1 /*
2 * Translation Block Maintenance
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu/interval-tree.h"
22 #include "qemu/qtree.h"
23 #include "exec/cputlb.h"
24 #include "exec/log.h"
25 #include "exec/page-protection.h"
26 #include "exec/mmap-lock.h"
27 #include "exec/tb-flush.h"
28 #include "exec/target_page.h"
29 #include "accel/tcg/cpu-ops.h"
30 #include "tb-internal.h"
31 #include "system/tcg.h"
32 #include "tcg/tcg.h"
33 #include "tb-hash.h"
34 #include "tb-context.h"
35 #include "tb-internal.h"
36 #include "internal-common.h"
37 #ifdef CONFIG_USER_ONLY
38 #include "user/page-protection.h"
39 #endif
40
41
42 /* List iterators for lists of tagged pointers in TranslationBlock. */
43 #define TB_FOR_EACH_TAGGED(head, tb, n, field) \
44 for (n = (head) & 1, tb = (TranslationBlock *)((head) & ~1); \
45 tb; tb = (TranslationBlock *)tb->field[n], n = (uintptr_t)tb & 1, \
46 tb = (TranslationBlock *)((uintptr_t)tb & ~1))
47
48 #define TB_FOR_EACH_JMP(head_tb, tb, n) \
49 TB_FOR_EACH_TAGGED((head_tb)->jmp_list_head, tb, n, jmp_list_next)
50
tb_cmp(const void * ap,const void * bp)51 static bool tb_cmp(const void *ap, const void *bp)
52 {
53 const TranslationBlock *a = ap;
54 const TranslationBlock *b = bp;
55
56 return ((tb_cflags(a) & CF_PCREL || a->pc == b->pc) &&
57 a->cs_base == b->cs_base &&
58 a->flags == b->flags &&
59 (tb_cflags(a) & ~CF_INVALID) == (tb_cflags(b) & ~CF_INVALID) &&
60 tb_page_addr0(a) == tb_page_addr0(b) &&
61 tb_page_addr1(a) == tb_page_addr1(b));
62 }
63
tb_htable_init(void)64 void tb_htable_init(void)
65 {
66 unsigned int mode = QHT_MODE_AUTO_RESIZE;
67
68 qht_init(&tb_ctx.htable, tb_cmp, CODE_GEN_HTABLE_SIZE, mode);
69 }
70
71 typedef struct PageDesc PageDesc;
72
73 #ifdef CONFIG_USER_ONLY
74
75 /*
76 * In user-mode page locks aren't used; mmap_lock is enough.
77 */
78 #define assert_page_locked(pd) tcg_debug_assert(have_mmap_lock())
79
tb_lock_pages(const TranslationBlock * tb)80 static inline void tb_lock_pages(const TranslationBlock *tb) { }
81
82 /*
83 * For user-only, since we are protecting all of memory with a single lock,
84 * and because the two pages of a TranslationBlock are always contiguous,
85 * use a single data structure to record all TranslationBlocks.
86 */
87 static IntervalTreeRoot tb_root;
88
tb_remove_all(void)89 static void tb_remove_all(void)
90 {
91 assert_memory_lock();
92 memset(&tb_root, 0, sizeof(tb_root));
93 }
94
95 /* Call with mmap_lock held. */
tb_record(TranslationBlock * tb)96 static void tb_record(TranslationBlock *tb)
97 {
98 vaddr addr;
99 int flags;
100
101 assert_memory_lock();
102 tb->itree.last = tb->itree.start + tb->size - 1;
103
104 /* translator_loop() must have made all TB pages non-writable */
105 addr = tb_page_addr0(tb);
106 flags = page_get_flags(addr);
107 assert(!(flags & PAGE_WRITE));
108
109 addr = tb_page_addr1(tb);
110 if (addr != -1) {
111 flags = page_get_flags(addr);
112 assert(!(flags & PAGE_WRITE));
113 }
114
115 interval_tree_insert(&tb->itree, &tb_root);
116 }
117
118 /* Call with mmap_lock held. */
tb_remove(TranslationBlock * tb)119 static void tb_remove(TranslationBlock *tb)
120 {
121 assert_memory_lock();
122 interval_tree_remove(&tb->itree, &tb_root);
123 }
124
125 /* TODO: For now, still shared with translate-all.c for system mode. */
126 #define PAGE_FOR_EACH_TB(start, last, pagedesc, T, N) \
127 for (T = foreach_tb_first(start, last), \
128 N = foreach_tb_next(T, start, last); \
129 T != NULL; \
130 T = N, N = foreach_tb_next(N, start, last))
131
132 typedef TranslationBlock *PageForEachNext;
133
foreach_tb_first(tb_page_addr_t start,tb_page_addr_t last)134 static PageForEachNext foreach_tb_first(tb_page_addr_t start,
135 tb_page_addr_t last)
136 {
137 IntervalTreeNode *n = interval_tree_iter_first(&tb_root, start, last);
138 return n ? container_of(n, TranslationBlock, itree) : NULL;
139 }
140
foreach_tb_next(PageForEachNext tb,tb_page_addr_t start,tb_page_addr_t last)141 static PageForEachNext foreach_tb_next(PageForEachNext tb,
142 tb_page_addr_t start,
143 tb_page_addr_t last)
144 {
145 IntervalTreeNode *n;
146
147 if (tb) {
148 n = interval_tree_iter_next(&tb->itree, start, last);
149 if (n) {
150 return container_of(n, TranslationBlock, itree);
151 }
152 }
153 return NULL;
154 }
155
156 #else
157 /*
158 * In system mode we want L1_MAP to be based on ram offsets.
159 */
160 #define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
161
162 /* Size of the L2 (and L3, etc) page tables. */
163 #define V_L2_BITS 10
164 #define V_L2_SIZE (1 << V_L2_BITS)
165
166 /*
167 * L1 Mapping properties
168 */
169 static int v_l1_size;
170 static int v_l1_shift;
171 static int v_l2_levels;
172
173 /*
174 * The bottom level has pointers to PageDesc, and is indexed by
175 * anything from 4 to (V_L2_BITS + 3) bits, depending on target page size.
176 */
177 #define V_L1_MIN_BITS 4
178 #define V_L1_MAX_BITS (V_L2_BITS + 3)
179 #define V_L1_MAX_SIZE (1 << V_L1_MAX_BITS)
180
181 static void *l1_map[V_L1_MAX_SIZE];
182
183 struct PageDesc {
184 QemuSpin lock;
185 /* list of TBs intersecting this ram page */
186 uintptr_t first_tb;
187 };
188
page_table_config_init(void)189 void page_table_config_init(void)
190 {
191 uint32_t v_l1_bits;
192
193 assert(TARGET_PAGE_BITS);
194 /* The bits remaining after N lower levels of page tables. */
195 v_l1_bits = (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS;
196 if (v_l1_bits < V_L1_MIN_BITS) {
197 v_l1_bits += V_L2_BITS;
198 }
199
200 v_l1_size = 1 << v_l1_bits;
201 v_l1_shift = L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - v_l1_bits;
202 v_l2_levels = v_l1_shift / V_L2_BITS - 1;
203
204 assert(v_l1_bits <= V_L1_MAX_BITS);
205 assert(v_l1_shift % V_L2_BITS == 0);
206 assert(v_l2_levels >= 0);
207 }
208
page_find_alloc(tb_page_addr_t index,bool alloc)209 static PageDesc *page_find_alloc(tb_page_addr_t index, bool alloc)
210 {
211 PageDesc *pd;
212 void **lp;
213
214 /* Level 1. Always allocated. */
215 lp = l1_map + ((index >> v_l1_shift) & (v_l1_size - 1));
216
217 /* Level 2..N-1. */
218 for (int i = v_l2_levels; i > 0; i--) {
219 void **p = qatomic_rcu_read(lp);
220
221 if (p == NULL) {
222 void *existing;
223
224 if (!alloc) {
225 return NULL;
226 }
227 p = g_new0(void *, V_L2_SIZE);
228 existing = qatomic_cmpxchg(lp, NULL, p);
229 if (unlikely(existing)) {
230 g_free(p);
231 p = existing;
232 }
233 }
234
235 lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
236 }
237
238 pd = qatomic_rcu_read(lp);
239 if (pd == NULL) {
240 void *existing;
241
242 if (!alloc) {
243 return NULL;
244 }
245
246 pd = g_new0(PageDesc, V_L2_SIZE);
247 for (int i = 0; i < V_L2_SIZE; i++) {
248 qemu_spin_init(&pd[i].lock);
249 }
250
251 existing = qatomic_cmpxchg(lp, NULL, pd);
252 if (unlikely(existing)) {
253 for (int i = 0; i < V_L2_SIZE; i++) {
254 qemu_spin_destroy(&pd[i].lock);
255 }
256 g_free(pd);
257 pd = existing;
258 }
259 }
260
261 return pd + (index & (V_L2_SIZE - 1));
262 }
263
page_find(tb_page_addr_t index)264 static inline PageDesc *page_find(tb_page_addr_t index)
265 {
266 return page_find_alloc(index, false);
267 }
268
269 /**
270 * struct page_entry - page descriptor entry
271 * @pd: pointer to the &struct PageDesc of the page this entry represents
272 * @index: page index of the page
273 * @locked: whether the page is locked
274 *
275 * This struct helps us keep track of the locked state of a page, without
276 * bloating &struct PageDesc.
277 *
278 * A page lock protects accesses to all fields of &struct PageDesc.
279 *
280 * See also: &struct page_collection.
281 */
282 struct page_entry {
283 PageDesc *pd;
284 tb_page_addr_t index;
285 bool locked;
286 };
287
288 /**
289 * struct page_collection - tracks a set of pages (i.e. &struct page_entry's)
290 * @tree: Binary search tree (BST) of the pages, with key == page index
291 * @max: Pointer to the page in @tree with the highest page index
292 *
293 * To avoid deadlock we lock pages in ascending order of page index.
294 * When operating on a set of pages, we need to keep track of them so that
295 * we can lock them in order and also unlock them later. For this we collect
296 * pages (i.e. &struct page_entry's) in a binary search @tree. Given that the
297 * @tree implementation we use does not provide an O(1) operation to obtain the
298 * highest-ranked element, we use @max to keep track of the inserted page
299 * with the highest index. This is valuable because if a page is not in
300 * the tree and its index is higher than @max's, then we can lock it
301 * without breaking the locking order rule.
302 *
303 * Note on naming: 'struct page_set' would be shorter, but we already have a few
304 * page_set_*() helpers, so page_collection is used instead to avoid confusion.
305 *
306 * See also: page_collection_lock().
307 */
308 struct page_collection {
309 QTree *tree;
310 struct page_entry *max;
311 };
312
313 typedef int PageForEachNext;
314 #define PAGE_FOR_EACH_TB(start, last, pagedesc, tb, n) \
315 TB_FOR_EACH_TAGGED((pagedesc)->first_tb, tb, n, page_next)
316
317 #ifdef CONFIG_DEBUG_TCG
318
319 static __thread GHashTable *ht_pages_locked_debug;
320
ht_pages_locked_debug_init(void)321 static void ht_pages_locked_debug_init(void)
322 {
323 if (ht_pages_locked_debug) {
324 return;
325 }
326 ht_pages_locked_debug = g_hash_table_new(NULL, NULL);
327 }
328
page_is_locked(const PageDesc * pd)329 static bool page_is_locked(const PageDesc *pd)
330 {
331 PageDesc *found;
332
333 ht_pages_locked_debug_init();
334 found = g_hash_table_lookup(ht_pages_locked_debug, pd);
335 return !!found;
336 }
337
page_lock__debug(PageDesc * pd)338 static void page_lock__debug(PageDesc *pd)
339 {
340 ht_pages_locked_debug_init();
341 g_assert(!page_is_locked(pd));
342 g_hash_table_insert(ht_pages_locked_debug, pd, pd);
343 }
344
page_unlock__debug(const PageDesc * pd)345 static void page_unlock__debug(const PageDesc *pd)
346 {
347 bool removed;
348
349 ht_pages_locked_debug_init();
350 g_assert(page_is_locked(pd));
351 removed = g_hash_table_remove(ht_pages_locked_debug, pd);
352 g_assert(removed);
353 }
354
do_assert_page_locked(const PageDesc * pd,const char * file,int line)355 static void do_assert_page_locked(const PageDesc *pd,
356 const char *file, int line)
357 {
358 if (unlikely(!page_is_locked(pd))) {
359 error_report("assert_page_lock: PageDesc %p not locked @ %s:%d",
360 pd, file, line);
361 abort();
362 }
363 }
364 #define assert_page_locked(pd) do_assert_page_locked(pd, __FILE__, __LINE__)
365
assert_no_pages_locked(void)366 void assert_no_pages_locked(void)
367 {
368 ht_pages_locked_debug_init();
369 g_assert(g_hash_table_size(ht_pages_locked_debug) == 0);
370 }
371
372 #else /* !CONFIG_DEBUG_TCG */
373
page_lock__debug(const PageDesc * pd)374 static inline void page_lock__debug(const PageDesc *pd) { }
page_unlock__debug(const PageDesc * pd)375 static inline void page_unlock__debug(const PageDesc *pd) { }
assert_page_locked(const PageDesc * pd)376 static inline void assert_page_locked(const PageDesc *pd) { }
377
378 #endif /* CONFIG_DEBUG_TCG */
379
page_lock(PageDesc * pd)380 static void page_lock(PageDesc *pd)
381 {
382 page_lock__debug(pd);
383 qemu_spin_lock(&pd->lock);
384 }
385
386 /* Like qemu_spin_trylock, returns false on success */
page_trylock(PageDesc * pd)387 static bool page_trylock(PageDesc *pd)
388 {
389 bool busy = qemu_spin_trylock(&pd->lock);
390 if (!busy) {
391 page_lock__debug(pd);
392 }
393 return busy;
394 }
395
page_unlock(PageDesc * pd)396 static void page_unlock(PageDesc *pd)
397 {
398 qemu_spin_unlock(&pd->lock);
399 page_unlock__debug(pd);
400 }
401
tb_lock_page0(tb_page_addr_t paddr)402 void tb_lock_page0(tb_page_addr_t paddr)
403 {
404 page_lock(page_find_alloc(paddr >> TARGET_PAGE_BITS, true));
405 }
406
tb_lock_page1(tb_page_addr_t paddr0,tb_page_addr_t paddr1)407 void tb_lock_page1(tb_page_addr_t paddr0, tb_page_addr_t paddr1)
408 {
409 tb_page_addr_t pindex0 = paddr0 >> TARGET_PAGE_BITS;
410 tb_page_addr_t pindex1 = paddr1 >> TARGET_PAGE_BITS;
411 PageDesc *pd0, *pd1;
412
413 if (pindex0 == pindex1) {
414 /* Identical pages, and the first page is already locked. */
415 return;
416 }
417
418 pd1 = page_find_alloc(pindex1, true);
419 if (pindex0 < pindex1) {
420 /* Correct locking order, we may block. */
421 page_lock(pd1);
422 return;
423 }
424
425 /* Incorrect locking order, we cannot block lest we deadlock. */
426 if (!page_trylock(pd1)) {
427 return;
428 }
429
430 /*
431 * Drop the lock on page0 and get both page locks in the right order.
432 * Restart translation via longjmp.
433 */
434 pd0 = page_find_alloc(pindex0, false);
435 page_unlock(pd0);
436 page_lock(pd1);
437 page_lock(pd0);
438 siglongjmp(tcg_ctx->jmp_trans, -3);
439 }
440
tb_unlock_page1(tb_page_addr_t paddr0,tb_page_addr_t paddr1)441 void tb_unlock_page1(tb_page_addr_t paddr0, tb_page_addr_t paddr1)
442 {
443 tb_page_addr_t pindex0 = paddr0 >> TARGET_PAGE_BITS;
444 tb_page_addr_t pindex1 = paddr1 >> TARGET_PAGE_BITS;
445
446 if (pindex0 != pindex1) {
447 page_unlock(page_find_alloc(pindex1, false));
448 }
449 }
450
tb_lock_pages(TranslationBlock * tb)451 static void tb_lock_pages(TranslationBlock *tb)
452 {
453 tb_page_addr_t paddr0 = tb_page_addr0(tb);
454 tb_page_addr_t paddr1 = tb_page_addr1(tb);
455 tb_page_addr_t pindex0 = paddr0 >> TARGET_PAGE_BITS;
456 tb_page_addr_t pindex1 = paddr1 >> TARGET_PAGE_BITS;
457
458 if (unlikely(paddr0 == -1)) {
459 return;
460 }
461 if (unlikely(paddr1 != -1) && pindex0 != pindex1) {
462 if (pindex0 < pindex1) {
463 page_lock(page_find_alloc(pindex0, true));
464 page_lock(page_find_alloc(pindex1, true));
465 return;
466 }
467 page_lock(page_find_alloc(pindex1, true));
468 }
469 page_lock(page_find_alloc(pindex0, true));
470 }
471
tb_unlock_pages(TranslationBlock * tb)472 void tb_unlock_pages(TranslationBlock *tb)
473 {
474 tb_page_addr_t paddr0 = tb_page_addr0(tb);
475 tb_page_addr_t paddr1 = tb_page_addr1(tb);
476 tb_page_addr_t pindex0 = paddr0 >> TARGET_PAGE_BITS;
477 tb_page_addr_t pindex1 = paddr1 >> TARGET_PAGE_BITS;
478
479 if (unlikely(paddr0 == -1)) {
480 return;
481 }
482 if (unlikely(paddr1 != -1) && pindex0 != pindex1) {
483 page_unlock(page_find_alloc(pindex1, false));
484 }
485 page_unlock(page_find_alloc(pindex0, false));
486 }
487
488 static inline struct page_entry *
page_entry_new(PageDesc * pd,tb_page_addr_t index)489 page_entry_new(PageDesc *pd, tb_page_addr_t index)
490 {
491 struct page_entry *pe = g_malloc(sizeof(*pe));
492
493 pe->index = index;
494 pe->pd = pd;
495 pe->locked = false;
496 return pe;
497 }
498
page_entry_destroy(gpointer p)499 static void page_entry_destroy(gpointer p)
500 {
501 struct page_entry *pe = p;
502
503 g_assert(pe->locked);
504 page_unlock(pe->pd);
505 g_free(pe);
506 }
507
508 /* returns false on success */
page_entry_trylock(struct page_entry * pe)509 static bool page_entry_trylock(struct page_entry *pe)
510 {
511 bool busy = page_trylock(pe->pd);
512 if (!busy) {
513 g_assert(!pe->locked);
514 pe->locked = true;
515 }
516 return busy;
517 }
518
do_page_entry_lock(struct page_entry * pe)519 static void do_page_entry_lock(struct page_entry *pe)
520 {
521 page_lock(pe->pd);
522 g_assert(!pe->locked);
523 pe->locked = true;
524 }
525
page_entry_lock(gpointer key,gpointer value,gpointer data)526 static gboolean page_entry_lock(gpointer key, gpointer value, gpointer data)
527 {
528 struct page_entry *pe = value;
529
530 do_page_entry_lock(pe);
531 return FALSE;
532 }
533
page_entry_unlock(gpointer key,gpointer value,gpointer data)534 static gboolean page_entry_unlock(gpointer key, gpointer value, gpointer data)
535 {
536 struct page_entry *pe = value;
537
538 if (pe->locked) {
539 pe->locked = false;
540 page_unlock(pe->pd);
541 }
542 return FALSE;
543 }
544
545 /*
546 * Trylock a page, and if successful, add the page to a collection.
547 * Returns true ("busy") if the page could not be locked; false otherwise.
548 */
page_trylock_add(struct page_collection * set,tb_page_addr_t addr)549 static bool page_trylock_add(struct page_collection *set, tb_page_addr_t addr)
550 {
551 tb_page_addr_t index = addr >> TARGET_PAGE_BITS;
552 struct page_entry *pe;
553 PageDesc *pd;
554
555 pe = q_tree_lookup(set->tree, &index);
556 if (pe) {
557 return false;
558 }
559
560 pd = page_find(index);
561 if (pd == NULL) {
562 return false;
563 }
564
565 pe = page_entry_new(pd, index);
566 q_tree_insert(set->tree, &pe->index, pe);
567
568 /*
569 * If this is either (1) the first insertion or (2) a page whose index
570 * is higher than any other so far, just lock the page and move on.
571 */
572 if (set->max == NULL || pe->index > set->max->index) {
573 set->max = pe;
574 do_page_entry_lock(pe);
575 return false;
576 }
577 /*
578 * Try to acquire out-of-order lock; if busy, return busy so that we acquire
579 * locks in order.
580 */
581 return page_entry_trylock(pe);
582 }
583
tb_page_addr_cmp(gconstpointer ap,gconstpointer bp,gpointer udata)584 static gint tb_page_addr_cmp(gconstpointer ap, gconstpointer bp, gpointer udata)
585 {
586 tb_page_addr_t a = *(const tb_page_addr_t *)ap;
587 tb_page_addr_t b = *(const tb_page_addr_t *)bp;
588
589 if (a == b) {
590 return 0;
591 } else if (a < b) {
592 return -1;
593 }
594 return 1;
595 }
596
597 /*
598 * Lock a range of pages ([@start,@last]) as well as the pages of all
599 * intersecting TBs.
600 * Locking order: acquire locks in ascending order of page index.
601 */
page_collection_lock(tb_page_addr_t start,tb_page_addr_t last)602 static struct page_collection *page_collection_lock(tb_page_addr_t start,
603 tb_page_addr_t last)
604 {
605 struct page_collection *set = g_malloc(sizeof(*set));
606 tb_page_addr_t index;
607 PageDesc *pd;
608
609 start >>= TARGET_PAGE_BITS;
610 last >>= TARGET_PAGE_BITS;
611 g_assert(start <= last);
612
613 set->tree = q_tree_new_full(tb_page_addr_cmp, NULL, NULL,
614 page_entry_destroy);
615 set->max = NULL;
616 assert_no_pages_locked();
617
618 retry:
619 q_tree_foreach(set->tree, page_entry_lock, NULL);
620
621 for (index = start; index <= last; index++) {
622 TranslationBlock *tb;
623 PageForEachNext n;
624
625 pd = page_find(index);
626 if (pd == NULL) {
627 continue;
628 }
629 if (page_trylock_add(set, index << TARGET_PAGE_BITS)) {
630 q_tree_foreach(set->tree, page_entry_unlock, NULL);
631 goto retry;
632 }
633 assert_page_locked(pd);
634 PAGE_FOR_EACH_TB(unused, unused, pd, tb, n) {
635 if (page_trylock_add(set, tb_page_addr0(tb)) ||
636 (tb_page_addr1(tb) != -1 &&
637 page_trylock_add(set, tb_page_addr1(tb)))) {
638 /* drop all locks, and reacquire in order */
639 q_tree_foreach(set->tree, page_entry_unlock, NULL);
640 goto retry;
641 }
642 }
643 }
644 return set;
645 }
646
page_collection_unlock(struct page_collection * set)647 static void page_collection_unlock(struct page_collection *set)
648 {
649 /* entries are unlocked and freed via page_entry_destroy */
650 q_tree_destroy(set->tree);
651 g_free(set);
652 }
653
654 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
tb_remove_all_1(int level,void ** lp)655 static void tb_remove_all_1(int level, void **lp)
656 {
657 int i;
658
659 if (*lp == NULL) {
660 return;
661 }
662 if (level == 0) {
663 PageDesc *pd = *lp;
664
665 for (i = 0; i < V_L2_SIZE; ++i) {
666 page_lock(&pd[i]);
667 pd[i].first_tb = (uintptr_t)NULL;
668 page_unlock(&pd[i]);
669 }
670 } else {
671 void **pp = *lp;
672
673 for (i = 0; i < V_L2_SIZE; ++i) {
674 tb_remove_all_1(level - 1, pp + i);
675 }
676 }
677 }
678
tb_remove_all(void)679 static void tb_remove_all(void)
680 {
681 int i, l1_sz = v_l1_size;
682
683 for (i = 0; i < l1_sz; i++) {
684 tb_remove_all_1(v_l2_levels, l1_map + i);
685 }
686 }
687
688 /*
689 * Add the tb in the target page and protect it if necessary.
690 * Called with @p->lock held.
691 */
tb_page_add(PageDesc * p,TranslationBlock * tb,unsigned int n)692 static void tb_page_add(PageDesc *p, TranslationBlock *tb, unsigned int n)
693 {
694 bool page_already_protected;
695
696 assert_page_locked(p);
697
698 tb->page_next[n] = p->first_tb;
699 page_already_protected = p->first_tb != 0;
700 p->first_tb = (uintptr_t)tb | n;
701
702 /*
703 * If some code is already present, then the pages are already
704 * protected. So we handle the case where only the first TB is
705 * allocated in a physical page.
706 */
707 if (!page_already_protected) {
708 tlb_protect_code(tb->page_addr[n] & TARGET_PAGE_MASK);
709 }
710 }
711
tb_record(TranslationBlock * tb)712 static void tb_record(TranslationBlock *tb)
713 {
714 tb_page_addr_t paddr0 = tb_page_addr0(tb);
715 tb_page_addr_t paddr1 = tb_page_addr1(tb);
716 tb_page_addr_t pindex0 = paddr0 >> TARGET_PAGE_BITS;
717 tb_page_addr_t pindex1 = paddr1 >> TARGET_PAGE_BITS;
718
719 assert(paddr0 != -1);
720 if (unlikely(paddr1 != -1) && pindex0 != pindex1) {
721 tb_page_add(page_find_alloc(pindex1, false), tb, 1);
722 }
723 tb_page_add(page_find_alloc(pindex0, false), tb, 0);
724 }
725
tb_page_remove(PageDesc * pd,TranslationBlock * tb)726 static void tb_page_remove(PageDesc *pd, TranslationBlock *tb)
727 {
728 TranslationBlock *tb1;
729 uintptr_t *pprev;
730 PageForEachNext n1;
731
732 assert_page_locked(pd);
733 pprev = &pd->first_tb;
734 PAGE_FOR_EACH_TB(unused, unused, pd, tb1, n1) {
735 if (tb1 == tb) {
736 *pprev = tb1->page_next[n1];
737 return;
738 }
739 pprev = &tb1->page_next[n1];
740 }
741 g_assert_not_reached();
742 }
743
tb_remove(TranslationBlock * tb)744 static void tb_remove(TranslationBlock *tb)
745 {
746 tb_page_addr_t paddr0 = tb_page_addr0(tb);
747 tb_page_addr_t paddr1 = tb_page_addr1(tb);
748 tb_page_addr_t pindex0 = paddr0 >> TARGET_PAGE_BITS;
749 tb_page_addr_t pindex1 = paddr1 >> TARGET_PAGE_BITS;
750
751 assert(paddr0 != -1);
752 if (unlikely(paddr1 != -1) && pindex0 != pindex1) {
753 tb_page_remove(page_find_alloc(pindex1, false), tb);
754 }
755 tb_page_remove(page_find_alloc(pindex0, false), tb);
756 }
757 #endif /* CONFIG_USER_ONLY */
758
759 /* flush all the translation blocks */
do_tb_flush(CPUState * cpu,run_on_cpu_data tb_flush_count)760 static void do_tb_flush(CPUState *cpu, run_on_cpu_data tb_flush_count)
761 {
762 bool did_flush = false;
763
764 mmap_lock();
765 /* If it is already been done on request of another CPU, just retry. */
766 if (tb_ctx.tb_flush_count != tb_flush_count.host_int) {
767 goto done;
768 }
769 did_flush = true;
770
771 CPU_FOREACH(cpu) {
772 tcg_flush_jmp_cache(cpu);
773 }
774
775 qht_reset_size(&tb_ctx.htable, CODE_GEN_HTABLE_SIZE);
776 tb_remove_all();
777
778 tcg_region_reset_all();
779 /* XXX: flush processor icache at this point if cache flush is expensive */
780 qatomic_inc(&tb_ctx.tb_flush_count);
781
782 done:
783 mmap_unlock();
784 if (did_flush) {
785 qemu_plugin_flush_cb();
786 }
787 }
788
tb_flush(CPUState * cpu)789 void tb_flush(CPUState *cpu)
790 {
791 if (tcg_enabled()) {
792 unsigned tb_flush_count = qatomic_read(&tb_ctx.tb_flush_count);
793
794 if (cpu_in_serial_context(cpu)) {
795 do_tb_flush(cpu, RUN_ON_CPU_HOST_INT(tb_flush_count));
796 } else {
797 async_safe_run_on_cpu(cpu, do_tb_flush,
798 RUN_ON_CPU_HOST_INT(tb_flush_count));
799 }
800 }
801 }
802
803 /* remove @orig from its @n_orig-th jump list */
tb_remove_from_jmp_list(TranslationBlock * orig,int n_orig)804 static inline void tb_remove_from_jmp_list(TranslationBlock *orig, int n_orig)
805 {
806 uintptr_t ptr, ptr_locked;
807 TranslationBlock *dest;
808 TranslationBlock *tb;
809 uintptr_t *pprev;
810 int n;
811
812 /* mark the LSB of jmp_dest[] so that no further jumps can be inserted */
813 ptr = qatomic_or_fetch(&orig->jmp_dest[n_orig], 1);
814 dest = (TranslationBlock *)(ptr & ~1);
815 if (dest == NULL) {
816 return;
817 }
818
819 qemu_spin_lock(&dest->jmp_lock);
820 /*
821 * While acquiring the lock, the jump might have been removed if the
822 * destination TB was invalidated; check again.
823 */
824 ptr_locked = qatomic_read(&orig->jmp_dest[n_orig]);
825 if (ptr_locked != ptr) {
826 qemu_spin_unlock(&dest->jmp_lock);
827 /*
828 * The only possibility is that the jump was unlinked via
829 * tb_jump_unlink(dest). Seeing here another destination would be a bug,
830 * because we set the LSB above.
831 */
832 g_assert(ptr_locked == 1 && dest->cflags & CF_INVALID);
833 return;
834 }
835 /*
836 * We first acquired the lock, and since the destination pointer matches,
837 * we know for sure that @orig is in the jmp list.
838 */
839 pprev = &dest->jmp_list_head;
840 TB_FOR_EACH_JMP(dest, tb, n) {
841 if (tb == orig && n == n_orig) {
842 *pprev = tb->jmp_list_next[n];
843 /* no need to set orig->jmp_dest[n]; setting the LSB was enough */
844 qemu_spin_unlock(&dest->jmp_lock);
845 return;
846 }
847 pprev = &tb->jmp_list_next[n];
848 }
849 g_assert_not_reached();
850 }
851
852 /*
853 * Reset the jump entry 'n' of a TB so that it is not chained to another TB.
854 */
tb_reset_jump(TranslationBlock * tb,int n)855 void tb_reset_jump(TranslationBlock *tb, int n)
856 {
857 uintptr_t addr = (uintptr_t)(tb->tc.ptr + tb->jmp_reset_offset[n]);
858 tb_set_jmp_target(tb, n, addr);
859 }
860
861 /* remove any jumps to the TB */
tb_jmp_unlink(TranslationBlock * dest)862 static inline void tb_jmp_unlink(TranslationBlock *dest)
863 {
864 TranslationBlock *tb;
865 int n;
866
867 qemu_spin_lock(&dest->jmp_lock);
868
869 TB_FOR_EACH_JMP(dest, tb, n) {
870 tb_reset_jump(tb, n);
871 qatomic_and(&tb->jmp_dest[n], (uintptr_t)NULL | 1);
872 /* No need to clear the list entry; setting the dest ptr is enough */
873 }
874 dest->jmp_list_head = (uintptr_t)NULL;
875
876 qemu_spin_unlock(&dest->jmp_lock);
877 }
878
tb_jmp_cache_inval_tb(TranslationBlock * tb)879 static void tb_jmp_cache_inval_tb(TranslationBlock *tb)
880 {
881 CPUState *cpu;
882
883 if (tb_cflags(tb) & CF_PCREL) {
884 /* A TB may be at any virtual address */
885 CPU_FOREACH(cpu) {
886 tcg_flush_jmp_cache(cpu);
887 }
888 } else {
889 uint32_t h = tb_jmp_cache_hash_func(tb->pc);
890
891 CPU_FOREACH(cpu) {
892 CPUJumpCache *jc = cpu->tb_jmp_cache;
893
894 if (qatomic_read(&jc->array[h].tb) == tb) {
895 qatomic_set(&jc->array[h].tb, NULL);
896 }
897 }
898 }
899 }
900
901 /*
902 * In user-mode, call with mmap_lock held.
903 * In !user-mode, if @rm_from_page_list is set, call with the TB's pages'
904 * locks held.
905 */
do_tb_phys_invalidate(TranslationBlock * tb,bool rm_from_page_list)906 static void do_tb_phys_invalidate(TranslationBlock *tb, bool rm_from_page_list)
907 {
908 uint32_t h;
909 tb_page_addr_t phys_pc;
910 uint32_t orig_cflags = tb_cflags(tb);
911
912 assert_memory_lock();
913
914 /* make sure no further incoming jumps will be chained to this TB */
915 qemu_spin_lock(&tb->jmp_lock);
916 qatomic_set(&tb->cflags, tb->cflags | CF_INVALID);
917 qemu_spin_unlock(&tb->jmp_lock);
918
919 /* remove the TB from the hash list */
920 phys_pc = tb_page_addr0(tb);
921 h = tb_hash_func(phys_pc, (orig_cflags & CF_PCREL ? 0 : tb->pc),
922 tb->flags, tb->cs_base, orig_cflags);
923 if (!qht_remove(&tb_ctx.htable, tb, h)) {
924 return;
925 }
926
927 /* remove the TB from the page list */
928 if (rm_from_page_list) {
929 tb_remove(tb);
930 }
931
932 /* remove the TB from the hash list */
933 tb_jmp_cache_inval_tb(tb);
934
935 /* suppress this TB from the two jump lists */
936 tb_remove_from_jmp_list(tb, 0);
937 tb_remove_from_jmp_list(tb, 1);
938
939 /* suppress any remaining jumps to this TB */
940 tb_jmp_unlink(tb);
941
942 qatomic_set(&tb_ctx.tb_phys_invalidate_count,
943 tb_ctx.tb_phys_invalidate_count + 1);
944 }
945
tb_phys_invalidate__locked(TranslationBlock * tb)946 static void tb_phys_invalidate__locked(TranslationBlock *tb)
947 {
948 qemu_thread_jit_write();
949 do_tb_phys_invalidate(tb, true);
950 qemu_thread_jit_execute();
951 }
952
953 /*
954 * Invalidate one TB.
955 * Called with mmap_lock held in user-mode.
956 */
tb_phys_invalidate(TranslationBlock * tb,tb_page_addr_t page_addr)957 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
958 {
959 if (page_addr == -1 && tb_page_addr0(tb) != -1) {
960 tb_lock_pages(tb);
961 do_tb_phys_invalidate(tb, true);
962 tb_unlock_pages(tb);
963 } else {
964 do_tb_phys_invalidate(tb, false);
965 }
966 }
967
968 /*
969 * Add a new TB and link it to the physical page tables.
970 * Called with mmap_lock held for user-mode emulation.
971 *
972 * Returns a pointer @tb, or a pointer to an existing TB that matches @tb.
973 * Note that in !user-mode, another thread might have already added a TB
974 * for the same block of guest code that @tb corresponds to. In that case,
975 * the caller should discard the original @tb, and use instead the returned TB.
976 */
tb_link_page(TranslationBlock * tb)977 TranslationBlock *tb_link_page(TranslationBlock *tb)
978 {
979 void *existing_tb = NULL;
980 uint32_t h;
981
982 assert_memory_lock();
983 tcg_debug_assert(!(tb->cflags & CF_INVALID));
984
985 tb_record(tb);
986
987 /* add in the hash table */
988 h = tb_hash_func(tb_page_addr0(tb), (tb->cflags & CF_PCREL ? 0 : tb->pc),
989 tb->flags, tb->cs_base, tb->cflags);
990 qht_insert(&tb_ctx.htable, tb, h, &existing_tb);
991
992 /* remove TB from the page(s) if we couldn't insert it */
993 if (unlikely(existing_tb)) {
994 tb_remove(tb);
995 tb_unlock_pages(tb);
996 return existing_tb;
997 }
998
999 tb_unlock_pages(tb);
1000 return tb;
1001 }
1002
1003 #ifdef CONFIG_USER_ONLY
1004 /*
1005 * Invalidate all TBs which intersect with the target address range.
1006 * Called with mmap_lock held for user-mode emulation.
1007 * NOTE: this function must not be called while a TB is running.
1008 */
tb_invalidate_phys_range(CPUState * cpu,tb_page_addr_t start,tb_page_addr_t last)1009 void tb_invalidate_phys_range(CPUState *cpu, tb_page_addr_t start,
1010 tb_page_addr_t last)
1011 {
1012 TranslationBlock *tb;
1013 PageForEachNext n;
1014
1015 assert_memory_lock();
1016
1017 PAGE_FOR_EACH_TB(start, last, unused, tb, n) {
1018 tb_phys_invalidate__locked(tb);
1019 }
1020 }
1021
1022 /*
1023 * Invalidate all TBs which intersect with the target address page @addr.
1024 * Called with mmap_lock held for user-mode emulation
1025 * NOTE: this function must not be called while a TB is running.
1026 */
tb_invalidate_phys_page(tb_page_addr_t addr)1027 static void tb_invalidate_phys_page(tb_page_addr_t addr)
1028 {
1029 tb_page_addr_t start, last;
1030
1031 start = addr & TARGET_PAGE_MASK;
1032 last = addr | ~TARGET_PAGE_MASK;
1033 tb_invalidate_phys_range(NULL, start, last);
1034 }
1035
1036 /*
1037 * Called with mmap_lock held. If pc is not 0 then it indicates the
1038 * host PC of the faulting store instruction that caused this invalidate.
1039 * Returns true if the caller needs to abort execution of the current TB.
1040 */
tb_invalidate_phys_page_unwind(CPUState * cpu,tb_page_addr_t addr,uintptr_t pc)1041 bool tb_invalidate_phys_page_unwind(CPUState *cpu, tb_page_addr_t addr,
1042 uintptr_t pc)
1043 {
1044 TranslationBlock *current_tb;
1045 bool current_tb_modified;
1046 TranslationBlock *tb;
1047 PageForEachNext n;
1048 tb_page_addr_t last;
1049
1050 /*
1051 * Without precise smc semantics, or when outside of a TB,
1052 * we can skip to invalidate.
1053 */
1054 if (!pc || !cpu || !cpu->cc->tcg_ops->precise_smc) {
1055 tb_invalidate_phys_page(addr);
1056 return false;
1057 }
1058
1059 assert_memory_lock();
1060 current_tb = tcg_tb_lookup(pc);
1061
1062 last = addr | ~TARGET_PAGE_MASK;
1063 addr &= TARGET_PAGE_MASK;
1064 current_tb_modified = false;
1065
1066 PAGE_FOR_EACH_TB(addr, last, unused, tb, n) {
1067 if (current_tb == tb &&
1068 (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) {
1069 /*
1070 * If we are modifying the current TB, we must stop its
1071 * execution. We could be more precise by checking that
1072 * the modification is after the current PC, but it would
1073 * require a specialized function to partially restore
1074 * the CPU state.
1075 */
1076 current_tb_modified = true;
1077 cpu_restore_state_from_tb(cpu, current_tb, pc);
1078 }
1079 tb_phys_invalidate__locked(tb);
1080 }
1081
1082 if (current_tb_modified) {
1083 /* Force execution of one insn next time. */
1084 cpu->cflags_next_tb = 1 | CF_NOIRQ | curr_cflags(cpu);
1085 return true;
1086 }
1087 return false;
1088 }
1089 #else
1090 /*
1091 * @p must be non-NULL.
1092 * Call with all @pages locked.
1093 * (@cpu, @retaddr) may be (NULL, 0) outside of a cpu context,
1094 * in which case precise_smc need not be detected.
1095 */
1096 static void
tb_invalidate_phys_page_range__locked(CPUState * cpu,struct page_collection * pages,PageDesc * p,tb_page_addr_t start,tb_page_addr_t last,uintptr_t retaddr)1097 tb_invalidate_phys_page_range__locked(CPUState *cpu,
1098 struct page_collection *pages,
1099 PageDesc *p, tb_page_addr_t start,
1100 tb_page_addr_t last,
1101 uintptr_t retaddr)
1102 {
1103 TranslationBlock *tb;
1104 PageForEachNext n;
1105 bool current_tb_modified = false;
1106 TranslationBlock *current_tb = NULL;
1107
1108 /* Range may not cross a page. */
1109 tcg_debug_assert(((start ^ last) & TARGET_PAGE_MASK) == 0);
1110
1111 if (retaddr && cpu && cpu->cc->tcg_ops->precise_smc) {
1112 current_tb = tcg_tb_lookup(retaddr);
1113 }
1114
1115 /*
1116 * We remove all the TBs in the range [start, last].
1117 * XXX: see if in some cases it could be faster to invalidate all the code
1118 */
1119 PAGE_FOR_EACH_TB(start, last, p, tb, n) {
1120 tb_page_addr_t tb_start, tb_last;
1121
1122 /* NOTE: this is subtle as a TB may span two physical pages */
1123 tb_start = tb_page_addr0(tb);
1124 tb_last = tb_start + tb->size - 1;
1125 if (n == 0) {
1126 tb_last = MIN(tb_last, tb_start | ~TARGET_PAGE_MASK);
1127 } else {
1128 tb_start = tb_page_addr1(tb);
1129 tb_last = tb_start + (tb_last & ~TARGET_PAGE_MASK);
1130 }
1131 if (!(tb_last < start || tb_start > last)) {
1132 if (unlikely(current_tb == tb) &&
1133 (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) {
1134 /*
1135 * If we are modifying the current TB, we must stop
1136 * its execution. We could be more precise by checking
1137 * that the modification is after the current PC, but it
1138 * would require a specialized function to partially
1139 * restore the CPU state.
1140 */
1141 current_tb_modified = true;
1142 cpu_restore_state_from_tb(cpu, current_tb, retaddr);
1143 }
1144 tb_phys_invalidate__locked(tb);
1145 }
1146 }
1147
1148 /* if no code remaining, no need to continue to use slow writes */
1149 if (!p->first_tb) {
1150 tlb_unprotect_code(start);
1151 }
1152
1153 if (unlikely(current_tb_modified)) {
1154 page_collection_unlock(pages);
1155 /* Force execution of one insn next time. */
1156 cpu->cflags_next_tb = 1 | CF_NOIRQ | curr_cflags(cpu);
1157 mmap_unlock();
1158 cpu_loop_exit_noexc(cpu);
1159 }
1160 }
1161
1162 /*
1163 * Invalidate all TBs which intersect with the target physical address range
1164 * [start;last]. NOTE: start and end may refer to *different* physical pages.
1165 * 'is_cpu_write_access' should be true if called from a real cpu write
1166 * access: the virtual CPU will exit the current TB if code is modified inside
1167 * this TB.
1168 */
tb_invalidate_phys_range(CPUState * cpu,tb_page_addr_t start,tb_page_addr_t last)1169 void tb_invalidate_phys_range(CPUState *cpu, tb_page_addr_t start,
1170 tb_page_addr_t last)
1171 {
1172 struct page_collection *pages;
1173 tb_page_addr_t index, index_last;
1174
1175 pages = page_collection_lock(start, last);
1176
1177 index_last = last >> TARGET_PAGE_BITS;
1178 for (index = start >> TARGET_PAGE_BITS; index <= index_last; index++) {
1179 PageDesc *pd = page_find(index);
1180 tb_page_addr_t page_start, page_last;
1181
1182 if (pd == NULL) {
1183 continue;
1184 }
1185 assert_page_locked(pd);
1186 page_start = index << TARGET_PAGE_BITS;
1187 page_last = page_start | ~TARGET_PAGE_MASK;
1188 page_last = MIN(page_last, last);
1189 tb_invalidate_phys_page_range__locked(cpu, pages, pd,
1190 page_start, page_last, 0);
1191 }
1192 page_collection_unlock(pages);
1193 }
1194
1195 /*
1196 * len must be <= 8 and start must be a multiple of len.
1197 * Called via softmmu_template.h when code areas are written to with
1198 * iothread mutex not held.
1199 */
tb_invalidate_phys_range_fast(CPUState * cpu,ram_addr_t start,unsigned len,uintptr_t ra)1200 void tb_invalidate_phys_range_fast(CPUState *cpu, ram_addr_t start,
1201 unsigned len, uintptr_t ra)
1202 {
1203 PageDesc *p = page_find(start >> TARGET_PAGE_BITS);
1204
1205 if (p) {
1206 ram_addr_t last = start + len - 1;
1207 struct page_collection *pages = page_collection_lock(start, last);
1208
1209 tb_invalidate_phys_page_range__locked(cpu, pages, p,
1210 start, last, ra);
1211 page_collection_unlock(pages);
1212 }
1213 }
1214
1215 #endif /* CONFIG_USER_ONLY */
1216