1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * PCI Bus Services, see include/linux/pci.h for further explanation.
4 *
5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6 * David Mosberger-Tang
7 *
8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9 */
10
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/msi.h>
17 #include <linux/of.h>
18 #include <linux/pci.h>
19 #include <linux/pm.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/spinlock.h>
23 #include <linux/string.h>
24 #include <linux/log2.h>
25 #include <linux/logic_pio.h>
26 #include <linux/device.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/pci_hotplug.h>
29 #include <linux/vmalloc.h>
30 #include <asm/dma.h>
31 #include <linux/aer.h>
32 #include <linux/bitfield.h>
33 #include "pci.h"
34
35 DEFINE_MUTEX(pci_slot_mutex);
36
37 const char *pci_power_names[] = {
38 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
39 };
40 EXPORT_SYMBOL_GPL(pci_power_names);
41
42 #ifdef CONFIG_X86_32
43 int isa_dma_bridge_buggy;
44 EXPORT_SYMBOL(isa_dma_bridge_buggy);
45 #endif
46
47 int pci_pci_problems;
48 EXPORT_SYMBOL(pci_pci_problems);
49
50 unsigned int pci_pm_d3hot_delay;
51
52 static void pci_pme_list_scan(struct work_struct *work);
53
54 static LIST_HEAD(pci_pme_list);
55 static DEFINE_MUTEX(pci_pme_list_mutex);
56 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
57
58 struct pci_pme_device {
59 struct list_head list;
60 struct pci_dev *dev;
61 };
62
63 #define PME_TIMEOUT 1000 /* How long between PME checks */
64
65 /*
66 * Following exit from Conventional Reset, devices must be ready within 1 sec
67 * (PCIe r6.0 sec 6.6.1). A D3cold to D0 transition implies a Conventional
68 * Reset (PCIe r6.0 sec 5.8).
69 */
70 #define PCI_RESET_WAIT 1000 /* msec */
71
72 /*
73 * Devices may extend the 1 sec period through Request Retry Status
74 * completions (PCIe r6.0 sec 2.3.1). The spec does not provide an upper
75 * limit, but 60 sec ought to be enough for any device to become
76 * responsive.
77 */
78 #define PCIE_RESET_READY_POLL_MS 60000 /* msec */
79
pci_dev_d3_sleep(struct pci_dev * dev)80 static void pci_dev_d3_sleep(struct pci_dev *dev)
81 {
82 unsigned int delay_ms = max(dev->d3hot_delay, pci_pm_d3hot_delay);
83 unsigned int upper;
84
85 if (delay_ms) {
86 /* Use a 20% upper bound, 1ms minimum */
87 upper = max(DIV_ROUND_CLOSEST(delay_ms, 5), 1U);
88 usleep_range(delay_ms * USEC_PER_MSEC,
89 (delay_ms + upper) * USEC_PER_MSEC);
90 }
91 }
92
pci_reset_supported(struct pci_dev * dev)93 bool pci_reset_supported(struct pci_dev *dev)
94 {
95 return dev->reset_methods[0] != 0;
96 }
97
98 #ifdef CONFIG_PCI_DOMAINS
99 int pci_domains_supported = 1;
100 #endif
101
102 #define DEFAULT_CARDBUS_IO_SIZE (256)
103 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
104 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
105 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
106 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
107
108 #define DEFAULT_HOTPLUG_IO_SIZE (256)
109 #define DEFAULT_HOTPLUG_MMIO_SIZE (2*1024*1024)
110 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE (2*1024*1024)
111 /* hpiosize=nn can override this */
112 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
113 /*
114 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
115 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
116 * pci=hpmemsize=nnM overrides both
117 */
118 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
119 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
120
121 #define DEFAULT_HOTPLUG_BUS_SIZE 1
122 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
123
124
125 /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
126 #ifdef CONFIG_PCIE_BUS_TUNE_OFF
127 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
128 #elif defined CONFIG_PCIE_BUS_SAFE
129 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
130 #elif defined CONFIG_PCIE_BUS_PERFORMANCE
131 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
132 #elif defined CONFIG_PCIE_BUS_PEER2PEER
133 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
134 #else
135 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
136 #endif
137
138 /*
139 * The default CLS is used if arch didn't set CLS explicitly and not
140 * all pci devices agree on the same value. Arch can override either
141 * the dfl or actual value as it sees fit. Don't forget this is
142 * measured in 32-bit words, not bytes.
143 */
144 u8 pci_dfl_cache_line_size __ro_after_init = L1_CACHE_BYTES >> 2;
145 u8 pci_cache_line_size __ro_after_init ;
146
147 /*
148 * If we set up a device for bus mastering, we need to check the latency
149 * timer as certain BIOSes forget to set it properly.
150 */
151 unsigned int pcibios_max_latency = 255;
152
153 /* If set, the PCIe ARI capability will not be used. */
154 static bool pcie_ari_disabled;
155
156 /* If set, the PCIe ATS capability will not be used. */
157 static bool pcie_ats_disabled;
158
159 /* If set, the PCI config space of each device is printed during boot. */
160 bool pci_early_dump;
161
pci_ats_disabled(void)162 bool pci_ats_disabled(void)
163 {
164 return pcie_ats_disabled;
165 }
166 EXPORT_SYMBOL_GPL(pci_ats_disabled);
167
168 /* Disable bridge_d3 for all PCIe ports */
169 static bool pci_bridge_d3_disable;
170 /* Force bridge_d3 for all PCIe ports */
171 static bool pci_bridge_d3_force;
172
pcie_port_pm_setup(char * str)173 static int __init pcie_port_pm_setup(char *str)
174 {
175 if (!strcmp(str, "off"))
176 pci_bridge_d3_disable = true;
177 else if (!strcmp(str, "force"))
178 pci_bridge_d3_force = true;
179 return 1;
180 }
181 __setup("pcie_port_pm=", pcie_port_pm_setup);
182
183 /**
184 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
185 * @bus: pointer to PCI bus structure to search
186 *
187 * Given a PCI bus, returns the highest PCI bus number present in the set
188 * including the given PCI bus and its list of child PCI buses.
189 */
pci_bus_max_busnr(struct pci_bus * bus)190 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
191 {
192 struct pci_bus *tmp;
193 unsigned char max, n;
194
195 max = bus->busn_res.end;
196 list_for_each_entry(tmp, &bus->children, node) {
197 n = pci_bus_max_busnr(tmp);
198 if (n > max)
199 max = n;
200 }
201 return max;
202 }
203 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
204
205 /**
206 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
207 * @pdev: the PCI device
208 *
209 * Returns error bits set in PCI_STATUS and clears them.
210 */
pci_status_get_and_clear_errors(struct pci_dev * pdev)211 int pci_status_get_and_clear_errors(struct pci_dev *pdev)
212 {
213 u16 status;
214 int ret;
215
216 ret = pci_read_config_word(pdev, PCI_STATUS, &status);
217 if (ret != PCIBIOS_SUCCESSFUL)
218 return -EIO;
219
220 status &= PCI_STATUS_ERROR_BITS;
221 if (status)
222 pci_write_config_word(pdev, PCI_STATUS, status);
223
224 return status;
225 }
226 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
227
228 #ifdef CONFIG_HAS_IOMEM
__pci_ioremap_resource(struct pci_dev * pdev,int bar,bool write_combine)229 static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar,
230 bool write_combine)
231 {
232 struct resource *res = &pdev->resource[bar];
233 resource_size_t start = res->start;
234 resource_size_t size = resource_size(res);
235
236 /*
237 * Make sure the BAR is actually a memory resource, not an IO resource
238 */
239 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
240 pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
241 return NULL;
242 }
243
244 if (write_combine)
245 return ioremap_wc(start, size);
246
247 return ioremap(start, size);
248 }
249
pci_ioremap_bar(struct pci_dev * pdev,int bar)250 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
251 {
252 return __pci_ioremap_resource(pdev, bar, false);
253 }
254 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
255
pci_ioremap_wc_bar(struct pci_dev * pdev,int bar)256 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
257 {
258 return __pci_ioremap_resource(pdev, bar, true);
259 }
260 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
261 #endif
262
263 /**
264 * pci_dev_str_match_path - test if a path string matches a device
265 * @dev: the PCI device to test
266 * @path: string to match the device against
267 * @endptr: pointer to the string after the match
268 *
269 * Test if a string (typically from a kernel parameter) formatted as a
270 * path of device/function addresses matches a PCI device. The string must
271 * be of the form:
272 *
273 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
274 *
275 * A path for a device can be obtained using 'lspci -t'. Using a path
276 * is more robust against bus renumbering than using only a single bus,
277 * device and function address.
278 *
279 * Returns 1 if the string matches the device, 0 if it does not and
280 * a negative error code if it fails to parse the string.
281 */
pci_dev_str_match_path(struct pci_dev * dev,const char * path,const char ** endptr)282 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
283 const char **endptr)
284 {
285 int ret;
286 unsigned int seg, bus, slot, func;
287 char *wpath, *p;
288 char end;
289
290 *endptr = strchrnul(path, ';');
291
292 wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC);
293 if (!wpath)
294 return -ENOMEM;
295
296 while (1) {
297 p = strrchr(wpath, '/');
298 if (!p)
299 break;
300 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
301 if (ret != 2) {
302 ret = -EINVAL;
303 goto free_and_exit;
304 }
305
306 if (dev->devfn != PCI_DEVFN(slot, func)) {
307 ret = 0;
308 goto free_and_exit;
309 }
310
311 /*
312 * Note: we don't need to get a reference to the upstream
313 * bridge because we hold a reference to the top level
314 * device which should hold a reference to the bridge,
315 * and so on.
316 */
317 dev = pci_upstream_bridge(dev);
318 if (!dev) {
319 ret = 0;
320 goto free_and_exit;
321 }
322
323 *p = 0;
324 }
325
326 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
327 &func, &end);
328 if (ret != 4) {
329 seg = 0;
330 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
331 if (ret != 3) {
332 ret = -EINVAL;
333 goto free_and_exit;
334 }
335 }
336
337 ret = (seg == pci_domain_nr(dev->bus) &&
338 bus == dev->bus->number &&
339 dev->devfn == PCI_DEVFN(slot, func));
340
341 free_and_exit:
342 kfree(wpath);
343 return ret;
344 }
345
346 /**
347 * pci_dev_str_match - test if a string matches a device
348 * @dev: the PCI device to test
349 * @p: string to match the device against
350 * @endptr: pointer to the string after the match
351 *
352 * Test if a string (typically from a kernel parameter) matches a specified
353 * PCI device. The string may be of one of the following formats:
354 *
355 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
356 * pci:<vendor>:<device>[:<subvendor>:<subdevice>]
357 *
358 * The first format specifies a PCI bus/device/function address which
359 * may change if new hardware is inserted, if motherboard firmware changes,
360 * or due to changes caused in kernel parameters. If the domain is
361 * left unspecified, it is taken to be 0. In order to be robust against
362 * bus renumbering issues, a path of PCI device/function numbers may be used
363 * to address the specific device. The path for a device can be determined
364 * through the use of 'lspci -t'.
365 *
366 * The second format matches devices using IDs in the configuration
367 * space which may match multiple devices in the system. A value of 0
368 * for any field will match all devices. (Note: this differs from
369 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
370 * legacy reasons and convenience so users don't have to specify
371 * FFFFFFFFs on the command line.)
372 *
373 * Returns 1 if the string matches the device, 0 if it does not and
374 * a negative error code if the string cannot be parsed.
375 */
pci_dev_str_match(struct pci_dev * dev,const char * p,const char ** endptr)376 static int pci_dev_str_match(struct pci_dev *dev, const char *p,
377 const char **endptr)
378 {
379 int ret;
380 int count;
381 unsigned short vendor, device, subsystem_vendor, subsystem_device;
382
383 if (strncmp(p, "pci:", 4) == 0) {
384 /* PCI vendor/device (subvendor/subdevice) IDs are specified */
385 p += 4;
386 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
387 &subsystem_vendor, &subsystem_device, &count);
388 if (ret != 4) {
389 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
390 if (ret != 2)
391 return -EINVAL;
392
393 subsystem_vendor = 0;
394 subsystem_device = 0;
395 }
396
397 p += count;
398
399 if ((!vendor || vendor == dev->vendor) &&
400 (!device || device == dev->device) &&
401 (!subsystem_vendor ||
402 subsystem_vendor == dev->subsystem_vendor) &&
403 (!subsystem_device ||
404 subsystem_device == dev->subsystem_device))
405 goto found;
406 } else {
407 /*
408 * PCI Bus, Device, Function IDs are specified
409 * (optionally, may include a path of devfns following it)
410 */
411 ret = pci_dev_str_match_path(dev, p, &p);
412 if (ret < 0)
413 return ret;
414 else if (ret)
415 goto found;
416 }
417
418 *endptr = p;
419 return 0;
420
421 found:
422 *endptr = p;
423 return 1;
424 }
425
__pci_find_next_cap_ttl(struct pci_bus * bus,unsigned int devfn,u8 pos,int cap,int * ttl)426 static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
427 u8 pos, int cap, int *ttl)
428 {
429 u8 id;
430 u16 ent;
431
432 pci_bus_read_config_byte(bus, devfn, pos, &pos);
433
434 while ((*ttl)--) {
435 if (pos < 0x40)
436 break;
437 pos &= ~3;
438 pci_bus_read_config_word(bus, devfn, pos, &ent);
439
440 id = ent & 0xff;
441 if (id == 0xff)
442 break;
443 if (id == cap)
444 return pos;
445 pos = (ent >> 8);
446 }
447 return 0;
448 }
449
__pci_find_next_cap(struct pci_bus * bus,unsigned int devfn,u8 pos,int cap)450 static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
451 u8 pos, int cap)
452 {
453 int ttl = PCI_FIND_CAP_TTL;
454
455 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
456 }
457
pci_find_next_capability(struct pci_dev * dev,u8 pos,int cap)458 u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
459 {
460 return __pci_find_next_cap(dev->bus, dev->devfn,
461 pos + PCI_CAP_LIST_NEXT, cap);
462 }
463 EXPORT_SYMBOL_GPL(pci_find_next_capability);
464
__pci_bus_find_cap_start(struct pci_bus * bus,unsigned int devfn,u8 hdr_type)465 static u8 __pci_bus_find_cap_start(struct pci_bus *bus,
466 unsigned int devfn, u8 hdr_type)
467 {
468 u16 status;
469
470 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
471 if (!(status & PCI_STATUS_CAP_LIST))
472 return 0;
473
474 switch (hdr_type) {
475 case PCI_HEADER_TYPE_NORMAL:
476 case PCI_HEADER_TYPE_BRIDGE:
477 return PCI_CAPABILITY_LIST;
478 case PCI_HEADER_TYPE_CARDBUS:
479 return PCI_CB_CAPABILITY_LIST;
480 }
481
482 return 0;
483 }
484
485 /**
486 * pci_find_capability - query for devices' capabilities
487 * @dev: PCI device to query
488 * @cap: capability code
489 *
490 * Tell if a device supports a given PCI capability.
491 * Returns the address of the requested capability structure within the
492 * device's PCI configuration space or 0 in case the device does not
493 * support it. Possible values for @cap include:
494 *
495 * %PCI_CAP_ID_PM Power Management
496 * %PCI_CAP_ID_AGP Accelerated Graphics Port
497 * %PCI_CAP_ID_VPD Vital Product Data
498 * %PCI_CAP_ID_SLOTID Slot Identification
499 * %PCI_CAP_ID_MSI Message Signalled Interrupts
500 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
501 * %PCI_CAP_ID_PCIX PCI-X
502 * %PCI_CAP_ID_EXP PCI Express
503 */
pci_find_capability(struct pci_dev * dev,int cap)504 u8 pci_find_capability(struct pci_dev *dev, int cap)
505 {
506 u8 pos;
507
508 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
509 if (pos)
510 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
511
512 return pos;
513 }
514 EXPORT_SYMBOL(pci_find_capability);
515
516 /**
517 * pci_bus_find_capability - query for devices' capabilities
518 * @bus: the PCI bus to query
519 * @devfn: PCI device to query
520 * @cap: capability code
521 *
522 * Like pci_find_capability() but works for PCI devices that do not have a
523 * pci_dev structure set up yet.
524 *
525 * Returns the address of the requested capability structure within the
526 * device's PCI configuration space or 0 in case the device does not
527 * support it.
528 */
pci_bus_find_capability(struct pci_bus * bus,unsigned int devfn,int cap)529 u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
530 {
531 u8 hdr_type, pos;
532
533 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
534
535 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & PCI_HEADER_TYPE_MASK);
536 if (pos)
537 pos = __pci_find_next_cap(bus, devfn, pos, cap);
538
539 return pos;
540 }
541 EXPORT_SYMBOL(pci_bus_find_capability);
542
543 /**
544 * pci_find_next_ext_capability - Find an extended capability
545 * @dev: PCI device to query
546 * @start: address at which to start looking (0 to start at beginning of list)
547 * @cap: capability code
548 *
549 * Returns the address of the next matching extended capability structure
550 * within the device's PCI configuration space or 0 if the device does
551 * not support it. Some capabilities can occur several times, e.g., the
552 * vendor-specific capability, and this provides a way to find them all.
553 */
pci_find_next_ext_capability(struct pci_dev * dev,u16 start,int cap)554 u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap)
555 {
556 u32 header;
557 int ttl;
558 u16 pos = PCI_CFG_SPACE_SIZE;
559
560 /* minimum 8 bytes per capability */
561 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
562
563 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
564 return 0;
565
566 if (start)
567 pos = start;
568
569 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
570 return 0;
571
572 /*
573 * If we have no capabilities, this is indicated by cap ID,
574 * cap version and next pointer all being 0.
575 */
576 if (header == 0)
577 return 0;
578
579 while (ttl-- > 0) {
580 if (PCI_EXT_CAP_ID(header) == cap && pos != start)
581 return pos;
582
583 pos = PCI_EXT_CAP_NEXT(header);
584 if (pos < PCI_CFG_SPACE_SIZE)
585 break;
586
587 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
588 break;
589 }
590
591 return 0;
592 }
593 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
594
595 /**
596 * pci_find_ext_capability - Find an extended capability
597 * @dev: PCI device to query
598 * @cap: capability code
599 *
600 * Returns the address of the requested extended capability structure
601 * within the device's PCI configuration space or 0 if the device does
602 * not support it. Possible values for @cap include:
603 *
604 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
605 * %PCI_EXT_CAP_ID_VC Virtual Channel
606 * %PCI_EXT_CAP_ID_DSN Device Serial Number
607 * %PCI_EXT_CAP_ID_PWR Power Budgeting
608 */
pci_find_ext_capability(struct pci_dev * dev,int cap)609 u16 pci_find_ext_capability(struct pci_dev *dev, int cap)
610 {
611 return pci_find_next_ext_capability(dev, 0, cap);
612 }
613 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
614
615 /**
616 * pci_get_dsn - Read and return the 8-byte Device Serial Number
617 * @dev: PCI device to query
618 *
619 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
620 * Number.
621 *
622 * Returns the DSN, or zero if the capability does not exist.
623 */
pci_get_dsn(struct pci_dev * dev)624 u64 pci_get_dsn(struct pci_dev *dev)
625 {
626 u32 dword;
627 u64 dsn;
628 int pos;
629
630 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
631 if (!pos)
632 return 0;
633
634 /*
635 * The Device Serial Number is two dwords offset 4 bytes from the
636 * capability position. The specification says that the first dword is
637 * the lower half, and the second dword is the upper half.
638 */
639 pos += 4;
640 pci_read_config_dword(dev, pos, &dword);
641 dsn = (u64)dword;
642 pci_read_config_dword(dev, pos + 4, &dword);
643 dsn |= ((u64)dword) << 32;
644
645 return dsn;
646 }
647 EXPORT_SYMBOL_GPL(pci_get_dsn);
648
__pci_find_next_ht_cap(struct pci_dev * dev,u8 pos,int ht_cap)649 static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap)
650 {
651 int rc, ttl = PCI_FIND_CAP_TTL;
652 u8 cap, mask;
653
654 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
655 mask = HT_3BIT_CAP_MASK;
656 else
657 mask = HT_5BIT_CAP_MASK;
658
659 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
660 PCI_CAP_ID_HT, &ttl);
661 while (pos) {
662 rc = pci_read_config_byte(dev, pos + 3, &cap);
663 if (rc != PCIBIOS_SUCCESSFUL)
664 return 0;
665
666 if ((cap & mask) == ht_cap)
667 return pos;
668
669 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
670 pos + PCI_CAP_LIST_NEXT,
671 PCI_CAP_ID_HT, &ttl);
672 }
673
674 return 0;
675 }
676
677 /**
678 * pci_find_next_ht_capability - query a device's HyperTransport capabilities
679 * @dev: PCI device to query
680 * @pos: Position from which to continue searching
681 * @ht_cap: HyperTransport capability code
682 *
683 * To be used in conjunction with pci_find_ht_capability() to search for
684 * all capabilities matching @ht_cap. @pos should always be a value returned
685 * from pci_find_ht_capability().
686 *
687 * NB. To be 100% safe against broken PCI devices, the caller should take
688 * steps to avoid an infinite loop.
689 */
pci_find_next_ht_capability(struct pci_dev * dev,u8 pos,int ht_cap)690 u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap)
691 {
692 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
693 }
694 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
695
696 /**
697 * pci_find_ht_capability - query a device's HyperTransport capabilities
698 * @dev: PCI device to query
699 * @ht_cap: HyperTransport capability code
700 *
701 * Tell if a device supports a given HyperTransport capability.
702 * Returns an address within the device's PCI configuration space
703 * or 0 in case the device does not support the request capability.
704 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
705 * which has a HyperTransport capability matching @ht_cap.
706 */
pci_find_ht_capability(struct pci_dev * dev,int ht_cap)707 u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
708 {
709 u8 pos;
710
711 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
712 if (pos)
713 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
714
715 return pos;
716 }
717 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
718
719 /**
720 * pci_find_vsec_capability - Find a vendor-specific extended capability
721 * @dev: PCI device to query
722 * @vendor: Vendor ID for which capability is defined
723 * @cap: Vendor-specific capability ID
724 *
725 * If @dev has Vendor ID @vendor, search for a VSEC capability with
726 * VSEC ID @cap. If found, return the capability offset in
727 * config space; otherwise return 0.
728 */
pci_find_vsec_capability(struct pci_dev * dev,u16 vendor,int cap)729 u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap)
730 {
731 u16 vsec = 0;
732 u32 header;
733 int ret;
734
735 if (vendor != dev->vendor)
736 return 0;
737
738 while ((vsec = pci_find_next_ext_capability(dev, vsec,
739 PCI_EXT_CAP_ID_VNDR))) {
740 ret = pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER, &header);
741 if (ret != PCIBIOS_SUCCESSFUL)
742 continue;
743
744 if (PCI_VNDR_HEADER_ID(header) == cap)
745 return vsec;
746 }
747
748 return 0;
749 }
750 EXPORT_SYMBOL_GPL(pci_find_vsec_capability);
751
752 /**
753 * pci_find_dvsec_capability - Find DVSEC for vendor
754 * @dev: PCI device to query
755 * @vendor: Vendor ID to match for the DVSEC
756 * @dvsec: Designated Vendor-specific capability ID
757 *
758 * If DVSEC has Vendor ID @vendor and DVSEC ID @dvsec return the capability
759 * offset in config space; otherwise return 0.
760 */
pci_find_dvsec_capability(struct pci_dev * dev,u16 vendor,u16 dvsec)761 u16 pci_find_dvsec_capability(struct pci_dev *dev, u16 vendor, u16 dvsec)
762 {
763 int pos;
764
765 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DVSEC);
766 if (!pos)
767 return 0;
768
769 while (pos) {
770 u16 v, id;
771
772 pci_read_config_word(dev, pos + PCI_DVSEC_HEADER1, &v);
773 pci_read_config_word(dev, pos + PCI_DVSEC_HEADER2, &id);
774 if (vendor == v && dvsec == id)
775 return pos;
776
777 pos = pci_find_next_ext_capability(dev, pos, PCI_EXT_CAP_ID_DVSEC);
778 }
779
780 return 0;
781 }
782 EXPORT_SYMBOL_GPL(pci_find_dvsec_capability);
783
784 /**
785 * pci_find_parent_resource - return resource region of parent bus of given
786 * region
787 * @dev: PCI device structure contains resources to be searched
788 * @res: child resource record for which parent is sought
789 *
790 * For given resource region of given device, return the resource region of
791 * parent bus the given region is contained in.
792 */
pci_find_parent_resource(const struct pci_dev * dev,struct resource * res)793 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
794 struct resource *res)
795 {
796 const struct pci_bus *bus = dev->bus;
797 struct resource *r;
798
799 pci_bus_for_each_resource(bus, r) {
800 if (!r)
801 continue;
802 if (resource_contains(r, res)) {
803
804 /*
805 * If the window is prefetchable but the BAR is
806 * not, the allocator made a mistake.
807 */
808 if (r->flags & IORESOURCE_PREFETCH &&
809 !(res->flags & IORESOURCE_PREFETCH))
810 return NULL;
811
812 /*
813 * If we're below a transparent bridge, there may
814 * be both a positively-decoded aperture and a
815 * subtractively-decoded region that contain the BAR.
816 * We want the positively-decoded one, so this depends
817 * on pci_bus_for_each_resource() giving us those
818 * first.
819 */
820 return r;
821 }
822 }
823 return NULL;
824 }
825 EXPORT_SYMBOL(pci_find_parent_resource);
826
827 /**
828 * pci_find_resource - Return matching PCI device resource
829 * @dev: PCI device to query
830 * @res: Resource to look for
831 *
832 * Goes over standard PCI resources (BARs) and checks if the given resource
833 * is partially or fully contained in any of them. In that case the
834 * matching resource is returned, %NULL otherwise.
835 */
pci_find_resource(struct pci_dev * dev,struct resource * res)836 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
837 {
838 int i;
839
840 for (i = 0; i < PCI_STD_NUM_BARS; i++) {
841 struct resource *r = &dev->resource[i];
842
843 if (r->start && resource_contains(r, res))
844 return r;
845 }
846
847 return NULL;
848 }
849 EXPORT_SYMBOL(pci_find_resource);
850
851 /**
852 * pci_resource_name - Return the name of the PCI resource
853 * @dev: PCI device to query
854 * @i: index of the resource
855 *
856 * Return the standard PCI resource (BAR) name according to their index.
857 */
pci_resource_name(struct pci_dev * dev,unsigned int i)858 const char *pci_resource_name(struct pci_dev *dev, unsigned int i)
859 {
860 static const char * const bar_name[] = {
861 "BAR 0",
862 "BAR 1",
863 "BAR 2",
864 "BAR 3",
865 "BAR 4",
866 "BAR 5",
867 "ROM",
868 #ifdef CONFIG_PCI_IOV
869 "VF BAR 0",
870 "VF BAR 1",
871 "VF BAR 2",
872 "VF BAR 3",
873 "VF BAR 4",
874 "VF BAR 5",
875 #endif
876 "bridge window", /* "io" included in %pR */
877 "bridge window", /* "mem" included in %pR */
878 "bridge window", /* "mem pref" included in %pR */
879 };
880 static const char * const cardbus_name[] = {
881 "BAR 1",
882 "unknown",
883 "unknown",
884 "unknown",
885 "unknown",
886 "unknown",
887 #ifdef CONFIG_PCI_IOV
888 "unknown",
889 "unknown",
890 "unknown",
891 "unknown",
892 "unknown",
893 "unknown",
894 #endif
895 "CardBus bridge window 0", /* I/O */
896 "CardBus bridge window 1", /* I/O */
897 "CardBus bridge window 0", /* mem */
898 "CardBus bridge window 1", /* mem */
899 };
900
901 if (dev->hdr_type == PCI_HEADER_TYPE_CARDBUS &&
902 i < ARRAY_SIZE(cardbus_name))
903 return cardbus_name[i];
904
905 if (i < ARRAY_SIZE(bar_name))
906 return bar_name[i];
907
908 return "unknown";
909 }
910
911 /**
912 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
913 * @dev: the PCI device to operate on
914 * @pos: config space offset of status word
915 * @mask: mask of bit(s) to care about in status word
916 *
917 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
918 */
pci_wait_for_pending(struct pci_dev * dev,int pos,u16 mask)919 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
920 {
921 int i;
922
923 /* Wait for Transaction Pending bit clean */
924 for (i = 0; i < 4; i++) {
925 u16 status;
926 if (i)
927 msleep((1 << (i - 1)) * 100);
928
929 pci_read_config_word(dev, pos, &status);
930 if (!(status & mask))
931 return 1;
932 }
933
934 return 0;
935 }
936
937 static int pci_acs_enable;
938
939 /**
940 * pci_request_acs - ask for ACS to be enabled if supported
941 */
pci_request_acs(void)942 void pci_request_acs(void)
943 {
944 pci_acs_enable = 1;
945 }
946
947 static const char *disable_acs_redir_param;
948 static const char *config_acs_param;
949
950 struct pci_acs {
951 u16 cap;
952 u16 ctrl;
953 u16 fw_ctrl;
954 };
955
__pci_config_acs(struct pci_dev * dev,struct pci_acs * caps,const char * p,const u16 acs_mask,const u16 acs_flags)956 static void __pci_config_acs(struct pci_dev *dev, struct pci_acs *caps,
957 const char *p, const u16 acs_mask, const u16 acs_flags)
958 {
959 u16 flags = acs_flags;
960 u16 mask = acs_mask;
961 char *delimit;
962 int ret = 0;
963
964 if (!p)
965 return;
966
967 while (*p) {
968 if (!acs_mask) {
969 /* Check for ACS flags */
970 delimit = strstr(p, "@");
971 if (delimit) {
972 int end;
973 u32 shift = 0;
974
975 end = delimit - p - 1;
976 mask = 0;
977 flags = 0;
978
979 while (end > -1) {
980 if (*(p + end) == '0') {
981 mask |= 1 << shift;
982 shift++;
983 end--;
984 } else if (*(p + end) == '1') {
985 mask |= 1 << shift;
986 flags |= 1 << shift;
987 shift++;
988 end--;
989 } else if ((*(p + end) == 'x') || (*(p + end) == 'X')) {
990 shift++;
991 end--;
992 } else {
993 pci_err(dev, "Invalid ACS flags... Ignoring\n");
994 return;
995 }
996 }
997 p = delimit + 1;
998 } else {
999 pci_err(dev, "ACS Flags missing\n");
1000 return;
1001 }
1002 }
1003
1004 if (mask & ~(PCI_ACS_SV | PCI_ACS_TB | PCI_ACS_RR | PCI_ACS_CR |
1005 PCI_ACS_UF | PCI_ACS_EC | PCI_ACS_DT)) {
1006 pci_err(dev, "Invalid ACS flags specified\n");
1007 return;
1008 }
1009
1010 ret = pci_dev_str_match(dev, p, &p);
1011 if (ret < 0) {
1012 pr_info_once("PCI: Can't parse ACS command line parameter\n");
1013 break;
1014 } else if (ret == 1) {
1015 /* Found a match */
1016 break;
1017 }
1018
1019 if (*p != ';' && *p != ',') {
1020 /* End of param or invalid format */
1021 break;
1022 }
1023 p++;
1024 }
1025
1026 if (ret != 1)
1027 return;
1028
1029 if (!pci_dev_specific_disable_acs_redir(dev))
1030 return;
1031
1032 pci_dbg(dev, "ACS mask = %#06x\n", mask);
1033 pci_dbg(dev, "ACS flags = %#06x\n", flags);
1034 pci_dbg(dev, "ACS control = %#06x\n", caps->ctrl);
1035 pci_dbg(dev, "ACS fw_ctrl = %#06x\n", caps->fw_ctrl);
1036
1037 /*
1038 * For mask bits that are 0, copy them from the firmware setting
1039 * and apply flags for all the mask bits that are 1.
1040 */
1041 caps->ctrl = (caps->fw_ctrl & ~mask) | (flags & mask);
1042
1043 pci_info(dev, "Configured ACS to %#06x\n", caps->ctrl);
1044 }
1045
1046 /**
1047 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
1048 * @dev: the PCI device
1049 * @caps: default ACS controls
1050 */
pci_std_enable_acs(struct pci_dev * dev,struct pci_acs * caps)1051 static void pci_std_enable_acs(struct pci_dev *dev, struct pci_acs *caps)
1052 {
1053 /* Source Validation */
1054 caps->ctrl |= (caps->cap & PCI_ACS_SV);
1055
1056 /* P2P Request Redirect */
1057 caps->ctrl |= (caps->cap & PCI_ACS_RR);
1058
1059 /* P2P Completion Redirect */
1060 caps->ctrl |= (caps->cap & PCI_ACS_CR);
1061
1062 /* Upstream Forwarding */
1063 caps->ctrl |= (caps->cap & PCI_ACS_UF);
1064
1065 /* Enable Translation Blocking for external devices and noats */
1066 if (pci_ats_disabled() || dev->external_facing || dev->untrusted)
1067 caps->ctrl |= (caps->cap & PCI_ACS_TB);
1068 }
1069
1070 /**
1071 * pci_enable_acs - enable ACS if hardware support it
1072 * @dev: the PCI device
1073 */
pci_enable_acs(struct pci_dev * dev)1074 static void pci_enable_acs(struct pci_dev *dev)
1075 {
1076 struct pci_acs caps;
1077 bool enable_acs = false;
1078 int pos;
1079
1080 /* If an iommu is present we start with kernel default caps */
1081 if (pci_acs_enable) {
1082 if (pci_dev_specific_enable_acs(dev))
1083 enable_acs = true;
1084 }
1085
1086 pos = dev->acs_cap;
1087 if (!pos)
1088 return;
1089
1090 pci_read_config_word(dev, pos + PCI_ACS_CAP, &caps.cap);
1091 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &caps.ctrl);
1092 caps.fw_ctrl = caps.ctrl;
1093
1094 if (enable_acs)
1095 pci_std_enable_acs(dev, &caps);
1096
1097 /*
1098 * Always apply caps from the command line, even if there is no iommu.
1099 * Trust that the admin has a reason to change the ACS settings.
1100 */
1101 __pci_config_acs(dev, &caps, disable_acs_redir_param,
1102 PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC,
1103 ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC));
1104 __pci_config_acs(dev, &caps, config_acs_param, 0, 0);
1105
1106 pci_write_config_word(dev, pos + PCI_ACS_CTRL, caps.ctrl);
1107 }
1108
1109 /**
1110 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
1111 * @dev: PCI device to have its BARs restored
1112 *
1113 * Restore the BAR values for a given device, so as to make it
1114 * accessible by its driver.
1115 */
pci_restore_bars(struct pci_dev * dev)1116 static void pci_restore_bars(struct pci_dev *dev)
1117 {
1118 int i;
1119
1120 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
1121 pci_update_resource(dev, i);
1122 }
1123
platform_pci_power_manageable(struct pci_dev * dev)1124 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
1125 {
1126 if (pci_use_mid_pm())
1127 return true;
1128
1129 return acpi_pci_power_manageable(dev);
1130 }
1131
platform_pci_set_power_state(struct pci_dev * dev,pci_power_t t)1132 static inline int platform_pci_set_power_state(struct pci_dev *dev,
1133 pci_power_t t)
1134 {
1135 if (pci_use_mid_pm())
1136 return mid_pci_set_power_state(dev, t);
1137
1138 return acpi_pci_set_power_state(dev, t);
1139 }
1140
platform_pci_get_power_state(struct pci_dev * dev)1141 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
1142 {
1143 if (pci_use_mid_pm())
1144 return mid_pci_get_power_state(dev);
1145
1146 return acpi_pci_get_power_state(dev);
1147 }
1148
platform_pci_refresh_power_state(struct pci_dev * dev)1149 static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
1150 {
1151 if (!pci_use_mid_pm())
1152 acpi_pci_refresh_power_state(dev);
1153 }
1154
platform_pci_choose_state(struct pci_dev * dev)1155 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
1156 {
1157 if (pci_use_mid_pm())
1158 return PCI_POWER_ERROR;
1159
1160 return acpi_pci_choose_state(dev);
1161 }
1162
platform_pci_set_wakeup(struct pci_dev * dev,bool enable)1163 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
1164 {
1165 if (pci_use_mid_pm())
1166 return PCI_POWER_ERROR;
1167
1168 return acpi_pci_wakeup(dev, enable);
1169 }
1170
platform_pci_need_resume(struct pci_dev * dev)1171 static inline bool platform_pci_need_resume(struct pci_dev *dev)
1172 {
1173 if (pci_use_mid_pm())
1174 return false;
1175
1176 return acpi_pci_need_resume(dev);
1177 }
1178
platform_pci_bridge_d3(struct pci_dev * dev)1179 static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
1180 {
1181 if (pci_use_mid_pm())
1182 return false;
1183
1184 return acpi_pci_bridge_d3(dev);
1185 }
1186
1187 /**
1188 * pci_update_current_state - Read power state of given device and cache it
1189 * @dev: PCI device to handle.
1190 * @state: State to cache in case the device doesn't have the PM capability
1191 *
1192 * The power state is read from the PMCSR register, which however is
1193 * inaccessible in D3cold. The platform firmware is therefore queried first
1194 * to detect accessibility of the register. In case the platform firmware
1195 * reports an incorrect state or the device isn't power manageable by the
1196 * platform at all, we try to detect D3cold by testing accessibility of the
1197 * vendor ID in config space.
1198 */
pci_update_current_state(struct pci_dev * dev,pci_power_t state)1199 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1200 {
1201 if (platform_pci_get_power_state(dev) == PCI_D3cold) {
1202 dev->current_state = PCI_D3cold;
1203 } else if (dev->pm_cap) {
1204 u16 pmcsr;
1205
1206 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1207 if (PCI_POSSIBLE_ERROR(pmcsr)) {
1208 dev->current_state = PCI_D3cold;
1209 return;
1210 }
1211 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1212 } else {
1213 dev->current_state = state;
1214 }
1215 }
1216
1217 /**
1218 * pci_refresh_power_state - Refresh the given device's power state data
1219 * @dev: Target PCI device.
1220 *
1221 * Ask the platform to refresh the devices power state information and invoke
1222 * pci_update_current_state() to update its current PCI power state.
1223 */
pci_refresh_power_state(struct pci_dev * dev)1224 void pci_refresh_power_state(struct pci_dev *dev)
1225 {
1226 platform_pci_refresh_power_state(dev);
1227 pci_update_current_state(dev, dev->current_state);
1228 }
1229
1230 /**
1231 * pci_platform_power_transition - Use platform to change device power state
1232 * @dev: PCI device to handle.
1233 * @state: State to put the device into.
1234 */
pci_platform_power_transition(struct pci_dev * dev,pci_power_t state)1235 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1236 {
1237 int error;
1238
1239 error = platform_pci_set_power_state(dev, state);
1240 if (!error)
1241 pci_update_current_state(dev, state);
1242 else if (!dev->pm_cap) /* Fall back to PCI_D0 */
1243 dev->current_state = PCI_D0;
1244
1245 return error;
1246 }
1247 EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1248
pci_resume_one(struct pci_dev * pci_dev,void * ign)1249 static int pci_resume_one(struct pci_dev *pci_dev, void *ign)
1250 {
1251 pm_request_resume(&pci_dev->dev);
1252 return 0;
1253 }
1254
1255 /**
1256 * pci_resume_bus - Walk given bus and runtime resume devices on it
1257 * @bus: Top bus of the subtree to walk.
1258 */
pci_resume_bus(struct pci_bus * bus)1259 void pci_resume_bus(struct pci_bus *bus)
1260 {
1261 if (bus)
1262 pci_walk_bus(bus, pci_resume_one, NULL);
1263 }
1264
pci_dev_wait(struct pci_dev * dev,char * reset_type,int timeout)1265 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1266 {
1267 int delay = 1;
1268 bool retrain = false;
1269 struct pci_dev *root, *bridge;
1270
1271 root = pcie_find_root_port(dev);
1272
1273 if (pci_is_pcie(dev)) {
1274 bridge = pci_upstream_bridge(dev);
1275 if (bridge)
1276 retrain = true;
1277 }
1278
1279 /*
1280 * The caller has already waited long enough after a reset that the
1281 * device should respond to config requests, but it may respond
1282 * with Request Retry Status (RRS) if it needs more time to
1283 * initialize.
1284 *
1285 * If the device is below a Root Port with Configuration RRS
1286 * Software Visibility enabled, reading the Vendor ID returns a
1287 * special data value if the device responded with RRS. Read the
1288 * Vendor ID until we get non-RRS status.
1289 *
1290 * If there's no Root Port or Configuration RRS Software Visibility
1291 * is not enabled, the device may still respond with RRS, but
1292 * hardware may retry the config request. If no retries receive
1293 * Successful Completion, hardware generally synthesizes ~0
1294 * (PCI_ERROR_RESPONSE) data to complete the read. Reading Vendor
1295 * ID for VFs and non-existent devices also returns ~0, so read the
1296 * Command register until it returns something other than ~0.
1297 */
1298 for (;;) {
1299 u32 id;
1300
1301 if (pci_dev_is_disconnected(dev)) {
1302 pci_dbg(dev, "disconnected; not waiting\n");
1303 return -ENOTTY;
1304 }
1305
1306 if (root && root->config_rrs_sv) {
1307 pci_read_config_dword(dev, PCI_VENDOR_ID, &id);
1308 if (!pci_bus_rrs_vendor_id(id))
1309 break;
1310 } else {
1311 pci_read_config_dword(dev, PCI_COMMAND, &id);
1312 if (!PCI_POSSIBLE_ERROR(id))
1313 break;
1314 }
1315
1316 if (delay > timeout) {
1317 pci_warn(dev, "not ready %dms after %s; giving up\n",
1318 delay - 1, reset_type);
1319 return -ENOTTY;
1320 }
1321
1322 if (delay > PCI_RESET_WAIT) {
1323 if (retrain) {
1324 retrain = false;
1325 if (pcie_failed_link_retrain(bridge) == 0) {
1326 delay = 1;
1327 continue;
1328 }
1329 }
1330 pci_info(dev, "not ready %dms after %s; waiting\n",
1331 delay - 1, reset_type);
1332 }
1333
1334 msleep(delay);
1335 delay *= 2;
1336 }
1337
1338 if (delay > PCI_RESET_WAIT)
1339 pci_info(dev, "ready %dms after %s\n", delay - 1,
1340 reset_type);
1341 else
1342 pci_dbg(dev, "ready %dms after %s\n", delay - 1,
1343 reset_type);
1344
1345 return 0;
1346 }
1347
1348 /**
1349 * pci_power_up - Put the given device into D0
1350 * @dev: PCI device to power up
1351 *
1352 * On success, return 0 or 1, depending on whether or not it is necessary to
1353 * restore the device's BARs subsequently (1 is returned in that case).
1354 *
1355 * On failure, return a negative error code. Always return failure if @dev
1356 * lacks a Power Management Capability, even if the platform was able to
1357 * put the device in D0 via non-PCI means.
1358 */
pci_power_up(struct pci_dev * dev)1359 int pci_power_up(struct pci_dev *dev)
1360 {
1361 bool need_restore;
1362 pci_power_t state;
1363 u16 pmcsr;
1364
1365 platform_pci_set_power_state(dev, PCI_D0);
1366
1367 if (!dev->pm_cap) {
1368 state = platform_pci_get_power_state(dev);
1369 if (state == PCI_UNKNOWN)
1370 dev->current_state = PCI_D0;
1371 else
1372 dev->current_state = state;
1373
1374 return -EIO;
1375 }
1376
1377 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1378 if (PCI_POSSIBLE_ERROR(pmcsr)) {
1379 pci_err(dev, "Unable to change power state from %s to D0, device inaccessible\n",
1380 pci_power_name(dev->current_state));
1381 dev->current_state = PCI_D3cold;
1382 return -EIO;
1383 }
1384
1385 state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1386
1387 need_restore = (state == PCI_D3hot || dev->current_state >= PCI_D3hot) &&
1388 !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET);
1389
1390 if (state == PCI_D0)
1391 goto end;
1392
1393 /*
1394 * Force the entire word to 0. This doesn't affect PME_Status, disables
1395 * PME_En, and sets PowerState to 0.
1396 */
1397 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, 0);
1398
1399 /* Mandatory transition delays; see PCI PM 1.2. */
1400 if (state == PCI_D3hot)
1401 pci_dev_d3_sleep(dev);
1402 else if (state == PCI_D2)
1403 udelay(PCI_PM_D2_DELAY);
1404
1405 end:
1406 dev->current_state = PCI_D0;
1407 if (need_restore)
1408 return 1;
1409
1410 return 0;
1411 }
1412
1413 /**
1414 * pci_set_full_power_state - Put a PCI device into D0 and update its state
1415 * @dev: PCI device to power up
1416 * @locked: whether pci_bus_sem is held
1417 *
1418 * Call pci_power_up() to put @dev into D0, read from its PCI_PM_CTRL register
1419 * to confirm the state change, restore its BARs if they might be lost and
1420 * reconfigure ASPM in accordance with the new power state.
1421 *
1422 * If pci_restore_state() is going to be called right after a power state change
1423 * to D0, it is more efficient to use pci_power_up() directly instead of this
1424 * function.
1425 */
pci_set_full_power_state(struct pci_dev * dev,bool locked)1426 static int pci_set_full_power_state(struct pci_dev *dev, bool locked)
1427 {
1428 u16 pmcsr;
1429 int ret;
1430
1431 ret = pci_power_up(dev);
1432 if (ret < 0) {
1433 if (dev->current_state == PCI_D0)
1434 return 0;
1435
1436 return ret;
1437 }
1438
1439 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1440 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1441 if (dev->current_state != PCI_D0) {
1442 pci_info_ratelimited(dev, "Refused to change power state from %s to D0\n",
1443 pci_power_name(dev->current_state));
1444 } else if (ret > 0) {
1445 /*
1446 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1447 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1448 * from D3hot to D0 _may_ perform an internal reset, thereby
1449 * going to "D0 Uninitialized" rather than "D0 Initialized".
1450 * For example, at least some versions of the 3c905B and the
1451 * 3c556B exhibit this behaviour.
1452 *
1453 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1454 * devices in a D3hot state at boot. Consequently, we need to
1455 * restore at least the BARs so that the device will be
1456 * accessible to its driver.
1457 */
1458 pci_restore_bars(dev);
1459 }
1460
1461 if (dev->bus->self)
1462 pcie_aspm_pm_state_change(dev->bus->self, locked);
1463
1464 return 0;
1465 }
1466
1467 /**
1468 * __pci_dev_set_current_state - Set current state of a PCI device
1469 * @dev: Device to handle
1470 * @data: pointer to state to be set
1471 */
__pci_dev_set_current_state(struct pci_dev * dev,void * data)1472 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1473 {
1474 pci_power_t state = *(pci_power_t *)data;
1475
1476 dev->current_state = state;
1477 return 0;
1478 }
1479
1480 /**
1481 * pci_bus_set_current_state - Walk given bus and set current state of devices
1482 * @bus: Top bus of the subtree to walk.
1483 * @state: state to be set
1484 */
pci_bus_set_current_state(struct pci_bus * bus,pci_power_t state)1485 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1486 {
1487 if (bus)
1488 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1489 }
1490
__pci_bus_set_current_state(struct pci_bus * bus,pci_power_t state,bool locked)1491 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state, bool locked)
1492 {
1493 if (!bus)
1494 return;
1495
1496 if (locked)
1497 pci_walk_bus_locked(bus, __pci_dev_set_current_state, &state);
1498 else
1499 pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1500 }
1501
1502 /**
1503 * pci_set_low_power_state - Put a PCI device into a low-power state.
1504 * @dev: PCI device to handle.
1505 * @state: PCI power state (D1, D2, D3hot) to put the device into.
1506 * @locked: whether pci_bus_sem is held
1507 *
1508 * Use the device's PCI_PM_CTRL register to put it into a low-power state.
1509 *
1510 * RETURN VALUE:
1511 * -EINVAL if the requested state is invalid.
1512 * -EIO if device does not support PCI PM or its PM capabilities register has a
1513 * wrong version, or device doesn't support the requested state.
1514 * 0 if device already is in the requested state.
1515 * 0 if device's power state has been successfully changed.
1516 */
pci_set_low_power_state(struct pci_dev * dev,pci_power_t state,bool locked)1517 static int pci_set_low_power_state(struct pci_dev *dev, pci_power_t state, bool locked)
1518 {
1519 u16 pmcsr;
1520
1521 if (!dev->pm_cap)
1522 return -EIO;
1523
1524 /*
1525 * Validate transition: We can enter D0 from any state, but if
1526 * we're already in a low-power state, we can only go deeper. E.g.,
1527 * we can go from D1 to D3, but we can't go directly from D3 to D1;
1528 * we'd have to go from D3 to D0, then to D1.
1529 */
1530 if (dev->current_state <= PCI_D3cold && dev->current_state > state) {
1531 pci_dbg(dev, "Invalid power transition (from %s to %s)\n",
1532 pci_power_name(dev->current_state),
1533 pci_power_name(state));
1534 return -EINVAL;
1535 }
1536
1537 /* Check if this device supports the desired state */
1538 if ((state == PCI_D1 && !dev->d1_support)
1539 || (state == PCI_D2 && !dev->d2_support))
1540 return -EIO;
1541
1542 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1543 if (PCI_POSSIBLE_ERROR(pmcsr)) {
1544 pci_err(dev, "Unable to change power state from %s to %s, device inaccessible\n",
1545 pci_power_name(dev->current_state),
1546 pci_power_name(state));
1547 dev->current_state = PCI_D3cold;
1548 return -EIO;
1549 }
1550
1551 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1552 pmcsr |= state;
1553
1554 /* Enter specified state */
1555 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1556
1557 /* Mandatory power management transition delays; see PCI PM 1.2. */
1558 if (state == PCI_D3hot)
1559 pci_dev_d3_sleep(dev);
1560 else if (state == PCI_D2)
1561 udelay(PCI_PM_D2_DELAY);
1562
1563 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1564 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1565 if (dev->current_state != state)
1566 pci_info_ratelimited(dev, "Refused to change power state from %s to %s\n",
1567 pci_power_name(dev->current_state),
1568 pci_power_name(state));
1569
1570 if (dev->bus->self)
1571 pcie_aspm_pm_state_change(dev->bus->self, locked);
1572
1573 return 0;
1574 }
1575
__pci_set_power_state(struct pci_dev * dev,pci_power_t state,bool locked)1576 static int __pci_set_power_state(struct pci_dev *dev, pci_power_t state, bool locked)
1577 {
1578 int error;
1579
1580 /* Bound the state we're entering */
1581 if (state > PCI_D3cold)
1582 state = PCI_D3cold;
1583 else if (state < PCI_D0)
1584 state = PCI_D0;
1585 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1586
1587 /*
1588 * If the device or the parent bridge do not support PCI
1589 * PM, ignore the request if we're doing anything other
1590 * than putting it into D0 (which would only happen on
1591 * boot).
1592 */
1593 return 0;
1594
1595 /* Check if we're already there */
1596 if (dev->current_state == state)
1597 return 0;
1598
1599 if (state == PCI_D0)
1600 return pci_set_full_power_state(dev, locked);
1601
1602 /*
1603 * This device is quirked not to be put into D3, so don't put it in
1604 * D3
1605 */
1606 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1607 return 0;
1608
1609 if (state == PCI_D3cold) {
1610 /*
1611 * To put the device in D3cold, put it into D3hot in the native
1612 * way, then put it into D3cold using platform ops.
1613 */
1614 error = pci_set_low_power_state(dev, PCI_D3hot, locked);
1615
1616 if (pci_platform_power_transition(dev, PCI_D3cold))
1617 return error;
1618
1619 /* Powering off a bridge may power off the whole hierarchy */
1620 if (dev->current_state == PCI_D3cold)
1621 __pci_bus_set_current_state(dev->subordinate, PCI_D3cold, locked);
1622 } else {
1623 error = pci_set_low_power_state(dev, state, locked);
1624
1625 if (pci_platform_power_transition(dev, state))
1626 return error;
1627 }
1628
1629 return 0;
1630 }
1631
1632 /**
1633 * pci_set_power_state - Set the power state of a PCI device
1634 * @dev: PCI device to handle.
1635 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1636 *
1637 * Transition a device to a new power state, using the platform firmware and/or
1638 * the device's PCI PM registers.
1639 *
1640 * RETURN VALUE:
1641 * -EINVAL if the requested state is invalid.
1642 * -EIO if device does not support PCI PM or its PM capabilities register has a
1643 * wrong version, or device doesn't support the requested state.
1644 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1645 * 0 if device already is in the requested state.
1646 * 0 if the transition is to D3 but D3 is not supported.
1647 * 0 if device's power state has been successfully changed.
1648 */
pci_set_power_state(struct pci_dev * dev,pci_power_t state)1649 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1650 {
1651 return __pci_set_power_state(dev, state, false);
1652 }
1653 EXPORT_SYMBOL(pci_set_power_state);
1654
pci_set_power_state_locked(struct pci_dev * dev,pci_power_t state)1655 int pci_set_power_state_locked(struct pci_dev *dev, pci_power_t state)
1656 {
1657 lockdep_assert_held(&pci_bus_sem);
1658
1659 return __pci_set_power_state(dev, state, true);
1660 }
1661 EXPORT_SYMBOL(pci_set_power_state_locked);
1662
1663 #define PCI_EXP_SAVE_REGS 7
1664
_pci_find_saved_cap(struct pci_dev * pci_dev,u16 cap,bool extended)1665 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1666 u16 cap, bool extended)
1667 {
1668 struct pci_cap_saved_state *tmp;
1669
1670 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1671 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1672 return tmp;
1673 }
1674 return NULL;
1675 }
1676
pci_find_saved_cap(struct pci_dev * dev,char cap)1677 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1678 {
1679 return _pci_find_saved_cap(dev, cap, false);
1680 }
1681
pci_find_saved_ext_cap(struct pci_dev * dev,u16 cap)1682 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1683 {
1684 return _pci_find_saved_cap(dev, cap, true);
1685 }
1686
pci_save_pcie_state(struct pci_dev * dev)1687 static int pci_save_pcie_state(struct pci_dev *dev)
1688 {
1689 int i = 0;
1690 struct pci_cap_saved_state *save_state;
1691 u16 *cap;
1692
1693 if (!pci_is_pcie(dev))
1694 return 0;
1695
1696 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1697 if (!save_state) {
1698 pci_err(dev, "buffer not found in %s\n", __func__);
1699 return -ENOMEM;
1700 }
1701
1702 cap = (u16 *)&save_state->cap.data[0];
1703 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1704 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1705 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1706 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]);
1707 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1708 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1709 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1710
1711 pci_save_aspm_l1ss_state(dev);
1712 pci_save_ltr_state(dev);
1713
1714 return 0;
1715 }
1716
pci_restore_pcie_state(struct pci_dev * dev)1717 static void pci_restore_pcie_state(struct pci_dev *dev)
1718 {
1719 int i = 0;
1720 struct pci_cap_saved_state *save_state;
1721 u16 *cap;
1722
1723 /*
1724 * Restore max latencies (in the LTR capability) before enabling
1725 * LTR itself in PCI_EXP_DEVCTL2.
1726 */
1727 pci_restore_ltr_state(dev);
1728 pci_restore_aspm_l1ss_state(dev);
1729
1730 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1731 if (!save_state)
1732 return;
1733
1734 /*
1735 * Downstream ports reset the LTR enable bit when link goes down.
1736 * Check and re-configure the bit here before restoring device.
1737 * PCIe r5.0, sec 7.5.3.16.
1738 */
1739 pci_bridge_reconfigure_ltr(dev);
1740
1741 cap = (u16 *)&save_state->cap.data[0];
1742 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1743 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1744 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1745 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1746 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1747 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1748 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1749 }
1750
pci_save_pcix_state(struct pci_dev * dev)1751 static int pci_save_pcix_state(struct pci_dev *dev)
1752 {
1753 int pos;
1754 struct pci_cap_saved_state *save_state;
1755
1756 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1757 if (!pos)
1758 return 0;
1759
1760 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1761 if (!save_state) {
1762 pci_err(dev, "buffer not found in %s\n", __func__);
1763 return -ENOMEM;
1764 }
1765
1766 pci_read_config_word(dev, pos + PCI_X_CMD,
1767 (u16 *)save_state->cap.data);
1768
1769 return 0;
1770 }
1771
pci_restore_pcix_state(struct pci_dev * dev)1772 static void pci_restore_pcix_state(struct pci_dev *dev)
1773 {
1774 int i = 0, pos;
1775 struct pci_cap_saved_state *save_state;
1776 u16 *cap;
1777
1778 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1779 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1780 if (!save_state || !pos)
1781 return;
1782 cap = (u16 *)&save_state->cap.data[0];
1783
1784 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1785 }
1786
1787 /**
1788 * pci_save_state - save the PCI configuration space of a device before
1789 * suspending
1790 * @dev: PCI device that we're dealing with
1791 */
pci_save_state(struct pci_dev * dev)1792 int pci_save_state(struct pci_dev *dev)
1793 {
1794 int i;
1795 /* XXX: 100% dword access ok here? */
1796 for (i = 0; i < 16; i++) {
1797 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1798 pci_dbg(dev, "save config %#04x: %#010x\n",
1799 i * 4, dev->saved_config_space[i]);
1800 }
1801 dev->state_saved = true;
1802
1803 i = pci_save_pcie_state(dev);
1804 if (i != 0)
1805 return i;
1806
1807 i = pci_save_pcix_state(dev);
1808 if (i != 0)
1809 return i;
1810
1811 pci_save_dpc_state(dev);
1812 pci_save_aer_state(dev);
1813 pci_save_ptm_state(dev);
1814 pci_save_tph_state(dev);
1815 return pci_save_vc_state(dev);
1816 }
1817 EXPORT_SYMBOL(pci_save_state);
1818
pci_restore_config_dword(struct pci_dev * pdev,int offset,u32 saved_val,int retry,bool force)1819 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1820 u32 saved_val, int retry, bool force)
1821 {
1822 u32 val;
1823
1824 pci_read_config_dword(pdev, offset, &val);
1825 if (!force && val == saved_val)
1826 return;
1827
1828 for (;;) {
1829 pci_dbg(pdev, "restore config %#04x: %#010x -> %#010x\n",
1830 offset, val, saved_val);
1831 pci_write_config_dword(pdev, offset, saved_val);
1832 if (retry-- <= 0)
1833 return;
1834
1835 pci_read_config_dword(pdev, offset, &val);
1836 if (val == saved_val)
1837 return;
1838
1839 mdelay(1);
1840 }
1841 }
1842
pci_restore_config_space_range(struct pci_dev * pdev,int start,int end,int retry,bool force)1843 static void pci_restore_config_space_range(struct pci_dev *pdev,
1844 int start, int end, int retry,
1845 bool force)
1846 {
1847 int index;
1848
1849 for (index = end; index >= start; index--)
1850 pci_restore_config_dword(pdev, 4 * index,
1851 pdev->saved_config_space[index],
1852 retry, force);
1853 }
1854
pci_restore_config_space(struct pci_dev * pdev)1855 static void pci_restore_config_space(struct pci_dev *pdev)
1856 {
1857 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1858 pci_restore_config_space_range(pdev, 10, 15, 0, false);
1859 /* Restore BARs before the command register. */
1860 pci_restore_config_space_range(pdev, 4, 9, 10, false);
1861 pci_restore_config_space_range(pdev, 0, 3, 0, false);
1862 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1863 pci_restore_config_space_range(pdev, 12, 15, 0, false);
1864
1865 /*
1866 * Force rewriting of prefetch registers to avoid S3 resume
1867 * issues on Intel PCI bridges that occur when these
1868 * registers are not explicitly written.
1869 */
1870 pci_restore_config_space_range(pdev, 9, 11, 0, true);
1871 pci_restore_config_space_range(pdev, 0, 8, 0, false);
1872 } else {
1873 pci_restore_config_space_range(pdev, 0, 15, 0, false);
1874 }
1875 }
1876
pci_restore_rebar_state(struct pci_dev * pdev)1877 static void pci_restore_rebar_state(struct pci_dev *pdev)
1878 {
1879 unsigned int pos, nbars, i;
1880 u32 ctrl;
1881
1882 pos = pdev->rebar_cap;
1883 if (!pos)
1884 return;
1885
1886 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1887 nbars = FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK, ctrl);
1888
1889 for (i = 0; i < nbars; i++, pos += 8) {
1890 struct resource *res;
1891 int bar_idx, size;
1892
1893 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1894 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1895 res = pci_resource_n(pdev, bar_idx);
1896 size = pci_rebar_bytes_to_size(resource_size(res));
1897 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1898 ctrl |= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE, size);
1899 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1900 }
1901 }
1902
1903 /**
1904 * pci_restore_state - Restore the saved state of a PCI device
1905 * @dev: PCI device that we're dealing with
1906 */
pci_restore_state(struct pci_dev * dev)1907 void pci_restore_state(struct pci_dev *dev)
1908 {
1909 if (!dev->state_saved)
1910 return;
1911
1912 pci_restore_pcie_state(dev);
1913 pci_restore_pasid_state(dev);
1914 pci_restore_pri_state(dev);
1915 pci_restore_ats_state(dev);
1916 pci_restore_vc_state(dev);
1917 pci_restore_rebar_state(dev);
1918 pci_restore_dpc_state(dev);
1919 pci_restore_ptm_state(dev);
1920 pci_restore_tph_state(dev);
1921
1922 pci_aer_clear_status(dev);
1923 pci_restore_aer_state(dev);
1924
1925 pci_restore_config_space(dev);
1926
1927 pci_restore_pcix_state(dev);
1928 pci_restore_msi_state(dev);
1929
1930 /* Restore ACS and IOV configuration state */
1931 pci_enable_acs(dev);
1932 pci_restore_iov_state(dev);
1933
1934 dev->state_saved = false;
1935 }
1936 EXPORT_SYMBOL(pci_restore_state);
1937
1938 struct pci_saved_state {
1939 u32 config_space[16];
1940 struct pci_cap_saved_data cap[];
1941 };
1942
1943 /**
1944 * pci_store_saved_state - Allocate and return an opaque struct containing
1945 * the device saved state.
1946 * @dev: PCI device that we're dealing with
1947 *
1948 * Return NULL if no state or error.
1949 */
pci_store_saved_state(struct pci_dev * dev)1950 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1951 {
1952 struct pci_saved_state *state;
1953 struct pci_cap_saved_state *tmp;
1954 struct pci_cap_saved_data *cap;
1955 size_t size;
1956
1957 if (!dev->state_saved)
1958 return NULL;
1959
1960 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1961
1962 hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1963 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1964
1965 state = kzalloc(size, GFP_KERNEL);
1966 if (!state)
1967 return NULL;
1968
1969 memcpy(state->config_space, dev->saved_config_space,
1970 sizeof(state->config_space));
1971
1972 cap = state->cap;
1973 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1974 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1975 memcpy(cap, &tmp->cap, len);
1976 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1977 }
1978 /* Empty cap_save terminates list */
1979
1980 return state;
1981 }
1982 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1983
1984 /**
1985 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1986 * @dev: PCI device that we're dealing with
1987 * @state: Saved state returned from pci_store_saved_state()
1988 */
pci_load_saved_state(struct pci_dev * dev,struct pci_saved_state * state)1989 int pci_load_saved_state(struct pci_dev *dev,
1990 struct pci_saved_state *state)
1991 {
1992 struct pci_cap_saved_data *cap;
1993
1994 dev->state_saved = false;
1995
1996 if (!state)
1997 return 0;
1998
1999 memcpy(dev->saved_config_space, state->config_space,
2000 sizeof(state->config_space));
2001
2002 cap = state->cap;
2003 while (cap->size) {
2004 struct pci_cap_saved_state *tmp;
2005
2006 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
2007 if (!tmp || tmp->cap.size != cap->size)
2008 return -EINVAL;
2009
2010 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
2011 cap = (struct pci_cap_saved_data *)((u8 *)cap +
2012 sizeof(struct pci_cap_saved_data) + cap->size);
2013 }
2014
2015 dev->state_saved = true;
2016 return 0;
2017 }
2018 EXPORT_SYMBOL_GPL(pci_load_saved_state);
2019
2020 /**
2021 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
2022 * and free the memory allocated for it.
2023 * @dev: PCI device that we're dealing with
2024 * @state: Pointer to saved state returned from pci_store_saved_state()
2025 */
pci_load_and_free_saved_state(struct pci_dev * dev,struct pci_saved_state ** state)2026 int pci_load_and_free_saved_state(struct pci_dev *dev,
2027 struct pci_saved_state **state)
2028 {
2029 int ret = pci_load_saved_state(dev, *state);
2030 kfree(*state);
2031 *state = NULL;
2032 return ret;
2033 }
2034 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
2035
pcibios_enable_device(struct pci_dev * dev,int bars)2036 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
2037 {
2038 return pci_enable_resources(dev, bars);
2039 }
2040
pci_host_bridge_enable_device(struct pci_dev * dev)2041 static int pci_host_bridge_enable_device(struct pci_dev *dev)
2042 {
2043 struct pci_host_bridge *host_bridge = pci_find_host_bridge(dev->bus);
2044 int err;
2045
2046 if (host_bridge && host_bridge->enable_device) {
2047 err = host_bridge->enable_device(host_bridge, dev);
2048 if (err)
2049 return err;
2050 }
2051
2052 return 0;
2053 }
2054
pci_host_bridge_disable_device(struct pci_dev * dev)2055 static void pci_host_bridge_disable_device(struct pci_dev *dev)
2056 {
2057 struct pci_host_bridge *host_bridge = pci_find_host_bridge(dev->bus);
2058
2059 if (host_bridge && host_bridge->disable_device)
2060 host_bridge->disable_device(host_bridge, dev);
2061 }
2062
do_pci_enable_device(struct pci_dev * dev,int bars)2063 static int do_pci_enable_device(struct pci_dev *dev, int bars)
2064 {
2065 int err;
2066 struct pci_dev *bridge;
2067 u16 cmd;
2068 u8 pin;
2069
2070 err = pci_set_power_state(dev, PCI_D0);
2071 if (err < 0 && err != -EIO)
2072 return err;
2073
2074 bridge = pci_upstream_bridge(dev);
2075 if (bridge)
2076 pcie_aspm_powersave_config_link(bridge);
2077
2078 err = pci_host_bridge_enable_device(dev);
2079 if (err)
2080 return err;
2081
2082 err = pcibios_enable_device(dev, bars);
2083 if (err < 0)
2084 goto err_enable;
2085 pci_fixup_device(pci_fixup_enable, dev);
2086
2087 if (dev->msi_enabled || dev->msix_enabled)
2088 return 0;
2089
2090 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
2091 if (pin) {
2092 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2093 if (cmd & PCI_COMMAND_INTX_DISABLE)
2094 pci_write_config_word(dev, PCI_COMMAND,
2095 cmd & ~PCI_COMMAND_INTX_DISABLE);
2096 }
2097
2098 return 0;
2099
2100 err_enable:
2101 pci_host_bridge_disable_device(dev);
2102
2103 return err;
2104
2105 }
2106
2107 /**
2108 * pci_reenable_device - Resume abandoned device
2109 * @dev: PCI device to be resumed
2110 *
2111 * NOTE: This function is a backend of pci_default_resume() and is not supposed
2112 * to be called by normal code, write proper resume handler and use it instead.
2113 */
pci_reenable_device(struct pci_dev * dev)2114 int pci_reenable_device(struct pci_dev *dev)
2115 {
2116 if (pci_is_enabled(dev))
2117 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
2118 return 0;
2119 }
2120 EXPORT_SYMBOL(pci_reenable_device);
2121
pci_enable_bridge(struct pci_dev * dev)2122 static void pci_enable_bridge(struct pci_dev *dev)
2123 {
2124 struct pci_dev *bridge;
2125 int retval;
2126
2127 bridge = pci_upstream_bridge(dev);
2128 if (bridge)
2129 pci_enable_bridge(bridge);
2130
2131 if (pci_is_enabled(dev)) {
2132 if (!dev->is_busmaster)
2133 pci_set_master(dev);
2134 return;
2135 }
2136
2137 retval = pci_enable_device(dev);
2138 if (retval)
2139 pci_err(dev, "Error enabling bridge (%d), continuing\n",
2140 retval);
2141 pci_set_master(dev);
2142 }
2143
pci_enable_device_flags(struct pci_dev * dev,unsigned long flags)2144 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
2145 {
2146 struct pci_dev *bridge;
2147 int err;
2148 int i, bars = 0;
2149
2150 /*
2151 * Power state could be unknown at this point, either due to a fresh
2152 * boot or a device removal call. So get the current power state
2153 * so that things like MSI message writing will behave as expected
2154 * (e.g. if the device really is in D0 at enable time).
2155 */
2156 pci_update_current_state(dev, dev->current_state);
2157
2158 if (atomic_inc_return(&dev->enable_cnt) > 1)
2159 return 0; /* already enabled */
2160
2161 bridge = pci_upstream_bridge(dev);
2162 if (bridge)
2163 pci_enable_bridge(bridge);
2164
2165 /* only skip sriov related */
2166 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
2167 if (dev->resource[i].flags & flags)
2168 bars |= (1 << i);
2169 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
2170 if (dev->resource[i].flags & flags)
2171 bars |= (1 << i);
2172
2173 err = do_pci_enable_device(dev, bars);
2174 if (err < 0)
2175 atomic_dec(&dev->enable_cnt);
2176 return err;
2177 }
2178
2179 /**
2180 * pci_enable_device_mem - Initialize a device for use with Memory space
2181 * @dev: PCI device to be initialized
2182 *
2183 * Initialize device before it's used by a driver. Ask low-level code
2184 * to enable Memory resources. Wake up the device if it was suspended.
2185 * Beware, this function can fail.
2186 */
pci_enable_device_mem(struct pci_dev * dev)2187 int pci_enable_device_mem(struct pci_dev *dev)
2188 {
2189 return pci_enable_device_flags(dev, IORESOURCE_MEM);
2190 }
2191 EXPORT_SYMBOL(pci_enable_device_mem);
2192
2193 /**
2194 * pci_enable_device - Initialize device before it's used by a driver.
2195 * @dev: PCI device to be initialized
2196 *
2197 * Initialize device before it's used by a driver. Ask low-level code
2198 * to enable I/O and memory. Wake up the device if it was suspended.
2199 * Beware, this function can fail.
2200 *
2201 * Note we don't actually enable the device many times if we call
2202 * this function repeatedly (we just increment the count).
2203 */
pci_enable_device(struct pci_dev * dev)2204 int pci_enable_device(struct pci_dev *dev)
2205 {
2206 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
2207 }
2208 EXPORT_SYMBOL(pci_enable_device);
2209
2210 /*
2211 * pcibios_device_add - provide arch specific hooks when adding device dev
2212 * @dev: the PCI device being added
2213 *
2214 * Permits the platform to provide architecture specific functionality when
2215 * devices are added. This is the default implementation. Architecture
2216 * implementations can override this.
2217 */
pcibios_device_add(struct pci_dev * dev)2218 int __weak pcibios_device_add(struct pci_dev *dev)
2219 {
2220 return 0;
2221 }
2222
2223 /**
2224 * pcibios_release_device - provide arch specific hooks when releasing
2225 * device dev
2226 * @dev: the PCI device being released
2227 *
2228 * Permits the platform to provide architecture specific functionality when
2229 * devices are released. This is the default implementation. Architecture
2230 * implementations can override this.
2231 */
pcibios_release_device(struct pci_dev * dev)2232 void __weak pcibios_release_device(struct pci_dev *dev) {}
2233
2234 /**
2235 * pcibios_disable_device - disable arch specific PCI resources for device dev
2236 * @dev: the PCI device to disable
2237 *
2238 * Disables architecture specific PCI resources for the device. This
2239 * is the default implementation. Architecture implementations can
2240 * override this.
2241 */
pcibios_disable_device(struct pci_dev * dev)2242 void __weak pcibios_disable_device(struct pci_dev *dev) {}
2243
do_pci_disable_device(struct pci_dev * dev)2244 static void do_pci_disable_device(struct pci_dev *dev)
2245 {
2246 u16 pci_command;
2247
2248 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2249 if (pci_command & PCI_COMMAND_MASTER) {
2250 pci_command &= ~PCI_COMMAND_MASTER;
2251 pci_write_config_word(dev, PCI_COMMAND, pci_command);
2252 }
2253
2254 pcibios_disable_device(dev);
2255 }
2256
2257 /**
2258 * pci_disable_enabled_device - Disable device without updating enable_cnt
2259 * @dev: PCI device to disable
2260 *
2261 * NOTE: This function is a backend of PCI power management routines and is
2262 * not supposed to be called drivers.
2263 */
pci_disable_enabled_device(struct pci_dev * dev)2264 void pci_disable_enabled_device(struct pci_dev *dev)
2265 {
2266 if (pci_is_enabled(dev))
2267 do_pci_disable_device(dev);
2268 }
2269
2270 /**
2271 * pci_disable_device - Disable PCI device after use
2272 * @dev: PCI device to be disabled
2273 *
2274 * Signal to the system that the PCI device is not in use by the system
2275 * anymore. This only involves disabling PCI bus-mastering, if active.
2276 *
2277 * Note we don't actually disable the device until all callers of
2278 * pci_enable_device() have called pci_disable_device().
2279 */
pci_disable_device(struct pci_dev * dev)2280 void pci_disable_device(struct pci_dev *dev)
2281 {
2282 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2283 "disabling already-disabled device");
2284
2285 if (atomic_dec_return(&dev->enable_cnt) != 0)
2286 return;
2287
2288 pci_host_bridge_disable_device(dev);
2289
2290 do_pci_disable_device(dev);
2291
2292 dev->is_busmaster = 0;
2293 }
2294 EXPORT_SYMBOL(pci_disable_device);
2295
2296 /**
2297 * pcibios_set_pcie_reset_state - set reset state for device dev
2298 * @dev: the PCIe device reset
2299 * @state: Reset state to enter into
2300 *
2301 * Set the PCIe reset state for the device. This is the default
2302 * implementation. Architecture implementations can override this.
2303 */
pcibios_set_pcie_reset_state(struct pci_dev * dev,enum pcie_reset_state state)2304 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2305 enum pcie_reset_state state)
2306 {
2307 return -EINVAL;
2308 }
2309
2310 /**
2311 * pci_set_pcie_reset_state - set reset state for device dev
2312 * @dev: the PCIe device reset
2313 * @state: Reset state to enter into
2314 *
2315 * Sets the PCI reset state for the device.
2316 */
pci_set_pcie_reset_state(struct pci_dev * dev,enum pcie_reset_state state)2317 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2318 {
2319 return pcibios_set_pcie_reset_state(dev, state);
2320 }
2321 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2322
2323 #ifdef CONFIG_PCIEAER
pcie_clear_device_status(struct pci_dev * dev)2324 void pcie_clear_device_status(struct pci_dev *dev)
2325 {
2326 u16 sta;
2327
2328 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2329 pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2330 }
2331 #endif
2332
2333 /**
2334 * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2335 * @dev: PCIe root port or event collector.
2336 */
pcie_clear_root_pme_status(struct pci_dev * dev)2337 void pcie_clear_root_pme_status(struct pci_dev *dev)
2338 {
2339 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2340 }
2341
2342 /**
2343 * pci_check_pme_status - Check if given device has generated PME.
2344 * @dev: Device to check.
2345 *
2346 * Check the PME status of the device and if set, clear it and clear PME enable
2347 * (if set). Return 'true' if PME status and PME enable were both set or
2348 * 'false' otherwise.
2349 */
pci_check_pme_status(struct pci_dev * dev)2350 bool pci_check_pme_status(struct pci_dev *dev)
2351 {
2352 int pmcsr_pos;
2353 u16 pmcsr;
2354 bool ret = false;
2355
2356 if (!dev->pm_cap)
2357 return false;
2358
2359 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2360 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2361 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2362 return false;
2363
2364 /* Clear PME status. */
2365 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2366 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2367 /* Disable PME to avoid interrupt flood. */
2368 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2369 ret = true;
2370 }
2371
2372 pci_write_config_word(dev, pmcsr_pos, pmcsr);
2373
2374 return ret;
2375 }
2376
2377 /**
2378 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2379 * @dev: Device to handle.
2380 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2381 *
2382 * Check if @dev has generated PME and queue a resume request for it in that
2383 * case.
2384 */
pci_pme_wakeup(struct pci_dev * dev,void * pme_poll_reset)2385 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2386 {
2387 if (pme_poll_reset && dev->pme_poll)
2388 dev->pme_poll = false;
2389
2390 if (pci_check_pme_status(dev)) {
2391 pci_wakeup_event(dev);
2392 pm_request_resume(&dev->dev);
2393 }
2394 return 0;
2395 }
2396
2397 /**
2398 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2399 * @bus: Top bus of the subtree to walk.
2400 */
pci_pme_wakeup_bus(struct pci_bus * bus)2401 void pci_pme_wakeup_bus(struct pci_bus *bus)
2402 {
2403 if (bus)
2404 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2405 }
2406
2407
2408 /**
2409 * pci_pme_capable - check the capability of PCI device to generate PME#
2410 * @dev: PCI device to handle.
2411 * @state: PCI state from which device will issue PME#.
2412 */
pci_pme_capable(struct pci_dev * dev,pci_power_t state)2413 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2414 {
2415 if (!dev->pm_cap)
2416 return false;
2417
2418 return !!(dev->pme_support & (1 << state));
2419 }
2420 EXPORT_SYMBOL(pci_pme_capable);
2421
pci_pme_list_scan(struct work_struct * work)2422 static void pci_pme_list_scan(struct work_struct *work)
2423 {
2424 struct pci_pme_device *pme_dev, *n;
2425
2426 mutex_lock(&pci_pme_list_mutex);
2427 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2428 struct pci_dev *pdev = pme_dev->dev;
2429
2430 if (pdev->pme_poll) {
2431 struct pci_dev *bridge = pdev->bus->self;
2432 struct device *dev = &pdev->dev;
2433 struct device *bdev = bridge ? &bridge->dev : NULL;
2434 int bref = 0;
2435
2436 /*
2437 * If we have a bridge, it should be in an active/D0
2438 * state or the configuration space of subordinate
2439 * devices may not be accessible or stable over the
2440 * course of the call.
2441 */
2442 if (bdev) {
2443 bref = pm_runtime_get_if_active(bdev);
2444 if (!bref)
2445 continue;
2446
2447 if (bridge->current_state != PCI_D0)
2448 goto put_bridge;
2449 }
2450
2451 /*
2452 * The device itself should be suspended but config
2453 * space must be accessible, therefore it cannot be in
2454 * D3cold.
2455 */
2456 if (pm_runtime_suspended(dev) &&
2457 pdev->current_state != PCI_D3cold)
2458 pci_pme_wakeup(pdev, NULL);
2459
2460 put_bridge:
2461 if (bref > 0)
2462 pm_runtime_put(bdev);
2463 } else {
2464 list_del(&pme_dev->list);
2465 kfree(pme_dev);
2466 }
2467 }
2468 if (!list_empty(&pci_pme_list))
2469 queue_delayed_work(system_freezable_wq, &pci_pme_work,
2470 msecs_to_jiffies(PME_TIMEOUT));
2471 mutex_unlock(&pci_pme_list_mutex);
2472 }
2473
__pci_pme_active(struct pci_dev * dev,bool enable)2474 static void __pci_pme_active(struct pci_dev *dev, bool enable)
2475 {
2476 u16 pmcsr;
2477
2478 if (!dev->pme_support)
2479 return;
2480
2481 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2482 /* Clear PME_Status by writing 1 to it and enable PME# */
2483 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2484 if (!enable)
2485 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2486
2487 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2488 }
2489
2490 /**
2491 * pci_pme_restore - Restore PME configuration after config space restore.
2492 * @dev: PCI device to update.
2493 */
pci_pme_restore(struct pci_dev * dev)2494 void pci_pme_restore(struct pci_dev *dev)
2495 {
2496 u16 pmcsr;
2497
2498 if (!dev->pme_support)
2499 return;
2500
2501 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2502 if (dev->wakeup_prepared) {
2503 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2504 pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2505 } else {
2506 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2507 pmcsr |= PCI_PM_CTRL_PME_STATUS;
2508 }
2509 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2510 }
2511
2512 /**
2513 * pci_pme_active - enable or disable PCI device's PME# function
2514 * @dev: PCI device to handle.
2515 * @enable: 'true' to enable PME# generation; 'false' to disable it.
2516 *
2517 * The caller must verify that the device is capable of generating PME# before
2518 * calling this function with @enable equal to 'true'.
2519 */
pci_pme_active(struct pci_dev * dev,bool enable)2520 void pci_pme_active(struct pci_dev *dev, bool enable)
2521 {
2522 __pci_pme_active(dev, enable);
2523
2524 /*
2525 * PCI (as opposed to PCIe) PME requires that the device have
2526 * its PME# line hooked up correctly. Not all hardware vendors
2527 * do this, so the PME never gets delivered and the device
2528 * remains asleep. The easiest way around this is to
2529 * periodically walk the list of suspended devices and check
2530 * whether any have their PME flag set. The assumption is that
2531 * we'll wake up often enough anyway that this won't be a huge
2532 * hit, and the power savings from the devices will still be a
2533 * win.
2534 *
2535 * Although PCIe uses in-band PME message instead of PME# line
2536 * to report PME, PME does not work for some PCIe devices in
2537 * reality. For example, there are devices that set their PME
2538 * status bits, but don't really bother to send a PME message;
2539 * there are PCI Express Root Ports that don't bother to
2540 * trigger interrupts when they receive PME messages from the
2541 * devices below. So PME poll is used for PCIe devices too.
2542 */
2543
2544 if (dev->pme_poll) {
2545 struct pci_pme_device *pme_dev;
2546 if (enable) {
2547 pme_dev = kmalloc(sizeof(struct pci_pme_device),
2548 GFP_KERNEL);
2549 if (!pme_dev) {
2550 pci_warn(dev, "can't enable PME#\n");
2551 return;
2552 }
2553 pme_dev->dev = dev;
2554 mutex_lock(&pci_pme_list_mutex);
2555 list_add(&pme_dev->list, &pci_pme_list);
2556 if (list_is_singular(&pci_pme_list))
2557 queue_delayed_work(system_freezable_wq,
2558 &pci_pme_work,
2559 msecs_to_jiffies(PME_TIMEOUT));
2560 mutex_unlock(&pci_pme_list_mutex);
2561 } else {
2562 mutex_lock(&pci_pme_list_mutex);
2563 list_for_each_entry(pme_dev, &pci_pme_list, list) {
2564 if (pme_dev->dev == dev) {
2565 list_del(&pme_dev->list);
2566 kfree(pme_dev);
2567 break;
2568 }
2569 }
2570 mutex_unlock(&pci_pme_list_mutex);
2571 }
2572 }
2573
2574 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2575 }
2576 EXPORT_SYMBOL(pci_pme_active);
2577
2578 /**
2579 * __pci_enable_wake - enable PCI device as wakeup event source
2580 * @dev: PCI device affected
2581 * @state: PCI state from which device will issue wakeup events
2582 * @enable: True to enable event generation; false to disable
2583 *
2584 * This enables the device as a wakeup event source, or disables it.
2585 * When such events involves platform-specific hooks, those hooks are
2586 * called automatically by this routine.
2587 *
2588 * Devices with legacy power management (no standard PCI PM capabilities)
2589 * always require such platform hooks.
2590 *
2591 * RETURN VALUE:
2592 * 0 is returned on success
2593 * -EINVAL is returned if device is not supposed to wake up the system
2594 * Error code depending on the platform is returned if both the platform and
2595 * the native mechanism fail to enable the generation of wake-up events
2596 */
__pci_enable_wake(struct pci_dev * dev,pci_power_t state,bool enable)2597 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2598 {
2599 int ret = 0;
2600
2601 /*
2602 * Bridges that are not power-manageable directly only signal
2603 * wakeup on behalf of subordinate devices which is set up
2604 * elsewhere, so skip them. However, bridges that are
2605 * power-manageable may signal wakeup for themselves (for example,
2606 * on a hotplug event) and they need to be covered here.
2607 */
2608 if (!pci_power_manageable(dev))
2609 return 0;
2610
2611 /* Don't do the same thing twice in a row for one device. */
2612 if (!!enable == !!dev->wakeup_prepared)
2613 return 0;
2614
2615 /*
2616 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2617 * Anderson we should be doing PME# wake enable followed by ACPI wake
2618 * enable. To disable wake-up we call the platform first, for symmetry.
2619 */
2620
2621 if (enable) {
2622 int error;
2623
2624 /*
2625 * Enable PME signaling if the device can signal PME from
2626 * D3cold regardless of whether or not it can signal PME from
2627 * the current target state, because that will allow it to
2628 * signal PME when the hierarchy above it goes into D3cold and
2629 * the device itself ends up in D3cold as a result of that.
2630 */
2631 if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold))
2632 pci_pme_active(dev, true);
2633 else
2634 ret = 1;
2635 error = platform_pci_set_wakeup(dev, true);
2636 if (ret)
2637 ret = error;
2638 if (!ret)
2639 dev->wakeup_prepared = true;
2640 } else {
2641 platform_pci_set_wakeup(dev, false);
2642 pci_pme_active(dev, false);
2643 dev->wakeup_prepared = false;
2644 }
2645
2646 return ret;
2647 }
2648
2649 /**
2650 * pci_enable_wake - change wakeup settings for a PCI device
2651 * @pci_dev: Target device
2652 * @state: PCI state from which device will issue wakeup events
2653 * @enable: Whether or not to enable event generation
2654 *
2655 * If @enable is set, check device_may_wakeup() for the device before calling
2656 * __pci_enable_wake() for it.
2657 */
pci_enable_wake(struct pci_dev * pci_dev,pci_power_t state,bool enable)2658 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2659 {
2660 if (enable && !device_may_wakeup(&pci_dev->dev))
2661 return -EINVAL;
2662
2663 return __pci_enable_wake(pci_dev, state, enable);
2664 }
2665 EXPORT_SYMBOL(pci_enable_wake);
2666
2667 /**
2668 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2669 * @dev: PCI device to prepare
2670 * @enable: True to enable wake-up event generation; false to disable
2671 *
2672 * Many drivers want the device to wake up the system from D3_hot or D3_cold
2673 * and this function allows them to set that up cleanly - pci_enable_wake()
2674 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2675 * ordering constraints.
2676 *
2677 * This function only returns error code if the device is not allowed to wake
2678 * up the system from sleep or it is not capable of generating PME# from both
2679 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2680 */
pci_wake_from_d3(struct pci_dev * dev,bool enable)2681 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2682 {
2683 return pci_pme_capable(dev, PCI_D3cold) ?
2684 pci_enable_wake(dev, PCI_D3cold, enable) :
2685 pci_enable_wake(dev, PCI_D3hot, enable);
2686 }
2687 EXPORT_SYMBOL(pci_wake_from_d3);
2688
2689 /**
2690 * pci_target_state - find an appropriate low power state for a given PCI dev
2691 * @dev: PCI device
2692 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2693 *
2694 * Use underlying platform code to find a supported low power state for @dev.
2695 * If the platform can't manage @dev, return the deepest state from which it
2696 * can generate wake events, based on any available PME info.
2697 */
pci_target_state(struct pci_dev * dev,bool wakeup)2698 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2699 {
2700 if (platform_pci_power_manageable(dev)) {
2701 /*
2702 * Call the platform to find the target state for the device.
2703 */
2704 pci_power_t state = platform_pci_choose_state(dev);
2705
2706 switch (state) {
2707 case PCI_POWER_ERROR:
2708 case PCI_UNKNOWN:
2709 return PCI_D3hot;
2710
2711 case PCI_D1:
2712 case PCI_D2:
2713 if (pci_no_d1d2(dev))
2714 return PCI_D3hot;
2715 }
2716
2717 return state;
2718 }
2719
2720 /*
2721 * If the device is in D3cold even though it's not power-manageable by
2722 * the platform, it may have been powered down by non-standard means.
2723 * Best to let it slumber.
2724 */
2725 if (dev->current_state == PCI_D3cold)
2726 return PCI_D3cold;
2727 else if (!dev->pm_cap)
2728 return PCI_D0;
2729
2730 if (wakeup && dev->pme_support) {
2731 pci_power_t state = PCI_D3hot;
2732
2733 /*
2734 * Find the deepest state from which the device can generate
2735 * PME#.
2736 */
2737 while (state && !(dev->pme_support & (1 << state)))
2738 state--;
2739
2740 if (state)
2741 return state;
2742 else if (dev->pme_support & 1)
2743 return PCI_D0;
2744 }
2745
2746 return PCI_D3hot;
2747 }
2748
2749 /**
2750 * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2751 * into a sleep state
2752 * @dev: Device to handle.
2753 *
2754 * Choose the power state appropriate for the device depending on whether
2755 * it can wake up the system and/or is power manageable by the platform
2756 * (PCI_D3hot is the default) and put the device into that state.
2757 */
pci_prepare_to_sleep(struct pci_dev * dev)2758 int pci_prepare_to_sleep(struct pci_dev *dev)
2759 {
2760 bool wakeup = device_may_wakeup(&dev->dev);
2761 pci_power_t target_state = pci_target_state(dev, wakeup);
2762 int error;
2763
2764 if (target_state == PCI_POWER_ERROR)
2765 return -EIO;
2766
2767 pci_enable_wake(dev, target_state, wakeup);
2768
2769 error = pci_set_power_state(dev, target_state);
2770
2771 if (error)
2772 pci_enable_wake(dev, target_state, false);
2773
2774 return error;
2775 }
2776 EXPORT_SYMBOL(pci_prepare_to_sleep);
2777
2778 /**
2779 * pci_back_from_sleep - turn PCI device on during system-wide transition
2780 * into working state
2781 * @dev: Device to handle.
2782 *
2783 * Disable device's system wake-up capability and put it into D0.
2784 */
pci_back_from_sleep(struct pci_dev * dev)2785 int pci_back_from_sleep(struct pci_dev *dev)
2786 {
2787 int ret = pci_set_power_state(dev, PCI_D0);
2788
2789 if (ret)
2790 return ret;
2791
2792 pci_enable_wake(dev, PCI_D0, false);
2793 return 0;
2794 }
2795 EXPORT_SYMBOL(pci_back_from_sleep);
2796
2797 /**
2798 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2799 * @dev: PCI device being suspended.
2800 *
2801 * Prepare @dev to generate wake-up events at run time and put it into a low
2802 * power state.
2803 */
pci_finish_runtime_suspend(struct pci_dev * dev)2804 int pci_finish_runtime_suspend(struct pci_dev *dev)
2805 {
2806 pci_power_t target_state;
2807 int error;
2808
2809 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2810 if (target_state == PCI_POWER_ERROR)
2811 return -EIO;
2812
2813 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2814
2815 error = pci_set_power_state(dev, target_state);
2816
2817 if (error)
2818 pci_enable_wake(dev, target_state, false);
2819
2820 return error;
2821 }
2822
2823 /**
2824 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2825 * @dev: Device to check.
2826 *
2827 * Return true if the device itself is capable of generating wake-up events
2828 * (through the platform or using the native PCIe PME) or if the device supports
2829 * PME and one of its upstream bridges can generate wake-up events.
2830 */
pci_dev_run_wake(struct pci_dev * dev)2831 bool pci_dev_run_wake(struct pci_dev *dev)
2832 {
2833 struct pci_bus *bus = dev->bus;
2834
2835 if (!dev->pme_support)
2836 return false;
2837
2838 /* PME-capable in principle, but not from the target power state */
2839 if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2840 return false;
2841
2842 if (device_can_wakeup(&dev->dev))
2843 return true;
2844
2845 while (bus->parent) {
2846 struct pci_dev *bridge = bus->self;
2847
2848 if (device_can_wakeup(&bridge->dev))
2849 return true;
2850
2851 bus = bus->parent;
2852 }
2853
2854 /* We have reached the root bus. */
2855 if (bus->bridge)
2856 return device_can_wakeup(bus->bridge);
2857
2858 return false;
2859 }
2860 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2861
2862 /**
2863 * pci_dev_need_resume - Check if it is necessary to resume the device.
2864 * @pci_dev: Device to check.
2865 *
2866 * Return 'true' if the device is not runtime-suspended or it has to be
2867 * reconfigured due to wakeup settings difference between system and runtime
2868 * suspend, or the current power state of it is not suitable for the upcoming
2869 * (system-wide) transition.
2870 */
pci_dev_need_resume(struct pci_dev * pci_dev)2871 bool pci_dev_need_resume(struct pci_dev *pci_dev)
2872 {
2873 struct device *dev = &pci_dev->dev;
2874 pci_power_t target_state;
2875
2876 if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2877 return true;
2878
2879 target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2880
2881 /*
2882 * If the earlier platform check has not triggered, D3cold is just power
2883 * removal on top of D3hot, so no need to resume the device in that
2884 * case.
2885 */
2886 return target_state != pci_dev->current_state &&
2887 target_state != PCI_D3cold &&
2888 pci_dev->current_state != PCI_D3hot;
2889 }
2890
2891 /**
2892 * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2893 * @pci_dev: Device to check.
2894 *
2895 * If the device is suspended and it is not configured for system wakeup,
2896 * disable PME for it to prevent it from waking up the system unnecessarily.
2897 *
2898 * Note that if the device's power state is D3cold and the platform check in
2899 * pci_dev_need_resume() has not triggered, the device's configuration need not
2900 * be changed.
2901 */
pci_dev_adjust_pme(struct pci_dev * pci_dev)2902 void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2903 {
2904 struct device *dev = &pci_dev->dev;
2905
2906 spin_lock_irq(&dev->power.lock);
2907
2908 if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2909 pci_dev->current_state < PCI_D3cold)
2910 __pci_pme_active(pci_dev, false);
2911
2912 spin_unlock_irq(&dev->power.lock);
2913 }
2914
2915 /**
2916 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2917 * @pci_dev: Device to handle.
2918 *
2919 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2920 * it might have been disabled during the prepare phase of system suspend if
2921 * the device was not configured for system wakeup.
2922 */
pci_dev_complete_resume(struct pci_dev * pci_dev)2923 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2924 {
2925 struct device *dev = &pci_dev->dev;
2926
2927 if (!pci_dev_run_wake(pci_dev))
2928 return;
2929
2930 spin_lock_irq(&dev->power.lock);
2931
2932 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2933 __pci_pme_active(pci_dev, true);
2934
2935 spin_unlock_irq(&dev->power.lock);
2936 }
2937
2938 /**
2939 * pci_choose_state - Choose the power state of a PCI device.
2940 * @dev: Target PCI device.
2941 * @state: Target state for the whole system.
2942 *
2943 * Returns PCI power state suitable for @dev and @state.
2944 */
pci_choose_state(struct pci_dev * dev,pm_message_t state)2945 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
2946 {
2947 if (state.event == PM_EVENT_ON)
2948 return PCI_D0;
2949
2950 return pci_target_state(dev, false);
2951 }
2952 EXPORT_SYMBOL(pci_choose_state);
2953
pci_config_pm_runtime_get(struct pci_dev * pdev)2954 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2955 {
2956 struct device *dev = &pdev->dev;
2957 struct device *parent = dev->parent;
2958
2959 if (parent)
2960 pm_runtime_get_sync(parent);
2961 pm_runtime_get_noresume(dev);
2962 /*
2963 * pdev->current_state is set to PCI_D3cold during suspending,
2964 * so wait until suspending completes
2965 */
2966 pm_runtime_barrier(dev);
2967 /*
2968 * Only need to resume devices in D3cold, because config
2969 * registers are still accessible for devices suspended but
2970 * not in D3cold.
2971 */
2972 if (pdev->current_state == PCI_D3cold)
2973 pm_runtime_resume(dev);
2974 }
2975
pci_config_pm_runtime_put(struct pci_dev * pdev)2976 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2977 {
2978 struct device *dev = &pdev->dev;
2979 struct device *parent = dev->parent;
2980
2981 pm_runtime_put(dev);
2982 if (parent)
2983 pm_runtime_put_sync(parent);
2984 }
2985
2986 static const struct dmi_system_id bridge_d3_blacklist[] = {
2987 #ifdef CONFIG_X86
2988 {
2989 /*
2990 * Gigabyte X299 root port is not marked as hotplug capable
2991 * which allows Linux to power manage it. However, this
2992 * confuses the BIOS SMI handler so don't power manage root
2993 * ports on that system.
2994 */
2995 .ident = "X299 DESIGNARE EX-CF",
2996 .matches = {
2997 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2998 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2999 },
3000 },
3001 {
3002 /*
3003 * Downstream device is not accessible after putting a root port
3004 * into D3cold and back into D0 on Elo Continental Z2 board
3005 */
3006 .ident = "Elo Continental Z2",
3007 .matches = {
3008 DMI_MATCH(DMI_BOARD_VENDOR, "Elo Touch Solutions"),
3009 DMI_MATCH(DMI_BOARD_NAME, "Geminilake"),
3010 DMI_MATCH(DMI_BOARD_VERSION, "Continental Z2"),
3011 },
3012 },
3013 {
3014 /*
3015 * Changing power state of root port dGPU is connected fails
3016 * https://gitlab.freedesktop.org/drm/amd/-/issues/3229
3017 */
3018 .ident = "Hewlett-Packard HP Pavilion 17 Notebook PC/1972",
3019 .matches = {
3020 DMI_MATCH(DMI_BOARD_VENDOR, "Hewlett-Packard"),
3021 DMI_MATCH(DMI_BOARD_NAME, "1972"),
3022 DMI_MATCH(DMI_BOARD_VERSION, "95.33"),
3023 },
3024 },
3025 #endif
3026 { }
3027 };
3028
3029 /**
3030 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
3031 * @bridge: Bridge to check
3032 *
3033 * This function checks if it is possible to move the bridge to D3.
3034 * Currently we only allow D3 for some PCIe ports and for Thunderbolt.
3035 */
pci_bridge_d3_possible(struct pci_dev * bridge)3036 bool pci_bridge_d3_possible(struct pci_dev *bridge)
3037 {
3038 if (!pci_is_pcie(bridge))
3039 return false;
3040
3041 switch (pci_pcie_type(bridge)) {
3042 case PCI_EXP_TYPE_ROOT_PORT:
3043 case PCI_EXP_TYPE_UPSTREAM:
3044 case PCI_EXP_TYPE_DOWNSTREAM:
3045 if (pci_bridge_d3_disable)
3046 return false;
3047
3048 /*
3049 * Hotplug ports handled by firmware in System Management Mode
3050 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
3051 */
3052 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
3053 return false;
3054
3055 if (pci_bridge_d3_force)
3056 return true;
3057
3058 /* Even the oldest 2010 Thunderbolt controller supports D3. */
3059 if (bridge->is_thunderbolt)
3060 return true;
3061
3062 /* Platform might know better if the bridge supports D3 */
3063 if (platform_pci_bridge_d3(bridge))
3064 return true;
3065
3066 /*
3067 * Hotplug ports handled natively by the OS were not validated
3068 * by vendors for runtime D3 at least until 2018 because there
3069 * was no OS support.
3070 */
3071 if (bridge->is_hotplug_bridge)
3072 return false;
3073
3074 if (dmi_check_system(bridge_d3_blacklist))
3075 return false;
3076
3077 /*
3078 * Out of caution, we only allow PCIe ports from 2015 or newer
3079 * into D3 on x86.
3080 */
3081 if (!IS_ENABLED(CONFIG_X86) || dmi_get_bios_year() >= 2015)
3082 return true;
3083 break;
3084 }
3085
3086 return false;
3087 }
3088
pci_dev_check_d3cold(struct pci_dev * dev,void * data)3089 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
3090 {
3091 bool *d3cold_ok = data;
3092
3093 if (/* The device needs to be allowed to go D3cold ... */
3094 dev->no_d3cold || !dev->d3cold_allowed ||
3095
3096 /* ... and if it is wakeup capable to do so from D3cold. */
3097 (device_may_wakeup(&dev->dev) &&
3098 !pci_pme_capable(dev, PCI_D3cold)) ||
3099
3100 /* If it is a bridge it must be allowed to go to D3. */
3101 !pci_power_manageable(dev))
3102
3103 *d3cold_ok = false;
3104
3105 return !*d3cold_ok;
3106 }
3107
3108 /*
3109 * pci_bridge_d3_update - Update bridge D3 capabilities
3110 * @dev: PCI device which is changed
3111 *
3112 * Update upstream bridge PM capabilities accordingly depending on if the
3113 * device PM configuration was changed or the device is being removed. The
3114 * change is also propagated upstream.
3115 */
pci_bridge_d3_update(struct pci_dev * dev)3116 void pci_bridge_d3_update(struct pci_dev *dev)
3117 {
3118 bool remove = !device_is_registered(&dev->dev);
3119 struct pci_dev *bridge;
3120 bool d3cold_ok = true;
3121
3122 bridge = pci_upstream_bridge(dev);
3123 if (!bridge || !pci_bridge_d3_possible(bridge))
3124 return;
3125
3126 /*
3127 * If D3 is currently allowed for the bridge, removing one of its
3128 * children won't change that.
3129 */
3130 if (remove && bridge->bridge_d3)
3131 return;
3132
3133 /*
3134 * If D3 is currently allowed for the bridge and a child is added or
3135 * changed, disallowance of D3 can only be caused by that child, so
3136 * we only need to check that single device, not any of its siblings.
3137 *
3138 * If D3 is currently not allowed for the bridge, checking the device
3139 * first may allow us to skip checking its siblings.
3140 */
3141 if (!remove)
3142 pci_dev_check_d3cold(dev, &d3cold_ok);
3143
3144 /*
3145 * If D3 is currently not allowed for the bridge, this may be caused
3146 * either by the device being changed/removed or any of its siblings,
3147 * so we need to go through all children to find out if one of them
3148 * continues to block D3.
3149 */
3150 if (d3cold_ok && !bridge->bridge_d3)
3151 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
3152 &d3cold_ok);
3153
3154 if (bridge->bridge_d3 != d3cold_ok) {
3155 bridge->bridge_d3 = d3cold_ok;
3156 /* Propagate change to upstream bridges */
3157 pci_bridge_d3_update(bridge);
3158 }
3159 }
3160
3161 /**
3162 * pci_d3cold_enable - Enable D3cold for device
3163 * @dev: PCI device to handle
3164 *
3165 * This function can be used in drivers to enable D3cold from the device
3166 * they handle. It also updates upstream PCI bridge PM capabilities
3167 * accordingly.
3168 */
pci_d3cold_enable(struct pci_dev * dev)3169 void pci_d3cold_enable(struct pci_dev *dev)
3170 {
3171 if (dev->no_d3cold) {
3172 dev->no_d3cold = false;
3173 pci_bridge_d3_update(dev);
3174 }
3175 }
3176 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
3177
3178 /**
3179 * pci_d3cold_disable - Disable D3cold for device
3180 * @dev: PCI device to handle
3181 *
3182 * This function can be used in drivers to disable D3cold from the device
3183 * they handle. It also updates upstream PCI bridge PM capabilities
3184 * accordingly.
3185 */
pci_d3cold_disable(struct pci_dev * dev)3186 void pci_d3cold_disable(struct pci_dev *dev)
3187 {
3188 if (!dev->no_d3cold) {
3189 dev->no_d3cold = true;
3190 pci_bridge_d3_update(dev);
3191 }
3192 }
3193 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
3194
3195 /**
3196 * pci_pm_init - Initialize PM functions of given PCI device
3197 * @dev: PCI device to handle.
3198 */
pci_pm_init(struct pci_dev * dev)3199 void pci_pm_init(struct pci_dev *dev)
3200 {
3201 int pm;
3202 u16 status;
3203 u16 pmc;
3204
3205 pm_runtime_forbid(&dev->dev);
3206 pm_runtime_set_active(&dev->dev);
3207 pm_runtime_enable(&dev->dev);
3208 device_enable_async_suspend(&dev->dev);
3209 dev->wakeup_prepared = false;
3210
3211 dev->pm_cap = 0;
3212 dev->pme_support = 0;
3213
3214 /* find PCI PM capability in list */
3215 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3216 if (!pm)
3217 return;
3218 /* Check device's ability to generate PME# */
3219 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
3220
3221 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3222 pci_err(dev, "unsupported PM cap regs version (%u)\n",
3223 pmc & PCI_PM_CAP_VER_MASK);
3224 return;
3225 }
3226
3227 dev->pm_cap = pm;
3228 dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
3229 dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3230 dev->bridge_d3 = pci_bridge_d3_possible(dev);
3231 dev->d3cold_allowed = true;
3232
3233 dev->d1_support = false;
3234 dev->d2_support = false;
3235 if (!pci_no_d1d2(dev)) {
3236 if (pmc & PCI_PM_CAP_D1)
3237 dev->d1_support = true;
3238 if (pmc & PCI_PM_CAP_D2)
3239 dev->d2_support = true;
3240
3241 if (dev->d1_support || dev->d2_support)
3242 pci_info(dev, "supports%s%s\n",
3243 dev->d1_support ? " D1" : "",
3244 dev->d2_support ? " D2" : "");
3245 }
3246
3247 pmc &= PCI_PM_CAP_PME_MASK;
3248 if (pmc) {
3249 pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3250 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3251 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3252 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3253 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
3254 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3255 dev->pme_support = FIELD_GET(PCI_PM_CAP_PME_MASK, pmc);
3256 dev->pme_poll = true;
3257 /*
3258 * Make device's PM flags reflect the wake-up capability, but
3259 * let the user space enable it to wake up the system as needed.
3260 */
3261 device_set_wakeup_capable(&dev->dev, true);
3262 /* Disable the PME# generation functionality */
3263 pci_pme_active(dev, false);
3264 }
3265
3266 pci_read_config_word(dev, PCI_STATUS, &status);
3267 if (status & PCI_STATUS_IMM_READY)
3268 dev->imm_ready = 1;
3269 }
3270
pci_ea_flags(struct pci_dev * dev,u8 prop)3271 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3272 {
3273 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3274
3275 switch (prop) {
3276 case PCI_EA_P_MEM:
3277 case PCI_EA_P_VF_MEM:
3278 flags |= IORESOURCE_MEM;
3279 break;
3280 case PCI_EA_P_MEM_PREFETCH:
3281 case PCI_EA_P_VF_MEM_PREFETCH:
3282 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3283 break;
3284 case PCI_EA_P_IO:
3285 flags |= IORESOURCE_IO;
3286 break;
3287 default:
3288 return 0;
3289 }
3290
3291 return flags;
3292 }
3293
pci_ea_get_resource(struct pci_dev * dev,u8 bei,u8 prop)3294 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3295 u8 prop)
3296 {
3297 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3298 return &dev->resource[bei];
3299 #ifdef CONFIG_PCI_IOV
3300 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3301 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3302 return &dev->resource[PCI_IOV_RESOURCES +
3303 bei - PCI_EA_BEI_VF_BAR0];
3304 #endif
3305 else if (bei == PCI_EA_BEI_ROM)
3306 return &dev->resource[PCI_ROM_RESOURCE];
3307 else
3308 return NULL;
3309 }
3310
3311 /* Read an Enhanced Allocation (EA) entry */
pci_ea_read(struct pci_dev * dev,int offset)3312 static int pci_ea_read(struct pci_dev *dev, int offset)
3313 {
3314 struct resource *res;
3315 const char *res_name;
3316 int ent_size, ent_offset = offset;
3317 resource_size_t start, end;
3318 unsigned long flags;
3319 u32 dw0, bei, base, max_offset;
3320 u8 prop;
3321 bool support_64 = (sizeof(resource_size_t) >= 8);
3322
3323 pci_read_config_dword(dev, ent_offset, &dw0);
3324 ent_offset += 4;
3325
3326 /* Entry size field indicates DWORDs after 1st */
3327 ent_size = (FIELD_GET(PCI_EA_ES, dw0) + 1) << 2;
3328
3329 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3330 goto out;
3331
3332 bei = FIELD_GET(PCI_EA_BEI, dw0);
3333 prop = FIELD_GET(PCI_EA_PP, dw0);
3334
3335 /*
3336 * If the Property is in the reserved range, try the Secondary
3337 * Property instead.
3338 */
3339 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3340 prop = FIELD_GET(PCI_EA_SP, dw0);
3341 if (prop > PCI_EA_P_BRIDGE_IO)
3342 goto out;
3343
3344 res = pci_ea_get_resource(dev, bei, prop);
3345 res_name = pci_resource_name(dev, bei);
3346 if (!res) {
3347 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3348 goto out;
3349 }
3350
3351 flags = pci_ea_flags(dev, prop);
3352 if (!flags) {
3353 pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3354 goto out;
3355 }
3356
3357 /* Read Base */
3358 pci_read_config_dword(dev, ent_offset, &base);
3359 start = (base & PCI_EA_FIELD_MASK);
3360 ent_offset += 4;
3361
3362 /* Read MaxOffset */
3363 pci_read_config_dword(dev, ent_offset, &max_offset);
3364 ent_offset += 4;
3365
3366 /* Read Base MSBs (if 64-bit entry) */
3367 if (base & PCI_EA_IS_64) {
3368 u32 base_upper;
3369
3370 pci_read_config_dword(dev, ent_offset, &base_upper);
3371 ent_offset += 4;
3372
3373 flags |= IORESOURCE_MEM_64;
3374
3375 /* entry starts above 32-bit boundary, can't use */
3376 if (!support_64 && base_upper)
3377 goto out;
3378
3379 if (support_64)
3380 start |= ((u64)base_upper << 32);
3381 }
3382
3383 end = start + (max_offset | 0x03);
3384
3385 /* Read MaxOffset MSBs (if 64-bit entry) */
3386 if (max_offset & PCI_EA_IS_64) {
3387 u32 max_offset_upper;
3388
3389 pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3390 ent_offset += 4;
3391
3392 flags |= IORESOURCE_MEM_64;
3393
3394 /* entry too big, can't use */
3395 if (!support_64 && max_offset_upper)
3396 goto out;
3397
3398 if (support_64)
3399 end += ((u64)max_offset_upper << 32);
3400 }
3401
3402 if (end < start) {
3403 pci_err(dev, "EA Entry crosses address boundary\n");
3404 goto out;
3405 }
3406
3407 if (ent_size != ent_offset - offset) {
3408 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3409 ent_size, ent_offset - offset);
3410 goto out;
3411 }
3412
3413 res->name = pci_name(dev);
3414 res->start = start;
3415 res->end = end;
3416 res->flags = flags;
3417
3418 if (bei <= PCI_EA_BEI_BAR5)
3419 pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n",
3420 res_name, res, prop);
3421 else if (bei == PCI_EA_BEI_ROM)
3422 pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n",
3423 res_name, res, prop);
3424 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3425 pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n",
3426 res_name, res, prop);
3427 else
3428 pci_info(dev, "BEI %d %pR: from Enhanced Allocation, properties %#02x\n",
3429 bei, res, prop);
3430
3431 out:
3432 return offset + ent_size;
3433 }
3434
3435 /* Enhanced Allocation Initialization */
pci_ea_init(struct pci_dev * dev)3436 void pci_ea_init(struct pci_dev *dev)
3437 {
3438 int ea;
3439 u8 num_ent;
3440 int offset;
3441 int i;
3442
3443 /* find PCI EA capability in list */
3444 ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3445 if (!ea)
3446 return;
3447
3448 /* determine the number of entries */
3449 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3450 &num_ent);
3451 num_ent &= PCI_EA_NUM_ENT_MASK;
3452
3453 offset = ea + PCI_EA_FIRST_ENT;
3454
3455 /* Skip DWORD 2 for type 1 functions */
3456 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3457 offset += 4;
3458
3459 /* parse each EA entry */
3460 for (i = 0; i < num_ent; ++i)
3461 offset = pci_ea_read(dev, offset);
3462 }
3463
pci_add_saved_cap(struct pci_dev * pci_dev,struct pci_cap_saved_state * new_cap)3464 static void pci_add_saved_cap(struct pci_dev *pci_dev,
3465 struct pci_cap_saved_state *new_cap)
3466 {
3467 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3468 }
3469
3470 /**
3471 * _pci_add_cap_save_buffer - allocate buffer for saving given
3472 * capability registers
3473 * @dev: the PCI device
3474 * @cap: the capability to allocate the buffer for
3475 * @extended: Standard or Extended capability ID
3476 * @size: requested size of the buffer
3477 */
_pci_add_cap_save_buffer(struct pci_dev * dev,u16 cap,bool extended,unsigned int size)3478 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3479 bool extended, unsigned int size)
3480 {
3481 int pos;
3482 struct pci_cap_saved_state *save_state;
3483
3484 if (extended)
3485 pos = pci_find_ext_capability(dev, cap);
3486 else
3487 pos = pci_find_capability(dev, cap);
3488
3489 if (!pos)
3490 return 0;
3491
3492 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3493 if (!save_state)
3494 return -ENOMEM;
3495
3496 save_state->cap.cap_nr = cap;
3497 save_state->cap.cap_extended = extended;
3498 save_state->cap.size = size;
3499 pci_add_saved_cap(dev, save_state);
3500
3501 return 0;
3502 }
3503
pci_add_cap_save_buffer(struct pci_dev * dev,char cap,unsigned int size)3504 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3505 {
3506 return _pci_add_cap_save_buffer(dev, cap, false, size);
3507 }
3508
pci_add_ext_cap_save_buffer(struct pci_dev * dev,u16 cap,unsigned int size)3509 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3510 {
3511 return _pci_add_cap_save_buffer(dev, cap, true, size);
3512 }
3513
3514 /**
3515 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3516 * @dev: the PCI device
3517 */
pci_allocate_cap_save_buffers(struct pci_dev * dev)3518 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3519 {
3520 int error;
3521
3522 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3523 PCI_EXP_SAVE_REGS * sizeof(u16));
3524 if (error)
3525 pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3526
3527 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3528 if (error)
3529 pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3530
3531 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3532 2 * sizeof(u16));
3533 if (error)
3534 pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3535
3536 pci_allocate_vc_save_buffers(dev);
3537 }
3538
pci_free_cap_save_buffers(struct pci_dev * dev)3539 void pci_free_cap_save_buffers(struct pci_dev *dev)
3540 {
3541 struct pci_cap_saved_state *tmp;
3542 struct hlist_node *n;
3543
3544 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3545 kfree(tmp);
3546 }
3547
3548 /**
3549 * pci_configure_ari - enable or disable ARI forwarding
3550 * @dev: the PCI device
3551 *
3552 * If @dev and its upstream bridge both support ARI, enable ARI in the
3553 * bridge. Otherwise, disable ARI in the bridge.
3554 */
pci_configure_ari(struct pci_dev * dev)3555 void pci_configure_ari(struct pci_dev *dev)
3556 {
3557 u32 cap;
3558 struct pci_dev *bridge;
3559
3560 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3561 return;
3562
3563 bridge = dev->bus->self;
3564 if (!bridge)
3565 return;
3566
3567 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3568 if (!(cap & PCI_EXP_DEVCAP2_ARI))
3569 return;
3570
3571 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3572 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3573 PCI_EXP_DEVCTL2_ARI);
3574 bridge->ari_enabled = 1;
3575 } else {
3576 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3577 PCI_EXP_DEVCTL2_ARI);
3578 bridge->ari_enabled = 0;
3579 }
3580 }
3581
pci_acs_flags_enabled(struct pci_dev * pdev,u16 acs_flags)3582 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3583 {
3584 int pos;
3585 u16 cap, ctrl;
3586
3587 pos = pdev->acs_cap;
3588 if (!pos)
3589 return false;
3590
3591 /*
3592 * Except for egress control, capabilities are either required
3593 * or only required if controllable. Features missing from the
3594 * capability field can therefore be assumed as hard-wired enabled.
3595 */
3596 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3597 acs_flags &= (cap | PCI_ACS_EC);
3598
3599 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3600 return (ctrl & acs_flags) == acs_flags;
3601 }
3602
3603 /**
3604 * pci_acs_enabled - test ACS against required flags for a given device
3605 * @pdev: device to test
3606 * @acs_flags: required PCI ACS flags
3607 *
3608 * Return true if the device supports the provided flags. Automatically
3609 * filters out flags that are not implemented on multifunction devices.
3610 *
3611 * Note that this interface checks the effective ACS capabilities of the
3612 * device rather than the actual capabilities. For instance, most single
3613 * function endpoints are not required to support ACS because they have no
3614 * opportunity for peer-to-peer access. We therefore return 'true'
3615 * regardless of whether the device exposes an ACS capability. This makes
3616 * it much easier for callers of this function to ignore the actual type
3617 * or topology of the device when testing ACS support.
3618 */
pci_acs_enabled(struct pci_dev * pdev,u16 acs_flags)3619 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3620 {
3621 int ret;
3622
3623 ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3624 if (ret >= 0)
3625 return ret > 0;
3626
3627 /*
3628 * Conventional PCI and PCI-X devices never support ACS, either
3629 * effectively or actually. The shared bus topology implies that
3630 * any device on the bus can receive or snoop DMA.
3631 */
3632 if (!pci_is_pcie(pdev))
3633 return false;
3634
3635 switch (pci_pcie_type(pdev)) {
3636 /*
3637 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3638 * but since their primary interface is PCI/X, we conservatively
3639 * handle them as we would a non-PCIe device.
3640 */
3641 case PCI_EXP_TYPE_PCIE_BRIDGE:
3642 /*
3643 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
3644 * applicable... must never implement an ACS Extended Capability...".
3645 * This seems arbitrary, but we take a conservative interpretation
3646 * of this statement.
3647 */
3648 case PCI_EXP_TYPE_PCI_BRIDGE:
3649 case PCI_EXP_TYPE_RC_EC:
3650 return false;
3651 /*
3652 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3653 * implement ACS in order to indicate their peer-to-peer capabilities,
3654 * regardless of whether they are single- or multi-function devices.
3655 */
3656 case PCI_EXP_TYPE_DOWNSTREAM:
3657 case PCI_EXP_TYPE_ROOT_PORT:
3658 return pci_acs_flags_enabled(pdev, acs_flags);
3659 /*
3660 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3661 * implemented by the remaining PCIe types to indicate peer-to-peer
3662 * capabilities, but only when they are part of a multifunction
3663 * device. The footnote for section 6.12 indicates the specific
3664 * PCIe types included here.
3665 */
3666 case PCI_EXP_TYPE_ENDPOINT:
3667 case PCI_EXP_TYPE_UPSTREAM:
3668 case PCI_EXP_TYPE_LEG_END:
3669 case PCI_EXP_TYPE_RC_END:
3670 if (!pdev->multifunction)
3671 break;
3672
3673 return pci_acs_flags_enabled(pdev, acs_flags);
3674 }
3675
3676 /*
3677 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3678 * to single function devices with the exception of downstream ports.
3679 */
3680 return true;
3681 }
3682
3683 /**
3684 * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy
3685 * @start: starting downstream device
3686 * @end: ending upstream device or NULL to search to the root bus
3687 * @acs_flags: required flags
3688 *
3689 * Walk up a device tree from start to end testing PCI ACS support. If
3690 * any step along the way does not support the required flags, return false.
3691 */
pci_acs_path_enabled(struct pci_dev * start,struct pci_dev * end,u16 acs_flags)3692 bool pci_acs_path_enabled(struct pci_dev *start,
3693 struct pci_dev *end, u16 acs_flags)
3694 {
3695 struct pci_dev *pdev, *parent = start;
3696
3697 do {
3698 pdev = parent;
3699
3700 if (!pci_acs_enabled(pdev, acs_flags))
3701 return false;
3702
3703 if (pci_is_root_bus(pdev->bus))
3704 return (end == NULL);
3705
3706 parent = pdev->bus->self;
3707 } while (pdev != end);
3708
3709 return true;
3710 }
3711
3712 /**
3713 * pci_acs_init - Initialize ACS if hardware supports it
3714 * @dev: the PCI device
3715 */
pci_acs_init(struct pci_dev * dev)3716 void pci_acs_init(struct pci_dev *dev)
3717 {
3718 dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3719
3720 /*
3721 * Attempt to enable ACS regardless of capability because some Root
3722 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
3723 * the standard ACS capability but still support ACS via those
3724 * quirks.
3725 */
3726 pci_enable_acs(dev);
3727 }
3728
pci_rebar_init(struct pci_dev * pdev)3729 void pci_rebar_init(struct pci_dev *pdev)
3730 {
3731 pdev->rebar_cap = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3732 }
3733
3734 /**
3735 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3736 * @pdev: PCI device
3737 * @bar: BAR to find
3738 *
3739 * Helper to find the position of the ctrl register for a BAR.
3740 * Returns -ENOTSUPP if resizable BARs are not supported at all.
3741 * Returns -ENOENT if no ctrl register for the BAR could be found.
3742 */
pci_rebar_find_pos(struct pci_dev * pdev,int bar)3743 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3744 {
3745 unsigned int pos, nbars, i;
3746 u32 ctrl;
3747
3748 pos = pdev->rebar_cap;
3749 if (!pos)
3750 return -ENOTSUPP;
3751
3752 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3753 nbars = FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK, ctrl);
3754
3755 for (i = 0; i < nbars; i++, pos += 8) {
3756 int bar_idx;
3757
3758 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3759 bar_idx = FIELD_GET(PCI_REBAR_CTRL_BAR_IDX, ctrl);
3760 if (bar_idx == bar)
3761 return pos;
3762 }
3763
3764 return -ENOENT;
3765 }
3766
3767 /**
3768 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3769 * @pdev: PCI device
3770 * @bar: BAR to query
3771 *
3772 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3773 * (bit 0=1MB, bit 31=128TB). Returns 0 if BAR isn't resizable.
3774 */
pci_rebar_get_possible_sizes(struct pci_dev * pdev,int bar)3775 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3776 {
3777 int pos;
3778 u32 cap;
3779
3780 pos = pci_rebar_find_pos(pdev, bar);
3781 if (pos < 0)
3782 return 0;
3783
3784 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3785 cap = FIELD_GET(PCI_REBAR_CAP_SIZES, cap);
3786
3787 /* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */
3788 if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f &&
3789 bar == 0 && cap == 0x700)
3790 return 0x3f00;
3791
3792 return cap;
3793 }
3794 EXPORT_SYMBOL(pci_rebar_get_possible_sizes);
3795
3796 /**
3797 * pci_rebar_get_current_size - get the current size of a BAR
3798 * @pdev: PCI device
3799 * @bar: BAR to set size to
3800 *
3801 * Read the size of a BAR from the resizable BAR config.
3802 * Returns size if found or negative error code.
3803 */
pci_rebar_get_current_size(struct pci_dev * pdev,int bar)3804 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3805 {
3806 int pos;
3807 u32 ctrl;
3808
3809 pos = pci_rebar_find_pos(pdev, bar);
3810 if (pos < 0)
3811 return pos;
3812
3813 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3814 return FIELD_GET(PCI_REBAR_CTRL_BAR_SIZE, ctrl);
3815 }
3816
3817 /**
3818 * pci_rebar_set_size - set a new size for a BAR
3819 * @pdev: PCI device
3820 * @bar: BAR to set size to
3821 * @size: new size as defined in the spec (0=1MB, 31=128TB)
3822 *
3823 * Set the new size of a BAR as defined in the spec.
3824 * Returns zero if resizing was successful, error code otherwise.
3825 */
pci_rebar_set_size(struct pci_dev * pdev,int bar,int size)3826 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3827 {
3828 int pos;
3829 u32 ctrl;
3830
3831 pos = pci_rebar_find_pos(pdev, bar);
3832 if (pos < 0)
3833 return pos;
3834
3835 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3836 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3837 ctrl |= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE, size);
3838 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3839 return 0;
3840 }
3841
3842 /**
3843 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3844 * @dev: the PCI device
3845 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3846 * PCI_EXP_DEVCAP2_ATOMIC_COMP32
3847 * PCI_EXP_DEVCAP2_ATOMIC_COMP64
3848 * PCI_EXP_DEVCAP2_ATOMIC_COMP128
3849 *
3850 * Return 0 if all upstream bridges support AtomicOp routing, egress
3851 * blocking is disabled on all upstream ports, and the root port supports
3852 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3853 * AtomicOp completion), or negative otherwise.
3854 */
pci_enable_atomic_ops_to_root(struct pci_dev * dev,u32 cap_mask)3855 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3856 {
3857 struct pci_bus *bus = dev->bus;
3858 struct pci_dev *bridge;
3859 u32 cap, ctl2;
3860
3861 /*
3862 * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit
3863 * in Device Control 2 is reserved in VFs and the PF value applies
3864 * to all associated VFs.
3865 */
3866 if (dev->is_virtfn)
3867 return -EINVAL;
3868
3869 if (!pci_is_pcie(dev))
3870 return -EINVAL;
3871
3872 /*
3873 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3874 * AtomicOp requesters. For now, we only support endpoints as
3875 * requesters and root ports as completers. No endpoints as
3876 * completers, and no peer-to-peer.
3877 */
3878
3879 switch (pci_pcie_type(dev)) {
3880 case PCI_EXP_TYPE_ENDPOINT:
3881 case PCI_EXP_TYPE_LEG_END:
3882 case PCI_EXP_TYPE_RC_END:
3883 break;
3884 default:
3885 return -EINVAL;
3886 }
3887
3888 while (bus->parent) {
3889 bridge = bus->self;
3890
3891 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3892
3893 switch (pci_pcie_type(bridge)) {
3894 /* Ensure switch ports support AtomicOp routing */
3895 case PCI_EXP_TYPE_UPSTREAM:
3896 case PCI_EXP_TYPE_DOWNSTREAM:
3897 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3898 return -EINVAL;
3899 break;
3900
3901 /* Ensure root port supports all the sizes we care about */
3902 case PCI_EXP_TYPE_ROOT_PORT:
3903 if ((cap & cap_mask) != cap_mask)
3904 return -EINVAL;
3905 break;
3906 }
3907
3908 /* Ensure upstream ports don't block AtomicOps on egress */
3909 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3910 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3911 &ctl2);
3912 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3913 return -EINVAL;
3914 }
3915
3916 bus = bus->parent;
3917 }
3918
3919 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3920 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3921 return 0;
3922 }
3923 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3924
3925 /**
3926 * pci_release_region - Release a PCI bar
3927 * @pdev: PCI device whose resources were previously reserved by
3928 * pci_request_region()
3929 * @bar: BAR to release
3930 *
3931 * Releases the PCI I/O and memory resources previously reserved by a
3932 * successful call to pci_request_region(). Call this function only
3933 * after all use of the PCI regions has ceased.
3934 */
pci_release_region(struct pci_dev * pdev,int bar)3935 void pci_release_region(struct pci_dev *pdev, int bar)
3936 {
3937 if (!pci_bar_index_is_valid(bar))
3938 return;
3939
3940 /*
3941 * This is done for backwards compatibility, because the old PCI devres
3942 * API had a mode in which the function became managed if it had been
3943 * enabled with pcim_enable_device() instead of pci_enable_device().
3944 */
3945 if (pci_is_managed(pdev)) {
3946 pcim_release_region(pdev, bar);
3947 return;
3948 }
3949
3950 if (pci_resource_len(pdev, bar) == 0)
3951 return;
3952 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3953 release_region(pci_resource_start(pdev, bar),
3954 pci_resource_len(pdev, bar));
3955 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3956 release_mem_region(pci_resource_start(pdev, bar),
3957 pci_resource_len(pdev, bar));
3958 }
3959 EXPORT_SYMBOL(pci_release_region);
3960
3961 /**
3962 * __pci_request_region - Reserved PCI I/O and memory resource
3963 * @pdev: PCI device whose resources are to be reserved
3964 * @bar: BAR to be reserved
3965 * @name: name of the driver requesting the resource
3966 * @exclusive: whether the region access is exclusive or not
3967 *
3968 * Returns: 0 on success, negative error code on failure.
3969 *
3970 * Mark the PCI region associated with PCI device @pdev BAR @bar as being
3971 * reserved by owner @name. Do not access any address inside the PCI regions
3972 * unless this call returns successfully.
3973 *
3974 * If @exclusive is set, then the region is marked so that userspace
3975 * is explicitly not allowed to map the resource via /dev/mem or
3976 * sysfs MMIO access.
3977 *
3978 * Returns 0 on success, or %EBUSY on error. A warning
3979 * message is also printed on failure.
3980 */
__pci_request_region(struct pci_dev * pdev,int bar,const char * name,int exclusive)3981 static int __pci_request_region(struct pci_dev *pdev, int bar,
3982 const char *name, int exclusive)
3983 {
3984 if (!pci_bar_index_is_valid(bar))
3985 return -EINVAL;
3986
3987 if (pci_is_managed(pdev)) {
3988 if (exclusive == IORESOURCE_EXCLUSIVE)
3989 return pcim_request_region_exclusive(pdev, bar, name);
3990
3991 return pcim_request_region(pdev, bar, name);
3992 }
3993
3994 if (pci_resource_len(pdev, bar) == 0)
3995 return 0;
3996
3997 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3998 if (!request_region(pci_resource_start(pdev, bar),
3999 pci_resource_len(pdev, bar), name))
4000 goto err_out;
4001 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
4002 if (!__request_mem_region(pci_resource_start(pdev, bar),
4003 pci_resource_len(pdev, bar), name,
4004 exclusive))
4005 goto err_out;
4006 }
4007
4008 return 0;
4009
4010 err_out:
4011 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
4012 &pdev->resource[bar]);
4013 return -EBUSY;
4014 }
4015
4016 /**
4017 * pci_request_region - Reserve PCI I/O and memory resource
4018 * @pdev: PCI device whose resources are to be reserved
4019 * @bar: BAR to be reserved
4020 * @name: name of the driver requesting the resource
4021 *
4022 * Returns: 0 on success, negative error code on failure.
4023 *
4024 * Mark the PCI region associated with PCI device @pdev BAR @bar as being
4025 * reserved by owner @name. Do not access any address inside the PCI regions
4026 * unless this call returns successfully.
4027 *
4028 * Returns 0 on success, or %EBUSY on error. A warning
4029 * message is also printed on failure.
4030 *
4031 * NOTE:
4032 * This is a "hybrid" function: It's normally unmanaged, but becomes managed
4033 * when pcim_enable_device() has been called in advance. This hybrid feature is
4034 * DEPRECATED! If you want managed cleanup, use the pcim_* functions instead.
4035 */
pci_request_region(struct pci_dev * pdev,int bar,const char * name)4036 int pci_request_region(struct pci_dev *pdev, int bar, const char *name)
4037 {
4038 return __pci_request_region(pdev, bar, name, 0);
4039 }
4040 EXPORT_SYMBOL(pci_request_region);
4041
4042 /**
4043 * pci_release_selected_regions - Release selected PCI I/O and memory resources
4044 * @pdev: PCI device whose resources were previously reserved
4045 * @bars: Bitmask of BARs to be released
4046 *
4047 * Release selected PCI I/O and memory resources previously reserved.
4048 * Call this function only after all use of the PCI regions has ceased.
4049 */
pci_release_selected_regions(struct pci_dev * pdev,int bars)4050 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
4051 {
4052 int i;
4053
4054 for (i = 0; i < PCI_STD_NUM_BARS; i++)
4055 if (bars & (1 << i))
4056 pci_release_region(pdev, i);
4057 }
4058 EXPORT_SYMBOL(pci_release_selected_regions);
4059
__pci_request_selected_regions(struct pci_dev * pdev,int bars,const char * name,int excl)4060 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
4061 const char *name, int excl)
4062 {
4063 int i;
4064
4065 for (i = 0; i < PCI_STD_NUM_BARS; i++)
4066 if (bars & (1 << i))
4067 if (__pci_request_region(pdev, i, name, excl))
4068 goto err_out;
4069 return 0;
4070
4071 err_out:
4072 while (--i >= 0)
4073 if (bars & (1 << i))
4074 pci_release_region(pdev, i);
4075
4076 return -EBUSY;
4077 }
4078
4079
4080 /**
4081 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
4082 * @pdev: PCI device whose resources are to be reserved
4083 * @bars: Bitmask of BARs to be requested
4084 * @name: Name of the driver requesting the resources
4085 *
4086 * Returns: 0 on success, negative error code on failure.
4087 *
4088 * NOTE:
4089 * This is a "hybrid" function: It's normally unmanaged, but becomes managed
4090 * when pcim_enable_device() has been called in advance. This hybrid feature is
4091 * DEPRECATED! If you want managed cleanup, use the pcim_* functions instead.
4092 */
pci_request_selected_regions(struct pci_dev * pdev,int bars,const char * name)4093 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
4094 const char *name)
4095 {
4096 return __pci_request_selected_regions(pdev, bars, name, 0);
4097 }
4098 EXPORT_SYMBOL(pci_request_selected_regions);
4099
4100 /**
4101 * pci_request_selected_regions_exclusive - Request regions exclusively
4102 * @pdev: PCI device to request regions from
4103 * @bars: bit mask of BARs to request
4104 * @name: name of the driver requesting the resources
4105 *
4106 * Returns: 0 on success, negative error code on failure.
4107 *
4108 * NOTE:
4109 * This is a "hybrid" function: It's normally unmanaged, but becomes managed
4110 * when pcim_enable_device() has been called in advance. This hybrid feature is
4111 * DEPRECATED! If you want managed cleanup, use the pcim_* functions instead.
4112 */
pci_request_selected_regions_exclusive(struct pci_dev * pdev,int bars,const char * name)4113 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
4114 const char *name)
4115 {
4116 return __pci_request_selected_regions(pdev, bars, name,
4117 IORESOURCE_EXCLUSIVE);
4118 }
4119 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
4120
4121 /**
4122 * pci_release_regions - Release reserved PCI I/O and memory resources
4123 * @pdev: PCI device whose resources were previously reserved by
4124 * pci_request_regions()
4125 *
4126 * Releases all PCI I/O and memory resources previously reserved by a
4127 * successful call to pci_request_regions(). Call this function only
4128 * after all use of the PCI regions has ceased.
4129 */
pci_release_regions(struct pci_dev * pdev)4130 void pci_release_regions(struct pci_dev *pdev)
4131 {
4132 pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
4133 }
4134 EXPORT_SYMBOL(pci_release_regions);
4135
4136 /**
4137 * pci_request_regions - Reserve PCI I/O and memory resources
4138 * @pdev: PCI device whose resources are to be reserved
4139 * @name: name of the driver requesting the resources
4140 *
4141 * Mark all PCI regions associated with PCI device @pdev as being reserved by
4142 * owner @name. Do not access any address inside the PCI regions unless this
4143 * call returns successfully.
4144 *
4145 * Returns 0 on success, or %EBUSY on error. A warning
4146 * message is also printed on failure.
4147 *
4148 * NOTE:
4149 * This is a "hybrid" function: It's normally unmanaged, but becomes managed
4150 * when pcim_enable_device() has been called in advance. This hybrid feature is
4151 * DEPRECATED! If you want managed cleanup, use the pcim_* functions instead.
4152 */
pci_request_regions(struct pci_dev * pdev,const char * name)4153 int pci_request_regions(struct pci_dev *pdev, const char *name)
4154 {
4155 return pci_request_selected_regions(pdev,
4156 ((1 << PCI_STD_NUM_BARS) - 1), name);
4157 }
4158 EXPORT_SYMBOL(pci_request_regions);
4159
4160 /**
4161 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
4162 * @pdev: PCI device whose resources are to be reserved
4163 * @name: name of the driver requesting the resources
4164 *
4165 * Returns: 0 on success, negative error code on failure.
4166 *
4167 * Mark all PCI regions associated with PCI device @pdev as being reserved
4168 * by owner @name. Do not access any address inside the PCI regions
4169 * unless this call returns successfully.
4170 *
4171 * pci_request_regions_exclusive() will mark the region so that /dev/mem
4172 * and the sysfs MMIO access will not be allowed.
4173 *
4174 * Returns 0 on success, or %EBUSY on error. A warning message is also
4175 * printed on failure.
4176 *
4177 * NOTE:
4178 * This is a "hybrid" function: It's normally unmanaged, but becomes managed
4179 * when pcim_enable_device() has been called in advance. This hybrid feature is
4180 * DEPRECATED! If you want managed cleanup, use the pcim_* functions instead.
4181 */
pci_request_regions_exclusive(struct pci_dev * pdev,const char * name)4182 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *name)
4183 {
4184 return pci_request_selected_regions_exclusive(pdev,
4185 ((1 << PCI_STD_NUM_BARS) - 1), name);
4186 }
4187 EXPORT_SYMBOL(pci_request_regions_exclusive);
4188
4189 /*
4190 * Record the PCI IO range (expressed as CPU physical address + size).
4191 * Return a negative value if an error has occurred, zero otherwise
4192 */
pci_register_io_range(const struct fwnode_handle * fwnode,phys_addr_t addr,resource_size_t size)4193 int pci_register_io_range(const struct fwnode_handle *fwnode, phys_addr_t addr,
4194 resource_size_t size)
4195 {
4196 int ret = 0;
4197 #ifdef PCI_IOBASE
4198 struct logic_pio_hwaddr *range;
4199
4200 if (!size || addr + size < addr)
4201 return -EINVAL;
4202
4203 range = kzalloc(sizeof(*range), GFP_ATOMIC);
4204 if (!range)
4205 return -ENOMEM;
4206
4207 range->fwnode = fwnode;
4208 range->size = size;
4209 range->hw_start = addr;
4210 range->flags = LOGIC_PIO_CPU_MMIO;
4211
4212 ret = logic_pio_register_range(range);
4213 if (ret)
4214 kfree(range);
4215
4216 /* Ignore duplicates due to deferred probing */
4217 if (ret == -EEXIST)
4218 ret = 0;
4219 #endif
4220
4221 return ret;
4222 }
4223
pci_pio_to_address(unsigned long pio)4224 phys_addr_t pci_pio_to_address(unsigned long pio)
4225 {
4226 #ifdef PCI_IOBASE
4227 if (pio < MMIO_UPPER_LIMIT)
4228 return logic_pio_to_hwaddr(pio);
4229 #endif
4230
4231 return (phys_addr_t) OF_BAD_ADDR;
4232 }
4233 EXPORT_SYMBOL_GPL(pci_pio_to_address);
4234
pci_address_to_pio(phys_addr_t address)4235 unsigned long __weak pci_address_to_pio(phys_addr_t address)
4236 {
4237 #ifdef PCI_IOBASE
4238 return logic_pio_trans_cpuaddr(address);
4239 #else
4240 if (address > IO_SPACE_LIMIT)
4241 return (unsigned long)-1;
4242
4243 return (unsigned long) address;
4244 #endif
4245 }
4246
4247 /**
4248 * pci_remap_iospace - Remap the memory mapped I/O space
4249 * @res: Resource describing the I/O space
4250 * @phys_addr: physical address of range to be mapped
4251 *
4252 * Remap the memory mapped I/O space described by the @res and the CPU
4253 * physical address @phys_addr into virtual address space. Only
4254 * architectures that have memory mapped IO functions defined (and the
4255 * PCI_IOBASE value defined) should call this function.
4256 */
4257 #ifndef pci_remap_iospace
pci_remap_iospace(const struct resource * res,phys_addr_t phys_addr)4258 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4259 {
4260 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4261 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4262
4263 if (!(res->flags & IORESOURCE_IO))
4264 return -EINVAL;
4265
4266 if (res->end > IO_SPACE_LIMIT)
4267 return -EINVAL;
4268
4269 return vmap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4270 pgprot_device(PAGE_KERNEL));
4271 #else
4272 /*
4273 * This architecture does not have memory mapped I/O space,
4274 * so this function should never be called
4275 */
4276 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4277 return -ENODEV;
4278 #endif
4279 }
4280 EXPORT_SYMBOL(pci_remap_iospace);
4281 #endif
4282
4283 /**
4284 * pci_unmap_iospace - Unmap the memory mapped I/O space
4285 * @res: resource to be unmapped
4286 *
4287 * Unmap the CPU virtual address @res from virtual address space. Only
4288 * architectures that have memory mapped IO functions defined (and the
4289 * PCI_IOBASE value defined) should call this function.
4290 */
pci_unmap_iospace(struct resource * res)4291 void pci_unmap_iospace(struct resource *res)
4292 {
4293 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4294 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4295
4296 vunmap_range(vaddr, vaddr + resource_size(res));
4297 #endif
4298 }
4299 EXPORT_SYMBOL(pci_unmap_iospace);
4300
__pci_set_master(struct pci_dev * dev,bool enable)4301 static void __pci_set_master(struct pci_dev *dev, bool enable)
4302 {
4303 u16 old_cmd, cmd;
4304
4305 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4306 if (enable)
4307 cmd = old_cmd | PCI_COMMAND_MASTER;
4308 else
4309 cmd = old_cmd & ~PCI_COMMAND_MASTER;
4310 if (cmd != old_cmd) {
4311 pci_dbg(dev, "%s bus mastering\n",
4312 enable ? "enabling" : "disabling");
4313 pci_write_config_word(dev, PCI_COMMAND, cmd);
4314 }
4315 dev->is_busmaster = enable;
4316 }
4317
4318 /**
4319 * pcibios_setup - process "pci=" kernel boot arguments
4320 * @str: string used to pass in "pci=" kernel boot arguments
4321 *
4322 * Process kernel boot arguments. This is the default implementation.
4323 * Architecture specific implementations can override this as necessary.
4324 */
pcibios_setup(char * str)4325 char * __weak __init pcibios_setup(char *str)
4326 {
4327 return str;
4328 }
4329
4330 /**
4331 * pcibios_set_master - enable PCI bus-mastering for device dev
4332 * @dev: the PCI device to enable
4333 *
4334 * Enables PCI bus-mastering for the device. This is the default
4335 * implementation. Architecture specific implementations can override
4336 * this if necessary.
4337 */
pcibios_set_master(struct pci_dev * dev)4338 void __weak pcibios_set_master(struct pci_dev *dev)
4339 {
4340 u8 lat;
4341
4342 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4343 if (pci_is_pcie(dev))
4344 return;
4345
4346 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4347 if (lat < 16)
4348 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4349 else if (lat > pcibios_max_latency)
4350 lat = pcibios_max_latency;
4351 else
4352 return;
4353
4354 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4355 }
4356
4357 /**
4358 * pci_set_master - enables bus-mastering for device dev
4359 * @dev: the PCI device to enable
4360 *
4361 * Enables bus-mastering on the device and calls pcibios_set_master()
4362 * to do the needed arch specific settings.
4363 */
pci_set_master(struct pci_dev * dev)4364 void pci_set_master(struct pci_dev *dev)
4365 {
4366 __pci_set_master(dev, true);
4367 pcibios_set_master(dev);
4368 }
4369 EXPORT_SYMBOL(pci_set_master);
4370
4371 /**
4372 * pci_clear_master - disables bus-mastering for device dev
4373 * @dev: the PCI device to disable
4374 */
pci_clear_master(struct pci_dev * dev)4375 void pci_clear_master(struct pci_dev *dev)
4376 {
4377 __pci_set_master(dev, false);
4378 }
4379 EXPORT_SYMBOL(pci_clear_master);
4380
4381 /**
4382 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4383 * @dev: the PCI device for which MWI is to be enabled
4384 *
4385 * Helper function for pci_set_mwi.
4386 * Originally copied from drivers/net/acenic.c.
4387 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4388 *
4389 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4390 */
pci_set_cacheline_size(struct pci_dev * dev)4391 int pci_set_cacheline_size(struct pci_dev *dev)
4392 {
4393 u8 cacheline_size;
4394
4395 if (!pci_cache_line_size)
4396 return -EINVAL;
4397
4398 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4399 equal to or multiple of the right value. */
4400 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4401 if (cacheline_size >= pci_cache_line_size &&
4402 (cacheline_size % pci_cache_line_size) == 0)
4403 return 0;
4404
4405 /* Write the correct value. */
4406 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4407 /* Read it back. */
4408 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4409 if (cacheline_size == pci_cache_line_size)
4410 return 0;
4411
4412 pci_dbg(dev, "cache line size of %d is not supported\n",
4413 pci_cache_line_size << 2);
4414
4415 return -EINVAL;
4416 }
4417 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4418
4419 /**
4420 * pci_set_mwi - enables memory-write-invalidate PCI transaction
4421 * @dev: the PCI device for which MWI is enabled
4422 *
4423 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4424 *
4425 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4426 */
pci_set_mwi(struct pci_dev * dev)4427 int pci_set_mwi(struct pci_dev *dev)
4428 {
4429 #ifdef PCI_DISABLE_MWI
4430 return 0;
4431 #else
4432 int rc;
4433 u16 cmd;
4434
4435 rc = pci_set_cacheline_size(dev);
4436 if (rc)
4437 return rc;
4438
4439 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4440 if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4441 pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4442 cmd |= PCI_COMMAND_INVALIDATE;
4443 pci_write_config_word(dev, PCI_COMMAND, cmd);
4444 }
4445 return 0;
4446 #endif
4447 }
4448 EXPORT_SYMBOL(pci_set_mwi);
4449
4450 /**
4451 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4452 * @dev: the PCI device for which MWI is enabled
4453 *
4454 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4455 * Callers are not required to check the return value.
4456 *
4457 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4458 */
pci_try_set_mwi(struct pci_dev * dev)4459 int pci_try_set_mwi(struct pci_dev *dev)
4460 {
4461 #ifdef PCI_DISABLE_MWI
4462 return 0;
4463 #else
4464 return pci_set_mwi(dev);
4465 #endif
4466 }
4467 EXPORT_SYMBOL(pci_try_set_mwi);
4468
4469 /**
4470 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4471 * @dev: the PCI device to disable
4472 *
4473 * Disables PCI Memory-Write-Invalidate transaction on the device
4474 */
pci_clear_mwi(struct pci_dev * dev)4475 void pci_clear_mwi(struct pci_dev *dev)
4476 {
4477 #ifndef PCI_DISABLE_MWI
4478 u16 cmd;
4479
4480 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4481 if (cmd & PCI_COMMAND_INVALIDATE) {
4482 cmd &= ~PCI_COMMAND_INVALIDATE;
4483 pci_write_config_word(dev, PCI_COMMAND, cmd);
4484 }
4485 #endif
4486 }
4487 EXPORT_SYMBOL(pci_clear_mwi);
4488
4489 /**
4490 * pci_disable_parity - disable parity checking for device
4491 * @dev: the PCI device to operate on
4492 *
4493 * Disable parity checking for device @dev
4494 */
pci_disable_parity(struct pci_dev * dev)4495 void pci_disable_parity(struct pci_dev *dev)
4496 {
4497 u16 cmd;
4498
4499 pci_read_config_word(dev, PCI_COMMAND, &cmd);
4500 if (cmd & PCI_COMMAND_PARITY) {
4501 cmd &= ~PCI_COMMAND_PARITY;
4502 pci_write_config_word(dev, PCI_COMMAND, cmd);
4503 }
4504 }
4505
4506 /**
4507 * pci_intx - enables/disables PCI INTx for device dev
4508 * @pdev: the PCI device to operate on
4509 * @enable: boolean: whether to enable or disable PCI INTx
4510 *
4511 * Enables/disables PCI INTx for device @pdev
4512 */
pci_intx(struct pci_dev * pdev,int enable)4513 void pci_intx(struct pci_dev *pdev, int enable)
4514 {
4515 u16 pci_command, new;
4516
4517 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4518
4519 if (enable)
4520 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4521 else
4522 new = pci_command | PCI_COMMAND_INTX_DISABLE;
4523
4524 if (new == pci_command)
4525 return;
4526
4527 pci_write_config_word(pdev, PCI_COMMAND, new);
4528 }
4529 EXPORT_SYMBOL_GPL(pci_intx);
4530
4531 /**
4532 * pci_wait_for_pending_transaction - wait for pending transaction
4533 * @dev: the PCI device to operate on
4534 *
4535 * Return 0 if transaction is pending 1 otherwise.
4536 */
pci_wait_for_pending_transaction(struct pci_dev * dev)4537 int pci_wait_for_pending_transaction(struct pci_dev *dev)
4538 {
4539 if (!pci_is_pcie(dev))
4540 return 1;
4541
4542 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4543 PCI_EXP_DEVSTA_TRPND);
4544 }
4545 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4546
4547 /**
4548 * pcie_flr - initiate a PCIe function level reset
4549 * @dev: device to reset
4550 *
4551 * Initiate a function level reset unconditionally on @dev without
4552 * checking any flags and DEVCAP
4553 */
pcie_flr(struct pci_dev * dev)4554 int pcie_flr(struct pci_dev *dev)
4555 {
4556 if (!pci_wait_for_pending_transaction(dev))
4557 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4558
4559 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4560
4561 if (dev->imm_ready)
4562 return 0;
4563
4564 /*
4565 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4566 * 100ms, but may silently discard requests while the FLR is in
4567 * progress. Wait 100ms before trying to access the device.
4568 */
4569 msleep(100);
4570
4571 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4572 }
4573 EXPORT_SYMBOL_GPL(pcie_flr);
4574
4575 /**
4576 * pcie_reset_flr - initiate a PCIe function level reset
4577 * @dev: device to reset
4578 * @probe: if true, return 0 if device can be reset this way
4579 *
4580 * Initiate a function level reset on @dev.
4581 */
pcie_reset_flr(struct pci_dev * dev,bool probe)4582 int pcie_reset_flr(struct pci_dev *dev, bool probe)
4583 {
4584 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4585 return -ENOTTY;
4586
4587 if (!(dev->devcap & PCI_EXP_DEVCAP_FLR))
4588 return -ENOTTY;
4589
4590 if (probe)
4591 return 0;
4592
4593 return pcie_flr(dev);
4594 }
4595 EXPORT_SYMBOL_GPL(pcie_reset_flr);
4596
pci_af_flr(struct pci_dev * dev,bool probe)4597 static int pci_af_flr(struct pci_dev *dev, bool probe)
4598 {
4599 int pos;
4600 u8 cap;
4601
4602 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4603 if (!pos)
4604 return -ENOTTY;
4605
4606 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4607 return -ENOTTY;
4608
4609 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4610 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4611 return -ENOTTY;
4612
4613 if (probe)
4614 return 0;
4615
4616 /*
4617 * Wait for Transaction Pending bit to clear. A word-aligned test
4618 * is used, so we use the control offset rather than status and shift
4619 * the test bit to match.
4620 */
4621 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4622 PCI_AF_STATUS_TP << 8))
4623 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4624
4625 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4626
4627 if (dev->imm_ready)
4628 return 0;
4629
4630 /*
4631 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4632 * updated 27 July 2006; a device must complete an FLR within
4633 * 100ms, but may silently discard requests while the FLR is in
4634 * progress. Wait 100ms before trying to access the device.
4635 */
4636 msleep(100);
4637
4638 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4639 }
4640
4641 /**
4642 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4643 * @dev: Device to reset.
4644 * @probe: if true, return 0 if the device can be reset this way.
4645 *
4646 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4647 * unset, it will be reinitialized internally when going from PCI_D3hot to
4648 * PCI_D0. If that's the case and the device is not in a low-power state
4649 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4650 *
4651 * NOTE: This causes the caller to sleep for twice the device power transition
4652 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4653 * by default (i.e. unless the @dev's d3hot_delay field has a different value).
4654 * Moreover, only devices in D0 can be reset by this function.
4655 */
pci_pm_reset(struct pci_dev * dev,bool probe)4656 static int pci_pm_reset(struct pci_dev *dev, bool probe)
4657 {
4658 u16 csr;
4659
4660 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4661 return -ENOTTY;
4662
4663 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4664 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4665 return -ENOTTY;
4666
4667 if (probe)
4668 return 0;
4669
4670 if (dev->current_state != PCI_D0)
4671 return -EINVAL;
4672
4673 csr &= ~PCI_PM_CTRL_STATE_MASK;
4674 csr |= PCI_D3hot;
4675 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4676 pci_dev_d3_sleep(dev);
4677
4678 csr &= ~PCI_PM_CTRL_STATE_MASK;
4679 csr |= PCI_D0;
4680 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4681 pci_dev_d3_sleep(dev);
4682
4683 return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4684 }
4685
4686 /**
4687 * pcie_wait_for_link_status - Wait for link status change
4688 * @pdev: Device whose link to wait for.
4689 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE.
4690 * @active: Waiting for active or inactive?
4691 *
4692 * Return 0 if successful, or -ETIMEDOUT if status has not changed within
4693 * PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds.
4694 */
pcie_wait_for_link_status(struct pci_dev * pdev,bool use_lt,bool active)4695 static int pcie_wait_for_link_status(struct pci_dev *pdev,
4696 bool use_lt, bool active)
4697 {
4698 u16 lnksta_mask, lnksta_match;
4699 unsigned long end_jiffies;
4700 u16 lnksta;
4701
4702 lnksta_mask = use_lt ? PCI_EXP_LNKSTA_LT : PCI_EXP_LNKSTA_DLLLA;
4703 lnksta_match = active ? lnksta_mask : 0;
4704
4705 end_jiffies = jiffies + msecs_to_jiffies(PCIE_LINK_RETRAIN_TIMEOUT_MS);
4706 do {
4707 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta);
4708 if ((lnksta & lnksta_mask) == lnksta_match)
4709 return 0;
4710 msleep(1);
4711 } while (time_before(jiffies, end_jiffies));
4712
4713 return -ETIMEDOUT;
4714 }
4715
4716 /**
4717 * pcie_retrain_link - Request a link retrain and wait for it to complete
4718 * @pdev: Device whose link to retrain.
4719 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE, for status.
4720 *
4721 * Retrain completion status is retrieved from the Link Status Register
4722 * according to @use_lt. It is not verified whether the use of the DLLLA
4723 * bit is valid.
4724 *
4725 * Return 0 if successful, or -ETIMEDOUT if training has not completed
4726 * within PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds.
4727 */
pcie_retrain_link(struct pci_dev * pdev,bool use_lt)4728 int pcie_retrain_link(struct pci_dev *pdev, bool use_lt)
4729 {
4730 int rc;
4731
4732 /*
4733 * Ensure the updated LNKCTL parameters are used during link
4734 * training by checking that there is no ongoing link training that
4735 * may have started before link parameters were changed, so as to
4736 * avoid LTSSM race as recommended in Implementation Note at the end
4737 * of PCIe r6.1 sec 7.5.3.7.
4738 */
4739 rc = pcie_wait_for_link_status(pdev, true, false);
4740 if (rc)
4741 return rc;
4742
4743 pcie_capability_set_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL);
4744 if (pdev->clear_retrain_link) {
4745 /*
4746 * Due to an erratum in some devices the Retrain Link bit
4747 * needs to be cleared again manually to allow the link
4748 * training to succeed.
4749 */
4750 pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL);
4751 }
4752
4753 rc = pcie_wait_for_link_status(pdev, use_lt, !use_lt);
4754
4755 /*
4756 * Clear LBMS after a manual retrain so that the bit can be used
4757 * to track link speed or width changes made by hardware itself
4758 * in attempt to correct unreliable link operation.
4759 */
4760 pcie_reset_lbms_count(pdev);
4761 return rc;
4762 }
4763
4764 /**
4765 * pcie_wait_for_link_delay - Wait until link is active or inactive
4766 * @pdev: Bridge device
4767 * @active: waiting for active or inactive?
4768 * @delay: Delay to wait after link has become active (in ms)
4769 *
4770 * Use this to wait till link becomes active or inactive.
4771 */
pcie_wait_for_link_delay(struct pci_dev * pdev,bool active,int delay)4772 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4773 int delay)
4774 {
4775 int rc;
4776
4777 /*
4778 * Some controllers might not implement link active reporting. In this
4779 * case, we wait for 1000 ms + any delay requested by the caller.
4780 */
4781 if (!pdev->link_active_reporting) {
4782 msleep(PCIE_LINK_RETRAIN_TIMEOUT_MS + delay);
4783 return true;
4784 }
4785
4786 /*
4787 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4788 * after which we should expect the link to be active if the reset was
4789 * successful. If so, software must wait a minimum 100ms before sending
4790 * configuration requests to devices downstream this port.
4791 *
4792 * If the link fails to activate, either the device was physically
4793 * removed or the link is permanently failed.
4794 */
4795 if (active)
4796 msleep(20);
4797 rc = pcie_wait_for_link_status(pdev, false, active);
4798 if (active) {
4799 if (rc)
4800 rc = pcie_failed_link_retrain(pdev);
4801 if (rc)
4802 return false;
4803
4804 msleep(delay);
4805 return true;
4806 }
4807
4808 if (rc)
4809 return false;
4810
4811 return true;
4812 }
4813
4814 /**
4815 * pcie_wait_for_link - Wait until link is active or inactive
4816 * @pdev: Bridge device
4817 * @active: waiting for active or inactive?
4818 *
4819 * Use this to wait till link becomes active or inactive.
4820 */
pcie_wait_for_link(struct pci_dev * pdev,bool active)4821 bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4822 {
4823 return pcie_wait_for_link_delay(pdev, active, 100);
4824 }
4825
4826 /*
4827 * Find maximum D3cold delay required by all the devices on the bus. The
4828 * spec says 100 ms, but firmware can lower it and we allow drivers to
4829 * increase it as well.
4830 *
4831 * Called with @pci_bus_sem locked for reading.
4832 */
pci_bus_max_d3cold_delay(const struct pci_bus * bus)4833 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
4834 {
4835 const struct pci_dev *pdev;
4836 int min_delay = 100;
4837 int max_delay = 0;
4838
4839 list_for_each_entry(pdev, &bus->devices, bus_list) {
4840 if (pdev->d3cold_delay < min_delay)
4841 min_delay = pdev->d3cold_delay;
4842 if (pdev->d3cold_delay > max_delay)
4843 max_delay = pdev->d3cold_delay;
4844 }
4845
4846 return max(min_delay, max_delay);
4847 }
4848
4849 /**
4850 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
4851 * @dev: PCI bridge
4852 * @reset_type: reset type in human-readable form
4853 *
4854 * Handle necessary delays before access to the devices on the secondary
4855 * side of the bridge are permitted after D3cold to D0 transition
4856 * or Conventional Reset.
4857 *
4858 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
4859 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
4860 * 4.3.2.
4861 *
4862 * Return 0 on success or -ENOTTY if the first device on the secondary bus
4863 * failed to become accessible.
4864 */
pci_bridge_wait_for_secondary_bus(struct pci_dev * dev,char * reset_type)4865 int pci_bridge_wait_for_secondary_bus(struct pci_dev *dev, char *reset_type)
4866 {
4867 struct pci_dev *child __free(pci_dev_put) = NULL;
4868 int delay;
4869
4870 if (pci_dev_is_disconnected(dev))
4871 return 0;
4872
4873 if (!pci_is_bridge(dev))
4874 return 0;
4875
4876 down_read(&pci_bus_sem);
4877
4878 /*
4879 * We only deal with devices that are present currently on the bus.
4880 * For any hot-added devices the access delay is handled in pciehp
4881 * board_added(). In case of ACPI hotplug the firmware is expected
4882 * to configure the devices before OS is notified.
4883 */
4884 if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
4885 up_read(&pci_bus_sem);
4886 return 0;
4887 }
4888
4889 /* Take d3cold_delay requirements into account */
4890 delay = pci_bus_max_d3cold_delay(dev->subordinate);
4891 if (!delay) {
4892 up_read(&pci_bus_sem);
4893 return 0;
4894 }
4895
4896 child = pci_dev_get(list_first_entry(&dev->subordinate->devices,
4897 struct pci_dev, bus_list));
4898 up_read(&pci_bus_sem);
4899
4900 /*
4901 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
4902 * accessing the device after reset (that is 1000 ms + 100 ms).
4903 */
4904 if (!pci_is_pcie(dev)) {
4905 pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
4906 msleep(1000 + delay);
4907 return 0;
4908 }
4909
4910 /*
4911 * For PCIe downstream and root ports that do not support speeds
4912 * greater than 5 GT/s need to wait minimum 100 ms. For higher
4913 * speeds (gen3) we need to wait first for the data link layer to
4914 * become active.
4915 *
4916 * However, 100 ms is the minimum and the PCIe spec says the
4917 * software must allow at least 1s before it can determine that the
4918 * device that did not respond is a broken device. Also device can
4919 * take longer than that to respond if it indicates so through Request
4920 * Retry Status completions.
4921 *
4922 * Therefore we wait for 100 ms and check for the device presence
4923 * until the timeout expires.
4924 */
4925 if (!pcie_downstream_port(dev))
4926 return 0;
4927
4928 if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
4929 u16 status;
4930
4931 pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
4932 msleep(delay);
4933
4934 if (!pci_dev_wait(child, reset_type, PCI_RESET_WAIT - delay))
4935 return 0;
4936
4937 /*
4938 * If the port supports active link reporting we now check
4939 * whether the link is active and if not bail out early with
4940 * the assumption that the device is not present anymore.
4941 */
4942 if (!dev->link_active_reporting)
4943 return -ENOTTY;
4944
4945 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &status);
4946 if (!(status & PCI_EXP_LNKSTA_DLLLA))
4947 return -ENOTTY;
4948
4949 return pci_dev_wait(child, reset_type,
4950 PCIE_RESET_READY_POLL_MS - PCI_RESET_WAIT);
4951 }
4952
4953 pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
4954 delay);
4955 if (!pcie_wait_for_link_delay(dev, true, delay)) {
4956 /* Did not train, no need to wait any further */
4957 pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n");
4958 return -ENOTTY;
4959 }
4960
4961 return pci_dev_wait(child, reset_type,
4962 PCIE_RESET_READY_POLL_MS - delay);
4963 }
4964
pci_reset_secondary_bus(struct pci_dev * dev)4965 void pci_reset_secondary_bus(struct pci_dev *dev)
4966 {
4967 u16 ctrl;
4968
4969 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4970 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4971 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4972
4973 /*
4974 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
4975 * this to 2ms to ensure that we meet the minimum requirement.
4976 */
4977 msleep(2);
4978
4979 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4980 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4981 }
4982
pcibios_reset_secondary_bus(struct pci_dev * dev)4983 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4984 {
4985 pci_reset_secondary_bus(dev);
4986 }
4987
4988 /**
4989 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
4990 * @dev: Bridge device
4991 *
4992 * Use the bridge control register to assert reset on the secondary bus.
4993 * Devices on the secondary bus are left in power-on state.
4994 */
pci_bridge_secondary_bus_reset(struct pci_dev * dev)4995 int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
4996 {
4997 if (!dev->block_cfg_access)
4998 pci_warn_once(dev, "unlocked secondary bus reset via: %pS\n",
4999 __builtin_return_address(0));
5000 pcibios_reset_secondary_bus(dev);
5001
5002 return pci_bridge_wait_for_secondary_bus(dev, "bus reset");
5003 }
5004 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
5005
pci_parent_bus_reset(struct pci_dev * dev,bool probe)5006 static int pci_parent_bus_reset(struct pci_dev *dev, bool probe)
5007 {
5008 struct pci_dev *pdev;
5009
5010 if (pci_is_root_bus(dev->bus) || dev->subordinate ||
5011 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5012 return -ENOTTY;
5013
5014 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
5015 if (pdev != dev)
5016 return -ENOTTY;
5017
5018 if (probe)
5019 return 0;
5020
5021 return pci_bridge_secondary_bus_reset(dev->bus->self);
5022 }
5023
pci_reset_hotplug_slot(struct hotplug_slot * hotplug,bool probe)5024 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe)
5025 {
5026 int rc = -ENOTTY;
5027
5028 if (!hotplug || !try_module_get(hotplug->owner))
5029 return rc;
5030
5031 if (hotplug->ops->reset_slot)
5032 rc = hotplug->ops->reset_slot(hotplug, probe);
5033
5034 module_put(hotplug->owner);
5035
5036 return rc;
5037 }
5038
pci_dev_reset_slot_function(struct pci_dev * dev,bool probe)5039 static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe)
5040 {
5041 if (dev->multifunction || dev->subordinate || !dev->slot ||
5042 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5043 return -ENOTTY;
5044
5045 return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
5046 }
5047
cxl_port_dvsec(struct pci_dev * dev)5048 static u16 cxl_port_dvsec(struct pci_dev *dev)
5049 {
5050 return pci_find_dvsec_capability(dev, PCI_VENDOR_ID_CXL,
5051 PCI_DVSEC_CXL_PORT);
5052 }
5053
cxl_sbr_masked(struct pci_dev * dev)5054 static bool cxl_sbr_masked(struct pci_dev *dev)
5055 {
5056 u16 dvsec, reg;
5057 int rc;
5058
5059 dvsec = cxl_port_dvsec(dev);
5060 if (!dvsec)
5061 return false;
5062
5063 rc = pci_read_config_word(dev, dvsec + PCI_DVSEC_CXL_PORT_CTL, ®);
5064 if (rc || PCI_POSSIBLE_ERROR(reg))
5065 return false;
5066
5067 /*
5068 * Per CXL spec r3.1, sec 8.1.5.2, when "Unmask SBR" is 0, the SBR
5069 * bit in Bridge Control has no effect. When 1, the Port generates
5070 * hot reset when the SBR bit is set to 1.
5071 */
5072 if (reg & PCI_DVSEC_CXL_PORT_CTL_UNMASK_SBR)
5073 return false;
5074
5075 return true;
5076 }
5077
pci_reset_bus_function(struct pci_dev * dev,bool probe)5078 static int pci_reset_bus_function(struct pci_dev *dev, bool probe)
5079 {
5080 struct pci_dev *bridge = pci_upstream_bridge(dev);
5081 int rc;
5082
5083 /*
5084 * If "dev" is below a CXL port that has SBR control masked, SBR
5085 * won't do anything, so return error.
5086 */
5087 if (bridge && cxl_sbr_masked(bridge)) {
5088 if (probe)
5089 return 0;
5090
5091 return -ENOTTY;
5092 }
5093
5094 rc = pci_dev_reset_slot_function(dev, probe);
5095 if (rc != -ENOTTY)
5096 return rc;
5097 return pci_parent_bus_reset(dev, probe);
5098 }
5099
cxl_reset_bus_function(struct pci_dev * dev,bool probe)5100 static int cxl_reset_bus_function(struct pci_dev *dev, bool probe)
5101 {
5102 struct pci_dev *bridge;
5103 u16 dvsec, reg, val;
5104 int rc;
5105
5106 bridge = pci_upstream_bridge(dev);
5107 if (!bridge)
5108 return -ENOTTY;
5109
5110 dvsec = cxl_port_dvsec(bridge);
5111 if (!dvsec)
5112 return -ENOTTY;
5113
5114 if (probe)
5115 return 0;
5116
5117 rc = pci_read_config_word(bridge, dvsec + PCI_DVSEC_CXL_PORT_CTL, ®);
5118 if (rc)
5119 return -ENOTTY;
5120
5121 if (reg & PCI_DVSEC_CXL_PORT_CTL_UNMASK_SBR) {
5122 val = reg;
5123 } else {
5124 val = reg | PCI_DVSEC_CXL_PORT_CTL_UNMASK_SBR;
5125 pci_write_config_word(bridge, dvsec + PCI_DVSEC_CXL_PORT_CTL,
5126 val);
5127 }
5128
5129 rc = pci_reset_bus_function(dev, probe);
5130
5131 if (reg != val)
5132 pci_write_config_word(bridge, dvsec + PCI_DVSEC_CXL_PORT_CTL,
5133 reg);
5134
5135 return rc;
5136 }
5137
pci_dev_lock(struct pci_dev * dev)5138 void pci_dev_lock(struct pci_dev *dev)
5139 {
5140 /* block PM suspend, driver probe, etc. */
5141 device_lock(&dev->dev);
5142 pci_cfg_access_lock(dev);
5143 }
5144 EXPORT_SYMBOL_GPL(pci_dev_lock);
5145
5146 /* Return 1 on successful lock, 0 on contention */
pci_dev_trylock(struct pci_dev * dev)5147 int pci_dev_trylock(struct pci_dev *dev)
5148 {
5149 if (device_trylock(&dev->dev)) {
5150 if (pci_cfg_access_trylock(dev))
5151 return 1;
5152 device_unlock(&dev->dev);
5153 }
5154
5155 return 0;
5156 }
5157 EXPORT_SYMBOL_GPL(pci_dev_trylock);
5158
pci_dev_unlock(struct pci_dev * dev)5159 void pci_dev_unlock(struct pci_dev *dev)
5160 {
5161 pci_cfg_access_unlock(dev);
5162 device_unlock(&dev->dev);
5163 }
5164 EXPORT_SYMBOL_GPL(pci_dev_unlock);
5165
pci_dev_save_and_disable(struct pci_dev * dev)5166 static void pci_dev_save_and_disable(struct pci_dev *dev)
5167 {
5168 const struct pci_error_handlers *err_handler =
5169 dev->driver ? dev->driver->err_handler : NULL;
5170
5171 /*
5172 * dev->driver->err_handler->reset_prepare() is protected against
5173 * races with ->remove() by the device lock, which must be held by
5174 * the caller.
5175 */
5176 if (err_handler && err_handler->reset_prepare)
5177 err_handler->reset_prepare(dev);
5178 else if (dev->driver)
5179 pci_warn(dev, "resetting");
5180
5181 /*
5182 * Wake-up device prior to save. PM registers default to D0 after
5183 * reset and a simple register restore doesn't reliably return
5184 * to a non-D0 state anyway.
5185 */
5186 pci_set_power_state(dev, PCI_D0);
5187
5188 pci_save_state(dev);
5189 /*
5190 * Disable the device by clearing the Command register, except for
5191 * INTx-disable which is set. This not only disables MMIO and I/O port
5192 * BARs, but also prevents the device from being Bus Master, preventing
5193 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
5194 * compliant devices, INTx-disable prevents legacy interrupts.
5195 */
5196 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
5197 }
5198
pci_dev_restore(struct pci_dev * dev)5199 static void pci_dev_restore(struct pci_dev *dev)
5200 {
5201 const struct pci_error_handlers *err_handler =
5202 dev->driver ? dev->driver->err_handler : NULL;
5203
5204 pci_restore_state(dev);
5205
5206 /*
5207 * dev->driver->err_handler->reset_done() is protected against
5208 * races with ->remove() by the device lock, which must be held by
5209 * the caller.
5210 */
5211 if (err_handler && err_handler->reset_done)
5212 err_handler->reset_done(dev);
5213 else if (dev->driver)
5214 pci_warn(dev, "reset done");
5215 }
5216
5217 /* dev->reset_methods[] is a 0-terminated list of indices into this array */
5218 const struct pci_reset_fn_method pci_reset_fn_methods[] = {
5219 { },
5220 { pci_dev_specific_reset, .name = "device_specific" },
5221 { pci_dev_acpi_reset, .name = "acpi" },
5222 { pcie_reset_flr, .name = "flr" },
5223 { pci_af_flr, .name = "af_flr" },
5224 { pci_pm_reset, .name = "pm" },
5225 { pci_reset_bus_function, .name = "bus" },
5226 { cxl_reset_bus_function, .name = "cxl_bus" },
5227 };
5228
5229 /**
5230 * __pci_reset_function_locked - reset a PCI device function while holding
5231 * the @dev mutex lock.
5232 * @dev: PCI device to reset
5233 *
5234 * Some devices allow an individual function to be reset without affecting
5235 * other functions in the same device. The PCI device must be responsive
5236 * to PCI config space in order to use this function.
5237 *
5238 * The device function is presumed to be unused and the caller is holding
5239 * the device mutex lock when this function is called.
5240 *
5241 * Resetting the device will make the contents of PCI configuration space
5242 * random, so any caller of this must be prepared to reinitialise the
5243 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5244 * etc.
5245 *
5246 * Returns 0 if the device function was successfully reset or negative if the
5247 * device doesn't support resetting a single function.
5248 */
__pci_reset_function_locked(struct pci_dev * dev)5249 int __pci_reset_function_locked(struct pci_dev *dev)
5250 {
5251 int i, m, rc;
5252 const struct pci_reset_fn_method *method;
5253
5254 might_sleep();
5255
5256 /*
5257 * A reset method returns -ENOTTY if it doesn't support this device and
5258 * we should try the next method.
5259 *
5260 * If it returns 0 (success), we're finished. If it returns any other
5261 * error, we're also finished: this indicates that further reset
5262 * mechanisms might be broken on the device.
5263 */
5264 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5265 m = dev->reset_methods[i];
5266 if (!m)
5267 return -ENOTTY;
5268
5269 method = &pci_reset_fn_methods[m];
5270 pci_dbg(dev, "reset via %s\n", method->name);
5271 rc = method->reset_fn(dev, PCI_RESET_DO_RESET);
5272 if (!rc)
5273 return 0;
5274
5275 pci_dbg(dev, "%s failed with %d\n", method->name, rc);
5276 if (rc != -ENOTTY)
5277 return rc;
5278 }
5279
5280 return -ENOTTY;
5281 }
5282 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5283
5284 /**
5285 * pci_init_reset_methods - check whether device can be safely reset
5286 * and store supported reset mechanisms.
5287 * @dev: PCI device to check for reset mechanisms
5288 *
5289 * Some devices allow an individual function to be reset without affecting
5290 * other functions in the same device. The PCI device must be in D0-D3hot
5291 * state.
5292 *
5293 * Stores reset mechanisms supported by device in reset_methods byte array
5294 * which is a member of struct pci_dev.
5295 */
pci_init_reset_methods(struct pci_dev * dev)5296 void pci_init_reset_methods(struct pci_dev *dev)
5297 {
5298 int m, i, rc;
5299
5300 BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS);
5301
5302 might_sleep();
5303
5304 i = 0;
5305 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5306 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE);
5307 if (!rc)
5308 dev->reset_methods[i++] = m;
5309 else if (rc != -ENOTTY)
5310 break;
5311 }
5312
5313 dev->reset_methods[i] = 0;
5314 }
5315
5316 /**
5317 * pci_reset_function - quiesce and reset a PCI device function
5318 * @dev: PCI device to reset
5319 *
5320 * Some devices allow an individual function to be reset without affecting
5321 * other functions in the same device. The PCI device must be responsive
5322 * to PCI config space in order to use this function.
5323 *
5324 * This function does not just reset the PCI portion of a device, but
5325 * clears all the state associated with the device. This function differs
5326 * from __pci_reset_function_locked() in that it saves and restores device state
5327 * over the reset and takes the PCI device lock.
5328 *
5329 * Returns 0 if the device function was successfully reset or negative if the
5330 * device doesn't support resetting a single function.
5331 */
pci_reset_function(struct pci_dev * dev)5332 int pci_reset_function(struct pci_dev *dev)
5333 {
5334 struct pci_dev *bridge;
5335 int rc;
5336
5337 if (!pci_reset_supported(dev))
5338 return -ENOTTY;
5339
5340 /*
5341 * If there's no upstream bridge, no locking is needed since there is
5342 * no upstream bridge configuration to hold consistent.
5343 */
5344 bridge = pci_upstream_bridge(dev);
5345 if (bridge)
5346 pci_dev_lock(bridge);
5347
5348 pci_dev_lock(dev);
5349 pci_dev_save_and_disable(dev);
5350
5351 rc = __pci_reset_function_locked(dev);
5352
5353 pci_dev_restore(dev);
5354 pci_dev_unlock(dev);
5355
5356 if (bridge)
5357 pci_dev_unlock(bridge);
5358
5359 return rc;
5360 }
5361 EXPORT_SYMBOL_GPL(pci_reset_function);
5362
5363 /**
5364 * pci_reset_function_locked - quiesce and reset a PCI device function
5365 * @dev: PCI device to reset
5366 *
5367 * Some devices allow an individual function to be reset without affecting
5368 * other functions in the same device. The PCI device must be responsive
5369 * to PCI config space in order to use this function.
5370 *
5371 * This function does not just reset the PCI portion of a device, but
5372 * clears all the state associated with the device. This function differs
5373 * from __pci_reset_function_locked() in that it saves and restores device state
5374 * over the reset. It also differs from pci_reset_function() in that it
5375 * requires the PCI device lock to be held.
5376 *
5377 * Returns 0 if the device function was successfully reset or negative if the
5378 * device doesn't support resetting a single function.
5379 */
pci_reset_function_locked(struct pci_dev * dev)5380 int pci_reset_function_locked(struct pci_dev *dev)
5381 {
5382 int rc;
5383
5384 if (!pci_reset_supported(dev))
5385 return -ENOTTY;
5386
5387 pci_dev_save_and_disable(dev);
5388
5389 rc = __pci_reset_function_locked(dev);
5390
5391 pci_dev_restore(dev);
5392
5393 return rc;
5394 }
5395 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5396
5397 /**
5398 * pci_try_reset_function - quiesce and reset a PCI device function
5399 * @dev: PCI device to reset
5400 *
5401 * Same as above, except return -EAGAIN if unable to lock device.
5402 */
pci_try_reset_function(struct pci_dev * dev)5403 int pci_try_reset_function(struct pci_dev *dev)
5404 {
5405 int rc;
5406
5407 if (!pci_reset_supported(dev))
5408 return -ENOTTY;
5409
5410 if (!pci_dev_trylock(dev))
5411 return -EAGAIN;
5412
5413 pci_dev_save_and_disable(dev);
5414 rc = __pci_reset_function_locked(dev);
5415 pci_dev_restore(dev);
5416 pci_dev_unlock(dev);
5417
5418 return rc;
5419 }
5420 EXPORT_SYMBOL_GPL(pci_try_reset_function);
5421
5422 /* Do any devices on or below this bus prevent a bus reset? */
pci_bus_resettable(struct pci_bus * bus)5423 static bool pci_bus_resettable(struct pci_bus *bus)
5424 {
5425 struct pci_dev *dev;
5426
5427
5428 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5429 return false;
5430
5431 list_for_each_entry(dev, &bus->devices, bus_list) {
5432 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5433 (dev->subordinate && !pci_bus_resettable(dev->subordinate)))
5434 return false;
5435 }
5436
5437 return true;
5438 }
5439
5440 /* Lock devices from the top of the tree down */
pci_bus_lock(struct pci_bus * bus)5441 static void pci_bus_lock(struct pci_bus *bus)
5442 {
5443 struct pci_dev *dev;
5444
5445 pci_dev_lock(bus->self);
5446 list_for_each_entry(dev, &bus->devices, bus_list) {
5447 if (dev->subordinate)
5448 pci_bus_lock(dev->subordinate);
5449 else
5450 pci_dev_lock(dev);
5451 }
5452 }
5453
5454 /* Unlock devices from the bottom of the tree up */
pci_bus_unlock(struct pci_bus * bus)5455 static void pci_bus_unlock(struct pci_bus *bus)
5456 {
5457 struct pci_dev *dev;
5458
5459 list_for_each_entry(dev, &bus->devices, bus_list) {
5460 if (dev->subordinate)
5461 pci_bus_unlock(dev->subordinate);
5462 else
5463 pci_dev_unlock(dev);
5464 }
5465 pci_dev_unlock(bus->self);
5466 }
5467
5468 /* Return 1 on successful lock, 0 on contention */
pci_bus_trylock(struct pci_bus * bus)5469 static int pci_bus_trylock(struct pci_bus *bus)
5470 {
5471 struct pci_dev *dev;
5472
5473 if (!pci_dev_trylock(bus->self))
5474 return 0;
5475
5476 list_for_each_entry(dev, &bus->devices, bus_list) {
5477 if (dev->subordinate) {
5478 if (!pci_bus_trylock(dev->subordinate))
5479 goto unlock;
5480 } else if (!pci_dev_trylock(dev))
5481 goto unlock;
5482 }
5483 return 1;
5484
5485 unlock:
5486 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5487 if (dev->subordinate)
5488 pci_bus_unlock(dev->subordinate);
5489 else
5490 pci_dev_unlock(dev);
5491 }
5492 pci_dev_unlock(bus->self);
5493 return 0;
5494 }
5495
5496 /* Do any devices on or below this slot prevent a bus reset? */
pci_slot_resettable(struct pci_slot * slot)5497 static bool pci_slot_resettable(struct pci_slot *slot)
5498 {
5499 struct pci_dev *dev;
5500
5501 if (slot->bus->self &&
5502 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5503 return false;
5504
5505 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5506 if (!dev->slot || dev->slot != slot)
5507 continue;
5508 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5509 (dev->subordinate && !pci_bus_resettable(dev->subordinate)))
5510 return false;
5511 }
5512
5513 return true;
5514 }
5515
5516 /* Lock devices from the top of the tree down */
pci_slot_lock(struct pci_slot * slot)5517 static void pci_slot_lock(struct pci_slot *slot)
5518 {
5519 struct pci_dev *dev;
5520
5521 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5522 if (!dev->slot || dev->slot != slot)
5523 continue;
5524 if (dev->subordinate)
5525 pci_bus_lock(dev->subordinate);
5526 else
5527 pci_dev_lock(dev);
5528 }
5529 }
5530
5531 /* Unlock devices from the bottom of the tree up */
pci_slot_unlock(struct pci_slot * slot)5532 static void pci_slot_unlock(struct pci_slot *slot)
5533 {
5534 struct pci_dev *dev;
5535
5536 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5537 if (!dev->slot || dev->slot != slot)
5538 continue;
5539 if (dev->subordinate)
5540 pci_bus_unlock(dev->subordinate);
5541 pci_dev_unlock(dev);
5542 }
5543 }
5544
5545 /* Return 1 on successful lock, 0 on contention */
pci_slot_trylock(struct pci_slot * slot)5546 static int pci_slot_trylock(struct pci_slot *slot)
5547 {
5548 struct pci_dev *dev;
5549
5550 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5551 if (!dev->slot || dev->slot != slot)
5552 continue;
5553 if (dev->subordinate) {
5554 if (!pci_bus_trylock(dev->subordinate)) {
5555 pci_dev_unlock(dev);
5556 goto unlock;
5557 }
5558 } else if (!pci_dev_trylock(dev))
5559 goto unlock;
5560 }
5561 return 1;
5562
5563 unlock:
5564 list_for_each_entry_continue_reverse(dev,
5565 &slot->bus->devices, bus_list) {
5566 if (!dev->slot || dev->slot != slot)
5567 continue;
5568 if (dev->subordinate)
5569 pci_bus_unlock(dev->subordinate);
5570 else
5571 pci_dev_unlock(dev);
5572 }
5573 return 0;
5574 }
5575
5576 /*
5577 * Save and disable devices from the top of the tree down while holding
5578 * the @dev mutex lock for the entire tree.
5579 */
pci_bus_save_and_disable_locked(struct pci_bus * bus)5580 static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5581 {
5582 struct pci_dev *dev;
5583
5584 list_for_each_entry(dev, &bus->devices, bus_list) {
5585 pci_dev_save_and_disable(dev);
5586 if (dev->subordinate)
5587 pci_bus_save_and_disable_locked(dev->subordinate);
5588 }
5589 }
5590
5591 /*
5592 * Restore devices from top of the tree down while holding @dev mutex lock
5593 * for the entire tree. Parent bridges need to be restored before we can
5594 * get to subordinate devices.
5595 */
pci_bus_restore_locked(struct pci_bus * bus)5596 static void pci_bus_restore_locked(struct pci_bus *bus)
5597 {
5598 struct pci_dev *dev;
5599
5600 list_for_each_entry(dev, &bus->devices, bus_list) {
5601 pci_dev_restore(dev);
5602 if (dev->subordinate) {
5603 pci_bridge_wait_for_secondary_bus(dev, "bus reset");
5604 pci_bus_restore_locked(dev->subordinate);
5605 }
5606 }
5607 }
5608
5609 /*
5610 * Save and disable devices from the top of the tree down while holding
5611 * the @dev mutex lock for the entire tree.
5612 */
pci_slot_save_and_disable_locked(struct pci_slot * slot)5613 static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5614 {
5615 struct pci_dev *dev;
5616
5617 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5618 if (!dev->slot || dev->slot != slot)
5619 continue;
5620 pci_dev_save_and_disable(dev);
5621 if (dev->subordinate)
5622 pci_bus_save_and_disable_locked(dev->subordinate);
5623 }
5624 }
5625
5626 /*
5627 * Restore devices from top of the tree down while holding @dev mutex lock
5628 * for the entire tree. Parent bridges need to be restored before we can
5629 * get to subordinate devices.
5630 */
pci_slot_restore_locked(struct pci_slot * slot)5631 static void pci_slot_restore_locked(struct pci_slot *slot)
5632 {
5633 struct pci_dev *dev;
5634
5635 list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5636 if (!dev->slot || dev->slot != slot)
5637 continue;
5638 pci_dev_restore(dev);
5639 if (dev->subordinate) {
5640 pci_bridge_wait_for_secondary_bus(dev, "slot reset");
5641 pci_bus_restore_locked(dev->subordinate);
5642 }
5643 }
5644 }
5645
pci_slot_reset(struct pci_slot * slot,bool probe)5646 static int pci_slot_reset(struct pci_slot *slot, bool probe)
5647 {
5648 int rc;
5649
5650 if (!slot || !pci_slot_resettable(slot))
5651 return -ENOTTY;
5652
5653 if (!probe)
5654 pci_slot_lock(slot);
5655
5656 might_sleep();
5657
5658 rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5659
5660 if (!probe)
5661 pci_slot_unlock(slot);
5662
5663 return rc;
5664 }
5665
5666 /**
5667 * pci_probe_reset_slot - probe whether a PCI slot can be reset
5668 * @slot: PCI slot to probe
5669 *
5670 * Return 0 if slot can be reset, negative if a slot reset is not supported.
5671 */
pci_probe_reset_slot(struct pci_slot * slot)5672 int pci_probe_reset_slot(struct pci_slot *slot)
5673 {
5674 return pci_slot_reset(slot, PCI_RESET_PROBE);
5675 }
5676 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5677
5678 /**
5679 * __pci_reset_slot - Try to reset a PCI slot
5680 * @slot: PCI slot to reset
5681 *
5682 * A PCI bus may host multiple slots, each slot may support a reset mechanism
5683 * independent of other slots. For instance, some slots may support slot power
5684 * control. In the case of a 1:1 bus to slot architecture, this function may
5685 * wrap the bus reset to avoid spurious slot related events such as hotplug.
5686 * Generally a slot reset should be attempted before a bus reset. All of the
5687 * function of the slot and any subordinate buses behind the slot are reset
5688 * through this function. PCI config space of all devices in the slot and
5689 * behind the slot is saved before and restored after reset.
5690 *
5691 * Same as above except return -EAGAIN if the slot cannot be locked
5692 */
__pci_reset_slot(struct pci_slot * slot)5693 static int __pci_reset_slot(struct pci_slot *slot)
5694 {
5695 int rc;
5696
5697 rc = pci_slot_reset(slot, PCI_RESET_PROBE);
5698 if (rc)
5699 return rc;
5700
5701 if (pci_slot_trylock(slot)) {
5702 pci_slot_save_and_disable_locked(slot);
5703 might_sleep();
5704 rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET);
5705 pci_slot_restore_locked(slot);
5706 pci_slot_unlock(slot);
5707 } else
5708 rc = -EAGAIN;
5709
5710 return rc;
5711 }
5712
pci_bus_reset(struct pci_bus * bus,bool probe)5713 static int pci_bus_reset(struct pci_bus *bus, bool probe)
5714 {
5715 int ret;
5716
5717 if (!bus->self || !pci_bus_resettable(bus))
5718 return -ENOTTY;
5719
5720 if (probe)
5721 return 0;
5722
5723 pci_bus_lock(bus);
5724
5725 might_sleep();
5726
5727 ret = pci_bridge_secondary_bus_reset(bus->self);
5728
5729 pci_bus_unlock(bus);
5730
5731 return ret;
5732 }
5733
5734 /**
5735 * pci_bus_error_reset - reset the bridge's subordinate bus
5736 * @bridge: The parent device that connects to the bus to reset
5737 *
5738 * This function will first try to reset the slots on this bus if the method is
5739 * available. If slot reset fails or is not available, this will fall back to a
5740 * secondary bus reset.
5741 */
pci_bus_error_reset(struct pci_dev * bridge)5742 int pci_bus_error_reset(struct pci_dev *bridge)
5743 {
5744 struct pci_bus *bus = bridge->subordinate;
5745 struct pci_slot *slot;
5746
5747 if (!bus)
5748 return -ENOTTY;
5749
5750 mutex_lock(&pci_slot_mutex);
5751 if (list_empty(&bus->slots))
5752 goto bus_reset;
5753
5754 list_for_each_entry(slot, &bus->slots, list)
5755 if (pci_probe_reset_slot(slot))
5756 goto bus_reset;
5757
5758 list_for_each_entry(slot, &bus->slots, list)
5759 if (pci_slot_reset(slot, PCI_RESET_DO_RESET))
5760 goto bus_reset;
5761
5762 mutex_unlock(&pci_slot_mutex);
5763 return 0;
5764 bus_reset:
5765 mutex_unlock(&pci_slot_mutex);
5766 return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET);
5767 }
5768
5769 /**
5770 * pci_probe_reset_bus - probe whether a PCI bus can be reset
5771 * @bus: PCI bus to probe
5772 *
5773 * Return 0 if bus can be reset, negative if a bus reset is not supported.
5774 */
pci_probe_reset_bus(struct pci_bus * bus)5775 int pci_probe_reset_bus(struct pci_bus *bus)
5776 {
5777 return pci_bus_reset(bus, PCI_RESET_PROBE);
5778 }
5779 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5780
5781 /**
5782 * __pci_reset_bus - Try to reset a PCI bus
5783 * @bus: top level PCI bus to reset
5784 *
5785 * Same as above except return -EAGAIN if the bus cannot be locked
5786 */
__pci_reset_bus(struct pci_bus * bus)5787 int __pci_reset_bus(struct pci_bus *bus)
5788 {
5789 int rc;
5790
5791 rc = pci_bus_reset(bus, PCI_RESET_PROBE);
5792 if (rc)
5793 return rc;
5794
5795 if (pci_bus_trylock(bus)) {
5796 pci_bus_save_and_disable_locked(bus);
5797 might_sleep();
5798 rc = pci_bridge_secondary_bus_reset(bus->self);
5799 pci_bus_restore_locked(bus);
5800 pci_bus_unlock(bus);
5801 } else
5802 rc = -EAGAIN;
5803
5804 return rc;
5805 }
5806
5807 /**
5808 * pci_reset_bus - Try to reset a PCI bus
5809 * @pdev: top level PCI device to reset via slot/bus
5810 *
5811 * Same as above except return -EAGAIN if the bus cannot be locked
5812 */
pci_reset_bus(struct pci_dev * pdev)5813 int pci_reset_bus(struct pci_dev *pdev)
5814 {
5815 return (!pci_probe_reset_slot(pdev->slot)) ?
5816 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5817 }
5818 EXPORT_SYMBOL_GPL(pci_reset_bus);
5819
5820 /**
5821 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5822 * @dev: PCI device to query
5823 *
5824 * Returns mmrbc: maximum designed memory read count in bytes or
5825 * appropriate error value.
5826 */
pcix_get_max_mmrbc(struct pci_dev * dev)5827 int pcix_get_max_mmrbc(struct pci_dev *dev)
5828 {
5829 int cap;
5830 u32 stat;
5831
5832 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5833 if (!cap)
5834 return -EINVAL;
5835
5836 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5837 return -EINVAL;
5838
5839 return 512 << FIELD_GET(PCI_X_STATUS_MAX_READ, stat);
5840 }
5841 EXPORT_SYMBOL(pcix_get_max_mmrbc);
5842
5843 /**
5844 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5845 * @dev: PCI device to query
5846 *
5847 * Returns mmrbc: maximum memory read count in bytes or appropriate error
5848 * value.
5849 */
pcix_get_mmrbc(struct pci_dev * dev)5850 int pcix_get_mmrbc(struct pci_dev *dev)
5851 {
5852 int cap;
5853 u16 cmd;
5854
5855 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5856 if (!cap)
5857 return -EINVAL;
5858
5859 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5860 return -EINVAL;
5861
5862 return 512 << FIELD_GET(PCI_X_CMD_MAX_READ, cmd);
5863 }
5864 EXPORT_SYMBOL(pcix_get_mmrbc);
5865
5866 /**
5867 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5868 * @dev: PCI device to query
5869 * @mmrbc: maximum memory read count in bytes
5870 * valid values are 512, 1024, 2048, 4096
5871 *
5872 * If possible sets maximum memory read byte count, some bridges have errata
5873 * that prevent this.
5874 */
pcix_set_mmrbc(struct pci_dev * dev,int mmrbc)5875 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5876 {
5877 int cap;
5878 u32 stat, v, o;
5879 u16 cmd;
5880
5881 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5882 return -EINVAL;
5883
5884 v = ffs(mmrbc) - 10;
5885
5886 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5887 if (!cap)
5888 return -EINVAL;
5889
5890 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5891 return -EINVAL;
5892
5893 if (v > FIELD_GET(PCI_X_STATUS_MAX_READ, stat))
5894 return -E2BIG;
5895
5896 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5897 return -EINVAL;
5898
5899 o = FIELD_GET(PCI_X_CMD_MAX_READ, cmd);
5900 if (o != v) {
5901 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5902 return -EIO;
5903
5904 cmd &= ~PCI_X_CMD_MAX_READ;
5905 cmd |= FIELD_PREP(PCI_X_CMD_MAX_READ, v);
5906 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
5907 return -EIO;
5908 }
5909 return 0;
5910 }
5911 EXPORT_SYMBOL(pcix_set_mmrbc);
5912
5913 /**
5914 * pcie_get_readrq - get PCI Express read request size
5915 * @dev: PCI device to query
5916 *
5917 * Returns maximum memory read request in bytes or appropriate error value.
5918 */
pcie_get_readrq(struct pci_dev * dev)5919 int pcie_get_readrq(struct pci_dev *dev)
5920 {
5921 u16 ctl;
5922
5923 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5924
5925 return 128 << FIELD_GET(PCI_EXP_DEVCTL_READRQ, ctl);
5926 }
5927 EXPORT_SYMBOL(pcie_get_readrq);
5928
5929 /**
5930 * pcie_set_readrq - set PCI Express maximum memory read request
5931 * @dev: PCI device to query
5932 * @rq: maximum memory read count in bytes
5933 * valid values are 128, 256, 512, 1024, 2048, 4096
5934 *
5935 * If possible sets maximum memory read request in bytes
5936 */
pcie_set_readrq(struct pci_dev * dev,int rq)5937 int pcie_set_readrq(struct pci_dev *dev, int rq)
5938 {
5939 u16 v;
5940 int ret;
5941 struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
5942
5943 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
5944 return -EINVAL;
5945
5946 /*
5947 * If using the "performance" PCIe config, we clamp the read rq
5948 * size to the max packet size to keep the host bridge from
5949 * generating requests larger than we can cope with.
5950 */
5951 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
5952 int mps = pcie_get_mps(dev);
5953
5954 if (mps < rq)
5955 rq = mps;
5956 }
5957
5958 v = FIELD_PREP(PCI_EXP_DEVCTL_READRQ, ffs(rq) - 8);
5959
5960 if (bridge->no_inc_mrrs) {
5961 int max_mrrs = pcie_get_readrq(dev);
5962
5963 if (rq > max_mrrs) {
5964 pci_info(dev, "can't set Max_Read_Request_Size to %d; max is %d\n", rq, max_mrrs);
5965 return -EINVAL;
5966 }
5967 }
5968
5969 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5970 PCI_EXP_DEVCTL_READRQ, v);
5971
5972 return pcibios_err_to_errno(ret);
5973 }
5974 EXPORT_SYMBOL(pcie_set_readrq);
5975
5976 /**
5977 * pcie_get_mps - get PCI Express maximum payload size
5978 * @dev: PCI device to query
5979 *
5980 * Returns maximum payload size in bytes
5981 */
pcie_get_mps(struct pci_dev * dev)5982 int pcie_get_mps(struct pci_dev *dev)
5983 {
5984 u16 ctl;
5985
5986 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5987
5988 return 128 << FIELD_GET(PCI_EXP_DEVCTL_PAYLOAD, ctl);
5989 }
5990 EXPORT_SYMBOL(pcie_get_mps);
5991
5992 /**
5993 * pcie_set_mps - set PCI Express maximum payload size
5994 * @dev: PCI device to query
5995 * @mps: maximum payload size in bytes
5996 * valid values are 128, 256, 512, 1024, 2048, 4096
5997 *
5998 * If possible sets maximum payload size
5999 */
pcie_set_mps(struct pci_dev * dev,int mps)6000 int pcie_set_mps(struct pci_dev *dev, int mps)
6001 {
6002 u16 v;
6003 int ret;
6004
6005 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
6006 return -EINVAL;
6007
6008 v = ffs(mps) - 8;
6009 if (v > dev->pcie_mpss)
6010 return -EINVAL;
6011 v = FIELD_PREP(PCI_EXP_DEVCTL_PAYLOAD, v);
6012
6013 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6014 PCI_EXP_DEVCTL_PAYLOAD, v);
6015
6016 return pcibios_err_to_errno(ret);
6017 }
6018 EXPORT_SYMBOL(pcie_set_mps);
6019
to_pcie_link_speed(u16 lnksta)6020 static enum pci_bus_speed to_pcie_link_speed(u16 lnksta)
6021 {
6022 return pcie_link_speed[FIELD_GET(PCI_EXP_LNKSTA_CLS, lnksta)];
6023 }
6024
pcie_link_speed_mbps(struct pci_dev * pdev)6025 int pcie_link_speed_mbps(struct pci_dev *pdev)
6026 {
6027 u16 lnksta;
6028 int err;
6029
6030 err = pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta);
6031 if (err)
6032 return err;
6033
6034 return pcie_dev_speed_mbps(to_pcie_link_speed(lnksta));
6035 }
6036 EXPORT_SYMBOL(pcie_link_speed_mbps);
6037
6038 /**
6039 * pcie_bandwidth_available - determine minimum link settings of a PCIe
6040 * device and its bandwidth limitation
6041 * @dev: PCI device to query
6042 * @limiting_dev: storage for device causing the bandwidth limitation
6043 * @speed: storage for speed of limiting device
6044 * @width: storage for width of limiting device
6045 *
6046 * Walk up the PCI device chain and find the point where the minimum
6047 * bandwidth is available. Return the bandwidth available there and (if
6048 * limiting_dev, speed, and width pointers are supplied) information about
6049 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of
6050 * raw bandwidth.
6051 */
pcie_bandwidth_available(struct pci_dev * dev,struct pci_dev ** limiting_dev,enum pci_bus_speed * speed,enum pcie_link_width * width)6052 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
6053 enum pci_bus_speed *speed,
6054 enum pcie_link_width *width)
6055 {
6056 u16 lnksta;
6057 enum pci_bus_speed next_speed;
6058 enum pcie_link_width next_width;
6059 u32 bw, next_bw;
6060
6061 if (speed)
6062 *speed = PCI_SPEED_UNKNOWN;
6063 if (width)
6064 *width = PCIE_LNK_WIDTH_UNKNOWN;
6065
6066 bw = 0;
6067
6068 while (dev) {
6069 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
6070
6071 next_speed = to_pcie_link_speed(lnksta);
6072 next_width = FIELD_GET(PCI_EXP_LNKSTA_NLW, lnksta);
6073
6074 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
6075
6076 /* Check if current device limits the total bandwidth */
6077 if (!bw || next_bw <= bw) {
6078 bw = next_bw;
6079
6080 if (limiting_dev)
6081 *limiting_dev = dev;
6082 if (speed)
6083 *speed = next_speed;
6084 if (width)
6085 *width = next_width;
6086 }
6087
6088 dev = pci_upstream_bridge(dev);
6089 }
6090
6091 return bw;
6092 }
6093 EXPORT_SYMBOL(pcie_bandwidth_available);
6094
6095 /**
6096 * pcie_get_supported_speeds - query Supported Link Speed Vector
6097 * @dev: PCI device to query
6098 *
6099 * Query @dev supported link speeds.
6100 *
6101 * Implementation Note in PCIe r6.0 sec 7.5.3.18 recommends determining
6102 * supported link speeds using the Supported Link Speeds Vector in the Link
6103 * Capabilities 2 Register (when available).
6104 *
6105 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18.
6106 *
6107 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, Supported Link
6108 * Speeds field in Link Capabilities is used and only 2.5 GT/s and 5.0 GT/s
6109 * speeds were defined.
6110 *
6111 * For @dev without Supported Link Speed Vector, the field is synthesized
6112 * from the Max Link Speed field in the Link Capabilities Register.
6113 *
6114 * Return: Supported Link Speeds Vector (+ reserved 0 at LSB).
6115 */
pcie_get_supported_speeds(struct pci_dev * dev)6116 u8 pcie_get_supported_speeds(struct pci_dev *dev)
6117 {
6118 u32 lnkcap2, lnkcap;
6119 u8 speeds;
6120
6121 /*
6122 * Speeds retain the reserved 0 at LSB before PCIe Supported Link
6123 * Speeds Vector to allow using SLS Vector bit defines directly.
6124 */
6125 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
6126 speeds = lnkcap2 & PCI_EXP_LNKCAP2_SLS;
6127
6128 /* Ignore speeds higher than Max Link Speed */
6129 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6130 speeds &= GENMASK(lnkcap & PCI_EXP_LNKCAP_SLS, 0);
6131
6132 /* PCIe r3.0-compliant */
6133 if (speeds)
6134 return speeds;
6135
6136 /* Synthesize from the Max Link Speed field */
6137 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
6138 speeds = PCI_EXP_LNKCAP2_SLS_5_0GB | PCI_EXP_LNKCAP2_SLS_2_5GB;
6139 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
6140 speeds = PCI_EXP_LNKCAP2_SLS_2_5GB;
6141
6142 return speeds;
6143 }
6144
6145 /**
6146 * pcie_get_speed_cap - query for the PCI device's link speed capability
6147 * @dev: PCI device to query
6148 *
6149 * Query the PCI device speed capability.
6150 *
6151 * Return: the maximum link speed supported by the device.
6152 */
pcie_get_speed_cap(struct pci_dev * dev)6153 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
6154 {
6155 return PCIE_LNKCAP2_SLS2SPEED(dev->supported_speeds);
6156 }
6157 EXPORT_SYMBOL(pcie_get_speed_cap);
6158
6159 /**
6160 * pcie_get_width_cap - query for the PCI device's link width capability
6161 * @dev: PCI device to query
6162 *
6163 * Query the PCI device width capability. Return the maximum link width
6164 * supported by the device.
6165 */
pcie_get_width_cap(struct pci_dev * dev)6166 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
6167 {
6168 u32 lnkcap;
6169
6170 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6171 if (lnkcap)
6172 return FIELD_GET(PCI_EXP_LNKCAP_MLW, lnkcap);
6173
6174 return PCIE_LNK_WIDTH_UNKNOWN;
6175 }
6176 EXPORT_SYMBOL(pcie_get_width_cap);
6177
6178 /**
6179 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
6180 * @dev: PCI device
6181 * @speed: storage for link speed
6182 * @width: storage for link width
6183 *
6184 * Calculate a PCI device's link bandwidth by querying for its link speed
6185 * and width, multiplying them, and applying encoding overhead. The result
6186 * is in Mb/s, i.e., megabits/second of raw bandwidth.
6187 */
pcie_bandwidth_capable(struct pci_dev * dev,enum pci_bus_speed * speed,enum pcie_link_width * width)6188 static u32 pcie_bandwidth_capable(struct pci_dev *dev,
6189 enum pci_bus_speed *speed,
6190 enum pcie_link_width *width)
6191 {
6192 *speed = pcie_get_speed_cap(dev);
6193 *width = pcie_get_width_cap(dev);
6194
6195 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
6196 return 0;
6197
6198 return *width * PCIE_SPEED2MBS_ENC(*speed);
6199 }
6200
6201 /**
6202 * __pcie_print_link_status - Report the PCI device's link speed and width
6203 * @dev: PCI device to query
6204 * @verbose: Print info even when enough bandwidth is available
6205 *
6206 * If the available bandwidth at the device is less than the device is
6207 * capable of, report the device's maximum possible bandwidth and the
6208 * upstream link that limits its performance. If @verbose, always print
6209 * the available bandwidth, even if the device isn't constrained.
6210 */
__pcie_print_link_status(struct pci_dev * dev,bool verbose)6211 void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
6212 {
6213 enum pcie_link_width width, width_cap;
6214 enum pci_bus_speed speed, speed_cap;
6215 struct pci_dev *limiting_dev = NULL;
6216 u32 bw_avail, bw_cap;
6217 char *flit_mode = "";
6218
6219 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
6220 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
6221
6222 if (dev->bus && dev->bus->flit_mode)
6223 flit_mode = ", in Flit mode";
6224
6225 if (bw_avail >= bw_cap && verbose)
6226 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)%s\n",
6227 bw_cap / 1000, bw_cap % 1000,
6228 pci_speed_string(speed_cap), width_cap, flit_mode);
6229 else if (bw_avail < bw_cap)
6230 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)%s\n",
6231 bw_avail / 1000, bw_avail % 1000,
6232 pci_speed_string(speed), width,
6233 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
6234 bw_cap / 1000, bw_cap % 1000,
6235 pci_speed_string(speed_cap), width_cap, flit_mode);
6236 }
6237
6238 /**
6239 * pcie_print_link_status - Report the PCI device's link speed and width
6240 * @dev: PCI device to query
6241 *
6242 * Report the available bandwidth at the device.
6243 */
pcie_print_link_status(struct pci_dev * dev)6244 void pcie_print_link_status(struct pci_dev *dev)
6245 {
6246 __pcie_print_link_status(dev, true);
6247 }
6248 EXPORT_SYMBOL(pcie_print_link_status);
6249
6250 /**
6251 * pci_select_bars - Make BAR mask from the type of resource
6252 * @dev: the PCI device for which BAR mask is made
6253 * @flags: resource type mask to be selected
6254 *
6255 * This helper routine makes bar mask from the type of resource.
6256 */
pci_select_bars(struct pci_dev * dev,unsigned long flags)6257 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
6258 {
6259 int i, bars = 0;
6260 for (i = 0; i < PCI_NUM_RESOURCES; i++)
6261 if (pci_resource_flags(dev, i) & flags)
6262 bars |= (1 << i);
6263 return bars;
6264 }
6265 EXPORT_SYMBOL(pci_select_bars);
6266
6267 /* Some architectures require additional programming to enable VGA */
6268 static arch_set_vga_state_t arch_set_vga_state;
6269
pci_register_set_vga_state(arch_set_vga_state_t func)6270 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
6271 {
6272 arch_set_vga_state = func; /* NULL disables */
6273 }
6274
pci_set_vga_state_arch(struct pci_dev * dev,bool decode,unsigned int command_bits,u32 flags)6275 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
6276 unsigned int command_bits, u32 flags)
6277 {
6278 if (arch_set_vga_state)
6279 return arch_set_vga_state(dev, decode, command_bits,
6280 flags);
6281 return 0;
6282 }
6283
6284 /**
6285 * pci_set_vga_state - set VGA decode state on device and parents if requested
6286 * @dev: the PCI device
6287 * @decode: true = enable decoding, false = disable decoding
6288 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
6289 * @flags: traverse ancestors and change bridges
6290 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
6291 */
pci_set_vga_state(struct pci_dev * dev,bool decode,unsigned int command_bits,u32 flags)6292 int pci_set_vga_state(struct pci_dev *dev, bool decode,
6293 unsigned int command_bits, u32 flags)
6294 {
6295 struct pci_bus *bus;
6296 struct pci_dev *bridge;
6297 u16 cmd;
6298 int rc;
6299
6300 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6301
6302 /* ARCH specific VGA enables */
6303 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6304 if (rc)
6305 return rc;
6306
6307 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6308 pci_read_config_word(dev, PCI_COMMAND, &cmd);
6309 if (decode)
6310 cmd |= command_bits;
6311 else
6312 cmd &= ~command_bits;
6313 pci_write_config_word(dev, PCI_COMMAND, cmd);
6314 }
6315
6316 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6317 return 0;
6318
6319 bus = dev->bus;
6320 while (bus) {
6321 bridge = bus->self;
6322 if (bridge) {
6323 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6324 &cmd);
6325 if (decode)
6326 cmd |= PCI_BRIDGE_CTL_VGA;
6327 else
6328 cmd &= ~PCI_BRIDGE_CTL_VGA;
6329 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6330 cmd);
6331 }
6332 bus = bus->parent;
6333 }
6334 return 0;
6335 }
6336
6337 #ifdef CONFIG_ACPI
pci_pr3_present(struct pci_dev * pdev)6338 bool pci_pr3_present(struct pci_dev *pdev)
6339 {
6340 struct acpi_device *adev;
6341
6342 if (acpi_disabled)
6343 return false;
6344
6345 adev = ACPI_COMPANION(&pdev->dev);
6346 if (!adev)
6347 return false;
6348
6349 return adev->power.flags.power_resources &&
6350 acpi_has_method(adev->handle, "_PR3");
6351 }
6352 EXPORT_SYMBOL_GPL(pci_pr3_present);
6353 #endif
6354
6355 /**
6356 * pci_add_dma_alias - Add a DMA devfn alias for a device
6357 * @dev: the PCI device for which alias is added
6358 * @devfn_from: alias slot and function
6359 * @nr_devfns: number of subsequent devfns to alias
6360 *
6361 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6362 * which is used to program permissible bus-devfn source addresses for DMA
6363 * requests in an IOMMU. These aliases factor into IOMMU group creation
6364 * and are useful for devices generating DMA requests beyond or different
6365 * from their logical bus-devfn. Examples include device quirks where the
6366 * device simply uses the wrong devfn, as well as non-transparent bridges
6367 * where the alias may be a proxy for devices in another domain.
6368 *
6369 * IOMMU group creation is performed during device discovery or addition,
6370 * prior to any potential DMA mapping and therefore prior to driver probing
6371 * (especially for userspace assigned devices where IOMMU group definition
6372 * cannot be left as a userspace activity). DMA aliases should therefore
6373 * be configured via quirks, such as the PCI fixup header quirk.
6374 */
pci_add_dma_alias(struct pci_dev * dev,u8 devfn_from,unsigned int nr_devfns)6375 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from,
6376 unsigned int nr_devfns)
6377 {
6378 int devfn_to;
6379
6380 nr_devfns = min(nr_devfns, (unsigned int)MAX_NR_DEVFNS - devfn_from);
6381 devfn_to = devfn_from + nr_devfns - 1;
6382
6383 if (!dev->dma_alias_mask)
6384 dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6385 if (!dev->dma_alias_mask) {
6386 pci_warn(dev, "Unable to allocate DMA alias mask\n");
6387 return;
6388 }
6389
6390 bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6391
6392 if (nr_devfns == 1)
6393 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6394 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6395 else if (nr_devfns > 1)
6396 pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6397 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6398 PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6399 }
6400
pci_devs_are_dma_aliases(struct pci_dev * dev1,struct pci_dev * dev2)6401 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6402 {
6403 return (dev1->dma_alias_mask &&
6404 test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6405 (dev2->dma_alias_mask &&
6406 test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6407 pci_real_dma_dev(dev1) == dev2 ||
6408 pci_real_dma_dev(dev2) == dev1;
6409 }
6410
pci_device_is_present(struct pci_dev * pdev)6411 bool pci_device_is_present(struct pci_dev *pdev)
6412 {
6413 u32 v;
6414
6415 /* Check PF if pdev is a VF, since VF Vendor/Device IDs are 0xffff */
6416 pdev = pci_physfn(pdev);
6417 if (pci_dev_is_disconnected(pdev))
6418 return false;
6419 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6420 }
6421 EXPORT_SYMBOL_GPL(pci_device_is_present);
6422
pci_ignore_hotplug(struct pci_dev * dev)6423 void pci_ignore_hotplug(struct pci_dev *dev)
6424 {
6425 struct pci_dev *bridge = dev->bus->self;
6426
6427 dev->ignore_hotplug = 1;
6428 /* Propagate the "ignore hotplug" setting to the parent bridge. */
6429 if (bridge)
6430 bridge->ignore_hotplug = 1;
6431 }
6432 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6433
6434 /**
6435 * pci_real_dma_dev - Get PCI DMA device for PCI device
6436 * @dev: the PCI device that may have a PCI DMA alias
6437 *
6438 * Permits the platform to provide architecture-specific functionality to
6439 * devices needing to alias DMA to another PCI device on another PCI bus. If
6440 * the PCI device is on the same bus, it is recommended to use
6441 * pci_add_dma_alias(). This is the default implementation. Architecture
6442 * implementations can override this.
6443 */
pci_real_dma_dev(struct pci_dev * dev)6444 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6445 {
6446 return dev;
6447 }
6448
pcibios_default_alignment(void)6449 resource_size_t __weak pcibios_default_alignment(void)
6450 {
6451 return 0;
6452 }
6453
6454 /*
6455 * Arches that don't want to expose struct resource to userland as-is in
6456 * sysfs and /proc can implement their own pci_resource_to_user().
6457 */
pci_resource_to_user(const struct pci_dev * dev,int bar,const struct resource * rsrc,resource_size_t * start,resource_size_t * end)6458 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6459 const struct resource *rsrc,
6460 resource_size_t *start, resource_size_t *end)
6461 {
6462 *start = rsrc->start;
6463 *end = rsrc->end;
6464 }
6465
6466 static char *resource_alignment_param;
6467 static DEFINE_SPINLOCK(resource_alignment_lock);
6468
6469 /**
6470 * pci_specified_resource_alignment - get resource alignment specified by user.
6471 * @dev: the PCI device to get
6472 * @resize: whether or not to change resources' size when reassigning alignment
6473 *
6474 * RETURNS: Resource alignment if it is specified.
6475 * Zero if it is not specified.
6476 */
pci_specified_resource_alignment(struct pci_dev * dev,bool * resize)6477 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6478 bool *resize)
6479 {
6480 int align_order, count;
6481 resource_size_t align = pcibios_default_alignment();
6482 const char *p;
6483 int ret;
6484
6485 spin_lock(&resource_alignment_lock);
6486 p = resource_alignment_param;
6487 if (!p || !*p)
6488 goto out;
6489 if (pci_has_flag(PCI_PROBE_ONLY)) {
6490 align = 0;
6491 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6492 goto out;
6493 }
6494
6495 while (*p) {
6496 count = 0;
6497 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6498 p[count] == '@') {
6499 p += count + 1;
6500 if (align_order > 63) {
6501 pr_err("PCI: Invalid requested alignment (order %d)\n",
6502 align_order);
6503 align_order = PAGE_SHIFT;
6504 }
6505 } else {
6506 align_order = PAGE_SHIFT;
6507 }
6508
6509 ret = pci_dev_str_match(dev, p, &p);
6510 if (ret == 1) {
6511 *resize = true;
6512 align = 1ULL << align_order;
6513 break;
6514 } else if (ret < 0) {
6515 pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6516 p);
6517 break;
6518 }
6519
6520 if (*p != ';' && *p != ',') {
6521 /* End of param or invalid format */
6522 break;
6523 }
6524 p++;
6525 }
6526 out:
6527 spin_unlock(&resource_alignment_lock);
6528 return align;
6529 }
6530
pci_request_resource_alignment(struct pci_dev * dev,int bar,resource_size_t align,bool resize)6531 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6532 resource_size_t align, bool resize)
6533 {
6534 struct resource *r = &dev->resource[bar];
6535 const char *r_name = pci_resource_name(dev, bar);
6536 resource_size_t size;
6537
6538 if (!(r->flags & IORESOURCE_MEM))
6539 return;
6540
6541 if (r->flags & IORESOURCE_PCI_FIXED) {
6542 pci_info(dev, "%s %pR: ignoring requested alignment %#llx\n",
6543 r_name, r, (unsigned long long)align);
6544 return;
6545 }
6546
6547 size = resource_size(r);
6548 if (size >= align)
6549 return;
6550
6551 /*
6552 * Increase the alignment of the resource. There are two ways we
6553 * can do this:
6554 *
6555 * 1) Increase the size of the resource. BARs are aligned on their
6556 * size, so when we reallocate space for this resource, we'll
6557 * allocate it with the larger alignment. This also prevents
6558 * assignment of any other BARs inside the alignment region, so
6559 * if we're requesting page alignment, this means no other BARs
6560 * will share the page.
6561 *
6562 * The disadvantage is that this makes the resource larger than
6563 * the hardware BAR, which may break drivers that compute things
6564 * based on the resource size, e.g., to find registers at a
6565 * fixed offset before the end of the BAR.
6566 *
6567 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6568 * set r->start to the desired alignment. By itself this
6569 * doesn't prevent other BARs being put inside the alignment
6570 * region, but if we realign *every* resource of every device in
6571 * the system, none of them will share an alignment region.
6572 *
6573 * When the user has requested alignment for only some devices via
6574 * the "pci=resource_alignment" argument, "resize" is true and we
6575 * use the first method. Otherwise we assume we're aligning all
6576 * devices and we use the second.
6577 */
6578
6579 pci_info(dev, "%s %pR: requesting alignment to %#llx\n",
6580 r_name, r, (unsigned long long)align);
6581
6582 if (resize) {
6583 r->start = 0;
6584 r->end = align - 1;
6585 } else {
6586 r->flags &= ~IORESOURCE_SIZEALIGN;
6587 r->flags |= IORESOURCE_STARTALIGN;
6588 resource_set_range(r, align, size);
6589 }
6590 r->flags |= IORESOURCE_UNSET;
6591 }
6592
6593 /*
6594 * This function disables memory decoding and releases memory resources
6595 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6596 * It also rounds up size to specified alignment.
6597 * Later on, the kernel will assign page-aligned memory resource back
6598 * to the device.
6599 */
pci_reassigndev_resource_alignment(struct pci_dev * dev)6600 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6601 {
6602 int i;
6603 struct resource *r;
6604 resource_size_t align;
6605 u16 command;
6606 bool resize = false;
6607
6608 /*
6609 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6610 * 3.4.1.11. Their resources are allocated from the space
6611 * described by the VF BARx register in the PF's SR-IOV capability.
6612 * We can't influence their alignment here.
6613 */
6614 if (dev->is_virtfn)
6615 return;
6616
6617 /* check if specified PCI is target device to reassign */
6618 align = pci_specified_resource_alignment(dev, &resize);
6619 if (!align)
6620 return;
6621
6622 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6623 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6624 pci_warn(dev, "Can't reassign resources to host bridge\n");
6625 return;
6626 }
6627
6628 pci_read_config_word(dev, PCI_COMMAND, &command);
6629 command &= ~PCI_COMMAND_MEMORY;
6630 pci_write_config_word(dev, PCI_COMMAND, command);
6631
6632 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6633 pci_request_resource_alignment(dev, i, align, resize);
6634
6635 /*
6636 * Need to disable bridge's resource window,
6637 * to enable the kernel to reassign new resource
6638 * window later on.
6639 */
6640 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6641 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6642 r = &dev->resource[i];
6643 if (!(r->flags & IORESOURCE_MEM))
6644 continue;
6645 r->flags |= IORESOURCE_UNSET;
6646 r->end = resource_size(r) - 1;
6647 r->start = 0;
6648 }
6649 pci_disable_bridge_window(dev);
6650 }
6651 }
6652
resource_alignment_show(const struct bus_type * bus,char * buf)6653 static ssize_t resource_alignment_show(const struct bus_type *bus, char *buf)
6654 {
6655 size_t count = 0;
6656
6657 spin_lock(&resource_alignment_lock);
6658 if (resource_alignment_param)
6659 count = sysfs_emit(buf, "%s\n", resource_alignment_param);
6660 spin_unlock(&resource_alignment_lock);
6661
6662 return count;
6663 }
6664
resource_alignment_store(const struct bus_type * bus,const char * buf,size_t count)6665 static ssize_t resource_alignment_store(const struct bus_type *bus,
6666 const char *buf, size_t count)
6667 {
6668 char *param, *old, *end;
6669
6670 if (count >= (PAGE_SIZE - 1))
6671 return -EINVAL;
6672
6673 param = kstrndup(buf, count, GFP_KERNEL);
6674 if (!param)
6675 return -ENOMEM;
6676
6677 end = strchr(param, '\n');
6678 if (end)
6679 *end = '\0';
6680
6681 spin_lock(&resource_alignment_lock);
6682 old = resource_alignment_param;
6683 if (strlen(param)) {
6684 resource_alignment_param = param;
6685 } else {
6686 kfree(param);
6687 resource_alignment_param = NULL;
6688 }
6689 spin_unlock(&resource_alignment_lock);
6690
6691 kfree(old);
6692
6693 return count;
6694 }
6695
6696 static BUS_ATTR_RW(resource_alignment);
6697
pci_resource_alignment_sysfs_init(void)6698 static int __init pci_resource_alignment_sysfs_init(void)
6699 {
6700 return bus_create_file(&pci_bus_type,
6701 &bus_attr_resource_alignment);
6702 }
6703 late_initcall(pci_resource_alignment_sysfs_init);
6704
pci_no_domains(void)6705 static void pci_no_domains(void)
6706 {
6707 #ifdef CONFIG_PCI_DOMAINS
6708 pci_domains_supported = 0;
6709 #endif
6710 }
6711
6712 #ifdef CONFIG_PCI_DOMAINS_GENERIC
6713 static DEFINE_IDA(pci_domain_nr_static_ida);
6714 static DEFINE_IDA(pci_domain_nr_dynamic_ida);
6715
of_pci_reserve_static_domain_nr(void)6716 static void of_pci_reserve_static_domain_nr(void)
6717 {
6718 struct device_node *np;
6719 int domain_nr;
6720
6721 for_each_node_by_type(np, "pci") {
6722 domain_nr = of_get_pci_domain_nr(np);
6723 if (domain_nr < 0)
6724 continue;
6725 /*
6726 * Permanently allocate domain_nr in dynamic_ida
6727 * to prevent it from dynamic allocation.
6728 */
6729 ida_alloc_range(&pci_domain_nr_dynamic_ida,
6730 domain_nr, domain_nr, GFP_KERNEL);
6731 }
6732 }
6733
of_pci_bus_find_domain_nr(struct device * parent)6734 static int of_pci_bus_find_domain_nr(struct device *parent)
6735 {
6736 static bool static_domains_reserved = false;
6737 int domain_nr;
6738
6739 /* On the first call scan device tree for static allocations. */
6740 if (!static_domains_reserved) {
6741 of_pci_reserve_static_domain_nr();
6742 static_domains_reserved = true;
6743 }
6744
6745 if (parent) {
6746 /*
6747 * If domain is in DT, allocate it in static IDA. This
6748 * prevents duplicate static allocations in case of errors
6749 * in DT.
6750 */
6751 domain_nr = of_get_pci_domain_nr(parent->of_node);
6752 if (domain_nr >= 0)
6753 return ida_alloc_range(&pci_domain_nr_static_ida,
6754 domain_nr, domain_nr,
6755 GFP_KERNEL);
6756 }
6757
6758 /*
6759 * If domain was not specified in DT, choose a free ID from dynamic
6760 * allocations. All domain numbers from DT are permanently in
6761 * dynamic allocations to prevent assigning them to other DT nodes
6762 * without static domain.
6763 */
6764 return ida_alloc(&pci_domain_nr_dynamic_ida, GFP_KERNEL);
6765 }
6766
of_pci_bus_release_domain_nr(struct device * parent,int domain_nr)6767 static void of_pci_bus_release_domain_nr(struct device *parent, int domain_nr)
6768 {
6769 if (domain_nr < 0)
6770 return;
6771
6772 /* Release domain from IDA where it was allocated. */
6773 if (of_get_pci_domain_nr(parent->of_node) == domain_nr)
6774 ida_free(&pci_domain_nr_static_ida, domain_nr);
6775 else
6776 ida_free(&pci_domain_nr_dynamic_ida, domain_nr);
6777 }
6778
pci_bus_find_domain_nr(struct pci_bus * bus,struct device * parent)6779 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6780 {
6781 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6782 acpi_pci_bus_find_domain_nr(bus);
6783 }
6784
pci_bus_release_domain_nr(struct device * parent,int domain_nr)6785 void pci_bus_release_domain_nr(struct device *parent, int domain_nr)
6786 {
6787 if (!acpi_disabled)
6788 return;
6789 of_pci_bus_release_domain_nr(parent, domain_nr);
6790 }
6791 #endif
6792
6793 /**
6794 * pci_ext_cfg_avail - can we access extended PCI config space?
6795 *
6796 * Returns 1 if we can access PCI extended config space (offsets
6797 * greater than 0xff). This is the default implementation. Architecture
6798 * implementations can override this.
6799 */
pci_ext_cfg_avail(void)6800 int __weak pci_ext_cfg_avail(void)
6801 {
6802 return 1;
6803 }
6804
pci_fixup_cardbus(struct pci_bus * bus)6805 void __weak pci_fixup_cardbus(struct pci_bus *bus)
6806 {
6807 }
6808 EXPORT_SYMBOL(pci_fixup_cardbus);
6809
pci_setup(char * str)6810 static int __init pci_setup(char *str)
6811 {
6812 while (str) {
6813 char *k = strchr(str, ',');
6814 if (k)
6815 *k++ = 0;
6816 if (*str && (str = pcibios_setup(str)) && *str) {
6817 if (!strcmp(str, "nomsi")) {
6818 pci_no_msi();
6819 } else if (!strncmp(str, "noats", 5)) {
6820 pr_info("PCIe: ATS is disabled\n");
6821 pcie_ats_disabled = true;
6822 } else if (!strcmp(str, "noaer")) {
6823 pci_no_aer();
6824 } else if (!strcmp(str, "earlydump")) {
6825 pci_early_dump = true;
6826 } else if (!strncmp(str, "realloc=", 8)) {
6827 pci_realloc_get_opt(str + 8);
6828 } else if (!strncmp(str, "realloc", 7)) {
6829 pci_realloc_get_opt("on");
6830 } else if (!strcmp(str, "nodomains")) {
6831 pci_no_domains();
6832 } else if (!strncmp(str, "noari", 5)) {
6833 pcie_ari_disabled = true;
6834 } else if (!strncmp(str, "notph", 5)) {
6835 pci_no_tph();
6836 } else if (!strncmp(str, "cbiosize=", 9)) {
6837 pci_cardbus_io_size = memparse(str + 9, &str);
6838 } else if (!strncmp(str, "cbmemsize=", 10)) {
6839 pci_cardbus_mem_size = memparse(str + 10, &str);
6840 } else if (!strncmp(str, "resource_alignment=", 19)) {
6841 resource_alignment_param = str + 19;
6842 } else if (!strncmp(str, "ecrc=", 5)) {
6843 pcie_ecrc_get_policy(str + 5);
6844 } else if (!strncmp(str, "hpiosize=", 9)) {
6845 pci_hotplug_io_size = memparse(str + 9, &str);
6846 } else if (!strncmp(str, "hpmmiosize=", 11)) {
6847 pci_hotplug_mmio_size = memparse(str + 11, &str);
6848 } else if (!strncmp(str, "hpmmioprefsize=", 15)) {
6849 pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
6850 } else if (!strncmp(str, "hpmemsize=", 10)) {
6851 pci_hotplug_mmio_size = memparse(str + 10, &str);
6852 pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
6853 } else if (!strncmp(str, "hpbussize=", 10)) {
6854 pci_hotplug_bus_size =
6855 simple_strtoul(str + 10, &str, 0);
6856 if (pci_hotplug_bus_size > 0xff)
6857 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6858 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6859 pcie_bus_config = PCIE_BUS_TUNE_OFF;
6860 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
6861 pcie_bus_config = PCIE_BUS_SAFE;
6862 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
6863 pcie_bus_config = PCIE_BUS_PERFORMANCE;
6864 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6865 pcie_bus_config = PCIE_BUS_PEER2PEER;
6866 } else if (!strncmp(str, "pcie_scan_all", 13)) {
6867 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6868 } else if (!strncmp(str, "disable_acs_redir=", 18)) {
6869 disable_acs_redir_param = str + 18;
6870 } else if (!strncmp(str, "config_acs=", 11)) {
6871 config_acs_param = str + 11;
6872 } else {
6873 pr_err("PCI: Unknown option `%s'\n", str);
6874 }
6875 }
6876 str = k;
6877 }
6878 return 0;
6879 }
6880 early_param("pci", pci_setup);
6881
6882 /*
6883 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6884 * in pci_setup(), above, to point to data in the __initdata section which
6885 * will be freed after the init sequence is complete. We can't allocate memory
6886 * in pci_setup() because some architectures do not have any memory allocation
6887 * service available during an early_param() call. So we allocate memory and
6888 * copy the variable here before the init section is freed.
6889 *
6890 */
pci_realloc_setup_params(void)6891 static int __init pci_realloc_setup_params(void)
6892 {
6893 resource_alignment_param = kstrdup(resource_alignment_param,
6894 GFP_KERNEL);
6895 disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6896 config_acs_param = kstrdup(config_acs_param, GFP_KERNEL);
6897
6898 return 0;
6899 }
6900 pure_initcall(pci_realloc_setup_params);
6901