xref: /qemu/include/qemu/coroutine.h (revision 65cb7129f4160c7e07a0da107f888ec73ae96776)
1 /*
2  * QEMU coroutine implementation
3  *
4  * Copyright IBM, Corp. 2011
5  *
6  * Authors:
7  *  Stefan Hajnoczi    <stefanha@linux.vnet.ibm.com>
8  *  Kevin Wolf         <kwolf@redhat.com>
9  *
10  * This work is licensed under the terms of the GNU LGPL, version 2 or later.
11  * See the COPYING.LIB file in the top-level directory.
12  *
13  */
14 
15 #ifndef QEMU_COROUTINE_H
16 #define QEMU_COROUTINE_H
17 
18 #include "qemu/coroutine-core.h"
19 #include "qemu/atomic.h"
20 #include "qemu/queue.h"
21 #include "qemu/timer.h"
22 
23 /**
24  * Coroutines are a mechanism for stack switching and can be used for
25  * cooperative userspace threading.  These functions provide a simple but
26  * useful flavor of coroutines that is suitable for writing sequential code,
27  * rather than callbacks, for operations that need to give up control while
28  * waiting for events to complete.
29  *
30  * These functions are re-entrant and may be used outside the BQL.
31  *
32  * Functions that execute in coroutine context cannot be called
33  * directly from normal functions.  Use @coroutine_fn to mark such
34  * functions.  For example:
35  *
36  *   static void coroutine_fn foo(void) {
37  *       ....
38  *   }
39  *
40  * In the future it would be nice to have the compiler or a static
41  * checker catch misuse of such functions.  This annotation might make
42  * it possible and in the meantime it serves as documentation.
43  */
44 
45 /**
46  * Provides a mutex that can be used to synchronise coroutines
47  */
48 struct CoWaitRecord;
49 struct CoMutex {
50     /* Count of pending lockers; 0 for a free mutex, 1 for an
51      * uncontended mutex.
52      */
53     unsigned locked;
54 
55     /* Context that is holding the lock.  Useful to avoid spinning
56      * when two coroutines on the same AioContext try to get the lock. :)
57      */
58     AioContext *ctx;
59 
60     /* A queue of waiters.  Elements are added atomically in front of
61      * from_push.  to_pop is only populated, and popped from, by whoever
62      * is in charge of the next wakeup.  This can be an unlocker or,
63      * through the handoff protocol, a locker that is about to go to sleep.
64      */
65     QSLIST_HEAD(, CoWaitRecord) from_push, to_pop;
66 
67     unsigned handoff, sequence;
68 
69     Coroutine *holder;
70 };
71 
72 /**
73  * Assert that the current coroutine holds @mutex.
74  */
qemu_co_mutex_assert_locked(CoMutex * mutex)75 static inline coroutine_fn void qemu_co_mutex_assert_locked(CoMutex *mutex)
76 {
77     /*
78      * mutex->holder doesn't need any synchronisation if the assertion holds
79      * true because the mutex protects it. If it doesn't hold true, we still
80      * don't mind if another thread takes or releases mutex behind our back,
81      * because the condition will be false no matter whether we read NULL or
82      * the pointer for any other coroutine.
83      */
84     assert(qatomic_read(&mutex->locked) &&
85            mutex->holder == qemu_coroutine_self());
86 }
87 
88 #include "qemu/lockable.h"
89 
90 /**
91  * CoQueues are a mechanism to queue coroutines in order to continue executing
92  * them later.  They are similar to condition variables, but they need help
93  * from an external mutex in order to maintain thread-safety.
94  */
95 typedef struct CoQueue {
96     QSIMPLEQ_HEAD(, Coroutine) entries;
97 } CoQueue;
98 
99 /**
100  * Initialise a CoQueue. This must be called before any other operation is used
101  * on the CoQueue.
102  */
103 void qemu_co_queue_init(CoQueue *queue);
104 
105 typedef enum {
106     /*
107      * Enqueue at front instead of back. Use this to re-queue a request when
108      * its wait condition is not satisfied after being woken up.
109      */
110     CO_QUEUE_WAIT_FRONT = 0x1,
111 } CoQueueWaitFlags;
112 
113 /**
114  * Adds the current coroutine to the CoQueue and transfers control to the
115  * caller of the coroutine.  The mutex is unlocked during the wait and
116  * locked again afterwards.
117  */
118 #define qemu_co_queue_wait(queue, lock) \
119     qemu_co_queue_wait_impl(queue, QEMU_MAKE_LOCKABLE(lock), 0)
120 #define qemu_co_queue_wait_flags(queue, lock, flags) \
121     qemu_co_queue_wait_impl(queue, QEMU_MAKE_LOCKABLE(lock), (flags))
122 void coroutine_fn qemu_co_queue_wait_impl(CoQueue *queue, QemuLockable *lock,
123                                           CoQueueWaitFlags flags);
124 
125 /**
126  * Removes the next coroutine from the CoQueue, and queue it to run after
127  * the currently-running coroutine yields.
128  * Returns true if a coroutine was removed, false if the queue is empty.
129  * Used from coroutine context, use qemu_co_enter_next outside.
130  */
131 bool coroutine_fn qemu_co_queue_next(CoQueue *queue);
132 
133 /**
134  * Empties the CoQueue and queues the coroutine to run after
135  * the currently-running coroutine yields.
136  * Used from coroutine context, use qemu_co_enter_all outside.
137  */
138 void coroutine_fn qemu_co_queue_restart_all(CoQueue *queue);
139 
140 /**
141  * Removes the next coroutine from the CoQueue, and wake it up.  Unlike
142  * qemu_co_queue_next, this function releases the lock during aio_co_wake
143  * because it is meant to be used outside coroutine context; in that case, the
144  * coroutine is entered immediately, before qemu_co_enter_next returns.
145  *
146  * If used in coroutine context, qemu_co_enter_next is equivalent to
147  * qemu_co_queue_next.
148  */
149 #define qemu_co_enter_next(queue, lock) \
150     qemu_co_enter_next_impl(queue, QEMU_MAKE_LOCKABLE(lock))
151 bool qemu_co_enter_next_impl(CoQueue *queue, QemuLockable *lock);
152 
153 /**
154  * Empties the CoQueue, waking the waiting coroutine one at a time.  Unlike
155  * qemu_co_queue_all, this function releases the lock during aio_co_wake
156  * because it is meant to be used outside coroutine context; in that case, the
157  * coroutine is entered immediately, before qemu_co_enter_all returns.
158  *
159  * If used in coroutine context, qemu_co_enter_all is equivalent to
160  * qemu_co_queue_all.
161  */
162 #define qemu_co_enter_all(queue, lock) \
163     qemu_co_enter_all_impl(queue, QEMU_MAKE_LOCKABLE(lock))
164 void qemu_co_enter_all_impl(CoQueue *queue, QemuLockable *lock);
165 
166 /**
167  * Checks if the CoQueue is empty.
168  */
169 bool qemu_co_queue_empty(CoQueue *queue);
170 
171 
172 typedef struct CoRwTicket CoRwTicket;
173 typedef struct CoRwlock {
174     CoMutex mutex;
175 
176     /* Number of readers, or -1 if owned for writing.  */
177     int owners;
178 
179     /* Waiting coroutines.  */
180     QSIMPLEQ_HEAD(, CoRwTicket) tickets;
181 } CoRwlock;
182 
183 /**
184  * Initialises a CoRwlock. This must be called before any other operation
185  * is used on the CoRwlock
186  */
187 void qemu_co_rwlock_init(CoRwlock *lock);
188 
189 /**
190  * Read locks the CoRwlock. If the lock cannot be taken immediately because
191  * of a parallel writer, control is transferred to the caller of the current
192  * coroutine.
193  */
194 void coroutine_fn qemu_co_rwlock_rdlock(CoRwlock *lock);
195 
196 /**
197  * Write Locks the CoRwlock from a reader.  This is a bit more efficient than
198  * @qemu_co_rwlock_unlock followed by a separate @qemu_co_rwlock_wrlock.
199  * Note that if the lock cannot be upgraded immediately, control is transferred
200  * to the caller of the current coroutine; another writer might run while
201  * @qemu_co_rwlock_upgrade blocks.
202  */
203 void coroutine_fn qemu_co_rwlock_upgrade(CoRwlock *lock);
204 
205 /**
206  * Downgrades a write-side critical section to a reader.  Downgrading with
207  * @qemu_co_rwlock_downgrade never blocks, unlike @qemu_co_rwlock_unlock
208  * followed by @qemu_co_rwlock_rdlock.  This makes it more efficient, but
209  * may also sometimes be necessary for correctness.
210  */
211 void coroutine_fn qemu_co_rwlock_downgrade(CoRwlock *lock);
212 
213 /**
214  * Write Locks the mutex. If the lock cannot be taken immediately because
215  * of a parallel reader, control is transferred to the caller of the current
216  * coroutine.
217  */
218 void coroutine_fn qemu_co_rwlock_wrlock(CoRwlock *lock);
219 
220 /**
221  * Unlocks the read/write lock and schedules the next coroutine that was
222  * waiting for this lock to be run.
223  */
224 void coroutine_fn qemu_co_rwlock_unlock(CoRwlock *lock);
225 
226 typedef struct QemuCoSleep {
227     Coroutine *to_wake;
228 } QemuCoSleep;
229 
230 /**
231  * Yield the coroutine for a given duration. Initializes @w so that,
232  * during this yield, it can be passed to qemu_co_sleep_wake() to
233  * terminate the sleep.
234  */
235 void coroutine_fn qemu_co_sleep_ns_wakeable(QemuCoSleep *w,
236                                             QEMUClockType type, int64_t ns);
237 
238 /**
239  * Yield the coroutine until the next call to qemu_co_sleep_wake.
240  */
241 void coroutine_fn qemu_co_sleep(QemuCoSleep *w);
242 
qemu_co_sleep_ns(QEMUClockType type,int64_t ns)243 static inline void coroutine_fn qemu_co_sleep_ns(QEMUClockType type, int64_t ns)
244 {
245     QemuCoSleep w = { 0 };
246     qemu_co_sleep_ns_wakeable(&w, type, ns);
247 }
248 
249 typedef void CleanupFunc(void *opaque);
250 /**
251  * Run entry in a coroutine and start timer. Wait for entry to finish or for
252  * timer to elapse, what happen first. If entry finished, return 0, if timer
253  * elapsed earlier, return -ETIMEDOUT.
254  *
255  * Be careful, entry execution is not canceled, user should handle it somehow.
256  * If @clean is provided, it's called after coroutine finish if timeout
257  * happened.
258  */
259 int coroutine_fn qemu_co_timeout(CoroutineEntry *entry, void *opaque,
260                                  uint64_t timeout_ns, CleanupFunc clean);
261 
262 /**
263  * Wake a coroutine if it is sleeping in qemu_co_sleep_ns. The timer will be
264  * deleted. @sleep_state must be the variable whose address was given to
265  * qemu_co_sleep_ns() and should be checked to be non-NULL before calling
266  * qemu_co_sleep_wake().
267  */
268 void qemu_co_sleep_wake(QemuCoSleep *w);
269 
270 /**
271  * Yield until a file descriptor becomes readable
272  *
273  * Note that this function clobbers the handlers for the file descriptor.
274  */
275 void coroutine_fn yield_until_fd_readable(int fd);
276 
277 /**
278  * Increase coroutine pool size
279  */
280 void qemu_coroutine_inc_pool_size(unsigned int additional_pool_size);
281 
282 /**
283  * Decrease coroutine pool size
284  */
285 void qemu_coroutine_dec_pool_size(unsigned int additional_pool_size);
286 
287 /**
288  * Sends a (part of) iovec down a socket, yielding when the socket is full, or
289  * Receives data into a (part of) iovec from a socket,
290  * yielding when there is no data in the socket.
291  * The same interface as qemu_sendv_recvv(), with added yielding.
292  * XXX should mark these as coroutine_fn
293  */
294 ssize_t coroutine_fn qemu_co_sendv_recvv(int sockfd, struct iovec *iov,
295                                          unsigned iov_cnt, size_t offset,
296                                          size_t bytes, bool do_send);
297 #define qemu_co_recvv(sockfd, iov, iov_cnt, offset, bytes) \
298   qemu_co_sendv_recvv(sockfd, iov, iov_cnt, offset, bytes, false)
299 #define qemu_co_sendv(sockfd, iov, iov_cnt, offset, bytes) \
300   qemu_co_sendv_recvv(sockfd, iov, iov_cnt, offset, bytes, true)
301 
302 /**
303  * The same as above, but with just a single buffer
304  */
305 ssize_t coroutine_fn qemu_co_send_recv(int sockfd, void *buf, size_t bytes,
306                                        bool do_send);
307 #define qemu_co_recv(sockfd, buf, bytes) \
308   qemu_co_send_recv(sockfd, buf, bytes, false)
309 #define qemu_co_send(sockfd, buf, bytes) \
310   qemu_co_send_recv(sockfd, buf, bytes, true)
311 
312 #endif /* QEMU_COROUTINE_H */
313