);
1246 if (ret)
1247 goto out;
1248
1249 qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);
1250
1251 ret = do_write(ff, &version, sizeof(u32));
1252 if (ret < 0)
1253 goto out;
1254
1255 ret = do_write(ff, &cnt, sizeof(u32));
1256 if (ret < 0)
1257 goto out;
1258
1259 for (i = 0; i < cnt; i++) {
1260 struct cpu_cache_level *c = &caches[i];
1261
1262 #define _W(v) \
1263 ret = do_write(ff, &c->v, sizeof(u32)); \
1264 if (ret < 0) \
1265 goto out;
1266
1267 _W(level)
1268 _W(line_size)
1269 _W(sets)
1270 _W(ways)
1271 #undef _W
1272
1273 #define _W(v) \
1274 ret = do_write_string(ff, (const char *) c->v); \
1275 if (ret < 0) \
1276 goto out;
1277
1278 _W(type)
1279 _W(size)
1280 _W(map)
1281 #undef _W
1282 }
1283
1284 out:
1285 for (i = 0; i < cnt; i++)
1286 cpu_cache_level__free(&caches[i]);
1287 return ret;
1288 }
1289
write_stat(struct feat_fd * ff __maybe_unused,struct evlist * evlist __maybe_unused)1290 static int write_stat(struct feat_fd *ff __maybe_unused,
1291 struct evlist *evlist __maybe_unused)
1292 {
1293 return 0;
1294 }
1295
write_sample_time(struct feat_fd * ff,struct evlist * evlist)1296 static int write_sample_time(struct feat_fd *ff,
1297 struct evlist *evlist)
1298 {
1299 int ret;
1300
1301 ret = do_write(ff, &evlist->first_sample_time,
1302 sizeof(evlist->first_sample_time));
1303 if (ret < 0)
1304 return ret;
1305
1306 return do_write(ff, &evlist->last_sample_time,
1307 sizeof(evlist->last_sample_time));
1308 }
1309
1310
memory_node__read(struct memory_node * n,unsigned long idx)1311 static int memory_node__read(struct memory_node *n, unsigned long idx)
1312 {
1313 unsigned int phys, size = 0;
1314 char path[PATH_MAX];
1315 struct io_dirent64 *ent;
1316 struct io_dir dir;
1317
1318 #define for_each_memory(mem, dir) \
1319 while ((ent = io_dir__readdir(&dir)) != NULL) \
1320 if (strcmp(ent->d_name, ".") && \
1321 strcmp(ent->d_name, "..") && \
1322 sscanf(ent->d_name, "memory%u", &mem) == 1)
1323
1324 scnprintf(path, PATH_MAX,
1325 "%s/devices/system/node/node%lu",
1326 sysfs__mountpoint(), idx);
1327
1328 io_dir__init(&dir, open(path, O_CLOEXEC | O_DIRECTORY | O_RDONLY));
1329 if (dir.dirfd < 0) {
1330 pr_warning("failed: can't open memory sysfs data '%s'\n", path);
1331 return -1;
1332 }
1333
1334 for_each_memory(phys, dir) {
1335 size = max(phys, size);
1336 }
1337
1338 size++;
1339
1340 n->set = bitmap_zalloc(size);
1341 if (!n->set) {
1342 close(dir.dirfd);
1343 return -ENOMEM;
1344 }
1345
1346 n->node = idx;
1347 n->size = size;
1348
1349 io_dir__rewinddir(&dir);
1350
1351 for_each_memory(phys, dir) {
1352 __set_bit(phys, n->set);
1353 }
1354
1355 close(dir.dirfd);
1356 return 0;
1357 }
1358
memory_node__delete_nodes(struct memory_node * nodesp,u64 cnt)1359 static void memory_node__delete_nodes(struct memory_node *nodesp, u64 cnt)
1360 {
1361 for (u64 i = 0; i < cnt; i++)
1362 bitmap_free(nodesp[i].set);
1363
1364 free(nodesp);
1365 }
1366
memory_node__sort(const void * a,const void * b)1367 static int memory_node__sort(const void *a, const void *b)
1368 {
1369 const struct memory_node *na = a;
1370 const struct memory_node *nb = b;
1371
1372 return na->node - nb->node;
1373 }
1374
build_mem_topology(struct memory_node ** nodesp,u64 * cntp)1375 static int build_mem_topology(struct memory_node **nodesp, u64 *cntp)
1376 {
1377 char path[PATH_MAX];
1378 struct io_dirent64 *ent;
1379 struct io_dir dir;
1380 int ret = 0;
1381 size_t cnt = 0, size = 0;
1382 struct memory_node *nodes = NULL;
1383
1384 scnprintf(path, PATH_MAX, "%s/devices/system/node/",
1385 sysfs__mountpoint());
1386
1387 io_dir__init(&dir, open(path, O_CLOEXEC | O_DIRECTORY | O_RDONLY));
1388 if (dir.dirfd < 0) {
1389 pr_debug2("%s: couldn't read %s, does this arch have topology information?\n",
1390 __func__, path);
1391 return -1;
1392 }
1393
1394 while (!ret && (ent = io_dir__readdir(&dir))) {
1395 unsigned int idx;
1396 int r;
1397
1398 if (!strcmp(ent->d_name, ".") ||
1399 !strcmp(ent->d_name, ".."))
1400 continue;
1401
1402 r = sscanf(ent->d_name, "node%u", &idx);
1403 if (r != 1)
1404 continue;
1405
1406 if (cnt >= size) {
1407 struct memory_node *new_nodes =
1408 reallocarray(nodes, cnt + 4, sizeof(*nodes));
1409
1410 if (!new_nodes) {
1411 pr_err("Failed to write MEM_TOPOLOGY, size %zd nodes\n", size);
1412 ret = -ENOMEM;
1413 goto out;
1414 }
1415 nodes = new_nodes;
1416 size += 4;
1417 }
1418 ret = memory_node__read(&nodes[cnt], idx);
1419 if (!ret)
1420 cnt += 1;
1421 }
1422 out:
1423 close(dir.dirfd);
1424 if (!ret) {
1425 *cntp = cnt;
1426 *nodesp = nodes;
1427 qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);
1428 } else
1429 memory_node__delete_nodes(nodes, cnt);
1430
1431 return ret;
1432 }
1433
1434 /*
1435 * The MEM_TOPOLOGY holds physical memory map for every
1436 * node in system. The format of data is as follows:
1437 *
1438 * 0 - version | for future changes
1439 * 8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
1440 * 16 - count | number of nodes
1441 *
1442 * For each node we store map of physical indexes for
1443 * each node:
1444 *
1445 * 32 - node id | node index
1446 * 40 - size | size of bitmap
1447 * 48 - bitmap | bitmap of memory indexes that belongs to node
1448 */
write_mem_topology(struct feat_fd * ff __maybe_unused,struct evlist * evlist __maybe_unused)1449 static int write_mem_topology(struct feat_fd *ff __maybe_unused,
1450 struct evlist *evlist __maybe_unused)
1451 {
1452 struct memory_node *nodes = NULL;
1453 u64 bsize, version = 1, i, nr = 0;
1454 int ret;
1455
1456 ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
1457 (unsigned long long *) &bsize);
1458 if (ret)
1459 return ret;
1460
1461 ret = build_mem_topology(&nodes, &nr);
1462 if (ret)
1463 return ret;
1464
1465 ret = do_write(ff, &version, sizeof(version));
1466 if (ret < 0)
1467 goto out;
1468
1469 ret = do_write(ff, &bsize, sizeof(bsize));
1470 if (ret < 0)
1471 goto out;
1472
1473 ret = do_write(ff, &nr, sizeof(nr));
1474 if (ret < 0)
1475 goto out;
1476
1477 for (i = 0; i < nr; i++) {
1478 struct memory_node *n = &nodes[i];
1479
1480 #define _W(v) \
1481 ret = do_write(ff, &n->v, sizeof(n->v)); \
1482 if (ret < 0) \
1483 goto out;
1484
1485 _W(node)
1486 _W(size)
1487
1488 #undef _W
1489
1490 ret = do_write_bitmap(ff, n->set, n->size);
1491 if (ret < 0)
1492 goto out;
1493 }
1494
1495 out:
1496 memory_node__delete_nodes(nodes, nr);
1497 return ret;
1498 }
1499
write_compressed(struct feat_fd * ff __maybe_unused,struct evlist * evlist __maybe_unused)1500 static int write_compressed(struct feat_fd *ff __maybe_unused,
1501 struct evlist *evlist __maybe_unused)
1502 {
1503 int ret;
1504
1505 ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver));
1506 if (ret)
1507 return ret;
1508
1509 ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type));
1510 if (ret)
1511 return ret;
1512
1513 ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level));
1514 if (ret)
1515 return ret;
1516
1517 ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio));
1518 if (ret)
1519 return ret;
1520
1521 return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len));
1522 }
1523
__write_pmu_caps(struct feat_fd * ff,struct perf_pmu * pmu,bool write_pmu)1524 static int __write_pmu_caps(struct feat_fd *ff, struct perf_pmu *pmu,
1525 bool write_pmu)
1526 {
1527 struct perf_pmu_caps *caps = NULL;
1528 int ret;
1529
1530 ret = do_write(ff, &pmu->nr_caps, sizeof(pmu->nr_caps));
1531 if (ret < 0)
1532 return ret;
1533
1534 list_for_each_entry(caps, &pmu->caps, list) {
1535 ret = do_write_string(ff, caps->name);
1536 if (ret < 0)
1537 return ret;
1538
1539 ret = do_write_string(ff, caps->value);
1540 if (ret < 0)
1541 return ret;
1542 }
1543
1544 if (write_pmu) {
1545 ret = do_write_string(ff, pmu->name);
1546 if (ret < 0)
1547 return ret;
1548 }
1549
1550 return ret;
1551 }
1552
write_cpu_pmu_caps(struct feat_fd * ff,struct evlist * evlist __maybe_unused)1553 static int write_cpu_pmu_caps(struct feat_fd *ff,
1554 struct evlist *evlist __maybe_unused)
1555 {
1556 struct perf_pmu *cpu_pmu = perf_pmus__find("cpu");
1557 int ret;
1558
1559 if (!cpu_pmu)
1560 return -ENOENT;
1561
1562 ret = perf_pmu__caps_parse(cpu_pmu);
1563 if (ret < 0)
1564 return ret;
1565
1566 return __write_pmu_caps(ff, cpu_pmu, false);
1567 }
1568
write_pmu_caps(struct feat_fd * ff,struct evlist * evlist __maybe_unused)1569 static int write_pmu_caps(struct feat_fd *ff,
1570 struct evlist *evlist __maybe_unused)
1571 {
1572 struct perf_pmu *pmu = NULL;
1573 int nr_pmu = 0;
1574 int ret;
1575
1576 while ((pmu = perf_pmus__scan(pmu))) {
1577 if (!strcmp(pmu->name, "cpu")) {
1578 /*
1579 * The "cpu" PMU is special and covered by
1580 * HEADER_CPU_PMU_CAPS. Note, core PMUs are
1581 * counted/written here for ARM, s390 and Intel hybrid.
1582 */
1583 continue;
1584 }
1585 if (perf_pmu__caps_parse(pmu) <= 0)
1586 continue;
1587 nr_pmu++;
1588 }
1589
1590 ret = do_write(ff, &nr_pmu, sizeof(nr_pmu));
1591 if (ret < 0)
1592 return ret;
1593
1594 if (!nr_pmu)
1595 return 0;
1596
1597 /*
1598 * Note older perf tools assume core PMUs come first, this is a property
1599 * of perf_pmus__scan.
1600 */
1601 pmu = NULL;
1602 while ((pmu = perf_pmus__scan(pmu))) {
1603 if (!strcmp(pmu->name, "cpu")) {
1604 /* Skip as above. */
1605 continue;
1606 }
1607 if (perf_pmu__caps_parse(pmu) <= 0)
1608 continue;
1609 ret = __write_pmu_caps(ff, pmu, true);
1610 if (ret < 0)
1611 return ret;
1612 }
1613 return 0;
1614 }
1615
print_hostname(struct feat_fd * ff,FILE * fp)1616 static void print_hostname(struct feat_fd *ff, FILE *fp)
1617 {
1618 fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1619 }
1620
print_osrelease(struct feat_fd * ff,FILE * fp)1621 static void print_osrelease(struct feat_fd *ff, FILE *fp)
1622 {
1623 fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1624 }
1625
print_arch(struct feat_fd * ff,FILE * fp)1626 static void print_arch(struct feat_fd *ff, FILE *fp)
1627 {
1628 fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1629 }
1630
print_cpudesc(struct feat_fd * ff,FILE * fp)1631 static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1632 {
1633 fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1634 }
1635
print_nrcpus(struct feat_fd * ff,FILE * fp)1636 static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1637 {
1638 fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
1639 fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1640 }
1641
print_version(struct feat_fd * ff,FILE * fp)1642 static void print_version(struct feat_fd *ff, FILE *fp)
1643 {
1644 fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1645 }
1646
print_cmdline(struct feat_fd * ff,FILE * fp)1647 static void print_cmdline(struct feat_fd *ff, FILE *fp)
1648 {
1649 int nr, i;
1650
1651 nr = ff->ph->env.nr_cmdline;
1652
1653 fprintf(fp, "# cmdline : ");
1654
1655 for (i = 0; i < nr; i++) {
1656 char *argv_i = strdup(ff->ph->env.cmdline_argv[i]);
1657 if (!argv_i) {
1658 fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
1659 } else {
1660 char *mem = argv_i;
1661 do {
1662 char *quote = strchr(argv_i, '\'');
1663 if (!quote)
1664 break;
1665 *quote++ = '\0';
1666 fprintf(fp, "%s\\\'", argv_i);
1667 argv_i = quote;
1668 } while (1);
1669 fprintf(fp, "%s ", argv_i);
1670 free(mem);
1671 }
1672 }
1673 fputc('\n', fp);
1674 }
1675
print_cpu_topology(struct feat_fd * ff,FILE * fp)1676 static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
1677 {
1678 struct perf_header *ph = ff->ph;
1679 int cpu_nr = ph->env.nr_cpus_avail;
1680 int nr, i;
1681 char *str;
1682
1683 nr = ph->env.nr_sibling_cores;
1684 str = ph->env.sibling_cores;
1685
1686 for (i = 0; i < nr; i++) {
1687 fprintf(fp, "# sibling sockets : %s\n", str);
1688 str += strlen(str) + 1;
1689 }
1690
1691 if (ph->env.nr_sibling_dies) {
1692 nr = ph->env.nr_sibling_dies;
1693 str = ph->env.sibling_dies;
1694
1695 for (i = 0; i < nr; i++) {
1696 fprintf(fp, "# sibling dies : %s\n", str);
1697 str += strlen(str) + 1;
1698 }
1699 }
1700
1701 nr = ph->env.nr_sibling_threads;
1702 str = ph->env.sibling_threads;
1703
1704 for (i = 0; i < nr; i++) {
1705 fprintf(fp, "# sibling threads : %s\n", str);
1706 str += strlen(str) + 1;
1707 }
1708
1709 if (ph->env.nr_sibling_dies) {
1710 if (ph->env.cpu != NULL) {
1711 for (i = 0; i < cpu_nr; i++)
1712 fprintf(fp, "# CPU %d: Core ID %d, "
1713 "Die ID %d, Socket ID %d\n",
1714 i, ph->env.cpu[i].core_id,
1715 ph->env.cpu[i].die_id,
1716 ph->env.cpu[i].socket_id);
1717 } else
1718 fprintf(fp, "# Core ID, Die ID and Socket ID "
1719 "information is not available\n");
1720 } else {
1721 if (ph->env.cpu != NULL) {
1722 for (i = 0; i < cpu_nr; i++)
1723 fprintf(fp, "# CPU %d: Core ID %d, "
1724 "Socket ID %d\n",
1725 i, ph->env.cpu[i].core_id,
1726 ph->env.cpu[i].socket_id);
1727 } else
1728 fprintf(fp, "# Core ID and Socket ID "
1729 "information is not available\n");
1730 }
1731 }
1732
print_clockid(struct feat_fd * ff,FILE * fp)1733 static void print_clockid(struct feat_fd *ff, FILE *fp)
1734 {
1735 fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n",
1736 ff->ph->env.clock.clockid_res_ns * 1000);
1737 }
1738
print_clock_data(struct feat_fd * ff,FILE * fp)1739 static void print_clock_data(struct feat_fd *ff, FILE *fp)
1740 {
1741 struct timespec clockid_ns;
1742 char tstr[64], date[64];
1743 struct timeval tod_ns;
1744 clockid_t clockid;
1745 struct tm ltime;
1746 u64 ref;
1747
1748 if (!ff->ph->env.clock.enabled) {
1749 fprintf(fp, "# reference time disabled\n");
1750 return;
1751 }
1752
1753 /* Compute TOD time. */
1754 ref = ff->ph->env.clock.tod_ns;
1755 tod_ns.tv_sec = ref / NSEC_PER_SEC;
1756 ref -= tod_ns.tv_sec * NSEC_PER_SEC;
1757 tod_ns.tv_usec = ref / NSEC_PER_USEC;
1758
1759 /* Compute clockid time. */
1760 ref = ff->ph->env.clock.clockid_ns;
1761 clockid_ns.tv_sec = ref / NSEC_PER_SEC;
1762 ref -= clockid_ns.tv_sec * NSEC_PER_SEC;
1763 clockid_ns.tv_nsec = ref;
1764
1765 clockid = ff->ph->env.clock.clockid;
1766
1767 if (localtime_r(&tod_ns.tv_sec, <ime) == NULL)
1768 snprintf(tstr, sizeof(tstr), "<error>");
1769 else {
1770 strftime(date, sizeof(date), "%F %T", <ime);
1771 scnprintf(tstr, sizeof(tstr), "%s.%06d",
1772 date, (int) tod_ns.tv_usec);
1773 }
1774
1775 fprintf(fp, "# clockid: %s (%u)\n", clockid_name(clockid), clockid);
1776 fprintf(fp, "# reference time: %s = %ld.%06d (TOD) = %ld.%09ld (%s)\n",
1777 tstr, (long) tod_ns.tv_sec, (int) tod_ns.tv_usec,
1778 (long) clockid_ns.tv_sec, clockid_ns.tv_nsec,
1779 clockid_name(clockid));
1780 }
1781
print_hybrid_topology(struct feat_fd * ff,FILE * fp)1782 static void print_hybrid_topology(struct feat_fd *ff, FILE *fp)
1783 {
1784 int i;
1785 struct hybrid_node *n;
1786
1787 fprintf(fp, "# hybrid cpu system:\n");
1788 for (i = 0; i < ff->ph->env.nr_hybrid_nodes; i++) {
1789 n = &ff->ph->env.hybrid_nodes[i];
1790 fprintf(fp, "# %s cpu list : %s\n", n->pmu_name, n->cpus);
1791 }
1792 }
1793
print_dir_format(struct feat_fd * ff,FILE * fp)1794 static void print_dir_format(struct feat_fd *ff, FILE *fp)
1795 {
1796 struct perf_session *session;
1797 struct perf_data *data;
1798
1799 session = container_of(ff->ph, struct perf_session, header);
1800 data = session->data;
1801
1802 fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version);
1803 }
1804
1805 #ifdef HAVE_LIBBPF_SUPPORT
print_bpf_prog_info(struct feat_fd * ff,FILE * fp)1806 static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp)
1807 {
1808 struct perf_env *env = &ff->ph->env;
1809 struct rb_root *root;
1810 struct rb_node *next;
1811
1812 down_read(&env->bpf_progs.lock);
1813
1814 root = &env->bpf_progs.infos;
1815 next = rb_first(root);
1816
1817 while (next) {
1818 struct bpf_prog_info_node *node;
1819
1820 node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1821 next = rb_next(&node->rb_node);
1822
1823 __bpf_event__print_bpf_prog_info(&node->info_linear->info,
1824 env, fp);
1825 }
1826
1827 up_read(&env->bpf_progs.lock);
1828 }
1829
print_bpf_btf(struct feat_fd * ff,FILE * fp)1830 static void print_bpf_btf(struct feat_fd *ff, FILE *fp)
1831 {
1832 struct perf_env *env = &ff->ph->env;
1833 struct rb_root *root;
1834 struct rb_node *next;
1835
1836 down_read(&env->bpf_progs.lock);
1837
1838 root = &env->bpf_progs.btfs;
1839 next = rb_first(root);
1840
1841 while (next) {
1842 struct btf_node *node;
1843
1844 node = rb_entry(next, struct btf_node, rb_node);
1845 next = rb_next(&node->rb_node);
1846 fprintf(fp, "# btf info of id %u\n", node->id);
1847 }
1848
1849 up_read(&env->bpf_progs.lock);
1850 }
1851 #endif // HAVE_LIBBPF_SUPPORT
1852
free_event_desc(struct evsel * events)1853 static void free_event_desc(struct evsel *events)
1854 {
1855 struct evsel *evsel;
1856
1857 if (!events)
1858 return;
1859
1860 for (evsel = events; evsel->core.attr.size; evsel++) {
1861 zfree(&evsel->name);
1862 zfree(&evsel->core.id);
1863 }
1864
1865 free(events);
1866 }
1867
perf_attr_check(struct perf_event_attr * attr)1868 static bool perf_attr_check(struct perf_event_attr *attr)
1869 {
1870 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) {
1871 pr_warning("Reserved bits are set unexpectedly. "
1872 "Please update perf tool.\n");
1873 return false;
1874 }
1875
1876 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) {
1877 pr_warning("Unknown sample type (0x%llx) is detected. "
1878 "Please update perf tool.\n",
1879 attr->sample_type);
1880 return false;
1881 }
1882
1883 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) {
1884 pr_warning("Unknown read format (0x%llx) is detected. "
1885 "Please update perf tool.\n",
1886 attr->read_format);
1887 return false;
1888 }
1889
1890 if ((attr->sample_type & PERF_SAMPLE_BRANCH_STACK) &&
1891 (attr->branch_sample_type & ~(PERF_SAMPLE_BRANCH_MAX-1))) {
1892 pr_warning("Unknown branch sample type (0x%llx) is detected. "
1893 "Please update perf tool.\n",
1894 attr->branch_sample_type);
1895
1896 return false;
1897 }
1898
1899 return true;
1900 }
1901
read_event_desc(struct feat_fd * ff)1902 static struct evsel *read_event_desc(struct feat_fd *ff)
1903 {
1904 struct evsel *evsel, *events = NULL;
1905 u64 *id;
1906 void *buf = NULL;
1907 u32 nre, sz, nr, i, j;
1908 size_t msz;
1909
1910 /* number of events */
1911 if (do_read_u32(ff, &nre))
1912 goto error;
1913
1914 if (do_read_u32(ff, &sz))
1915 goto error;
1916
1917 /* buffer to hold on file attr struct */
1918 buf = malloc(sz);
1919 if (!buf)
1920 goto error;
1921
1922 /* the last event terminates with evsel->core.attr.size == 0: */
1923 events = calloc(nre + 1, sizeof(*events));
1924 if (!events)
1925 goto error;
1926
1927 msz = sizeof(evsel->core.attr);
1928 if (sz < msz)
1929 msz = sz;
1930
1931 for (i = 0, evsel = events; i < nre; evsel++, i++) {
1932 evsel->core.idx = i;
1933
1934 /*
1935 * must read entire on-file attr struct to
1936 * sync up with layout.
1937 */
1938 if (__do_read(ff, buf, sz))
1939 goto error;
1940
1941 if (ff->ph->needs_swap)
1942 perf_event__attr_swap(buf);
1943
1944 memcpy(&evsel->core.attr, buf, msz);
1945
1946 if (!perf_attr_check(&evsel->core.attr))
1947 goto error;
1948
1949 if (do_read_u32(ff, &nr))
1950 goto error;
1951
1952 if (ff->ph->needs_swap)
1953 evsel->needs_swap = true;
1954
1955 evsel->name = do_read_string(ff);
1956 if (!evsel->name)
1957 goto error;
1958
1959 if (!nr)
1960 continue;
1961
1962 id = calloc(nr, sizeof(*id));
1963 if (!id)
1964 goto error;
1965 evsel->core.ids = nr;
1966 evsel->core.id = id;
1967
1968 for (j = 0 ; j < nr; j++) {
1969 if (do_read_u64(ff, id))
1970 goto error;
1971 id++;
1972 }
1973 }
1974 out:
1975 free(buf);
1976 return events;
1977 error:
1978 free_event_desc(events);
1979 events = NULL;
1980 goto out;
1981 }
1982
__desc_attr__fprintf(FILE * fp,const char * name,const char * val,void * priv __maybe_unused)1983 static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
1984 void *priv __maybe_unused)
1985 {
1986 return fprintf(fp, ", %s = %s", name, val);
1987 }
1988
print_event_desc(struct feat_fd * ff,FILE * fp)1989 static void print_event_desc(struct feat_fd *ff, FILE *fp)
1990 {
1991 struct evsel *evsel, *events;
1992 u32 j;
1993 u64 *id;
1994
1995 if (ff->events)
1996 events = ff->events;
1997 else
1998 events = read_event_desc(ff);
1999
2000 if (!events) {
2001 fprintf(fp, "# event desc: not available or unable to read\n");
2002 return;
2003 }
2004
2005 for (evsel = events; evsel->core.attr.size; evsel++) {
2006 fprintf(fp, "# event : name = %s, ", evsel->name);
2007
2008 if (evsel->core.ids) {
2009 fprintf(fp, ", id = {");
2010 for (j = 0, id = evsel->core.id; j < evsel->core.ids; j++, id++) {
2011 if (j)
2012 fputc(',', fp);
2013 fprintf(fp, " %"PRIu64, *id);
2014 }
2015 fprintf(fp, " }");
2016 }
2017
2018 perf_event_attr__fprintf(fp, &evsel->core.attr, __desc_attr__fprintf, NULL);
2019
2020 fputc('\n', fp);
2021 }
2022
2023 free_event_desc(events);
2024 ff->events = NULL;
2025 }
2026
print_total_mem(struct feat_fd * ff,FILE * fp)2027 static void print_total_mem(struct feat_fd *ff, FILE *fp)
2028 {
2029 fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
2030 }
2031
print_numa_topology(struct feat_fd * ff,FILE * fp)2032 static void print_numa_topology(struct feat_fd *ff, FILE *fp)
2033 {
2034 int i;
2035 struct numa_node *n;
2036
2037 for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
2038 n = &ff->ph->env.numa_nodes[i];
2039
2040 fprintf(fp, "# node%u meminfo : total = %"PRIu64" kB,"
2041 " free = %"PRIu64" kB\n",
2042 n->node, n->mem_total, n->mem_free);
2043
2044 fprintf(fp, "# node%u cpu list : ", n->node);
2045 cpu_map__fprintf(n->map, fp);
2046 }
2047 }
2048
print_cpuid(struct feat_fd * ff,FILE * fp)2049 static void print_cpuid(struct feat_fd *ff, FILE *fp)
2050 {
2051 fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
2052 }
2053
print_branch_stack(struct feat_fd * ff __maybe_unused,FILE * fp)2054 static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
2055 {
2056 fprintf(fp, "# contains samples with branch stack\n");
2057 }
2058
print_auxtrace(struct feat_fd * ff __maybe_unused,FILE * fp)2059 static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
2060 {
2061 fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
2062 }
2063
print_stat(struct feat_fd * ff __maybe_unused,FILE * fp)2064 static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
2065 {
2066 fprintf(fp, "# contains stat data\n");
2067 }
2068
print_cache(struct feat_fd * ff,FILE * fp __maybe_unused)2069 static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
2070 {
2071 int i;
2072
2073 fprintf(fp, "# CPU cache info:\n");
2074 for (i = 0; i < ff->ph->env.caches_cnt; i++) {
2075 fprintf(fp, "# ");
2076 cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
2077 }
2078 }
2079
print_compressed(struct feat_fd * ff,FILE * fp)2080 static void print_compressed(struct feat_fd *ff, FILE *fp)
2081 {
2082 fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n",
2083 ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown",
2084 ff->ph->env.comp_level, ff->ph->env.comp_ratio);
2085 }
2086
__print_pmu_caps(FILE * fp,int nr_caps,char ** caps,char * pmu_name)2087 static void __print_pmu_caps(FILE *fp, int nr_caps, char **caps, char *pmu_name)
2088 {
2089 const char *delimiter = "";
2090 int i;
2091
2092 if (!nr_caps) {
2093 fprintf(fp, "# %s pmu capabilities: not available\n", pmu_name);
2094 return;
2095 }
2096
2097 fprintf(fp, "# %s pmu capabilities: ", pmu_name);
2098 for (i = 0; i < nr_caps; i++) {
2099 fprintf(fp, "%s%s", delimiter, caps[i]);
2100 delimiter = ", ";
2101 }
2102
2103 fprintf(fp, "\n");
2104 }
2105
print_cpu_pmu_caps(struct feat_fd * ff,FILE * fp)2106 static void print_cpu_pmu_caps(struct feat_fd *ff, FILE *fp)
2107 {
2108 __print_pmu_caps(fp, ff->ph->env.nr_cpu_pmu_caps,
2109 ff->ph->env.cpu_pmu_caps, (char *)"cpu");
2110 }
2111
print_pmu_caps(struct feat_fd * ff,FILE * fp)2112 static void print_pmu_caps(struct feat_fd *ff, FILE *fp)
2113 {
2114 struct pmu_caps *pmu_caps;
2115
2116 for (int i = 0; i < ff->ph->env.nr_pmus_with_caps; i++) {
2117 pmu_caps = &ff->ph->env.pmu_caps[i];
2118 __print_pmu_caps(fp, pmu_caps->nr_caps, pmu_caps->caps,
2119 pmu_caps->pmu_name);
2120 }
2121
2122 if (strcmp(perf_env__arch(&ff->ph->env), "x86") == 0 &&
2123 perf_env__has_pmu_mapping(&ff->ph->env, "ibs_op")) {
2124 char *max_precise = perf_env__find_pmu_cap(&ff->ph->env, "cpu", "max_precise");
2125
2126 if (max_precise != NULL && atoi(max_precise) == 0)
2127 fprintf(fp, "# AMD systems uses ibs_op// PMU for some precise events, e.g.: cycles:p, see the 'perf list' man page for further details.\n");
2128 }
2129 }
2130
print_pmu_mappings(struct feat_fd * ff,FILE * fp)2131 static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
2132 {
2133 const char *delimiter = "# pmu mappings: ";
2134 char *str, *tmp;
2135 u32 pmu_num;
2136 u32 type;
2137
2138 pmu_num = ff->ph->env.nr_pmu_mappings;
2139 if (!pmu_num) {
2140 fprintf(fp, "# pmu mappings: not available\n");
2141 return;
2142 }
2143
2144 str = ff->ph->env.pmu_mappings;
2145
2146 while (pmu_num) {
2147 type = strtoul(str, &tmp, 0);
2148 if (*tmp != ':')
2149 goto error;
2150
2151 str = tmp + 1;
2152 fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
2153
2154 delimiter = ", ";
2155 str += strlen(str) + 1;
2156 pmu_num--;
2157 }
2158
2159 fprintf(fp, "\n");
2160
2161 if (!pmu_num)
2162 return;
2163 error:
2164 fprintf(fp, "# pmu mappings: unable to read\n");
2165 }
2166
print_group_desc(struct feat_fd * ff,FILE * fp)2167 static void print_group_desc(struct feat_fd *ff, FILE *fp)
2168 {
2169 struct perf_session *session;
2170 struct evsel *evsel;
2171 u32 nr = 0;
2172
2173 session = container_of(ff->ph, struct perf_session, header);
2174
2175 evlist__for_each_entry(session->evlist, evsel) {
2176 if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
2177 fprintf(fp, "# group: %s{%s", evsel->group_name ?: "", evsel__name(evsel));
2178
2179 nr = evsel->core.nr_members - 1;
2180 } else if (nr) {
2181 fprintf(fp, ",%s", evsel__name(evsel));
2182
2183 if (--nr == 0)
2184 fprintf(fp, "}\n");
2185 }
2186 }
2187 }
2188
print_sample_time(struct feat_fd * ff,FILE * fp)2189 static void print_sample_time(struct feat_fd *ff, FILE *fp)
2190 {
2191 struct perf_session *session;
2192 char time_buf[32];
2193 double d;
2194
2195 session = container_of(ff->ph, struct perf_session, header);
2196
2197 timestamp__scnprintf_usec(session->evlist->first_sample_time,
2198 time_buf, sizeof(time_buf));
2199 fprintf(fp, "# time of first sample : %s\n", time_buf);
2200
2201 timestamp__scnprintf_usec(session->evlist->last_sample_time,
2202 time_buf, sizeof(time_buf));
2203 fprintf(fp, "# time of last sample : %s\n", time_buf);
2204
2205 d = (double)(session->evlist->last_sample_time -
2206 session->evlist->first_sample_time) / NSEC_PER_MSEC;
2207
2208 fprintf(fp, "# sample duration : %10.3f ms\n", d);
2209 }
2210
memory_node__fprintf(struct memory_node * n,unsigned long long bsize,FILE * fp)2211 static void memory_node__fprintf(struct memory_node *n,
2212 unsigned long long bsize, FILE *fp)
2213 {
2214 char buf_map[100], buf_size[50];
2215 unsigned long long size;
2216
2217 size = bsize * bitmap_weight(n->set, n->size);
2218 unit_number__scnprintf(buf_size, 50, size);
2219
2220 bitmap_scnprintf(n->set, n->size, buf_map, 100);
2221 fprintf(fp, "# %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
2222 }
2223
print_mem_topology(struct feat_fd * ff,FILE * fp)2224 static void print_mem_topology(struct feat_fd *ff, FILE *fp)
2225 {
2226 struct memory_node *nodes;
2227 int i, nr;
2228
2229 nodes = ff->ph->env.memory_nodes;
2230 nr = ff->ph->env.nr_memory_nodes;
2231
2232 fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
2233 nr, ff->ph->env.memory_bsize);
2234
2235 for (i = 0; i < nr; i++) {
2236 memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp);
2237 }
2238 }
2239
__event_process_build_id(struct perf_record_header_build_id * bev,char * filename,struct perf_session * session)2240 static int __event_process_build_id(struct perf_record_header_build_id *bev,
2241 char *filename,
2242 struct perf_session *session)
2243 {
2244 int err = -1;
2245 struct machine *machine;
2246 u16 cpumode;
2247 struct dso *dso;
2248 enum dso_space_type dso_space;
2249
2250 machine = perf_session__findnew_machine(session, bev->pid);
2251 if (!machine)
2252 goto out;
2253
2254 cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2255
2256 switch (cpumode) {
2257 case PERF_RECORD_MISC_KERNEL:
2258 dso_space = DSO_SPACE__KERNEL;
2259 break;
2260 case PERF_RECORD_MISC_GUEST_KERNEL:
2261 dso_space = DSO_SPACE__KERNEL_GUEST;
2262 break;
2263 case PERF_RECORD_MISC_USER:
2264 case PERF_RECORD_MISC_GUEST_USER:
2265 dso_space = DSO_SPACE__USER;
2266 break;
2267 default:
2268 goto out;
2269 }
2270
2271 dso = machine__findnew_dso(machine, filename);
2272 if (dso != NULL) {
2273 char sbuild_id[SBUILD_ID_SIZE];
2274 struct build_id bid;
2275 size_t size = BUILD_ID_SIZE;
2276
2277 if (bev->header.misc & PERF_RECORD_MISC_BUILD_ID_SIZE)
2278 size = bev->size;
2279
2280 build_id__init(&bid, bev->data, size);
2281 dso__set_build_id(dso, &bid);
2282 dso__set_header_build_id(dso, true);
2283
2284 if (dso_space != DSO_SPACE__USER) {
2285 struct kmod_path m = { .name = NULL, };
2286
2287 if (!kmod_path__parse_name(&m, filename) && m.kmod)
2288 dso__set_module_info(dso, &m, machine);
2289
2290 dso__set_kernel(dso, dso_space);
2291 free(m.name);
2292 }
2293
2294 build_id__sprintf(dso__bid(dso), sbuild_id);
2295 pr_debug("build id event received for %s: %s [%zu]\n",
2296 dso__long_name(dso), sbuild_id, size);
2297 dso__put(dso);
2298 }
2299
2300 err = 0;
2301 out:
2302 return err;
2303 }
2304
perf_header__read_build_ids_abi_quirk(struct perf_header * header,int input,u64 offset,u64 size)2305 static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
2306 int input, u64 offset, u64 size)
2307 {
2308 struct perf_session *session = container_of(header, struct perf_session, header);
2309 struct {
2310 struct perf_event_header header;
2311 u8 build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
2312 char filename[0];
2313 } old_bev;
2314 struct perf_record_header_build_id bev;
2315 char filename[PATH_MAX];
2316 u64 limit = offset + size;
2317
2318 while (offset < limit) {
2319 ssize_t len;
2320
2321 if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
2322 return -1;
2323
2324 if (header->needs_swap)
2325 perf_event_header__bswap(&old_bev.header);
2326
2327 len = old_bev.header.size - sizeof(old_bev);
2328 if (readn(input, filename, len) != len)
2329 return -1;
2330
2331 bev.header = old_bev.header;
2332
2333 /*
2334 * As the pid is the missing value, we need to fill
2335 * it properly. The header.misc value give us nice hint.
2336 */
2337 bev.pid = HOST_KERNEL_ID;
2338 if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
2339 bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
2340 bev.pid = DEFAULT_GUEST_KERNEL_ID;
2341
2342 memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
2343 __event_process_build_id(&bev, filename, session);
2344
2345 offset += bev.header.size;
2346 }
2347
2348 return 0;
2349 }
2350
perf_header__read_build_ids(struct perf_header * header,int input,u64 offset,u64 size)2351 static int perf_header__read_build_ids(struct perf_header *header,
2352 int input, u64 offset, u64 size)
2353 {
2354 struct perf_session *session = container_of(header, struct perf_session, header);
2355 struct perf_record_header_build_id bev;
2356 char filename[PATH_MAX];
2357 u64 limit = offset + size, orig_offset = offset;
2358 int err = -1;
2359
2360 while (offset < limit) {
2361 ssize_t len;
2362
2363 if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
2364 goto out;
2365
2366 if (header->needs_swap)
2367 perf_event_header__bswap(&bev.header);
2368
2369 len = bev.header.size - sizeof(bev);
2370 if (readn(input, filename, len) != len)
2371 goto out;
2372 /*
2373 * The a1645ce1 changeset:
2374 *
2375 * "perf: 'perf kvm' tool for monitoring guest performance from host"
2376 *
2377 * Added a field to struct perf_record_header_build_id that broke the file
2378 * format.
2379 *
2380 * Since the kernel build-id is the first entry, process the
2381 * table using the old format if the well known
2382 * '[kernel.kallsyms]' string for the kernel build-id has the
2383 * first 4 characters chopped off (where the pid_t sits).
2384 */
2385 if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
2386 if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
2387 return -1;
2388 return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
2389 }
2390
2391 __event_process_build_id(&bev, filename, session);
2392
2393 offset += bev.header.size;
2394 }
2395 err = 0;
2396 out:
2397 return err;
2398 }
2399
2400 /* Macro for features that simply need to read and store a string. */
2401 #define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
2402 static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
2403 {\
2404 free(ff->ph->env.__feat_env); \
2405 ff->ph->env.__feat_env = do_read_string(ff); \
2406 return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
2407 }
2408
2409 FEAT_PROCESS_STR_FUN(hostname, hostname);
2410 FEAT_PROCESS_STR_FUN(osrelease, os_release);
2411 FEAT_PROCESS_STR_FUN(version, version);
2412 FEAT_PROCESS_STR_FUN(arch, arch);
2413 FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
2414 FEAT_PROCESS_STR_FUN(cpuid, cpuid);
2415
2416 #ifdef HAVE_LIBTRACEEVENT
process_tracing_data(struct feat_fd * ff,void * data)2417 static int process_tracing_data(struct feat_fd *ff, void *data)
2418 {
2419 ssize_t ret = trace_report(ff->fd, data, false);
2420
2421 return ret < 0 ? -1 : 0;
2422 }
2423 #endif
2424
process_build_id(struct feat_fd * ff,void * data __maybe_unused)2425 static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
2426 {
2427 if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
2428 pr_debug("Failed to read buildids, continuing...\n");
2429 return 0;
2430 }
2431
process_nrcpus(struct feat_fd * ff,void * data __maybe_unused)2432 static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
2433 {
2434 int ret;
2435 u32 nr_cpus_avail, nr_cpus_online;
2436
2437 ret = do_read_u32(ff, &nr_cpus_avail);
2438 if (ret)
2439 return ret;
2440
2441 ret = do_read_u32(ff, &nr_cpus_online);
2442 if (ret)
2443 return ret;
2444 ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail;
2445 ff->ph->env.nr_cpus_online = (int)nr_cpus_online;
2446 return 0;
2447 }
2448
process_total_mem(struct feat_fd * ff,void * data __maybe_unused)2449 static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
2450 {
2451 u64 total_mem;
2452 int ret;
2453
2454 ret = do_read_u64(ff, &total_mem);
2455 if (ret)
2456 return -1;
2457 ff->ph->env.total_mem = (unsigned long long)total_mem;
2458 return 0;
2459 }
2460
evlist__find_by_index(struct evlist * evlist,int idx)2461 static struct evsel *evlist__find_by_index(struct evlist *evlist, int idx)
2462 {
2463 struct evsel *evsel;
2464
2465 evlist__for_each_entry(evlist, evsel) {
2466 if (evsel->core.idx == idx)
2467 return evsel;
2468 }
2469
2470 return NULL;
2471 }
2472
evlist__set_event_name(struct evlist * evlist,struct evsel * event)2473 static void evlist__set_event_name(struct evlist *evlist, struct evsel *event)
2474 {
2475 struct evsel *evsel;
2476
2477 if (!event->name)
2478 return;
2479
2480 evsel = evlist__find_by_index(evlist, event->core.idx);
2481 if (!evsel)
2482 return;
2483
2484 if (evsel->name)
2485 return;
2486
2487 evsel->name = strdup(event->name);
2488 }
2489
2490 static int
process_event_desc(struct feat_fd * ff,void * data __maybe_unused)2491 process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
2492 {
2493 struct perf_session *session;
2494 struct evsel *evsel, *events = read_event_desc(ff);
2495
2496 if (!events)
2497 return 0;
2498
2499 session = container_of(ff->ph, struct perf_session, header);
2500
2501 if (session->data->is_pipe) {
2502 /* Save events for reading later by print_event_desc,
2503 * since they can't be read again in pipe mode. */
2504 ff->events = events;
2505 }
2506
2507 for (evsel = events; evsel->core.attr.size; evsel++)
2508 evlist__set_event_name(session->evlist, evsel);
2509
2510 if (!session->data->is_pipe)
2511 free_event_desc(events);
2512
2513 return 0;
2514 }
2515
process_cmdline(struct feat_fd * ff,void * data __maybe_unused)2516 static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
2517 {
2518 char *str, *cmdline = NULL, **argv = NULL;
2519 u32 nr, i, len = 0;
2520
2521 if (do_read_u32(ff, &nr))
2522 return -1;
2523
2524 ff->ph->env.nr_cmdline = nr;
2525
2526 cmdline = zalloc(ff->size + nr + 1);
2527 if (!cmdline)
2528 return -1;
2529
2530 argv = zalloc(sizeof(char *) * (nr + 1));
2531 if (!argv)
2532 goto error;
2533
2534 for (i = 0; i < nr; i++) {
2535 str = do_read_string(ff);
2536 if (!str)
2537 goto error;
2538
2539 argv[i] = cmdline + len;
2540 memcpy(argv[i], str, strlen(str) + 1);
2541 len += strlen(str) + 1;
2542 free(str);
2543 }
2544 ff->ph->env.cmdline = cmdline;
2545 ff->ph->env.cmdline_argv = (const char **) argv;
2546 return 0;
2547
2548 error:
2549 free(argv);
2550 free(cmdline);
2551 return -1;
2552 }
2553
process_cpu_topology(struct feat_fd * ff,void * data __maybe_unused)2554 static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
2555 {
2556 u32 nr, i;
2557 char *str = NULL;
2558 struct strbuf sb;
2559 int cpu_nr = ff->ph->env.nr_cpus_avail;
2560 u64 size = 0;
2561 struct perf_header *ph = ff->ph;
2562 bool do_core_id_test = true;
2563
2564 ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
2565 if (!ph->env.cpu)
2566 return -1;
2567
2568 if (do_read_u32(ff, &nr))
2569 goto free_cpu;
2570
2571 ph->env.nr_sibling_cores = nr;
2572 size += sizeof(u32);
2573 if (strbuf_init(&sb, 128) < 0)
2574 goto free_cpu;
2575
2576 for (i = 0; i < nr; i++) {
2577 str = do_read_string(ff);
2578 if (!str)
2579 goto error;
2580
2581 /* include a NULL character at the end */
2582 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2583 goto error;
2584 size += string_size(str);
2585 zfree(&str);
2586 }
2587 ph->env.sibling_cores = strbuf_detach(&sb, NULL);
2588
2589 if (do_read_u32(ff, &nr))
2590 return -1;
2591
2592 ph->env.nr_sibling_threads = nr;
2593 size += sizeof(u32);
2594
2595 for (i = 0; i < nr; i++) {
2596 str = do_read_string(ff);
2597 if (!str)
2598 goto error;
2599
2600 /* include a NULL character at the end */
2601 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2602 goto error;
2603 size += string_size(str);
2604 zfree(&str);
2605 }
2606 ph->env.sibling_threads = strbuf_detach(&sb, NULL);
2607
2608 /*
2609 * The header may be from old perf,
2610 * which doesn't include core id and socket id information.
2611 */
2612 if (ff->size <= size) {
2613 zfree(&ph->env.cpu);
2614 return 0;
2615 }
2616
2617 /* On s390 the socket_id number is not related to the numbers of cpus.
2618 * The socket_id number might be higher than the numbers of cpus.
2619 * This depends on the configuration.
2620 * AArch64 is the same.
2621 */
2622 if (ph->env.arch && (!strncmp(ph->env.arch, "s390", 4)
2623 || !strncmp(ph->env.arch, "aarch64", 7)))
2624 do_core_id_test = false;
2625
2626 for (i = 0; i < (u32)cpu_nr; i++) {
2627 if (do_read_u32(ff, &nr))
2628 goto free_cpu;
2629
2630 ph->env.cpu[i].core_id = nr;
2631 size += sizeof(u32);
2632
2633 if (do_read_u32(ff, &nr))
2634 goto free_cpu;
2635
2636 if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) {
2637 pr_debug("socket_id number is too big."
2638 "You may need to upgrade the perf tool.\n");
2639 goto free_cpu;
2640 }
2641
2642 ph->env.cpu[i].socket_id = nr;
2643 size += sizeof(u32);
2644 }
2645
2646 /*
2647 * The header may be from old perf,
2648 * which doesn't include die information.
2649 */
2650 if (ff->size <= size)
2651 return 0;
2652
2653 if (do_read_u32(ff, &nr))
2654 return -1;
2655
2656 ph->env.nr_sibling_dies = nr;
2657 size += sizeof(u32);
2658
2659 for (i = 0; i < nr; i++) {
2660 str = do_read_string(ff);
2661 if (!str)
2662 goto error;
2663
2664 /* include a NULL character at the end */
2665 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2666 goto error;
2667 size += string_size(str);
2668 zfree(&str);
2669 }
2670 ph->env.sibling_dies = strbuf_detach(&sb, NULL);
2671
2672 for (i = 0; i < (u32)cpu_nr; i++) {
2673 if (do_read_u32(ff, &nr))
2674 goto free_cpu;
2675
2676 ph->env.cpu[i].die_id = nr;
2677 }
2678
2679 return 0;
2680
2681 error:
2682 strbuf_release(&sb);
2683 zfree(&str);
2684 free_cpu:
2685 zfree(&ph->env.cpu);
2686 return -1;
2687 }
2688
process_numa_topology(struct feat_fd * ff,void * data __maybe_unused)2689 static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
2690 {
2691 struct numa_node *nodes, *n;
2692 u32 nr, i;
2693 char *str;
2694
2695 /* nr nodes */
2696 if (do_read_u32(ff, &nr))
2697 return -1;
2698
2699 nodes = zalloc(sizeof(*nodes) * nr);
2700 if (!nodes)
2701 return -ENOMEM;
2702
2703 for (i = 0; i < nr; i++) {
2704 n = &nodes[i];
2705
2706 /* node number */
2707 if (do_read_u32(ff, &n->node))
2708 goto error;
2709
2710 if (do_read_u64(ff, &n->mem_total))
2711 goto error;
2712
2713 if (do_read_u64(ff, &n->mem_free))
2714 goto error;
2715
2716 str = do_read_string(ff);
2717 if (!str)
2718 goto error;
2719
2720 n->map = perf_cpu_map__new(str);
2721 free(str);
2722 if (!n->map)
2723 goto error;
2724 }
2725 ff->ph->env.nr_numa_nodes = nr;
2726 ff->ph->env.numa_nodes = nodes;
2727 return 0;
2728
2729 error:
2730 free(nodes);
2731 return -1;
2732 }
2733
process_pmu_mappings(struct feat_fd * ff,void * data __maybe_unused)2734 static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
2735 {
2736 char *name;
2737 u32 pmu_num;
2738 u32 type;
2739 struct strbuf sb;
2740
2741 if (do_read_u32(ff, &pmu_num))
2742 return -1;
2743
2744 if (!pmu_num) {
2745 pr_debug("pmu mappings not available\n");
2746 return 0;
2747 }
2748
2749 ff->ph->env.nr_pmu_mappings = pmu_num;
2750 if (strbuf_init(&sb, 128) < 0)
2751 return -1;
2752
2753 while (pmu_num) {
2754 if (do_read_u32(ff, &type))
2755 goto error;
2756
2757 name = do_read_string(ff);
2758 if (!name)
2759 goto error;
2760
2761 if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
2762 goto error;
2763 /* include a NULL character at the end */
2764 if (strbuf_add(&sb, "", 1) < 0)
2765 goto error;
2766
2767 if (!strcmp(name, "msr"))
2768 ff->ph->env.msr_pmu_type = type;
2769
2770 free(name);
2771 pmu_num--;
2772 }
2773 /* AMD may set it by evlist__has_amd_ibs() from perf_session__new() */
2774 free(ff->ph->env.pmu_mappings);
2775 ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
2776 return 0;
2777
2778 error:
2779 strbuf_release(&sb);
2780 return -1;
2781 }
2782
process_group_desc(struct feat_fd * ff,void * data __maybe_unused)2783 static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
2784 {
2785 size_t ret = -1;
2786 u32 i, nr, nr_groups;
2787 struct perf_session *session;
2788 struct evsel *evsel, *leader = NULL;
2789 struct group_desc {
2790 char *name;
2791 u32 leader_idx;
2792 u32 nr_members;
2793 } *desc;
2794
2795 if (do_read_u32(ff, &nr_groups))
2796 return -1;
2797
2798 ff->ph->env.nr_groups = nr_groups;
2799 if (!nr_groups) {
2800 pr_debug("group desc not available\n");
2801 return 0;
2802 }
2803
2804 desc = calloc(nr_groups, sizeof(*desc));
2805 if (!desc)
2806 return -1;
2807
2808 for (i = 0; i < nr_groups; i++) {
2809 desc[i].name = do_read_string(ff);
2810 if (!desc[i].name)
2811 goto out_free;
2812
2813 if (do_read_u32(ff, &desc[i].leader_idx))
2814 goto out_free;
2815
2816 if (do_read_u32(ff, &desc[i].nr_members))
2817 goto out_free;
2818 }
2819
2820 /*
2821 * Rebuild group relationship based on the group_desc
2822 */
2823 session = container_of(ff->ph, struct perf_session, header);
2824
2825 i = nr = 0;
2826 evlist__for_each_entry(session->evlist, evsel) {
2827 if (i < nr_groups && evsel->core.idx == (int) desc[i].leader_idx) {
2828 evsel__set_leader(evsel, evsel);
2829 /* {anon_group} is a dummy name */
2830 if (strcmp(desc[i].name, "{anon_group}")) {
2831 evsel->group_name = desc[i].name;
2832 desc[i].name = NULL;
2833 }
2834 evsel->core.nr_members = desc[i].nr_members;
2835
2836 if (i >= nr_groups || nr > 0) {
2837 pr_debug("invalid group desc\n");
2838 goto out_free;
2839 }
2840
2841 leader = evsel;
2842 nr = evsel->core.nr_members - 1;
2843 i++;
2844 } else if (nr) {
2845 /* This is a group member */
2846 evsel__set_leader(evsel, leader);
2847
2848 nr--;
2849 }
2850 }
2851
2852 if (i != nr_groups || nr != 0) {
2853 pr_debug("invalid group desc\n");
2854 goto out_free;
2855 }
2856
2857 ret = 0;
2858 out_free:
2859 for (i = 0; i < nr_groups; i++)
2860 zfree(&desc[i].name);
2861 free(desc);
2862
2863 return ret;
2864 }
2865
process_auxtrace(struct feat_fd * ff,void * data __maybe_unused)2866 static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
2867 {
2868 struct perf_session *session;
2869 int err;
2870
2871 session = container_of(ff->ph, struct perf_session, header);
2872
2873 err = auxtrace_index__process(ff->fd, ff->size, session,
2874 ff->ph->needs_swap);
2875 if (err < 0)
2876 pr_err("Failed to process auxtrace index\n");
2877 return err;
2878 }
2879
process_cache(struct feat_fd * ff,void * data __maybe_unused)2880 static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
2881 {
2882 struct cpu_cache_level *caches;
2883 u32 cnt, i, version;
2884
2885 if (do_read_u32(ff, &version))
2886 return -1;
2887
2888 if (version != 1)
2889 return -1;
2890
2891 if (do_read_u32(ff, &cnt))
2892 return -1;
2893
2894 caches = zalloc(sizeof(*caches) * cnt);
2895 if (!caches)
2896 return -1;
2897
2898 for (i = 0; i < cnt; i++) {
2899 struct cpu_cache_level *c = &caches[i];
2900
2901 #define _R(v) \
2902 if (do_read_u32(ff, &c->v)) \
2903 goto out_free_caches; \
2904
2905 _R(level)
2906 _R(line_size)
2907 _R(sets)
2908 _R(ways)
2909 #undef _R
2910
2911 #define _R(v) \
2912 c->v = do_read_string(ff); \
2913 if (!c->v) \
2914 goto out_free_caches; \
2915
2916 _R(type)
2917 _R(size)
2918 _R(map)
2919 #undef _R
2920 }
2921
2922 ff->ph->env.caches = caches;
2923 ff->ph->env.caches_cnt = cnt;
2924 return 0;
2925 out_free_caches:
2926 for (i = 0; i < cnt; i++) {
2927 free(caches[i].type);
2928 free(caches[i].size);
2929 free(caches[i].map);
2930 }
2931 free(caches);
2932 return -1;
2933 }
2934
process_sample_time(struct feat_fd * ff,void * data __maybe_unused)2935 static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
2936 {
2937 struct perf_session *session;
2938 u64 first_sample_time, last_sample_time;
2939 int ret;
2940
2941 session = container_of(ff->ph, struct perf_session, header);
2942
2943 ret = do_read_u64(ff, &first_sample_time);
2944 if (ret)
2945 return -1;
2946
2947 ret = do_read_u64(ff, &last_sample_time);
2948 if (ret)
2949 return -1;
2950
2951 session->evlist->first_sample_time = first_sample_time;
2952 session->evlist->last_sample_time = last_sample_time;
2953 return 0;
2954 }
2955
process_mem_topology(struct feat_fd * ff,void * data __maybe_unused)2956 static int process_mem_topology(struct feat_fd *ff,
2957 void *data __maybe_unused)
2958 {
2959 struct memory_node *nodes;
2960 u64 version, i, nr, bsize;
2961 int ret = -1;
2962
2963 if (do_read_u64(ff, &version))
2964 return -1;
2965
2966 if (version != 1)
2967 return -1;
2968
2969 if (do_read_u64(ff, &bsize))
2970 return -1;
2971
2972 if (do_read_u64(ff, &nr))
2973 return -1;
2974
2975 nodes = zalloc(sizeof(*nodes) * nr);
2976 if (!nodes)
2977 return -1;
2978
2979 for (i = 0; i < nr; i++) {
2980 struct memory_node n;
2981
2982 #define _R(v) \
2983 if (do_read_u64(ff, &n.v)) \
2984 goto out; \
2985
2986 _R(node)
2987 _R(size)
2988
2989 #undef _R
2990
2991 if (do_read_bitmap(ff, &n.set, &n.size))
2992 goto out;
2993
2994 nodes[i] = n;
2995 }
2996
2997 ff->ph->env.memory_bsize = bsize;
2998 ff->ph->env.memory_nodes = nodes;
2999 ff->ph->env.nr_memory_nodes = nr;
3000 ret = 0;
3001
3002 out:
3003 if (ret)
3004 free(nodes);
3005 return ret;
3006 }
3007
process_clockid(struct feat_fd * ff,void * data __maybe_unused)3008 static int process_clockid(struct feat_fd *ff,
3009 void *data __maybe_unused)
3010 {
3011 if (do_read_u64(ff, &ff->ph->env.clock.clockid_res_ns))
3012 return -1;
3013
3014 return 0;
3015 }
3016
process_clock_data(struct feat_fd * ff,void * _data __maybe_unused)3017 static int process_clock_data(struct feat_fd *ff,
3018 void *_data __maybe_unused)
3019 {
3020 u32 data32;
3021 u64 data64;
3022
3023 /* version */
3024 if (do_read_u32(ff, &data32))
3025 return -1;
3026
3027 if (data32 != 1)
3028 return -1;
3029
3030 /* clockid */
3031 if (do_read_u32(ff, &data32))
3032 return -1;
3033
3034 ff->ph->env.clock.clockid = data32;
3035
3036 /* TOD ref time */
3037 if (do_read_u64(ff, &data64))
3038 return -1;
3039
3040 ff->ph->env.clock.tod_ns = data64;
3041
3042 /* clockid ref time */
3043 if (do_read_u64(ff, &data64))
3044 return -1;
3045
3046 ff->ph->env.clock.clockid_ns = data64;
3047 ff->ph->env.clock.enabled = true;
3048 return 0;
3049 }
3050
process_hybrid_topology(struct feat_fd * ff,void * data __maybe_unused)3051 static int process_hybrid_topology(struct feat_fd *ff,
3052 void *data __maybe_unused)
3053 {
3054 struct hybrid_node *nodes, *n;
3055 u32 nr, i;
3056
3057 /* nr nodes */
3058 if (do_read_u32(ff, &nr))
3059 return -1;
3060
3061 nodes = zalloc(sizeof(*nodes) * nr);
3062 if (!nodes)
3063 return -ENOMEM;
3064
3065 for (i = 0; i < nr; i++) {
3066 n = &nodes[i];
3067
3068 n->pmu_name = do_read_string(ff);
3069 if (!n->pmu_name)
3070 goto error;
3071
3072 n->cpus = do_read_string(ff);
3073 if (!n->cpus)
3074 goto error;
3075 }
3076
3077 ff->ph->env.nr_hybrid_nodes = nr;
3078 ff->ph->env.hybrid_nodes = nodes;
3079 return 0;
3080
3081 error:
3082 for (i = 0; i < nr; i++) {
3083 free(nodes[i].pmu_name);
3084 free(nodes[i].cpus);
3085 }
3086
3087 free(nodes);
3088 return -1;
3089 }
3090
process_dir_format(struct feat_fd * ff,void * _data __maybe_unused)3091 static int process_dir_format(struct feat_fd *ff,
3092 void *_data __maybe_unused)
3093 {
3094 struct perf_session *session;
3095 struct perf_data *data;
3096
3097 session = container_of(ff->ph, struct perf_session, header);
3098 data = session->data;
3099
3100 if (WARN_ON(!perf_data__is_dir(data)))
3101 return -1;
3102
3103 return do_read_u64(ff, &data->dir.version);
3104 }
3105
3106 #ifdef HAVE_LIBBPF_SUPPORT
process_bpf_prog_info(struct feat_fd * ff,void * data __maybe_unused)3107 static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused)
3108 {
3109 struct bpf_prog_info_node *info_node;
3110 struct perf_env *env = &ff->ph->env;
3111 struct perf_bpil *info_linear;
3112 u32 count, i;
3113 int err = -1;
3114
3115 if (ff->ph->needs_swap) {
3116 pr_warning("interpreting bpf_prog_info from systems with endianness is not yet supported\n");
3117 return 0;
3118 }
3119
3120 if (do_read_u32(ff, &count))
3121 return -1;
3122
3123 down_write(&env->bpf_progs.lock);
3124
3125 for (i = 0; i < count; ++i) {
3126 u32 info_len, data_len;
3127
3128 info_linear = NULL;
3129 info_node = NULL;
3130 if (do_read_u32(ff, &info_len))
3131 goto out;
3132 if (do_read_u32(ff, &data_len))
3133 goto out;
3134
3135 if (info_len > sizeof(struct bpf_prog_info)) {
3136 pr_warning("detected invalid bpf_prog_info\n");
3137 goto out;
3138 }
3139
3140 info_linear = malloc(sizeof(struct perf_bpil) +
3141 data_len);
3142 if (!info_linear)
3143 goto out;
3144 info_linear->info_len = sizeof(struct bpf_prog_info);
3145 info_linear->data_len = data_len;
3146 if (do_read_u64(ff, (u64 *)(&info_linear->arrays)))
3147 goto out;
3148 if (__do_read(ff, &info_linear->info, info_len))
3149 goto out;
3150 if (info_len < sizeof(struct bpf_prog_info))
3151 memset(((void *)(&info_linear->info)) + info_len, 0,
3152 sizeof(struct bpf_prog_info) - info_len);
3153
3154 if (__do_read(ff, info_linear->data, data_len))
3155 goto out;
3156
3157 info_node = malloc(sizeof(struct bpf_prog_info_node));
3158 if (!info_node)
3159 goto out;
3160
3161 /* after reading from file, translate offset to address */
3162 bpil_offs_to_addr(info_linear);
3163 info_node->info_linear = info_linear;
3164 if (!__perf_env__insert_bpf_prog_info(env, info_node)) {
3165 free(info_linear);
3166 free(info_node);
3167 }
3168 }
3169
3170 up_write(&env->bpf_progs.lock);
3171 return 0;
3172 out:
3173 free(info_linear);
3174 free(info_node);
3175 up_write(&env->bpf_progs.lock);
3176 return err;
3177 }
3178
process_bpf_btf(struct feat_fd * ff,void * data __maybe_unused)3179 static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused)
3180 {
3181 struct perf_env *env = &ff->ph->env;
3182 struct btf_node *node = NULL;
3183 u32 count, i;
3184 int err = -1;
3185
3186 if (ff->ph->needs_swap) {
3187 pr_warning("interpreting btf from systems with endianness is not yet supported\n");
3188 return 0;
3189 }
3190
3191 if (do_read_u32(ff, &count))
3192 return -1;
3193
3194 down_write(&env->bpf_progs.lock);
3195
3196 for (i = 0; i < count; ++i) {
3197 u32 id, data_size;
3198
3199 if (do_read_u32(ff, &id))
3200 goto out;
3201 if (do_read_u32(ff, &data_size))
3202 goto out;
3203
3204 node = malloc(sizeof(struct btf_node) + data_size);
3205 if (!node)
3206 goto out;
3207
3208 node->id = id;
3209 node->data_size = data_size;
3210
3211 if (__do_read(ff, node->data, data_size))
3212 goto out;
3213
3214 if (!__perf_env__insert_btf(env, node))
3215 free(node);
3216 node = NULL;
3217 }
3218
3219 err = 0;
3220 out:
3221 up_write(&env->bpf_progs.lock);
3222 free(node);
3223 return err;
3224 }
3225 #endif // HAVE_LIBBPF_SUPPORT
3226
process_compressed(struct feat_fd * ff,void * data __maybe_unused)3227 static int process_compressed(struct feat_fd *ff,
3228 void *data __maybe_unused)
3229 {
3230 if (do_read_u32(ff, &(ff->ph->env.comp_ver)))
3231 return -1;
3232
3233 if (do_read_u32(ff, &(ff->ph->env.comp_type)))
3234 return -1;
3235
3236 if (do_read_u32(ff, &(ff->ph->env.comp_level)))
3237 return -1;
3238
3239 if (do_read_u32(ff, &(ff->ph->env.comp_ratio)))
3240 return -1;
3241
3242 if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len)))
3243 return -1;
3244
3245 return 0;
3246 }
3247
__process_pmu_caps(struct feat_fd * ff,int * nr_caps,char *** caps,unsigned int * max_branches,unsigned int * br_cntr_nr,unsigned int * br_cntr_width)3248 static int __process_pmu_caps(struct feat_fd *ff, int *nr_caps,
3249 char ***caps, unsigned int *max_branches,
3250 unsigned int *br_cntr_nr,
3251 unsigned int *br_cntr_width)
3252 {
3253 char *name, *value, *ptr;
3254 u32 nr_pmu_caps, i;
3255
3256 *nr_caps = 0;
3257 *caps = NULL;
3258
3259 if (do_read_u32(ff, &nr_pmu_caps))
3260 return -1;
3261
3262 if (!nr_pmu_caps)
3263 return 0;
3264
3265 *caps = zalloc(sizeof(char *) * nr_pmu_caps);
3266 if (!*caps)
3267 return -1;
3268
3269 for (i = 0; i < nr_pmu_caps; i++) {
3270 name = do_read_string(ff);
3271 if (!name)
3272 goto error;
3273
3274 value = do_read_string(ff);
3275 if (!value)
3276 goto free_name;
3277
3278 if (asprintf(&ptr, "%s=%s", name, value) < 0)
3279 goto free_value;
3280
3281 (*caps)[i] = ptr;
3282
3283 if (!strcmp(name, "branches"))
3284 *max_branches = atoi(value);
3285
3286 if (!strcmp(name, "branch_counter_nr"))
3287 *br_cntr_nr = atoi(value);
3288
3289 if (!strcmp(name, "branch_counter_width"))
3290 *br_cntr_width = atoi(value);
3291
3292 free(value);
3293 free(name);
3294 }
3295 *nr_caps = nr_pmu_caps;
3296 return 0;
3297
3298 free_value:
3299 free(value);
3300 free_name:
3301 free(name);
3302 error:
3303 for (; i > 0; i--)
3304 free((*caps)[i - 1]);
3305 free(*caps);
3306 *caps = NULL;
3307 *nr_caps = 0;
3308 return -1;
3309 }
3310
process_cpu_pmu_caps(struct feat_fd * ff,void * data __maybe_unused)3311 static int process_cpu_pmu_caps(struct feat_fd *ff,
3312 void *data __maybe_unused)
3313 {
3314 int ret = __process_pmu_caps(ff, &ff->ph->env.nr_cpu_pmu_caps,
3315 &ff->ph->env.cpu_pmu_caps,
3316 &ff->ph->env.max_branches,
3317 &ff->ph->env.br_cntr_nr,
3318 &ff->ph->env.br_cntr_width);
3319
3320 if (!ret && !ff->ph->env.cpu_pmu_caps)
3321 pr_debug("cpu pmu capabilities not available\n");
3322 return ret;
3323 }
3324
process_pmu_caps(struct feat_fd * ff,void * data __maybe_unused)3325 static int process_pmu_caps(struct feat_fd *ff, void *data __maybe_unused)
3326 {
3327 struct pmu_caps *pmu_caps;
3328 u32 nr_pmu, i;
3329 int ret;
3330 int j;
3331
3332 if (do_read_u32(ff, &nr_pmu))
3333 return -1;
3334
3335 if (!nr_pmu) {
3336 pr_debug("pmu capabilities not available\n");
3337 return 0;
3338 }
3339
3340 pmu_caps = zalloc(sizeof(*pmu_caps) * nr_pmu);
3341 if (!pmu_caps)
3342 return -ENOMEM;
3343
3344 for (i = 0; i < nr_pmu; i++) {
3345 ret = __process_pmu_caps(ff, &pmu_caps[i].nr_caps,
3346 &pmu_caps[i].caps,
3347 &pmu_caps[i].max_branches,
3348 &pmu_caps[i].br_cntr_nr,
3349 &pmu_caps[i].br_cntr_width);
3350 if (ret)
3351 goto err;
3352
3353 pmu_caps[i].pmu_name = do_read_string(ff);
3354 if (!pmu_caps[i].pmu_name) {
3355 ret = -1;
3356 goto err;
3357 }
3358 if (!pmu_caps[i].nr_caps) {
3359 pr_debug("%s pmu capabilities not available\n",
3360 pmu_caps[i].pmu_name);
3361 }
3362 }
3363
3364 ff->ph->env.nr_pmus_with_caps = nr_pmu;
3365 ff->ph->env.pmu_caps = pmu_caps;
3366 return 0;
3367
3368 err:
3369 for (i = 0; i < nr_pmu; i++) {
3370 for (j = 0; j < pmu_caps[i].nr_caps; j++)
3371 free(pmu_caps[i].caps[j]);
3372 free(pmu_caps[i].caps);
3373 free(pmu_caps[i].pmu_name);
3374 }
3375
3376 free(pmu_caps);
3377 return ret;
3378 }
3379
3380 #define FEAT_OPR(n, func, __full_only) \
3381 [HEADER_##n] = { \
3382 .name = __stringify(n), \
3383 .write = write_##func, \
3384 .print = print_##func, \
3385 .full_only = __full_only, \
3386 .process = process_##func, \
3387 .synthesize = true \
3388 }
3389
3390 #define FEAT_OPN(n, func, __full_only) \
3391 [HEADER_##n] = { \
3392 .name = __stringify(n), \
3393 .write = write_##func, \
3394 .print = print_##func, \
3395 .full_only = __full_only, \
3396 .process = process_##func \
3397 }
3398
3399 /* feature_ops not implemented: */
3400 #define print_tracing_data NULL
3401 #define print_build_id NULL
3402
3403 #define process_branch_stack NULL
3404 #define process_stat NULL
3405
3406 // Only used in util/synthetic-events.c
3407 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE];
3408
3409 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE] = {
3410 #ifdef HAVE_LIBTRACEEVENT
3411 FEAT_OPN(TRACING_DATA, tracing_data, false),
3412 #endif
3413 FEAT_OPN(BUILD_ID, build_id, false),
3414 FEAT_OPR(HOSTNAME, hostname, false),
3415 FEAT_OPR(OSRELEASE, osrelease, false),
3416 FEAT_OPR(VERSION, version, false),
3417 FEAT_OPR(ARCH, arch, false),
3418 FEAT_OPR(NRCPUS, nrcpus, false),
3419 FEAT_OPR(CPUDESC, cpudesc, false),
3420 FEAT_OPR(CPUID, cpuid, false),
3421 FEAT_OPR(TOTAL_MEM, total_mem, false),
3422 FEAT_OPR(EVENT_DESC, event_desc, false),
3423 FEAT_OPR(CMDLINE, cmdline, false),
3424 FEAT_OPR(CPU_TOPOLOGY, cpu_topology, true),
3425 FEAT_OPR(NUMA_TOPOLOGY, numa_topology, true),
3426 FEAT_OPN(BRANCH_STACK, branch_stack, false),
3427 FEAT_OPR(PMU_MAPPINGS, pmu_mappings, false),
3428 FEAT_OPR(GROUP_DESC, group_desc, false),
3429 FEAT_OPN(AUXTRACE, auxtrace, false),
3430 FEAT_OPN(STAT, stat, false),
3431 FEAT_OPN(CACHE, cache, true),
3432 FEAT_OPR(SAMPLE_TIME, sample_time, false),
3433 FEAT_OPR(MEM_TOPOLOGY, mem_topology, true),
3434 FEAT_OPR(CLOCKID, clockid, false),
3435 FEAT_OPN(DIR_FORMAT, dir_format, false),
3436 #ifdef HAVE_LIBBPF_SUPPORT
3437 FEAT_OPR(BPF_PROG_INFO, bpf_prog_info, false),
3438 FEAT_OPR(BPF_BTF, bpf_btf, false),
3439 #endif
3440 FEAT_OPR(COMPRESSED, compressed, false),
3441 FEAT_OPR(CPU_PMU_CAPS, cpu_pmu_caps, false),
3442 FEAT_OPR(CLOCK_DATA, clock_data, false),
3443 FEAT_OPN(HYBRID_TOPOLOGY, hybrid_topology, true),
3444 FEAT_OPR(PMU_CAPS, pmu_caps, false),
3445 };
3446
3447 struct header_print_data {
3448 FILE *fp;
3449 bool full; /* extended list of headers */
3450 };
3451
perf_file_section__fprintf_info(struct perf_file_section * section,struct perf_header * ph,int feat,int fd,void * data)3452 static int perf_file_section__fprintf_info(struct perf_file_section *section,
3453 struct perf_header *ph,
3454 int feat, int fd, void *data)
3455 {
3456 struct header_print_data *hd = data;
3457 struct feat_fd ff;
3458
3459 if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3460 pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3461 "%d, continuing...\n", section->offset, feat);
3462 return 0;
3463 }
3464 if (feat >= HEADER_LAST_FEATURE) {
3465 pr_warning("unknown feature %d\n", feat);
3466 return 0;
3467 }
3468 if (!feat_ops[feat].print)
3469 return 0;
3470
3471 ff = (struct feat_fd) {
3472 .fd = fd,
3473 .ph = ph,
3474 };
3475
3476 if (!feat_ops[feat].full_only || hd->full)
3477 feat_ops[feat].print(&ff, hd->fp);
3478 else
3479 fprintf(hd->fp, "# %s info available, use -I to display\n",
3480 feat_ops[feat].name);
3481
3482 return 0;
3483 }
3484
perf_header__fprintf_info(struct perf_session * session,FILE * fp,bool full)3485 int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
3486 {
3487 struct header_print_data hd;
3488 struct perf_header *header = &session->header;
3489 int fd = perf_data__fd(session->data);
3490 struct stat st;
3491 time_t stctime;
3492 int ret, bit;
3493
3494 hd.fp = fp;
3495 hd.full = full;
3496
3497 ret = fstat(fd, &st);
3498 if (ret == -1)
3499 return -1;
3500
3501 stctime = st.st_mtime;
3502 fprintf(fp, "# captured on : %s", ctime(&stctime));
3503
3504 fprintf(fp, "# header version : %u\n", header->version);
3505 fprintf(fp, "# data offset : %" PRIu64 "\n", header->data_offset);
3506 fprintf(fp, "# data size : %" PRIu64 "\n", header->data_size);
3507 fprintf(fp, "# feat offset : %" PRIu64 "\n", header->feat_offset);
3508
3509 perf_header__process_sections(header, fd, &hd,
3510 perf_file_section__fprintf_info);
3511
3512 if (session->data->is_pipe)
3513 return 0;
3514
3515 fprintf(fp, "# missing features: ");
3516 for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
3517 if (bit)
3518 fprintf(fp, "%s ", feat_ops[bit].name);
3519 }
3520
3521 fprintf(fp, "\n");
3522 return 0;
3523 }
3524
3525 struct header_fw {
3526 struct feat_writer fw;
3527 struct feat_fd *ff;
3528 };
3529
feat_writer_cb(struct feat_writer * fw,void * buf,size_t sz)3530 static int feat_writer_cb(struct feat_writer *fw, void *buf, size_t sz)
3531 {
3532 struct header_fw *h = container_of(fw, struct header_fw, fw);
3533
3534 return do_write(h->ff, buf, sz);
3535 }
3536
do_write_feat(struct feat_fd * ff,int type,struct perf_file_section ** p,struct evlist * evlist,struct feat_copier * fc)3537 static int do_write_feat(struct feat_fd *ff, int type,
3538 struct perf_file_section **p,
3539 struct evlist *evlist,
3540 struct feat_copier *fc)
3541 {
3542 int err;
3543 int ret = 0;
3544
3545 if (perf_header__has_feat(ff->ph, type)) {
3546 if (!feat_ops[type].write)
3547 return -1;
3548
3549 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
3550 return -1;
3551
3552 (*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
3553
3554 /*
3555 * Hook to let perf inject copy features sections from the input
3556 * file.
3557 */
3558 if (fc && fc->copy) {
3559 struct header_fw h = {
3560 .fw.write = feat_writer_cb,
3561 .ff = ff,
3562 };
3563
3564 /* ->copy() returns 0 if the feature was not copied */
3565 err = fc->copy(fc, type, &h.fw);
3566 } else {
3567 err = 0;
3568 }
3569 if (!err)
3570 err = feat_ops[type].write(ff, evlist);
3571 if (err < 0) {
3572 pr_debug("failed to write feature %s\n", feat_ops[type].name);
3573
3574 /* undo anything written */
3575 lseek(ff->fd, (*p)->offset, SEEK_SET);
3576
3577 return -1;
3578 }
3579 (*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
3580 (*p)++;
3581 }
3582 return ret;
3583 }
3584
perf_header__adds_write(struct perf_header * header,struct evlist * evlist,int fd,struct feat_copier * fc)3585 static int perf_header__adds_write(struct perf_header *header,
3586 struct evlist *evlist, int fd,
3587 struct feat_copier *fc)
3588 {
3589 int nr_sections;
3590 struct feat_fd ff = {
3591 .fd = fd,
3592 .ph = header,
3593 };
3594 struct perf_file_section *feat_sec, *p;
3595 int sec_size;
3596 u64 sec_start;
3597 int feat;
3598 int err;
3599
3600 nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3601 if (!nr_sections)
3602 return 0;
3603
3604 feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
3605 if (feat_sec == NULL)
3606 return -ENOMEM;
3607
3608 sec_size = sizeof(*feat_sec) * nr_sections;
3609
3610 sec_start = header->feat_offset;
3611 lseek(fd, sec_start + sec_size, SEEK_SET);
3612
3613 for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3614 if (do_write_feat(&ff, feat, &p, evlist, fc))
3615 perf_header__clear_feat(header, feat);
3616 }
3617
3618 lseek(fd, sec_start, SEEK_SET);
3619 /*
3620 * may write more than needed due to dropped feature, but
3621 * this is okay, reader will skip the missing entries
3622 */
3623 err = do_write(&ff, feat_sec, sec_size);
3624 if (err < 0)
3625 pr_debug("failed to write feature section\n");
3626 free(ff.buf); /* TODO: added to silence clang-tidy. */
3627 free(feat_sec);
3628 return err;
3629 }
3630
perf_header__write_pipe(int fd)3631 int perf_header__write_pipe(int fd)
3632 {
3633 struct perf_pipe_file_header f_header;
3634 struct feat_fd ff = {
3635 .fd = fd,
3636 };
3637 int err;
3638
3639 f_header = (struct perf_pipe_file_header){
3640 .magic = PERF_MAGIC,
3641 .size = sizeof(f_header),
3642 };
3643
3644 err = do_write(&ff, &f_header, sizeof(f_header));
3645 if (err < 0) {
3646 pr_debug("failed to write perf pipe header\n");
3647 return err;
3648 }
3649 free(ff.buf);
3650 return 0;
3651 }
3652
perf_session__do_write_header(struct perf_session * session,struct evlist * evlist,int fd,bool at_exit,struct feat_copier * fc,bool write_attrs_after_data)3653 static int perf_session__do_write_header(struct perf_session *session,
3654 struct evlist *evlist,
3655 int fd, bool at_exit,
3656 struct feat_copier *fc,
3657 bool write_attrs_after_data)
3658 {
3659 struct perf_file_header f_header;
3660 struct perf_header *header = &session->header;
3661 struct evsel *evsel;
3662 struct feat_fd ff = {
3663 .fd = fd,
3664 };
3665 u64 attr_offset = sizeof(f_header), attr_size = 0;
3666 int err;
3667
3668 if (write_attrs_after_data && at_exit) {
3669 /*
3670 * Write features at the end of the file first so that
3671 * attributes may come after them.
3672 */
3673 if (!header->data_offset && header->data_size) {
3674 pr_err("File contains data but offset unknown\n");
3675 err = -1;
3676 goto err_out;
3677 }
3678 header->feat_offset = header->data_offset + header->data_size;
3679 err = perf_header__adds_write(header, evlist, fd, fc);
3680 if (err < 0)
3681 goto err_out;
3682 attr_offset = lseek(fd, 0, SEEK_CUR);
3683 } else {
3684 lseek(fd, attr_offset, SEEK_SET);
3685 }
3686
3687 evlist__for_each_entry(session->evlist, evsel) {
3688 evsel->id_offset = attr_offset;
3689 /* Avoid writing at the end of the file until the session is exiting. */
3690 if (!write_attrs_after_data || at_exit) {
3691 err = do_write(&ff, evsel->core.id, evsel->core.ids * sizeof(u64));
3692 if (err < 0) {
3693 pr_debug("failed to write perf header\n");
3694 goto err_out;
3695 }
3696 }
3697 attr_offset += evsel->core.ids * sizeof(u64);
3698 }
3699
3700 evlist__for_each_entry(evlist, evsel) {
3701 if (evsel->core.attr.size < sizeof(evsel->core.attr)) {
3702 /*
3703 * We are likely in "perf inject" and have read
3704 * from an older file. Update attr size so that
3705 * reader gets the right offset to the ids.
3706 */
3707 evsel->core.attr.size = sizeof(evsel->core.attr);
3708 }
3709 /* Avoid writing at the end of the file until the session is exiting. */
3710 if (!write_attrs_after_data || at_exit) {
3711 struct perf_file_attr f_attr = {
3712 .attr = evsel->core.attr,
3713 .ids = {
3714 .offset = evsel->id_offset,
3715 .size = evsel->core.ids * sizeof(u64),
3716 }
3717 };
3718 err = do_write(&ff, &f_attr, sizeof(f_attr));
3719 if (err < 0) {
3720 pr_debug("failed to write perf header attribute\n");
3721 goto err_out;
3722 }
3723 }
3724 attr_size += sizeof(struct perf_file_attr);
3725 }
3726
3727 if (!header->data_offset) {
3728 if (write_attrs_after_data)
3729 header->data_offset = sizeof(f_header);
3730 else
3731 header->data_offset = attr_offset + attr_size;
3732 }
3733 header->feat_offset = header->data_offset + header->data_size;
3734
3735 if (!write_attrs_after_data && at_exit) {
3736 /* Write features now feat_offset is known. */
3737 err = perf_header__adds_write(header, evlist, fd, fc);
3738 if (err < 0)
3739 goto err_out;
3740 }
3741
3742 f_header = (struct perf_file_header){
3743 .magic = PERF_MAGIC,
3744 .size = sizeof(f_header),
3745 .attr_size = sizeof(struct perf_file_attr),
3746 .attrs = {
3747 .offset = attr_offset,
3748 .size = attr_size,
3749 },
3750 .data = {
3751 .offset = header->data_offset,
3752 .size = header->data_size,
3753 },
3754 /* event_types is ignored, store zeros */
3755 };
3756
3757 memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
3758
3759 lseek(fd, 0, SEEK_SET);
3760 err = do_write(&ff, &f_header, sizeof(f_header));
3761 if (err < 0) {
3762 pr_debug("failed to write perf header\n");
3763 goto err_out;
3764 } else {
3765 lseek(fd, 0, SEEK_END);
3766 err = 0;
3767 }
3768 err_out:
3769 free(ff.buf);
3770 return err;
3771 }
3772
perf_session__write_header(struct perf_session * session,struct evlist * evlist,int fd,bool at_exit)3773 int perf_session__write_header(struct perf_session *session,
3774 struct evlist *evlist,
3775 int fd, bool at_exit)
3776 {
3777 return perf_session__do_write_header(session, evlist, fd, at_exit, /*fc=*/NULL,
3778 /*write_attrs_after_data=*/false);
3779 }
3780
perf_session__data_offset(const struct evlist * evlist)3781 size_t perf_session__data_offset(const struct evlist *evlist)
3782 {
3783 struct evsel *evsel;
3784 size_t data_offset;
3785
3786 data_offset = sizeof(struct perf_file_header);
3787 evlist__for_each_entry(evlist, evsel) {
3788 data_offset += evsel->core.ids * sizeof(u64);
3789 }
3790 data_offset += evlist->core.nr_entries * sizeof(struct perf_file_attr);
3791
3792 return data_offset;
3793 }
3794
perf_session__inject_header(struct perf_session * session,struct evlist * evlist,int fd,struct feat_copier * fc,bool write_attrs_after_data)3795 int perf_session__inject_header(struct perf_session *session,
3796 struct evlist *evlist,
3797 int fd,
3798 struct feat_copier *fc,
3799 bool write_attrs_after_data)
3800 {
3801 return perf_session__do_write_header(session, evlist, fd, true, fc,
3802 write_attrs_after_data);
3803 }
3804
perf_header__getbuffer64(struct perf_header * header,int fd,void * buf,size_t size)3805 static int perf_header__getbuffer64(struct perf_header *header,
3806 int fd, void *buf, size_t size)
3807 {
3808 if (readn(fd, buf, size) <= 0)
3809 return -1;
3810
3811 if (header->needs_swap)
3812 mem_bswap_64(buf, size);
3813
3814 return 0;
3815 }
3816
perf_header__process_sections(struct perf_header * header,int fd,void * data,int (* process)(struct perf_file_section * section,struct perf_header * ph,int feat,int fd,void * data))3817 int perf_header__process_sections(struct perf_header *header, int fd,
3818 void *data,
3819 int (*process)(struct perf_file_section *section,
3820 struct perf_header *ph,
3821 int feat, int fd, void *data))
3822 {
3823 struct perf_file_section *feat_sec, *sec;
3824 int nr_sections;
3825 int sec_size;
3826 int feat;
3827 int err;
3828
3829 nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3830 if (!nr_sections)
3831 return 0;
3832
3833 feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
3834 if (!feat_sec)
3835 return -1;
3836
3837 sec_size = sizeof(*feat_sec) * nr_sections;
3838
3839 lseek(fd, header->feat_offset, SEEK_SET);
3840
3841 err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
3842 if (err < 0)
3843 goto out_free;
3844
3845 for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
3846 err = process(sec++, header, feat, fd, data);
3847 if (err < 0)
3848 goto out_free;
3849 }
3850 err = 0;
3851 out_free:
3852 free(feat_sec);
3853 return err;
3854 }
3855
3856 static const int attr_file_abi_sizes[] = {
3857 [0] = PERF_ATTR_SIZE_VER0,
3858 [1] = PERF_ATTR_SIZE_VER1,
3859 [2] = PERF_ATTR_SIZE_VER2,
3860 [3] = PERF_ATTR_SIZE_VER3,
3861 [4] = PERF_ATTR_SIZE_VER4,
3862 0,
3863 };
3864
3865 /*
3866 * In the legacy file format, the magic number is not used to encode endianness.
3867 * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
3868 * on ABI revisions, we need to try all combinations for all endianness to
3869 * detect the endianness.
3870 */
try_all_file_abis(uint64_t hdr_sz,struct perf_header * ph)3871 static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
3872 {
3873 uint64_t ref_size, attr_size;
3874 int i;
3875
3876 for (i = 0 ; attr_file_abi_sizes[i]; i++) {
3877 ref_size = attr_file_abi_sizes[i]
3878 + sizeof(struct perf_file_section);
3879 if (hdr_sz != ref_size) {
3880 attr_size = bswap_64(hdr_sz);
3881 if (attr_size != ref_size)
3882 continue;
3883
3884 ph->needs_swap = true;
3885 }
3886 pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
3887 i,
3888 ph->needs_swap);
3889 return 0;
3890 }
3891 /* could not determine endianness */
3892 return -1;
3893 }
3894
3895 #define PERF_PIPE_HDR_VER0 16
3896
3897 static const size_t attr_pipe_abi_sizes[] = {
3898 [0] = PERF_PIPE_HDR_VER0,
3899 0,
3900 };
3901
3902 /*
3903 * In the legacy pipe format, there is an implicit assumption that endianness
3904 * between host recording the samples, and host parsing the samples is the
3905 * same. This is not always the case given that the pipe output may always be
3906 * redirected into a file and analyzed on a different machine with possibly a
3907 * different endianness and perf_event ABI revisions in the perf tool itself.
3908 */
try_all_pipe_abis(uint64_t hdr_sz,struct perf_header * ph)3909 static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
3910 {
3911 u64 attr_size;
3912 int i;
3913
3914 for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
3915 if (hdr_sz != attr_pipe_abi_sizes[i]) {
3916 attr_size = bswap_64(hdr_sz);
3917 if (attr_size != hdr_sz)
3918 continue;
3919
3920 ph->needs_swap = true;
3921 }
3922 pr_debug("Pipe ABI%d perf.data file detected\n", i);
3923 return 0;
3924 }
3925 return -1;
3926 }
3927
is_perf_magic(u64 magic)3928 bool is_perf_magic(u64 magic)
3929 {
3930 if (!memcmp(&magic, __perf_magic1, sizeof(magic))
3931 || magic == __perf_magic2
3932 || magic == __perf_magic2_sw)
3933 return true;
3934
3935 return false;
3936 }
3937
check_magic_endian(u64 magic,uint64_t hdr_sz,bool is_pipe,struct perf_header * ph)3938 static int check_magic_endian(u64 magic, uint64_t hdr_sz,
3939 bool is_pipe, struct perf_header *ph)
3940 {
3941 int ret;
3942
3943 /* check for legacy format */
3944 ret = memcmp(&magic, __perf_magic1, sizeof(magic));
3945 if (ret == 0) {
3946 ph->version = PERF_HEADER_VERSION_1;
3947 pr_debug("legacy perf.data format\n");
3948 if (is_pipe)
3949 return try_all_pipe_abis(hdr_sz, ph);
3950
3951 return try_all_file_abis(hdr_sz, ph);
3952 }
3953 /*
3954 * the new magic number serves two purposes:
3955 * - unique number to identify actual perf.data files
3956 * - encode endianness of file
3957 */
3958 ph->version = PERF_HEADER_VERSION_2;
3959
3960 /* check magic number with one endianness */
3961 if (magic == __perf_magic2)
3962 return 0;
3963
3964 /* check magic number with opposite endianness */
3965 if (magic != __perf_magic2_sw)
3966 return -1;
3967
3968 ph->needs_swap = true;
3969
3970 return 0;
3971 }
3972
perf_file_header__read(struct perf_file_header * header,struct perf_header * ph,int fd)3973 int perf_file_header__read(struct perf_file_header *header,
3974 struct perf_header *ph, int fd)
3975 {
3976 ssize_t ret;
3977
3978 lseek(fd, 0, SEEK_SET);
3979
3980 ret = readn(fd, header, sizeof(*header));
3981 if (ret <= 0)
3982 return -1;
3983
3984 if (check_magic_endian(header->magic,
3985 header->attr_size, false, ph) < 0) {
3986 pr_debug("magic/endian check failed\n");
3987 return -1;
3988 }
3989
3990 if (ph->needs_swap) {
3991 mem_bswap_64(header, offsetof(struct perf_file_header,
3992 adds_features));
3993 }
3994
3995 if (header->size > header->attrs.offset) {
3996 pr_err("Perf file header corrupt: header overlaps attrs\n");
3997 return -1;
3998 }
3999
4000 if (header->size > header->data.offset) {
4001 pr_err("Perf file header corrupt: header overlaps data\n");
4002 return -1;
4003 }
4004
4005 if ((header->attrs.offset <= header->data.offset &&
4006 header->attrs.offset + header->attrs.size > header->data.offset) ||
4007 (header->attrs.offset > header->data.offset &&
4008 header->data.offset + header->data.size > header->attrs.offset)) {
4009 pr_err("Perf file header corrupt: Attributes and data overlap\n");
4010 return -1;
4011 }
4012
4013 if (header->size != sizeof(*header)) {
4014 /* Support the previous format */
4015 if (header->size == offsetof(typeof(*header), adds_features))
4016 bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
4017 else
4018 return -1;
4019 } else if (ph->needs_swap) {
4020 /*
4021 * feature bitmap is declared as an array of unsigned longs --
4022 * not good since its size can differ between the host that
4023 * generated the data file and the host analyzing the file.
4024 *
4025 * We need to handle endianness, but we don't know the size of
4026 * the unsigned long where the file was generated. Take a best
4027 * guess at determining it: try 64-bit swap first (ie., file
4028 * created on a 64-bit host), and check if the hostname feature
4029 * bit is set (this feature bit is forced on as of fbe96f2).
4030 * If the bit is not, undo the 64-bit swap and try a 32-bit
4031 * swap. If the hostname bit is still not set (e.g., older data
4032 * file), punt and fallback to the original behavior --
4033 * clearing all feature bits and setting buildid.
4034 */
4035 mem_bswap_64(&header->adds_features,
4036 BITS_TO_U64(HEADER_FEAT_BITS));
4037
4038 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
4039 /* unswap as u64 */
4040 mem_bswap_64(&header->adds_features,
4041 BITS_TO_U64(HEADER_FEAT_BITS));
4042
4043 /* unswap as u32 */
4044 mem_bswap_32(&header->adds_features,
4045 BITS_TO_U32(HEADER_FEAT_BITS));
4046 }
4047
4048 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
4049 bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
4050 __set_bit(HEADER_BUILD_ID, header->adds_features);
4051 }
4052 }
4053
4054 memcpy(&ph->adds_features, &header->adds_features,
4055 sizeof(ph->adds_features));
4056
4057 ph->data_offset = header->data.offset;
4058 ph->data_size = header->data.size;
4059 ph->feat_offset = header->data.offset + header->data.size;
4060 return 0;
4061 }
4062
perf_file_section__process(struct perf_file_section * section,struct perf_header * ph,int feat,int fd,void * data)4063 static int perf_file_section__process(struct perf_file_section *section,
4064 struct perf_header *ph,
4065 int feat, int fd, void *data)
4066 {
4067 struct feat_fd fdd = {
4068 .fd = fd,
4069 .ph = ph,
4070 .size = section->size,
4071 .offset = section->offset,
4072 };
4073
4074 if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
4075 pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
4076 "%d, continuing...\n", section->offset, feat);
4077 return 0;
4078 }
4079
4080 if (feat >= HEADER_LAST_FEATURE) {
4081 pr_debug("unknown feature %d, continuing...\n", feat);
4082 return 0;
4083 }
4084
4085 if (!feat_ops[feat].process)
4086 return 0;
4087
4088 return feat_ops[feat].process(&fdd, data);
4089 }
4090
perf_file_header__read_pipe(struct perf_pipe_file_header * header,struct perf_header * ph,struct perf_data * data)4091 static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
4092 struct perf_header *ph,
4093 struct perf_data *data)
4094 {
4095 ssize_t ret;
4096
4097 ret = perf_data__read(data, header, sizeof(*header));
4098 if (ret <= 0)
4099 return -1;
4100
4101 if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
4102 pr_debug("endian/magic failed\n");
4103 return -1;
4104 }
4105
4106 if (ph->needs_swap)
4107 header->size = bswap_64(header->size);
4108
4109 return 0;
4110 }
4111
perf_header__read_pipe(struct perf_session * session)4112 static int perf_header__read_pipe(struct perf_session *session)
4113 {
4114 struct perf_header *header = &session->header;
4115 struct perf_pipe_file_header f_header;
4116
4117 if (perf_file_header__read_pipe(&f_header, header, session->data) < 0) {
4118 pr_debug("incompatible file format\n");
4119 return -EINVAL;
4120 }
4121
4122 return f_header.size == sizeof(f_header) ? 0 : -1;
4123 }
4124
read_attr(int fd,struct perf_header * ph,struct perf_file_attr * f_attr)4125 static int read_attr(int fd, struct perf_header *ph,
4126 struct perf_file_attr *f_attr)
4127 {
4128 struct perf_event_attr *attr = &f_attr->attr;
4129 size_t sz, left;
4130 size_t our_sz = sizeof(f_attr->attr);
4131 ssize_t ret;
4132
4133 memset(f_attr, 0, sizeof(*f_attr));
4134
4135 /* read minimal guaranteed structure */
4136 ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
4137 if (ret <= 0) {
4138 pr_debug("cannot read %d bytes of header attr\n",
4139 PERF_ATTR_SIZE_VER0);
4140 return -1;
4141 }
4142
4143 /* on file perf_event_attr size */
4144 sz = attr->size;
4145
4146 if (ph->needs_swap)
4147 sz = bswap_32(sz);
4148
4149 if (sz == 0) {
4150 /* assume ABI0 */
4151 sz = PERF_ATTR_SIZE_VER0;
4152 } else if (sz > our_sz) {
4153 pr_debug("file uses a more recent and unsupported ABI"
4154 " (%zu bytes extra)\n", sz - our_sz);
4155 return -1;
4156 }
4157 /* what we have not yet read and that we know about */
4158 left = sz - PERF_ATTR_SIZE_VER0;
4159 if (left) {
4160 void *ptr = attr;
4161 ptr += PERF_ATTR_SIZE_VER0;
4162
4163 ret = readn(fd, ptr, left);
4164 }
4165 /* read perf_file_section, ids are read in caller */
4166 ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));
4167
4168 return ret <= 0 ? -1 : 0;
4169 }
4170
4171 #ifdef HAVE_LIBTRACEEVENT
evsel__prepare_tracepoint_event(struct evsel * evsel,struct tep_handle * pevent)4172 static int evsel__prepare_tracepoint_event(struct evsel *evsel, struct tep_handle *pevent)
4173 {
4174 struct tep_event *event;
4175 char bf[128];
4176
4177 /* already prepared */
4178 if (evsel->tp_format)
4179 return 0;
4180
4181 if (pevent == NULL) {
4182 pr_debug("broken or missing trace data\n");
4183 return -1;
4184 }
4185
4186 event = tep_find_event(pevent, evsel->core.attr.config);
4187 if (event == NULL) {
4188 pr_debug("cannot find event format for %d\n", (int)evsel->core.attr.config);
4189 return -1;
4190 }
4191
4192 if (!evsel->name) {
4193 snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
4194 evsel->name = strdup(bf);
4195 if (evsel->name == NULL)
4196 return -1;
4197 }
4198
4199 evsel->tp_format = event;
4200 return 0;
4201 }
4202
evlist__prepare_tracepoint_events(struct evlist * evlist,struct tep_handle * pevent)4203 static int evlist__prepare_tracepoint_events(struct evlist *evlist, struct tep_handle *pevent)
4204 {
4205 struct evsel *pos;
4206
4207 evlist__for_each_entry(evlist, pos) {
4208 if (pos->core.attr.type == PERF_TYPE_TRACEPOINT &&
4209 evsel__prepare_tracepoint_event(pos, pevent))
4210 return -1;
4211 }
4212
4213 return 0;
4214 }
4215 #endif
4216
perf_session__read_header(struct perf_session * session)4217 int perf_session__read_header(struct perf_session *session)
4218 {
4219 struct perf_data *data = session->data;
4220 struct perf_header *header = &session->header;
4221 struct perf_file_header f_header;
4222 struct perf_file_attr f_attr;
4223 u64 f_id;
4224 int nr_attrs, nr_ids, i, j, err;
4225 int fd = perf_data__fd(data);
4226
4227 session->evlist = evlist__new();
4228 if (session->evlist == NULL)
4229 return -ENOMEM;
4230
4231 session->evlist->env = &header->env;
4232 session->machines.host.env = &header->env;
4233
4234 /*
4235 * We can read 'pipe' data event from regular file,
4236 * check for the pipe header regardless of source.
4237 */
4238 err = perf_header__read_pipe(session);
4239 if (!err || perf_data__is_pipe(data)) {
4240 data->is_pipe = true;
4241 return err;
4242 }
4243
4244 if (perf_file_header__read(&f_header, header, fd) < 0)
4245 return -EINVAL;
4246
4247 if (header->needs_swap && data->in_place_update) {
4248 pr_err("In-place update not supported when byte-swapping is required\n");
4249 return -EINVAL;
4250 }
4251
4252 /*
4253 * Sanity check that perf.data was written cleanly; data size is
4254 * initialized to 0 and updated only if the on_exit function is run.
4255 * If data size is still 0 then the file contains only partial
4256 * information. Just warn user and process it as much as it can.
4257 */
4258 if (f_header.data.size == 0) {
4259 pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
4260 "Was the 'perf record' command properly terminated?\n",
4261 data->file.path);
4262 }
4263
4264 if (f_header.attr_size == 0) {
4265 pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n"
4266 "Was the 'perf record' command properly terminated?\n",
4267 data->file.path);
4268 return -EINVAL;
4269 }
4270
4271 nr_attrs = f_header.attrs.size / f_header.attr_size;
4272 lseek(fd, f_header.attrs.offset, SEEK_SET);
4273
4274 for (i = 0; i < nr_attrs; i++) {
4275 struct evsel *evsel;
4276 off_t tmp;
4277
4278 if (read_attr(fd, header, &f_attr) < 0)
4279 goto out_errno;
4280
4281 if (header->needs_swap) {
4282 f_attr.ids.size = bswap_64(f_attr.ids.size);
4283 f_attr.ids.offset = bswap_64(f_attr.ids.offset);
4284 perf_event__attr_swap(&f_attr.attr);
4285 }
4286
4287 tmp = lseek(fd, 0, SEEK_CUR);
4288 evsel = evsel__new(&f_attr.attr);
4289
4290 if (evsel == NULL)
4291 goto out_delete_evlist;
4292
4293 evsel->needs_swap = header->needs_swap;
4294 /*
4295 * Do it before so that if perf_evsel__alloc_id fails, this
4296 * entry gets purged too at evlist__delete().
4297 */
4298 evlist__add(session->evlist, evsel);
4299
4300 nr_ids = f_attr.ids.size / sizeof(u64);
4301 /*
4302 * We don't have the cpu and thread maps on the header, so
4303 * for allocating the perf_sample_id table we fake 1 cpu and
4304 * hattr->ids threads.
4305 */
4306 if (perf_evsel__alloc_id(&evsel->core, 1, nr_ids))
4307 goto out_delete_evlist;
4308
4309 lseek(fd, f_attr.ids.offset, SEEK_SET);
4310
4311 for (j = 0; j < nr_ids; j++) {
4312 if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
4313 goto out_errno;
4314
4315 perf_evlist__id_add(&session->evlist->core, &evsel->core, 0, j, f_id);
4316 }
4317
4318 lseek(fd, tmp, SEEK_SET);
4319 }
4320
4321 #ifdef HAVE_LIBTRACEEVENT
4322 perf_header__process_sections(header, fd, &session->tevent,
4323 perf_file_section__process);
4324
4325 if (evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent))
4326 goto out_delete_evlist;
4327 #else
4328 perf_header__process_sections(header, fd, NULL, perf_file_section__process);
4329 #endif
4330
4331 return 0;
4332 out_errno:
4333 return -errno;
4334
4335 out_delete_evlist:
4336 evlist__delete(session->evlist);
4337 session->evlist = NULL;
4338 return -ENOMEM;
4339 }
4340
perf_event__process_feature(struct perf_session * session,union perf_event * event)4341 int perf_event__process_feature(struct perf_session *session,
4342 union perf_event *event)
4343 {
4344 const struct perf_tool *tool = session->tool;
4345 struct feat_fd ff = { .fd = 0 };
4346 struct perf_record_header_feature *fe = (struct perf_record_header_feature *)event;
4347 int type = fe->header.type;
4348 u64 feat = fe->feat_id;
4349 int ret = 0;
4350
4351 if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
4352 pr_warning("invalid record type %d in pipe-mode\n", type);
4353 return 0;
4354 }
4355 if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) {
4356 pr_warning("invalid record type %d in pipe-mode\n", type);
4357 return -1;
4358 }
4359
4360 if (!feat_ops[feat].process)
4361 return 0;
4362
4363 ff.buf = (void *)fe->data;
4364 ff.size = event->header.size - sizeof(*fe);
4365 ff.ph = &session->header;
4366
4367 if (feat_ops[feat].process(&ff, NULL)) {
4368 ret = -1;
4369 goto out;
4370 }
4371
4372 if (!feat_ops[feat].print || !tool->show_feat_hdr)
4373 goto out;
4374
4375 if (!feat_ops[feat].full_only ||
4376 tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
4377 feat_ops[feat].print(&ff, stdout);
4378 } else {
4379 fprintf(stdout, "# %s info available, use -I to display\n",
4380 feat_ops[feat].name);
4381 }
4382 out:
4383 free_event_desc(ff.events);
4384 return ret;
4385 }
4386
perf_event__fprintf_event_update(union perf_event * event,FILE * fp)4387 size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
4388 {
4389 struct perf_record_event_update *ev = &event->event_update;
4390 struct perf_cpu_map *map;
4391 size_t ret;
4392
4393 ret = fprintf(fp, "\n... id: %" PRI_lu64 "\n", ev->id);
4394
4395 switch (ev->type) {
4396 case PERF_EVENT_UPDATE__SCALE:
4397 ret += fprintf(fp, "... scale: %f\n", ev->scale.scale);
4398 break;
4399 case PERF_EVENT_UPDATE__UNIT:
4400 ret += fprintf(fp, "... unit: %s\n", ev->unit);
4401 break;
4402 case PERF_EVENT_UPDATE__NAME:
4403 ret += fprintf(fp, "... name: %s\n", ev->name);
4404 break;
4405 case PERF_EVENT_UPDATE__CPUS:
4406 ret += fprintf(fp, "... ");
4407
4408 map = cpu_map__new_data(&ev->cpus.cpus);
4409 if (map) {
4410 ret += cpu_map__fprintf(map, fp);
4411 perf_cpu_map__put(map);
4412 } else
4413 ret += fprintf(fp, "failed to get cpus\n");
4414 break;
4415 default:
4416 ret += fprintf(fp, "... unknown type\n");
4417 break;
4418 }
4419
4420 return ret;
4421 }
4422
perf_event__process_attr(const struct perf_tool * tool __maybe_unused,union perf_event * event,struct evlist ** pevlist)4423 int perf_event__process_attr(const struct perf_tool *tool __maybe_unused,
4424 union perf_event *event,
4425 struct evlist **pevlist)
4426 {
4427 u32 i, n_ids;
4428 u64 *ids;
4429 struct evsel *evsel;
4430 struct evlist *evlist = *pevlist;
4431
4432 if (evlist == NULL) {
4433 *pevlist = evlist = evlist__new();
4434 if (evlist == NULL)
4435 return -ENOMEM;
4436 }
4437
4438 evsel = evsel__new(&event->attr.attr);
4439 if (evsel == NULL)
4440 return -ENOMEM;
4441
4442 evlist__add(evlist, evsel);
4443
4444 n_ids = event->header.size - sizeof(event->header) - event->attr.attr.size;
4445 n_ids = n_ids / sizeof(u64);
4446 /*
4447 * We don't have the cpu and thread maps on the header, so
4448 * for allocating the perf_sample_id table we fake 1 cpu and
4449 * hattr->ids threads.
4450 */
4451 if (perf_evsel__alloc_id(&evsel->core, 1, n_ids))
4452 return -ENOMEM;
4453
4454 ids = perf_record_header_attr_id(event);
4455 for (i = 0; i < n_ids; i++) {
4456 perf_evlist__id_add(&evlist->core, &evsel->core, 0, i, ids[i]);
4457 }
4458
4459 return 0;
4460 }
4461
perf_event__process_event_update(const struct perf_tool * tool __maybe_unused,union perf_event * event,struct evlist ** pevlist)4462 int perf_event__process_event_update(const struct perf_tool *tool __maybe_unused,
4463 union perf_event *event,
4464 struct evlist **pevlist)
4465 {
4466 struct perf_record_event_update *ev = &event->event_update;
4467 struct evlist *evlist;
4468 struct evsel *evsel;
4469 struct perf_cpu_map *map;
4470
4471 if (dump_trace)
4472 perf_event__fprintf_event_update(event, stdout);
4473
4474 if (!pevlist || *pevlist == NULL)
4475 return -EINVAL;
4476
4477 evlist = *pevlist;
4478
4479 evsel = evlist__id2evsel(evlist, ev->id);
4480 if (evsel == NULL)
4481 return -EINVAL;
4482
4483 switch (ev->type) {
4484 case PERF_EVENT_UPDATE__UNIT:
4485 free((char *)evsel->unit);
4486 evsel->unit = strdup(ev->unit);
4487 break;
4488 case PERF_EVENT_UPDATE__NAME:
4489 free(evsel->name);
4490 evsel->name = strdup(ev->name);
4491 break;
4492 case PERF_EVENT_UPDATE__SCALE:
4493 evsel->scale = ev->scale.scale;
4494 break;
4495 case PERF_EVENT_UPDATE__CPUS:
4496 map = cpu_map__new_data(&ev->cpus.cpus);
4497 if (map) {
4498 perf_cpu_map__put(evsel->core.own_cpus);
4499 evsel->core.own_cpus = map;
4500 } else
4501 pr_err("failed to get event_update cpus\n");
4502 default:
4503 break;
4504 }
4505
4506 return 0;
4507 }
4508
4509 #ifdef HAVE_LIBTRACEEVENT
perf_event__process_tracing_data(struct perf_session * session,union perf_event * event)4510 int perf_event__process_tracing_data(struct perf_session *session,
4511 union perf_event *event)
4512 {
4513 ssize_t size_read, padding, size = event->tracing_data.size;
4514 int fd = perf_data__fd(session->data);
4515 char buf[BUFSIZ];
4516
4517 /*
4518 * The pipe fd is already in proper place and in any case
4519 * we can't move it, and we'd screw the case where we read
4520 * 'pipe' data from regular file. The trace_report reads
4521 * data from 'fd' so we need to set it directly behind the
4522 * event, where the tracing data starts.
4523 */
4524 if (!perf_data__is_pipe(session->data)) {
4525 off_t offset = lseek(fd, 0, SEEK_CUR);
4526
4527 /* setup for reading amidst mmap */
4528 lseek(fd, offset + sizeof(struct perf_record_header_tracing_data),
4529 SEEK_SET);
4530 }
4531
4532 size_read = trace_report(fd, &session->tevent, session->trace_event_repipe);
4533 padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
4534
4535 if (readn(fd, buf, padding) < 0) {
4536 pr_err("%s: reading input file", __func__);
4537 return -1;
4538 }
4539 if (session->trace_event_repipe) {
4540 int retw = write(STDOUT_FILENO, buf, padding);
4541 if (retw <= 0 || retw != padding) {
4542 pr_err("%s: repiping tracing data padding", __func__);
4543 return -1;
4544 }
4545 }
4546
4547 if (size_read + padding != size) {
4548 pr_err("%s: tracing data size mismatch", __func__);
4549 return -1;
4550 }
4551
4552 evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent);
4553
4554 return size_read + padding;
4555 }
4556 #endif
4557
perf_event__process_build_id(struct perf_session * session,union perf_event * event)4558 int perf_event__process_build_id(struct perf_session *session,
4559 union perf_event *event)
4560 {
4561 __event_process_build_id(&event->build_id,
4562 event->build_id.filename,
4563 session);
4564 return 0;
4565 }
4566