1 /*
2 * PCI Bus Services, see include/linux/pci.h for further explanation.
3 *
4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5 * David Mosberger-Tang
6 *
7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8 */
9
10 #include <linux/kernel.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/pci.h>
14 #include <linux/pm.h>
15 #include <linux/slab.h>
16 #include <linux/module.h>
17 #include <linux/spinlock.h>
18 #include <linux/string.h>
19 #include <linux/log2.h>
20 #include <linux/pci-aspm.h>
21 #include <linux/pm_wakeup.h>
22 #include <linux/interrupt.h>
23 #include <linux/device.h>
24 #include <linux/pm_runtime.h>
25 #include <asm/setup.h>
26 #include "pci.h"
27
28 const char *pci_power_names[] = {
29 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
30 };
31 EXPORT_SYMBOL_GPL(pci_power_names);
32
33 int isa_dma_bridge_buggy;
34 EXPORT_SYMBOL(isa_dma_bridge_buggy);
35
36 int pci_pci_problems;
37 EXPORT_SYMBOL(pci_pci_problems);
38
39 unsigned int pci_pm_d3_delay;
40
41 static void pci_pme_list_scan(struct work_struct *work);
42
43 static LIST_HEAD(pci_pme_list);
44 static DEFINE_MUTEX(pci_pme_list_mutex);
45 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
46
47 struct pci_pme_device {
48 struct list_head list;
49 struct pci_dev *dev;
50 };
51
52 #define PME_TIMEOUT 1000 /* How long between PME checks */
53
pci_dev_d3_sleep(struct pci_dev * dev)54 static void pci_dev_d3_sleep(struct pci_dev *dev)
55 {
56 unsigned int delay = dev->d3_delay;
57
58 if (delay < pci_pm_d3_delay)
59 delay = pci_pm_d3_delay;
60
61 msleep(delay);
62 }
63
64 #ifdef CONFIG_PCI_DOMAINS
65 int pci_domains_supported = 1;
66 #endif
67
68 #define DEFAULT_CARDBUS_IO_SIZE (256)
69 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
70 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
71 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
72 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
73
74 #define DEFAULT_HOTPLUG_IO_SIZE (256)
75 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024)
76 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
77 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
78 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
79
80 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
81
82 /*
83 * The default CLS is used if arch didn't set CLS explicitly and not
84 * all pci devices agree on the same value. Arch can override either
85 * the dfl or actual value as it sees fit. Don't forget this is
86 * measured in 32-bit words, not bytes.
87 */
88 u8 pci_dfl_cache_line_size __devinitdata = L1_CACHE_BYTES >> 2;
89 u8 pci_cache_line_size;
90
91 /*
92 * If we set up a device for bus mastering, we need to check the latency
93 * timer as certain BIOSes forget to set it properly.
94 */
95 unsigned int pcibios_max_latency = 255;
96
97 /**
98 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
99 * @bus: pointer to PCI bus structure to search
100 *
101 * Given a PCI bus, returns the highest PCI bus number present in the set
102 * including the given PCI bus and its list of child PCI buses.
103 */
pci_bus_max_busnr(struct pci_bus * bus)104 unsigned char pci_bus_max_busnr(struct pci_bus* bus)
105 {
106 struct list_head *tmp;
107 unsigned char max, n;
108
109 max = bus->subordinate;
110 list_for_each(tmp, &bus->children) {
111 n = pci_bus_max_busnr(pci_bus_b(tmp));
112 if(n > max)
113 max = n;
114 }
115 return max;
116 }
117 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
118
119 #ifdef CONFIG_HAS_IOMEM
pci_ioremap_bar(struct pci_dev * pdev,int bar)120 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
121 {
122 /*
123 * Make sure the BAR is actually a memory resource, not an IO resource
124 */
125 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
126 WARN_ON(1);
127 return NULL;
128 }
129 return ioremap_nocache(pci_resource_start(pdev, bar),
130 pci_resource_len(pdev, bar));
131 }
132 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
133 #endif
134
135 #if 0
136 /**
137 * pci_max_busnr - returns maximum PCI bus number
138 *
139 * Returns the highest PCI bus number present in the system global list of
140 * PCI buses.
141 */
142 unsigned char __devinit
143 pci_max_busnr(void)
144 {
145 struct pci_bus *bus = NULL;
146 unsigned char max, n;
147
148 max = 0;
149 while ((bus = pci_find_next_bus(bus)) != NULL) {
150 n = pci_bus_max_busnr(bus);
151 if(n > max)
152 max = n;
153 }
154 return max;
155 }
156
157 #endif /* 0 */
158
159 #define PCI_FIND_CAP_TTL 48
160
__pci_find_next_cap_ttl(struct pci_bus * bus,unsigned int devfn,u8 pos,int cap,int * ttl)161 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
162 u8 pos, int cap, int *ttl)
163 {
164 u8 id;
165
166 while ((*ttl)--) {
167 pci_bus_read_config_byte(bus, devfn, pos, &pos);
168 if (pos < 0x40)
169 break;
170 pos &= ~3;
171 pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID,
172 &id);
173 if (id == 0xff)
174 break;
175 if (id == cap)
176 return pos;
177 pos += PCI_CAP_LIST_NEXT;
178 }
179 return 0;
180 }
181
__pci_find_next_cap(struct pci_bus * bus,unsigned int devfn,u8 pos,int cap)182 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
183 u8 pos, int cap)
184 {
185 int ttl = PCI_FIND_CAP_TTL;
186
187 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
188 }
189
pci_find_next_capability(struct pci_dev * dev,u8 pos,int cap)190 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
191 {
192 return __pci_find_next_cap(dev->bus, dev->devfn,
193 pos + PCI_CAP_LIST_NEXT, cap);
194 }
195 EXPORT_SYMBOL_GPL(pci_find_next_capability);
196
__pci_bus_find_cap_start(struct pci_bus * bus,unsigned int devfn,u8 hdr_type)197 static int __pci_bus_find_cap_start(struct pci_bus *bus,
198 unsigned int devfn, u8 hdr_type)
199 {
200 u16 status;
201
202 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
203 if (!(status & PCI_STATUS_CAP_LIST))
204 return 0;
205
206 switch (hdr_type) {
207 case PCI_HEADER_TYPE_NORMAL:
208 case PCI_HEADER_TYPE_BRIDGE:
209 return PCI_CAPABILITY_LIST;
210 case PCI_HEADER_TYPE_CARDBUS:
211 return PCI_CB_CAPABILITY_LIST;
212 default:
213 return 0;
214 }
215
216 return 0;
217 }
218
219 /**
220 * pci_find_capability - query for devices' capabilities
221 * @dev: PCI device to query
222 * @cap: capability code
223 *
224 * Tell if a device supports a given PCI capability.
225 * Returns the address of the requested capability structure within the
226 * device's PCI configuration space or 0 in case the device does not
227 * support it. Possible values for @cap:
228 *
229 * %PCI_CAP_ID_PM Power Management
230 * %PCI_CAP_ID_AGP Accelerated Graphics Port
231 * %PCI_CAP_ID_VPD Vital Product Data
232 * %PCI_CAP_ID_SLOTID Slot Identification
233 * %PCI_CAP_ID_MSI Message Signalled Interrupts
234 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
235 * %PCI_CAP_ID_PCIX PCI-X
236 * %PCI_CAP_ID_EXP PCI Express
237 */
pci_find_capability(struct pci_dev * dev,int cap)238 int pci_find_capability(struct pci_dev *dev, int cap)
239 {
240 int pos;
241
242 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
243 if (pos)
244 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
245
246 return pos;
247 }
248
249 /**
250 * pci_bus_find_capability - query for devices' capabilities
251 * @bus: the PCI bus to query
252 * @devfn: PCI device to query
253 * @cap: capability code
254 *
255 * Like pci_find_capability() but works for pci devices that do not have a
256 * pci_dev structure set up yet.
257 *
258 * Returns the address of the requested capability structure within the
259 * device's PCI configuration space or 0 in case the device does not
260 * support it.
261 */
pci_bus_find_capability(struct pci_bus * bus,unsigned int devfn,int cap)262 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
263 {
264 int pos;
265 u8 hdr_type;
266
267 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
268
269 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
270 if (pos)
271 pos = __pci_find_next_cap(bus, devfn, pos, cap);
272
273 return pos;
274 }
275
276 /**
277 * pci_find_ext_capability - Find an extended capability
278 * @dev: PCI device to query
279 * @cap: capability code
280 *
281 * Returns the address of the requested extended capability structure
282 * within the device's PCI configuration space or 0 if the device does
283 * not support it. Possible values for @cap:
284 *
285 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
286 * %PCI_EXT_CAP_ID_VC Virtual Channel
287 * %PCI_EXT_CAP_ID_DSN Device Serial Number
288 * %PCI_EXT_CAP_ID_PWR Power Budgeting
289 */
pci_find_ext_capability(struct pci_dev * dev,int cap)290 int pci_find_ext_capability(struct pci_dev *dev, int cap)
291 {
292 u32 header;
293 int ttl;
294 int pos = PCI_CFG_SPACE_SIZE;
295
296 /* minimum 8 bytes per capability */
297 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
298
299 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
300 return 0;
301
302 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
303 return 0;
304
305 /*
306 * If we have no capabilities, this is indicated by cap ID,
307 * cap version and next pointer all being 0.
308 */
309 if (header == 0)
310 return 0;
311
312 while (ttl-- > 0) {
313 if (PCI_EXT_CAP_ID(header) == cap)
314 return pos;
315
316 pos = PCI_EXT_CAP_NEXT(header);
317 if (pos < PCI_CFG_SPACE_SIZE)
318 break;
319
320 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
321 break;
322 }
323
324 return 0;
325 }
326 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
327
328 /**
329 * pci_bus_find_ext_capability - find an extended capability
330 * @bus: the PCI bus to query
331 * @devfn: PCI device to query
332 * @cap: capability code
333 *
334 * Like pci_find_ext_capability() but works for pci devices that do not have a
335 * pci_dev structure set up yet.
336 *
337 * Returns the address of the requested capability structure within the
338 * device's PCI configuration space or 0 in case the device does not
339 * support it.
340 */
pci_bus_find_ext_capability(struct pci_bus * bus,unsigned int devfn,int cap)341 int pci_bus_find_ext_capability(struct pci_bus *bus, unsigned int devfn,
342 int cap)
343 {
344 u32 header;
345 int ttl;
346 int pos = PCI_CFG_SPACE_SIZE;
347
348 /* minimum 8 bytes per capability */
349 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
350
351 if (!pci_bus_read_config_dword(bus, devfn, pos, &header))
352 return 0;
353 if (header == 0xffffffff || header == 0)
354 return 0;
355
356 while (ttl-- > 0) {
357 if (PCI_EXT_CAP_ID(header) == cap)
358 return pos;
359
360 pos = PCI_EXT_CAP_NEXT(header);
361 if (pos < PCI_CFG_SPACE_SIZE)
362 break;
363
364 if (!pci_bus_read_config_dword(bus, devfn, pos, &header))
365 break;
366 }
367
368 return 0;
369 }
370
__pci_find_next_ht_cap(struct pci_dev * dev,int pos,int ht_cap)371 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
372 {
373 int rc, ttl = PCI_FIND_CAP_TTL;
374 u8 cap, mask;
375
376 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
377 mask = HT_3BIT_CAP_MASK;
378 else
379 mask = HT_5BIT_CAP_MASK;
380
381 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
382 PCI_CAP_ID_HT, &ttl);
383 while (pos) {
384 rc = pci_read_config_byte(dev, pos + 3, &cap);
385 if (rc != PCIBIOS_SUCCESSFUL)
386 return 0;
387
388 if ((cap & mask) == ht_cap)
389 return pos;
390
391 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
392 pos + PCI_CAP_LIST_NEXT,
393 PCI_CAP_ID_HT, &ttl);
394 }
395
396 return 0;
397 }
398 /**
399 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
400 * @dev: PCI device to query
401 * @pos: Position from which to continue searching
402 * @ht_cap: Hypertransport capability code
403 *
404 * To be used in conjunction with pci_find_ht_capability() to search for
405 * all capabilities matching @ht_cap. @pos should always be a value returned
406 * from pci_find_ht_capability().
407 *
408 * NB. To be 100% safe against broken PCI devices, the caller should take
409 * steps to avoid an infinite loop.
410 */
pci_find_next_ht_capability(struct pci_dev * dev,int pos,int ht_cap)411 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
412 {
413 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
414 }
415 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
416
417 /**
418 * pci_find_ht_capability - query a device's Hypertransport capabilities
419 * @dev: PCI device to query
420 * @ht_cap: Hypertransport capability code
421 *
422 * Tell if a device supports a given Hypertransport capability.
423 * Returns an address within the device's PCI configuration space
424 * or 0 in case the device does not support the request capability.
425 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
426 * which has a Hypertransport capability matching @ht_cap.
427 */
pci_find_ht_capability(struct pci_dev * dev,int ht_cap)428 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
429 {
430 int pos;
431
432 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
433 if (pos)
434 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
435
436 return pos;
437 }
438 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
439
440 /**
441 * pci_find_parent_resource - return resource region of parent bus of given region
442 * @dev: PCI device structure contains resources to be searched
443 * @res: child resource record for which parent is sought
444 *
445 * For given resource region of given device, return the resource
446 * region of parent bus the given region is contained in or where
447 * it should be allocated from.
448 */
449 struct resource *
pci_find_parent_resource(const struct pci_dev * dev,struct resource * res)450 pci_find_parent_resource(const struct pci_dev *dev, struct resource *res)
451 {
452 const struct pci_bus *bus = dev->bus;
453 int i;
454 struct resource *best = NULL, *r;
455
456 pci_bus_for_each_resource(bus, r, i) {
457 if (!r)
458 continue;
459 if (res->start && !(res->start >= r->start && res->end <= r->end))
460 continue; /* Not contained */
461 if ((res->flags ^ r->flags) & (IORESOURCE_IO | IORESOURCE_MEM))
462 continue; /* Wrong type */
463 if (!((res->flags ^ r->flags) & IORESOURCE_PREFETCH))
464 return r; /* Exact match */
465 /* We can't insert a non-prefetch resource inside a prefetchable parent .. */
466 if (r->flags & IORESOURCE_PREFETCH)
467 continue;
468 /* .. but we can put a prefetchable resource inside a non-prefetchable one */
469 if (!best)
470 best = r;
471 }
472 return best;
473 }
474
475 /**
476 * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
477 * @dev: PCI device to have its BARs restored
478 *
479 * Restore the BAR values for a given device, so as to make it
480 * accessible by its driver.
481 */
482 static void
pci_restore_bars(struct pci_dev * dev)483 pci_restore_bars(struct pci_dev *dev)
484 {
485 int i;
486
487 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
488 pci_update_resource(dev, i);
489 }
490
491 static struct pci_platform_pm_ops *pci_platform_pm;
492
pci_set_platform_pm(struct pci_platform_pm_ops * ops)493 int pci_set_platform_pm(struct pci_platform_pm_ops *ops)
494 {
495 if (!ops->is_manageable || !ops->set_state || !ops->choose_state
496 || !ops->sleep_wake || !ops->can_wakeup)
497 return -EINVAL;
498 pci_platform_pm = ops;
499 return 0;
500 }
501
platform_pci_power_manageable(struct pci_dev * dev)502 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
503 {
504 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
505 }
506
platform_pci_set_power_state(struct pci_dev * dev,pci_power_t t)507 static inline int platform_pci_set_power_state(struct pci_dev *dev,
508 pci_power_t t)
509 {
510 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
511 }
512
platform_pci_choose_state(struct pci_dev * dev)513 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
514 {
515 return pci_platform_pm ?
516 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
517 }
518
platform_pci_can_wakeup(struct pci_dev * dev)519 static inline bool platform_pci_can_wakeup(struct pci_dev *dev)
520 {
521 return pci_platform_pm ? pci_platform_pm->can_wakeup(dev) : false;
522 }
523
platform_pci_sleep_wake(struct pci_dev * dev,bool enable)524 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
525 {
526 return pci_platform_pm ?
527 pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
528 }
529
platform_pci_run_wake(struct pci_dev * dev,bool enable)530 static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable)
531 {
532 return pci_platform_pm ?
533 pci_platform_pm->run_wake(dev, enable) : -ENODEV;
534 }
535
536 /**
537 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
538 * given PCI device
539 * @dev: PCI device to handle.
540 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
541 *
542 * RETURN VALUE:
543 * -EINVAL if the requested state is invalid.
544 * -EIO if device does not support PCI PM or its PM capabilities register has a
545 * wrong version, or device doesn't support the requested state.
546 * 0 if device already is in the requested state.
547 * 0 if device's power state has been successfully changed.
548 */
pci_raw_set_power_state(struct pci_dev * dev,pci_power_t state)549 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
550 {
551 u16 pmcsr;
552 bool need_restore = false;
553
554 /* Check if we're already there */
555 if (dev->current_state == state)
556 return 0;
557
558 if (!dev->pm_cap)
559 return -EIO;
560
561 if (state < PCI_D0 || state > PCI_D3hot)
562 return -EINVAL;
563
564 /* Validate current state:
565 * Can enter D0 from any state, but if we can only go deeper
566 * to sleep if we're already in a low power state
567 */
568 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
569 && dev->current_state > state) {
570 dev_err(&dev->dev, "invalid power transition "
571 "(from state %d to %d)\n", dev->current_state, state);
572 return -EINVAL;
573 }
574
575 /* check if this device supports the desired state */
576 if ((state == PCI_D1 && !dev->d1_support)
577 || (state == PCI_D2 && !dev->d2_support))
578 return -EIO;
579
580 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
581
582 /* If we're (effectively) in D3, force entire word to 0.
583 * This doesn't affect PME_Status, disables PME_En, and
584 * sets PowerState to 0.
585 */
586 switch (dev->current_state) {
587 case PCI_D0:
588 case PCI_D1:
589 case PCI_D2:
590 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
591 pmcsr |= state;
592 break;
593 case PCI_D3hot:
594 case PCI_D3cold:
595 case PCI_UNKNOWN: /* Boot-up */
596 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
597 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
598 need_restore = true;
599 /* Fall-through: force to D0 */
600 default:
601 pmcsr = 0;
602 break;
603 }
604
605 /* enter specified state */
606 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
607
608 /* Mandatory power management transition delays */
609 /* see PCI PM 1.1 5.6.1 table 18 */
610 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
611 pci_dev_d3_sleep(dev);
612 else if (state == PCI_D2 || dev->current_state == PCI_D2)
613 udelay(PCI_PM_D2_DELAY);
614
615 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
616 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
617 if (dev->current_state != state && printk_ratelimit())
618 dev_info(&dev->dev, "Refused to change power state, "
619 "currently in D%d\n", dev->current_state);
620
621 /* According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
622 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
623 * from D3hot to D0 _may_ perform an internal reset, thereby
624 * going to "D0 Uninitialized" rather than "D0 Initialized".
625 * For example, at least some versions of the 3c905B and the
626 * 3c556B exhibit this behaviour.
627 *
628 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
629 * devices in a D3hot state at boot. Consequently, we need to
630 * restore at least the BARs so that the device will be
631 * accessible to its driver.
632 */
633 if (need_restore)
634 pci_restore_bars(dev);
635
636 if (dev->bus->self)
637 pcie_aspm_pm_state_change(dev->bus->self);
638
639 return 0;
640 }
641
642 /**
643 * pci_update_current_state - Read PCI power state of given device from its
644 * PCI PM registers and cache it
645 * @dev: PCI device to handle.
646 * @state: State to cache in case the device doesn't have the PM capability
647 */
pci_update_current_state(struct pci_dev * dev,pci_power_t state)648 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
649 {
650 if (dev->pm_cap) {
651 u16 pmcsr;
652
653 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
654 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
655 } else {
656 dev->current_state = state;
657 }
658 }
659
660 /**
661 * pci_platform_power_transition - Use platform to change device power state
662 * @dev: PCI device to handle.
663 * @state: State to put the device into.
664 */
pci_platform_power_transition(struct pci_dev * dev,pci_power_t state)665 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
666 {
667 int error;
668
669 if (platform_pci_power_manageable(dev)) {
670 error = platform_pci_set_power_state(dev, state);
671 if (!error)
672 pci_update_current_state(dev, state);
673 /* Fall back to PCI_D0 if native PM is not supported */
674 if (!dev->pm_cap)
675 dev->current_state = PCI_D0;
676 } else {
677 error = -ENODEV;
678 /* Fall back to PCI_D0 if native PM is not supported */
679 if (!dev->pm_cap)
680 dev->current_state = PCI_D0;
681 }
682
683 return error;
684 }
685
686 /**
687 * __pci_start_power_transition - Start power transition of a PCI device
688 * @dev: PCI device to handle.
689 * @state: State to put the device into.
690 */
__pci_start_power_transition(struct pci_dev * dev,pci_power_t state)691 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
692 {
693 if (state == PCI_D0)
694 pci_platform_power_transition(dev, PCI_D0);
695 }
696
697 /**
698 * __pci_complete_power_transition - Complete power transition of a PCI device
699 * @dev: PCI device to handle.
700 * @state: State to put the device into.
701 *
702 * This function should not be called directly by device drivers.
703 */
__pci_complete_power_transition(struct pci_dev * dev,pci_power_t state)704 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
705 {
706 return state >= PCI_D0 ?
707 pci_platform_power_transition(dev, state) : -EINVAL;
708 }
709 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
710
711 /**
712 * pci_set_power_state - Set the power state of a PCI device
713 * @dev: PCI device to handle.
714 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
715 *
716 * Transition a device to a new power state, using the platform firmware and/or
717 * the device's PCI PM registers.
718 *
719 * RETURN VALUE:
720 * -EINVAL if the requested state is invalid.
721 * -EIO if device does not support PCI PM or its PM capabilities register has a
722 * wrong version, or device doesn't support the requested state.
723 * 0 if device already is in the requested state.
724 * 0 if device's power state has been successfully changed.
725 */
pci_set_power_state(struct pci_dev * dev,pci_power_t state)726 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
727 {
728 int error;
729
730 /* bound the state we're entering */
731 if (state > PCI_D3hot)
732 state = PCI_D3hot;
733 else if (state < PCI_D0)
734 state = PCI_D0;
735 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
736 /*
737 * If the device or the parent bridge do not support PCI PM,
738 * ignore the request if we're doing anything other than putting
739 * it into D0 (which would only happen on boot).
740 */
741 return 0;
742
743 __pci_start_power_transition(dev, state);
744
745 /* This device is quirked not to be put into D3, so
746 don't put it in D3 */
747 if (state == PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
748 return 0;
749
750 error = pci_raw_set_power_state(dev, state);
751
752 if (!__pci_complete_power_transition(dev, state))
753 error = 0;
754 /*
755 * When aspm_policy is "powersave" this call ensures
756 * that ASPM is configured.
757 */
758 if (!error && dev->bus->self)
759 pcie_aspm_powersave_config_link(dev->bus->self);
760
761 return error;
762 }
763
764 /**
765 * pci_choose_state - Choose the power state of a PCI device
766 * @dev: PCI device to be suspended
767 * @state: target sleep state for the whole system. This is the value
768 * that is passed to suspend() function.
769 *
770 * Returns PCI power state suitable for given device and given system
771 * message.
772 */
773
pci_choose_state(struct pci_dev * dev,pm_message_t state)774 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
775 {
776 pci_power_t ret;
777
778 if (!pci_find_capability(dev, PCI_CAP_ID_PM))
779 return PCI_D0;
780
781 ret = platform_pci_choose_state(dev);
782 if (ret != PCI_POWER_ERROR)
783 return ret;
784
785 switch (state.event) {
786 case PM_EVENT_ON:
787 return PCI_D0;
788 case PM_EVENT_FREEZE:
789 case PM_EVENT_PRETHAW:
790 /* REVISIT both freeze and pre-thaw "should" use D0 */
791 case PM_EVENT_SUSPEND:
792 case PM_EVENT_HIBERNATE:
793 return PCI_D3hot;
794 default:
795 dev_info(&dev->dev, "unrecognized suspend event %d\n",
796 state.event);
797 BUG();
798 }
799 return PCI_D0;
800 }
801
802 EXPORT_SYMBOL(pci_choose_state);
803
804 #define PCI_EXP_SAVE_REGS 7
805
806 #define pcie_cap_has_devctl(type, flags) 1
807 #define pcie_cap_has_lnkctl(type, flags) \
808 ((flags & PCI_EXP_FLAGS_VERS) > 1 || \
809 (type == PCI_EXP_TYPE_ROOT_PORT || \
810 type == PCI_EXP_TYPE_ENDPOINT || \
811 type == PCI_EXP_TYPE_LEG_END))
812 #define pcie_cap_has_sltctl(type, flags) \
813 ((flags & PCI_EXP_FLAGS_VERS) > 1 || \
814 ((type == PCI_EXP_TYPE_ROOT_PORT) || \
815 (type == PCI_EXP_TYPE_DOWNSTREAM && \
816 (flags & PCI_EXP_FLAGS_SLOT))))
817 #define pcie_cap_has_rtctl(type, flags) \
818 ((flags & PCI_EXP_FLAGS_VERS) > 1 || \
819 (type == PCI_EXP_TYPE_ROOT_PORT || \
820 type == PCI_EXP_TYPE_RC_EC))
821 #define pcie_cap_has_devctl2(type, flags) \
822 ((flags & PCI_EXP_FLAGS_VERS) > 1)
823 #define pcie_cap_has_lnkctl2(type, flags) \
824 ((flags & PCI_EXP_FLAGS_VERS) > 1)
825 #define pcie_cap_has_sltctl2(type, flags) \
826 ((flags & PCI_EXP_FLAGS_VERS) > 1)
827
pci_save_pcie_state(struct pci_dev * dev)828 static int pci_save_pcie_state(struct pci_dev *dev)
829 {
830 int pos, i = 0;
831 struct pci_cap_saved_state *save_state;
832 u16 *cap;
833 u16 flags;
834
835 pos = pci_pcie_cap(dev);
836 if (!pos)
837 return 0;
838
839 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
840 if (!save_state) {
841 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
842 return -ENOMEM;
843 }
844 cap = (u16 *)&save_state->cap.data[0];
845
846 pci_read_config_word(dev, pos + PCI_EXP_FLAGS, &flags);
847
848 if (pcie_cap_has_devctl(dev->pcie_type, flags))
849 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &cap[i++]);
850 if (pcie_cap_has_lnkctl(dev->pcie_type, flags))
851 pci_read_config_word(dev, pos + PCI_EXP_LNKCTL, &cap[i++]);
852 if (pcie_cap_has_sltctl(dev->pcie_type, flags))
853 pci_read_config_word(dev, pos + PCI_EXP_SLTCTL, &cap[i++]);
854 if (pcie_cap_has_rtctl(dev->pcie_type, flags))
855 pci_read_config_word(dev, pos + PCI_EXP_RTCTL, &cap[i++]);
856 if (pcie_cap_has_devctl2(dev->pcie_type, flags))
857 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &cap[i++]);
858 if (pcie_cap_has_lnkctl2(dev->pcie_type, flags))
859 pci_read_config_word(dev, pos + PCI_EXP_LNKCTL2, &cap[i++]);
860 if (pcie_cap_has_sltctl2(dev->pcie_type, flags))
861 pci_read_config_word(dev, pos + PCI_EXP_SLTCTL2, &cap[i++]);
862
863 return 0;
864 }
865
pci_restore_pcie_state(struct pci_dev * dev)866 static void pci_restore_pcie_state(struct pci_dev *dev)
867 {
868 int i = 0, pos;
869 struct pci_cap_saved_state *save_state;
870 u16 *cap;
871 u16 flags;
872
873 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
874 pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
875 if (!save_state || pos <= 0)
876 return;
877 cap = (u16 *)&save_state->cap.data[0];
878
879 pci_read_config_word(dev, pos + PCI_EXP_FLAGS, &flags);
880
881 if (pcie_cap_has_devctl(dev->pcie_type, flags))
882 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, cap[i++]);
883 if (pcie_cap_has_lnkctl(dev->pcie_type, flags))
884 pci_write_config_word(dev, pos + PCI_EXP_LNKCTL, cap[i++]);
885 if (pcie_cap_has_sltctl(dev->pcie_type, flags))
886 pci_write_config_word(dev, pos + PCI_EXP_SLTCTL, cap[i++]);
887 if (pcie_cap_has_rtctl(dev->pcie_type, flags))
888 pci_write_config_word(dev, pos + PCI_EXP_RTCTL, cap[i++]);
889 if (pcie_cap_has_devctl2(dev->pcie_type, flags))
890 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, cap[i++]);
891 if (pcie_cap_has_lnkctl2(dev->pcie_type, flags))
892 pci_write_config_word(dev, pos + PCI_EXP_LNKCTL2, cap[i++]);
893 if (pcie_cap_has_sltctl2(dev->pcie_type, flags))
894 pci_write_config_word(dev, pos + PCI_EXP_SLTCTL2, cap[i++]);
895 }
896
897
pci_save_pcix_state(struct pci_dev * dev)898 static int pci_save_pcix_state(struct pci_dev *dev)
899 {
900 int pos;
901 struct pci_cap_saved_state *save_state;
902
903 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
904 if (pos <= 0)
905 return 0;
906
907 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
908 if (!save_state) {
909 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
910 return -ENOMEM;
911 }
912
913 pci_read_config_word(dev, pos + PCI_X_CMD,
914 (u16 *)save_state->cap.data);
915
916 return 0;
917 }
918
pci_restore_pcix_state(struct pci_dev * dev)919 static void pci_restore_pcix_state(struct pci_dev *dev)
920 {
921 int i = 0, pos;
922 struct pci_cap_saved_state *save_state;
923 u16 *cap;
924
925 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
926 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
927 if (!save_state || pos <= 0)
928 return;
929 cap = (u16 *)&save_state->cap.data[0];
930
931 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
932 }
933
934
935 /**
936 * pci_save_state - save the PCI configuration space of a device before suspending
937 * @dev: - PCI device that we're dealing with
938 */
939 int
pci_save_state(struct pci_dev * dev)940 pci_save_state(struct pci_dev *dev)
941 {
942 int i;
943 /* XXX: 100% dword access ok here? */
944 for (i = 0; i < 16; i++)
945 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
946 dev->state_saved = true;
947 if ((i = pci_save_pcie_state(dev)) != 0)
948 return i;
949 if ((i = pci_save_pcix_state(dev)) != 0)
950 return i;
951 return 0;
952 }
953
954 /**
955 * pci_restore_state - Restore the saved state of a PCI device
956 * @dev: - PCI device that we're dealing with
957 */
pci_restore_state(struct pci_dev * dev)958 void pci_restore_state(struct pci_dev *dev)
959 {
960 int i;
961 u32 val;
962
963 if (!dev->state_saved)
964 return;
965
966 /* PCI Express register must be restored first */
967 pci_restore_pcie_state(dev);
968 pci_restore_ats_state(dev);
969
970 /*
971 * The Base Address register should be programmed before the command
972 * register(s)
973 */
974 for (i = 15; i >= 0; i--) {
975 pci_read_config_dword(dev, i * 4, &val);
976 if (val != dev->saved_config_space[i]) {
977 dev_dbg(&dev->dev, "restoring config "
978 "space at offset %#x (was %#x, writing %#x)\n",
979 i, val, (int)dev->saved_config_space[i]);
980 pci_write_config_dword(dev,i * 4,
981 dev->saved_config_space[i]);
982 }
983 }
984 pci_restore_pcix_state(dev);
985 pci_restore_msi_state(dev);
986 pci_restore_iov_state(dev);
987
988 dev->state_saved = false;
989 }
990
991 struct pci_saved_state {
992 u32 config_space[16];
993 struct pci_cap_saved_data cap[0];
994 };
995
996 /**
997 * pci_store_saved_state - Allocate and return an opaque struct containing
998 * the device saved state.
999 * @dev: PCI device that we're dealing with
1000 *
1001 * Rerturn NULL if no state or error.
1002 */
pci_store_saved_state(struct pci_dev * dev)1003 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1004 {
1005 struct pci_saved_state *state;
1006 struct pci_cap_saved_state *tmp;
1007 struct pci_cap_saved_data *cap;
1008 struct hlist_node *pos;
1009 size_t size;
1010
1011 if (!dev->state_saved)
1012 return NULL;
1013
1014 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1015
1016 hlist_for_each_entry(tmp, pos, &dev->saved_cap_space, next)
1017 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1018
1019 state = kzalloc(size, GFP_KERNEL);
1020 if (!state)
1021 return NULL;
1022
1023 memcpy(state->config_space, dev->saved_config_space,
1024 sizeof(state->config_space));
1025
1026 cap = state->cap;
1027 hlist_for_each_entry(tmp, pos, &dev->saved_cap_space, next) {
1028 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1029 memcpy(cap, &tmp->cap, len);
1030 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1031 }
1032 /* Empty cap_save terminates list */
1033
1034 return state;
1035 }
1036 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1037
1038 /**
1039 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1040 * @dev: PCI device that we're dealing with
1041 * @state: Saved state returned from pci_store_saved_state()
1042 */
pci_load_saved_state(struct pci_dev * dev,struct pci_saved_state * state)1043 int pci_load_saved_state(struct pci_dev *dev, struct pci_saved_state *state)
1044 {
1045 struct pci_cap_saved_data *cap;
1046
1047 dev->state_saved = false;
1048
1049 if (!state)
1050 return 0;
1051
1052 memcpy(dev->saved_config_space, state->config_space,
1053 sizeof(state->config_space));
1054
1055 cap = state->cap;
1056 while (cap->size) {
1057 struct pci_cap_saved_state *tmp;
1058
1059 tmp = pci_find_saved_cap(dev, cap->cap_nr);
1060 if (!tmp || tmp->cap.size != cap->size)
1061 return -EINVAL;
1062
1063 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1064 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1065 sizeof(struct pci_cap_saved_data) + cap->size);
1066 }
1067
1068 dev->state_saved = true;
1069 return 0;
1070 }
1071 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1072
1073 /**
1074 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1075 * and free the memory allocated for it.
1076 * @dev: PCI device that we're dealing with
1077 * @state: Pointer to saved state returned from pci_store_saved_state()
1078 */
pci_load_and_free_saved_state(struct pci_dev * dev,struct pci_saved_state ** state)1079 int pci_load_and_free_saved_state(struct pci_dev *dev,
1080 struct pci_saved_state **state)
1081 {
1082 int ret = pci_load_saved_state(dev, *state);
1083 kfree(*state);
1084 *state = NULL;
1085 return ret;
1086 }
1087 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1088
do_pci_enable_device(struct pci_dev * dev,int bars)1089 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1090 {
1091 int err;
1092
1093 err = pci_set_power_state(dev, PCI_D0);
1094 if (err < 0 && err != -EIO)
1095 return err;
1096 err = pcibios_enable_device(dev, bars);
1097 if (err < 0)
1098 return err;
1099 pci_fixup_device(pci_fixup_enable, dev);
1100
1101 return 0;
1102 }
1103
1104 /**
1105 * pci_reenable_device - Resume abandoned device
1106 * @dev: PCI device to be resumed
1107 *
1108 * Note this function is a backend of pci_default_resume and is not supposed
1109 * to be called by normal code, write proper resume handler and use it instead.
1110 */
pci_reenable_device(struct pci_dev * dev)1111 int pci_reenable_device(struct pci_dev *dev)
1112 {
1113 if (pci_is_enabled(dev))
1114 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1115 return 0;
1116 }
1117
__pci_enable_device_flags(struct pci_dev * dev,resource_size_t flags)1118 static int __pci_enable_device_flags(struct pci_dev *dev,
1119 resource_size_t flags)
1120 {
1121 int err;
1122 int i, bars = 0;
1123
1124 /*
1125 * Power state could be unknown at this point, either due to a fresh
1126 * boot or a device removal call. So get the current power state
1127 * so that things like MSI message writing will behave as expected
1128 * (e.g. if the device really is in D0 at enable time).
1129 */
1130 if (dev->pm_cap) {
1131 u16 pmcsr;
1132 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1133 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1134 }
1135
1136 if (atomic_add_return(1, &dev->enable_cnt) > 1)
1137 return 0; /* already enabled */
1138
1139 /* only skip sriov related */
1140 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1141 if (dev->resource[i].flags & flags)
1142 bars |= (1 << i);
1143 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1144 if (dev->resource[i].flags & flags)
1145 bars |= (1 << i);
1146
1147 err = do_pci_enable_device(dev, bars);
1148 if (err < 0)
1149 atomic_dec(&dev->enable_cnt);
1150 return err;
1151 }
1152
1153 /**
1154 * pci_enable_device_io - Initialize a device for use with IO space
1155 * @dev: PCI device to be initialized
1156 *
1157 * Initialize device before it's used by a driver. Ask low-level code
1158 * to enable I/O resources. Wake up the device if it was suspended.
1159 * Beware, this function can fail.
1160 */
pci_enable_device_io(struct pci_dev * dev)1161 int pci_enable_device_io(struct pci_dev *dev)
1162 {
1163 return __pci_enable_device_flags(dev, IORESOURCE_IO);
1164 }
1165
1166 /**
1167 * pci_enable_device_mem - Initialize a device for use with Memory space
1168 * @dev: PCI device to be initialized
1169 *
1170 * Initialize device before it's used by a driver. Ask low-level code
1171 * to enable Memory resources. Wake up the device if it was suspended.
1172 * Beware, this function can fail.
1173 */
pci_enable_device_mem(struct pci_dev * dev)1174 int pci_enable_device_mem(struct pci_dev *dev)
1175 {
1176 return __pci_enable_device_flags(dev, IORESOURCE_MEM);
1177 }
1178
1179 /**
1180 * pci_enable_device - Initialize device before it's used by a driver.
1181 * @dev: PCI device to be initialized
1182 *
1183 * Initialize device before it's used by a driver. Ask low-level code
1184 * to enable I/O and memory. Wake up the device if it was suspended.
1185 * Beware, this function can fail.
1186 *
1187 * Note we don't actually enable the device many times if we call
1188 * this function repeatedly (we just increment the count).
1189 */
pci_enable_device(struct pci_dev * dev)1190 int pci_enable_device(struct pci_dev *dev)
1191 {
1192 return __pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1193 }
1194
1195 /*
1196 * Managed PCI resources. This manages device on/off, intx/msi/msix
1197 * on/off and BAR regions. pci_dev itself records msi/msix status, so
1198 * there's no need to track it separately. pci_devres is initialized
1199 * when a device is enabled using managed PCI device enable interface.
1200 */
1201 struct pci_devres {
1202 unsigned int enabled:1;
1203 unsigned int pinned:1;
1204 unsigned int orig_intx:1;
1205 unsigned int restore_intx:1;
1206 u32 region_mask;
1207 };
1208
pcim_release(struct device * gendev,void * res)1209 static void pcim_release(struct device *gendev, void *res)
1210 {
1211 struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
1212 struct pci_devres *this = res;
1213 int i;
1214
1215 if (dev->msi_enabled)
1216 pci_disable_msi(dev);
1217 if (dev->msix_enabled)
1218 pci_disable_msix(dev);
1219
1220 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1221 if (this->region_mask & (1 << i))
1222 pci_release_region(dev, i);
1223
1224 if (this->restore_intx)
1225 pci_intx(dev, this->orig_intx);
1226
1227 if (this->enabled && !this->pinned)
1228 pci_disable_device(dev);
1229 }
1230
get_pci_dr(struct pci_dev * pdev)1231 static struct pci_devres * get_pci_dr(struct pci_dev *pdev)
1232 {
1233 struct pci_devres *dr, *new_dr;
1234
1235 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1236 if (dr)
1237 return dr;
1238
1239 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1240 if (!new_dr)
1241 return NULL;
1242 return devres_get(&pdev->dev, new_dr, NULL, NULL);
1243 }
1244
find_pci_dr(struct pci_dev * pdev)1245 static struct pci_devres * find_pci_dr(struct pci_dev *pdev)
1246 {
1247 if (pci_is_managed(pdev))
1248 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1249 return NULL;
1250 }
1251
1252 /**
1253 * pcim_enable_device - Managed pci_enable_device()
1254 * @pdev: PCI device to be initialized
1255 *
1256 * Managed pci_enable_device().
1257 */
pcim_enable_device(struct pci_dev * pdev)1258 int pcim_enable_device(struct pci_dev *pdev)
1259 {
1260 struct pci_devres *dr;
1261 int rc;
1262
1263 dr = get_pci_dr(pdev);
1264 if (unlikely(!dr))
1265 return -ENOMEM;
1266 if (dr->enabled)
1267 return 0;
1268
1269 rc = pci_enable_device(pdev);
1270 if (!rc) {
1271 pdev->is_managed = 1;
1272 dr->enabled = 1;
1273 }
1274 return rc;
1275 }
1276
1277 /**
1278 * pcim_pin_device - Pin managed PCI device
1279 * @pdev: PCI device to pin
1280 *
1281 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1282 * driver detach. @pdev must have been enabled with
1283 * pcim_enable_device().
1284 */
pcim_pin_device(struct pci_dev * pdev)1285 void pcim_pin_device(struct pci_dev *pdev)
1286 {
1287 struct pci_devres *dr;
1288
1289 dr = find_pci_dr(pdev);
1290 WARN_ON(!dr || !dr->enabled);
1291 if (dr)
1292 dr->pinned = 1;
1293 }
1294
1295 /**
1296 * pcibios_disable_device - disable arch specific PCI resources for device dev
1297 * @dev: the PCI device to disable
1298 *
1299 * Disables architecture specific PCI resources for the device. This
1300 * is the default implementation. Architecture implementations can
1301 * override this.
1302 */
pcibios_disable_device(struct pci_dev * dev)1303 void __attribute__ ((weak)) pcibios_disable_device (struct pci_dev *dev) {}
1304
do_pci_disable_device(struct pci_dev * dev)1305 static void do_pci_disable_device(struct pci_dev *dev)
1306 {
1307 u16 pci_command;
1308
1309 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1310 if (pci_command & PCI_COMMAND_MASTER) {
1311 pci_command &= ~PCI_COMMAND_MASTER;
1312 pci_write_config_word(dev, PCI_COMMAND, pci_command);
1313 }
1314
1315 pcibios_disable_device(dev);
1316 }
1317
1318 /**
1319 * pci_disable_enabled_device - Disable device without updating enable_cnt
1320 * @dev: PCI device to disable
1321 *
1322 * NOTE: This function is a backend of PCI power management routines and is
1323 * not supposed to be called drivers.
1324 */
pci_disable_enabled_device(struct pci_dev * dev)1325 void pci_disable_enabled_device(struct pci_dev *dev)
1326 {
1327 if (pci_is_enabled(dev))
1328 do_pci_disable_device(dev);
1329 }
1330
1331 /**
1332 * pci_disable_device - Disable PCI device after use
1333 * @dev: PCI device to be disabled
1334 *
1335 * Signal to the system that the PCI device is not in use by the system
1336 * anymore. This only involves disabling PCI bus-mastering, if active.
1337 *
1338 * Note we don't actually disable the device until all callers of
1339 * pci_enable_device() have called pci_disable_device().
1340 */
1341 void
pci_disable_device(struct pci_dev * dev)1342 pci_disable_device(struct pci_dev *dev)
1343 {
1344 struct pci_devres *dr;
1345
1346 dr = find_pci_dr(dev);
1347 if (dr)
1348 dr->enabled = 0;
1349
1350 if (atomic_sub_return(1, &dev->enable_cnt) != 0)
1351 return;
1352
1353 do_pci_disable_device(dev);
1354
1355 dev->is_busmaster = 0;
1356 }
1357
1358 /**
1359 * pcibios_set_pcie_reset_state - set reset state for device dev
1360 * @dev: the PCIe device reset
1361 * @state: Reset state to enter into
1362 *
1363 *
1364 * Sets the PCIe reset state for the device. This is the default
1365 * implementation. Architecture implementations can override this.
1366 */
pcibios_set_pcie_reset_state(struct pci_dev * dev,enum pcie_reset_state state)1367 int __attribute__ ((weak)) pcibios_set_pcie_reset_state(struct pci_dev *dev,
1368 enum pcie_reset_state state)
1369 {
1370 return -EINVAL;
1371 }
1372
1373 /**
1374 * pci_set_pcie_reset_state - set reset state for device dev
1375 * @dev: the PCIe device reset
1376 * @state: Reset state to enter into
1377 *
1378 *
1379 * Sets the PCI reset state for the device.
1380 */
pci_set_pcie_reset_state(struct pci_dev * dev,enum pcie_reset_state state)1381 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1382 {
1383 return pcibios_set_pcie_reset_state(dev, state);
1384 }
1385
1386 /**
1387 * pci_check_pme_status - Check if given device has generated PME.
1388 * @dev: Device to check.
1389 *
1390 * Check the PME status of the device and if set, clear it and clear PME enable
1391 * (if set). Return 'true' if PME status and PME enable were both set or
1392 * 'false' otherwise.
1393 */
pci_check_pme_status(struct pci_dev * dev)1394 bool pci_check_pme_status(struct pci_dev *dev)
1395 {
1396 int pmcsr_pos;
1397 u16 pmcsr;
1398 bool ret = false;
1399
1400 if (!dev->pm_cap)
1401 return false;
1402
1403 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1404 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1405 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1406 return false;
1407
1408 /* Clear PME status. */
1409 pmcsr |= PCI_PM_CTRL_PME_STATUS;
1410 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1411 /* Disable PME to avoid interrupt flood. */
1412 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1413 ret = true;
1414 }
1415
1416 pci_write_config_word(dev, pmcsr_pos, pmcsr);
1417
1418 return ret;
1419 }
1420
1421 /**
1422 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1423 * @dev: Device to handle.
1424 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1425 *
1426 * Check if @dev has generated PME and queue a resume request for it in that
1427 * case.
1428 */
pci_pme_wakeup(struct pci_dev * dev,void * pme_poll_reset)1429 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1430 {
1431 if (pme_poll_reset && dev->pme_poll)
1432 dev->pme_poll = false;
1433
1434 if (pci_check_pme_status(dev)) {
1435 pci_wakeup_event(dev);
1436 pm_request_resume(&dev->dev);
1437 }
1438 return 0;
1439 }
1440
1441 /**
1442 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1443 * @bus: Top bus of the subtree to walk.
1444 */
pci_pme_wakeup_bus(struct pci_bus * bus)1445 void pci_pme_wakeup_bus(struct pci_bus *bus)
1446 {
1447 if (bus)
1448 pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1449 }
1450
1451 /**
1452 * pci_pme_capable - check the capability of PCI device to generate PME#
1453 * @dev: PCI device to handle.
1454 * @state: PCI state from which device will issue PME#.
1455 */
pci_pme_capable(struct pci_dev * dev,pci_power_t state)1456 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1457 {
1458 if (!dev->pm_cap)
1459 return false;
1460
1461 return !!(dev->pme_support & (1 << state));
1462 }
1463
pci_pme_list_scan(struct work_struct * work)1464 static void pci_pme_list_scan(struct work_struct *work)
1465 {
1466 struct pci_pme_device *pme_dev, *n;
1467
1468 mutex_lock(&pci_pme_list_mutex);
1469 if (!list_empty(&pci_pme_list)) {
1470 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1471 if (pme_dev->dev->pme_poll) {
1472 pci_pme_wakeup(pme_dev->dev, NULL);
1473 } else {
1474 list_del(&pme_dev->list);
1475 kfree(pme_dev);
1476 }
1477 }
1478 if (!list_empty(&pci_pme_list))
1479 schedule_delayed_work(&pci_pme_work,
1480 msecs_to_jiffies(PME_TIMEOUT));
1481 }
1482 mutex_unlock(&pci_pme_list_mutex);
1483 }
1484
1485 /**
1486 * pci_pme_active - enable or disable PCI device's PME# function
1487 * @dev: PCI device to handle.
1488 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1489 *
1490 * The caller must verify that the device is capable of generating PME# before
1491 * calling this function with @enable equal to 'true'.
1492 */
pci_pme_active(struct pci_dev * dev,bool enable)1493 void pci_pme_active(struct pci_dev *dev, bool enable)
1494 {
1495 u16 pmcsr;
1496
1497 if (!dev->pm_cap)
1498 return;
1499
1500 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1501 /* Clear PME_Status by writing 1 to it and enable PME# */
1502 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1503 if (!enable)
1504 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1505
1506 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1507
1508 /* PCI (as opposed to PCIe) PME requires that the device have
1509 its PME# line hooked up correctly. Not all hardware vendors
1510 do this, so the PME never gets delivered and the device
1511 remains asleep. The easiest way around this is to
1512 periodically walk the list of suspended devices and check
1513 whether any have their PME flag set. The assumption is that
1514 we'll wake up often enough anyway that this won't be a huge
1515 hit, and the power savings from the devices will still be a
1516 win. */
1517
1518 if (dev->pme_poll) {
1519 struct pci_pme_device *pme_dev;
1520 if (enable) {
1521 pme_dev = kmalloc(sizeof(struct pci_pme_device),
1522 GFP_KERNEL);
1523 if (!pme_dev)
1524 goto out;
1525 pme_dev->dev = dev;
1526 mutex_lock(&pci_pme_list_mutex);
1527 list_add(&pme_dev->list, &pci_pme_list);
1528 if (list_is_singular(&pci_pme_list))
1529 schedule_delayed_work(&pci_pme_work,
1530 msecs_to_jiffies(PME_TIMEOUT));
1531 mutex_unlock(&pci_pme_list_mutex);
1532 } else {
1533 mutex_lock(&pci_pme_list_mutex);
1534 list_for_each_entry(pme_dev, &pci_pme_list, list) {
1535 if (pme_dev->dev == dev) {
1536 list_del(&pme_dev->list);
1537 kfree(pme_dev);
1538 break;
1539 }
1540 }
1541 mutex_unlock(&pci_pme_list_mutex);
1542 }
1543 }
1544
1545 out:
1546 dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled");
1547 }
1548
1549 /**
1550 * __pci_enable_wake - enable PCI device as wakeup event source
1551 * @dev: PCI device affected
1552 * @state: PCI state from which device will issue wakeup events
1553 * @runtime: True if the events are to be generated at run time
1554 * @enable: True to enable event generation; false to disable
1555 *
1556 * This enables the device as a wakeup event source, or disables it.
1557 * When such events involves platform-specific hooks, those hooks are
1558 * called automatically by this routine.
1559 *
1560 * Devices with legacy power management (no standard PCI PM capabilities)
1561 * always require such platform hooks.
1562 *
1563 * RETURN VALUE:
1564 * 0 is returned on success
1565 * -EINVAL is returned if device is not supposed to wake up the system
1566 * Error code depending on the platform is returned if both the platform and
1567 * the native mechanism fail to enable the generation of wake-up events
1568 */
__pci_enable_wake(struct pci_dev * dev,pci_power_t state,bool runtime,bool enable)1569 int __pci_enable_wake(struct pci_dev *dev, pci_power_t state,
1570 bool runtime, bool enable)
1571 {
1572 int ret = 0;
1573
1574 if (enable && !runtime && !device_may_wakeup(&dev->dev))
1575 return -EINVAL;
1576
1577 /* Don't do the same thing twice in a row for one device. */
1578 if (!!enable == !!dev->wakeup_prepared)
1579 return 0;
1580
1581 /*
1582 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1583 * Anderson we should be doing PME# wake enable followed by ACPI wake
1584 * enable. To disable wake-up we call the platform first, for symmetry.
1585 */
1586
1587 if (enable) {
1588 int error;
1589
1590 if (pci_pme_capable(dev, state))
1591 pci_pme_active(dev, true);
1592 else
1593 ret = 1;
1594 error = runtime ? platform_pci_run_wake(dev, true) :
1595 platform_pci_sleep_wake(dev, true);
1596 if (ret)
1597 ret = error;
1598 if (!ret)
1599 dev->wakeup_prepared = true;
1600 } else {
1601 if (runtime)
1602 platform_pci_run_wake(dev, false);
1603 else
1604 platform_pci_sleep_wake(dev, false);
1605 pci_pme_active(dev, false);
1606 dev->wakeup_prepared = false;
1607 }
1608
1609 return ret;
1610 }
1611 EXPORT_SYMBOL(__pci_enable_wake);
1612
1613 /**
1614 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1615 * @dev: PCI device to prepare
1616 * @enable: True to enable wake-up event generation; false to disable
1617 *
1618 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1619 * and this function allows them to set that up cleanly - pci_enable_wake()
1620 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1621 * ordering constraints.
1622 *
1623 * This function only returns error code if the device is not capable of
1624 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1625 * enable wake-up power for it.
1626 */
pci_wake_from_d3(struct pci_dev * dev,bool enable)1627 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1628 {
1629 return pci_pme_capable(dev, PCI_D3cold) ?
1630 pci_enable_wake(dev, PCI_D3cold, enable) :
1631 pci_enable_wake(dev, PCI_D3hot, enable);
1632 }
1633
1634 /**
1635 * pci_target_state - find an appropriate low power state for a given PCI dev
1636 * @dev: PCI device
1637 *
1638 * Use underlying platform code to find a supported low power state for @dev.
1639 * If the platform can't manage @dev, return the deepest state from which it
1640 * can generate wake events, based on any available PME info.
1641 */
pci_target_state(struct pci_dev * dev)1642 pci_power_t pci_target_state(struct pci_dev *dev)
1643 {
1644 pci_power_t target_state = PCI_D3hot;
1645
1646 if (platform_pci_power_manageable(dev)) {
1647 /*
1648 * Call the platform to choose the target state of the device
1649 * and enable wake-up from this state if supported.
1650 */
1651 pci_power_t state = platform_pci_choose_state(dev);
1652
1653 switch (state) {
1654 case PCI_POWER_ERROR:
1655 case PCI_UNKNOWN:
1656 break;
1657 case PCI_D1:
1658 case PCI_D2:
1659 if (pci_no_d1d2(dev))
1660 break;
1661 default:
1662 target_state = state;
1663 }
1664 } else if (!dev->pm_cap) {
1665 target_state = PCI_D0;
1666 } else if (device_may_wakeup(&dev->dev)) {
1667 /*
1668 * Find the deepest state from which the device can generate
1669 * wake-up events, make it the target state and enable device
1670 * to generate PME#.
1671 */
1672 if (dev->pme_support) {
1673 while (target_state
1674 && !(dev->pme_support & (1 << target_state)))
1675 target_state--;
1676 }
1677 }
1678
1679 return target_state;
1680 }
1681
1682 /**
1683 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1684 * @dev: Device to handle.
1685 *
1686 * Choose the power state appropriate for the device depending on whether
1687 * it can wake up the system and/or is power manageable by the platform
1688 * (PCI_D3hot is the default) and put the device into that state.
1689 */
pci_prepare_to_sleep(struct pci_dev * dev)1690 int pci_prepare_to_sleep(struct pci_dev *dev)
1691 {
1692 pci_power_t target_state = pci_target_state(dev);
1693 int error;
1694
1695 if (target_state == PCI_POWER_ERROR)
1696 return -EIO;
1697
1698 pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
1699
1700 error = pci_set_power_state(dev, target_state);
1701
1702 if (error)
1703 pci_enable_wake(dev, target_state, false);
1704
1705 return error;
1706 }
1707
1708 /**
1709 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1710 * @dev: Device to handle.
1711 *
1712 * Disable device's system wake-up capability and put it into D0.
1713 */
pci_back_from_sleep(struct pci_dev * dev)1714 int pci_back_from_sleep(struct pci_dev *dev)
1715 {
1716 pci_enable_wake(dev, PCI_D0, false);
1717 return pci_set_power_state(dev, PCI_D0);
1718 }
1719
1720 /**
1721 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
1722 * @dev: PCI device being suspended.
1723 *
1724 * Prepare @dev to generate wake-up events at run time and put it into a low
1725 * power state.
1726 */
pci_finish_runtime_suspend(struct pci_dev * dev)1727 int pci_finish_runtime_suspend(struct pci_dev *dev)
1728 {
1729 pci_power_t target_state = pci_target_state(dev);
1730 int error;
1731
1732 if (target_state == PCI_POWER_ERROR)
1733 return -EIO;
1734
1735 __pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev));
1736
1737 error = pci_set_power_state(dev, target_state);
1738
1739 if (error)
1740 __pci_enable_wake(dev, target_state, true, false);
1741
1742 return error;
1743 }
1744
1745 /**
1746 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
1747 * @dev: Device to check.
1748 *
1749 * Return true if the device itself is cabable of generating wake-up events
1750 * (through the platform or using the native PCIe PME) or if the device supports
1751 * PME and one of its upstream bridges can generate wake-up events.
1752 */
pci_dev_run_wake(struct pci_dev * dev)1753 bool pci_dev_run_wake(struct pci_dev *dev)
1754 {
1755 struct pci_bus *bus = dev->bus;
1756
1757 if (device_run_wake(&dev->dev))
1758 return true;
1759
1760 if (!dev->pme_support)
1761 return false;
1762
1763 while (bus->parent) {
1764 struct pci_dev *bridge = bus->self;
1765
1766 if (device_run_wake(&bridge->dev))
1767 return true;
1768
1769 bus = bus->parent;
1770 }
1771
1772 /* We have reached the root bus. */
1773 if (bus->bridge)
1774 return device_run_wake(bus->bridge);
1775
1776 return false;
1777 }
1778 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
1779
1780 /**
1781 * pci_pm_init - Initialize PM functions of given PCI device
1782 * @dev: PCI device to handle.
1783 */
pci_pm_init(struct pci_dev * dev)1784 void pci_pm_init(struct pci_dev *dev)
1785 {
1786 int pm;
1787 u16 pmc;
1788
1789 pm_runtime_forbid(&dev->dev);
1790 device_enable_async_suspend(&dev->dev);
1791 dev->wakeup_prepared = false;
1792
1793 dev->pm_cap = 0;
1794
1795 /* find PCI PM capability in list */
1796 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
1797 if (!pm)
1798 return;
1799 /* Check device's ability to generate PME# */
1800 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
1801
1802 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
1803 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
1804 pmc & PCI_PM_CAP_VER_MASK);
1805 return;
1806 }
1807
1808 dev->pm_cap = pm;
1809 dev->d3_delay = PCI_PM_D3_WAIT;
1810
1811 dev->d1_support = false;
1812 dev->d2_support = false;
1813 if (!pci_no_d1d2(dev)) {
1814 if (pmc & PCI_PM_CAP_D1)
1815 dev->d1_support = true;
1816 if (pmc & PCI_PM_CAP_D2)
1817 dev->d2_support = true;
1818
1819 if (dev->d1_support || dev->d2_support)
1820 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
1821 dev->d1_support ? " D1" : "",
1822 dev->d2_support ? " D2" : "");
1823 }
1824
1825 pmc &= PCI_PM_CAP_PME_MASK;
1826 if (pmc) {
1827 dev_printk(KERN_DEBUG, &dev->dev,
1828 "PME# supported from%s%s%s%s%s\n",
1829 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
1830 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
1831 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
1832 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
1833 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
1834 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
1835 dev->pme_poll = true;
1836 /*
1837 * Make device's PM flags reflect the wake-up capability, but
1838 * let the user space enable it to wake up the system as needed.
1839 */
1840 device_set_wakeup_capable(&dev->dev, true);
1841 /* Disable the PME# generation functionality */
1842 pci_pme_active(dev, false);
1843 } else {
1844 dev->pme_support = 0;
1845 }
1846 }
1847
1848 /**
1849 * platform_pci_wakeup_init - init platform wakeup if present
1850 * @dev: PCI device
1851 *
1852 * Some devices don't have PCI PM caps but can still generate wakeup
1853 * events through platform methods (like ACPI events). If @dev supports
1854 * platform wakeup events, set the device flag to indicate as much. This
1855 * may be redundant if the device also supports PCI PM caps, but double
1856 * initialization should be safe in that case.
1857 */
platform_pci_wakeup_init(struct pci_dev * dev)1858 void platform_pci_wakeup_init(struct pci_dev *dev)
1859 {
1860 if (!platform_pci_can_wakeup(dev))
1861 return;
1862
1863 device_set_wakeup_capable(&dev->dev, true);
1864 platform_pci_sleep_wake(dev, false);
1865 }
1866
1867 /**
1868 * pci_add_save_buffer - allocate buffer for saving given capability registers
1869 * @dev: the PCI device
1870 * @cap: the capability to allocate the buffer for
1871 * @size: requested size of the buffer
1872 */
pci_add_cap_save_buffer(struct pci_dev * dev,char cap,unsigned int size)1873 static int pci_add_cap_save_buffer(
1874 struct pci_dev *dev, char cap, unsigned int size)
1875 {
1876 int pos;
1877 struct pci_cap_saved_state *save_state;
1878
1879 pos = pci_find_capability(dev, cap);
1880 if (pos <= 0)
1881 return 0;
1882
1883 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
1884 if (!save_state)
1885 return -ENOMEM;
1886
1887 save_state->cap.cap_nr = cap;
1888 save_state->cap.size = size;
1889 pci_add_saved_cap(dev, save_state);
1890
1891 return 0;
1892 }
1893
1894 /**
1895 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
1896 * @dev: the PCI device
1897 */
pci_allocate_cap_save_buffers(struct pci_dev * dev)1898 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
1899 {
1900 int error;
1901
1902 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
1903 PCI_EXP_SAVE_REGS * sizeof(u16));
1904 if (error)
1905 dev_err(&dev->dev,
1906 "unable to preallocate PCI Express save buffer\n");
1907
1908 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
1909 if (error)
1910 dev_err(&dev->dev,
1911 "unable to preallocate PCI-X save buffer\n");
1912 }
1913
1914 /**
1915 * pci_enable_ari - enable ARI forwarding if hardware support it
1916 * @dev: the PCI device
1917 */
pci_enable_ari(struct pci_dev * dev)1918 void pci_enable_ari(struct pci_dev *dev)
1919 {
1920 int pos;
1921 u32 cap;
1922 u16 flags, ctrl;
1923 struct pci_dev *bridge;
1924
1925 if (!pci_is_pcie(dev) || dev->devfn)
1926 return;
1927
1928 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI);
1929 if (!pos)
1930 return;
1931
1932 bridge = dev->bus->self;
1933 if (!bridge || !pci_is_pcie(bridge))
1934 return;
1935
1936 pos = pci_pcie_cap(bridge);
1937 if (!pos)
1938 return;
1939
1940 /* ARI is a PCIe v2 feature */
1941 pci_read_config_word(bridge, pos + PCI_EXP_FLAGS, &flags);
1942 if ((flags & PCI_EXP_FLAGS_VERS) < 2)
1943 return;
1944
1945 pci_read_config_dword(bridge, pos + PCI_EXP_DEVCAP2, &cap);
1946 if (!(cap & PCI_EXP_DEVCAP2_ARI))
1947 return;
1948
1949 pci_read_config_word(bridge, pos + PCI_EXP_DEVCTL2, &ctrl);
1950 ctrl |= PCI_EXP_DEVCTL2_ARI;
1951 pci_write_config_word(bridge, pos + PCI_EXP_DEVCTL2, ctrl);
1952
1953 bridge->ari_enabled = 1;
1954 }
1955
1956 /**
1957 * pci_enable_ido - enable ID-based ordering on a device
1958 * @dev: the PCI device
1959 * @type: which types of IDO to enable
1960 *
1961 * Enable ID-based ordering on @dev. @type can contain the bits
1962 * %PCI_EXP_IDO_REQUEST and/or %PCI_EXP_IDO_COMPLETION to indicate
1963 * which types of transactions are allowed to be re-ordered.
1964 */
pci_enable_ido(struct pci_dev * dev,unsigned long type)1965 void pci_enable_ido(struct pci_dev *dev, unsigned long type)
1966 {
1967 int pos;
1968 u16 ctrl;
1969
1970 pos = pci_pcie_cap(dev);
1971 if (!pos)
1972 return;
1973
1974 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl);
1975 if (type & PCI_EXP_IDO_REQUEST)
1976 ctrl |= PCI_EXP_IDO_REQ_EN;
1977 if (type & PCI_EXP_IDO_COMPLETION)
1978 ctrl |= PCI_EXP_IDO_CMP_EN;
1979 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl);
1980 }
1981 EXPORT_SYMBOL(pci_enable_ido);
1982
1983 /**
1984 * pci_disable_ido - disable ID-based ordering on a device
1985 * @dev: the PCI device
1986 * @type: which types of IDO to disable
1987 */
pci_disable_ido(struct pci_dev * dev,unsigned long type)1988 void pci_disable_ido(struct pci_dev *dev, unsigned long type)
1989 {
1990 int pos;
1991 u16 ctrl;
1992
1993 if (!pci_is_pcie(dev))
1994 return;
1995
1996 pos = pci_pcie_cap(dev);
1997 if (!pos)
1998 return;
1999
2000 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl);
2001 if (type & PCI_EXP_IDO_REQUEST)
2002 ctrl &= ~PCI_EXP_IDO_REQ_EN;
2003 if (type & PCI_EXP_IDO_COMPLETION)
2004 ctrl &= ~PCI_EXP_IDO_CMP_EN;
2005 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl);
2006 }
2007 EXPORT_SYMBOL(pci_disable_ido);
2008
2009 /**
2010 * pci_enable_obff - enable optimized buffer flush/fill
2011 * @dev: PCI device
2012 * @type: type of signaling to use
2013 *
2014 * Try to enable @type OBFF signaling on @dev. It will try using WAKE#
2015 * signaling if possible, falling back to message signaling only if
2016 * WAKE# isn't supported. @type should indicate whether the PCIe link
2017 * be brought out of L0s or L1 to send the message. It should be either
2018 * %PCI_EXP_OBFF_SIGNAL_ALWAYS or %PCI_OBFF_SIGNAL_L0.
2019 *
2020 * If your device can benefit from receiving all messages, even at the
2021 * power cost of bringing the link back up from a low power state, use
2022 * %PCI_EXP_OBFF_SIGNAL_ALWAYS. Otherwise, use %PCI_OBFF_SIGNAL_L0 (the
2023 * preferred type).
2024 *
2025 * RETURNS:
2026 * Zero on success, appropriate error number on failure.
2027 */
pci_enable_obff(struct pci_dev * dev,enum pci_obff_signal_type type)2028 int pci_enable_obff(struct pci_dev *dev, enum pci_obff_signal_type type)
2029 {
2030 int pos;
2031 u32 cap;
2032 u16 ctrl;
2033 int ret;
2034
2035 if (!pci_is_pcie(dev))
2036 return -ENOTSUPP;
2037
2038 pos = pci_pcie_cap(dev);
2039 if (!pos)
2040 return -ENOTSUPP;
2041
2042 pci_read_config_dword(dev, pos + PCI_EXP_DEVCAP2, &cap);
2043 if (!(cap & PCI_EXP_OBFF_MASK))
2044 return -ENOTSUPP; /* no OBFF support at all */
2045
2046 /* Make sure the topology supports OBFF as well */
2047 if (dev->bus) {
2048 ret = pci_enable_obff(dev->bus->self, type);
2049 if (ret)
2050 return ret;
2051 }
2052
2053 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl);
2054 if (cap & PCI_EXP_OBFF_WAKE)
2055 ctrl |= PCI_EXP_OBFF_WAKE_EN;
2056 else {
2057 switch (type) {
2058 case PCI_EXP_OBFF_SIGNAL_L0:
2059 if (!(ctrl & PCI_EXP_OBFF_WAKE_EN))
2060 ctrl |= PCI_EXP_OBFF_MSGA_EN;
2061 break;
2062 case PCI_EXP_OBFF_SIGNAL_ALWAYS:
2063 ctrl &= ~PCI_EXP_OBFF_WAKE_EN;
2064 ctrl |= PCI_EXP_OBFF_MSGB_EN;
2065 break;
2066 default:
2067 WARN(1, "bad OBFF signal type\n");
2068 return -ENOTSUPP;
2069 }
2070 }
2071 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl);
2072
2073 return 0;
2074 }
2075 EXPORT_SYMBOL(pci_enable_obff);
2076
2077 /**
2078 * pci_disable_obff - disable optimized buffer flush/fill
2079 * @dev: PCI device
2080 *
2081 * Disable OBFF on @dev.
2082 */
pci_disable_obff(struct pci_dev * dev)2083 void pci_disable_obff(struct pci_dev *dev)
2084 {
2085 int pos;
2086 u16 ctrl;
2087
2088 if (!pci_is_pcie(dev))
2089 return;
2090
2091 pos = pci_pcie_cap(dev);
2092 if (!pos)
2093 return;
2094
2095 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl);
2096 ctrl &= ~PCI_EXP_OBFF_WAKE_EN;
2097 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl);
2098 }
2099 EXPORT_SYMBOL(pci_disable_obff);
2100
2101 /**
2102 * pci_ltr_supported - check whether a device supports LTR
2103 * @dev: PCI device
2104 *
2105 * RETURNS:
2106 * True if @dev supports latency tolerance reporting, false otherwise.
2107 */
pci_ltr_supported(struct pci_dev * dev)2108 bool pci_ltr_supported(struct pci_dev *dev)
2109 {
2110 int pos;
2111 u32 cap;
2112
2113 if (!pci_is_pcie(dev))
2114 return false;
2115
2116 pos = pci_pcie_cap(dev);
2117 if (!pos)
2118 return false;
2119
2120 pci_read_config_dword(dev, pos + PCI_EXP_DEVCAP2, &cap);
2121
2122 return cap & PCI_EXP_DEVCAP2_LTR;
2123 }
2124 EXPORT_SYMBOL(pci_ltr_supported);
2125
2126 /**
2127 * pci_enable_ltr - enable latency tolerance reporting
2128 * @dev: PCI device
2129 *
2130 * Enable LTR on @dev if possible, which means enabling it first on
2131 * upstream ports.
2132 *
2133 * RETURNS:
2134 * Zero on success, errno on failure.
2135 */
pci_enable_ltr(struct pci_dev * dev)2136 int pci_enable_ltr(struct pci_dev *dev)
2137 {
2138 int pos;
2139 u16 ctrl;
2140 int ret;
2141
2142 if (!pci_ltr_supported(dev))
2143 return -ENOTSUPP;
2144
2145 pos = pci_pcie_cap(dev);
2146 if (!pos)
2147 return -ENOTSUPP;
2148
2149 /* Only primary function can enable/disable LTR */
2150 if (PCI_FUNC(dev->devfn) != 0)
2151 return -EINVAL;
2152
2153 /* Enable upstream ports first */
2154 if (dev->bus) {
2155 ret = pci_enable_ltr(dev->bus->self);
2156 if (ret)
2157 return ret;
2158 }
2159
2160 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl);
2161 ctrl |= PCI_EXP_LTR_EN;
2162 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl);
2163
2164 return 0;
2165 }
2166 EXPORT_SYMBOL(pci_enable_ltr);
2167
2168 /**
2169 * pci_disable_ltr - disable latency tolerance reporting
2170 * @dev: PCI device
2171 */
pci_disable_ltr(struct pci_dev * dev)2172 void pci_disable_ltr(struct pci_dev *dev)
2173 {
2174 int pos;
2175 u16 ctrl;
2176
2177 if (!pci_ltr_supported(dev))
2178 return;
2179
2180 pos = pci_pcie_cap(dev);
2181 if (!pos)
2182 return;
2183
2184 /* Only primary function can enable/disable LTR */
2185 if (PCI_FUNC(dev->devfn) != 0)
2186 return;
2187
2188 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl);
2189 ctrl &= ~PCI_EXP_LTR_EN;
2190 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl);
2191 }
2192 EXPORT_SYMBOL(pci_disable_ltr);
2193
__pci_ltr_scale(int * val)2194 static int __pci_ltr_scale(int *val)
2195 {
2196 int scale = 0;
2197
2198 while (*val > 1023) {
2199 *val = (*val + 31) / 32;
2200 scale++;
2201 }
2202 return scale;
2203 }
2204
2205 /**
2206 * pci_set_ltr - set LTR latency values
2207 * @dev: PCI device
2208 * @snoop_lat_ns: snoop latency in nanoseconds
2209 * @nosnoop_lat_ns: nosnoop latency in nanoseconds
2210 *
2211 * Figure out the scale and set the LTR values accordingly.
2212 */
pci_set_ltr(struct pci_dev * dev,int snoop_lat_ns,int nosnoop_lat_ns)2213 int pci_set_ltr(struct pci_dev *dev, int snoop_lat_ns, int nosnoop_lat_ns)
2214 {
2215 int pos, ret, snoop_scale, nosnoop_scale;
2216 u16 val;
2217
2218 if (!pci_ltr_supported(dev))
2219 return -ENOTSUPP;
2220
2221 snoop_scale = __pci_ltr_scale(&snoop_lat_ns);
2222 nosnoop_scale = __pci_ltr_scale(&nosnoop_lat_ns);
2223
2224 if (snoop_lat_ns > PCI_LTR_VALUE_MASK ||
2225 nosnoop_lat_ns > PCI_LTR_VALUE_MASK)
2226 return -EINVAL;
2227
2228 if ((snoop_scale > (PCI_LTR_SCALE_MASK >> PCI_LTR_SCALE_SHIFT)) ||
2229 (nosnoop_scale > (PCI_LTR_SCALE_MASK >> PCI_LTR_SCALE_SHIFT)))
2230 return -EINVAL;
2231
2232 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
2233 if (!pos)
2234 return -ENOTSUPP;
2235
2236 val = (snoop_scale << PCI_LTR_SCALE_SHIFT) | snoop_lat_ns;
2237 ret = pci_write_config_word(dev, pos + PCI_LTR_MAX_SNOOP_LAT, val);
2238 if (ret != 4)
2239 return -EIO;
2240
2241 val = (nosnoop_scale << PCI_LTR_SCALE_SHIFT) | nosnoop_lat_ns;
2242 ret = pci_write_config_word(dev, pos + PCI_LTR_MAX_NOSNOOP_LAT, val);
2243 if (ret != 4)
2244 return -EIO;
2245
2246 return 0;
2247 }
2248 EXPORT_SYMBOL(pci_set_ltr);
2249
2250 static int pci_acs_enable;
2251
2252 /**
2253 * pci_request_acs - ask for ACS to be enabled if supported
2254 */
pci_request_acs(void)2255 void pci_request_acs(void)
2256 {
2257 pci_acs_enable = 1;
2258 }
2259
2260 /**
2261 * pci_enable_acs - enable ACS if hardware support it
2262 * @dev: the PCI device
2263 */
pci_enable_acs(struct pci_dev * dev)2264 void pci_enable_acs(struct pci_dev *dev)
2265 {
2266 int pos;
2267 u16 cap;
2268 u16 ctrl;
2269
2270 if (!pci_acs_enable)
2271 return;
2272
2273 if (!pci_is_pcie(dev))
2274 return;
2275
2276 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2277 if (!pos)
2278 return;
2279
2280 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2281 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2282
2283 /* Source Validation */
2284 ctrl |= (cap & PCI_ACS_SV);
2285
2286 /* P2P Request Redirect */
2287 ctrl |= (cap & PCI_ACS_RR);
2288
2289 /* P2P Completion Redirect */
2290 ctrl |= (cap & PCI_ACS_CR);
2291
2292 /* Upstream Forwarding */
2293 ctrl |= (cap & PCI_ACS_UF);
2294
2295 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2296 }
2297
2298 /**
2299 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
2300 * @dev: the PCI device
2301 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2302 *
2303 * Perform INTx swizzling for a device behind one level of bridge. This is
2304 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
2305 * behind bridges on add-in cards. For devices with ARI enabled, the slot
2306 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
2307 * the PCI Express Base Specification, Revision 2.1)
2308 */
pci_swizzle_interrupt_pin(struct pci_dev * dev,u8 pin)2309 u8 pci_swizzle_interrupt_pin(struct pci_dev *dev, u8 pin)
2310 {
2311 int slot;
2312
2313 if (pci_ari_enabled(dev->bus))
2314 slot = 0;
2315 else
2316 slot = PCI_SLOT(dev->devfn);
2317
2318 return (((pin - 1) + slot) % 4) + 1;
2319 }
2320
2321 int
pci_get_interrupt_pin(struct pci_dev * dev,struct pci_dev ** bridge)2322 pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
2323 {
2324 u8 pin;
2325
2326 pin = dev->pin;
2327 if (!pin)
2328 return -1;
2329
2330 while (!pci_is_root_bus(dev->bus)) {
2331 pin = pci_swizzle_interrupt_pin(dev, pin);
2332 dev = dev->bus->self;
2333 }
2334 *bridge = dev;
2335 return pin;
2336 }
2337
2338 /**
2339 * pci_common_swizzle - swizzle INTx all the way to root bridge
2340 * @dev: the PCI device
2341 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2342 *
2343 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
2344 * bridges all the way up to a PCI root bus.
2345 */
pci_common_swizzle(struct pci_dev * dev,u8 * pinp)2346 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
2347 {
2348 u8 pin = *pinp;
2349
2350 while (!pci_is_root_bus(dev->bus)) {
2351 pin = pci_swizzle_interrupt_pin(dev, pin);
2352 dev = dev->bus->self;
2353 }
2354 *pinp = pin;
2355 return PCI_SLOT(dev->devfn);
2356 }
2357
2358 /**
2359 * pci_release_region - Release a PCI bar
2360 * @pdev: PCI device whose resources were previously reserved by pci_request_region
2361 * @bar: BAR to release
2362 *
2363 * Releases the PCI I/O and memory resources previously reserved by a
2364 * successful call to pci_request_region. Call this function only
2365 * after all use of the PCI regions has ceased.
2366 */
pci_release_region(struct pci_dev * pdev,int bar)2367 void pci_release_region(struct pci_dev *pdev, int bar)
2368 {
2369 struct pci_devres *dr;
2370
2371 if (pci_resource_len(pdev, bar) == 0)
2372 return;
2373 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
2374 release_region(pci_resource_start(pdev, bar),
2375 pci_resource_len(pdev, bar));
2376 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
2377 release_mem_region(pci_resource_start(pdev, bar),
2378 pci_resource_len(pdev, bar));
2379
2380 dr = find_pci_dr(pdev);
2381 if (dr)
2382 dr->region_mask &= ~(1 << bar);
2383 }
2384
2385 /**
2386 * __pci_request_region - Reserved PCI I/O and memory resource
2387 * @pdev: PCI device whose resources are to be reserved
2388 * @bar: BAR to be reserved
2389 * @res_name: Name to be associated with resource.
2390 * @exclusive: whether the region access is exclusive or not
2391 *
2392 * Mark the PCI region associated with PCI device @pdev BR @bar as
2393 * being reserved by owner @res_name. Do not access any
2394 * address inside the PCI regions unless this call returns
2395 * successfully.
2396 *
2397 * If @exclusive is set, then the region is marked so that userspace
2398 * is explicitly not allowed to map the resource via /dev/mem or
2399 * sysfs MMIO access.
2400 *
2401 * Returns 0 on success, or %EBUSY on error. A warning
2402 * message is also printed on failure.
2403 */
__pci_request_region(struct pci_dev * pdev,int bar,const char * res_name,int exclusive)2404 static int __pci_request_region(struct pci_dev *pdev, int bar, const char *res_name,
2405 int exclusive)
2406 {
2407 struct pci_devres *dr;
2408
2409 if (pci_resource_len(pdev, bar) == 0)
2410 return 0;
2411
2412 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
2413 if (!request_region(pci_resource_start(pdev, bar),
2414 pci_resource_len(pdev, bar), res_name))
2415 goto err_out;
2416 }
2417 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
2418 if (!__request_mem_region(pci_resource_start(pdev, bar),
2419 pci_resource_len(pdev, bar), res_name,
2420 exclusive))
2421 goto err_out;
2422 }
2423
2424 dr = find_pci_dr(pdev);
2425 if (dr)
2426 dr->region_mask |= 1 << bar;
2427
2428 return 0;
2429
2430 err_out:
2431 dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
2432 &pdev->resource[bar]);
2433 return -EBUSY;
2434 }
2435
2436 /**
2437 * pci_request_region - Reserve PCI I/O and memory resource
2438 * @pdev: PCI device whose resources are to be reserved
2439 * @bar: BAR to be reserved
2440 * @res_name: Name to be associated with resource
2441 *
2442 * Mark the PCI region associated with PCI device @pdev BAR @bar as
2443 * being reserved by owner @res_name. Do not access any
2444 * address inside the PCI regions unless this call returns
2445 * successfully.
2446 *
2447 * Returns 0 on success, or %EBUSY on error. A warning
2448 * message is also printed on failure.
2449 */
pci_request_region(struct pci_dev * pdev,int bar,const char * res_name)2450 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
2451 {
2452 return __pci_request_region(pdev, bar, res_name, 0);
2453 }
2454
2455 /**
2456 * pci_request_region_exclusive - Reserved PCI I/O and memory resource
2457 * @pdev: PCI device whose resources are to be reserved
2458 * @bar: BAR to be reserved
2459 * @res_name: Name to be associated with resource.
2460 *
2461 * Mark the PCI region associated with PCI device @pdev BR @bar as
2462 * being reserved by owner @res_name. Do not access any
2463 * address inside the PCI regions unless this call returns
2464 * successfully.
2465 *
2466 * Returns 0 on success, or %EBUSY on error. A warning
2467 * message is also printed on failure.
2468 *
2469 * The key difference that _exclusive makes it that userspace is
2470 * explicitly not allowed to map the resource via /dev/mem or
2471 * sysfs.
2472 */
pci_request_region_exclusive(struct pci_dev * pdev,int bar,const char * res_name)2473 int pci_request_region_exclusive(struct pci_dev *pdev, int bar, const char *res_name)
2474 {
2475 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
2476 }
2477 /**
2478 * pci_release_selected_regions - Release selected PCI I/O and memory resources
2479 * @pdev: PCI device whose resources were previously reserved
2480 * @bars: Bitmask of BARs to be released
2481 *
2482 * Release selected PCI I/O and memory resources previously reserved.
2483 * Call this function only after all use of the PCI regions has ceased.
2484 */
pci_release_selected_regions(struct pci_dev * pdev,int bars)2485 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
2486 {
2487 int i;
2488
2489 for (i = 0; i < 6; i++)
2490 if (bars & (1 << i))
2491 pci_release_region(pdev, i);
2492 }
2493
__pci_request_selected_regions(struct pci_dev * pdev,int bars,const char * res_name,int excl)2494 int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
2495 const char *res_name, int excl)
2496 {
2497 int i;
2498
2499 for (i = 0; i < 6; i++)
2500 if (bars & (1 << i))
2501 if (__pci_request_region(pdev, i, res_name, excl))
2502 goto err_out;
2503 return 0;
2504
2505 err_out:
2506 while(--i >= 0)
2507 if (bars & (1 << i))
2508 pci_release_region(pdev, i);
2509
2510 return -EBUSY;
2511 }
2512
2513
2514 /**
2515 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
2516 * @pdev: PCI device whose resources are to be reserved
2517 * @bars: Bitmask of BARs to be requested
2518 * @res_name: Name to be associated with resource
2519 */
pci_request_selected_regions(struct pci_dev * pdev,int bars,const char * res_name)2520 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
2521 const char *res_name)
2522 {
2523 return __pci_request_selected_regions(pdev, bars, res_name, 0);
2524 }
2525
pci_request_selected_regions_exclusive(struct pci_dev * pdev,int bars,const char * res_name)2526 int pci_request_selected_regions_exclusive(struct pci_dev *pdev,
2527 int bars, const char *res_name)
2528 {
2529 return __pci_request_selected_regions(pdev, bars, res_name,
2530 IORESOURCE_EXCLUSIVE);
2531 }
2532
2533 /**
2534 * pci_release_regions - Release reserved PCI I/O and memory resources
2535 * @pdev: PCI device whose resources were previously reserved by pci_request_regions
2536 *
2537 * Releases all PCI I/O and memory resources previously reserved by a
2538 * successful call to pci_request_regions. Call this function only
2539 * after all use of the PCI regions has ceased.
2540 */
2541
pci_release_regions(struct pci_dev * pdev)2542 void pci_release_regions(struct pci_dev *pdev)
2543 {
2544 pci_release_selected_regions(pdev, (1 << 6) - 1);
2545 }
2546
2547 /**
2548 * pci_request_regions - Reserved PCI I/O and memory resources
2549 * @pdev: PCI device whose resources are to be reserved
2550 * @res_name: Name to be associated with resource.
2551 *
2552 * Mark all PCI regions associated with PCI device @pdev as
2553 * being reserved by owner @res_name. Do not access any
2554 * address inside the PCI regions unless this call returns
2555 * successfully.
2556 *
2557 * Returns 0 on success, or %EBUSY on error. A warning
2558 * message is also printed on failure.
2559 */
pci_request_regions(struct pci_dev * pdev,const char * res_name)2560 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
2561 {
2562 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
2563 }
2564
2565 /**
2566 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources
2567 * @pdev: PCI device whose resources are to be reserved
2568 * @res_name: Name to be associated with resource.
2569 *
2570 * Mark all PCI regions associated with PCI device @pdev as
2571 * being reserved by owner @res_name. Do not access any
2572 * address inside the PCI regions unless this call returns
2573 * successfully.
2574 *
2575 * pci_request_regions_exclusive() will mark the region so that
2576 * /dev/mem and the sysfs MMIO access will not be allowed.
2577 *
2578 * Returns 0 on success, or %EBUSY on error. A warning
2579 * message is also printed on failure.
2580 */
pci_request_regions_exclusive(struct pci_dev * pdev,const char * res_name)2581 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
2582 {
2583 return pci_request_selected_regions_exclusive(pdev,
2584 ((1 << 6) - 1), res_name);
2585 }
2586
__pci_set_master(struct pci_dev * dev,bool enable)2587 static void __pci_set_master(struct pci_dev *dev, bool enable)
2588 {
2589 u16 old_cmd, cmd;
2590
2591 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
2592 if (enable)
2593 cmd = old_cmd | PCI_COMMAND_MASTER;
2594 else
2595 cmd = old_cmd & ~PCI_COMMAND_MASTER;
2596 if (cmd != old_cmd) {
2597 dev_dbg(&dev->dev, "%s bus mastering\n",
2598 enable ? "enabling" : "disabling");
2599 pci_write_config_word(dev, PCI_COMMAND, cmd);
2600 }
2601 dev->is_busmaster = enable;
2602 }
2603
2604 /**
2605 * pcibios_set_master - enable PCI bus-mastering for device dev
2606 * @dev: the PCI device to enable
2607 *
2608 * Enables PCI bus-mastering for the device. This is the default
2609 * implementation. Architecture specific implementations can override
2610 * this if necessary.
2611 */
pcibios_set_master(struct pci_dev * dev)2612 void __weak pcibios_set_master(struct pci_dev *dev)
2613 {
2614 u8 lat;
2615
2616 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
2617 if (pci_is_pcie(dev))
2618 return;
2619
2620 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
2621 if (lat < 16)
2622 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
2623 else if (lat > pcibios_max_latency)
2624 lat = pcibios_max_latency;
2625 else
2626 return;
2627 dev_printk(KERN_DEBUG, &dev->dev, "setting latency timer to %d\n", lat);
2628 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
2629 }
2630
2631 /**
2632 * pci_set_master - enables bus-mastering for device dev
2633 * @dev: the PCI device to enable
2634 *
2635 * Enables bus-mastering on the device and calls pcibios_set_master()
2636 * to do the needed arch specific settings.
2637 */
pci_set_master(struct pci_dev * dev)2638 void pci_set_master(struct pci_dev *dev)
2639 {
2640 __pci_set_master(dev, true);
2641 pcibios_set_master(dev);
2642 }
2643
2644 /**
2645 * pci_clear_master - disables bus-mastering for device dev
2646 * @dev: the PCI device to disable
2647 */
pci_clear_master(struct pci_dev * dev)2648 void pci_clear_master(struct pci_dev *dev)
2649 {
2650 __pci_set_master(dev, false);
2651 }
2652
2653 /**
2654 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
2655 * @dev: the PCI device for which MWI is to be enabled
2656 *
2657 * Helper function for pci_set_mwi.
2658 * Originally copied from drivers/net/acenic.c.
2659 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
2660 *
2661 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2662 */
pci_set_cacheline_size(struct pci_dev * dev)2663 int pci_set_cacheline_size(struct pci_dev *dev)
2664 {
2665 u8 cacheline_size;
2666
2667 if (!pci_cache_line_size)
2668 return -EINVAL;
2669
2670 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
2671 equal to or multiple of the right value. */
2672 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2673 if (cacheline_size >= pci_cache_line_size &&
2674 (cacheline_size % pci_cache_line_size) == 0)
2675 return 0;
2676
2677 /* Write the correct value. */
2678 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
2679 /* Read it back. */
2680 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2681 if (cacheline_size == pci_cache_line_size)
2682 return 0;
2683
2684 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not "
2685 "supported\n", pci_cache_line_size << 2);
2686
2687 return -EINVAL;
2688 }
2689 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
2690
2691 #ifdef PCI_DISABLE_MWI
pci_set_mwi(struct pci_dev * dev)2692 int pci_set_mwi(struct pci_dev *dev)
2693 {
2694 return 0;
2695 }
2696
pci_try_set_mwi(struct pci_dev * dev)2697 int pci_try_set_mwi(struct pci_dev *dev)
2698 {
2699 return 0;
2700 }
2701
pci_clear_mwi(struct pci_dev * dev)2702 void pci_clear_mwi(struct pci_dev *dev)
2703 {
2704 }
2705
2706 #else
2707
2708 /**
2709 * pci_set_mwi - enables memory-write-invalidate PCI transaction
2710 * @dev: the PCI device for which MWI is enabled
2711 *
2712 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2713 *
2714 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2715 */
2716 int
pci_set_mwi(struct pci_dev * dev)2717 pci_set_mwi(struct pci_dev *dev)
2718 {
2719 int rc;
2720 u16 cmd;
2721
2722 rc = pci_set_cacheline_size(dev);
2723 if (rc)
2724 return rc;
2725
2726 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2727 if (! (cmd & PCI_COMMAND_INVALIDATE)) {
2728 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
2729 cmd |= PCI_COMMAND_INVALIDATE;
2730 pci_write_config_word(dev, PCI_COMMAND, cmd);
2731 }
2732
2733 return 0;
2734 }
2735
2736 /**
2737 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
2738 * @dev: the PCI device for which MWI is enabled
2739 *
2740 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2741 * Callers are not required to check the return value.
2742 *
2743 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2744 */
pci_try_set_mwi(struct pci_dev * dev)2745 int pci_try_set_mwi(struct pci_dev *dev)
2746 {
2747 int rc = pci_set_mwi(dev);
2748 return rc;
2749 }
2750
2751 /**
2752 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
2753 * @dev: the PCI device to disable
2754 *
2755 * Disables PCI Memory-Write-Invalidate transaction on the device
2756 */
2757 void
pci_clear_mwi(struct pci_dev * dev)2758 pci_clear_mwi(struct pci_dev *dev)
2759 {
2760 u16 cmd;
2761
2762 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2763 if (cmd & PCI_COMMAND_INVALIDATE) {
2764 cmd &= ~PCI_COMMAND_INVALIDATE;
2765 pci_write_config_word(dev, PCI_COMMAND, cmd);
2766 }
2767 }
2768 #endif /* ! PCI_DISABLE_MWI */
2769
2770 /**
2771 * pci_intx - enables/disables PCI INTx for device dev
2772 * @pdev: the PCI device to operate on
2773 * @enable: boolean: whether to enable or disable PCI INTx
2774 *
2775 * Enables/disables PCI INTx for device dev
2776 */
2777 void
pci_intx(struct pci_dev * pdev,int enable)2778 pci_intx(struct pci_dev *pdev, int enable)
2779 {
2780 u16 pci_command, new;
2781
2782 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
2783
2784 if (enable) {
2785 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
2786 } else {
2787 new = pci_command | PCI_COMMAND_INTX_DISABLE;
2788 }
2789
2790 if (new != pci_command) {
2791 struct pci_devres *dr;
2792
2793 pci_write_config_word(pdev, PCI_COMMAND, new);
2794
2795 dr = find_pci_dr(pdev);
2796 if (dr && !dr->restore_intx) {
2797 dr->restore_intx = 1;
2798 dr->orig_intx = !enable;
2799 }
2800 }
2801 }
2802
2803 /**
2804 * pci_intx_mask_supported - probe for INTx masking support
2805 * @dev: the PCI device to operate on
2806 *
2807 * Check if the device dev support INTx masking via the config space
2808 * command word.
2809 */
pci_intx_mask_supported(struct pci_dev * dev)2810 bool pci_intx_mask_supported(struct pci_dev *dev)
2811 {
2812 bool mask_supported = false;
2813 u16 orig, new;
2814
2815 pci_cfg_access_lock(dev);
2816
2817 pci_read_config_word(dev, PCI_COMMAND, &orig);
2818 pci_write_config_word(dev, PCI_COMMAND,
2819 orig ^ PCI_COMMAND_INTX_DISABLE);
2820 pci_read_config_word(dev, PCI_COMMAND, &new);
2821
2822 /*
2823 * There's no way to protect against hardware bugs or detect them
2824 * reliably, but as long as we know what the value should be, let's
2825 * go ahead and check it.
2826 */
2827 if ((new ^ orig) & ~PCI_COMMAND_INTX_DISABLE) {
2828 dev_err(&dev->dev, "Command register changed from "
2829 "0x%x to 0x%x: driver or hardware bug?\n", orig, new);
2830 } else if ((new ^ orig) & PCI_COMMAND_INTX_DISABLE) {
2831 mask_supported = true;
2832 pci_write_config_word(dev, PCI_COMMAND, orig);
2833 }
2834
2835 pci_cfg_access_unlock(dev);
2836 return mask_supported;
2837 }
2838 EXPORT_SYMBOL_GPL(pci_intx_mask_supported);
2839
pci_check_and_set_intx_mask(struct pci_dev * dev,bool mask)2840 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
2841 {
2842 struct pci_bus *bus = dev->bus;
2843 bool mask_updated = true;
2844 u32 cmd_status_dword;
2845 u16 origcmd, newcmd;
2846 unsigned long flags;
2847 bool irq_pending;
2848
2849 /*
2850 * We do a single dword read to retrieve both command and status.
2851 * Document assumptions that make this possible.
2852 */
2853 BUILD_BUG_ON(PCI_COMMAND % 4);
2854 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
2855
2856 raw_spin_lock_irqsave(&pci_lock, flags);
2857
2858 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
2859
2860 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
2861
2862 /*
2863 * Check interrupt status register to see whether our device
2864 * triggered the interrupt (when masking) or the next IRQ is
2865 * already pending (when unmasking).
2866 */
2867 if (mask != irq_pending) {
2868 mask_updated = false;
2869 goto done;
2870 }
2871
2872 origcmd = cmd_status_dword;
2873 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
2874 if (mask)
2875 newcmd |= PCI_COMMAND_INTX_DISABLE;
2876 if (newcmd != origcmd)
2877 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
2878
2879 done:
2880 raw_spin_unlock_irqrestore(&pci_lock, flags);
2881
2882 return mask_updated;
2883 }
2884
2885 /**
2886 * pci_check_and_mask_intx - mask INTx on pending interrupt
2887 * @dev: the PCI device to operate on
2888 *
2889 * Check if the device dev has its INTx line asserted, mask it and
2890 * return true in that case. False is returned if not interrupt was
2891 * pending.
2892 */
pci_check_and_mask_intx(struct pci_dev * dev)2893 bool pci_check_and_mask_intx(struct pci_dev *dev)
2894 {
2895 return pci_check_and_set_intx_mask(dev, true);
2896 }
2897 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
2898
2899 /**
2900 * pci_check_and_mask_intx - unmask INTx of no interrupt is pending
2901 * @dev: the PCI device to operate on
2902 *
2903 * Check if the device dev has its INTx line asserted, unmask it if not
2904 * and return true. False is returned and the mask remains active if
2905 * there was still an interrupt pending.
2906 */
pci_check_and_unmask_intx(struct pci_dev * dev)2907 bool pci_check_and_unmask_intx(struct pci_dev *dev)
2908 {
2909 return pci_check_and_set_intx_mask(dev, false);
2910 }
2911 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
2912
2913 /**
2914 * pci_msi_off - disables any msi or msix capabilities
2915 * @dev: the PCI device to operate on
2916 *
2917 * If you want to use msi see pci_enable_msi and friends.
2918 * This is a lower level primitive that allows us to disable
2919 * msi operation at the device level.
2920 */
pci_msi_off(struct pci_dev * dev)2921 void pci_msi_off(struct pci_dev *dev)
2922 {
2923 int pos;
2924 u16 control;
2925
2926 pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
2927 if (pos) {
2928 pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control);
2929 control &= ~PCI_MSI_FLAGS_ENABLE;
2930 pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
2931 }
2932 pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
2933 if (pos) {
2934 pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
2935 control &= ~PCI_MSIX_FLAGS_ENABLE;
2936 pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
2937 }
2938 }
2939 EXPORT_SYMBOL_GPL(pci_msi_off);
2940
pci_set_dma_max_seg_size(struct pci_dev * dev,unsigned int size)2941 int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
2942 {
2943 return dma_set_max_seg_size(&dev->dev, size);
2944 }
2945 EXPORT_SYMBOL(pci_set_dma_max_seg_size);
2946
pci_set_dma_seg_boundary(struct pci_dev * dev,unsigned long mask)2947 int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
2948 {
2949 return dma_set_seg_boundary(&dev->dev, mask);
2950 }
2951 EXPORT_SYMBOL(pci_set_dma_seg_boundary);
2952
pcie_flr(struct pci_dev * dev,int probe)2953 static int pcie_flr(struct pci_dev *dev, int probe)
2954 {
2955 int i;
2956 int pos;
2957 u32 cap;
2958 u16 status, control;
2959
2960 pos = pci_pcie_cap(dev);
2961 if (!pos)
2962 return -ENOTTY;
2963
2964 pci_read_config_dword(dev, pos + PCI_EXP_DEVCAP, &cap);
2965 if (!(cap & PCI_EXP_DEVCAP_FLR))
2966 return -ENOTTY;
2967
2968 if (probe)
2969 return 0;
2970
2971 /* Wait for Transaction Pending bit clean */
2972 for (i = 0; i < 4; i++) {
2973 if (i)
2974 msleep((1 << (i - 1)) * 100);
2975
2976 pci_read_config_word(dev, pos + PCI_EXP_DEVSTA, &status);
2977 if (!(status & PCI_EXP_DEVSTA_TRPND))
2978 goto clear;
2979 }
2980
2981 dev_err(&dev->dev, "transaction is not cleared; "
2982 "proceeding with reset anyway\n");
2983
2984 clear:
2985 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &control);
2986 control |= PCI_EXP_DEVCTL_BCR_FLR;
2987 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, control);
2988
2989 msleep(100);
2990
2991 return 0;
2992 }
2993
pci_af_flr(struct pci_dev * dev,int probe)2994 static int pci_af_flr(struct pci_dev *dev, int probe)
2995 {
2996 int i;
2997 int pos;
2998 u8 cap;
2999 u8 status;
3000
3001 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
3002 if (!pos)
3003 return -ENOTTY;
3004
3005 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
3006 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
3007 return -ENOTTY;
3008
3009 if (probe)
3010 return 0;
3011
3012 /* Wait for Transaction Pending bit clean */
3013 for (i = 0; i < 4; i++) {
3014 if (i)
3015 msleep((1 << (i - 1)) * 100);
3016
3017 pci_read_config_byte(dev, pos + PCI_AF_STATUS, &status);
3018 if (!(status & PCI_AF_STATUS_TP))
3019 goto clear;
3020 }
3021
3022 dev_err(&dev->dev, "transaction is not cleared; "
3023 "proceeding with reset anyway\n");
3024
3025 clear:
3026 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
3027 msleep(100);
3028
3029 return 0;
3030 }
3031
3032 /**
3033 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
3034 * @dev: Device to reset.
3035 * @probe: If set, only check if the device can be reset this way.
3036 *
3037 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
3038 * unset, it will be reinitialized internally when going from PCI_D3hot to
3039 * PCI_D0. If that's the case and the device is not in a low-power state
3040 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
3041 *
3042 * NOTE: This causes the caller to sleep for twice the device power transition
3043 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
3044 * by devault (i.e. unless the @dev's d3_delay field has a different value).
3045 * Moreover, only devices in D0 can be reset by this function.
3046 */
pci_pm_reset(struct pci_dev * dev,int probe)3047 static int pci_pm_reset(struct pci_dev *dev, int probe)
3048 {
3049 u16 csr;
3050
3051 if (!dev->pm_cap)
3052 return -ENOTTY;
3053
3054 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
3055 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
3056 return -ENOTTY;
3057
3058 if (probe)
3059 return 0;
3060
3061 if (dev->current_state != PCI_D0)
3062 return -EINVAL;
3063
3064 csr &= ~PCI_PM_CTRL_STATE_MASK;
3065 csr |= PCI_D3hot;
3066 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3067 pci_dev_d3_sleep(dev);
3068
3069 csr &= ~PCI_PM_CTRL_STATE_MASK;
3070 csr |= PCI_D0;
3071 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3072 pci_dev_d3_sleep(dev);
3073
3074 return 0;
3075 }
3076
pci_parent_bus_reset(struct pci_dev * dev,int probe)3077 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
3078 {
3079 u16 ctrl;
3080 struct pci_dev *pdev;
3081
3082 if (pci_is_root_bus(dev->bus) || dev->subordinate || !dev->bus->self)
3083 return -ENOTTY;
3084
3085 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3086 if (pdev != dev)
3087 return -ENOTTY;
3088
3089 if (probe)
3090 return 0;
3091
3092 pci_read_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, &ctrl);
3093 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
3094 pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl);
3095 msleep(100);
3096
3097 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
3098 pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl);
3099 msleep(100);
3100
3101 return 0;
3102 }
3103
pci_dev_reset(struct pci_dev * dev,int probe)3104 static int pci_dev_reset(struct pci_dev *dev, int probe)
3105 {
3106 int rc;
3107
3108 might_sleep();
3109
3110 if (!probe) {
3111 pci_cfg_access_lock(dev);
3112 /* block PM suspend, driver probe, etc. */
3113 device_lock(&dev->dev);
3114 }
3115
3116 rc = pci_dev_specific_reset(dev, probe);
3117 if (rc != -ENOTTY)
3118 goto done;
3119
3120 rc = pcie_flr(dev, probe);
3121 if (rc != -ENOTTY)
3122 goto done;
3123
3124 rc = pci_af_flr(dev, probe);
3125 if (rc != -ENOTTY)
3126 goto done;
3127
3128 rc = pci_pm_reset(dev, probe);
3129 if (rc != -ENOTTY)
3130 goto done;
3131
3132 rc = pci_parent_bus_reset(dev, probe);
3133 done:
3134 if (!probe) {
3135 device_unlock(&dev->dev);
3136 pci_cfg_access_unlock(dev);
3137 }
3138
3139 return rc;
3140 }
3141
3142 /**
3143 * __pci_reset_function - reset a PCI device function
3144 * @dev: PCI device to reset
3145 *
3146 * Some devices allow an individual function to be reset without affecting
3147 * other functions in the same device. The PCI device must be responsive
3148 * to PCI config space in order to use this function.
3149 *
3150 * The device function is presumed to be unused when this function is called.
3151 * Resetting the device will make the contents of PCI configuration space
3152 * random, so any caller of this must be prepared to reinitialise the
3153 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3154 * etc.
3155 *
3156 * Returns 0 if the device function was successfully reset or negative if the
3157 * device doesn't support resetting a single function.
3158 */
__pci_reset_function(struct pci_dev * dev)3159 int __pci_reset_function(struct pci_dev *dev)
3160 {
3161 return pci_dev_reset(dev, 0);
3162 }
3163 EXPORT_SYMBOL_GPL(__pci_reset_function);
3164
3165 /**
3166 * pci_probe_reset_function - check whether the device can be safely reset
3167 * @dev: PCI device to reset
3168 *
3169 * Some devices allow an individual function to be reset without affecting
3170 * other functions in the same device. The PCI device must be responsive
3171 * to PCI config space in order to use this function.
3172 *
3173 * Returns 0 if the device function can be reset or negative if the
3174 * device doesn't support resetting a single function.
3175 */
pci_probe_reset_function(struct pci_dev * dev)3176 int pci_probe_reset_function(struct pci_dev *dev)
3177 {
3178 return pci_dev_reset(dev, 1);
3179 }
3180
3181 /**
3182 * pci_reset_function - quiesce and reset a PCI device function
3183 * @dev: PCI device to reset
3184 *
3185 * Some devices allow an individual function to be reset without affecting
3186 * other functions in the same device. The PCI device must be responsive
3187 * to PCI config space in order to use this function.
3188 *
3189 * This function does not just reset the PCI portion of a device, but
3190 * clears all the state associated with the device. This function differs
3191 * from __pci_reset_function in that it saves and restores device state
3192 * over the reset.
3193 *
3194 * Returns 0 if the device function was successfully reset or negative if the
3195 * device doesn't support resetting a single function.
3196 */
pci_reset_function(struct pci_dev * dev)3197 int pci_reset_function(struct pci_dev *dev)
3198 {
3199 int rc;
3200
3201 rc = pci_dev_reset(dev, 1);
3202 if (rc)
3203 return rc;
3204
3205 pci_save_state(dev);
3206
3207 /*
3208 * both INTx and MSI are disabled after the Interrupt Disable bit
3209 * is set and the Bus Master bit is cleared.
3210 */
3211 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
3212
3213 rc = pci_dev_reset(dev, 0);
3214
3215 pci_restore_state(dev);
3216
3217 return rc;
3218 }
3219 EXPORT_SYMBOL_GPL(pci_reset_function);
3220
3221 /**
3222 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
3223 * @dev: PCI device to query
3224 *
3225 * Returns mmrbc: maximum designed memory read count in bytes
3226 * or appropriate error value.
3227 */
pcix_get_max_mmrbc(struct pci_dev * dev)3228 int pcix_get_max_mmrbc(struct pci_dev *dev)
3229 {
3230 int cap;
3231 u32 stat;
3232
3233 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3234 if (!cap)
3235 return -EINVAL;
3236
3237 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3238 return -EINVAL;
3239
3240 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
3241 }
3242 EXPORT_SYMBOL(pcix_get_max_mmrbc);
3243
3244 /**
3245 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
3246 * @dev: PCI device to query
3247 *
3248 * Returns mmrbc: maximum memory read count in bytes
3249 * or appropriate error value.
3250 */
pcix_get_mmrbc(struct pci_dev * dev)3251 int pcix_get_mmrbc(struct pci_dev *dev)
3252 {
3253 int cap;
3254 u16 cmd;
3255
3256 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3257 if (!cap)
3258 return -EINVAL;
3259
3260 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3261 return -EINVAL;
3262
3263 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
3264 }
3265 EXPORT_SYMBOL(pcix_get_mmrbc);
3266
3267 /**
3268 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
3269 * @dev: PCI device to query
3270 * @mmrbc: maximum memory read count in bytes
3271 * valid values are 512, 1024, 2048, 4096
3272 *
3273 * If possible sets maximum memory read byte count, some bridges have erratas
3274 * that prevent this.
3275 */
pcix_set_mmrbc(struct pci_dev * dev,int mmrbc)3276 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
3277 {
3278 int cap;
3279 u32 stat, v, o;
3280 u16 cmd;
3281
3282 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
3283 return -EINVAL;
3284
3285 v = ffs(mmrbc) - 10;
3286
3287 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3288 if (!cap)
3289 return -EINVAL;
3290
3291 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3292 return -EINVAL;
3293
3294 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
3295 return -E2BIG;
3296
3297 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3298 return -EINVAL;
3299
3300 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
3301 if (o != v) {
3302 if (v > o && dev->bus &&
3303 (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
3304 return -EIO;
3305
3306 cmd &= ~PCI_X_CMD_MAX_READ;
3307 cmd |= v << 2;
3308 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
3309 return -EIO;
3310 }
3311 return 0;
3312 }
3313 EXPORT_SYMBOL(pcix_set_mmrbc);
3314
3315 /**
3316 * pcie_get_readrq - get PCI Express read request size
3317 * @dev: PCI device to query
3318 *
3319 * Returns maximum memory read request in bytes
3320 * or appropriate error value.
3321 */
pcie_get_readrq(struct pci_dev * dev)3322 int pcie_get_readrq(struct pci_dev *dev)
3323 {
3324 int ret, cap;
3325 u16 ctl;
3326
3327 cap = pci_pcie_cap(dev);
3328 if (!cap)
3329 return -EINVAL;
3330
3331 ret = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
3332 if (!ret)
3333 ret = 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
3334
3335 return ret;
3336 }
3337 EXPORT_SYMBOL(pcie_get_readrq);
3338
3339 /**
3340 * pcie_set_readrq - set PCI Express maximum memory read request
3341 * @dev: PCI device to query
3342 * @rq: maximum memory read count in bytes
3343 * valid values are 128, 256, 512, 1024, 2048, 4096
3344 *
3345 * If possible sets maximum memory read request in bytes
3346 */
pcie_set_readrq(struct pci_dev * dev,int rq)3347 int pcie_set_readrq(struct pci_dev *dev, int rq)
3348 {
3349 int cap, err = -EINVAL;
3350 u16 ctl, v;
3351
3352 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
3353 goto out;
3354
3355 cap = pci_pcie_cap(dev);
3356 if (!cap)
3357 goto out;
3358
3359 err = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
3360 if (err)
3361 goto out;
3362 /*
3363 * If using the "performance" PCIe config, we clamp the
3364 * read rq size to the max packet size to prevent the
3365 * host bridge generating requests larger than we can
3366 * cope with
3367 */
3368 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
3369 int mps = pcie_get_mps(dev);
3370
3371 if (mps < 0)
3372 return mps;
3373 if (mps < rq)
3374 rq = mps;
3375 }
3376
3377 v = (ffs(rq) - 8) << 12;
3378
3379 if ((ctl & PCI_EXP_DEVCTL_READRQ) != v) {
3380 ctl &= ~PCI_EXP_DEVCTL_READRQ;
3381 ctl |= v;
3382 err = pci_write_config_word(dev, cap + PCI_EXP_DEVCTL, ctl);
3383 }
3384
3385 out:
3386 return err;
3387 }
3388 EXPORT_SYMBOL(pcie_set_readrq);
3389
3390 /**
3391 * pcie_get_mps - get PCI Express maximum payload size
3392 * @dev: PCI device to query
3393 *
3394 * Returns maximum payload size in bytes
3395 * or appropriate error value.
3396 */
pcie_get_mps(struct pci_dev * dev)3397 int pcie_get_mps(struct pci_dev *dev)
3398 {
3399 int ret, cap;
3400 u16 ctl;
3401
3402 cap = pci_pcie_cap(dev);
3403 if (!cap)
3404 return -EINVAL;
3405
3406 ret = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
3407 if (!ret)
3408 ret = 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
3409
3410 return ret;
3411 }
3412
3413 /**
3414 * pcie_set_mps - set PCI Express maximum payload size
3415 * @dev: PCI device to query
3416 * @mps: maximum payload size in bytes
3417 * valid values are 128, 256, 512, 1024, 2048, 4096
3418 *
3419 * If possible sets maximum payload size
3420 */
pcie_set_mps(struct pci_dev * dev,int mps)3421 int pcie_set_mps(struct pci_dev *dev, int mps)
3422 {
3423 int cap, err = -EINVAL;
3424 u16 ctl, v;
3425
3426 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
3427 goto out;
3428
3429 v = ffs(mps) - 8;
3430 if (v > dev->pcie_mpss)
3431 goto out;
3432 v <<= 5;
3433
3434 cap = pci_pcie_cap(dev);
3435 if (!cap)
3436 goto out;
3437
3438 err = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
3439 if (err)
3440 goto out;
3441
3442 if ((ctl & PCI_EXP_DEVCTL_PAYLOAD) != v) {
3443 ctl &= ~PCI_EXP_DEVCTL_PAYLOAD;
3444 ctl |= v;
3445 err = pci_write_config_word(dev, cap + PCI_EXP_DEVCTL, ctl);
3446 }
3447 out:
3448 return err;
3449 }
3450
3451 /**
3452 * pci_select_bars - Make BAR mask from the type of resource
3453 * @dev: the PCI device for which BAR mask is made
3454 * @flags: resource type mask to be selected
3455 *
3456 * This helper routine makes bar mask from the type of resource.
3457 */
pci_select_bars(struct pci_dev * dev,unsigned long flags)3458 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
3459 {
3460 int i, bars = 0;
3461 for (i = 0; i < PCI_NUM_RESOURCES; i++)
3462 if (pci_resource_flags(dev, i) & flags)
3463 bars |= (1 << i);
3464 return bars;
3465 }
3466
3467 /**
3468 * pci_resource_bar - get position of the BAR associated with a resource
3469 * @dev: the PCI device
3470 * @resno: the resource number
3471 * @type: the BAR type to be filled in
3472 *
3473 * Returns BAR position in config space, or 0 if the BAR is invalid.
3474 */
pci_resource_bar(struct pci_dev * dev,int resno,enum pci_bar_type * type)3475 int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type)
3476 {
3477 int reg;
3478
3479 if (resno < PCI_ROM_RESOURCE) {
3480 *type = pci_bar_unknown;
3481 return PCI_BASE_ADDRESS_0 + 4 * resno;
3482 } else if (resno == PCI_ROM_RESOURCE) {
3483 *type = pci_bar_mem32;
3484 return dev->rom_base_reg;
3485 } else if (resno < PCI_BRIDGE_RESOURCES) {
3486 /* device specific resource */
3487 reg = pci_iov_resource_bar(dev, resno, type);
3488 if (reg)
3489 return reg;
3490 }
3491
3492 dev_err(&dev->dev, "BAR %d: invalid resource\n", resno);
3493 return 0;
3494 }
3495
3496 /* Some architectures require additional programming to enable VGA */
3497 static arch_set_vga_state_t arch_set_vga_state;
3498
pci_register_set_vga_state(arch_set_vga_state_t func)3499 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
3500 {
3501 arch_set_vga_state = func; /* NULL disables */
3502 }
3503
pci_set_vga_state_arch(struct pci_dev * dev,bool decode,unsigned int command_bits,u32 flags)3504 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
3505 unsigned int command_bits, u32 flags)
3506 {
3507 if (arch_set_vga_state)
3508 return arch_set_vga_state(dev, decode, command_bits,
3509 flags);
3510 return 0;
3511 }
3512
3513 /**
3514 * pci_set_vga_state - set VGA decode state on device and parents if requested
3515 * @dev: the PCI device
3516 * @decode: true = enable decoding, false = disable decoding
3517 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
3518 * @flags: traverse ancestors and change bridges
3519 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
3520 */
pci_set_vga_state(struct pci_dev * dev,bool decode,unsigned int command_bits,u32 flags)3521 int pci_set_vga_state(struct pci_dev *dev, bool decode,
3522 unsigned int command_bits, u32 flags)
3523 {
3524 struct pci_bus *bus;
3525 struct pci_dev *bridge;
3526 u16 cmd;
3527 int rc;
3528
3529 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) & (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
3530
3531 /* ARCH specific VGA enables */
3532 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
3533 if (rc)
3534 return rc;
3535
3536 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
3537 pci_read_config_word(dev, PCI_COMMAND, &cmd);
3538 if (decode == true)
3539 cmd |= command_bits;
3540 else
3541 cmd &= ~command_bits;
3542 pci_write_config_word(dev, PCI_COMMAND, cmd);
3543 }
3544
3545 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
3546 return 0;
3547
3548 bus = dev->bus;
3549 while (bus) {
3550 bridge = bus->self;
3551 if (bridge) {
3552 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
3553 &cmd);
3554 if (decode == true)
3555 cmd |= PCI_BRIDGE_CTL_VGA;
3556 else
3557 cmd &= ~PCI_BRIDGE_CTL_VGA;
3558 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
3559 cmd);
3560 }
3561 bus = bus->parent;
3562 }
3563 return 0;
3564 }
3565
3566 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
3567 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
3568 static DEFINE_SPINLOCK(resource_alignment_lock);
3569
3570 /**
3571 * pci_specified_resource_alignment - get resource alignment specified by user.
3572 * @dev: the PCI device to get
3573 *
3574 * RETURNS: Resource alignment if it is specified.
3575 * Zero if it is not specified.
3576 */
pci_specified_resource_alignment(struct pci_dev * dev)3577 resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
3578 {
3579 int seg, bus, slot, func, align_order, count;
3580 resource_size_t align = 0;
3581 char *p;
3582
3583 spin_lock(&resource_alignment_lock);
3584 p = resource_alignment_param;
3585 while (*p) {
3586 count = 0;
3587 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
3588 p[count] == '@') {
3589 p += count + 1;
3590 } else {
3591 align_order = -1;
3592 }
3593 if (sscanf(p, "%x:%x:%x.%x%n",
3594 &seg, &bus, &slot, &func, &count) != 4) {
3595 seg = 0;
3596 if (sscanf(p, "%x:%x.%x%n",
3597 &bus, &slot, &func, &count) != 3) {
3598 /* Invalid format */
3599 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
3600 p);
3601 break;
3602 }
3603 }
3604 p += count;
3605 if (seg == pci_domain_nr(dev->bus) &&
3606 bus == dev->bus->number &&
3607 slot == PCI_SLOT(dev->devfn) &&
3608 func == PCI_FUNC(dev->devfn)) {
3609 if (align_order == -1) {
3610 align = PAGE_SIZE;
3611 } else {
3612 align = 1 << align_order;
3613 }
3614 /* Found */
3615 break;
3616 }
3617 if (*p != ';' && *p != ',') {
3618 /* End of param or invalid format */
3619 break;
3620 }
3621 p++;
3622 }
3623 spin_unlock(&resource_alignment_lock);
3624 return align;
3625 }
3626
3627 /**
3628 * pci_is_reassigndev - check if specified PCI is target device to reassign
3629 * @dev: the PCI device to check
3630 *
3631 * RETURNS: non-zero for PCI device is a target device to reassign,
3632 * or zero is not.
3633 */
pci_is_reassigndev(struct pci_dev * dev)3634 int pci_is_reassigndev(struct pci_dev *dev)
3635 {
3636 return (pci_specified_resource_alignment(dev) != 0);
3637 }
3638
pci_set_resource_alignment_param(const char * buf,size_t count)3639 ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
3640 {
3641 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
3642 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
3643 spin_lock(&resource_alignment_lock);
3644 strncpy(resource_alignment_param, buf, count);
3645 resource_alignment_param[count] = '\0';
3646 spin_unlock(&resource_alignment_lock);
3647 return count;
3648 }
3649
pci_get_resource_alignment_param(char * buf,size_t size)3650 ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
3651 {
3652 size_t count;
3653 spin_lock(&resource_alignment_lock);
3654 count = snprintf(buf, size, "%s", resource_alignment_param);
3655 spin_unlock(&resource_alignment_lock);
3656 return count;
3657 }
3658
pci_resource_alignment_show(struct bus_type * bus,char * buf)3659 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
3660 {
3661 return pci_get_resource_alignment_param(buf, PAGE_SIZE);
3662 }
3663
pci_resource_alignment_store(struct bus_type * bus,const char * buf,size_t count)3664 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
3665 const char *buf, size_t count)
3666 {
3667 return pci_set_resource_alignment_param(buf, count);
3668 }
3669
3670 BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
3671 pci_resource_alignment_store);
3672
pci_resource_alignment_sysfs_init(void)3673 static int __init pci_resource_alignment_sysfs_init(void)
3674 {
3675 return bus_create_file(&pci_bus_type,
3676 &bus_attr_resource_alignment);
3677 }
3678
3679 late_initcall(pci_resource_alignment_sysfs_init);
3680
pci_no_domains(void)3681 static void __devinit pci_no_domains(void)
3682 {
3683 #ifdef CONFIG_PCI_DOMAINS
3684 pci_domains_supported = 0;
3685 #endif
3686 }
3687
3688 /**
3689 * pci_ext_cfg_enabled - can we access extended PCI config space?
3690 * @dev: The PCI device of the root bridge.
3691 *
3692 * Returns 1 if we can access PCI extended config space (offsets
3693 * greater than 0xff). This is the default implementation. Architecture
3694 * implementations can override this.
3695 */
pci_ext_cfg_avail(struct pci_dev * dev)3696 int __attribute__ ((weak)) pci_ext_cfg_avail(struct pci_dev *dev)
3697 {
3698 return 1;
3699 }
3700
pci_fixup_cardbus(struct pci_bus * bus)3701 void __weak pci_fixup_cardbus(struct pci_bus *bus)
3702 {
3703 }
3704 EXPORT_SYMBOL(pci_fixup_cardbus);
3705
pci_setup(char * str)3706 static int __init pci_setup(char *str)
3707 {
3708 while (str) {
3709 char *k = strchr(str, ',');
3710 if (k)
3711 *k++ = 0;
3712 if (*str && (str = pcibios_setup(str)) && *str) {
3713 if (!strcmp(str, "nomsi")) {
3714 pci_no_msi();
3715 } else if (!strcmp(str, "noaer")) {
3716 pci_no_aer();
3717 } else if (!strncmp(str, "realloc", 7)) {
3718 pci_realloc();
3719 } else if (!strcmp(str, "nodomains")) {
3720 pci_no_domains();
3721 } else if (!strncmp(str, "cbiosize=", 9)) {
3722 pci_cardbus_io_size = memparse(str + 9, &str);
3723 } else if (!strncmp(str, "cbmemsize=", 10)) {
3724 pci_cardbus_mem_size = memparse(str + 10, &str);
3725 } else if (!strncmp(str, "resource_alignment=", 19)) {
3726 pci_set_resource_alignment_param(str + 19,
3727 strlen(str + 19));
3728 } else if (!strncmp(str, "ecrc=", 5)) {
3729 pcie_ecrc_get_policy(str + 5);
3730 } else if (!strncmp(str, "hpiosize=", 9)) {
3731 pci_hotplug_io_size = memparse(str + 9, &str);
3732 } else if (!strncmp(str, "hpmemsize=", 10)) {
3733 pci_hotplug_mem_size = memparse(str + 10, &str);
3734 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
3735 pcie_bus_config = PCIE_BUS_TUNE_OFF;
3736 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
3737 pcie_bus_config = PCIE_BUS_SAFE;
3738 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
3739 pcie_bus_config = PCIE_BUS_PERFORMANCE;
3740 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
3741 pcie_bus_config = PCIE_BUS_PEER2PEER;
3742 } else {
3743 printk(KERN_ERR "PCI: Unknown option `%s'\n",
3744 str);
3745 }
3746 }
3747 str = k;
3748 }
3749 return 0;
3750 }
3751 early_param("pci", pci_setup);
3752
3753 EXPORT_SYMBOL(pci_reenable_device);
3754 EXPORT_SYMBOL(pci_enable_device_io);
3755 EXPORT_SYMBOL(pci_enable_device_mem);
3756 EXPORT_SYMBOL(pci_enable_device);
3757 EXPORT_SYMBOL(pcim_enable_device);
3758 EXPORT_SYMBOL(pcim_pin_device);
3759 EXPORT_SYMBOL(pci_disable_device);
3760 EXPORT_SYMBOL(pci_find_capability);
3761 EXPORT_SYMBOL(pci_bus_find_capability);
3762 EXPORT_SYMBOL(pci_release_regions);
3763 EXPORT_SYMBOL(pci_request_regions);
3764 EXPORT_SYMBOL(pci_request_regions_exclusive);
3765 EXPORT_SYMBOL(pci_release_region);
3766 EXPORT_SYMBOL(pci_request_region);
3767 EXPORT_SYMBOL(pci_request_region_exclusive);
3768 EXPORT_SYMBOL(pci_release_selected_regions);
3769 EXPORT_SYMBOL(pci_request_selected_regions);
3770 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3771 EXPORT_SYMBOL(pci_set_master);
3772 EXPORT_SYMBOL(pci_clear_master);
3773 EXPORT_SYMBOL(pci_set_mwi);
3774 EXPORT_SYMBOL(pci_try_set_mwi);
3775 EXPORT_SYMBOL(pci_clear_mwi);
3776 EXPORT_SYMBOL_GPL(pci_intx);
3777 EXPORT_SYMBOL(pci_assign_resource);
3778 EXPORT_SYMBOL(pci_find_parent_resource);
3779 EXPORT_SYMBOL(pci_select_bars);
3780
3781 EXPORT_SYMBOL(pci_set_power_state);
3782 EXPORT_SYMBOL(pci_save_state);
3783 EXPORT_SYMBOL(pci_restore_state);
3784 EXPORT_SYMBOL(pci_pme_capable);
3785 EXPORT_SYMBOL(pci_pme_active);
3786 EXPORT_SYMBOL(pci_wake_from_d3);
3787 EXPORT_SYMBOL(pci_target_state);
3788 EXPORT_SYMBOL(pci_prepare_to_sleep);
3789 EXPORT_SYMBOL(pci_back_from_sleep);
3790 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
3791