1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11 
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/rculist.h>
32 #include <linux/uaccess.h>
33 #include <linux/syscalls.h>
34 #include <linux/anon_inodes.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/perf_event.h>
37 #include <linux/ftrace_event.h>
38 #include <linux/hw_breakpoint.h>
39 
40 #include "internal.h"
41 
42 #include <asm/irq_regs.h>
43 
44 struct remote_function_call {
45 	struct task_struct	*p;
46 	int			(*func)(void *info);
47 	void			*info;
48 	int			ret;
49 };
50 
remote_function(void * data)51 static void remote_function(void *data)
52 {
53 	struct remote_function_call *tfc = data;
54 	struct task_struct *p = tfc->p;
55 
56 	if (p) {
57 		tfc->ret = -EAGAIN;
58 		if (task_cpu(p) != smp_processor_id() || !task_curr(p))
59 			return;
60 	}
61 
62 	tfc->ret = tfc->func(tfc->info);
63 }
64 
65 /**
66  * task_function_call - call a function on the cpu on which a task runs
67  * @p:		the task to evaluate
68  * @func:	the function to be called
69  * @info:	the function call argument
70  *
71  * Calls the function @func when the task is currently running. This might
72  * be on the current CPU, which just calls the function directly
73  *
74  * returns: @func return value, or
75  *	    -ESRCH  - when the process isn't running
76  *	    -EAGAIN - when the process moved away
77  */
78 static int
task_function_call(struct task_struct * p,int (* func)(void * info),void * info)79 task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
80 {
81 	struct remote_function_call data = {
82 		.p	= p,
83 		.func	= func,
84 		.info	= info,
85 		.ret	= -ESRCH, /* No such (running) process */
86 	};
87 
88 	if (task_curr(p))
89 		smp_call_function_single(task_cpu(p), remote_function, &data, 1);
90 
91 	return data.ret;
92 }
93 
94 /**
95  * cpu_function_call - call a function on the cpu
96  * @func:	the function to be called
97  * @info:	the function call argument
98  *
99  * Calls the function @func on the remote cpu.
100  *
101  * returns: @func return value or -ENXIO when the cpu is offline
102  */
cpu_function_call(int cpu,int (* func)(void * info),void * info)103 static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
104 {
105 	struct remote_function_call data = {
106 		.p	= NULL,
107 		.func	= func,
108 		.info	= info,
109 		.ret	= -ENXIO, /* No such CPU */
110 	};
111 
112 	smp_call_function_single(cpu, remote_function, &data, 1);
113 
114 	return data.ret;
115 }
116 
117 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
118 		       PERF_FLAG_FD_OUTPUT  |\
119 		       PERF_FLAG_PID_CGROUP)
120 
121 enum event_type_t {
122 	EVENT_FLEXIBLE = 0x1,
123 	EVENT_PINNED = 0x2,
124 	EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
125 };
126 
127 /*
128  * perf_sched_events : >0 events exist
129  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
130  */
131 struct jump_label_key_deferred perf_sched_events __read_mostly;
132 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
133 
134 static atomic_t nr_mmap_events __read_mostly;
135 static atomic_t nr_comm_events __read_mostly;
136 static atomic_t nr_task_events __read_mostly;
137 
138 static LIST_HEAD(pmus);
139 static DEFINE_MUTEX(pmus_lock);
140 static struct srcu_struct pmus_srcu;
141 
142 /*
143  * perf event paranoia level:
144  *  -1 - not paranoid at all
145  *   0 - disallow raw tracepoint access for unpriv
146  *   1 - disallow cpu events for unpriv
147  *   2 - disallow kernel profiling for unpriv
148  */
149 int sysctl_perf_event_paranoid __read_mostly = 1;
150 
151 /* Minimum for 512 kiB + 1 user control page */
152 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
153 
154 /*
155  * max perf event sample rate
156  */
157 #define DEFAULT_MAX_SAMPLE_RATE 100000
158 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
159 static int max_samples_per_tick __read_mostly =
160 	DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
161 
perf_proc_update_handler(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)162 int perf_proc_update_handler(struct ctl_table *table, int write,
163 		void __user *buffer, size_t *lenp,
164 		loff_t *ppos)
165 {
166 	int ret = proc_dointvec(table, write, buffer, lenp, ppos);
167 
168 	if (ret || !write)
169 		return ret;
170 
171 	max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
172 
173 	return 0;
174 }
175 
176 static atomic64_t perf_event_id;
177 
178 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
179 			      enum event_type_t event_type);
180 
181 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
182 			     enum event_type_t event_type,
183 			     struct task_struct *task);
184 
185 static void update_context_time(struct perf_event_context *ctx);
186 static u64 perf_event_time(struct perf_event *event);
187 
188 static void ring_buffer_attach(struct perf_event *event,
189 			       struct ring_buffer *rb);
190 
perf_event_print_debug(void)191 void __weak perf_event_print_debug(void)	{ }
192 
perf_pmu_name(void)193 extern __weak const char *perf_pmu_name(void)
194 {
195 	return "pmu";
196 }
197 
perf_clock(void)198 static inline u64 perf_clock(void)
199 {
200 	return local_clock();
201 }
202 
203 static inline struct perf_cpu_context *
__get_cpu_context(struct perf_event_context * ctx)204 __get_cpu_context(struct perf_event_context *ctx)
205 {
206 	return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
207 }
208 
perf_ctx_lock(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)209 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
210 			  struct perf_event_context *ctx)
211 {
212 	raw_spin_lock(&cpuctx->ctx.lock);
213 	if (ctx)
214 		raw_spin_lock(&ctx->lock);
215 }
216 
perf_ctx_unlock(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)217 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
218 			    struct perf_event_context *ctx)
219 {
220 	if (ctx)
221 		raw_spin_unlock(&ctx->lock);
222 	raw_spin_unlock(&cpuctx->ctx.lock);
223 }
224 
225 #ifdef CONFIG_CGROUP_PERF
226 
227 /*
228  * Must ensure cgroup is pinned (css_get) before calling
229  * this function. In other words, we cannot call this function
230  * if there is no cgroup event for the current CPU context.
231  */
232 static inline struct perf_cgroup *
perf_cgroup_from_task(struct task_struct * task)233 perf_cgroup_from_task(struct task_struct *task)
234 {
235 	return container_of(task_subsys_state(task, perf_subsys_id),
236 			struct perf_cgroup, css);
237 }
238 
239 static inline bool
perf_cgroup_match(struct perf_event * event)240 perf_cgroup_match(struct perf_event *event)
241 {
242 	struct perf_event_context *ctx = event->ctx;
243 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
244 
245 	return !event->cgrp || event->cgrp == cpuctx->cgrp;
246 }
247 
perf_get_cgroup(struct perf_event * event)248 static inline void perf_get_cgroup(struct perf_event *event)
249 {
250 	css_get(&event->cgrp->css);
251 }
252 
perf_put_cgroup(struct perf_event * event)253 static inline void perf_put_cgroup(struct perf_event *event)
254 {
255 	css_put(&event->cgrp->css);
256 }
257 
perf_detach_cgroup(struct perf_event * event)258 static inline void perf_detach_cgroup(struct perf_event *event)
259 {
260 	perf_put_cgroup(event);
261 	event->cgrp = NULL;
262 }
263 
is_cgroup_event(struct perf_event * event)264 static inline int is_cgroup_event(struct perf_event *event)
265 {
266 	return event->cgrp != NULL;
267 }
268 
perf_cgroup_event_time(struct perf_event * event)269 static inline u64 perf_cgroup_event_time(struct perf_event *event)
270 {
271 	struct perf_cgroup_info *t;
272 
273 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
274 	return t->time;
275 }
276 
__update_cgrp_time(struct perf_cgroup * cgrp)277 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
278 {
279 	struct perf_cgroup_info *info;
280 	u64 now;
281 
282 	now = perf_clock();
283 
284 	info = this_cpu_ptr(cgrp->info);
285 
286 	info->time += now - info->timestamp;
287 	info->timestamp = now;
288 }
289 
update_cgrp_time_from_cpuctx(struct perf_cpu_context * cpuctx)290 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
291 {
292 	struct perf_cgroup *cgrp_out = cpuctx->cgrp;
293 	if (cgrp_out)
294 		__update_cgrp_time(cgrp_out);
295 }
296 
update_cgrp_time_from_event(struct perf_event * event)297 static inline void update_cgrp_time_from_event(struct perf_event *event)
298 {
299 	struct perf_cgroup *cgrp;
300 
301 	/*
302 	 * ensure we access cgroup data only when needed and
303 	 * when we know the cgroup is pinned (css_get)
304 	 */
305 	if (!is_cgroup_event(event))
306 		return;
307 
308 	cgrp = perf_cgroup_from_task(current);
309 	/*
310 	 * Do not update time when cgroup is not active
311 	 */
312 	if (cgrp == event->cgrp)
313 		__update_cgrp_time(event->cgrp);
314 }
315 
316 static inline void
perf_cgroup_set_timestamp(struct task_struct * task,struct perf_event_context * ctx)317 perf_cgroup_set_timestamp(struct task_struct *task,
318 			  struct perf_event_context *ctx)
319 {
320 	struct perf_cgroup *cgrp;
321 	struct perf_cgroup_info *info;
322 
323 	/*
324 	 * ctx->lock held by caller
325 	 * ensure we do not access cgroup data
326 	 * unless we have the cgroup pinned (css_get)
327 	 */
328 	if (!task || !ctx->nr_cgroups)
329 		return;
330 
331 	cgrp = perf_cgroup_from_task(task);
332 	info = this_cpu_ptr(cgrp->info);
333 	info->timestamp = ctx->timestamp;
334 }
335 
336 #define PERF_CGROUP_SWOUT	0x1 /* cgroup switch out every event */
337 #define PERF_CGROUP_SWIN	0x2 /* cgroup switch in events based on task */
338 
339 /*
340  * reschedule events based on the cgroup constraint of task.
341  *
342  * mode SWOUT : schedule out everything
343  * mode SWIN : schedule in based on cgroup for next
344  */
perf_cgroup_switch(struct task_struct * task,int mode)345 void perf_cgroup_switch(struct task_struct *task, int mode)
346 {
347 	struct perf_cpu_context *cpuctx;
348 	struct pmu *pmu;
349 	unsigned long flags;
350 
351 	/*
352 	 * disable interrupts to avoid geting nr_cgroup
353 	 * changes via __perf_event_disable(). Also
354 	 * avoids preemption.
355 	 */
356 	local_irq_save(flags);
357 
358 	/*
359 	 * we reschedule only in the presence of cgroup
360 	 * constrained events.
361 	 */
362 	rcu_read_lock();
363 
364 	list_for_each_entry_rcu(pmu, &pmus, entry) {
365 		cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
366 
367 		/*
368 		 * perf_cgroup_events says at least one
369 		 * context on this CPU has cgroup events.
370 		 *
371 		 * ctx->nr_cgroups reports the number of cgroup
372 		 * events for a context.
373 		 */
374 		if (cpuctx->ctx.nr_cgroups > 0) {
375 			perf_ctx_lock(cpuctx, cpuctx->task_ctx);
376 			perf_pmu_disable(cpuctx->ctx.pmu);
377 
378 			if (mode & PERF_CGROUP_SWOUT) {
379 				cpu_ctx_sched_out(cpuctx, EVENT_ALL);
380 				/*
381 				 * must not be done before ctxswout due
382 				 * to event_filter_match() in event_sched_out()
383 				 */
384 				cpuctx->cgrp = NULL;
385 			}
386 
387 			if (mode & PERF_CGROUP_SWIN) {
388 				WARN_ON_ONCE(cpuctx->cgrp);
389 				/* set cgrp before ctxsw in to
390 				 * allow event_filter_match() to not
391 				 * have to pass task around
392 				 */
393 				cpuctx->cgrp = perf_cgroup_from_task(task);
394 				cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
395 			}
396 			perf_pmu_enable(cpuctx->ctx.pmu);
397 			perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
398 		}
399 	}
400 
401 	rcu_read_unlock();
402 
403 	local_irq_restore(flags);
404 }
405 
perf_cgroup_sched_out(struct task_struct * task,struct task_struct * next)406 static inline void perf_cgroup_sched_out(struct task_struct *task,
407 					 struct task_struct *next)
408 {
409 	struct perf_cgroup *cgrp1;
410 	struct perf_cgroup *cgrp2 = NULL;
411 
412 	/*
413 	 * we come here when we know perf_cgroup_events > 0
414 	 */
415 	cgrp1 = perf_cgroup_from_task(task);
416 
417 	/*
418 	 * next is NULL when called from perf_event_enable_on_exec()
419 	 * that will systematically cause a cgroup_switch()
420 	 */
421 	if (next)
422 		cgrp2 = perf_cgroup_from_task(next);
423 
424 	/*
425 	 * only schedule out current cgroup events if we know
426 	 * that we are switching to a different cgroup. Otherwise,
427 	 * do no touch the cgroup events.
428 	 */
429 	if (cgrp1 != cgrp2)
430 		perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
431 }
432 
perf_cgroup_sched_in(struct task_struct * prev,struct task_struct * task)433 static inline void perf_cgroup_sched_in(struct task_struct *prev,
434 					struct task_struct *task)
435 {
436 	struct perf_cgroup *cgrp1;
437 	struct perf_cgroup *cgrp2 = NULL;
438 
439 	/*
440 	 * we come here when we know perf_cgroup_events > 0
441 	 */
442 	cgrp1 = perf_cgroup_from_task(task);
443 
444 	/* prev can never be NULL */
445 	cgrp2 = perf_cgroup_from_task(prev);
446 
447 	/*
448 	 * only need to schedule in cgroup events if we are changing
449 	 * cgroup during ctxsw. Cgroup events were not scheduled
450 	 * out of ctxsw out if that was not the case.
451 	 */
452 	if (cgrp1 != cgrp2)
453 		perf_cgroup_switch(task, PERF_CGROUP_SWIN);
454 }
455 
perf_cgroup_connect(int fd,struct perf_event * event,struct perf_event_attr * attr,struct perf_event * group_leader)456 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
457 				      struct perf_event_attr *attr,
458 				      struct perf_event *group_leader)
459 {
460 	struct perf_cgroup *cgrp;
461 	struct cgroup_subsys_state *css;
462 	struct file *file;
463 	int ret = 0, fput_needed;
464 
465 	file = fget_light(fd, &fput_needed);
466 	if (!file)
467 		return -EBADF;
468 
469 	css = cgroup_css_from_dir(file, perf_subsys_id);
470 	if (IS_ERR(css)) {
471 		ret = PTR_ERR(css);
472 		goto out;
473 	}
474 
475 	cgrp = container_of(css, struct perf_cgroup, css);
476 	event->cgrp = cgrp;
477 
478 	/* must be done before we fput() the file */
479 	perf_get_cgroup(event);
480 
481 	/*
482 	 * all events in a group must monitor
483 	 * the same cgroup because a task belongs
484 	 * to only one perf cgroup at a time
485 	 */
486 	if (group_leader && group_leader->cgrp != cgrp) {
487 		perf_detach_cgroup(event);
488 		ret = -EINVAL;
489 	}
490 out:
491 	fput_light(file, fput_needed);
492 	return ret;
493 }
494 
495 static inline void
perf_cgroup_set_shadow_time(struct perf_event * event,u64 now)496 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
497 {
498 	struct perf_cgroup_info *t;
499 	t = per_cpu_ptr(event->cgrp->info, event->cpu);
500 	event->shadow_ctx_time = now - t->timestamp;
501 }
502 
503 static inline void
perf_cgroup_defer_enabled(struct perf_event * event)504 perf_cgroup_defer_enabled(struct perf_event *event)
505 {
506 	/*
507 	 * when the current task's perf cgroup does not match
508 	 * the event's, we need to remember to call the
509 	 * perf_mark_enable() function the first time a task with
510 	 * a matching perf cgroup is scheduled in.
511 	 */
512 	if (is_cgroup_event(event) && !perf_cgroup_match(event))
513 		event->cgrp_defer_enabled = 1;
514 }
515 
516 static inline void
perf_cgroup_mark_enabled(struct perf_event * event,struct perf_event_context * ctx)517 perf_cgroup_mark_enabled(struct perf_event *event,
518 			 struct perf_event_context *ctx)
519 {
520 	struct perf_event *sub;
521 	u64 tstamp = perf_event_time(event);
522 
523 	if (!event->cgrp_defer_enabled)
524 		return;
525 
526 	event->cgrp_defer_enabled = 0;
527 
528 	event->tstamp_enabled = tstamp - event->total_time_enabled;
529 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
530 		if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
531 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
532 			sub->cgrp_defer_enabled = 0;
533 		}
534 	}
535 }
536 #else /* !CONFIG_CGROUP_PERF */
537 
538 static inline bool
perf_cgroup_match(struct perf_event * event)539 perf_cgroup_match(struct perf_event *event)
540 {
541 	return true;
542 }
543 
perf_detach_cgroup(struct perf_event * event)544 static inline void perf_detach_cgroup(struct perf_event *event)
545 {}
546 
is_cgroup_event(struct perf_event * event)547 static inline int is_cgroup_event(struct perf_event *event)
548 {
549 	return 0;
550 }
551 
perf_cgroup_event_cgrp_time(struct perf_event * event)552 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
553 {
554 	return 0;
555 }
556 
update_cgrp_time_from_event(struct perf_event * event)557 static inline void update_cgrp_time_from_event(struct perf_event *event)
558 {
559 }
560 
update_cgrp_time_from_cpuctx(struct perf_cpu_context * cpuctx)561 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
562 {
563 }
564 
perf_cgroup_sched_out(struct task_struct * task,struct task_struct * next)565 static inline void perf_cgroup_sched_out(struct task_struct *task,
566 					 struct task_struct *next)
567 {
568 }
569 
perf_cgroup_sched_in(struct task_struct * prev,struct task_struct * task)570 static inline void perf_cgroup_sched_in(struct task_struct *prev,
571 					struct task_struct *task)
572 {
573 }
574 
perf_cgroup_connect(pid_t pid,struct perf_event * event,struct perf_event_attr * attr,struct perf_event * group_leader)575 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
576 				      struct perf_event_attr *attr,
577 				      struct perf_event *group_leader)
578 {
579 	return -EINVAL;
580 }
581 
582 static inline void
perf_cgroup_set_timestamp(struct task_struct * task,struct perf_event_context * ctx)583 perf_cgroup_set_timestamp(struct task_struct *task,
584 			  struct perf_event_context *ctx)
585 {
586 }
587 
588 void
perf_cgroup_switch(struct task_struct * task,struct task_struct * next)589 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
590 {
591 }
592 
593 static inline void
perf_cgroup_set_shadow_time(struct perf_event * event,u64 now)594 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
595 {
596 }
597 
perf_cgroup_event_time(struct perf_event * event)598 static inline u64 perf_cgroup_event_time(struct perf_event *event)
599 {
600 	return 0;
601 }
602 
603 static inline void
perf_cgroup_defer_enabled(struct perf_event * event)604 perf_cgroup_defer_enabled(struct perf_event *event)
605 {
606 }
607 
608 static inline void
perf_cgroup_mark_enabled(struct perf_event * event,struct perf_event_context * ctx)609 perf_cgroup_mark_enabled(struct perf_event *event,
610 			 struct perf_event_context *ctx)
611 {
612 }
613 #endif
614 
perf_pmu_disable(struct pmu * pmu)615 void perf_pmu_disable(struct pmu *pmu)
616 {
617 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
618 	if (!(*count)++)
619 		pmu->pmu_disable(pmu);
620 }
621 
perf_pmu_enable(struct pmu * pmu)622 void perf_pmu_enable(struct pmu *pmu)
623 {
624 	int *count = this_cpu_ptr(pmu->pmu_disable_count);
625 	if (!--(*count))
626 		pmu->pmu_enable(pmu);
627 }
628 
629 static DEFINE_PER_CPU(struct list_head, rotation_list);
630 
631 /*
632  * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
633  * because they're strictly cpu affine and rotate_start is called with IRQs
634  * disabled, while rotate_context is called from IRQ context.
635  */
perf_pmu_rotate_start(struct pmu * pmu)636 static void perf_pmu_rotate_start(struct pmu *pmu)
637 {
638 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
639 	struct list_head *head = &__get_cpu_var(rotation_list);
640 
641 	WARN_ON(!irqs_disabled());
642 
643 	if (list_empty(&cpuctx->rotation_list))
644 		list_add(&cpuctx->rotation_list, head);
645 }
646 
get_ctx(struct perf_event_context * ctx)647 static void get_ctx(struct perf_event_context *ctx)
648 {
649 	WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
650 }
651 
put_ctx(struct perf_event_context * ctx)652 static void put_ctx(struct perf_event_context *ctx)
653 {
654 	if (atomic_dec_and_test(&ctx->refcount)) {
655 		if (ctx->parent_ctx)
656 			put_ctx(ctx->parent_ctx);
657 		if (ctx->task)
658 			put_task_struct(ctx->task);
659 		kfree_rcu(ctx, rcu_head);
660 	}
661 }
662 
unclone_ctx(struct perf_event_context * ctx)663 static void unclone_ctx(struct perf_event_context *ctx)
664 {
665 	if (ctx->parent_ctx) {
666 		put_ctx(ctx->parent_ctx);
667 		ctx->parent_ctx = NULL;
668 	}
669 }
670 
perf_event_pid(struct perf_event * event,struct task_struct * p)671 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
672 {
673 	/*
674 	 * only top level events have the pid namespace they were created in
675 	 */
676 	if (event->parent)
677 		event = event->parent;
678 
679 	return task_tgid_nr_ns(p, event->ns);
680 }
681 
perf_event_tid(struct perf_event * event,struct task_struct * p)682 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
683 {
684 	/*
685 	 * only top level events have the pid namespace they were created in
686 	 */
687 	if (event->parent)
688 		event = event->parent;
689 
690 	return task_pid_nr_ns(p, event->ns);
691 }
692 
693 /*
694  * If we inherit events we want to return the parent event id
695  * to userspace.
696  */
primary_event_id(struct perf_event * event)697 static u64 primary_event_id(struct perf_event *event)
698 {
699 	u64 id = event->id;
700 
701 	if (event->parent)
702 		id = event->parent->id;
703 
704 	return id;
705 }
706 
707 /*
708  * Get the perf_event_context for a task and lock it.
709  * This has to cope with with the fact that until it is locked,
710  * the context could get moved to another task.
711  */
712 static struct perf_event_context *
perf_lock_task_context(struct task_struct * task,int ctxn,unsigned long * flags)713 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
714 {
715 	struct perf_event_context *ctx;
716 
717 	rcu_read_lock();
718 retry:
719 	ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
720 	if (ctx) {
721 		/*
722 		 * If this context is a clone of another, it might
723 		 * get swapped for another underneath us by
724 		 * perf_event_task_sched_out, though the
725 		 * rcu_read_lock() protects us from any context
726 		 * getting freed.  Lock the context and check if it
727 		 * got swapped before we could get the lock, and retry
728 		 * if so.  If we locked the right context, then it
729 		 * can't get swapped on us any more.
730 		 */
731 		raw_spin_lock_irqsave(&ctx->lock, *flags);
732 		if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
733 			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
734 			goto retry;
735 		}
736 
737 		if (!atomic_inc_not_zero(&ctx->refcount)) {
738 			raw_spin_unlock_irqrestore(&ctx->lock, *flags);
739 			ctx = NULL;
740 		}
741 	}
742 	rcu_read_unlock();
743 	return ctx;
744 }
745 
746 /*
747  * Get the context for a task and increment its pin_count so it
748  * can't get swapped to another task.  This also increments its
749  * reference count so that the context can't get freed.
750  */
751 static struct perf_event_context *
perf_pin_task_context(struct task_struct * task,int ctxn)752 perf_pin_task_context(struct task_struct *task, int ctxn)
753 {
754 	struct perf_event_context *ctx;
755 	unsigned long flags;
756 
757 	ctx = perf_lock_task_context(task, ctxn, &flags);
758 	if (ctx) {
759 		++ctx->pin_count;
760 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
761 	}
762 	return ctx;
763 }
764 
perf_unpin_context(struct perf_event_context * ctx)765 static void perf_unpin_context(struct perf_event_context *ctx)
766 {
767 	unsigned long flags;
768 
769 	raw_spin_lock_irqsave(&ctx->lock, flags);
770 	--ctx->pin_count;
771 	raw_spin_unlock_irqrestore(&ctx->lock, flags);
772 }
773 
774 /*
775  * Update the record of the current time in a context.
776  */
update_context_time(struct perf_event_context * ctx)777 static void update_context_time(struct perf_event_context *ctx)
778 {
779 	u64 now = perf_clock();
780 
781 	ctx->time += now - ctx->timestamp;
782 	ctx->timestamp = now;
783 }
784 
perf_event_time(struct perf_event * event)785 static u64 perf_event_time(struct perf_event *event)
786 {
787 	struct perf_event_context *ctx = event->ctx;
788 
789 	if (is_cgroup_event(event))
790 		return perf_cgroup_event_time(event);
791 
792 	return ctx ? ctx->time : 0;
793 }
794 
795 /*
796  * Update the total_time_enabled and total_time_running fields for a event.
797  * The caller of this function needs to hold the ctx->lock.
798  */
update_event_times(struct perf_event * event)799 static void update_event_times(struct perf_event *event)
800 {
801 	struct perf_event_context *ctx = event->ctx;
802 	u64 run_end;
803 
804 	if (event->state < PERF_EVENT_STATE_INACTIVE ||
805 	    event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
806 		return;
807 	/*
808 	 * in cgroup mode, time_enabled represents
809 	 * the time the event was enabled AND active
810 	 * tasks were in the monitored cgroup. This is
811 	 * independent of the activity of the context as
812 	 * there may be a mix of cgroup and non-cgroup events.
813 	 *
814 	 * That is why we treat cgroup events differently
815 	 * here.
816 	 */
817 	if (is_cgroup_event(event))
818 		run_end = perf_cgroup_event_time(event);
819 	else if (ctx->is_active)
820 		run_end = ctx->time;
821 	else
822 		run_end = event->tstamp_stopped;
823 
824 	event->total_time_enabled = run_end - event->tstamp_enabled;
825 
826 	if (event->state == PERF_EVENT_STATE_INACTIVE)
827 		run_end = event->tstamp_stopped;
828 	else
829 		run_end = perf_event_time(event);
830 
831 	event->total_time_running = run_end - event->tstamp_running;
832 
833 }
834 
835 /*
836  * Update total_time_enabled and total_time_running for all events in a group.
837  */
update_group_times(struct perf_event * leader)838 static void update_group_times(struct perf_event *leader)
839 {
840 	struct perf_event *event;
841 
842 	update_event_times(leader);
843 	list_for_each_entry(event, &leader->sibling_list, group_entry)
844 		update_event_times(event);
845 }
846 
847 static struct list_head *
ctx_group_list(struct perf_event * event,struct perf_event_context * ctx)848 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
849 {
850 	if (event->attr.pinned)
851 		return &ctx->pinned_groups;
852 	else
853 		return &ctx->flexible_groups;
854 }
855 
856 /*
857  * Add a event from the lists for its context.
858  * Must be called with ctx->mutex and ctx->lock held.
859  */
860 static void
list_add_event(struct perf_event * event,struct perf_event_context * ctx)861 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
862 {
863 	WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
864 	event->attach_state |= PERF_ATTACH_CONTEXT;
865 
866 	/*
867 	 * If we're a stand alone event or group leader, we go to the context
868 	 * list, group events are kept attached to the group so that
869 	 * perf_group_detach can, at all times, locate all siblings.
870 	 */
871 	if (event->group_leader == event) {
872 		struct list_head *list;
873 
874 		if (is_software_event(event))
875 			event->group_flags |= PERF_GROUP_SOFTWARE;
876 
877 		list = ctx_group_list(event, ctx);
878 		list_add_tail(&event->group_entry, list);
879 	}
880 
881 	if (is_cgroup_event(event))
882 		ctx->nr_cgroups++;
883 
884 	list_add_rcu(&event->event_entry, &ctx->event_list);
885 	if (!ctx->nr_events)
886 		perf_pmu_rotate_start(ctx->pmu);
887 	ctx->nr_events++;
888 	if (event->attr.inherit_stat)
889 		ctx->nr_stat++;
890 }
891 
892 /*
893  * Called at perf_event creation and when events are attached/detached from a
894  * group.
895  */
perf_event__read_size(struct perf_event * event)896 static void perf_event__read_size(struct perf_event *event)
897 {
898 	int entry = sizeof(u64); /* value */
899 	int size = 0;
900 	int nr = 1;
901 
902 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
903 		size += sizeof(u64);
904 
905 	if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
906 		size += sizeof(u64);
907 
908 	if (event->attr.read_format & PERF_FORMAT_ID)
909 		entry += sizeof(u64);
910 
911 	if (event->attr.read_format & PERF_FORMAT_GROUP) {
912 		nr += event->group_leader->nr_siblings;
913 		size += sizeof(u64);
914 	}
915 
916 	size += entry * nr;
917 	event->read_size = size;
918 }
919 
perf_event__header_size(struct perf_event * event)920 static void perf_event__header_size(struct perf_event *event)
921 {
922 	struct perf_sample_data *data;
923 	u64 sample_type = event->attr.sample_type;
924 	u16 size = 0;
925 
926 	perf_event__read_size(event);
927 
928 	if (sample_type & PERF_SAMPLE_IP)
929 		size += sizeof(data->ip);
930 
931 	if (sample_type & PERF_SAMPLE_ADDR)
932 		size += sizeof(data->addr);
933 
934 	if (sample_type & PERF_SAMPLE_PERIOD)
935 		size += sizeof(data->period);
936 
937 	if (sample_type & PERF_SAMPLE_READ)
938 		size += event->read_size;
939 
940 	event->header_size = size;
941 }
942 
perf_event__id_header_size(struct perf_event * event)943 static void perf_event__id_header_size(struct perf_event *event)
944 {
945 	struct perf_sample_data *data;
946 	u64 sample_type = event->attr.sample_type;
947 	u16 size = 0;
948 
949 	if (sample_type & PERF_SAMPLE_TID)
950 		size += sizeof(data->tid_entry);
951 
952 	if (sample_type & PERF_SAMPLE_TIME)
953 		size += sizeof(data->time);
954 
955 	if (sample_type & PERF_SAMPLE_ID)
956 		size += sizeof(data->id);
957 
958 	if (sample_type & PERF_SAMPLE_STREAM_ID)
959 		size += sizeof(data->stream_id);
960 
961 	if (sample_type & PERF_SAMPLE_CPU)
962 		size += sizeof(data->cpu_entry);
963 
964 	event->id_header_size = size;
965 }
966 
perf_group_attach(struct perf_event * event)967 static void perf_group_attach(struct perf_event *event)
968 {
969 	struct perf_event *group_leader = event->group_leader, *pos;
970 
971 	/*
972 	 * We can have double attach due to group movement in perf_event_open.
973 	 */
974 	if (event->attach_state & PERF_ATTACH_GROUP)
975 		return;
976 
977 	event->attach_state |= PERF_ATTACH_GROUP;
978 
979 	if (group_leader == event)
980 		return;
981 
982 	if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
983 			!is_software_event(event))
984 		group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
985 
986 	list_add_tail(&event->group_entry, &group_leader->sibling_list);
987 	group_leader->nr_siblings++;
988 
989 	perf_event__header_size(group_leader);
990 
991 	list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
992 		perf_event__header_size(pos);
993 }
994 
995 /*
996  * Remove a event from the lists for its context.
997  * Must be called with ctx->mutex and ctx->lock held.
998  */
999 static void
list_del_event(struct perf_event * event,struct perf_event_context * ctx)1000 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1001 {
1002 	struct perf_cpu_context *cpuctx;
1003 	/*
1004 	 * We can have double detach due to exit/hot-unplug + close.
1005 	 */
1006 	if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1007 		return;
1008 
1009 	event->attach_state &= ~PERF_ATTACH_CONTEXT;
1010 
1011 	if (is_cgroup_event(event)) {
1012 		ctx->nr_cgroups--;
1013 		cpuctx = __get_cpu_context(ctx);
1014 		/*
1015 		 * if there are no more cgroup events
1016 		 * then cler cgrp to avoid stale pointer
1017 		 * in update_cgrp_time_from_cpuctx()
1018 		 */
1019 		if (!ctx->nr_cgroups)
1020 			cpuctx->cgrp = NULL;
1021 	}
1022 
1023 	ctx->nr_events--;
1024 	if (event->attr.inherit_stat)
1025 		ctx->nr_stat--;
1026 
1027 	list_del_rcu(&event->event_entry);
1028 
1029 	if (event->group_leader == event)
1030 		list_del_init(&event->group_entry);
1031 
1032 	update_group_times(event);
1033 
1034 	/*
1035 	 * If event was in error state, then keep it
1036 	 * that way, otherwise bogus counts will be
1037 	 * returned on read(). The only way to get out
1038 	 * of error state is by explicit re-enabling
1039 	 * of the event
1040 	 */
1041 	if (event->state > PERF_EVENT_STATE_OFF)
1042 		event->state = PERF_EVENT_STATE_OFF;
1043 }
1044 
perf_group_detach(struct perf_event * event)1045 static void perf_group_detach(struct perf_event *event)
1046 {
1047 	struct perf_event *sibling, *tmp;
1048 	struct list_head *list = NULL;
1049 
1050 	/*
1051 	 * We can have double detach due to exit/hot-unplug + close.
1052 	 */
1053 	if (!(event->attach_state & PERF_ATTACH_GROUP))
1054 		return;
1055 
1056 	event->attach_state &= ~PERF_ATTACH_GROUP;
1057 
1058 	/*
1059 	 * If this is a sibling, remove it from its group.
1060 	 */
1061 	if (event->group_leader != event) {
1062 		list_del_init(&event->group_entry);
1063 		event->group_leader->nr_siblings--;
1064 		goto out;
1065 	}
1066 
1067 	if (!list_empty(&event->group_entry))
1068 		list = &event->group_entry;
1069 
1070 	/*
1071 	 * If this was a group event with sibling events then
1072 	 * upgrade the siblings to singleton events by adding them
1073 	 * to whatever list we are on.
1074 	 */
1075 	list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1076 		if (list)
1077 			list_move_tail(&sibling->group_entry, list);
1078 		sibling->group_leader = sibling;
1079 
1080 		/* Inherit group flags from the previous leader */
1081 		sibling->group_flags = event->group_flags;
1082 	}
1083 
1084 out:
1085 	perf_event__header_size(event->group_leader);
1086 
1087 	list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1088 		perf_event__header_size(tmp);
1089 }
1090 
1091 static inline int
event_filter_match(struct perf_event * event)1092 event_filter_match(struct perf_event *event)
1093 {
1094 	return (event->cpu == -1 || event->cpu == smp_processor_id())
1095 	    && perf_cgroup_match(event);
1096 }
1097 
1098 static void
event_sched_out(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)1099 event_sched_out(struct perf_event *event,
1100 		  struct perf_cpu_context *cpuctx,
1101 		  struct perf_event_context *ctx)
1102 {
1103 	u64 tstamp = perf_event_time(event);
1104 	u64 delta;
1105 	/*
1106 	 * An event which could not be activated because of
1107 	 * filter mismatch still needs to have its timings
1108 	 * maintained, otherwise bogus information is return
1109 	 * via read() for time_enabled, time_running:
1110 	 */
1111 	if (event->state == PERF_EVENT_STATE_INACTIVE
1112 	    && !event_filter_match(event)) {
1113 		delta = tstamp - event->tstamp_stopped;
1114 		event->tstamp_running += delta;
1115 		event->tstamp_stopped = tstamp;
1116 	}
1117 
1118 	if (event->state != PERF_EVENT_STATE_ACTIVE)
1119 		return;
1120 
1121 	event->state = PERF_EVENT_STATE_INACTIVE;
1122 	if (event->pending_disable) {
1123 		event->pending_disable = 0;
1124 		event->state = PERF_EVENT_STATE_OFF;
1125 	}
1126 	event->tstamp_stopped = tstamp;
1127 	event->pmu->del(event, 0);
1128 	event->oncpu = -1;
1129 
1130 	if (!is_software_event(event))
1131 		cpuctx->active_oncpu--;
1132 	ctx->nr_active--;
1133 	if (event->attr.freq && event->attr.sample_freq)
1134 		ctx->nr_freq--;
1135 	if (event->attr.exclusive || !cpuctx->active_oncpu)
1136 		cpuctx->exclusive = 0;
1137 }
1138 
1139 static void
group_sched_out(struct perf_event * group_event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)1140 group_sched_out(struct perf_event *group_event,
1141 		struct perf_cpu_context *cpuctx,
1142 		struct perf_event_context *ctx)
1143 {
1144 	struct perf_event *event;
1145 	int state = group_event->state;
1146 
1147 	event_sched_out(group_event, cpuctx, ctx);
1148 
1149 	/*
1150 	 * Schedule out siblings (if any):
1151 	 */
1152 	list_for_each_entry(event, &group_event->sibling_list, group_entry)
1153 		event_sched_out(event, cpuctx, ctx);
1154 
1155 	if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1156 		cpuctx->exclusive = 0;
1157 }
1158 
1159 /*
1160  * Cross CPU call to remove a performance event
1161  *
1162  * We disable the event on the hardware level first. After that we
1163  * remove it from the context list.
1164  */
__perf_remove_from_context(void * info)1165 static int __perf_remove_from_context(void *info)
1166 {
1167 	struct perf_event *event = info;
1168 	struct perf_event_context *ctx = event->ctx;
1169 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1170 
1171 	raw_spin_lock(&ctx->lock);
1172 	event_sched_out(event, cpuctx, ctx);
1173 	list_del_event(event, ctx);
1174 	if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1175 		ctx->is_active = 0;
1176 		cpuctx->task_ctx = NULL;
1177 	}
1178 	raw_spin_unlock(&ctx->lock);
1179 
1180 	return 0;
1181 }
1182 
1183 
1184 /*
1185  * Remove the event from a task's (or a CPU's) list of events.
1186  *
1187  * CPU events are removed with a smp call. For task events we only
1188  * call when the task is on a CPU.
1189  *
1190  * If event->ctx is a cloned context, callers must make sure that
1191  * every task struct that event->ctx->task could possibly point to
1192  * remains valid.  This is OK when called from perf_release since
1193  * that only calls us on the top-level context, which can't be a clone.
1194  * When called from perf_event_exit_task, it's OK because the
1195  * context has been detached from its task.
1196  */
perf_remove_from_context(struct perf_event * event)1197 static void perf_remove_from_context(struct perf_event *event)
1198 {
1199 	struct perf_event_context *ctx = event->ctx;
1200 	struct task_struct *task = ctx->task;
1201 
1202 	lockdep_assert_held(&ctx->mutex);
1203 
1204 	if (!task) {
1205 		/*
1206 		 * Per cpu events are removed via an smp call and
1207 		 * the removal is always successful.
1208 		 */
1209 		cpu_function_call(event->cpu, __perf_remove_from_context, event);
1210 		return;
1211 	}
1212 
1213 retry:
1214 	if (!task_function_call(task, __perf_remove_from_context, event))
1215 		return;
1216 
1217 	raw_spin_lock_irq(&ctx->lock);
1218 	/*
1219 	 * If we failed to find a running task, but find the context active now
1220 	 * that we've acquired the ctx->lock, retry.
1221 	 */
1222 	if (ctx->is_active) {
1223 		raw_spin_unlock_irq(&ctx->lock);
1224 		goto retry;
1225 	}
1226 
1227 	/*
1228 	 * Since the task isn't running, its safe to remove the event, us
1229 	 * holding the ctx->lock ensures the task won't get scheduled in.
1230 	 */
1231 	list_del_event(event, ctx);
1232 	raw_spin_unlock_irq(&ctx->lock);
1233 }
1234 
1235 /*
1236  * Cross CPU call to disable a performance event
1237  */
__perf_event_disable(void * info)1238 static int __perf_event_disable(void *info)
1239 {
1240 	struct perf_event *event = info;
1241 	struct perf_event_context *ctx = event->ctx;
1242 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1243 
1244 	/*
1245 	 * If this is a per-task event, need to check whether this
1246 	 * event's task is the current task on this cpu.
1247 	 *
1248 	 * Can trigger due to concurrent perf_event_context_sched_out()
1249 	 * flipping contexts around.
1250 	 */
1251 	if (ctx->task && cpuctx->task_ctx != ctx)
1252 		return -EINVAL;
1253 
1254 	raw_spin_lock(&ctx->lock);
1255 
1256 	/*
1257 	 * If the event is on, turn it off.
1258 	 * If it is in error state, leave it in error state.
1259 	 */
1260 	if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1261 		update_context_time(ctx);
1262 		update_cgrp_time_from_event(event);
1263 		update_group_times(event);
1264 		if (event == event->group_leader)
1265 			group_sched_out(event, cpuctx, ctx);
1266 		else
1267 			event_sched_out(event, cpuctx, ctx);
1268 		event->state = PERF_EVENT_STATE_OFF;
1269 	}
1270 
1271 	raw_spin_unlock(&ctx->lock);
1272 
1273 	return 0;
1274 }
1275 
1276 /*
1277  * Disable a event.
1278  *
1279  * If event->ctx is a cloned context, callers must make sure that
1280  * every task struct that event->ctx->task could possibly point to
1281  * remains valid.  This condition is satisifed when called through
1282  * perf_event_for_each_child or perf_event_for_each because they
1283  * hold the top-level event's child_mutex, so any descendant that
1284  * goes to exit will block in sync_child_event.
1285  * When called from perf_pending_event it's OK because event->ctx
1286  * is the current context on this CPU and preemption is disabled,
1287  * hence we can't get into perf_event_task_sched_out for this context.
1288  */
perf_event_disable(struct perf_event * event)1289 void perf_event_disable(struct perf_event *event)
1290 {
1291 	struct perf_event_context *ctx = event->ctx;
1292 	struct task_struct *task = ctx->task;
1293 
1294 	if (!task) {
1295 		/*
1296 		 * Disable the event on the cpu that it's on
1297 		 */
1298 		cpu_function_call(event->cpu, __perf_event_disable, event);
1299 		return;
1300 	}
1301 
1302 retry:
1303 	if (!task_function_call(task, __perf_event_disable, event))
1304 		return;
1305 
1306 	raw_spin_lock_irq(&ctx->lock);
1307 	/*
1308 	 * If the event is still active, we need to retry the cross-call.
1309 	 */
1310 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
1311 		raw_spin_unlock_irq(&ctx->lock);
1312 		/*
1313 		 * Reload the task pointer, it might have been changed by
1314 		 * a concurrent perf_event_context_sched_out().
1315 		 */
1316 		task = ctx->task;
1317 		goto retry;
1318 	}
1319 
1320 	/*
1321 	 * Since we have the lock this context can't be scheduled
1322 	 * in, so we can change the state safely.
1323 	 */
1324 	if (event->state == PERF_EVENT_STATE_INACTIVE) {
1325 		update_group_times(event);
1326 		event->state = PERF_EVENT_STATE_OFF;
1327 	}
1328 	raw_spin_unlock_irq(&ctx->lock);
1329 }
1330 EXPORT_SYMBOL_GPL(perf_event_disable);
1331 
perf_set_shadow_time(struct perf_event * event,struct perf_event_context * ctx,u64 tstamp)1332 static void perf_set_shadow_time(struct perf_event *event,
1333 				 struct perf_event_context *ctx,
1334 				 u64 tstamp)
1335 {
1336 	/*
1337 	 * use the correct time source for the time snapshot
1338 	 *
1339 	 * We could get by without this by leveraging the
1340 	 * fact that to get to this function, the caller
1341 	 * has most likely already called update_context_time()
1342 	 * and update_cgrp_time_xx() and thus both timestamp
1343 	 * are identical (or very close). Given that tstamp is,
1344 	 * already adjusted for cgroup, we could say that:
1345 	 *    tstamp - ctx->timestamp
1346 	 * is equivalent to
1347 	 *    tstamp - cgrp->timestamp.
1348 	 *
1349 	 * Then, in perf_output_read(), the calculation would
1350 	 * work with no changes because:
1351 	 * - event is guaranteed scheduled in
1352 	 * - no scheduled out in between
1353 	 * - thus the timestamp would be the same
1354 	 *
1355 	 * But this is a bit hairy.
1356 	 *
1357 	 * So instead, we have an explicit cgroup call to remain
1358 	 * within the time time source all along. We believe it
1359 	 * is cleaner and simpler to understand.
1360 	 */
1361 	if (is_cgroup_event(event))
1362 		perf_cgroup_set_shadow_time(event, tstamp);
1363 	else
1364 		event->shadow_ctx_time = tstamp - ctx->timestamp;
1365 }
1366 
1367 #define MAX_INTERRUPTS (~0ULL)
1368 
1369 static void perf_log_throttle(struct perf_event *event, int enable);
1370 
1371 static int
event_sched_in(struct perf_event * event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)1372 event_sched_in(struct perf_event *event,
1373 		 struct perf_cpu_context *cpuctx,
1374 		 struct perf_event_context *ctx)
1375 {
1376 	u64 tstamp = perf_event_time(event);
1377 
1378 	if (event->state <= PERF_EVENT_STATE_OFF)
1379 		return 0;
1380 
1381 	event->state = PERF_EVENT_STATE_ACTIVE;
1382 	event->oncpu = smp_processor_id();
1383 
1384 	/*
1385 	 * Unthrottle events, since we scheduled we might have missed several
1386 	 * ticks already, also for a heavily scheduling task there is little
1387 	 * guarantee it'll get a tick in a timely manner.
1388 	 */
1389 	if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1390 		perf_log_throttle(event, 1);
1391 		event->hw.interrupts = 0;
1392 	}
1393 
1394 	/*
1395 	 * The new state must be visible before we turn it on in the hardware:
1396 	 */
1397 	smp_wmb();
1398 
1399 	if (event->pmu->add(event, PERF_EF_START)) {
1400 		event->state = PERF_EVENT_STATE_INACTIVE;
1401 		event->oncpu = -1;
1402 		return -EAGAIN;
1403 	}
1404 
1405 	event->tstamp_running += tstamp - event->tstamp_stopped;
1406 
1407 	perf_set_shadow_time(event, ctx, tstamp);
1408 
1409 	if (!is_software_event(event))
1410 		cpuctx->active_oncpu++;
1411 	ctx->nr_active++;
1412 	if (event->attr.freq && event->attr.sample_freq)
1413 		ctx->nr_freq++;
1414 
1415 	if (event->attr.exclusive)
1416 		cpuctx->exclusive = 1;
1417 
1418 	return 0;
1419 }
1420 
1421 static int
group_sched_in(struct perf_event * group_event,struct perf_cpu_context * cpuctx,struct perf_event_context * ctx)1422 group_sched_in(struct perf_event *group_event,
1423 	       struct perf_cpu_context *cpuctx,
1424 	       struct perf_event_context *ctx)
1425 {
1426 	struct perf_event *event, *partial_group = NULL;
1427 	struct pmu *pmu = group_event->pmu;
1428 	u64 now = ctx->time;
1429 	bool simulate = false;
1430 
1431 	if (group_event->state == PERF_EVENT_STATE_OFF)
1432 		return 0;
1433 
1434 	pmu->start_txn(pmu);
1435 
1436 	if (event_sched_in(group_event, cpuctx, ctx)) {
1437 		pmu->cancel_txn(pmu);
1438 		return -EAGAIN;
1439 	}
1440 
1441 	/*
1442 	 * Schedule in siblings as one group (if any):
1443 	 */
1444 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1445 		if (event_sched_in(event, cpuctx, ctx)) {
1446 			partial_group = event;
1447 			goto group_error;
1448 		}
1449 	}
1450 
1451 	if (!pmu->commit_txn(pmu))
1452 		return 0;
1453 
1454 group_error:
1455 	/*
1456 	 * Groups can be scheduled in as one unit only, so undo any
1457 	 * partial group before returning:
1458 	 * The events up to the failed event are scheduled out normally,
1459 	 * tstamp_stopped will be updated.
1460 	 *
1461 	 * The failed events and the remaining siblings need to have
1462 	 * their timings updated as if they had gone thru event_sched_in()
1463 	 * and event_sched_out(). This is required to get consistent timings
1464 	 * across the group. This also takes care of the case where the group
1465 	 * could never be scheduled by ensuring tstamp_stopped is set to mark
1466 	 * the time the event was actually stopped, such that time delta
1467 	 * calculation in update_event_times() is correct.
1468 	 */
1469 	list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1470 		if (event == partial_group)
1471 			simulate = true;
1472 
1473 		if (simulate) {
1474 			event->tstamp_running += now - event->tstamp_stopped;
1475 			event->tstamp_stopped = now;
1476 		} else {
1477 			event_sched_out(event, cpuctx, ctx);
1478 		}
1479 	}
1480 	event_sched_out(group_event, cpuctx, ctx);
1481 
1482 	pmu->cancel_txn(pmu);
1483 
1484 	return -EAGAIN;
1485 }
1486 
1487 /*
1488  * Work out whether we can put this event group on the CPU now.
1489  */
group_can_go_on(struct perf_event * event,struct perf_cpu_context * cpuctx,int can_add_hw)1490 static int group_can_go_on(struct perf_event *event,
1491 			   struct perf_cpu_context *cpuctx,
1492 			   int can_add_hw)
1493 {
1494 	/*
1495 	 * Groups consisting entirely of software events can always go on.
1496 	 */
1497 	if (event->group_flags & PERF_GROUP_SOFTWARE)
1498 		return 1;
1499 	/*
1500 	 * If an exclusive group is already on, no other hardware
1501 	 * events can go on.
1502 	 */
1503 	if (cpuctx->exclusive)
1504 		return 0;
1505 	/*
1506 	 * If this group is exclusive and there are already
1507 	 * events on the CPU, it can't go on.
1508 	 */
1509 	if (event->attr.exclusive && cpuctx->active_oncpu)
1510 		return 0;
1511 	/*
1512 	 * Otherwise, try to add it if all previous groups were able
1513 	 * to go on.
1514 	 */
1515 	return can_add_hw;
1516 }
1517 
add_event_to_ctx(struct perf_event * event,struct perf_event_context * ctx)1518 static void add_event_to_ctx(struct perf_event *event,
1519 			       struct perf_event_context *ctx)
1520 {
1521 	u64 tstamp = perf_event_time(event);
1522 
1523 	list_add_event(event, ctx);
1524 	perf_group_attach(event);
1525 	event->tstamp_enabled = tstamp;
1526 	event->tstamp_running = tstamp;
1527 	event->tstamp_stopped = tstamp;
1528 }
1529 
1530 static void task_ctx_sched_out(struct perf_event_context *ctx);
1531 static void
1532 ctx_sched_in(struct perf_event_context *ctx,
1533 	     struct perf_cpu_context *cpuctx,
1534 	     enum event_type_t event_type,
1535 	     struct task_struct *task);
1536 
perf_event_sched_in(struct perf_cpu_context * cpuctx,struct perf_event_context * ctx,struct task_struct * task)1537 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1538 				struct perf_event_context *ctx,
1539 				struct task_struct *task)
1540 {
1541 	cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1542 	if (ctx)
1543 		ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1544 	cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1545 	if (ctx)
1546 		ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1547 }
1548 
1549 /*
1550  * Cross CPU call to install and enable a performance event
1551  *
1552  * Must be called with ctx->mutex held
1553  */
__perf_install_in_context(void * info)1554 static int  __perf_install_in_context(void *info)
1555 {
1556 	struct perf_event *event = info;
1557 	struct perf_event_context *ctx = event->ctx;
1558 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1559 	struct perf_event_context *task_ctx = cpuctx->task_ctx;
1560 	struct task_struct *task = current;
1561 
1562 	perf_ctx_lock(cpuctx, task_ctx);
1563 	perf_pmu_disable(cpuctx->ctx.pmu);
1564 
1565 	/*
1566 	 * If there was an active task_ctx schedule it out.
1567 	 */
1568 	if (task_ctx)
1569 		task_ctx_sched_out(task_ctx);
1570 
1571 	/*
1572 	 * If the context we're installing events in is not the
1573 	 * active task_ctx, flip them.
1574 	 */
1575 	if (ctx->task && task_ctx != ctx) {
1576 		if (task_ctx)
1577 			raw_spin_unlock(&task_ctx->lock);
1578 		raw_spin_lock(&ctx->lock);
1579 		task_ctx = ctx;
1580 	}
1581 
1582 	if (task_ctx) {
1583 		cpuctx->task_ctx = task_ctx;
1584 		task = task_ctx->task;
1585 	}
1586 
1587 	cpu_ctx_sched_out(cpuctx, EVENT_ALL);
1588 
1589 	update_context_time(ctx);
1590 	/*
1591 	 * update cgrp time only if current cgrp
1592 	 * matches event->cgrp. Must be done before
1593 	 * calling add_event_to_ctx()
1594 	 */
1595 	update_cgrp_time_from_event(event);
1596 
1597 	add_event_to_ctx(event, ctx);
1598 
1599 	/*
1600 	 * Schedule everything back in
1601 	 */
1602 	perf_event_sched_in(cpuctx, task_ctx, task);
1603 
1604 	perf_pmu_enable(cpuctx->ctx.pmu);
1605 	perf_ctx_unlock(cpuctx, task_ctx);
1606 
1607 	return 0;
1608 }
1609 
1610 /*
1611  * Attach a performance event to a context
1612  *
1613  * First we add the event to the list with the hardware enable bit
1614  * in event->hw_config cleared.
1615  *
1616  * If the event is attached to a task which is on a CPU we use a smp
1617  * call to enable it in the task context. The task might have been
1618  * scheduled away, but we check this in the smp call again.
1619  */
1620 static void
perf_install_in_context(struct perf_event_context * ctx,struct perf_event * event,int cpu)1621 perf_install_in_context(struct perf_event_context *ctx,
1622 			struct perf_event *event,
1623 			int cpu)
1624 {
1625 	struct task_struct *task = ctx->task;
1626 
1627 	lockdep_assert_held(&ctx->mutex);
1628 
1629 	event->ctx = ctx;
1630 
1631 	if (!task) {
1632 		/*
1633 		 * Per cpu events are installed via an smp call and
1634 		 * the install is always successful.
1635 		 */
1636 		cpu_function_call(cpu, __perf_install_in_context, event);
1637 		return;
1638 	}
1639 
1640 retry:
1641 	if (!task_function_call(task, __perf_install_in_context, event))
1642 		return;
1643 
1644 	raw_spin_lock_irq(&ctx->lock);
1645 	/*
1646 	 * If we failed to find a running task, but find the context active now
1647 	 * that we've acquired the ctx->lock, retry.
1648 	 */
1649 	if (ctx->is_active) {
1650 		raw_spin_unlock_irq(&ctx->lock);
1651 		goto retry;
1652 	}
1653 
1654 	/*
1655 	 * Since the task isn't running, its safe to add the event, us holding
1656 	 * the ctx->lock ensures the task won't get scheduled in.
1657 	 */
1658 	add_event_to_ctx(event, ctx);
1659 	raw_spin_unlock_irq(&ctx->lock);
1660 }
1661 
1662 /*
1663  * Put a event into inactive state and update time fields.
1664  * Enabling the leader of a group effectively enables all
1665  * the group members that aren't explicitly disabled, so we
1666  * have to update their ->tstamp_enabled also.
1667  * Note: this works for group members as well as group leaders
1668  * since the non-leader members' sibling_lists will be empty.
1669  */
__perf_event_mark_enabled(struct perf_event * event)1670 static void __perf_event_mark_enabled(struct perf_event *event)
1671 {
1672 	struct perf_event *sub;
1673 	u64 tstamp = perf_event_time(event);
1674 
1675 	event->state = PERF_EVENT_STATE_INACTIVE;
1676 	event->tstamp_enabled = tstamp - event->total_time_enabled;
1677 	list_for_each_entry(sub, &event->sibling_list, group_entry) {
1678 		if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1679 			sub->tstamp_enabled = tstamp - sub->total_time_enabled;
1680 	}
1681 }
1682 
1683 /*
1684  * Cross CPU call to enable a performance event
1685  */
__perf_event_enable(void * info)1686 static int __perf_event_enable(void *info)
1687 {
1688 	struct perf_event *event = info;
1689 	struct perf_event_context *ctx = event->ctx;
1690 	struct perf_event *leader = event->group_leader;
1691 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1692 	int err;
1693 
1694 	if (WARN_ON_ONCE(!ctx->is_active))
1695 		return -EINVAL;
1696 
1697 	raw_spin_lock(&ctx->lock);
1698 	update_context_time(ctx);
1699 
1700 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1701 		goto unlock;
1702 
1703 	/*
1704 	 * set current task's cgroup time reference point
1705 	 */
1706 	perf_cgroup_set_timestamp(current, ctx);
1707 
1708 	__perf_event_mark_enabled(event);
1709 
1710 	if (!event_filter_match(event)) {
1711 		if (is_cgroup_event(event))
1712 			perf_cgroup_defer_enabled(event);
1713 		goto unlock;
1714 	}
1715 
1716 	/*
1717 	 * If the event is in a group and isn't the group leader,
1718 	 * then don't put it on unless the group is on.
1719 	 */
1720 	if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1721 		goto unlock;
1722 
1723 	if (!group_can_go_on(event, cpuctx, 1)) {
1724 		err = -EEXIST;
1725 	} else {
1726 		if (event == leader)
1727 			err = group_sched_in(event, cpuctx, ctx);
1728 		else
1729 			err = event_sched_in(event, cpuctx, ctx);
1730 	}
1731 
1732 	if (err) {
1733 		/*
1734 		 * If this event can't go on and it's part of a
1735 		 * group, then the whole group has to come off.
1736 		 */
1737 		if (leader != event)
1738 			group_sched_out(leader, cpuctx, ctx);
1739 		if (leader->attr.pinned) {
1740 			update_group_times(leader);
1741 			leader->state = PERF_EVENT_STATE_ERROR;
1742 		}
1743 	}
1744 
1745 unlock:
1746 	raw_spin_unlock(&ctx->lock);
1747 
1748 	return 0;
1749 }
1750 
1751 /*
1752  * Enable a event.
1753  *
1754  * If event->ctx is a cloned context, callers must make sure that
1755  * every task struct that event->ctx->task could possibly point to
1756  * remains valid.  This condition is satisfied when called through
1757  * perf_event_for_each_child or perf_event_for_each as described
1758  * for perf_event_disable.
1759  */
perf_event_enable(struct perf_event * event)1760 void perf_event_enable(struct perf_event *event)
1761 {
1762 	struct perf_event_context *ctx = event->ctx;
1763 	struct task_struct *task = ctx->task;
1764 
1765 	if (!task) {
1766 		/*
1767 		 * Enable the event on the cpu that it's on
1768 		 */
1769 		cpu_function_call(event->cpu, __perf_event_enable, event);
1770 		return;
1771 	}
1772 
1773 	raw_spin_lock_irq(&ctx->lock);
1774 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
1775 		goto out;
1776 
1777 	/*
1778 	 * If the event is in error state, clear that first.
1779 	 * That way, if we see the event in error state below, we
1780 	 * know that it has gone back into error state, as distinct
1781 	 * from the task having been scheduled away before the
1782 	 * cross-call arrived.
1783 	 */
1784 	if (event->state == PERF_EVENT_STATE_ERROR)
1785 		event->state = PERF_EVENT_STATE_OFF;
1786 
1787 retry:
1788 	if (!ctx->is_active) {
1789 		__perf_event_mark_enabled(event);
1790 		goto out;
1791 	}
1792 
1793 	raw_spin_unlock_irq(&ctx->lock);
1794 
1795 	if (!task_function_call(task, __perf_event_enable, event))
1796 		return;
1797 
1798 	raw_spin_lock_irq(&ctx->lock);
1799 
1800 	/*
1801 	 * If the context is active and the event is still off,
1802 	 * we need to retry the cross-call.
1803 	 */
1804 	if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
1805 		/*
1806 		 * task could have been flipped by a concurrent
1807 		 * perf_event_context_sched_out()
1808 		 */
1809 		task = ctx->task;
1810 		goto retry;
1811 	}
1812 
1813 out:
1814 	raw_spin_unlock_irq(&ctx->lock);
1815 }
1816 EXPORT_SYMBOL_GPL(perf_event_enable);
1817 
perf_event_refresh(struct perf_event * event,int refresh)1818 int perf_event_refresh(struct perf_event *event, int refresh)
1819 {
1820 	/*
1821 	 * not supported on inherited events
1822 	 */
1823 	if (event->attr.inherit || !is_sampling_event(event))
1824 		return -EINVAL;
1825 
1826 	atomic_add(refresh, &event->event_limit);
1827 	perf_event_enable(event);
1828 
1829 	return 0;
1830 }
1831 EXPORT_SYMBOL_GPL(perf_event_refresh);
1832 
ctx_sched_out(struct perf_event_context * ctx,struct perf_cpu_context * cpuctx,enum event_type_t event_type)1833 static void ctx_sched_out(struct perf_event_context *ctx,
1834 			  struct perf_cpu_context *cpuctx,
1835 			  enum event_type_t event_type)
1836 {
1837 	struct perf_event *event;
1838 	int is_active = ctx->is_active;
1839 
1840 	ctx->is_active &= ~event_type;
1841 	if (likely(!ctx->nr_events))
1842 		return;
1843 
1844 	update_context_time(ctx);
1845 	update_cgrp_time_from_cpuctx(cpuctx);
1846 	if (!ctx->nr_active)
1847 		return;
1848 
1849 	perf_pmu_disable(ctx->pmu);
1850 	if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
1851 		list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1852 			group_sched_out(event, cpuctx, ctx);
1853 	}
1854 
1855 	if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
1856 		list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1857 			group_sched_out(event, cpuctx, ctx);
1858 	}
1859 	perf_pmu_enable(ctx->pmu);
1860 }
1861 
1862 /*
1863  * Test whether two contexts are equivalent, i.e. whether they
1864  * have both been cloned from the same version of the same context
1865  * and they both have the same number of enabled events.
1866  * If the number of enabled events is the same, then the set
1867  * of enabled events should be the same, because these are both
1868  * inherited contexts, therefore we can't access individual events
1869  * in them directly with an fd; we can only enable/disable all
1870  * events via prctl, or enable/disable all events in a family
1871  * via ioctl, which will have the same effect on both contexts.
1872  */
context_equiv(struct perf_event_context * ctx1,struct perf_event_context * ctx2)1873 static int context_equiv(struct perf_event_context *ctx1,
1874 			 struct perf_event_context *ctx2)
1875 {
1876 	return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1877 		&& ctx1->parent_gen == ctx2->parent_gen
1878 		&& !ctx1->pin_count && !ctx2->pin_count;
1879 }
1880 
__perf_event_sync_stat(struct perf_event * event,struct perf_event * next_event)1881 static void __perf_event_sync_stat(struct perf_event *event,
1882 				     struct perf_event *next_event)
1883 {
1884 	u64 value;
1885 
1886 	if (!event->attr.inherit_stat)
1887 		return;
1888 
1889 	/*
1890 	 * Update the event value, we cannot use perf_event_read()
1891 	 * because we're in the middle of a context switch and have IRQs
1892 	 * disabled, which upsets smp_call_function_single(), however
1893 	 * we know the event must be on the current CPU, therefore we
1894 	 * don't need to use it.
1895 	 */
1896 	switch (event->state) {
1897 	case PERF_EVENT_STATE_ACTIVE:
1898 		event->pmu->read(event);
1899 		/* fall-through */
1900 
1901 	case PERF_EVENT_STATE_INACTIVE:
1902 		update_event_times(event);
1903 		break;
1904 
1905 	default:
1906 		break;
1907 	}
1908 
1909 	/*
1910 	 * In order to keep per-task stats reliable we need to flip the event
1911 	 * values when we flip the contexts.
1912 	 */
1913 	value = local64_read(&next_event->count);
1914 	value = local64_xchg(&event->count, value);
1915 	local64_set(&next_event->count, value);
1916 
1917 	swap(event->total_time_enabled, next_event->total_time_enabled);
1918 	swap(event->total_time_running, next_event->total_time_running);
1919 
1920 	/*
1921 	 * Since we swizzled the values, update the user visible data too.
1922 	 */
1923 	perf_event_update_userpage(event);
1924 	perf_event_update_userpage(next_event);
1925 }
1926 
1927 #define list_next_entry(pos, member) \
1928 	list_entry(pos->member.next, typeof(*pos), member)
1929 
perf_event_sync_stat(struct perf_event_context * ctx,struct perf_event_context * next_ctx)1930 static void perf_event_sync_stat(struct perf_event_context *ctx,
1931 				   struct perf_event_context *next_ctx)
1932 {
1933 	struct perf_event *event, *next_event;
1934 
1935 	if (!ctx->nr_stat)
1936 		return;
1937 
1938 	update_context_time(ctx);
1939 
1940 	event = list_first_entry(&ctx->event_list,
1941 				   struct perf_event, event_entry);
1942 
1943 	next_event = list_first_entry(&next_ctx->event_list,
1944 					struct perf_event, event_entry);
1945 
1946 	while (&event->event_entry != &ctx->event_list &&
1947 	       &next_event->event_entry != &next_ctx->event_list) {
1948 
1949 		__perf_event_sync_stat(event, next_event);
1950 
1951 		event = list_next_entry(event, event_entry);
1952 		next_event = list_next_entry(next_event, event_entry);
1953 	}
1954 }
1955 
perf_event_context_sched_out(struct task_struct * task,int ctxn,struct task_struct * next)1956 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
1957 					 struct task_struct *next)
1958 {
1959 	struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1960 	struct perf_event_context *next_ctx;
1961 	struct perf_event_context *parent;
1962 	struct perf_cpu_context *cpuctx;
1963 	int do_switch = 1;
1964 
1965 	if (likely(!ctx))
1966 		return;
1967 
1968 	cpuctx = __get_cpu_context(ctx);
1969 	if (!cpuctx->task_ctx)
1970 		return;
1971 
1972 	rcu_read_lock();
1973 	parent = rcu_dereference(ctx->parent_ctx);
1974 	next_ctx = next->perf_event_ctxp[ctxn];
1975 	if (parent && next_ctx &&
1976 	    rcu_dereference(next_ctx->parent_ctx) == parent) {
1977 		/*
1978 		 * Looks like the two contexts are clones, so we might be
1979 		 * able to optimize the context switch.  We lock both
1980 		 * contexts and check that they are clones under the
1981 		 * lock (including re-checking that neither has been
1982 		 * uncloned in the meantime).  It doesn't matter which
1983 		 * order we take the locks because no other cpu could
1984 		 * be trying to lock both of these tasks.
1985 		 */
1986 		raw_spin_lock(&ctx->lock);
1987 		raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1988 		if (context_equiv(ctx, next_ctx)) {
1989 			/*
1990 			 * XXX do we need a memory barrier of sorts
1991 			 * wrt to rcu_dereference() of perf_event_ctxp
1992 			 */
1993 			task->perf_event_ctxp[ctxn] = next_ctx;
1994 			next->perf_event_ctxp[ctxn] = ctx;
1995 			ctx->task = next;
1996 			next_ctx->task = task;
1997 			do_switch = 0;
1998 
1999 			perf_event_sync_stat(ctx, next_ctx);
2000 		}
2001 		raw_spin_unlock(&next_ctx->lock);
2002 		raw_spin_unlock(&ctx->lock);
2003 	}
2004 	rcu_read_unlock();
2005 
2006 	if (do_switch) {
2007 		raw_spin_lock(&ctx->lock);
2008 		ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2009 		cpuctx->task_ctx = NULL;
2010 		raw_spin_unlock(&ctx->lock);
2011 	}
2012 }
2013 
2014 #define for_each_task_context_nr(ctxn)					\
2015 	for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2016 
2017 /*
2018  * Called from scheduler to remove the events of the current task,
2019  * with interrupts disabled.
2020  *
2021  * We stop each event and update the event value in event->count.
2022  *
2023  * This does not protect us against NMI, but disable()
2024  * sets the disabled bit in the control field of event _before_
2025  * accessing the event control register. If a NMI hits, then it will
2026  * not restart the event.
2027  */
__perf_event_task_sched_out(struct task_struct * task,struct task_struct * next)2028 void __perf_event_task_sched_out(struct task_struct *task,
2029 				 struct task_struct *next)
2030 {
2031 	int ctxn;
2032 
2033 	for_each_task_context_nr(ctxn)
2034 		perf_event_context_sched_out(task, ctxn, next);
2035 
2036 	/*
2037 	 * if cgroup events exist on this CPU, then we need
2038 	 * to check if we have to switch out PMU state.
2039 	 * cgroup event are system-wide mode only
2040 	 */
2041 	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2042 		perf_cgroup_sched_out(task, next);
2043 }
2044 
task_ctx_sched_out(struct perf_event_context * ctx)2045 static void task_ctx_sched_out(struct perf_event_context *ctx)
2046 {
2047 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2048 
2049 	if (!cpuctx->task_ctx)
2050 		return;
2051 
2052 	if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2053 		return;
2054 
2055 	ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2056 	cpuctx->task_ctx = NULL;
2057 }
2058 
2059 /*
2060  * Called with IRQs disabled
2061  */
cpu_ctx_sched_out(struct perf_cpu_context * cpuctx,enum event_type_t event_type)2062 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2063 			      enum event_type_t event_type)
2064 {
2065 	ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2066 }
2067 
2068 static void
ctx_pinned_sched_in(struct perf_event_context * ctx,struct perf_cpu_context * cpuctx)2069 ctx_pinned_sched_in(struct perf_event_context *ctx,
2070 		    struct perf_cpu_context *cpuctx)
2071 {
2072 	struct perf_event *event;
2073 
2074 	list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2075 		if (event->state <= PERF_EVENT_STATE_OFF)
2076 			continue;
2077 		if (!event_filter_match(event))
2078 			continue;
2079 
2080 		/* may need to reset tstamp_enabled */
2081 		if (is_cgroup_event(event))
2082 			perf_cgroup_mark_enabled(event, ctx);
2083 
2084 		if (group_can_go_on(event, cpuctx, 1))
2085 			group_sched_in(event, cpuctx, ctx);
2086 
2087 		/*
2088 		 * If this pinned group hasn't been scheduled,
2089 		 * put it in error state.
2090 		 */
2091 		if (event->state == PERF_EVENT_STATE_INACTIVE) {
2092 			update_group_times(event);
2093 			event->state = PERF_EVENT_STATE_ERROR;
2094 		}
2095 	}
2096 }
2097 
2098 static void
ctx_flexible_sched_in(struct perf_event_context * ctx,struct perf_cpu_context * cpuctx)2099 ctx_flexible_sched_in(struct perf_event_context *ctx,
2100 		      struct perf_cpu_context *cpuctx)
2101 {
2102 	struct perf_event *event;
2103 	int can_add_hw = 1;
2104 
2105 	list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2106 		/* Ignore events in OFF or ERROR state */
2107 		if (event->state <= PERF_EVENT_STATE_OFF)
2108 			continue;
2109 		/*
2110 		 * Listen to the 'cpu' scheduling filter constraint
2111 		 * of events:
2112 		 */
2113 		if (!event_filter_match(event))
2114 			continue;
2115 
2116 		/* may need to reset tstamp_enabled */
2117 		if (is_cgroup_event(event))
2118 			perf_cgroup_mark_enabled(event, ctx);
2119 
2120 		if (group_can_go_on(event, cpuctx, can_add_hw)) {
2121 			if (group_sched_in(event, cpuctx, ctx))
2122 				can_add_hw = 0;
2123 		}
2124 	}
2125 }
2126 
2127 static void
ctx_sched_in(struct perf_event_context * ctx,struct perf_cpu_context * cpuctx,enum event_type_t event_type,struct task_struct * task)2128 ctx_sched_in(struct perf_event_context *ctx,
2129 	     struct perf_cpu_context *cpuctx,
2130 	     enum event_type_t event_type,
2131 	     struct task_struct *task)
2132 {
2133 	u64 now;
2134 	int is_active = ctx->is_active;
2135 
2136 	ctx->is_active |= event_type;
2137 	if (likely(!ctx->nr_events))
2138 		return;
2139 
2140 	now = perf_clock();
2141 	ctx->timestamp = now;
2142 	perf_cgroup_set_timestamp(task, ctx);
2143 	/*
2144 	 * First go through the list and put on any pinned groups
2145 	 * in order to give them the best chance of going on.
2146 	 */
2147 	if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2148 		ctx_pinned_sched_in(ctx, cpuctx);
2149 
2150 	/* Then walk through the lower prio flexible groups */
2151 	if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2152 		ctx_flexible_sched_in(ctx, cpuctx);
2153 }
2154 
cpu_ctx_sched_in(struct perf_cpu_context * cpuctx,enum event_type_t event_type,struct task_struct * task)2155 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2156 			     enum event_type_t event_type,
2157 			     struct task_struct *task)
2158 {
2159 	struct perf_event_context *ctx = &cpuctx->ctx;
2160 
2161 	ctx_sched_in(ctx, cpuctx, event_type, task);
2162 }
2163 
perf_event_context_sched_in(struct perf_event_context * ctx,struct task_struct * task)2164 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2165 					struct task_struct *task)
2166 {
2167 	struct perf_cpu_context *cpuctx;
2168 
2169 	cpuctx = __get_cpu_context(ctx);
2170 	if (cpuctx->task_ctx == ctx)
2171 		return;
2172 
2173 	perf_ctx_lock(cpuctx, ctx);
2174 	perf_pmu_disable(ctx->pmu);
2175 	/*
2176 	 * We want to keep the following priority order:
2177 	 * cpu pinned (that don't need to move), task pinned,
2178 	 * cpu flexible, task flexible.
2179 	 */
2180 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2181 
2182 	if (ctx->nr_events)
2183 		cpuctx->task_ctx = ctx;
2184 
2185 	perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2186 
2187 	perf_pmu_enable(ctx->pmu);
2188 	perf_ctx_unlock(cpuctx, ctx);
2189 
2190 	/*
2191 	 * Since these rotations are per-cpu, we need to ensure the
2192 	 * cpu-context we got scheduled on is actually rotating.
2193 	 */
2194 	perf_pmu_rotate_start(ctx->pmu);
2195 }
2196 
2197 /*
2198  * Called from scheduler to add the events of the current task
2199  * with interrupts disabled.
2200  *
2201  * We restore the event value and then enable it.
2202  *
2203  * This does not protect us against NMI, but enable()
2204  * sets the enabled bit in the control field of event _before_
2205  * accessing the event control register. If a NMI hits, then it will
2206  * keep the event running.
2207  */
__perf_event_task_sched_in(struct task_struct * prev,struct task_struct * task)2208 void __perf_event_task_sched_in(struct task_struct *prev,
2209 				struct task_struct *task)
2210 {
2211 	struct perf_event_context *ctx;
2212 	int ctxn;
2213 
2214 	for_each_task_context_nr(ctxn) {
2215 		ctx = task->perf_event_ctxp[ctxn];
2216 		if (likely(!ctx))
2217 			continue;
2218 
2219 		perf_event_context_sched_in(ctx, task);
2220 	}
2221 	/*
2222 	 * if cgroup events exist on this CPU, then we need
2223 	 * to check if we have to switch in PMU state.
2224 	 * cgroup event are system-wide mode only
2225 	 */
2226 	if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2227 		perf_cgroup_sched_in(prev, task);
2228 }
2229 
perf_calculate_period(struct perf_event * event,u64 nsec,u64 count)2230 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2231 {
2232 	u64 frequency = event->attr.sample_freq;
2233 	u64 sec = NSEC_PER_SEC;
2234 	u64 divisor, dividend;
2235 
2236 	int count_fls, nsec_fls, frequency_fls, sec_fls;
2237 
2238 	count_fls = fls64(count);
2239 	nsec_fls = fls64(nsec);
2240 	frequency_fls = fls64(frequency);
2241 	sec_fls = 30;
2242 
2243 	/*
2244 	 * We got @count in @nsec, with a target of sample_freq HZ
2245 	 * the target period becomes:
2246 	 *
2247 	 *             @count * 10^9
2248 	 * period = -------------------
2249 	 *          @nsec * sample_freq
2250 	 *
2251 	 */
2252 
2253 	/*
2254 	 * Reduce accuracy by one bit such that @a and @b converge
2255 	 * to a similar magnitude.
2256 	 */
2257 #define REDUCE_FLS(a, b)		\
2258 do {					\
2259 	if (a##_fls > b##_fls) {	\
2260 		a >>= 1;		\
2261 		a##_fls--;		\
2262 	} else {			\
2263 		b >>= 1;		\
2264 		b##_fls--;		\
2265 	}				\
2266 } while (0)
2267 
2268 	/*
2269 	 * Reduce accuracy until either term fits in a u64, then proceed with
2270 	 * the other, so that finally we can do a u64/u64 division.
2271 	 */
2272 	while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2273 		REDUCE_FLS(nsec, frequency);
2274 		REDUCE_FLS(sec, count);
2275 	}
2276 
2277 	if (count_fls + sec_fls > 64) {
2278 		divisor = nsec * frequency;
2279 
2280 		while (count_fls + sec_fls > 64) {
2281 			REDUCE_FLS(count, sec);
2282 			divisor >>= 1;
2283 		}
2284 
2285 		dividend = count * sec;
2286 	} else {
2287 		dividend = count * sec;
2288 
2289 		while (nsec_fls + frequency_fls > 64) {
2290 			REDUCE_FLS(nsec, frequency);
2291 			dividend >>= 1;
2292 		}
2293 
2294 		divisor = nsec * frequency;
2295 	}
2296 
2297 	if (!divisor)
2298 		return dividend;
2299 
2300 	return div64_u64(dividend, divisor);
2301 }
2302 
2303 static DEFINE_PER_CPU(int, perf_throttled_count);
2304 static DEFINE_PER_CPU(u64, perf_throttled_seq);
2305 
perf_adjust_period(struct perf_event * event,u64 nsec,u64 count,bool disable)2306 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2307 {
2308 	struct hw_perf_event *hwc = &event->hw;
2309 	s64 period, sample_period;
2310 	s64 delta;
2311 
2312 	period = perf_calculate_period(event, nsec, count);
2313 
2314 	delta = (s64)(period - hwc->sample_period);
2315 	delta = (delta + 7) / 8; /* low pass filter */
2316 
2317 	sample_period = hwc->sample_period + delta;
2318 
2319 	if (!sample_period)
2320 		sample_period = 1;
2321 
2322 	hwc->sample_period = sample_period;
2323 
2324 	if (local64_read(&hwc->period_left) > 8*sample_period) {
2325 		if (disable)
2326 			event->pmu->stop(event, PERF_EF_UPDATE);
2327 
2328 		local64_set(&hwc->period_left, 0);
2329 
2330 		if (disable)
2331 			event->pmu->start(event, PERF_EF_RELOAD);
2332 	}
2333 }
2334 
2335 /*
2336  * combine freq adjustment with unthrottling to avoid two passes over the
2337  * events. At the same time, make sure, having freq events does not change
2338  * the rate of unthrottling as that would introduce bias.
2339  */
perf_adjust_freq_unthr_context(struct perf_event_context * ctx,int needs_unthr)2340 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2341 					   int needs_unthr)
2342 {
2343 	struct perf_event *event;
2344 	struct hw_perf_event *hwc;
2345 	u64 now, period = TICK_NSEC;
2346 	s64 delta;
2347 
2348 	/*
2349 	 * only need to iterate over all events iff:
2350 	 * - context have events in frequency mode (needs freq adjust)
2351 	 * - there are events to unthrottle on this cpu
2352 	 */
2353 	if (!(ctx->nr_freq || needs_unthr))
2354 		return;
2355 
2356 	raw_spin_lock(&ctx->lock);
2357 	perf_pmu_disable(ctx->pmu);
2358 
2359 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2360 		if (event->state != PERF_EVENT_STATE_ACTIVE)
2361 			continue;
2362 
2363 		if (!event_filter_match(event))
2364 			continue;
2365 
2366 		hwc = &event->hw;
2367 
2368 		if (needs_unthr && hwc->interrupts == MAX_INTERRUPTS) {
2369 			hwc->interrupts = 0;
2370 			perf_log_throttle(event, 1);
2371 			event->pmu->start(event, 0);
2372 		}
2373 
2374 		if (!event->attr.freq || !event->attr.sample_freq)
2375 			continue;
2376 
2377 		/*
2378 		 * stop the event and update event->count
2379 		 */
2380 		event->pmu->stop(event, PERF_EF_UPDATE);
2381 
2382 		now = local64_read(&event->count);
2383 		delta = now - hwc->freq_count_stamp;
2384 		hwc->freq_count_stamp = now;
2385 
2386 		/*
2387 		 * restart the event
2388 		 * reload only if value has changed
2389 		 * we have stopped the event so tell that
2390 		 * to perf_adjust_period() to avoid stopping it
2391 		 * twice.
2392 		 */
2393 		if (delta > 0)
2394 			perf_adjust_period(event, period, delta, false);
2395 
2396 		event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2397 	}
2398 
2399 	perf_pmu_enable(ctx->pmu);
2400 	raw_spin_unlock(&ctx->lock);
2401 }
2402 
2403 /*
2404  * Round-robin a context's events:
2405  */
rotate_ctx(struct perf_event_context * ctx)2406 static void rotate_ctx(struct perf_event_context *ctx)
2407 {
2408 	/*
2409 	 * Rotate the first entry last of non-pinned groups. Rotation might be
2410 	 * disabled by the inheritance code.
2411 	 */
2412 	if (!ctx->rotate_disable)
2413 		list_rotate_left(&ctx->flexible_groups);
2414 }
2415 
2416 /*
2417  * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2418  * because they're strictly cpu affine and rotate_start is called with IRQs
2419  * disabled, while rotate_context is called from IRQ context.
2420  */
perf_rotate_context(struct perf_cpu_context * cpuctx)2421 static void perf_rotate_context(struct perf_cpu_context *cpuctx)
2422 {
2423 	struct perf_event_context *ctx = NULL;
2424 	int rotate = 0, remove = 1;
2425 
2426 	if (cpuctx->ctx.nr_events) {
2427 		remove = 0;
2428 		if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2429 			rotate = 1;
2430 	}
2431 
2432 	ctx = cpuctx->task_ctx;
2433 	if (ctx && ctx->nr_events) {
2434 		remove = 0;
2435 		if (ctx->nr_events != ctx->nr_active)
2436 			rotate = 1;
2437 	}
2438 
2439 	if (!rotate)
2440 		goto done;
2441 
2442 	perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2443 	perf_pmu_disable(cpuctx->ctx.pmu);
2444 
2445 	cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2446 	if (ctx)
2447 		ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
2448 
2449 	rotate_ctx(&cpuctx->ctx);
2450 	if (ctx)
2451 		rotate_ctx(ctx);
2452 
2453 	perf_event_sched_in(cpuctx, ctx, current);
2454 
2455 	perf_pmu_enable(cpuctx->ctx.pmu);
2456 	perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2457 done:
2458 	if (remove)
2459 		list_del_init(&cpuctx->rotation_list);
2460 }
2461 
perf_event_task_tick(void)2462 void perf_event_task_tick(void)
2463 {
2464 	struct list_head *head = &__get_cpu_var(rotation_list);
2465 	struct perf_cpu_context *cpuctx, *tmp;
2466 	struct perf_event_context *ctx;
2467 	int throttled;
2468 
2469 	WARN_ON(!irqs_disabled());
2470 
2471 	__this_cpu_inc(perf_throttled_seq);
2472 	throttled = __this_cpu_xchg(perf_throttled_count, 0);
2473 
2474 	list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2475 		ctx = &cpuctx->ctx;
2476 		perf_adjust_freq_unthr_context(ctx, throttled);
2477 
2478 		ctx = cpuctx->task_ctx;
2479 		if (ctx)
2480 			perf_adjust_freq_unthr_context(ctx, throttled);
2481 
2482 		if (cpuctx->jiffies_interval == 1 ||
2483 				!(jiffies % cpuctx->jiffies_interval))
2484 			perf_rotate_context(cpuctx);
2485 	}
2486 }
2487 
event_enable_on_exec(struct perf_event * event,struct perf_event_context * ctx)2488 static int event_enable_on_exec(struct perf_event *event,
2489 				struct perf_event_context *ctx)
2490 {
2491 	if (!event->attr.enable_on_exec)
2492 		return 0;
2493 
2494 	event->attr.enable_on_exec = 0;
2495 	if (event->state >= PERF_EVENT_STATE_INACTIVE)
2496 		return 0;
2497 
2498 	__perf_event_mark_enabled(event);
2499 
2500 	return 1;
2501 }
2502 
2503 /*
2504  * Enable all of a task's events that have been marked enable-on-exec.
2505  * This expects task == current.
2506  */
perf_event_enable_on_exec(struct perf_event_context * ctx)2507 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2508 {
2509 	struct perf_event *event;
2510 	unsigned long flags;
2511 	int enabled = 0;
2512 	int ret;
2513 
2514 	local_irq_save(flags);
2515 	if (!ctx || !ctx->nr_events)
2516 		goto out;
2517 
2518 	/*
2519 	 * We must ctxsw out cgroup events to avoid conflict
2520 	 * when invoking perf_task_event_sched_in() later on
2521 	 * in this function. Otherwise we end up trying to
2522 	 * ctxswin cgroup events which are already scheduled
2523 	 * in.
2524 	 */
2525 	perf_cgroup_sched_out(current, NULL);
2526 
2527 	raw_spin_lock(&ctx->lock);
2528 	task_ctx_sched_out(ctx);
2529 
2530 	list_for_each_entry(event, &ctx->event_list, event_entry) {
2531 		ret = event_enable_on_exec(event, ctx);
2532 		if (ret)
2533 			enabled = 1;
2534 	}
2535 
2536 	/*
2537 	 * Unclone this context if we enabled any event.
2538 	 */
2539 	if (enabled)
2540 		unclone_ctx(ctx);
2541 
2542 	raw_spin_unlock(&ctx->lock);
2543 
2544 	/*
2545 	 * Also calls ctxswin for cgroup events, if any:
2546 	 */
2547 	perf_event_context_sched_in(ctx, ctx->task);
2548 out:
2549 	local_irq_restore(flags);
2550 }
2551 
2552 /*
2553  * Cross CPU call to read the hardware event
2554  */
__perf_event_read(void * info)2555 static void __perf_event_read(void *info)
2556 {
2557 	struct perf_event *event = info;
2558 	struct perf_event_context *ctx = event->ctx;
2559 	struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2560 
2561 	/*
2562 	 * If this is a task context, we need to check whether it is
2563 	 * the current task context of this cpu.  If not it has been
2564 	 * scheduled out before the smp call arrived.  In that case
2565 	 * event->count would have been updated to a recent sample
2566 	 * when the event was scheduled out.
2567 	 */
2568 	if (ctx->task && cpuctx->task_ctx != ctx)
2569 		return;
2570 
2571 	raw_spin_lock(&ctx->lock);
2572 	if (ctx->is_active) {
2573 		update_context_time(ctx);
2574 		update_cgrp_time_from_event(event);
2575 	}
2576 	update_event_times(event);
2577 	if (event->state == PERF_EVENT_STATE_ACTIVE)
2578 		event->pmu->read(event);
2579 	raw_spin_unlock(&ctx->lock);
2580 }
2581 
perf_event_count(struct perf_event * event)2582 static inline u64 perf_event_count(struct perf_event *event)
2583 {
2584 	return local64_read(&event->count) + atomic64_read(&event->child_count);
2585 }
2586 
perf_event_read(struct perf_event * event)2587 static u64 perf_event_read(struct perf_event *event)
2588 {
2589 	/*
2590 	 * If event is enabled and currently active on a CPU, update the
2591 	 * value in the event structure:
2592 	 */
2593 	if (event->state == PERF_EVENT_STATE_ACTIVE) {
2594 		smp_call_function_single(event->oncpu,
2595 					 __perf_event_read, event, 1);
2596 	} else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2597 		struct perf_event_context *ctx = event->ctx;
2598 		unsigned long flags;
2599 
2600 		raw_spin_lock_irqsave(&ctx->lock, flags);
2601 		/*
2602 		 * may read while context is not active
2603 		 * (e.g., thread is blocked), in that case
2604 		 * we cannot update context time
2605 		 */
2606 		if (ctx->is_active) {
2607 			update_context_time(ctx);
2608 			update_cgrp_time_from_event(event);
2609 		}
2610 		update_event_times(event);
2611 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
2612 	}
2613 
2614 	return perf_event_count(event);
2615 }
2616 
2617 /*
2618  * Initialize the perf_event context in a task_struct:
2619  */
__perf_event_init_context(struct perf_event_context * ctx)2620 static void __perf_event_init_context(struct perf_event_context *ctx)
2621 {
2622 	raw_spin_lock_init(&ctx->lock);
2623 	mutex_init(&ctx->mutex);
2624 	INIT_LIST_HEAD(&ctx->pinned_groups);
2625 	INIT_LIST_HEAD(&ctx->flexible_groups);
2626 	INIT_LIST_HEAD(&ctx->event_list);
2627 	atomic_set(&ctx->refcount, 1);
2628 }
2629 
2630 static struct perf_event_context *
alloc_perf_context(struct pmu * pmu,struct task_struct * task)2631 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2632 {
2633 	struct perf_event_context *ctx;
2634 
2635 	ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2636 	if (!ctx)
2637 		return NULL;
2638 
2639 	__perf_event_init_context(ctx);
2640 	if (task) {
2641 		ctx->task = task;
2642 		get_task_struct(task);
2643 	}
2644 	ctx->pmu = pmu;
2645 
2646 	return ctx;
2647 }
2648 
2649 static struct task_struct *
find_lively_task_by_vpid(pid_t vpid)2650 find_lively_task_by_vpid(pid_t vpid)
2651 {
2652 	struct task_struct *task;
2653 	int err;
2654 
2655 	rcu_read_lock();
2656 	if (!vpid)
2657 		task = current;
2658 	else
2659 		task = find_task_by_vpid(vpid);
2660 	if (task)
2661 		get_task_struct(task);
2662 	rcu_read_unlock();
2663 
2664 	if (!task)
2665 		return ERR_PTR(-ESRCH);
2666 
2667 	/* Reuse ptrace permission checks for now. */
2668 	err = -EACCES;
2669 	if (!ptrace_may_access(task, PTRACE_MODE_READ))
2670 		goto errout;
2671 
2672 	return task;
2673 errout:
2674 	put_task_struct(task);
2675 	return ERR_PTR(err);
2676 
2677 }
2678 
2679 /*
2680  * Returns a matching context with refcount and pincount.
2681  */
2682 static struct perf_event_context *
find_get_context(struct pmu * pmu,struct task_struct * task,int cpu)2683 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
2684 {
2685 	struct perf_event_context *ctx;
2686 	struct perf_cpu_context *cpuctx;
2687 	unsigned long flags;
2688 	int ctxn, err;
2689 
2690 	if (!task) {
2691 		/* Must be root to operate on a CPU event: */
2692 		if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2693 			return ERR_PTR(-EACCES);
2694 
2695 		/*
2696 		 * We could be clever and allow to attach a event to an
2697 		 * offline CPU and activate it when the CPU comes up, but
2698 		 * that's for later.
2699 		 */
2700 		if (!cpu_online(cpu))
2701 			return ERR_PTR(-ENODEV);
2702 
2703 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2704 		ctx = &cpuctx->ctx;
2705 		get_ctx(ctx);
2706 		++ctx->pin_count;
2707 
2708 		return ctx;
2709 	}
2710 
2711 	err = -EINVAL;
2712 	ctxn = pmu->task_ctx_nr;
2713 	if (ctxn < 0)
2714 		goto errout;
2715 
2716 retry:
2717 	ctx = perf_lock_task_context(task, ctxn, &flags);
2718 	if (ctx) {
2719 		unclone_ctx(ctx);
2720 		++ctx->pin_count;
2721 		raw_spin_unlock_irqrestore(&ctx->lock, flags);
2722 	} else {
2723 		ctx = alloc_perf_context(pmu, task);
2724 		err = -ENOMEM;
2725 		if (!ctx)
2726 			goto errout;
2727 
2728 		err = 0;
2729 		mutex_lock(&task->perf_event_mutex);
2730 		/*
2731 		 * If it has already passed perf_event_exit_task().
2732 		 * we must see PF_EXITING, it takes this mutex too.
2733 		 */
2734 		if (task->flags & PF_EXITING)
2735 			err = -ESRCH;
2736 		else if (task->perf_event_ctxp[ctxn])
2737 			err = -EAGAIN;
2738 		else {
2739 			get_ctx(ctx);
2740 			++ctx->pin_count;
2741 			rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
2742 		}
2743 		mutex_unlock(&task->perf_event_mutex);
2744 
2745 		if (unlikely(err)) {
2746 			put_ctx(ctx);
2747 
2748 			if (err == -EAGAIN)
2749 				goto retry;
2750 			goto errout;
2751 		}
2752 	}
2753 
2754 	return ctx;
2755 
2756 errout:
2757 	return ERR_PTR(err);
2758 }
2759 
2760 static void perf_event_free_filter(struct perf_event *event);
2761 
free_event_rcu(struct rcu_head * head)2762 static void free_event_rcu(struct rcu_head *head)
2763 {
2764 	struct perf_event *event;
2765 
2766 	event = container_of(head, struct perf_event, rcu_head);
2767 	if (event->ns)
2768 		put_pid_ns(event->ns);
2769 	perf_event_free_filter(event);
2770 	kfree(event);
2771 }
2772 
2773 static void ring_buffer_put(struct ring_buffer *rb);
2774 
free_event(struct perf_event * event)2775 static void free_event(struct perf_event *event)
2776 {
2777 	irq_work_sync(&event->pending);
2778 
2779 	if (!event->parent) {
2780 		if (event->attach_state & PERF_ATTACH_TASK)
2781 			jump_label_dec_deferred(&perf_sched_events);
2782 		if (event->attr.mmap || event->attr.mmap_data)
2783 			atomic_dec(&nr_mmap_events);
2784 		if (event->attr.comm)
2785 			atomic_dec(&nr_comm_events);
2786 		if (event->attr.task)
2787 			atomic_dec(&nr_task_events);
2788 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2789 			put_callchain_buffers();
2790 		if (is_cgroup_event(event)) {
2791 			atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
2792 			jump_label_dec_deferred(&perf_sched_events);
2793 		}
2794 	}
2795 
2796 	if (event->rb) {
2797 		ring_buffer_put(event->rb);
2798 		event->rb = NULL;
2799 	}
2800 
2801 	if (is_cgroup_event(event))
2802 		perf_detach_cgroup(event);
2803 
2804 	if (event->destroy)
2805 		event->destroy(event);
2806 
2807 	if (event->ctx)
2808 		put_ctx(event->ctx);
2809 
2810 	call_rcu(&event->rcu_head, free_event_rcu);
2811 }
2812 
perf_event_release_kernel(struct perf_event * event)2813 int perf_event_release_kernel(struct perf_event *event)
2814 {
2815 	struct perf_event_context *ctx = event->ctx;
2816 
2817 	WARN_ON_ONCE(ctx->parent_ctx);
2818 	/*
2819 	 * There are two ways this annotation is useful:
2820 	 *
2821 	 *  1) there is a lock recursion from perf_event_exit_task
2822 	 *     see the comment there.
2823 	 *
2824 	 *  2) there is a lock-inversion with mmap_sem through
2825 	 *     perf_event_read_group(), which takes faults while
2826 	 *     holding ctx->mutex, however this is called after
2827 	 *     the last filedesc died, so there is no possibility
2828 	 *     to trigger the AB-BA case.
2829 	 */
2830 	mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2831 	raw_spin_lock_irq(&ctx->lock);
2832 	perf_group_detach(event);
2833 	raw_spin_unlock_irq(&ctx->lock);
2834 	perf_remove_from_context(event);
2835 	mutex_unlock(&ctx->mutex);
2836 
2837 	free_event(event);
2838 
2839 	return 0;
2840 }
2841 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
2842 
2843 /*
2844  * Called when the last reference to the file is gone.
2845  */
perf_release(struct inode * inode,struct file * file)2846 static int perf_release(struct inode *inode, struct file *file)
2847 {
2848 	struct perf_event *event = file->private_data;
2849 	struct task_struct *owner;
2850 
2851 	file->private_data = NULL;
2852 
2853 	rcu_read_lock();
2854 	owner = ACCESS_ONCE(event->owner);
2855 	/*
2856 	 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
2857 	 * !owner it means the list deletion is complete and we can indeed
2858 	 * free this event, otherwise we need to serialize on
2859 	 * owner->perf_event_mutex.
2860 	 */
2861 	smp_read_barrier_depends();
2862 	if (owner) {
2863 		/*
2864 		 * Since delayed_put_task_struct() also drops the last
2865 		 * task reference we can safely take a new reference
2866 		 * while holding the rcu_read_lock().
2867 		 */
2868 		get_task_struct(owner);
2869 	}
2870 	rcu_read_unlock();
2871 
2872 	if (owner) {
2873 		mutex_lock(&owner->perf_event_mutex);
2874 		/*
2875 		 * We have to re-check the event->owner field, if it is cleared
2876 		 * we raced with perf_event_exit_task(), acquiring the mutex
2877 		 * ensured they're done, and we can proceed with freeing the
2878 		 * event.
2879 		 */
2880 		if (event->owner)
2881 			list_del_init(&event->owner_entry);
2882 		mutex_unlock(&owner->perf_event_mutex);
2883 		put_task_struct(owner);
2884 	}
2885 
2886 	return perf_event_release_kernel(event);
2887 }
2888 
perf_event_read_value(struct perf_event * event,u64 * enabled,u64 * running)2889 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2890 {
2891 	struct perf_event *child;
2892 	u64 total = 0;
2893 
2894 	*enabled = 0;
2895 	*running = 0;
2896 
2897 	mutex_lock(&event->child_mutex);
2898 	total += perf_event_read(event);
2899 	*enabled += event->total_time_enabled +
2900 			atomic64_read(&event->child_total_time_enabled);
2901 	*running += event->total_time_running +
2902 			atomic64_read(&event->child_total_time_running);
2903 
2904 	list_for_each_entry(child, &event->child_list, child_list) {
2905 		total += perf_event_read(child);
2906 		*enabled += child->total_time_enabled;
2907 		*running += child->total_time_running;
2908 	}
2909 	mutex_unlock(&event->child_mutex);
2910 
2911 	return total;
2912 }
2913 EXPORT_SYMBOL_GPL(perf_event_read_value);
2914 
perf_event_read_group(struct perf_event * event,u64 read_format,char __user * buf)2915 static int perf_event_read_group(struct perf_event *event,
2916 				   u64 read_format, char __user *buf)
2917 {
2918 	struct perf_event *leader = event->group_leader, *sub;
2919 	int n = 0, size = 0, ret = -EFAULT;
2920 	struct perf_event_context *ctx = leader->ctx;
2921 	u64 values[5];
2922 	u64 count, enabled, running;
2923 
2924 	mutex_lock(&ctx->mutex);
2925 	count = perf_event_read_value(leader, &enabled, &running);
2926 
2927 	values[n++] = 1 + leader->nr_siblings;
2928 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2929 		values[n++] = enabled;
2930 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2931 		values[n++] = running;
2932 	values[n++] = count;
2933 	if (read_format & PERF_FORMAT_ID)
2934 		values[n++] = primary_event_id(leader);
2935 
2936 	size = n * sizeof(u64);
2937 
2938 	if (copy_to_user(buf, values, size))
2939 		goto unlock;
2940 
2941 	ret = size;
2942 
2943 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2944 		n = 0;
2945 
2946 		values[n++] = perf_event_read_value(sub, &enabled, &running);
2947 		if (read_format & PERF_FORMAT_ID)
2948 			values[n++] = primary_event_id(sub);
2949 
2950 		size = n * sizeof(u64);
2951 
2952 		if (copy_to_user(buf + ret, values, size)) {
2953 			ret = -EFAULT;
2954 			goto unlock;
2955 		}
2956 
2957 		ret += size;
2958 	}
2959 unlock:
2960 	mutex_unlock(&ctx->mutex);
2961 
2962 	return ret;
2963 }
2964 
perf_event_read_one(struct perf_event * event,u64 read_format,char __user * buf)2965 static int perf_event_read_one(struct perf_event *event,
2966 				 u64 read_format, char __user *buf)
2967 {
2968 	u64 enabled, running;
2969 	u64 values[4];
2970 	int n = 0;
2971 
2972 	values[n++] = perf_event_read_value(event, &enabled, &running);
2973 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2974 		values[n++] = enabled;
2975 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2976 		values[n++] = running;
2977 	if (read_format & PERF_FORMAT_ID)
2978 		values[n++] = primary_event_id(event);
2979 
2980 	if (copy_to_user(buf, values, n * sizeof(u64)))
2981 		return -EFAULT;
2982 
2983 	return n * sizeof(u64);
2984 }
2985 
2986 /*
2987  * Read the performance event - simple non blocking version for now
2988  */
2989 static ssize_t
perf_read_hw(struct perf_event * event,char __user * buf,size_t count)2990 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2991 {
2992 	u64 read_format = event->attr.read_format;
2993 	int ret;
2994 
2995 	/*
2996 	 * Return end-of-file for a read on a event that is in
2997 	 * error state (i.e. because it was pinned but it couldn't be
2998 	 * scheduled on to the CPU at some point).
2999 	 */
3000 	if (event->state == PERF_EVENT_STATE_ERROR)
3001 		return 0;
3002 
3003 	if (count < event->read_size)
3004 		return -ENOSPC;
3005 
3006 	WARN_ON_ONCE(event->ctx->parent_ctx);
3007 	if (read_format & PERF_FORMAT_GROUP)
3008 		ret = perf_event_read_group(event, read_format, buf);
3009 	else
3010 		ret = perf_event_read_one(event, read_format, buf);
3011 
3012 	return ret;
3013 }
3014 
3015 static ssize_t
perf_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)3016 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3017 {
3018 	struct perf_event *event = file->private_data;
3019 
3020 	return perf_read_hw(event, buf, count);
3021 }
3022 
perf_poll(struct file * file,poll_table * wait)3023 static unsigned int perf_poll(struct file *file, poll_table *wait)
3024 {
3025 	struct perf_event *event = file->private_data;
3026 	struct ring_buffer *rb;
3027 	unsigned int events = POLL_HUP;
3028 
3029 	/*
3030 	 * Race between perf_event_set_output() and perf_poll(): perf_poll()
3031 	 * grabs the rb reference but perf_event_set_output() overrides it.
3032 	 * Here is the timeline for two threads T1, T2:
3033 	 * t0: T1, rb = rcu_dereference(event->rb)
3034 	 * t1: T2, old_rb = event->rb
3035 	 * t2: T2, event->rb = new rb
3036 	 * t3: T2, ring_buffer_detach(old_rb)
3037 	 * t4: T1, ring_buffer_attach(rb1)
3038 	 * t5: T1, poll_wait(event->waitq)
3039 	 *
3040 	 * To avoid this problem, we grab mmap_mutex in perf_poll()
3041 	 * thereby ensuring that the assignment of the new ring buffer
3042 	 * and the detachment of the old buffer appear atomic to perf_poll()
3043 	 */
3044 	mutex_lock(&event->mmap_mutex);
3045 
3046 	rcu_read_lock();
3047 	rb = rcu_dereference(event->rb);
3048 	if (rb) {
3049 		ring_buffer_attach(event, rb);
3050 		events = atomic_xchg(&rb->poll, 0);
3051 	}
3052 	rcu_read_unlock();
3053 
3054 	mutex_unlock(&event->mmap_mutex);
3055 
3056 	poll_wait(file, &event->waitq, wait);
3057 
3058 	return events;
3059 }
3060 
perf_event_reset(struct perf_event * event)3061 static void perf_event_reset(struct perf_event *event)
3062 {
3063 	(void)perf_event_read(event);
3064 	local64_set(&event->count, 0);
3065 	perf_event_update_userpage(event);
3066 }
3067 
3068 /*
3069  * Holding the top-level event's child_mutex means that any
3070  * descendant process that has inherited this event will block
3071  * in sync_child_event if it goes to exit, thus satisfying the
3072  * task existence requirements of perf_event_enable/disable.
3073  */
perf_event_for_each_child(struct perf_event * event,void (* func)(struct perf_event *))3074 static void perf_event_for_each_child(struct perf_event *event,
3075 					void (*func)(struct perf_event *))
3076 {
3077 	struct perf_event *child;
3078 
3079 	WARN_ON_ONCE(event->ctx->parent_ctx);
3080 	mutex_lock(&event->child_mutex);
3081 	func(event);
3082 	list_for_each_entry(child, &event->child_list, child_list)
3083 		func(child);
3084 	mutex_unlock(&event->child_mutex);
3085 }
3086 
perf_event_for_each(struct perf_event * event,void (* func)(struct perf_event *))3087 static void perf_event_for_each(struct perf_event *event,
3088 				  void (*func)(struct perf_event *))
3089 {
3090 	struct perf_event_context *ctx = event->ctx;
3091 	struct perf_event *sibling;
3092 
3093 	WARN_ON_ONCE(ctx->parent_ctx);
3094 	mutex_lock(&ctx->mutex);
3095 	event = event->group_leader;
3096 
3097 	perf_event_for_each_child(event, func);
3098 	func(event);
3099 	list_for_each_entry(sibling, &event->sibling_list, group_entry)
3100 		perf_event_for_each_child(event, func);
3101 	mutex_unlock(&ctx->mutex);
3102 }
3103 
perf_event_period(struct perf_event * event,u64 __user * arg)3104 static int perf_event_period(struct perf_event *event, u64 __user *arg)
3105 {
3106 	struct perf_event_context *ctx = event->ctx;
3107 	int ret = 0;
3108 	u64 value;
3109 
3110 	if (!is_sampling_event(event))
3111 		return -EINVAL;
3112 
3113 	if (copy_from_user(&value, arg, sizeof(value)))
3114 		return -EFAULT;
3115 
3116 	if (!value)
3117 		return -EINVAL;
3118 
3119 	raw_spin_lock_irq(&ctx->lock);
3120 	if (event->attr.freq) {
3121 		if (value > sysctl_perf_event_sample_rate) {
3122 			ret = -EINVAL;
3123 			goto unlock;
3124 		}
3125 
3126 		event->attr.sample_freq = value;
3127 	} else {
3128 		event->attr.sample_period = value;
3129 		event->hw.sample_period = value;
3130 	}
3131 unlock:
3132 	raw_spin_unlock_irq(&ctx->lock);
3133 
3134 	return ret;
3135 }
3136 
3137 static const struct file_operations perf_fops;
3138 
perf_fget_light(int fd,int * fput_needed)3139 static struct perf_event *perf_fget_light(int fd, int *fput_needed)
3140 {
3141 	struct file *file;
3142 
3143 	file = fget_light(fd, fput_needed);
3144 	if (!file)
3145 		return ERR_PTR(-EBADF);
3146 
3147 	if (file->f_op != &perf_fops) {
3148 		fput_light(file, *fput_needed);
3149 		*fput_needed = 0;
3150 		return ERR_PTR(-EBADF);
3151 	}
3152 
3153 	return file->private_data;
3154 }
3155 
3156 static int perf_event_set_output(struct perf_event *event,
3157 				 struct perf_event *output_event);
3158 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3159 
perf_ioctl(struct file * file,unsigned int cmd,unsigned long arg)3160 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3161 {
3162 	struct perf_event *event = file->private_data;
3163 	void (*func)(struct perf_event *);
3164 	u32 flags = arg;
3165 
3166 	switch (cmd) {
3167 	case PERF_EVENT_IOC_ENABLE:
3168 		func = perf_event_enable;
3169 		break;
3170 	case PERF_EVENT_IOC_DISABLE:
3171 		func = perf_event_disable;
3172 		break;
3173 	case PERF_EVENT_IOC_RESET:
3174 		func = perf_event_reset;
3175 		break;
3176 
3177 	case PERF_EVENT_IOC_REFRESH:
3178 		return perf_event_refresh(event, arg);
3179 
3180 	case PERF_EVENT_IOC_PERIOD:
3181 		return perf_event_period(event, (u64 __user *)arg);
3182 
3183 	case PERF_EVENT_IOC_SET_OUTPUT:
3184 	{
3185 		struct perf_event *output_event = NULL;
3186 		int fput_needed = 0;
3187 		int ret;
3188 
3189 		if (arg != -1) {
3190 			output_event = perf_fget_light(arg, &fput_needed);
3191 			if (IS_ERR(output_event))
3192 				return PTR_ERR(output_event);
3193 		}
3194 
3195 		ret = perf_event_set_output(event, output_event);
3196 		if (output_event)
3197 			fput_light(output_event->filp, fput_needed);
3198 
3199 		return ret;
3200 	}
3201 
3202 	case PERF_EVENT_IOC_SET_FILTER:
3203 		return perf_event_set_filter(event, (void __user *)arg);
3204 
3205 	default:
3206 		return -ENOTTY;
3207 	}
3208 
3209 	if (flags & PERF_IOC_FLAG_GROUP)
3210 		perf_event_for_each(event, func);
3211 	else
3212 		perf_event_for_each_child(event, func);
3213 
3214 	return 0;
3215 }
3216 
perf_event_task_enable(void)3217 int perf_event_task_enable(void)
3218 {
3219 	struct perf_event *event;
3220 
3221 	mutex_lock(&current->perf_event_mutex);
3222 	list_for_each_entry(event, &current->perf_event_list, owner_entry)
3223 		perf_event_for_each_child(event, perf_event_enable);
3224 	mutex_unlock(&current->perf_event_mutex);
3225 
3226 	return 0;
3227 }
3228 
perf_event_task_disable(void)3229 int perf_event_task_disable(void)
3230 {
3231 	struct perf_event *event;
3232 
3233 	mutex_lock(&current->perf_event_mutex);
3234 	list_for_each_entry(event, &current->perf_event_list, owner_entry)
3235 		perf_event_for_each_child(event, perf_event_disable);
3236 	mutex_unlock(&current->perf_event_mutex);
3237 
3238 	return 0;
3239 }
3240 
3241 #ifndef PERF_EVENT_INDEX_OFFSET
3242 # define PERF_EVENT_INDEX_OFFSET 0
3243 #endif
3244 
perf_event_index(struct perf_event * event)3245 static int perf_event_index(struct perf_event *event)
3246 {
3247 	if (event->hw.state & PERF_HES_STOPPED)
3248 		return 0;
3249 
3250 	if (event->state != PERF_EVENT_STATE_ACTIVE)
3251 		return 0;
3252 
3253 	return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
3254 }
3255 
calc_timer_values(struct perf_event * event,u64 * enabled,u64 * running)3256 static void calc_timer_values(struct perf_event *event,
3257 				u64 *enabled,
3258 				u64 *running)
3259 {
3260 	u64 now, ctx_time;
3261 
3262 	now = perf_clock();
3263 	ctx_time = event->shadow_ctx_time + now;
3264 	*enabled = ctx_time - event->tstamp_enabled;
3265 	*running = ctx_time - event->tstamp_running;
3266 }
3267 
3268 /*
3269  * Callers need to ensure there can be no nesting of this function, otherwise
3270  * the seqlock logic goes bad. We can not serialize this because the arch
3271  * code calls this from NMI context.
3272  */
perf_event_update_userpage(struct perf_event * event)3273 void perf_event_update_userpage(struct perf_event *event)
3274 {
3275 	struct perf_event_mmap_page *userpg;
3276 	struct ring_buffer *rb;
3277 	u64 enabled, running;
3278 
3279 	rcu_read_lock();
3280 	/*
3281 	 * compute total_time_enabled, total_time_running
3282 	 * based on snapshot values taken when the event
3283 	 * was last scheduled in.
3284 	 *
3285 	 * we cannot simply called update_context_time()
3286 	 * because of locking issue as we can be called in
3287 	 * NMI context
3288 	 */
3289 	calc_timer_values(event, &enabled, &running);
3290 	rb = rcu_dereference(event->rb);
3291 	if (!rb)
3292 		goto unlock;
3293 
3294 	userpg = rb->user_page;
3295 
3296 	/*
3297 	 * Disable preemption so as to not let the corresponding user-space
3298 	 * spin too long if we get preempted.
3299 	 */
3300 	preempt_disable();
3301 	++userpg->lock;
3302 	barrier();
3303 	userpg->index = perf_event_index(event);
3304 	userpg->offset = perf_event_count(event);
3305 	if (event->state == PERF_EVENT_STATE_ACTIVE)
3306 		userpg->offset -= local64_read(&event->hw.prev_count);
3307 
3308 	userpg->time_enabled = enabled +
3309 			atomic64_read(&event->child_total_time_enabled);
3310 
3311 	userpg->time_running = running +
3312 			atomic64_read(&event->child_total_time_running);
3313 
3314 	barrier();
3315 	++userpg->lock;
3316 	preempt_enable();
3317 unlock:
3318 	rcu_read_unlock();
3319 }
3320 
perf_mmap_fault(struct vm_area_struct * vma,struct vm_fault * vmf)3321 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3322 {
3323 	struct perf_event *event = vma->vm_file->private_data;
3324 	struct ring_buffer *rb;
3325 	int ret = VM_FAULT_SIGBUS;
3326 
3327 	if (vmf->flags & FAULT_FLAG_MKWRITE) {
3328 		if (vmf->pgoff == 0)
3329 			ret = 0;
3330 		return ret;
3331 	}
3332 
3333 	rcu_read_lock();
3334 	rb = rcu_dereference(event->rb);
3335 	if (!rb)
3336 		goto unlock;
3337 
3338 	if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3339 		goto unlock;
3340 
3341 	vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3342 	if (!vmf->page)
3343 		goto unlock;
3344 
3345 	get_page(vmf->page);
3346 	vmf->page->mapping = vma->vm_file->f_mapping;
3347 	vmf->page->index   = vmf->pgoff;
3348 
3349 	ret = 0;
3350 unlock:
3351 	rcu_read_unlock();
3352 
3353 	return ret;
3354 }
3355 
ring_buffer_attach(struct perf_event * event,struct ring_buffer * rb)3356 static void ring_buffer_attach(struct perf_event *event,
3357 			       struct ring_buffer *rb)
3358 {
3359 	unsigned long flags;
3360 
3361 	if (!list_empty(&event->rb_entry))
3362 		return;
3363 
3364 	spin_lock_irqsave(&rb->event_lock, flags);
3365 	if (!list_empty(&event->rb_entry))
3366 		goto unlock;
3367 
3368 	list_add(&event->rb_entry, &rb->event_list);
3369 unlock:
3370 	spin_unlock_irqrestore(&rb->event_lock, flags);
3371 }
3372 
ring_buffer_detach(struct perf_event * event,struct ring_buffer * rb)3373 static void ring_buffer_detach(struct perf_event *event,
3374 			       struct ring_buffer *rb)
3375 {
3376 	unsigned long flags;
3377 
3378 	if (list_empty(&event->rb_entry))
3379 		return;
3380 
3381 	spin_lock_irqsave(&rb->event_lock, flags);
3382 	list_del_init(&event->rb_entry);
3383 	wake_up_all(&event->waitq);
3384 	spin_unlock_irqrestore(&rb->event_lock, flags);
3385 }
3386 
ring_buffer_wakeup(struct perf_event * event)3387 static void ring_buffer_wakeup(struct perf_event *event)
3388 {
3389 	struct ring_buffer *rb;
3390 
3391 	rcu_read_lock();
3392 	rb = rcu_dereference(event->rb);
3393 	if (!rb)
3394 		goto unlock;
3395 
3396 	list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
3397 		wake_up_all(&event->waitq);
3398 
3399 unlock:
3400 	rcu_read_unlock();
3401 }
3402 
rb_free_rcu(struct rcu_head * rcu_head)3403 static void rb_free_rcu(struct rcu_head *rcu_head)
3404 {
3405 	struct ring_buffer *rb;
3406 
3407 	rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3408 	rb_free(rb);
3409 }
3410 
ring_buffer_get(struct perf_event * event)3411 static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3412 {
3413 	struct ring_buffer *rb;
3414 
3415 	rcu_read_lock();
3416 	rb = rcu_dereference(event->rb);
3417 	if (rb) {
3418 		if (!atomic_inc_not_zero(&rb->refcount))
3419 			rb = NULL;
3420 	}
3421 	rcu_read_unlock();
3422 
3423 	return rb;
3424 }
3425 
ring_buffer_put(struct ring_buffer * rb)3426 static void ring_buffer_put(struct ring_buffer *rb)
3427 {
3428 	struct perf_event *event, *n;
3429 	unsigned long flags;
3430 
3431 	if (!atomic_dec_and_test(&rb->refcount))
3432 		return;
3433 
3434 	spin_lock_irqsave(&rb->event_lock, flags);
3435 	list_for_each_entry_safe(event, n, &rb->event_list, rb_entry) {
3436 		list_del_init(&event->rb_entry);
3437 		wake_up_all(&event->waitq);
3438 	}
3439 	spin_unlock_irqrestore(&rb->event_lock, flags);
3440 
3441 	call_rcu(&rb->rcu_head, rb_free_rcu);
3442 }
3443 
perf_mmap_open(struct vm_area_struct * vma)3444 static void perf_mmap_open(struct vm_area_struct *vma)
3445 {
3446 	struct perf_event *event = vma->vm_file->private_data;
3447 
3448 	atomic_inc(&event->mmap_count);
3449 }
3450 
perf_mmap_close(struct vm_area_struct * vma)3451 static void perf_mmap_close(struct vm_area_struct *vma)
3452 {
3453 	struct perf_event *event = vma->vm_file->private_data;
3454 
3455 	if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3456 		unsigned long size = perf_data_size(event->rb);
3457 		struct user_struct *user = event->mmap_user;
3458 		struct ring_buffer *rb = event->rb;
3459 
3460 		atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3461 		vma->vm_mm->pinned_vm -= event->mmap_locked;
3462 		rcu_assign_pointer(event->rb, NULL);
3463 		ring_buffer_detach(event, rb);
3464 		mutex_unlock(&event->mmap_mutex);
3465 
3466 		ring_buffer_put(rb);
3467 		free_uid(user);
3468 	}
3469 }
3470 
3471 static const struct vm_operations_struct perf_mmap_vmops = {
3472 	.open		= perf_mmap_open,
3473 	.close		= perf_mmap_close,
3474 	.fault		= perf_mmap_fault,
3475 	.page_mkwrite	= perf_mmap_fault,
3476 };
3477 
perf_mmap(struct file * file,struct vm_area_struct * vma)3478 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3479 {
3480 	struct perf_event *event = file->private_data;
3481 	unsigned long user_locked, user_lock_limit;
3482 	struct user_struct *user = current_user();
3483 	unsigned long locked, lock_limit;
3484 	struct ring_buffer *rb;
3485 	unsigned long vma_size;
3486 	unsigned long nr_pages;
3487 	long user_extra, extra;
3488 	int ret = 0, flags = 0;
3489 
3490 	/*
3491 	 * Don't allow mmap() of inherited per-task counters. This would
3492 	 * create a performance issue due to all children writing to the
3493 	 * same rb.
3494 	 */
3495 	if (event->cpu == -1 && event->attr.inherit)
3496 		return -EINVAL;
3497 
3498 	if (!(vma->vm_flags & VM_SHARED))
3499 		return -EINVAL;
3500 
3501 	vma_size = vma->vm_end - vma->vm_start;
3502 	nr_pages = (vma_size / PAGE_SIZE) - 1;
3503 
3504 	/*
3505 	 * If we have rb pages ensure they're a power-of-two number, so we
3506 	 * can do bitmasks instead of modulo.
3507 	 */
3508 	if (nr_pages != 0 && !is_power_of_2(nr_pages))
3509 		return -EINVAL;
3510 
3511 	if (vma_size != PAGE_SIZE * (1 + nr_pages))
3512 		return -EINVAL;
3513 
3514 	if (vma->vm_pgoff != 0)
3515 		return -EINVAL;
3516 
3517 	WARN_ON_ONCE(event->ctx->parent_ctx);
3518 	mutex_lock(&event->mmap_mutex);
3519 	if (event->rb) {
3520 		if (event->rb->nr_pages == nr_pages)
3521 			atomic_inc(&event->rb->refcount);
3522 		else
3523 			ret = -EINVAL;
3524 		goto unlock;
3525 	}
3526 
3527 	user_extra = nr_pages + 1;
3528 	user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
3529 
3530 	/*
3531 	 * Increase the limit linearly with more CPUs:
3532 	 */
3533 	user_lock_limit *= num_online_cpus();
3534 
3535 	user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3536 
3537 	extra = 0;
3538 	if (user_locked > user_lock_limit)
3539 		extra = user_locked - user_lock_limit;
3540 
3541 	lock_limit = rlimit(RLIMIT_MEMLOCK);
3542 	lock_limit >>= PAGE_SHIFT;
3543 	locked = vma->vm_mm->pinned_vm + extra;
3544 
3545 	if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3546 		!capable(CAP_IPC_LOCK)) {
3547 		ret = -EPERM;
3548 		goto unlock;
3549 	}
3550 
3551 	WARN_ON(event->rb);
3552 
3553 	if (vma->vm_flags & VM_WRITE)
3554 		flags |= RING_BUFFER_WRITABLE;
3555 
3556 	rb = rb_alloc(nr_pages,
3557 		event->attr.watermark ? event->attr.wakeup_watermark : 0,
3558 		event->cpu, flags);
3559 
3560 	if (!rb) {
3561 		ret = -ENOMEM;
3562 		goto unlock;
3563 	}
3564 	rcu_assign_pointer(event->rb, rb);
3565 
3566 	atomic_long_add(user_extra, &user->locked_vm);
3567 	event->mmap_locked = extra;
3568 	event->mmap_user = get_current_user();
3569 	vma->vm_mm->pinned_vm += event->mmap_locked;
3570 
3571 unlock:
3572 	if (!ret)
3573 		atomic_inc(&event->mmap_count);
3574 	mutex_unlock(&event->mmap_mutex);
3575 
3576 	vma->vm_flags |= VM_RESERVED;
3577 	vma->vm_ops = &perf_mmap_vmops;
3578 
3579 	return ret;
3580 }
3581 
perf_fasync(int fd,struct file * filp,int on)3582 static int perf_fasync(int fd, struct file *filp, int on)
3583 {
3584 	struct inode *inode = filp->f_path.dentry->d_inode;
3585 	struct perf_event *event = filp->private_data;
3586 	int retval;
3587 
3588 	mutex_lock(&inode->i_mutex);
3589 	retval = fasync_helper(fd, filp, on, &event->fasync);
3590 	mutex_unlock(&inode->i_mutex);
3591 
3592 	if (retval < 0)
3593 		return retval;
3594 
3595 	return 0;
3596 }
3597 
3598 static const struct file_operations perf_fops = {
3599 	.llseek			= no_llseek,
3600 	.release		= perf_release,
3601 	.read			= perf_read,
3602 	.poll			= perf_poll,
3603 	.unlocked_ioctl		= perf_ioctl,
3604 	.compat_ioctl		= perf_ioctl,
3605 	.mmap			= perf_mmap,
3606 	.fasync			= perf_fasync,
3607 };
3608 
3609 /*
3610  * Perf event wakeup
3611  *
3612  * If there's data, ensure we set the poll() state and publish everything
3613  * to user-space before waking everybody up.
3614  */
3615 
perf_event_wakeup(struct perf_event * event)3616 void perf_event_wakeup(struct perf_event *event)
3617 {
3618 	ring_buffer_wakeup(event);
3619 
3620 	if (event->pending_kill) {
3621 		kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3622 		event->pending_kill = 0;
3623 	}
3624 }
3625 
perf_pending_event(struct irq_work * entry)3626 static void perf_pending_event(struct irq_work *entry)
3627 {
3628 	struct perf_event *event = container_of(entry,
3629 			struct perf_event, pending);
3630 
3631 	if (event->pending_disable) {
3632 		event->pending_disable = 0;
3633 		__perf_event_disable(event);
3634 	}
3635 
3636 	if (event->pending_wakeup) {
3637 		event->pending_wakeup = 0;
3638 		perf_event_wakeup(event);
3639 	}
3640 }
3641 
3642 /*
3643  * We assume there is only KVM supporting the callbacks.
3644  * Later on, we might change it to a list if there is
3645  * another virtualization implementation supporting the callbacks.
3646  */
3647 struct perf_guest_info_callbacks *perf_guest_cbs;
3648 
perf_register_guest_info_callbacks(struct perf_guest_info_callbacks * cbs)3649 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3650 {
3651 	perf_guest_cbs = cbs;
3652 	return 0;
3653 }
3654 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3655 
perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks * cbs)3656 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3657 {
3658 	perf_guest_cbs = NULL;
3659 	return 0;
3660 }
3661 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3662 
__perf_event_header__init_id(struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event)3663 static void __perf_event_header__init_id(struct perf_event_header *header,
3664 					 struct perf_sample_data *data,
3665 					 struct perf_event *event)
3666 {
3667 	u64 sample_type = event->attr.sample_type;
3668 
3669 	data->type = sample_type;
3670 	header->size += event->id_header_size;
3671 
3672 	if (sample_type & PERF_SAMPLE_TID) {
3673 		/* namespace issues */
3674 		data->tid_entry.pid = perf_event_pid(event, current);
3675 		data->tid_entry.tid = perf_event_tid(event, current);
3676 	}
3677 
3678 	if (sample_type & PERF_SAMPLE_TIME)
3679 		data->time = perf_clock();
3680 
3681 	if (sample_type & PERF_SAMPLE_ID)
3682 		data->id = primary_event_id(event);
3683 
3684 	if (sample_type & PERF_SAMPLE_STREAM_ID)
3685 		data->stream_id = event->id;
3686 
3687 	if (sample_type & PERF_SAMPLE_CPU) {
3688 		data->cpu_entry.cpu	 = raw_smp_processor_id();
3689 		data->cpu_entry.reserved = 0;
3690 	}
3691 }
3692 
perf_event_header__init_id(struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event)3693 void perf_event_header__init_id(struct perf_event_header *header,
3694 				struct perf_sample_data *data,
3695 				struct perf_event *event)
3696 {
3697 	if (event->attr.sample_id_all)
3698 		__perf_event_header__init_id(header, data, event);
3699 }
3700 
__perf_event__output_id_sample(struct perf_output_handle * handle,struct perf_sample_data * data)3701 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
3702 					   struct perf_sample_data *data)
3703 {
3704 	u64 sample_type = data->type;
3705 
3706 	if (sample_type & PERF_SAMPLE_TID)
3707 		perf_output_put(handle, data->tid_entry);
3708 
3709 	if (sample_type & PERF_SAMPLE_TIME)
3710 		perf_output_put(handle, data->time);
3711 
3712 	if (sample_type & PERF_SAMPLE_ID)
3713 		perf_output_put(handle, data->id);
3714 
3715 	if (sample_type & PERF_SAMPLE_STREAM_ID)
3716 		perf_output_put(handle, data->stream_id);
3717 
3718 	if (sample_type & PERF_SAMPLE_CPU)
3719 		perf_output_put(handle, data->cpu_entry);
3720 }
3721 
perf_event__output_id_sample(struct perf_event * event,struct perf_output_handle * handle,struct perf_sample_data * sample)3722 void perf_event__output_id_sample(struct perf_event *event,
3723 				  struct perf_output_handle *handle,
3724 				  struct perf_sample_data *sample)
3725 {
3726 	if (event->attr.sample_id_all)
3727 		__perf_event__output_id_sample(handle, sample);
3728 }
3729 
perf_output_read_one(struct perf_output_handle * handle,struct perf_event * event,u64 enabled,u64 running)3730 static void perf_output_read_one(struct perf_output_handle *handle,
3731 				 struct perf_event *event,
3732 				 u64 enabled, u64 running)
3733 {
3734 	u64 read_format = event->attr.read_format;
3735 	u64 values[4];
3736 	int n = 0;
3737 
3738 	values[n++] = perf_event_count(event);
3739 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3740 		values[n++] = enabled +
3741 			atomic64_read(&event->child_total_time_enabled);
3742 	}
3743 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3744 		values[n++] = running +
3745 			atomic64_read(&event->child_total_time_running);
3746 	}
3747 	if (read_format & PERF_FORMAT_ID)
3748 		values[n++] = primary_event_id(event);
3749 
3750 	__output_copy(handle, values, n * sizeof(u64));
3751 }
3752 
3753 /*
3754  * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3755  */
perf_output_read_group(struct perf_output_handle * handle,struct perf_event * event,u64 enabled,u64 running)3756 static void perf_output_read_group(struct perf_output_handle *handle,
3757 			    struct perf_event *event,
3758 			    u64 enabled, u64 running)
3759 {
3760 	struct perf_event *leader = event->group_leader, *sub;
3761 	u64 read_format = event->attr.read_format;
3762 	u64 values[5];
3763 	int n = 0;
3764 
3765 	values[n++] = 1 + leader->nr_siblings;
3766 
3767 	if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3768 		values[n++] = enabled;
3769 
3770 	if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3771 		values[n++] = running;
3772 
3773 	if (leader != event)
3774 		leader->pmu->read(leader);
3775 
3776 	values[n++] = perf_event_count(leader);
3777 	if (read_format & PERF_FORMAT_ID)
3778 		values[n++] = primary_event_id(leader);
3779 
3780 	__output_copy(handle, values, n * sizeof(u64));
3781 
3782 	list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3783 		n = 0;
3784 
3785 		if (sub != event)
3786 			sub->pmu->read(sub);
3787 
3788 		values[n++] = perf_event_count(sub);
3789 		if (read_format & PERF_FORMAT_ID)
3790 			values[n++] = primary_event_id(sub);
3791 
3792 		__output_copy(handle, values, n * sizeof(u64));
3793 	}
3794 }
3795 
3796 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
3797 				 PERF_FORMAT_TOTAL_TIME_RUNNING)
3798 
perf_output_read(struct perf_output_handle * handle,struct perf_event * event)3799 static void perf_output_read(struct perf_output_handle *handle,
3800 			     struct perf_event *event)
3801 {
3802 	u64 enabled = 0, running = 0;
3803 	u64 read_format = event->attr.read_format;
3804 
3805 	/*
3806 	 * compute total_time_enabled, total_time_running
3807 	 * based on snapshot values taken when the event
3808 	 * was last scheduled in.
3809 	 *
3810 	 * we cannot simply called update_context_time()
3811 	 * because of locking issue as we are called in
3812 	 * NMI context
3813 	 */
3814 	if (read_format & PERF_FORMAT_TOTAL_TIMES)
3815 		calc_timer_values(event, &enabled, &running);
3816 
3817 	if (event->attr.read_format & PERF_FORMAT_GROUP)
3818 		perf_output_read_group(handle, event, enabled, running);
3819 	else
3820 		perf_output_read_one(handle, event, enabled, running);
3821 }
3822 
perf_output_sample(struct perf_output_handle * handle,struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event)3823 void perf_output_sample(struct perf_output_handle *handle,
3824 			struct perf_event_header *header,
3825 			struct perf_sample_data *data,
3826 			struct perf_event *event)
3827 {
3828 	u64 sample_type = data->type;
3829 
3830 	perf_output_put(handle, *header);
3831 
3832 	if (sample_type & PERF_SAMPLE_IP)
3833 		perf_output_put(handle, data->ip);
3834 
3835 	if (sample_type & PERF_SAMPLE_TID)
3836 		perf_output_put(handle, data->tid_entry);
3837 
3838 	if (sample_type & PERF_SAMPLE_TIME)
3839 		perf_output_put(handle, data->time);
3840 
3841 	if (sample_type & PERF_SAMPLE_ADDR)
3842 		perf_output_put(handle, data->addr);
3843 
3844 	if (sample_type & PERF_SAMPLE_ID)
3845 		perf_output_put(handle, data->id);
3846 
3847 	if (sample_type & PERF_SAMPLE_STREAM_ID)
3848 		perf_output_put(handle, data->stream_id);
3849 
3850 	if (sample_type & PERF_SAMPLE_CPU)
3851 		perf_output_put(handle, data->cpu_entry);
3852 
3853 	if (sample_type & PERF_SAMPLE_PERIOD)
3854 		perf_output_put(handle, data->period);
3855 
3856 	if (sample_type & PERF_SAMPLE_READ)
3857 		perf_output_read(handle, event);
3858 
3859 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3860 		if (data->callchain) {
3861 			int size = 1;
3862 
3863 			if (data->callchain)
3864 				size += data->callchain->nr;
3865 
3866 			size *= sizeof(u64);
3867 
3868 			__output_copy(handle, data->callchain, size);
3869 		} else {
3870 			u64 nr = 0;
3871 			perf_output_put(handle, nr);
3872 		}
3873 	}
3874 
3875 	if (sample_type & PERF_SAMPLE_RAW) {
3876 		if (data->raw) {
3877 			perf_output_put(handle, data->raw->size);
3878 			__output_copy(handle, data->raw->data,
3879 					   data->raw->size);
3880 		} else {
3881 			struct {
3882 				u32	size;
3883 				u32	data;
3884 			} raw = {
3885 				.size = sizeof(u32),
3886 				.data = 0,
3887 			};
3888 			perf_output_put(handle, raw);
3889 		}
3890 	}
3891 
3892 	if (!event->attr.watermark) {
3893 		int wakeup_events = event->attr.wakeup_events;
3894 
3895 		if (wakeup_events) {
3896 			struct ring_buffer *rb = handle->rb;
3897 			int events = local_inc_return(&rb->events);
3898 
3899 			if (events >= wakeup_events) {
3900 				local_sub(wakeup_events, &rb->events);
3901 				local_inc(&rb->wakeup);
3902 			}
3903 		}
3904 	}
3905 }
3906 
perf_prepare_sample(struct perf_event_header * header,struct perf_sample_data * data,struct perf_event * event,struct pt_regs * regs)3907 void perf_prepare_sample(struct perf_event_header *header,
3908 			 struct perf_sample_data *data,
3909 			 struct perf_event *event,
3910 			 struct pt_regs *regs)
3911 {
3912 	u64 sample_type = event->attr.sample_type;
3913 
3914 	header->type = PERF_RECORD_SAMPLE;
3915 	header->size = sizeof(*header) + event->header_size;
3916 
3917 	header->misc = 0;
3918 	header->misc |= perf_misc_flags(regs);
3919 
3920 	__perf_event_header__init_id(header, data, event);
3921 
3922 	if (sample_type & PERF_SAMPLE_IP)
3923 		data->ip = perf_instruction_pointer(regs);
3924 
3925 	if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3926 		int size = 1;
3927 
3928 		data->callchain = perf_callchain(regs);
3929 
3930 		if (data->callchain)
3931 			size += data->callchain->nr;
3932 
3933 		header->size += size * sizeof(u64);
3934 	}
3935 
3936 	if (sample_type & PERF_SAMPLE_RAW) {
3937 		int size = sizeof(u32);
3938 
3939 		if (data->raw)
3940 			size += data->raw->size;
3941 		else
3942 			size += sizeof(u32);
3943 
3944 		WARN_ON_ONCE(size & (sizeof(u64)-1));
3945 		header->size += size;
3946 	}
3947 }
3948 
perf_event_output(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)3949 static void perf_event_output(struct perf_event *event,
3950 				struct perf_sample_data *data,
3951 				struct pt_regs *regs)
3952 {
3953 	struct perf_output_handle handle;
3954 	struct perf_event_header header;
3955 
3956 	/* protect the callchain buffers */
3957 	rcu_read_lock();
3958 
3959 	perf_prepare_sample(&header, data, event, regs);
3960 
3961 	if (perf_output_begin(&handle, event, header.size))
3962 		goto exit;
3963 
3964 	perf_output_sample(&handle, &header, data, event);
3965 
3966 	perf_output_end(&handle);
3967 
3968 exit:
3969 	rcu_read_unlock();
3970 }
3971 
3972 /*
3973  * read event_id
3974  */
3975 
3976 struct perf_read_event {
3977 	struct perf_event_header	header;
3978 
3979 	u32				pid;
3980 	u32				tid;
3981 };
3982 
3983 static void
perf_event_read_event(struct perf_event * event,struct task_struct * task)3984 perf_event_read_event(struct perf_event *event,
3985 			struct task_struct *task)
3986 {
3987 	struct perf_output_handle handle;
3988 	struct perf_sample_data sample;
3989 	struct perf_read_event read_event = {
3990 		.header = {
3991 			.type = PERF_RECORD_READ,
3992 			.misc = 0,
3993 			.size = sizeof(read_event) + event->read_size,
3994 		},
3995 		.pid = perf_event_pid(event, task),
3996 		.tid = perf_event_tid(event, task),
3997 	};
3998 	int ret;
3999 
4000 	perf_event_header__init_id(&read_event.header, &sample, event);
4001 	ret = perf_output_begin(&handle, event, read_event.header.size);
4002 	if (ret)
4003 		return;
4004 
4005 	perf_output_put(&handle, read_event);
4006 	perf_output_read(&handle, event);
4007 	perf_event__output_id_sample(event, &handle, &sample);
4008 
4009 	perf_output_end(&handle);
4010 }
4011 
4012 /*
4013  * task tracking -- fork/exit
4014  *
4015  * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
4016  */
4017 
4018 struct perf_task_event {
4019 	struct task_struct		*task;
4020 	struct perf_event_context	*task_ctx;
4021 
4022 	struct {
4023 		struct perf_event_header	header;
4024 
4025 		u32				pid;
4026 		u32				ppid;
4027 		u32				tid;
4028 		u32				ptid;
4029 		u64				time;
4030 	} event_id;
4031 };
4032 
perf_event_task_output(struct perf_event * event,struct perf_task_event * task_event)4033 static void perf_event_task_output(struct perf_event *event,
4034 				     struct perf_task_event *task_event)
4035 {
4036 	struct perf_output_handle handle;
4037 	struct perf_sample_data	sample;
4038 	struct task_struct *task = task_event->task;
4039 	int ret, size = task_event->event_id.header.size;
4040 
4041 	perf_event_header__init_id(&task_event->event_id.header, &sample, event);
4042 
4043 	ret = perf_output_begin(&handle, event,
4044 				task_event->event_id.header.size);
4045 	if (ret)
4046 		goto out;
4047 
4048 	task_event->event_id.pid = perf_event_pid(event, task);
4049 	task_event->event_id.ppid = perf_event_pid(event, current);
4050 
4051 	task_event->event_id.tid = perf_event_tid(event, task);
4052 	task_event->event_id.ptid = perf_event_tid(event, current);
4053 
4054 	perf_output_put(&handle, task_event->event_id);
4055 
4056 	perf_event__output_id_sample(event, &handle, &sample);
4057 
4058 	perf_output_end(&handle);
4059 out:
4060 	task_event->event_id.header.size = size;
4061 }
4062 
perf_event_task_match(struct perf_event * event)4063 static int perf_event_task_match(struct perf_event *event)
4064 {
4065 	if (event->state < PERF_EVENT_STATE_INACTIVE)
4066 		return 0;
4067 
4068 	if (!event_filter_match(event))
4069 		return 0;
4070 
4071 	if (event->attr.comm || event->attr.mmap ||
4072 	    event->attr.mmap_data || event->attr.task)
4073 		return 1;
4074 
4075 	return 0;
4076 }
4077 
perf_event_task_ctx(struct perf_event_context * ctx,struct perf_task_event * task_event)4078 static void perf_event_task_ctx(struct perf_event_context *ctx,
4079 				  struct perf_task_event *task_event)
4080 {
4081 	struct perf_event *event;
4082 
4083 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4084 		if (perf_event_task_match(event))
4085 			perf_event_task_output(event, task_event);
4086 	}
4087 }
4088 
perf_event_task_event(struct perf_task_event * task_event)4089 static void perf_event_task_event(struct perf_task_event *task_event)
4090 {
4091 	struct perf_cpu_context *cpuctx;
4092 	struct perf_event_context *ctx;
4093 	struct pmu *pmu;
4094 	int ctxn;
4095 
4096 	rcu_read_lock();
4097 	list_for_each_entry_rcu(pmu, &pmus, entry) {
4098 		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4099 		if (cpuctx->active_pmu != pmu)
4100 			goto next;
4101 		perf_event_task_ctx(&cpuctx->ctx, task_event);
4102 
4103 		ctx = task_event->task_ctx;
4104 		if (!ctx) {
4105 			ctxn = pmu->task_ctx_nr;
4106 			if (ctxn < 0)
4107 				goto next;
4108 			ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4109 		}
4110 		if (ctx)
4111 			perf_event_task_ctx(ctx, task_event);
4112 next:
4113 		put_cpu_ptr(pmu->pmu_cpu_context);
4114 	}
4115 	rcu_read_unlock();
4116 }
4117 
perf_event_task(struct task_struct * task,struct perf_event_context * task_ctx,int new)4118 static void perf_event_task(struct task_struct *task,
4119 			      struct perf_event_context *task_ctx,
4120 			      int new)
4121 {
4122 	struct perf_task_event task_event;
4123 
4124 	if (!atomic_read(&nr_comm_events) &&
4125 	    !atomic_read(&nr_mmap_events) &&
4126 	    !atomic_read(&nr_task_events))
4127 		return;
4128 
4129 	task_event = (struct perf_task_event){
4130 		.task	  = task,
4131 		.task_ctx = task_ctx,
4132 		.event_id    = {
4133 			.header = {
4134 				.type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4135 				.misc = 0,
4136 				.size = sizeof(task_event.event_id),
4137 			},
4138 			/* .pid  */
4139 			/* .ppid */
4140 			/* .tid  */
4141 			/* .ptid */
4142 			.time = perf_clock(),
4143 		},
4144 	};
4145 
4146 	perf_event_task_event(&task_event);
4147 }
4148 
perf_event_fork(struct task_struct * task)4149 void perf_event_fork(struct task_struct *task)
4150 {
4151 	perf_event_task(task, NULL, 1);
4152 }
4153 
4154 /*
4155  * comm tracking
4156  */
4157 
4158 struct perf_comm_event {
4159 	struct task_struct	*task;
4160 	char			*comm;
4161 	int			comm_size;
4162 
4163 	struct {
4164 		struct perf_event_header	header;
4165 
4166 		u32				pid;
4167 		u32				tid;
4168 	} event_id;
4169 };
4170 
perf_event_comm_output(struct perf_event * event,struct perf_comm_event * comm_event)4171 static void perf_event_comm_output(struct perf_event *event,
4172 				     struct perf_comm_event *comm_event)
4173 {
4174 	struct perf_output_handle handle;
4175 	struct perf_sample_data sample;
4176 	int size = comm_event->event_id.header.size;
4177 	int ret;
4178 
4179 	perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4180 	ret = perf_output_begin(&handle, event,
4181 				comm_event->event_id.header.size);
4182 
4183 	if (ret)
4184 		goto out;
4185 
4186 	comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4187 	comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4188 
4189 	perf_output_put(&handle, comm_event->event_id);
4190 	__output_copy(&handle, comm_event->comm,
4191 				   comm_event->comm_size);
4192 
4193 	perf_event__output_id_sample(event, &handle, &sample);
4194 
4195 	perf_output_end(&handle);
4196 out:
4197 	comm_event->event_id.header.size = size;
4198 }
4199 
perf_event_comm_match(struct perf_event * event)4200 static int perf_event_comm_match(struct perf_event *event)
4201 {
4202 	if (event->state < PERF_EVENT_STATE_INACTIVE)
4203 		return 0;
4204 
4205 	if (!event_filter_match(event))
4206 		return 0;
4207 
4208 	if (event->attr.comm)
4209 		return 1;
4210 
4211 	return 0;
4212 }
4213 
perf_event_comm_ctx(struct perf_event_context * ctx,struct perf_comm_event * comm_event)4214 static void perf_event_comm_ctx(struct perf_event_context *ctx,
4215 				  struct perf_comm_event *comm_event)
4216 {
4217 	struct perf_event *event;
4218 
4219 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4220 		if (perf_event_comm_match(event))
4221 			perf_event_comm_output(event, comm_event);
4222 	}
4223 }
4224 
perf_event_comm_event(struct perf_comm_event * comm_event)4225 static void perf_event_comm_event(struct perf_comm_event *comm_event)
4226 {
4227 	struct perf_cpu_context *cpuctx;
4228 	struct perf_event_context *ctx;
4229 	char comm[TASK_COMM_LEN];
4230 	unsigned int size;
4231 	struct pmu *pmu;
4232 	int ctxn;
4233 
4234 	memset(comm, 0, sizeof(comm));
4235 	strlcpy(comm, comm_event->task->comm, sizeof(comm));
4236 	size = ALIGN(strlen(comm)+1, sizeof(u64));
4237 
4238 	comm_event->comm = comm;
4239 	comm_event->comm_size = size;
4240 
4241 	comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4242 	rcu_read_lock();
4243 	list_for_each_entry_rcu(pmu, &pmus, entry) {
4244 		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4245 		if (cpuctx->active_pmu != pmu)
4246 			goto next;
4247 		perf_event_comm_ctx(&cpuctx->ctx, comm_event);
4248 
4249 		ctxn = pmu->task_ctx_nr;
4250 		if (ctxn < 0)
4251 			goto next;
4252 
4253 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4254 		if (ctx)
4255 			perf_event_comm_ctx(ctx, comm_event);
4256 next:
4257 		put_cpu_ptr(pmu->pmu_cpu_context);
4258 	}
4259 	rcu_read_unlock();
4260 }
4261 
perf_event_comm(struct task_struct * task)4262 void perf_event_comm(struct task_struct *task)
4263 {
4264 	struct perf_comm_event comm_event;
4265 	struct perf_event_context *ctx;
4266 	int ctxn;
4267 
4268 	for_each_task_context_nr(ctxn) {
4269 		ctx = task->perf_event_ctxp[ctxn];
4270 		if (!ctx)
4271 			continue;
4272 
4273 		perf_event_enable_on_exec(ctx);
4274 	}
4275 
4276 	if (!atomic_read(&nr_comm_events))
4277 		return;
4278 
4279 	comm_event = (struct perf_comm_event){
4280 		.task	= task,
4281 		/* .comm      */
4282 		/* .comm_size */
4283 		.event_id  = {
4284 			.header = {
4285 				.type = PERF_RECORD_COMM,
4286 				.misc = 0,
4287 				/* .size */
4288 			},
4289 			/* .pid */
4290 			/* .tid */
4291 		},
4292 	};
4293 
4294 	perf_event_comm_event(&comm_event);
4295 }
4296 
4297 /*
4298  * mmap tracking
4299  */
4300 
4301 struct perf_mmap_event {
4302 	struct vm_area_struct	*vma;
4303 
4304 	const char		*file_name;
4305 	int			file_size;
4306 
4307 	struct {
4308 		struct perf_event_header	header;
4309 
4310 		u32				pid;
4311 		u32				tid;
4312 		u64				start;
4313 		u64				len;
4314 		u64				pgoff;
4315 	} event_id;
4316 };
4317 
perf_event_mmap_output(struct perf_event * event,struct perf_mmap_event * mmap_event)4318 static void perf_event_mmap_output(struct perf_event *event,
4319 				     struct perf_mmap_event *mmap_event)
4320 {
4321 	struct perf_output_handle handle;
4322 	struct perf_sample_data sample;
4323 	int size = mmap_event->event_id.header.size;
4324 	int ret;
4325 
4326 	perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
4327 	ret = perf_output_begin(&handle, event,
4328 				mmap_event->event_id.header.size);
4329 	if (ret)
4330 		goto out;
4331 
4332 	mmap_event->event_id.pid = perf_event_pid(event, current);
4333 	mmap_event->event_id.tid = perf_event_tid(event, current);
4334 
4335 	perf_output_put(&handle, mmap_event->event_id);
4336 	__output_copy(&handle, mmap_event->file_name,
4337 				   mmap_event->file_size);
4338 
4339 	perf_event__output_id_sample(event, &handle, &sample);
4340 
4341 	perf_output_end(&handle);
4342 out:
4343 	mmap_event->event_id.header.size = size;
4344 }
4345 
perf_event_mmap_match(struct perf_event * event,struct perf_mmap_event * mmap_event,int executable)4346 static int perf_event_mmap_match(struct perf_event *event,
4347 				   struct perf_mmap_event *mmap_event,
4348 				   int executable)
4349 {
4350 	if (event->state < PERF_EVENT_STATE_INACTIVE)
4351 		return 0;
4352 
4353 	if (!event_filter_match(event))
4354 		return 0;
4355 
4356 	if ((!executable && event->attr.mmap_data) ||
4357 	    (executable && event->attr.mmap))
4358 		return 1;
4359 
4360 	return 0;
4361 }
4362 
perf_event_mmap_ctx(struct perf_event_context * ctx,struct perf_mmap_event * mmap_event,int executable)4363 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4364 				  struct perf_mmap_event *mmap_event,
4365 				  int executable)
4366 {
4367 	struct perf_event *event;
4368 
4369 	list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4370 		if (perf_event_mmap_match(event, mmap_event, executable))
4371 			perf_event_mmap_output(event, mmap_event);
4372 	}
4373 }
4374 
perf_event_mmap_event(struct perf_mmap_event * mmap_event)4375 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4376 {
4377 	struct perf_cpu_context *cpuctx;
4378 	struct perf_event_context *ctx;
4379 	struct vm_area_struct *vma = mmap_event->vma;
4380 	struct file *file = vma->vm_file;
4381 	unsigned int size;
4382 	char tmp[16];
4383 	char *buf = NULL;
4384 	const char *name;
4385 	struct pmu *pmu;
4386 	int ctxn;
4387 
4388 	memset(tmp, 0, sizeof(tmp));
4389 
4390 	if (file) {
4391 		/*
4392 		 * d_path works from the end of the rb backwards, so we
4393 		 * need to add enough zero bytes after the string to handle
4394 		 * the 64bit alignment we do later.
4395 		 */
4396 		buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4397 		if (!buf) {
4398 			name = strncpy(tmp, "//enomem", sizeof(tmp));
4399 			goto got_name;
4400 		}
4401 		name = d_path(&file->f_path, buf, PATH_MAX);
4402 		if (IS_ERR(name)) {
4403 			name = strncpy(tmp, "//toolong", sizeof(tmp));
4404 			goto got_name;
4405 		}
4406 	} else {
4407 		if (arch_vma_name(mmap_event->vma)) {
4408 			name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4409 				       sizeof(tmp));
4410 			goto got_name;
4411 		}
4412 
4413 		if (!vma->vm_mm) {
4414 			name = strncpy(tmp, "[vdso]", sizeof(tmp));
4415 			goto got_name;
4416 		} else if (vma->vm_start <= vma->vm_mm->start_brk &&
4417 				vma->vm_end >= vma->vm_mm->brk) {
4418 			name = strncpy(tmp, "[heap]", sizeof(tmp));
4419 			goto got_name;
4420 		} else if (vma->vm_start <= vma->vm_mm->start_stack &&
4421 				vma->vm_end >= vma->vm_mm->start_stack) {
4422 			name = strncpy(tmp, "[stack]", sizeof(tmp));
4423 			goto got_name;
4424 		}
4425 
4426 		name = strncpy(tmp, "//anon", sizeof(tmp));
4427 		goto got_name;
4428 	}
4429 
4430 got_name:
4431 	size = ALIGN(strlen(name)+1, sizeof(u64));
4432 
4433 	mmap_event->file_name = name;
4434 	mmap_event->file_size = size;
4435 
4436 	mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4437 
4438 	rcu_read_lock();
4439 	list_for_each_entry_rcu(pmu, &pmus, entry) {
4440 		cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4441 		if (cpuctx->active_pmu != pmu)
4442 			goto next;
4443 		perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
4444 					vma->vm_flags & VM_EXEC);
4445 
4446 		ctxn = pmu->task_ctx_nr;
4447 		if (ctxn < 0)
4448 			goto next;
4449 
4450 		ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4451 		if (ctx) {
4452 			perf_event_mmap_ctx(ctx, mmap_event,
4453 					vma->vm_flags & VM_EXEC);
4454 		}
4455 next:
4456 		put_cpu_ptr(pmu->pmu_cpu_context);
4457 	}
4458 	rcu_read_unlock();
4459 
4460 	kfree(buf);
4461 }
4462 
perf_event_mmap(struct vm_area_struct * vma)4463 void perf_event_mmap(struct vm_area_struct *vma)
4464 {
4465 	struct perf_mmap_event mmap_event;
4466 
4467 	if (!atomic_read(&nr_mmap_events))
4468 		return;
4469 
4470 	mmap_event = (struct perf_mmap_event){
4471 		.vma	= vma,
4472 		/* .file_name */
4473 		/* .file_size */
4474 		.event_id  = {
4475 			.header = {
4476 				.type = PERF_RECORD_MMAP,
4477 				.misc = PERF_RECORD_MISC_USER,
4478 				/* .size */
4479 			},
4480 			/* .pid */
4481 			/* .tid */
4482 			.start  = vma->vm_start,
4483 			.len    = vma->vm_end - vma->vm_start,
4484 			.pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
4485 		},
4486 	};
4487 
4488 	perf_event_mmap_event(&mmap_event);
4489 }
4490 
4491 /*
4492  * IRQ throttle logging
4493  */
4494 
perf_log_throttle(struct perf_event * event,int enable)4495 static void perf_log_throttle(struct perf_event *event, int enable)
4496 {
4497 	struct perf_output_handle handle;
4498 	struct perf_sample_data sample;
4499 	int ret;
4500 
4501 	struct {
4502 		struct perf_event_header	header;
4503 		u64				time;
4504 		u64				id;
4505 		u64				stream_id;
4506 	} throttle_event = {
4507 		.header = {
4508 			.type = PERF_RECORD_THROTTLE,
4509 			.misc = 0,
4510 			.size = sizeof(throttle_event),
4511 		},
4512 		.time		= perf_clock(),
4513 		.id		= primary_event_id(event),
4514 		.stream_id	= event->id,
4515 	};
4516 
4517 	if (enable)
4518 		throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4519 
4520 	perf_event_header__init_id(&throttle_event.header, &sample, event);
4521 
4522 	ret = perf_output_begin(&handle, event,
4523 				throttle_event.header.size);
4524 	if (ret)
4525 		return;
4526 
4527 	perf_output_put(&handle, throttle_event);
4528 	perf_event__output_id_sample(event, &handle, &sample);
4529 	perf_output_end(&handle);
4530 }
4531 
4532 /*
4533  * Generic event overflow handling, sampling.
4534  */
4535 
__perf_event_overflow(struct perf_event * event,int throttle,struct perf_sample_data * data,struct pt_regs * regs)4536 static int __perf_event_overflow(struct perf_event *event,
4537 				   int throttle, struct perf_sample_data *data,
4538 				   struct pt_regs *regs)
4539 {
4540 	int events = atomic_read(&event->event_limit);
4541 	struct hw_perf_event *hwc = &event->hw;
4542 	u64 seq;
4543 	int ret = 0;
4544 
4545 	/*
4546 	 * Non-sampling counters might still use the PMI to fold short
4547 	 * hardware counters, ignore those.
4548 	 */
4549 	if (unlikely(!is_sampling_event(event)))
4550 		return 0;
4551 
4552 	seq = __this_cpu_read(perf_throttled_seq);
4553 	if (seq != hwc->interrupts_seq) {
4554 		hwc->interrupts_seq = seq;
4555 		hwc->interrupts = 1;
4556 	} else {
4557 		hwc->interrupts++;
4558 		if (unlikely(throttle
4559 			     && hwc->interrupts >= max_samples_per_tick)) {
4560 			__this_cpu_inc(perf_throttled_count);
4561 			hwc->interrupts = MAX_INTERRUPTS;
4562 			perf_log_throttle(event, 0);
4563 			ret = 1;
4564 		}
4565 	}
4566 
4567 	if (event->attr.freq) {
4568 		u64 now = perf_clock();
4569 		s64 delta = now - hwc->freq_time_stamp;
4570 
4571 		hwc->freq_time_stamp = now;
4572 
4573 		if (delta > 0 && delta < 2*TICK_NSEC)
4574 			perf_adjust_period(event, delta, hwc->last_period, true);
4575 	}
4576 
4577 	/*
4578 	 * XXX event_limit might not quite work as expected on inherited
4579 	 * events
4580 	 */
4581 
4582 	event->pending_kill = POLL_IN;
4583 	if (events && atomic_dec_and_test(&event->event_limit)) {
4584 		ret = 1;
4585 		event->pending_kill = POLL_HUP;
4586 		event->pending_disable = 1;
4587 		irq_work_queue(&event->pending);
4588 	}
4589 
4590 	if (event->overflow_handler)
4591 		event->overflow_handler(event, data, regs);
4592 	else
4593 		perf_event_output(event, data, regs);
4594 
4595 	if (event->fasync && event->pending_kill) {
4596 		event->pending_wakeup = 1;
4597 		irq_work_queue(&event->pending);
4598 	}
4599 
4600 	return ret;
4601 }
4602 
perf_event_overflow(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)4603 int perf_event_overflow(struct perf_event *event,
4604 			  struct perf_sample_data *data,
4605 			  struct pt_regs *regs)
4606 {
4607 	return __perf_event_overflow(event, 1, data, regs);
4608 }
4609 
4610 /*
4611  * Generic software event infrastructure
4612  */
4613 
4614 struct swevent_htable {
4615 	struct swevent_hlist		*swevent_hlist;
4616 	struct mutex			hlist_mutex;
4617 	int				hlist_refcount;
4618 
4619 	/* Recursion avoidance in each contexts */
4620 	int				recursion[PERF_NR_CONTEXTS];
4621 };
4622 
4623 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
4624 
4625 /*
4626  * We directly increment event->count and keep a second value in
4627  * event->hw.period_left to count intervals. This period event
4628  * is kept in the range [-sample_period, 0] so that we can use the
4629  * sign as trigger.
4630  */
4631 
perf_swevent_set_period(struct perf_event * event)4632 static u64 perf_swevent_set_period(struct perf_event *event)
4633 {
4634 	struct hw_perf_event *hwc = &event->hw;
4635 	u64 period = hwc->last_period;
4636 	u64 nr, offset;
4637 	s64 old, val;
4638 
4639 	hwc->last_period = hwc->sample_period;
4640 
4641 again:
4642 	old = val = local64_read(&hwc->period_left);
4643 	if (val < 0)
4644 		return 0;
4645 
4646 	nr = div64_u64(period + val, period);
4647 	offset = nr * period;
4648 	val -= offset;
4649 	if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4650 		goto again;
4651 
4652 	return nr;
4653 }
4654 
perf_swevent_overflow(struct perf_event * event,u64 overflow,struct perf_sample_data * data,struct pt_regs * regs)4655 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4656 				    struct perf_sample_data *data,
4657 				    struct pt_regs *regs)
4658 {
4659 	struct hw_perf_event *hwc = &event->hw;
4660 	int throttle = 0;
4661 
4662 	if (!overflow)
4663 		overflow = perf_swevent_set_period(event);
4664 
4665 	if (hwc->interrupts == MAX_INTERRUPTS)
4666 		return;
4667 
4668 	for (; overflow; overflow--) {
4669 		if (__perf_event_overflow(event, throttle,
4670 					    data, regs)) {
4671 			/*
4672 			 * We inhibit the overflow from happening when
4673 			 * hwc->interrupts == MAX_INTERRUPTS.
4674 			 */
4675 			break;
4676 		}
4677 		throttle = 1;
4678 	}
4679 }
4680 
perf_swevent_event(struct perf_event * event,u64 nr,struct perf_sample_data * data,struct pt_regs * regs)4681 static void perf_swevent_event(struct perf_event *event, u64 nr,
4682 			       struct perf_sample_data *data,
4683 			       struct pt_regs *regs)
4684 {
4685 	struct hw_perf_event *hwc = &event->hw;
4686 
4687 	local64_add(nr, &event->count);
4688 
4689 	if (!regs)
4690 		return;
4691 
4692 	if (!is_sampling_event(event))
4693 		return;
4694 
4695 	if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
4696 		data->period = nr;
4697 		return perf_swevent_overflow(event, 1, data, regs);
4698 	} else
4699 		data->period = event->hw.last_period;
4700 
4701 	if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4702 		return perf_swevent_overflow(event, 1, data, regs);
4703 
4704 	if (local64_add_negative(nr, &hwc->period_left))
4705 		return;
4706 
4707 	perf_swevent_overflow(event, 0, data, regs);
4708 }
4709 
perf_exclude_event(struct perf_event * event,struct pt_regs * regs)4710 static int perf_exclude_event(struct perf_event *event,
4711 			      struct pt_regs *regs)
4712 {
4713 	if (event->hw.state & PERF_HES_STOPPED)
4714 		return 1;
4715 
4716 	if (regs) {
4717 		if (event->attr.exclude_user && user_mode(regs))
4718 			return 1;
4719 
4720 		if (event->attr.exclude_kernel && !user_mode(regs))
4721 			return 1;
4722 	}
4723 
4724 	return 0;
4725 }
4726 
perf_swevent_match(struct perf_event * event,enum perf_type_id type,u32 event_id,struct perf_sample_data * data,struct pt_regs * regs)4727 static int perf_swevent_match(struct perf_event *event,
4728 				enum perf_type_id type,
4729 				u32 event_id,
4730 				struct perf_sample_data *data,
4731 				struct pt_regs *regs)
4732 {
4733 	if (event->attr.type != type)
4734 		return 0;
4735 
4736 	if (event->attr.config != event_id)
4737 		return 0;
4738 
4739 	if (perf_exclude_event(event, regs))
4740 		return 0;
4741 
4742 	return 1;
4743 }
4744 
swevent_hash(u64 type,u32 event_id)4745 static inline u64 swevent_hash(u64 type, u32 event_id)
4746 {
4747 	u64 val = event_id | (type << 32);
4748 
4749 	return hash_64(val, SWEVENT_HLIST_BITS);
4750 }
4751 
4752 static inline struct hlist_head *
__find_swevent_head(struct swevent_hlist * hlist,u64 type,u32 event_id)4753 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4754 {
4755 	u64 hash = swevent_hash(type, event_id);
4756 
4757 	return &hlist->heads[hash];
4758 }
4759 
4760 /* For the read side: events when they trigger */
4761 static inline struct hlist_head *
find_swevent_head_rcu(struct swevent_htable * swhash,u64 type,u32 event_id)4762 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
4763 {
4764 	struct swevent_hlist *hlist;
4765 
4766 	hlist = rcu_dereference(swhash->swevent_hlist);
4767 	if (!hlist)
4768 		return NULL;
4769 
4770 	return __find_swevent_head(hlist, type, event_id);
4771 }
4772 
4773 /* For the event head insertion and removal in the hlist */
4774 static inline struct hlist_head *
find_swevent_head(struct swevent_htable * swhash,struct perf_event * event)4775 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
4776 {
4777 	struct swevent_hlist *hlist;
4778 	u32 event_id = event->attr.config;
4779 	u64 type = event->attr.type;
4780 
4781 	/*
4782 	 * Event scheduling is always serialized against hlist allocation
4783 	 * and release. Which makes the protected version suitable here.
4784 	 * The context lock guarantees that.
4785 	 */
4786 	hlist = rcu_dereference_protected(swhash->swevent_hlist,
4787 					  lockdep_is_held(&event->ctx->lock));
4788 	if (!hlist)
4789 		return NULL;
4790 
4791 	return __find_swevent_head(hlist, type, event_id);
4792 }
4793 
do_perf_sw_event(enum perf_type_id type,u32 event_id,u64 nr,struct perf_sample_data * data,struct pt_regs * regs)4794 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4795 				    u64 nr,
4796 				    struct perf_sample_data *data,
4797 				    struct pt_regs *regs)
4798 {
4799 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4800 	struct perf_event *event;
4801 	struct hlist_node *node;
4802 	struct hlist_head *head;
4803 
4804 	rcu_read_lock();
4805 	head = find_swevent_head_rcu(swhash, type, event_id);
4806 	if (!head)
4807 		goto end;
4808 
4809 	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4810 		if (perf_swevent_match(event, type, event_id, data, regs))
4811 			perf_swevent_event(event, nr, data, regs);
4812 	}
4813 end:
4814 	rcu_read_unlock();
4815 }
4816 
perf_swevent_get_recursion_context(void)4817 int perf_swevent_get_recursion_context(void)
4818 {
4819 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4820 
4821 	return get_recursion_context(swhash->recursion);
4822 }
4823 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4824 
perf_swevent_put_recursion_context(int rctx)4825 inline void perf_swevent_put_recursion_context(int rctx)
4826 {
4827 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4828 
4829 	put_recursion_context(swhash->recursion, rctx);
4830 }
4831 
__perf_sw_event(u32 event_id,u64 nr,struct pt_regs * regs,u64 addr)4832 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
4833 {
4834 	struct perf_sample_data data;
4835 	int rctx;
4836 
4837 	preempt_disable_notrace();
4838 	rctx = perf_swevent_get_recursion_context();
4839 	if (rctx < 0)
4840 		return;
4841 
4842 	perf_sample_data_init(&data, addr);
4843 
4844 	do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
4845 
4846 	perf_swevent_put_recursion_context(rctx);
4847 	preempt_enable_notrace();
4848 }
4849 
perf_swevent_read(struct perf_event * event)4850 static void perf_swevent_read(struct perf_event *event)
4851 {
4852 }
4853 
perf_swevent_add(struct perf_event * event,int flags)4854 static int perf_swevent_add(struct perf_event *event, int flags)
4855 {
4856 	struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4857 	struct hw_perf_event *hwc = &event->hw;
4858 	struct hlist_head *head;
4859 
4860 	if (is_sampling_event(event)) {
4861 		hwc->last_period = hwc->sample_period;
4862 		perf_swevent_set_period(event);
4863 	}
4864 
4865 	hwc->state = !(flags & PERF_EF_START);
4866 
4867 	head = find_swevent_head(swhash, event);
4868 	if (WARN_ON_ONCE(!head))
4869 		return -EINVAL;
4870 
4871 	hlist_add_head_rcu(&event->hlist_entry, head);
4872 
4873 	return 0;
4874 }
4875 
perf_swevent_del(struct perf_event * event,int flags)4876 static void perf_swevent_del(struct perf_event *event, int flags)
4877 {
4878 	hlist_del_rcu(&event->hlist_entry);
4879 }
4880 
perf_swevent_start(struct perf_event * event,int flags)4881 static void perf_swevent_start(struct perf_event *event, int flags)
4882 {
4883 	event->hw.state = 0;
4884 }
4885 
perf_swevent_stop(struct perf_event * event,int flags)4886 static void perf_swevent_stop(struct perf_event *event, int flags)
4887 {
4888 	event->hw.state = PERF_HES_STOPPED;
4889 }
4890 
4891 /* Deref the hlist from the update side */
4892 static inline struct swevent_hlist *
swevent_hlist_deref(struct swevent_htable * swhash)4893 swevent_hlist_deref(struct swevent_htable *swhash)
4894 {
4895 	return rcu_dereference_protected(swhash->swevent_hlist,
4896 					 lockdep_is_held(&swhash->hlist_mutex));
4897 }
4898 
swevent_hlist_release(struct swevent_htable * swhash)4899 static void swevent_hlist_release(struct swevent_htable *swhash)
4900 {
4901 	struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
4902 
4903 	if (!hlist)
4904 		return;
4905 
4906 	rcu_assign_pointer(swhash->swevent_hlist, NULL);
4907 	kfree_rcu(hlist, rcu_head);
4908 }
4909 
swevent_hlist_put_cpu(struct perf_event * event,int cpu)4910 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
4911 {
4912 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4913 
4914 	mutex_lock(&swhash->hlist_mutex);
4915 
4916 	if (!--swhash->hlist_refcount)
4917 		swevent_hlist_release(swhash);
4918 
4919 	mutex_unlock(&swhash->hlist_mutex);
4920 }
4921 
swevent_hlist_put(struct perf_event * event)4922 static void swevent_hlist_put(struct perf_event *event)
4923 {
4924 	int cpu;
4925 
4926 	if (event->cpu != -1) {
4927 		swevent_hlist_put_cpu(event, event->cpu);
4928 		return;
4929 	}
4930 
4931 	for_each_possible_cpu(cpu)
4932 		swevent_hlist_put_cpu(event, cpu);
4933 }
4934 
swevent_hlist_get_cpu(struct perf_event * event,int cpu)4935 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
4936 {
4937 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4938 	int err = 0;
4939 
4940 	mutex_lock(&swhash->hlist_mutex);
4941 
4942 	if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
4943 		struct swevent_hlist *hlist;
4944 
4945 		hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
4946 		if (!hlist) {
4947 			err = -ENOMEM;
4948 			goto exit;
4949 		}
4950 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
4951 	}
4952 	swhash->hlist_refcount++;
4953 exit:
4954 	mutex_unlock(&swhash->hlist_mutex);
4955 
4956 	return err;
4957 }
4958 
swevent_hlist_get(struct perf_event * event)4959 static int swevent_hlist_get(struct perf_event *event)
4960 {
4961 	int err;
4962 	int cpu, failed_cpu;
4963 
4964 	if (event->cpu != -1)
4965 		return swevent_hlist_get_cpu(event, event->cpu);
4966 
4967 	get_online_cpus();
4968 	for_each_possible_cpu(cpu) {
4969 		err = swevent_hlist_get_cpu(event, cpu);
4970 		if (err) {
4971 			failed_cpu = cpu;
4972 			goto fail;
4973 		}
4974 	}
4975 	put_online_cpus();
4976 
4977 	return 0;
4978 fail:
4979 	for_each_possible_cpu(cpu) {
4980 		if (cpu == failed_cpu)
4981 			break;
4982 		swevent_hlist_put_cpu(event, cpu);
4983 	}
4984 
4985 	put_online_cpus();
4986 	return err;
4987 }
4988 
4989 struct jump_label_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
4990 
sw_perf_event_destroy(struct perf_event * event)4991 static void sw_perf_event_destroy(struct perf_event *event)
4992 {
4993 	u64 event_id = event->attr.config;
4994 
4995 	WARN_ON(event->parent);
4996 
4997 	jump_label_dec(&perf_swevent_enabled[event_id]);
4998 	swevent_hlist_put(event);
4999 }
5000 
perf_swevent_init(struct perf_event * event)5001 static int perf_swevent_init(struct perf_event *event)
5002 {
5003 	int event_id = event->attr.config;
5004 
5005 	if (event->attr.type != PERF_TYPE_SOFTWARE)
5006 		return -ENOENT;
5007 
5008 	switch (event_id) {
5009 	case PERF_COUNT_SW_CPU_CLOCK:
5010 	case PERF_COUNT_SW_TASK_CLOCK:
5011 		return -ENOENT;
5012 
5013 	default:
5014 		break;
5015 	}
5016 
5017 	if (event_id >= PERF_COUNT_SW_MAX)
5018 		return -ENOENT;
5019 
5020 	if (!event->parent) {
5021 		int err;
5022 
5023 		err = swevent_hlist_get(event);
5024 		if (err)
5025 			return err;
5026 
5027 		jump_label_inc(&perf_swevent_enabled[event_id]);
5028 		event->destroy = sw_perf_event_destroy;
5029 	}
5030 
5031 	return 0;
5032 }
5033 
5034 static struct pmu perf_swevent = {
5035 	.task_ctx_nr	= perf_sw_context,
5036 
5037 	.event_init	= perf_swevent_init,
5038 	.add		= perf_swevent_add,
5039 	.del		= perf_swevent_del,
5040 	.start		= perf_swevent_start,
5041 	.stop		= perf_swevent_stop,
5042 	.read		= perf_swevent_read,
5043 };
5044 
5045 #ifdef CONFIG_EVENT_TRACING
5046 
perf_tp_filter_match(struct perf_event * event,struct perf_sample_data * data)5047 static int perf_tp_filter_match(struct perf_event *event,
5048 				struct perf_sample_data *data)
5049 {
5050 	void *record = data->raw->data;
5051 
5052 	if (likely(!event->filter) || filter_match_preds(event->filter, record))
5053 		return 1;
5054 	return 0;
5055 }
5056 
perf_tp_event_match(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)5057 static int perf_tp_event_match(struct perf_event *event,
5058 				struct perf_sample_data *data,
5059 				struct pt_regs *regs)
5060 {
5061 	if (event->hw.state & PERF_HES_STOPPED)
5062 		return 0;
5063 	/*
5064 	 * All tracepoints are from kernel-space.
5065 	 */
5066 	if (event->attr.exclude_kernel)
5067 		return 0;
5068 
5069 	if (!perf_tp_filter_match(event, data))
5070 		return 0;
5071 
5072 	return 1;
5073 }
5074 
perf_tp_event(u64 addr,u64 count,void * record,int entry_size,struct pt_regs * regs,struct hlist_head * head,int rctx)5075 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5076 		   struct pt_regs *regs, struct hlist_head *head, int rctx)
5077 {
5078 	struct perf_sample_data data;
5079 	struct perf_event *event;
5080 	struct hlist_node *node;
5081 
5082 	struct perf_raw_record raw = {
5083 		.size = entry_size,
5084 		.data = record,
5085 	};
5086 
5087 	perf_sample_data_init(&data, addr);
5088 	data.raw = &raw;
5089 
5090 	hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
5091 		if (perf_tp_event_match(event, &data, regs))
5092 			perf_swevent_event(event, count, &data, regs);
5093 	}
5094 
5095 	perf_swevent_put_recursion_context(rctx);
5096 }
5097 EXPORT_SYMBOL_GPL(perf_tp_event);
5098 
tp_perf_event_destroy(struct perf_event * event)5099 static void tp_perf_event_destroy(struct perf_event *event)
5100 {
5101 	perf_trace_destroy(event);
5102 }
5103 
perf_tp_event_init(struct perf_event * event)5104 static int perf_tp_event_init(struct perf_event *event)
5105 {
5106 	int err;
5107 
5108 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
5109 		return -ENOENT;
5110 
5111 	err = perf_trace_init(event);
5112 	if (err)
5113 		return err;
5114 
5115 	event->destroy = tp_perf_event_destroy;
5116 
5117 	return 0;
5118 }
5119 
5120 static struct pmu perf_tracepoint = {
5121 	.task_ctx_nr	= perf_sw_context,
5122 
5123 	.event_init	= perf_tp_event_init,
5124 	.add		= perf_trace_add,
5125 	.del		= perf_trace_del,
5126 	.start		= perf_swevent_start,
5127 	.stop		= perf_swevent_stop,
5128 	.read		= perf_swevent_read,
5129 };
5130 
perf_tp_register(void)5131 static inline void perf_tp_register(void)
5132 {
5133 	perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5134 }
5135 
perf_event_set_filter(struct perf_event * event,void __user * arg)5136 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5137 {
5138 	char *filter_str;
5139 	int ret;
5140 
5141 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
5142 		return -EINVAL;
5143 
5144 	filter_str = strndup_user(arg, PAGE_SIZE);
5145 	if (IS_ERR(filter_str))
5146 		return PTR_ERR(filter_str);
5147 
5148 	ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
5149 
5150 	kfree(filter_str);
5151 	return ret;
5152 }
5153 
perf_event_free_filter(struct perf_event * event)5154 static void perf_event_free_filter(struct perf_event *event)
5155 {
5156 	ftrace_profile_free_filter(event);
5157 }
5158 
5159 #else
5160 
perf_tp_register(void)5161 static inline void perf_tp_register(void)
5162 {
5163 }
5164 
perf_event_set_filter(struct perf_event * event,void __user * arg)5165 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5166 {
5167 	return -ENOENT;
5168 }
5169 
perf_event_free_filter(struct perf_event * event)5170 static void perf_event_free_filter(struct perf_event *event)
5171 {
5172 }
5173 
5174 #endif /* CONFIG_EVENT_TRACING */
5175 
5176 #ifdef CONFIG_HAVE_HW_BREAKPOINT
perf_bp_event(struct perf_event * bp,void * data)5177 void perf_bp_event(struct perf_event *bp, void *data)
5178 {
5179 	struct perf_sample_data sample;
5180 	struct pt_regs *regs = data;
5181 
5182 	perf_sample_data_init(&sample, bp->attr.bp_addr);
5183 
5184 	if (!bp->hw.state && !perf_exclude_event(bp, regs))
5185 		perf_swevent_event(bp, 1, &sample, regs);
5186 }
5187 #endif
5188 
5189 /*
5190  * hrtimer based swevent callback
5191  */
5192 
perf_swevent_hrtimer(struct hrtimer * hrtimer)5193 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5194 {
5195 	enum hrtimer_restart ret = HRTIMER_RESTART;
5196 	struct perf_sample_data data;
5197 	struct pt_regs *regs;
5198 	struct perf_event *event;
5199 	u64 period;
5200 
5201 	event = container_of(hrtimer, struct perf_event, hw.hrtimer);
5202 
5203 	if (event->state != PERF_EVENT_STATE_ACTIVE)
5204 		return HRTIMER_NORESTART;
5205 
5206 	event->pmu->read(event);
5207 
5208 	perf_sample_data_init(&data, 0);
5209 	data.period = event->hw.last_period;
5210 	regs = get_irq_regs();
5211 
5212 	if (regs && !perf_exclude_event(event, regs)) {
5213 		if (!(event->attr.exclude_idle && is_idle_task(current)))
5214 			if (perf_event_overflow(event, &data, regs))
5215 				ret = HRTIMER_NORESTART;
5216 	}
5217 
5218 	period = max_t(u64, 10000, event->hw.sample_period);
5219 	hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5220 
5221 	return ret;
5222 }
5223 
perf_swevent_start_hrtimer(struct perf_event * event)5224 static void perf_swevent_start_hrtimer(struct perf_event *event)
5225 {
5226 	struct hw_perf_event *hwc = &event->hw;
5227 	s64 period;
5228 
5229 	if (!is_sampling_event(event))
5230 		return;
5231 
5232 	period = local64_read(&hwc->period_left);
5233 	if (period) {
5234 		if (period < 0)
5235 			period = 10000;
5236 
5237 		local64_set(&hwc->period_left, 0);
5238 	} else {
5239 		period = max_t(u64, 10000, hwc->sample_period);
5240 	}
5241 	__hrtimer_start_range_ns(&hwc->hrtimer,
5242 				ns_to_ktime(period), 0,
5243 				HRTIMER_MODE_REL_PINNED, 0);
5244 }
5245 
perf_swevent_cancel_hrtimer(struct perf_event * event)5246 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5247 {
5248 	struct hw_perf_event *hwc = &event->hw;
5249 
5250 	if (is_sampling_event(event)) {
5251 		ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
5252 		local64_set(&hwc->period_left, ktime_to_ns(remaining));
5253 
5254 		hrtimer_cancel(&hwc->hrtimer);
5255 	}
5256 }
5257 
perf_swevent_init_hrtimer(struct perf_event * event)5258 static void perf_swevent_init_hrtimer(struct perf_event *event)
5259 {
5260 	struct hw_perf_event *hwc = &event->hw;
5261 
5262 	if (!is_sampling_event(event))
5263 		return;
5264 
5265 	hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5266 	hwc->hrtimer.function = perf_swevent_hrtimer;
5267 
5268 	/*
5269 	 * Since hrtimers have a fixed rate, we can do a static freq->period
5270 	 * mapping and avoid the whole period adjust feedback stuff.
5271 	 */
5272 	if (event->attr.freq) {
5273 		long freq = event->attr.sample_freq;
5274 
5275 		event->attr.sample_period = NSEC_PER_SEC / freq;
5276 		hwc->sample_period = event->attr.sample_period;
5277 		local64_set(&hwc->period_left, hwc->sample_period);
5278 		event->attr.freq = 0;
5279 	}
5280 }
5281 
5282 /*
5283  * Software event: cpu wall time clock
5284  */
5285 
cpu_clock_event_update(struct perf_event * event)5286 static void cpu_clock_event_update(struct perf_event *event)
5287 {
5288 	s64 prev;
5289 	u64 now;
5290 
5291 	now = local_clock();
5292 	prev = local64_xchg(&event->hw.prev_count, now);
5293 	local64_add(now - prev, &event->count);
5294 }
5295 
cpu_clock_event_start(struct perf_event * event,int flags)5296 static void cpu_clock_event_start(struct perf_event *event, int flags)
5297 {
5298 	local64_set(&event->hw.prev_count, local_clock());
5299 	perf_swevent_start_hrtimer(event);
5300 }
5301 
cpu_clock_event_stop(struct perf_event * event,int flags)5302 static void cpu_clock_event_stop(struct perf_event *event, int flags)
5303 {
5304 	perf_swevent_cancel_hrtimer(event);
5305 	cpu_clock_event_update(event);
5306 }
5307 
cpu_clock_event_add(struct perf_event * event,int flags)5308 static int cpu_clock_event_add(struct perf_event *event, int flags)
5309 {
5310 	if (flags & PERF_EF_START)
5311 		cpu_clock_event_start(event, flags);
5312 
5313 	return 0;
5314 }
5315 
cpu_clock_event_del(struct perf_event * event,int flags)5316 static void cpu_clock_event_del(struct perf_event *event, int flags)
5317 {
5318 	cpu_clock_event_stop(event, flags);
5319 }
5320 
cpu_clock_event_read(struct perf_event * event)5321 static void cpu_clock_event_read(struct perf_event *event)
5322 {
5323 	cpu_clock_event_update(event);
5324 }
5325 
cpu_clock_event_init(struct perf_event * event)5326 static int cpu_clock_event_init(struct perf_event *event)
5327 {
5328 	if (event->attr.type != PERF_TYPE_SOFTWARE)
5329 		return -ENOENT;
5330 
5331 	if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
5332 		return -ENOENT;
5333 
5334 	perf_swevent_init_hrtimer(event);
5335 
5336 	return 0;
5337 }
5338 
5339 static struct pmu perf_cpu_clock = {
5340 	.task_ctx_nr	= perf_sw_context,
5341 
5342 	.event_init	= cpu_clock_event_init,
5343 	.add		= cpu_clock_event_add,
5344 	.del		= cpu_clock_event_del,
5345 	.start		= cpu_clock_event_start,
5346 	.stop		= cpu_clock_event_stop,
5347 	.read		= cpu_clock_event_read,
5348 };
5349 
5350 /*
5351  * Software event: task time clock
5352  */
5353 
task_clock_event_update(struct perf_event * event,u64 now)5354 static void task_clock_event_update(struct perf_event *event, u64 now)
5355 {
5356 	u64 prev;
5357 	s64 delta;
5358 
5359 	prev = local64_xchg(&event->hw.prev_count, now);
5360 	delta = now - prev;
5361 	local64_add(delta, &event->count);
5362 }
5363 
task_clock_event_start(struct perf_event * event,int flags)5364 static void task_clock_event_start(struct perf_event *event, int flags)
5365 {
5366 	local64_set(&event->hw.prev_count, event->ctx->time);
5367 	perf_swevent_start_hrtimer(event);
5368 }
5369 
task_clock_event_stop(struct perf_event * event,int flags)5370 static void task_clock_event_stop(struct perf_event *event, int flags)
5371 {
5372 	perf_swevent_cancel_hrtimer(event);
5373 	task_clock_event_update(event, event->ctx->time);
5374 }
5375 
task_clock_event_add(struct perf_event * event,int flags)5376 static int task_clock_event_add(struct perf_event *event, int flags)
5377 {
5378 	if (flags & PERF_EF_START)
5379 		task_clock_event_start(event, flags);
5380 
5381 	return 0;
5382 }
5383 
task_clock_event_del(struct perf_event * event,int flags)5384 static void task_clock_event_del(struct perf_event *event, int flags)
5385 {
5386 	task_clock_event_stop(event, PERF_EF_UPDATE);
5387 }
5388 
task_clock_event_read(struct perf_event * event)5389 static void task_clock_event_read(struct perf_event *event)
5390 {
5391 	u64 now = perf_clock();
5392 	u64 delta = now - event->ctx->timestamp;
5393 	u64 time = event->ctx->time + delta;
5394 
5395 	task_clock_event_update(event, time);
5396 }
5397 
task_clock_event_init(struct perf_event * event)5398 static int task_clock_event_init(struct perf_event *event)
5399 {
5400 	if (event->attr.type != PERF_TYPE_SOFTWARE)
5401 		return -ENOENT;
5402 
5403 	if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5404 		return -ENOENT;
5405 
5406 	perf_swevent_init_hrtimer(event);
5407 
5408 	return 0;
5409 }
5410 
5411 static struct pmu perf_task_clock = {
5412 	.task_ctx_nr	= perf_sw_context,
5413 
5414 	.event_init	= task_clock_event_init,
5415 	.add		= task_clock_event_add,
5416 	.del		= task_clock_event_del,
5417 	.start		= task_clock_event_start,
5418 	.stop		= task_clock_event_stop,
5419 	.read		= task_clock_event_read,
5420 };
5421 
perf_pmu_nop_void(struct pmu * pmu)5422 static void perf_pmu_nop_void(struct pmu *pmu)
5423 {
5424 }
5425 
perf_pmu_nop_int(struct pmu * pmu)5426 static int perf_pmu_nop_int(struct pmu *pmu)
5427 {
5428 	return 0;
5429 }
5430 
perf_pmu_start_txn(struct pmu * pmu)5431 static void perf_pmu_start_txn(struct pmu *pmu)
5432 {
5433 	perf_pmu_disable(pmu);
5434 }
5435 
perf_pmu_commit_txn(struct pmu * pmu)5436 static int perf_pmu_commit_txn(struct pmu *pmu)
5437 {
5438 	perf_pmu_enable(pmu);
5439 	return 0;
5440 }
5441 
perf_pmu_cancel_txn(struct pmu * pmu)5442 static void perf_pmu_cancel_txn(struct pmu *pmu)
5443 {
5444 	perf_pmu_enable(pmu);
5445 }
5446 
5447 /*
5448  * Ensures all contexts with the same task_ctx_nr have the same
5449  * pmu_cpu_context too.
5450  */
find_pmu_context(int ctxn)5451 static void *find_pmu_context(int ctxn)
5452 {
5453 	struct pmu *pmu;
5454 
5455 	if (ctxn < 0)
5456 		return NULL;
5457 
5458 	list_for_each_entry(pmu, &pmus, entry) {
5459 		if (pmu->task_ctx_nr == ctxn)
5460 			return pmu->pmu_cpu_context;
5461 	}
5462 
5463 	return NULL;
5464 }
5465 
update_pmu_context(struct pmu * pmu,struct pmu * old_pmu)5466 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
5467 {
5468 	int cpu;
5469 
5470 	for_each_possible_cpu(cpu) {
5471 		struct perf_cpu_context *cpuctx;
5472 
5473 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5474 
5475 		if (cpuctx->active_pmu == old_pmu)
5476 			cpuctx->active_pmu = pmu;
5477 	}
5478 }
5479 
free_pmu_context(struct pmu * pmu)5480 static void free_pmu_context(struct pmu *pmu)
5481 {
5482 	struct pmu *i;
5483 
5484 	mutex_lock(&pmus_lock);
5485 	/*
5486 	 * Like a real lame refcount.
5487 	 */
5488 	list_for_each_entry(i, &pmus, entry) {
5489 		if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
5490 			update_pmu_context(i, pmu);
5491 			goto out;
5492 		}
5493 	}
5494 
5495 	free_percpu(pmu->pmu_cpu_context);
5496 out:
5497 	mutex_unlock(&pmus_lock);
5498 }
5499 static struct idr pmu_idr;
5500 
5501 static ssize_t
type_show(struct device * dev,struct device_attribute * attr,char * page)5502 type_show(struct device *dev, struct device_attribute *attr, char *page)
5503 {
5504 	struct pmu *pmu = dev_get_drvdata(dev);
5505 
5506 	return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
5507 }
5508 
5509 static struct device_attribute pmu_dev_attrs[] = {
5510        __ATTR_RO(type),
5511        __ATTR_NULL,
5512 };
5513 
5514 static int pmu_bus_running;
5515 static struct bus_type pmu_bus = {
5516 	.name		= "event_source",
5517 	.dev_attrs	= pmu_dev_attrs,
5518 };
5519 
pmu_dev_release(struct device * dev)5520 static void pmu_dev_release(struct device *dev)
5521 {
5522 	kfree(dev);
5523 }
5524 
pmu_dev_alloc(struct pmu * pmu)5525 static int pmu_dev_alloc(struct pmu *pmu)
5526 {
5527 	int ret = -ENOMEM;
5528 
5529 	pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
5530 	if (!pmu->dev)
5531 		goto out;
5532 
5533 	device_initialize(pmu->dev);
5534 	ret = dev_set_name(pmu->dev, "%s", pmu->name);
5535 	if (ret)
5536 		goto free_dev;
5537 
5538 	dev_set_drvdata(pmu->dev, pmu);
5539 	pmu->dev->bus = &pmu_bus;
5540 	pmu->dev->release = pmu_dev_release;
5541 	ret = device_add(pmu->dev);
5542 	if (ret)
5543 		goto free_dev;
5544 
5545 out:
5546 	return ret;
5547 
5548 free_dev:
5549 	put_device(pmu->dev);
5550 	goto out;
5551 }
5552 
5553 static struct lock_class_key cpuctx_mutex;
5554 static struct lock_class_key cpuctx_lock;
5555 
perf_pmu_register(struct pmu * pmu,char * name,int type)5556 int perf_pmu_register(struct pmu *pmu, char *name, int type)
5557 {
5558 	int cpu, ret;
5559 
5560 	mutex_lock(&pmus_lock);
5561 	ret = -ENOMEM;
5562 	pmu->pmu_disable_count = alloc_percpu(int);
5563 	if (!pmu->pmu_disable_count)
5564 		goto unlock;
5565 
5566 	pmu->type = -1;
5567 	if (!name)
5568 		goto skip_type;
5569 	pmu->name = name;
5570 
5571 	if (type < 0) {
5572 		int err = idr_pre_get(&pmu_idr, GFP_KERNEL);
5573 		if (!err)
5574 			goto free_pdc;
5575 
5576 		err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type);
5577 		if (err) {
5578 			ret = err;
5579 			goto free_pdc;
5580 		}
5581 	}
5582 	pmu->type = type;
5583 
5584 	if (pmu_bus_running) {
5585 		ret = pmu_dev_alloc(pmu);
5586 		if (ret)
5587 			goto free_idr;
5588 	}
5589 
5590 skip_type:
5591 	pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
5592 	if (pmu->pmu_cpu_context)
5593 		goto got_cpu_context;
5594 
5595 	pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
5596 	if (!pmu->pmu_cpu_context)
5597 		goto free_dev;
5598 
5599 	for_each_possible_cpu(cpu) {
5600 		struct perf_cpu_context *cpuctx;
5601 
5602 		cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5603 		__perf_event_init_context(&cpuctx->ctx);
5604 		lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
5605 		lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
5606 		cpuctx->ctx.type = cpu_context;
5607 		cpuctx->ctx.pmu = pmu;
5608 		cpuctx->jiffies_interval = 1;
5609 		INIT_LIST_HEAD(&cpuctx->rotation_list);
5610 		cpuctx->active_pmu = pmu;
5611 	}
5612 
5613 got_cpu_context:
5614 	if (!pmu->start_txn) {
5615 		if (pmu->pmu_enable) {
5616 			/*
5617 			 * If we have pmu_enable/pmu_disable calls, install
5618 			 * transaction stubs that use that to try and batch
5619 			 * hardware accesses.
5620 			 */
5621 			pmu->start_txn  = perf_pmu_start_txn;
5622 			pmu->commit_txn = perf_pmu_commit_txn;
5623 			pmu->cancel_txn = perf_pmu_cancel_txn;
5624 		} else {
5625 			pmu->start_txn  = perf_pmu_nop_void;
5626 			pmu->commit_txn = perf_pmu_nop_int;
5627 			pmu->cancel_txn = perf_pmu_nop_void;
5628 		}
5629 	}
5630 
5631 	if (!pmu->pmu_enable) {
5632 		pmu->pmu_enable  = perf_pmu_nop_void;
5633 		pmu->pmu_disable = perf_pmu_nop_void;
5634 	}
5635 
5636 	list_add_rcu(&pmu->entry, &pmus);
5637 	ret = 0;
5638 unlock:
5639 	mutex_unlock(&pmus_lock);
5640 
5641 	return ret;
5642 
5643 free_dev:
5644 	device_del(pmu->dev);
5645 	put_device(pmu->dev);
5646 
5647 free_idr:
5648 	if (pmu->type >= PERF_TYPE_MAX)
5649 		idr_remove(&pmu_idr, pmu->type);
5650 
5651 free_pdc:
5652 	free_percpu(pmu->pmu_disable_count);
5653 	goto unlock;
5654 }
5655 
perf_pmu_unregister(struct pmu * pmu)5656 void perf_pmu_unregister(struct pmu *pmu)
5657 {
5658 	mutex_lock(&pmus_lock);
5659 	list_del_rcu(&pmu->entry);
5660 	mutex_unlock(&pmus_lock);
5661 
5662 	/*
5663 	 * We dereference the pmu list under both SRCU and regular RCU, so
5664 	 * synchronize against both of those.
5665 	 */
5666 	synchronize_srcu(&pmus_srcu);
5667 	synchronize_rcu();
5668 
5669 	free_percpu(pmu->pmu_disable_count);
5670 	if (pmu->type >= PERF_TYPE_MAX)
5671 		idr_remove(&pmu_idr, pmu->type);
5672 	device_del(pmu->dev);
5673 	put_device(pmu->dev);
5674 	free_pmu_context(pmu);
5675 }
5676 
perf_init_event(struct perf_event * event)5677 struct pmu *perf_init_event(struct perf_event *event)
5678 {
5679 	struct pmu *pmu = NULL;
5680 	int idx;
5681 	int ret;
5682 
5683 	idx = srcu_read_lock(&pmus_srcu);
5684 
5685 	rcu_read_lock();
5686 	pmu = idr_find(&pmu_idr, event->attr.type);
5687 	rcu_read_unlock();
5688 	if (pmu) {
5689 		event->pmu = pmu;
5690 		ret = pmu->event_init(event);
5691 		if (ret)
5692 			pmu = ERR_PTR(ret);
5693 		goto unlock;
5694 	}
5695 
5696 	list_for_each_entry_rcu(pmu, &pmus, entry) {
5697 		event->pmu = pmu;
5698 		ret = pmu->event_init(event);
5699 		if (!ret)
5700 			goto unlock;
5701 
5702 		if (ret != -ENOENT) {
5703 			pmu = ERR_PTR(ret);
5704 			goto unlock;
5705 		}
5706 	}
5707 	pmu = ERR_PTR(-ENOENT);
5708 unlock:
5709 	srcu_read_unlock(&pmus_srcu, idx);
5710 
5711 	return pmu;
5712 }
5713 
5714 /*
5715  * Allocate and initialize a event structure
5716  */
5717 static struct perf_event *
perf_event_alloc(struct perf_event_attr * attr,int cpu,struct task_struct * task,struct perf_event * group_leader,struct perf_event * parent_event,perf_overflow_handler_t overflow_handler,void * context)5718 perf_event_alloc(struct perf_event_attr *attr, int cpu,
5719 		 struct task_struct *task,
5720 		 struct perf_event *group_leader,
5721 		 struct perf_event *parent_event,
5722 		 perf_overflow_handler_t overflow_handler,
5723 		 void *context)
5724 {
5725 	struct pmu *pmu;
5726 	struct perf_event *event;
5727 	struct hw_perf_event *hwc;
5728 	long err;
5729 
5730 	if ((unsigned)cpu >= nr_cpu_ids) {
5731 		if (!task || cpu != -1)
5732 			return ERR_PTR(-EINVAL);
5733 	}
5734 
5735 	event = kzalloc(sizeof(*event), GFP_KERNEL);
5736 	if (!event)
5737 		return ERR_PTR(-ENOMEM);
5738 
5739 	/*
5740 	 * Single events are their own group leaders, with an
5741 	 * empty sibling list:
5742 	 */
5743 	if (!group_leader)
5744 		group_leader = event;
5745 
5746 	mutex_init(&event->child_mutex);
5747 	INIT_LIST_HEAD(&event->child_list);
5748 
5749 	INIT_LIST_HEAD(&event->group_entry);
5750 	INIT_LIST_HEAD(&event->event_entry);
5751 	INIT_LIST_HEAD(&event->sibling_list);
5752 	INIT_LIST_HEAD(&event->rb_entry);
5753 
5754 	init_waitqueue_head(&event->waitq);
5755 	init_irq_work(&event->pending, perf_pending_event);
5756 
5757 	mutex_init(&event->mmap_mutex);
5758 
5759 	event->cpu		= cpu;
5760 	event->attr		= *attr;
5761 	event->group_leader	= group_leader;
5762 	event->pmu		= NULL;
5763 	event->oncpu		= -1;
5764 
5765 	event->parent		= parent_event;
5766 
5767 	event->ns		= get_pid_ns(current->nsproxy->pid_ns);
5768 	event->id		= atomic64_inc_return(&perf_event_id);
5769 
5770 	event->state		= PERF_EVENT_STATE_INACTIVE;
5771 
5772 	if (task) {
5773 		event->attach_state = PERF_ATTACH_TASK;
5774 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5775 		/*
5776 		 * hw_breakpoint is a bit difficult here..
5777 		 */
5778 		if (attr->type == PERF_TYPE_BREAKPOINT)
5779 			event->hw.bp_target = task;
5780 #endif
5781 	}
5782 
5783 	if (!overflow_handler && parent_event) {
5784 		overflow_handler = parent_event->overflow_handler;
5785 		context = parent_event->overflow_handler_context;
5786 	}
5787 
5788 	event->overflow_handler	= overflow_handler;
5789 	event->overflow_handler_context = context;
5790 
5791 	if (attr->disabled)
5792 		event->state = PERF_EVENT_STATE_OFF;
5793 
5794 	pmu = NULL;
5795 
5796 	hwc = &event->hw;
5797 	hwc->sample_period = attr->sample_period;
5798 	if (attr->freq && attr->sample_freq)
5799 		hwc->sample_period = 1;
5800 	hwc->last_period = hwc->sample_period;
5801 
5802 	local64_set(&hwc->period_left, hwc->sample_period);
5803 
5804 	/*
5805 	 * we currently do not support PERF_FORMAT_GROUP on inherited events
5806 	 */
5807 	if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5808 		goto done;
5809 
5810 	pmu = perf_init_event(event);
5811 
5812 done:
5813 	err = 0;
5814 	if (!pmu)
5815 		err = -EINVAL;
5816 	else if (IS_ERR(pmu))
5817 		err = PTR_ERR(pmu);
5818 
5819 	if (err) {
5820 		if (event->ns)
5821 			put_pid_ns(event->ns);
5822 		kfree(event);
5823 		return ERR_PTR(err);
5824 	}
5825 
5826 	if (!event->parent) {
5827 		if (event->attach_state & PERF_ATTACH_TASK)
5828 			jump_label_inc(&perf_sched_events.key);
5829 		if (event->attr.mmap || event->attr.mmap_data)
5830 			atomic_inc(&nr_mmap_events);
5831 		if (event->attr.comm)
5832 			atomic_inc(&nr_comm_events);
5833 		if (event->attr.task)
5834 			atomic_inc(&nr_task_events);
5835 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
5836 			err = get_callchain_buffers();
5837 			if (err) {
5838 				free_event(event);
5839 				return ERR_PTR(err);
5840 			}
5841 		}
5842 	}
5843 
5844 	return event;
5845 }
5846 
perf_copy_attr(struct perf_event_attr __user * uattr,struct perf_event_attr * attr)5847 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5848 			  struct perf_event_attr *attr)
5849 {
5850 	u32 size;
5851 	int ret;
5852 
5853 	if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
5854 		return -EFAULT;
5855 
5856 	/*
5857 	 * zero the full structure, so that a short copy will be nice.
5858 	 */
5859 	memset(attr, 0, sizeof(*attr));
5860 
5861 	ret = get_user(size, &uattr->size);
5862 	if (ret)
5863 		return ret;
5864 
5865 	if (size > PAGE_SIZE)	/* silly large */
5866 		goto err_size;
5867 
5868 	if (!size)		/* abi compat */
5869 		size = PERF_ATTR_SIZE_VER0;
5870 
5871 	if (size < PERF_ATTR_SIZE_VER0)
5872 		goto err_size;
5873 
5874 	/*
5875 	 * If we're handed a bigger struct than we know of,
5876 	 * ensure all the unknown bits are 0 - i.e. new
5877 	 * user-space does not rely on any kernel feature
5878 	 * extensions we dont know about yet.
5879 	 */
5880 	if (size > sizeof(*attr)) {
5881 		unsigned char __user *addr;
5882 		unsigned char __user *end;
5883 		unsigned char val;
5884 
5885 		addr = (void __user *)uattr + sizeof(*attr);
5886 		end  = (void __user *)uattr + size;
5887 
5888 		for (; addr < end; addr++) {
5889 			ret = get_user(val, addr);
5890 			if (ret)
5891 				return ret;
5892 			if (val)
5893 				goto err_size;
5894 		}
5895 		size = sizeof(*attr);
5896 	}
5897 
5898 	ret = copy_from_user(attr, uattr, size);
5899 	if (ret)
5900 		return -EFAULT;
5901 
5902 	if (attr->__reserved_1)
5903 		return -EINVAL;
5904 
5905 	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
5906 		return -EINVAL;
5907 
5908 	if (attr->read_format & ~(PERF_FORMAT_MAX-1))
5909 		return -EINVAL;
5910 
5911 out:
5912 	return ret;
5913 
5914 err_size:
5915 	put_user(sizeof(*attr), &uattr->size);
5916 	ret = -E2BIG;
5917 	goto out;
5918 }
5919 
5920 static int
perf_event_set_output(struct perf_event * event,struct perf_event * output_event)5921 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5922 {
5923 	struct ring_buffer *rb = NULL, *old_rb = NULL;
5924 	int ret = -EINVAL;
5925 
5926 	if (!output_event)
5927 		goto set;
5928 
5929 	/* don't allow circular references */
5930 	if (event == output_event)
5931 		goto out;
5932 
5933 	/*
5934 	 * Don't allow cross-cpu buffers
5935 	 */
5936 	if (output_event->cpu != event->cpu)
5937 		goto out;
5938 
5939 	/*
5940 	 * If its not a per-cpu rb, it must be the same task.
5941 	 */
5942 	if (output_event->cpu == -1 && output_event->ctx != event->ctx)
5943 		goto out;
5944 
5945 set:
5946 	mutex_lock(&event->mmap_mutex);
5947 	/* Can't redirect output if we've got an active mmap() */
5948 	if (atomic_read(&event->mmap_count))
5949 		goto unlock;
5950 
5951 	if (output_event) {
5952 		/* get the rb we want to redirect to */
5953 		rb = ring_buffer_get(output_event);
5954 		if (!rb)
5955 			goto unlock;
5956 	}
5957 
5958 	old_rb = event->rb;
5959 	rcu_assign_pointer(event->rb, rb);
5960 	if (old_rb)
5961 		ring_buffer_detach(event, old_rb);
5962 	ret = 0;
5963 unlock:
5964 	mutex_unlock(&event->mmap_mutex);
5965 
5966 	if (old_rb)
5967 		ring_buffer_put(old_rb);
5968 out:
5969 	return ret;
5970 }
5971 
5972 /**
5973  * sys_perf_event_open - open a performance event, associate it to a task/cpu
5974  *
5975  * @attr_uptr:	event_id type attributes for monitoring/sampling
5976  * @pid:		target pid
5977  * @cpu:		target cpu
5978  * @group_fd:		group leader event fd
5979  */
SYSCALL_DEFINE5(perf_event_open,struct perf_event_attr __user *,attr_uptr,pid_t,pid,int,cpu,int,group_fd,unsigned long,flags)5980 SYSCALL_DEFINE5(perf_event_open,
5981 		struct perf_event_attr __user *, attr_uptr,
5982 		pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
5983 {
5984 	struct perf_event *group_leader = NULL, *output_event = NULL;
5985 	struct perf_event *event, *sibling;
5986 	struct perf_event_attr attr;
5987 	struct perf_event_context *ctx;
5988 	struct file *event_file = NULL;
5989 	struct file *group_file = NULL;
5990 	struct task_struct *task = NULL;
5991 	struct pmu *pmu;
5992 	int event_fd;
5993 	int move_group = 0;
5994 	int fput_needed = 0;
5995 	int err;
5996 
5997 	/* for future expandability... */
5998 	if (flags & ~PERF_FLAG_ALL)
5999 		return -EINVAL;
6000 
6001 	err = perf_copy_attr(attr_uptr, &attr);
6002 	if (err)
6003 		return err;
6004 
6005 	if (!attr.exclude_kernel) {
6006 		if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6007 			return -EACCES;
6008 	}
6009 
6010 	if (attr.freq) {
6011 		if (attr.sample_freq > sysctl_perf_event_sample_rate)
6012 			return -EINVAL;
6013 	}
6014 
6015 	/*
6016 	 * In cgroup mode, the pid argument is used to pass the fd
6017 	 * opened to the cgroup directory in cgroupfs. The cpu argument
6018 	 * designates the cpu on which to monitor threads from that
6019 	 * cgroup.
6020 	 */
6021 	if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
6022 		return -EINVAL;
6023 
6024 	event_fd = get_unused_fd_flags(O_RDWR);
6025 	if (event_fd < 0)
6026 		return event_fd;
6027 
6028 	if (group_fd != -1) {
6029 		group_leader = perf_fget_light(group_fd, &fput_needed);
6030 		if (IS_ERR(group_leader)) {
6031 			err = PTR_ERR(group_leader);
6032 			goto err_fd;
6033 		}
6034 		group_file = group_leader->filp;
6035 		if (flags & PERF_FLAG_FD_OUTPUT)
6036 			output_event = group_leader;
6037 		if (flags & PERF_FLAG_FD_NO_GROUP)
6038 			group_leader = NULL;
6039 	}
6040 
6041 	if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6042 		task = find_lively_task_by_vpid(pid);
6043 		if (IS_ERR(task)) {
6044 			err = PTR_ERR(task);
6045 			goto err_group_fd;
6046 		}
6047 	}
6048 
6049 	event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
6050 				 NULL, NULL);
6051 	if (IS_ERR(event)) {
6052 		err = PTR_ERR(event);
6053 		goto err_task;
6054 	}
6055 
6056 	if (flags & PERF_FLAG_PID_CGROUP) {
6057 		err = perf_cgroup_connect(pid, event, &attr, group_leader);
6058 		if (err)
6059 			goto err_alloc;
6060 		/*
6061 		 * one more event:
6062 		 * - that has cgroup constraint on event->cpu
6063 		 * - that may need work on context switch
6064 		 */
6065 		atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
6066 		jump_label_inc(&perf_sched_events.key);
6067 	}
6068 
6069 	/*
6070 	 * Special case software events and allow them to be part of
6071 	 * any hardware group.
6072 	 */
6073 	pmu = event->pmu;
6074 
6075 	if (group_leader &&
6076 	    (is_software_event(event) != is_software_event(group_leader))) {
6077 		if (is_software_event(event)) {
6078 			/*
6079 			 * If event and group_leader are not both a software
6080 			 * event, and event is, then group leader is not.
6081 			 *
6082 			 * Allow the addition of software events to !software
6083 			 * groups, this is safe because software events never
6084 			 * fail to schedule.
6085 			 */
6086 			pmu = group_leader->pmu;
6087 		} else if (is_software_event(group_leader) &&
6088 			   (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
6089 			/*
6090 			 * In case the group is a pure software group, and we
6091 			 * try to add a hardware event, move the whole group to
6092 			 * the hardware context.
6093 			 */
6094 			move_group = 1;
6095 		}
6096 	}
6097 
6098 	/*
6099 	 * Get the target context (task or percpu):
6100 	 */
6101 	ctx = find_get_context(pmu, task, cpu);
6102 	if (IS_ERR(ctx)) {
6103 		err = PTR_ERR(ctx);
6104 		goto err_alloc;
6105 	}
6106 
6107 	if (task) {
6108 		put_task_struct(task);
6109 		task = NULL;
6110 	}
6111 
6112 	/*
6113 	 * Look up the group leader (we will attach this event to it):
6114 	 */
6115 	if (group_leader) {
6116 		err = -EINVAL;
6117 
6118 		/*
6119 		 * Do not allow a recursive hierarchy (this new sibling
6120 		 * becoming part of another group-sibling):
6121 		 */
6122 		if (group_leader->group_leader != group_leader)
6123 			goto err_context;
6124 		/*
6125 		 * Do not allow to attach to a group in a different
6126 		 * task or CPU context:
6127 		 */
6128 		if (move_group) {
6129 			if (group_leader->ctx->type != ctx->type)
6130 				goto err_context;
6131 		} else {
6132 			if (group_leader->ctx != ctx)
6133 				goto err_context;
6134 		}
6135 
6136 		/*
6137 		 * Only a group leader can be exclusive or pinned
6138 		 */
6139 		if (attr.exclusive || attr.pinned)
6140 			goto err_context;
6141 	}
6142 
6143 	if (output_event) {
6144 		err = perf_event_set_output(event, output_event);
6145 		if (err)
6146 			goto err_context;
6147 	}
6148 
6149 	event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
6150 	if (IS_ERR(event_file)) {
6151 		err = PTR_ERR(event_file);
6152 		goto err_context;
6153 	}
6154 
6155 	if (move_group) {
6156 		struct perf_event_context *gctx = group_leader->ctx;
6157 
6158 		mutex_lock(&gctx->mutex);
6159 		perf_remove_from_context(group_leader);
6160 		list_for_each_entry(sibling, &group_leader->sibling_list,
6161 				    group_entry) {
6162 			perf_remove_from_context(sibling);
6163 			put_ctx(gctx);
6164 		}
6165 		mutex_unlock(&gctx->mutex);
6166 		put_ctx(gctx);
6167 	}
6168 
6169 	event->filp = event_file;
6170 	WARN_ON_ONCE(ctx->parent_ctx);
6171 	mutex_lock(&ctx->mutex);
6172 
6173 	if (move_group) {
6174 		perf_install_in_context(ctx, group_leader, cpu);
6175 		get_ctx(ctx);
6176 		list_for_each_entry(sibling, &group_leader->sibling_list,
6177 				    group_entry) {
6178 			perf_install_in_context(ctx, sibling, cpu);
6179 			get_ctx(ctx);
6180 		}
6181 	}
6182 
6183 	perf_install_in_context(ctx, event, cpu);
6184 	++ctx->generation;
6185 	perf_unpin_context(ctx);
6186 	mutex_unlock(&ctx->mutex);
6187 
6188 	event->owner = current;
6189 
6190 	mutex_lock(&current->perf_event_mutex);
6191 	list_add_tail(&event->owner_entry, &current->perf_event_list);
6192 	mutex_unlock(&current->perf_event_mutex);
6193 
6194 	/*
6195 	 * Precalculate sample_data sizes
6196 	 */
6197 	perf_event__header_size(event);
6198 	perf_event__id_header_size(event);
6199 
6200 	/*
6201 	 * Drop the reference on the group_event after placing the
6202 	 * new event on the sibling_list. This ensures destruction
6203 	 * of the group leader will find the pointer to itself in
6204 	 * perf_group_detach().
6205 	 */
6206 	fput_light(group_file, fput_needed);
6207 	fd_install(event_fd, event_file);
6208 	return event_fd;
6209 
6210 err_context:
6211 	perf_unpin_context(ctx);
6212 	put_ctx(ctx);
6213 err_alloc:
6214 	free_event(event);
6215 err_task:
6216 	if (task)
6217 		put_task_struct(task);
6218 err_group_fd:
6219 	fput_light(group_file, fput_needed);
6220 err_fd:
6221 	put_unused_fd(event_fd);
6222 	return err;
6223 }
6224 
6225 /**
6226  * perf_event_create_kernel_counter
6227  *
6228  * @attr: attributes of the counter to create
6229  * @cpu: cpu in which the counter is bound
6230  * @task: task to profile (NULL for percpu)
6231  */
6232 struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr * attr,int cpu,struct task_struct * task,perf_overflow_handler_t overflow_handler,void * context)6233 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
6234 				 struct task_struct *task,
6235 				 perf_overflow_handler_t overflow_handler,
6236 				 void *context)
6237 {
6238 	struct perf_event_context *ctx;
6239 	struct perf_event *event;
6240 	int err;
6241 
6242 	/*
6243 	 * Get the target context (task or percpu):
6244 	 */
6245 
6246 	event = perf_event_alloc(attr, cpu, task, NULL, NULL,
6247 				 overflow_handler, context);
6248 	if (IS_ERR(event)) {
6249 		err = PTR_ERR(event);
6250 		goto err;
6251 	}
6252 
6253 	ctx = find_get_context(event->pmu, task, cpu);
6254 	if (IS_ERR(ctx)) {
6255 		err = PTR_ERR(ctx);
6256 		goto err_free;
6257 	}
6258 
6259 	event->filp = NULL;
6260 	WARN_ON_ONCE(ctx->parent_ctx);
6261 	mutex_lock(&ctx->mutex);
6262 	perf_install_in_context(ctx, event, cpu);
6263 	++ctx->generation;
6264 	perf_unpin_context(ctx);
6265 	mutex_unlock(&ctx->mutex);
6266 
6267 	return event;
6268 
6269 err_free:
6270 	free_event(event);
6271 err:
6272 	return ERR_PTR(err);
6273 }
6274 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
6275 
sync_child_event(struct perf_event * child_event,struct task_struct * child)6276 static void sync_child_event(struct perf_event *child_event,
6277 			       struct task_struct *child)
6278 {
6279 	struct perf_event *parent_event = child_event->parent;
6280 	u64 child_val;
6281 
6282 	if (child_event->attr.inherit_stat)
6283 		perf_event_read_event(child_event, child);
6284 
6285 	child_val = perf_event_count(child_event);
6286 
6287 	/*
6288 	 * Add back the child's count to the parent's count:
6289 	 */
6290 	atomic64_add(child_val, &parent_event->child_count);
6291 	atomic64_add(child_event->total_time_enabled,
6292 		     &parent_event->child_total_time_enabled);
6293 	atomic64_add(child_event->total_time_running,
6294 		     &parent_event->child_total_time_running);
6295 
6296 	/*
6297 	 * Remove this event from the parent's list
6298 	 */
6299 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6300 	mutex_lock(&parent_event->child_mutex);
6301 	list_del_init(&child_event->child_list);
6302 	mutex_unlock(&parent_event->child_mutex);
6303 
6304 	/*
6305 	 * Release the parent event, if this was the last
6306 	 * reference to it.
6307 	 */
6308 	fput(parent_event->filp);
6309 }
6310 
6311 static void
__perf_event_exit_task(struct perf_event * child_event,struct perf_event_context * child_ctx,struct task_struct * child)6312 __perf_event_exit_task(struct perf_event *child_event,
6313 			 struct perf_event_context *child_ctx,
6314 			 struct task_struct *child)
6315 {
6316 	if (child_event->parent) {
6317 		raw_spin_lock_irq(&child_ctx->lock);
6318 		perf_group_detach(child_event);
6319 		raw_spin_unlock_irq(&child_ctx->lock);
6320 	}
6321 
6322 	perf_remove_from_context(child_event);
6323 
6324 	/*
6325 	 * It can happen that the parent exits first, and has events
6326 	 * that are still around due to the child reference. These
6327 	 * events need to be zapped.
6328 	 */
6329 	if (child_event->parent) {
6330 		sync_child_event(child_event, child);
6331 		free_event(child_event);
6332 	}
6333 }
6334 
perf_event_exit_task_context(struct task_struct * child,int ctxn)6335 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
6336 {
6337 	struct perf_event *child_event, *tmp;
6338 	struct perf_event_context *child_ctx;
6339 	unsigned long flags;
6340 
6341 	if (likely(!child->perf_event_ctxp[ctxn])) {
6342 		perf_event_task(child, NULL, 0);
6343 		return;
6344 	}
6345 
6346 	local_irq_save(flags);
6347 	/*
6348 	 * We can't reschedule here because interrupts are disabled,
6349 	 * and either child is current or it is a task that can't be
6350 	 * scheduled, so we are now safe from rescheduling changing
6351 	 * our context.
6352 	 */
6353 	child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
6354 
6355 	/*
6356 	 * Take the context lock here so that if find_get_context is
6357 	 * reading child->perf_event_ctxp, we wait until it has
6358 	 * incremented the context's refcount before we do put_ctx below.
6359 	 */
6360 	raw_spin_lock(&child_ctx->lock);
6361 	task_ctx_sched_out(child_ctx);
6362 	child->perf_event_ctxp[ctxn] = NULL;
6363 	/*
6364 	 * If this context is a clone; unclone it so it can't get
6365 	 * swapped to another process while we're removing all
6366 	 * the events from it.
6367 	 */
6368 	unclone_ctx(child_ctx);
6369 	update_context_time(child_ctx);
6370 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6371 
6372 	/*
6373 	 * Report the task dead after unscheduling the events so that we
6374 	 * won't get any samples after PERF_RECORD_EXIT. We can however still
6375 	 * get a few PERF_RECORD_READ events.
6376 	 */
6377 	perf_event_task(child, child_ctx, 0);
6378 
6379 	/*
6380 	 * We can recurse on the same lock type through:
6381 	 *
6382 	 *   __perf_event_exit_task()
6383 	 *     sync_child_event()
6384 	 *       fput(parent_event->filp)
6385 	 *         perf_release()
6386 	 *           mutex_lock(&ctx->mutex)
6387 	 *
6388 	 * But since its the parent context it won't be the same instance.
6389 	 */
6390 	mutex_lock(&child_ctx->mutex);
6391 
6392 again:
6393 	list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
6394 				 group_entry)
6395 		__perf_event_exit_task(child_event, child_ctx, child);
6396 
6397 	list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
6398 				 group_entry)
6399 		__perf_event_exit_task(child_event, child_ctx, child);
6400 
6401 	/*
6402 	 * If the last event was a group event, it will have appended all
6403 	 * its siblings to the list, but we obtained 'tmp' before that which
6404 	 * will still point to the list head terminating the iteration.
6405 	 */
6406 	if (!list_empty(&child_ctx->pinned_groups) ||
6407 	    !list_empty(&child_ctx->flexible_groups))
6408 		goto again;
6409 
6410 	mutex_unlock(&child_ctx->mutex);
6411 
6412 	put_ctx(child_ctx);
6413 }
6414 
6415 /*
6416  * When a child task exits, feed back event values to parent events.
6417  */
perf_event_exit_task(struct task_struct * child)6418 void perf_event_exit_task(struct task_struct *child)
6419 {
6420 	struct perf_event *event, *tmp;
6421 	int ctxn;
6422 
6423 	mutex_lock(&child->perf_event_mutex);
6424 	list_for_each_entry_safe(event, tmp, &child->perf_event_list,
6425 				 owner_entry) {
6426 		list_del_init(&event->owner_entry);
6427 
6428 		/*
6429 		 * Ensure the list deletion is visible before we clear
6430 		 * the owner, closes a race against perf_release() where
6431 		 * we need to serialize on the owner->perf_event_mutex.
6432 		 */
6433 		smp_wmb();
6434 		event->owner = NULL;
6435 	}
6436 	mutex_unlock(&child->perf_event_mutex);
6437 
6438 	for_each_task_context_nr(ctxn)
6439 		perf_event_exit_task_context(child, ctxn);
6440 }
6441 
perf_free_event(struct perf_event * event,struct perf_event_context * ctx)6442 static void perf_free_event(struct perf_event *event,
6443 			    struct perf_event_context *ctx)
6444 {
6445 	struct perf_event *parent = event->parent;
6446 
6447 	if (WARN_ON_ONCE(!parent))
6448 		return;
6449 
6450 	mutex_lock(&parent->child_mutex);
6451 	list_del_init(&event->child_list);
6452 	mutex_unlock(&parent->child_mutex);
6453 
6454 	fput(parent->filp);
6455 
6456 	perf_group_detach(event);
6457 	list_del_event(event, ctx);
6458 	free_event(event);
6459 }
6460 
6461 /*
6462  * free an unexposed, unused context as created by inheritance by
6463  * perf_event_init_task below, used by fork() in case of fail.
6464  */
perf_event_free_task(struct task_struct * task)6465 void perf_event_free_task(struct task_struct *task)
6466 {
6467 	struct perf_event_context *ctx;
6468 	struct perf_event *event, *tmp;
6469 	int ctxn;
6470 
6471 	for_each_task_context_nr(ctxn) {
6472 		ctx = task->perf_event_ctxp[ctxn];
6473 		if (!ctx)
6474 			continue;
6475 
6476 		mutex_lock(&ctx->mutex);
6477 again:
6478 		list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
6479 				group_entry)
6480 			perf_free_event(event, ctx);
6481 
6482 		list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
6483 				group_entry)
6484 			perf_free_event(event, ctx);
6485 
6486 		if (!list_empty(&ctx->pinned_groups) ||
6487 				!list_empty(&ctx->flexible_groups))
6488 			goto again;
6489 
6490 		mutex_unlock(&ctx->mutex);
6491 
6492 		put_ctx(ctx);
6493 	}
6494 }
6495 
perf_event_delayed_put(struct task_struct * task)6496 void perf_event_delayed_put(struct task_struct *task)
6497 {
6498 	int ctxn;
6499 
6500 	for_each_task_context_nr(ctxn)
6501 		WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
6502 }
6503 
6504 /*
6505  * inherit a event from parent task to child task:
6506  */
6507 static struct perf_event *
inherit_event(struct perf_event * parent_event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,struct perf_event * group_leader,struct perf_event_context * child_ctx)6508 inherit_event(struct perf_event *parent_event,
6509 	      struct task_struct *parent,
6510 	      struct perf_event_context *parent_ctx,
6511 	      struct task_struct *child,
6512 	      struct perf_event *group_leader,
6513 	      struct perf_event_context *child_ctx)
6514 {
6515 	struct perf_event *child_event;
6516 	unsigned long flags;
6517 
6518 	/*
6519 	 * Instead of creating recursive hierarchies of events,
6520 	 * we link inherited events back to the original parent,
6521 	 * which has a filp for sure, which we use as the reference
6522 	 * count:
6523 	 */
6524 	if (parent_event->parent)
6525 		parent_event = parent_event->parent;
6526 
6527 	child_event = perf_event_alloc(&parent_event->attr,
6528 					   parent_event->cpu,
6529 					   child,
6530 					   group_leader, parent_event,
6531 				           NULL, NULL);
6532 	if (IS_ERR(child_event))
6533 		return child_event;
6534 	get_ctx(child_ctx);
6535 
6536 	/*
6537 	 * Make the child state follow the state of the parent event,
6538 	 * not its attr.disabled bit.  We hold the parent's mutex,
6539 	 * so we won't race with perf_event_{en, dis}able_family.
6540 	 */
6541 	if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
6542 		child_event->state = PERF_EVENT_STATE_INACTIVE;
6543 	else
6544 		child_event->state = PERF_EVENT_STATE_OFF;
6545 
6546 	if (parent_event->attr.freq) {
6547 		u64 sample_period = parent_event->hw.sample_period;
6548 		struct hw_perf_event *hwc = &child_event->hw;
6549 
6550 		hwc->sample_period = sample_period;
6551 		hwc->last_period   = sample_period;
6552 
6553 		local64_set(&hwc->period_left, sample_period);
6554 	}
6555 
6556 	child_event->ctx = child_ctx;
6557 	child_event->overflow_handler = parent_event->overflow_handler;
6558 	child_event->overflow_handler_context
6559 		= parent_event->overflow_handler_context;
6560 
6561 	/*
6562 	 * Precalculate sample_data sizes
6563 	 */
6564 	perf_event__header_size(child_event);
6565 	perf_event__id_header_size(child_event);
6566 
6567 	/*
6568 	 * Link it up in the child's context:
6569 	 */
6570 	raw_spin_lock_irqsave(&child_ctx->lock, flags);
6571 	add_event_to_ctx(child_event, child_ctx);
6572 	raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6573 
6574 	/*
6575 	 * Get a reference to the parent filp - we will fput it
6576 	 * when the child event exits. This is safe to do because
6577 	 * we are in the parent and we know that the filp still
6578 	 * exists and has a nonzero count:
6579 	 */
6580 	atomic_long_inc(&parent_event->filp->f_count);
6581 
6582 	/*
6583 	 * Link this into the parent event's child list
6584 	 */
6585 	WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6586 	mutex_lock(&parent_event->child_mutex);
6587 	list_add_tail(&child_event->child_list, &parent_event->child_list);
6588 	mutex_unlock(&parent_event->child_mutex);
6589 
6590 	return child_event;
6591 }
6592 
inherit_group(struct perf_event * parent_event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,struct perf_event_context * child_ctx)6593 static int inherit_group(struct perf_event *parent_event,
6594 	      struct task_struct *parent,
6595 	      struct perf_event_context *parent_ctx,
6596 	      struct task_struct *child,
6597 	      struct perf_event_context *child_ctx)
6598 {
6599 	struct perf_event *leader;
6600 	struct perf_event *sub;
6601 	struct perf_event *child_ctr;
6602 
6603 	leader = inherit_event(parent_event, parent, parent_ctx,
6604 				 child, NULL, child_ctx);
6605 	if (IS_ERR(leader))
6606 		return PTR_ERR(leader);
6607 	list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
6608 		child_ctr = inherit_event(sub, parent, parent_ctx,
6609 					    child, leader, child_ctx);
6610 		if (IS_ERR(child_ctr))
6611 			return PTR_ERR(child_ctr);
6612 	}
6613 	return 0;
6614 }
6615 
6616 static int
inherit_task_group(struct perf_event * event,struct task_struct * parent,struct perf_event_context * parent_ctx,struct task_struct * child,int ctxn,int * inherited_all)6617 inherit_task_group(struct perf_event *event, struct task_struct *parent,
6618 		   struct perf_event_context *parent_ctx,
6619 		   struct task_struct *child, int ctxn,
6620 		   int *inherited_all)
6621 {
6622 	int ret;
6623 	struct perf_event_context *child_ctx;
6624 
6625 	if (!event->attr.inherit) {
6626 		*inherited_all = 0;
6627 		return 0;
6628 	}
6629 
6630 	child_ctx = child->perf_event_ctxp[ctxn];
6631 	if (!child_ctx) {
6632 		/*
6633 		 * This is executed from the parent task context, so
6634 		 * inherit events that have been marked for cloning.
6635 		 * First allocate and initialize a context for the
6636 		 * child.
6637 		 */
6638 
6639 		child_ctx = alloc_perf_context(event->pmu, child);
6640 		if (!child_ctx)
6641 			return -ENOMEM;
6642 
6643 		child->perf_event_ctxp[ctxn] = child_ctx;
6644 	}
6645 
6646 	ret = inherit_group(event, parent, parent_ctx,
6647 			    child, child_ctx);
6648 
6649 	if (ret)
6650 		*inherited_all = 0;
6651 
6652 	return ret;
6653 }
6654 
6655 /*
6656  * Initialize the perf_event context in task_struct
6657  */
perf_event_init_context(struct task_struct * child,int ctxn)6658 int perf_event_init_context(struct task_struct *child, int ctxn)
6659 {
6660 	struct perf_event_context *child_ctx, *parent_ctx;
6661 	struct perf_event_context *cloned_ctx;
6662 	struct perf_event *event;
6663 	struct task_struct *parent = current;
6664 	int inherited_all = 1;
6665 	unsigned long flags;
6666 	int ret = 0;
6667 
6668 	if (likely(!parent->perf_event_ctxp[ctxn]))
6669 		return 0;
6670 
6671 	/*
6672 	 * If the parent's context is a clone, pin it so it won't get
6673 	 * swapped under us.
6674 	 */
6675 	parent_ctx = perf_pin_task_context(parent, ctxn);
6676 
6677 	/*
6678 	 * No need to check if parent_ctx != NULL here; since we saw
6679 	 * it non-NULL earlier, the only reason for it to become NULL
6680 	 * is if we exit, and since we're currently in the middle of
6681 	 * a fork we can't be exiting at the same time.
6682 	 */
6683 
6684 	/*
6685 	 * Lock the parent list. No need to lock the child - not PID
6686 	 * hashed yet and not running, so nobody can access it.
6687 	 */
6688 	mutex_lock(&parent_ctx->mutex);
6689 
6690 	/*
6691 	 * We dont have to disable NMIs - we are only looking at
6692 	 * the list, not manipulating it:
6693 	 */
6694 	list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
6695 		ret = inherit_task_group(event, parent, parent_ctx,
6696 					 child, ctxn, &inherited_all);
6697 		if (ret)
6698 			break;
6699 	}
6700 
6701 	/*
6702 	 * We can't hold ctx->lock when iterating the ->flexible_group list due
6703 	 * to allocations, but we need to prevent rotation because
6704 	 * rotate_ctx() will change the list from interrupt context.
6705 	 */
6706 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6707 	parent_ctx->rotate_disable = 1;
6708 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6709 
6710 	list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
6711 		ret = inherit_task_group(event, parent, parent_ctx,
6712 					 child, ctxn, &inherited_all);
6713 		if (ret)
6714 			break;
6715 	}
6716 
6717 	raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6718 	parent_ctx->rotate_disable = 0;
6719 
6720 	child_ctx = child->perf_event_ctxp[ctxn];
6721 
6722 	if (child_ctx && inherited_all) {
6723 		/*
6724 		 * Mark the child context as a clone of the parent
6725 		 * context, or of whatever the parent is a clone of.
6726 		 *
6727 		 * Note that if the parent is a clone, the holding of
6728 		 * parent_ctx->lock avoids it from being uncloned.
6729 		 */
6730 		cloned_ctx = parent_ctx->parent_ctx;
6731 		if (cloned_ctx) {
6732 			child_ctx->parent_ctx = cloned_ctx;
6733 			child_ctx->parent_gen = parent_ctx->parent_gen;
6734 		} else {
6735 			child_ctx->parent_ctx = parent_ctx;
6736 			child_ctx->parent_gen = parent_ctx->generation;
6737 		}
6738 		get_ctx(child_ctx->parent_ctx);
6739 	}
6740 
6741 	raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6742 	mutex_unlock(&parent_ctx->mutex);
6743 
6744 	perf_unpin_context(parent_ctx);
6745 	put_ctx(parent_ctx);
6746 
6747 	return ret;
6748 }
6749 
6750 /*
6751  * Initialize the perf_event context in task_struct
6752  */
perf_event_init_task(struct task_struct * child)6753 int perf_event_init_task(struct task_struct *child)
6754 {
6755 	int ctxn, ret;
6756 
6757 	memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
6758 	mutex_init(&child->perf_event_mutex);
6759 	INIT_LIST_HEAD(&child->perf_event_list);
6760 
6761 	for_each_task_context_nr(ctxn) {
6762 		ret = perf_event_init_context(child, ctxn);
6763 		if (ret)
6764 			return ret;
6765 	}
6766 
6767 	return 0;
6768 }
6769 
perf_event_init_all_cpus(void)6770 static void __init perf_event_init_all_cpus(void)
6771 {
6772 	struct swevent_htable *swhash;
6773 	int cpu;
6774 
6775 	for_each_possible_cpu(cpu) {
6776 		swhash = &per_cpu(swevent_htable, cpu);
6777 		mutex_init(&swhash->hlist_mutex);
6778 		INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
6779 	}
6780 }
6781 
perf_event_init_cpu(int cpu)6782 static void __cpuinit perf_event_init_cpu(int cpu)
6783 {
6784 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6785 
6786 	mutex_lock(&swhash->hlist_mutex);
6787 	if (swhash->hlist_refcount > 0) {
6788 		struct swevent_hlist *hlist;
6789 
6790 		hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
6791 		WARN_ON(!hlist);
6792 		rcu_assign_pointer(swhash->swevent_hlist, hlist);
6793 	}
6794 	mutex_unlock(&swhash->hlist_mutex);
6795 }
6796 
6797 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
perf_pmu_rotate_stop(struct pmu * pmu)6798 static void perf_pmu_rotate_stop(struct pmu *pmu)
6799 {
6800 	struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6801 
6802 	WARN_ON(!irqs_disabled());
6803 
6804 	list_del_init(&cpuctx->rotation_list);
6805 }
6806 
__perf_event_exit_context(void * __info)6807 static void __perf_event_exit_context(void *__info)
6808 {
6809 	struct perf_event_context *ctx = __info;
6810 	struct perf_event *event, *tmp;
6811 
6812 	perf_pmu_rotate_stop(ctx->pmu);
6813 
6814 	list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
6815 		__perf_remove_from_context(event);
6816 	list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
6817 		__perf_remove_from_context(event);
6818 }
6819 
perf_event_exit_cpu_context(int cpu)6820 static void perf_event_exit_cpu_context(int cpu)
6821 {
6822 	struct perf_event_context *ctx;
6823 	struct pmu *pmu;
6824 	int idx;
6825 
6826 	idx = srcu_read_lock(&pmus_srcu);
6827 	list_for_each_entry_rcu(pmu, &pmus, entry) {
6828 		ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
6829 
6830 		mutex_lock(&ctx->mutex);
6831 		smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
6832 		mutex_unlock(&ctx->mutex);
6833 	}
6834 	srcu_read_unlock(&pmus_srcu, idx);
6835 }
6836 
perf_event_exit_cpu(int cpu)6837 static void perf_event_exit_cpu(int cpu)
6838 {
6839 	struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6840 
6841 	mutex_lock(&swhash->hlist_mutex);
6842 	swevent_hlist_release(swhash);
6843 	mutex_unlock(&swhash->hlist_mutex);
6844 
6845 	perf_event_exit_cpu_context(cpu);
6846 }
6847 #else
perf_event_exit_cpu(int cpu)6848 static inline void perf_event_exit_cpu(int cpu) { }
6849 #endif
6850 
6851 static int
perf_reboot(struct notifier_block * notifier,unsigned long val,void * v)6852 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
6853 {
6854 	int cpu;
6855 
6856 	for_each_online_cpu(cpu)
6857 		perf_event_exit_cpu(cpu);
6858 
6859 	return NOTIFY_OK;
6860 }
6861 
6862 /*
6863  * Run the perf reboot notifier at the very last possible moment so that
6864  * the generic watchdog code runs as long as possible.
6865  */
6866 static struct notifier_block perf_reboot_notifier = {
6867 	.notifier_call = perf_reboot,
6868 	.priority = INT_MIN,
6869 };
6870 
6871 static int __cpuinit
perf_cpu_notify(struct notifier_block * self,unsigned long action,void * hcpu)6872 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
6873 {
6874 	unsigned int cpu = (long)hcpu;
6875 
6876 	switch (action & ~CPU_TASKS_FROZEN) {
6877 
6878 	case CPU_UP_PREPARE:
6879 	case CPU_DOWN_FAILED:
6880 		perf_event_init_cpu(cpu);
6881 		break;
6882 
6883 	case CPU_UP_CANCELED:
6884 	case CPU_DOWN_PREPARE:
6885 		perf_event_exit_cpu(cpu);
6886 		break;
6887 
6888 	default:
6889 		break;
6890 	}
6891 
6892 	return NOTIFY_OK;
6893 }
6894 
perf_event_init(void)6895 void __init perf_event_init(void)
6896 {
6897 	int ret;
6898 
6899 	idr_init(&pmu_idr);
6900 
6901 	perf_event_init_all_cpus();
6902 	init_srcu_struct(&pmus_srcu);
6903 	perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
6904 	perf_pmu_register(&perf_cpu_clock, NULL, -1);
6905 	perf_pmu_register(&perf_task_clock, NULL, -1);
6906 	perf_tp_register();
6907 	perf_cpu_notifier(perf_cpu_notify);
6908 	register_reboot_notifier(&perf_reboot_notifier);
6909 
6910 	ret = init_hw_breakpoint();
6911 	WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
6912 
6913 	/* do not patch jump label more than once per second */
6914 	jump_label_rate_limit(&perf_sched_events, HZ);
6915 }
6916 
perf_event_sysfs_init(void)6917 static int __init perf_event_sysfs_init(void)
6918 {
6919 	struct pmu *pmu;
6920 	int ret;
6921 
6922 	mutex_lock(&pmus_lock);
6923 
6924 	ret = bus_register(&pmu_bus);
6925 	if (ret)
6926 		goto unlock;
6927 
6928 	list_for_each_entry(pmu, &pmus, entry) {
6929 		if (!pmu->name || pmu->type < 0)
6930 			continue;
6931 
6932 		ret = pmu_dev_alloc(pmu);
6933 		WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
6934 	}
6935 	pmu_bus_running = 1;
6936 	ret = 0;
6937 
6938 unlock:
6939 	mutex_unlock(&pmus_lock);
6940 
6941 	return ret;
6942 }
6943 device_initcall(perf_event_sysfs_init);
6944 
6945 #ifdef CONFIG_CGROUP_PERF
perf_cgroup_create(struct cgroup_subsys * ss,struct cgroup * cont)6946 static struct cgroup_subsys_state *perf_cgroup_create(
6947 	struct cgroup_subsys *ss, struct cgroup *cont)
6948 {
6949 	struct perf_cgroup *jc;
6950 
6951 	jc = kzalloc(sizeof(*jc), GFP_KERNEL);
6952 	if (!jc)
6953 		return ERR_PTR(-ENOMEM);
6954 
6955 	jc->info = alloc_percpu(struct perf_cgroup_info);
6956 	if (!jc->info) {
6957 		kfree(jc);
6958 		return ERR_PTR(-ENOMEM);
6959 	}
6960 
6961 	return &jc->css;
6962 }
6963 
perf_cgroup_destroy(struct cgroup_subsys * ss,struct cgroup * cont)6964 static void perf_cgroup_destroy(struct cgroup_subsys *ss,
6965 				struct cgroup *cont)
6966 {
6967 	struct perf_cgroup *jc;
6968 	jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
6969 			  struct perf_cgroup, css);
6970 	free_percpu(jc->info);
6971 	kfree(jc);
6972 }
6973 
__perf_cgroup_move(void * info)6974 static int __perf_cgroup_move(void *info)
6975 {
6976 	struct task_struct *task = info;
6977 	perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
6978 	return 0;
6979 }
6980 
perf_cgroup_attach(struct cgroup_subsys * ss,struct cgroup * cgrp,struct cgroup_taskset * tset)6981 static void perf_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
6982 			       struct cgroup_taskset *tset)
6983 {
6984 	struct task_struct *task;
6985 
6986 	cgroup_taskset_for_each(task, cgrp, tset)
6987 		task_function_call(task, __perf_cgroup_move, task);
6988 }
6989 
perf_cgroup_exit(struct cgroup_subsys * ss,struct cgroup * cgrp,struct cgroup * old_cgrp,struct task_struct * task)6990 static void perf_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
6991 		struct cgroup *old_cgrp, struct task_struct *task)
6992 {
6993 	/*
6994 	 * cgroup_exit() is called in the copy_process() failure path.
6995 	 * Ignore this case since the task hasn't ran yet, this avoids
6996 	 * trying to poke a half freed task state from generic code.
6997 	 */
6998 	if (!(task->flags & PF_EXITING))
6999 		return;
7000 
7001 	task_function_call(task, __perf_cgroup_move, task);
7002 }
7003 
7004 struct cgroup_subsys perf_subsys = {
7005 	.name		= "perf_event",
7006 	.subsys_id	= perf_subsys_id,
7007 	.create		= perf_cgroup_create,
7008 	.destroy	= perf_cgroup_destroy,
7009 	.exit		= perf_cgroup_exit,
7010 	.attach		= perf_cgroup_attach,
7011 };
7012 #endif /* CONFIG_CGROUP_PERF */
7013