1 /*
2  * Procedures for creating, accessing and interpreting the device tree.
3  *
4  * Paul Mackerras	August 1996.
5  * Copyright (C) 1996-2005 Paul Mackerras.
6  *
7  *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8  *    {engebret|bergner}@us.ibm.com
9  *
10  *  Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
11  *
12  *  Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
13  *  Grant Likely.
14  *
15  *      This program is free software; you can redistribute it and/or
16  *      modify it under the terms of the GNU General Public License
17  *      as published by the Free Software Foundation; either version
18  *      2 of the License, or (at your option) any later version.
19  */
20 #include <linux/ctype.h>
21 #include <linux/module.h>
22 #include <linux/of.h>
23 #include <linux/spinlock.h>
24 #include <linux/slab.h>
25 #include <linux/proc_fs.h>
26 
27 /**
28  * struct alias_prop - Alias property in 'aliases' node
29  * @link:	List node to link the structure in aliases_lookup list
30  * @alias:	Alias property name
31  * @np:		Pointer to device_node that the alias stands for
32  * @id:		Index value from end of alias name
33  * @stem:	Alias string without the index
34  *
35  * The structure represents one alias property of 'aliases' node as
36  * an entry in aliases_lookup list.
37  */
38 struct alias_prop {
39 	struct list_head link;
40 	const char *alias;
41 	struct device_node *np;
42 	int id;
43 	char stem[0];
44 };
45 
46 static LIST_HEAD(aliases_lookup);
47 
48 struct device_node *allnodes;
49 struct device_node *of_chosen;
50 struct device_node *of_aliases;
51 
52 static DEFINE_MUTEX(of_aliases_mutex);
53 
54 /* use when traversing tree through the allnext, child, sibling,
55  * or parent members of struct device_node.
56  */
57 DEFINE_RWLOCK(devtree_lock);
58 
of_n_addr_cells(struct device_node * np)59 int of_n_addr_cells(struct device_node *np)
60 {
61 	const __be32 *ip;
62 
63 	do {
64 		if (np->parent)
65 			np = np->parent;
66 		ip = of_get_property(np, "#address-cells", NULL);
67 		if (ip)
68 			return be32_to_cpup(ip);
69 	} while (np->parent);
70 	/* No #address-cells property for the root node */
71 	return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
72 }
73 EXPORT_SYMBOL(of_n_addr_cells);
74 
of_n_size_cells(struct device_node * np)75 int of_n_size_cells(struct device_node *np)
76 {
77 	const __be32 *ip;
78 
79 	do {
80 		if (np->parent)
81 			np = np->parent;
82 		ip = of_get_property(np, "#size-cells", NULL);
83 		if (ip)
84 			return be32_to_cpup(ip);
85 	} while (np->parent);
86 	/* No #size-cells property for the root node */
87 	return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
88 }
89 EXPORT_SYMBOL(of_n_size_cells);
90 
91 #if !defined(CONFIG_SPARC)   /* SPARC doesn't do ref counting (yet) */
92 /**
93  *	of_node_get - Increment refcount of a node
94  *	@node:	Node to inc refcount, NULL is supported to
95  *		simplify writing of callers
96  *
97  *	Returns node.
98  */
of_node_get(struct device_node * node)99 struct device_node *of_node_get(struct device_node *node)
100 {
101 	if (node)
102 		kref_get(&node->kref);
103 	return node;
104 }
105 EXPORT_SYMBOL(of_node_get);
106 
kref_to_device_node(struct kref * kref)107 static inline struct device_node *kref_to_device_node(struct kref *kref)
108 {
109 	return container_of(kref, struct device_node, kref);
110 }
111 
112 /**
113  *	of_node_release - release a dynamically allocated node
114  *	@kref:  kref element of the node to be released
115  *
116  *	In of_node_put() this function is passed to kref_put()
117  *	as the destructor.
118  */
of_node_release(struct kref * kref)119 static void of_node_release(struct kref *kref)
120 {
121 	struct device_node *node = kref_to_device_node(kref);
122 	struct property *prop = node->properties;
123 
124 	/* We should never be releasing nodes that haven't been detached. */
125 	if (!of_node_check_flag(node, OF_DETACHED)) {
126 		pr_err("ERROR: Bad of_node_put() on %s\n", node->full_name);
127 		dump_stack();
128 		kref_init(&node->kref);
129 		return;
130 	}
131 
132 	if (!of_node_check_flag(node, OF_DYNAMIC))
133 		return;
134 
135 	while (prop) {
136 		struct property *next = prop->next;
137 		kfree(prop->name);
138 		kfree(prop->value);
139 		kfree(prop);
140 		prop = next;
141 
142 		if (!prop) {
143 			prop = node->deadprops;
144 			node->deadprops = NULL;
145 		}
146 	}
147 	kfree(node->full_name);
148 	kfree(node->data);
149 	kfree(node);
150 }
151 
152 /**
153  *	of_node_put - Decrement refcount of a node
154  *	@node:	Node to dec refcount, NULL is supported to
155  *		simplify writing of callers
156  *
157  */
of_node_put(struct device_node * node)158 void of_node_put(struct device_node *node)
159 {
160 	if (node)
161 		kref_put(&node->kref, of_node_release);
162 }
163 EXPORT_SYMBOL(of_node_put);
164 #endif /* !CONFIG_SPARC */
165 
of_find_property(const struct device_node * np,const char * name,int * lenp)166 struct property *of_find_property(const struct device_node *np,
167 				  const char *name,
168 				  int *lenp)
169 {
170 	struct property *pp;
171 
172 	if (!np)
173 		return NULL;
174 
175 	read_lock(&devtree_lock);
176 	for (pp = np->properties; pp != 0; pp = pp->next) {
177 		if (of_prop_cmp(pp->name, name) == 0) {
178 			if (lenp != 0)
179 				*lenp = pp->length;
180 			break;
181 		}
182 	}
183 	read_unlock(&devtree_lock);
184 
185 	return pp;
186 }
187 EXPORT_SYMBOL(of_find_property);
188 
189 /**
190  * of_find_all_nodes - Get next node in global list
191  * @prev:	Previous node or NULL to start iteration
192  *		of_node_put() will be called on it
193  *
194  * Returns a node pointer with refcount incremented, use
195  * of_node_put() on it when done.
196  */
of_find_all_nodes(struct device_node * prev)197 struct device_node *of_find_all_nodes(struct device_node *prev)
198 {
199 	struct device_node *np;
200 
201 	read_lock(&devtree_lock);
202 	np = prev ? prev->allnext : allnodes;
203 	for (; np != NULL; np = np->allnext)
204 		if (of_node_get(np))
205 			break;
206 	of_node_put(prev);
207 	read_unlock(&devtree_lock);
208 	return np;
209 }
210 EXPORT_SYMBOL(of_find_all_nodes);
211 
212 /*
213  * Find a property with a given name for a given node
214  * and return the value.
215  */
of_get_property(const struct device_node * np,const char * name,int * lenp)216 const void *of_get_property(const struct device_node *np, const char *name,
217 			 int *lenp)
218 {
219 	struct property *pp = of_find_property(np, name, lenp);
220 
221 	return pp ? pp->value : NULL;
222 }
223 EXPORT_SYMBOL(of_get_property);
224 
225 /** Checks if the given "compat" string matches one of the strings in
226  * the device's "compatible" property
227  */
of_device_is_compatible(const struct device_node * device,const char * compat)228 int of_device_is_compatible(const struct device_node *device,
229 		const char *compat)
230 {
231 	const char* cp;
232 	int cplen, l;
233 
234 	cp = of_get_property(device, "compatible", &cplen);
235 	if (cp == NULL)
236 		return 0;
237 	while (cplen > 0) {
238 		if (of_compat_cmp(cp, compat, strlen(compat)) == 0)
239 			return 1;
240 		l = strlen(cp) + 1;
241 		cp += l;
242 		cplen -= l;
243 	}
244 
245 	return 0;
246 }
247 EXPORT_SYMBOL(of_device_is_compatible);
248 
249 /**
250  * of_machine_is_compatible - Test root of device tree for a given compatible value
251  * @compat: compatible string to look for in root node's compatible property.
252  *
253  * Returns true if the root node has the given value in its
254  * compatible property.
255  */
of_machine_is_compatible(const char * compat)256 int of_machine_is_compatible(const char *compat)
257 {
258 	struct device_node *root;
259 	int rc = 0;
260 
261 	root = of_find_node_by_path("/");
262 	if (root) {
263 		rc = of_device_is_compatible(root, compat);
264 		of_node_put(root);
265 	}
266 	return rc;
267 }
268 EXPORT_SYMBOL(of_machine_is_compatible);
269 
270 /**
271  *  of_device_is_available - check if a device is available for use
272  *
273  *  @device: Node to check for availability
274  *
275  *  Returns 1 if the status property is absent or set to "okay" or "ok",
276  *  0 otherwise
277  */
of_device_is_available(const struct device_node * device)278 int of_device_is_available(const struct device_node *device)
279 {
280 	const char *status;
281 	int statlen;
282 
283 	status = of_get_property(device, "status", &statlen);
284 	if (status == NULL)
285 		return 1;
286 
287 	if (statlen > 0) {
288 		if (!strcmp(status, "okay") || !strcmp(status, "ok"))
289 			return 1;
290 	}
291 
292 	return 0;
293 }
294 EXPORT_SYMBOL(of_device_is_available);
295 
296 /**
297  *	of_get_parent - Get a node's parent if any
298  *	@node:	Node to get parent
299  *
300  *	Returns a node pointer with refcount incremented, use
301  *	of_node_put() on it when done.
302  */
of_get_parent(const struct device_node * node)303 struct device_node *of_get_parent(const struct device_node *node)
304 {
305 	struct device_node *np;
306 
307 	if (!node)
308 		return NULL;
309 
310 	read_lock(&devtree_lock);
311 	np = of_node_get(node->parent);
312 	read_unlock(&devtree_lock);
313 	return np;
314 }
315 EXPORT_SYMBOL(of_get_parent);
316 
317 /**
318  *	of_get_next_parent - Iterate to a node's parent
319  *	@node:	Node to get parent of
320  *
321  * 	This is like of_get_parent() except that it drops the
322  * 	refcount on the passed node, making it suitable for iterating
323  * 	through a node's parents.
324  *
325  *	Returns a node pointer with refcount incremented, use
326  *	of_node_put() on it when done.
327  */
of_get_next_parent(struct device_node * node)328 struct device_node *of_get_next_parent(struct device_node *node)
329 {
330 	struct device_node *parent;
331 
332 	if (!node)
333 		return NULL;
334 
335 	read_lock(&devtree_lock);
336 	parent = of_node_get(node->parent);
337 	of_node_put(node);
338 	read_unlock(&devtree_lock);
339 	return parent;
340 }
341 
342 /**
343  *	of_get_next_child - Iterate a node childs
344  *	@node:	parent node
345  *	@prev:	previous child of the parent node, or NULL to get first
346  *
347  *	Returns a node pointer with refcount incremented, use
348  *	of_node_put() on it when done.
349  */
of_get_next_child(const struct device_node * node,struct device_node * prev)350 struct device_node *of_get_next_child(const struct device_node *node,
351 	struct device_node *prev)
352 {
353 	struct device_node *next;
354 
355 	read_lock(&devtree_lock);
356 	next = prev ? prev->sibling : node->child;
357 	for (; next; next = next->sibling)
358 		if (of_node_get(next))
359 			break;
360 	of_node_put(prev);
361 	read_unlock(&devtree_lock);
362 	return next;
363 }
364 EXPORT_SYMBOL(of_get_next_child);
365 
366 /**
367  *	of_find_node_by_path - Find a node matching a full OF path
368  *	@path:	The full path to match
369  *
370  *	Returns a node pointer with refcount incremented, use
371  *	of_node_put() on it when done.
372  */
of_find_node_by_path(const char * path)373 struct device_node *of_find_node_by_path(const char *path)
374 {
375 	struct device_node *np = allnodes;
376 
377 	read_lock(&devtree_lock);
378 	for (; np; np = np->allnext) {
379 		if (np->full_name && (of_node_cmp(np->full_name, path) == 0)
380 		    && of_node_get(np))
381 			break;
382 	}
383 	read_unlock(&devtree_lock);
384 	return np;
385 }
386 EXPORT_SYMBOL(of_find_node_by_path);
387 
388 /**
389  *	of_find_node_by_name - Find a node by its "name" property
390  *	@from:	The node to start searching from or NULL, the node
391  *		you pass will not be searched, only the next one
392  *		will; typically, you pass what the previous call
393  *		returned. of_node_put() will be called on it
394  *	@name:	The name string to match against
395  *
396  *	Returns a node pointer with refcount incremented, use
397  *	of_node_put() on it when done.
398  */
of_find_node_by_name(struct device_node * from,const char * name)399 struct device_node *of_find_node_by_name(struct device_node *from,
400 	const char *name)
401 {
402 	struct device_node *np;
403 
404 	read_lock(&devtree_lock);
405 	np = from ? from->allnext : allnodes;
406 	for (; np; np = np->allnext)
407 		if (np->name && (of_node_cmp(np->name, name) == 0)
408 		    && of_node_get(np))
409 			break;
410 	of_node_put(from);
411 	read_unlock(&devtree_lock);
412 	return np;
413 }
414 EXPORT_SYMBOL(of_find_node_by_name);
415 
416 /**
417  *	of_find_node_by_type - Find a node by its "device_type" property
418  *	@from:	The node to start searching from, or NULL to start searching
419  *		the entire device tree. The node you pass will not be
420  *		searched, only the next one will; typically, you pass
421  *		what the previous call returned. of_node_put() will be
422  *		called on from for you.
423  *	@type:	The type string to match against
424  *
425  *	Returns a node pointer with refcount incremented, use
426  *	of_node_put() on it when done.
427  */
of_find_node_by_type(struct device_node * from,const char * type)428 struct device_node *of_find_node_by_type(struct device_node *from,
429 	const char *type)
430 {
431 	struct device_node *np;
432 
433 	read_lock(&devtree_lock);
434 	np = from ? from->allnext : allnodes;
435 	for (; np; np = np->allnext)
436 		if (np->type && (of_node_cmp(np->type, type) == 0)
437 		    && of_node_get(np))
438 			break;
439 	of_node_put(from);
440 	read_unlock(&devtree_lock);
441 	return np;
442 }
443 EXPORT_SYMBOL(of_find_node_by_type);
444 
445 /**
446  *	of_find_compatible_node - Find a node based on type and one of the
447  *                                tokens in its "compatible" property
448  *	@from:		The node to start searching from or NULL, the node
449  *			you pass will not be searched, only the next one
450  *			will; typically, you pass what the previous call
451  *			returned. of_node_put() will be called on it
452  *	@type:		The type string to match "device_type" or NULL to ignore
453  *	@compatible:	The string to match to one of the tokens in the device
454  *			"compatible" list.
455  *
456  *	Returns a node pointer with refcount incremented, use
457  *	of_node_put() on it when done.
458  */
of_find_compatible_node(struct device_node * from,const char * type,const char * compatible)459 struct device_node *of_find_compatible_node(struct device_node *from,
460 	const char *type, const char *compatible)
461 {
462 	struct device_node *np;
463 
464 	read_lock(&devtree_lock);
465 	np = from ? from->allnext : allnodes;
466 	for (; np; np = np->allnext) {
467 		if (type
468 		    && !(np->type && (of_node_cmp(np->type, type) == 0)))
469 			continue;
470 		if (of_device_is_compatible(np, compatible) && of_node_get(np))
471 			break;
472 	}
473 	of_node_put(from);
474 	read_unlock(&devtree_lock);
475 	return np;
476 }
477 EXPORT_SYMBOL(of_find_compatible_node);
478 
479 /**
480  *	of_find_node_with_property - Find a node which has a property with
481  *                                   the given name.
482  *	@from:		The node to start searching from or NULL, the node
483  *			you pass will not be searched, only the next one
484  *			will; typically, you pass what the previous call
485  *			returned. of_node_put() will be called on it
486  *	@prop_name:	The name of the property to look for.
487  *
488  *	Returns a node pointer with refcount incremented, use
489  *	of_node_put() on it when done.
490  */
of_find_node_with_property(struct device_node * from,const char * prop_name)491 struct device_node *of_find_node_with_property(struct device_node *from,
492 	const char *prop_name)
493 {
494 	struct device_node *np;
495 	struct property *pp;
496 
497 	read_lock(&devtree_lock);
498 	np = from ? from->allnext : allnodes;
499 	for (; np; np = np->allnext) {
500 		for (pp = np->properties; pp != 0; pp = pp->next) {
501 			if (of_prop_cmp(pp->name, prop_name) == 0) {
502 				of_node_get(np);
503 				goto out;
504 			}
505 		}
506 	}
507 out:
508 	of_node_put(from);
509 	read_unlock(&devtree_lock);
510 	return np;
511 }
512 EXPORT_SYMBOL(of_find_node_with_property);
513 
514 /**
515  * of_match_node - Tell if an device_node has a matching of_match structure
516  *	@matches:	array of of device match structures to search in
517  *	@node:		the of device structure to match against
518  *
519  *	Low level utility function used by device matching.
520  */
of_match_node(const struct of_device_id * matches,const struct device_node * node)521 const struct of_device_id *of_match_node(const struct of_device_id *matches,
522 					 const struct device_node *node)
523 {
524 	if (!matches)
525 		return NULL;
526 
527 	while (matches->name[0] || matches->type[0] || matches->compatible[0]) {
528 		int match = 1;
529 		if (matches->name[0])
530 			match &= node->name
531 				&& !strcmp(matches->name, node->name);
532 		if (matches->type[0])
533 			match &= node->type
534 				&& !strcmp(matches->type, node->type);
535 		if (matches->compatible[0])
536 			match &= of_device_is_compatible(node,
537 						matches->compatible);
538 		if (match)
539 			return matches;
540 		matches++;
541 	}
542 	return NULL;
543 }
544 EXPORT_SYMBOL(of_match_node);
545 
546 /**
547  *	of_find_matching_node - Find a node based on an of_device_id match
548  *				table.
549  *	@from:		The node to start searching from or NULL, the node
550  *			you pass will not be searched, only the next one
551  *			will; typically, you pass what the previous call
552  *			returned. of_node_put() will be called on it
553  *	@matches:	array of of device match structures to search in
554  *
555  *	Returns a node pointer with refcount incremented, use
556  *	of_node_put() on it when done.
557  */
of_find_matching_node(struct device_node * from,const struct of_device_id * matches)558 struct device_node *of_find_matching_node(struct device_node *from,
559 					  const struct of_device_id *matches)
560 {
561 	struct device_node *np;
562 
563 	read_lock(&devtree_lock);
564 	np = from ? from->allnext : allnodes;
565 	for (; np; np = np->allnext) {
566 		if (of_match_node(matches, np) && of_node_get(np))
567 			break;
568 	}
569 	of_node_put(from);
570 	read_unlock(&devtree_lock);
571 	return np;
572 }
573 EXPORT_SYMBOL(of_find_matching_node);
574 
575 /**
576  * of_modalias_node - Lookup appropriate modalias for a device node
577  * @node:	pointer to a device tree node
578  * @modalias:	Pointer to buffer that modalias value will be copied into
579  * @len:	Length of modalias value
580  *
581  * Based on the value of the compatible property, this routine will attempt
582  * to choose an appropriate modalias value for a particular device tree node.
583  * It does this by stripping the manufacturer prefix (as delimited by a ',')
584  * from the first entry in the compatible list property.
585  *
586  * This routine returns 0 on success, <0 on failure.
587  */
of_modalias_node(struct device_node * node,char * modalias,int len)588 int of_modalias_node(struct device_node *node, char *modalias, int len)
589 {
590 	const char *compatible, *p;
591 	int cplen;
592 
593 	compatible = of_get_property(node, "compatible", &cplen);
594 	if (!compatible || strlen(compatible) > cplen)
595 		return -ENODEV;
596 	p = strchr(compatible, ',');
597 	strlcpy(modalias, p ? p + 1 : compatible, len);
598 	return 0;
599 }
600 EXPORT_SYMBOL_GPL(of_modalias_node);
601 
602 /**
603  * of_find_node_by_phandle - Find a node given a phandle
604  * @handle:	phandle of the node to find
605  *
606  * Returns a node pointer with refcount incremented, use
607  * of_node_put() on it when done.
608  */
of_find_node_by_phandle(phandle handle)609 struct device_node *of_find_node_by_phandle(phandle handle)
610 {
611 	struct device_node *np;
612 
613 	read_lock(&devtree_lock);
614 	for (np = allnodes; np; np = np->allnext)
615 		if (np->phandle == handle)
616 			break;
617 	of_node_get(np);
618 	read_unlock(&devtree_lock);
619 	return np;
620 }
621 EXPORT_SYMBOL(of_find_node_by_phandle);
622 
623 /**
624  * of_property_read_u32_array - Find and read an array of 32 bit integers
625  * from a property.
626  *
627  * @np:		device node from which the property value is to be read.
628  * @propname:	name of the property to be searched.
629  * @out_value:	pointer to return value, modified only if return value is 0.
630  *
631  * Search for a property in a device node and read 32-bit value(s) from
632  * it. Returns 0 on success, -EINVAL if the property does not exist,
633  * -ENODATA if property does not have a value, and -EOVERFLOW if the
634  * property data isn't large enough.
635  *
636  * The out_value is modified only if a valid u32 value can be decoded.
637  */
of_property_read_u32_array(const struct device_node * np,const char * propname,u32 * out_values,size_t sz)638 int of_property_read_u32_array(const struct device_node *np,
639 			       const char *propname, u32 *out_values,
640 			       size_t sz)
641 {
642 	struct property *prop = of_find_property(np, propname, NULL);
643 	const __be32 *val;
644 
645 	if (!prop)
646 		return -EINVAL;
647 	if (!prop->value)
648 		return -ENODATA;
649 	if ((sz * sizeof(*out_values)) > prop->length)
650 		return -EOVERFLOW;
651 
652 	val = prop->value;
653 	while (sz--)
654 		*out_values++ = be32_to_cpup(val++);
655 	return 0;
656 }
657 EXPORT_SYMBOL_GPL(of_property_read_u32_array);
658 
659 /**
660  * of_property_read_u64 - Find and read a 64 bit integer from a property
661  * @np:		device node from which the property value is to be read.
662  * @propname:	name of the property to be searched.
663  * @out_value:	pointer to return value, modified only if return value is 0.
664  *
665  * Search for a property in a device node and read a 64-bit value from
666  * it. Returns 0 on success, -EINVAL if the property does not exist,
667  * -ENODATA if property does not have a value, and -EOVERFLOW if the
668  * property data isn't large enough.
669  *
670  * The out_value is modified only if a valid u64 value can be decoded.
671  */
of_property_read_u64(const struct device_node * np,const char * propname,u64 * out_value)672 int of_property_read_u64(const struct device_node *np, const char *propname,
673 			 u64 *out_value)
674 {
675 	struct property *prop = of_find_property(np, propname, NULL);
676 
677 	if (!prop)
678 		return -EINVAL;
679 	if (!prop->value)
680 		return -ENODATA;
681 	if (sizeof(*out_value) > prop->length)
682 		return -EOVERFLOW;
683 	*out_value = of_read_number(prop->value, 2);
684 	return 0;
685 }
686 EXPORT_SYMBOL_GPL(of_property_read_u64);
687 
688 /**
689  * of_property_read_string - Find and read a string from a property
690  * @np:		device node from which the property value is to be read.
691  * @propname:	name of the property to be searched.
692  * @out_string:	pointer to null terminated return string, modified only if
693  *		return value is 0.
694  *
695  * Search for a property in a device tree node and retrieve a null
696  * terminated string value (pointer to data, not a copy). Returns 0 on
697  * success, -EINVAL if the property does not exist, -ENODATA if property
698  * does not have a value, and -EILSEQ if the string is not null-terminated
699  * within the length of the property data.
700  *
701  * The out_string pointer is modified only if a valid string can be decoded.
702  */
of_property_read_string(struct device_node * np,const char * propname,const char ** out_string)703 int of_property_read_string(struct device_node *np, const char *propname,
704 				const char **out_string)
705 {
706 	struct property *prop = of_find_property(np, propname, NULL);
707 	if (!prop)
708 		return -EINVAL;
709 	if (!prop->value)
710 		return -ENODATA;
711 	if (strnlen(prop->value, prop->length) >= prop->length)
712 		return -EILSEQ;
713 	*out_string = prop->value;
714 	return 0;
715 }
716 EXPORT_SYMBOL_GPL(of_property_read_string);
717 
718 /**
719  * of_property_read_string_index - Find and read a string from a multiple
720  * strings property.
721  * @np:		device node from which the property value is to be read.
722  * @propname:	name of the property to be searched.
723  * @index:	index of the string in the list of strings
724  * @out_string:	pointer to null terminated return string, modified only if
725  *		return value is 0.
726  *
727  * Search for a property in a device tree node and retrieve a null
728  * terminated string value (pointer to data, not a copy) in the list of strings
729  * contained in that property.
730  * Returns 0 on success, -EINVAL if the property does not exist, -ENODATA if
731  * property does not have a value, and -EILSEQ if the string is not
732  * null-terminated within the length of the property data.
733  *
734  * The out_string pointer is modified only if a valid string can be decoded.
735  */
of_property_read_string_index(struct device_node * np,const char * propname,int index,const char ** output)736 int of_property_read_string_index(struct device_node *np, const char *propname,
737 				  int index, const char **output)
738 {
739 	struct property *prop = of_find_property(np, propname, NULL);
740 	int i = 0;
741 	size_t l = 0, total = 0;
742 	const char *p;
743 
744 	if (!prop)
745 		return -EINVAL;
746 	if (!prop->value)
747 		return -ENODATA;
748 	if (strnlen(prop->value, prop->length) >= prop->length)
749 		return -EILSEQ;
750 
751 	p = prop->value;
752 
753 	for (i = 0; total < prop->length; total += l, p += l) {
754 		l = strlen(p) + 1;
755 		if (i++ == index) {
756 			*output = p;
757 			return 0;
758 		}
759 	}
760 	return -ENODATA;
761 }
762 EXPORT_SYMBOL_GPL(of_property_read_string_index);
763 
764 
765 /**
766  * of_property_count_strings - Find and return the number of strings from a
767  * multiple strings property.
768  * @np:		device node from which the property value is to be read.
769  * @propname:	name of the property to be searched.
770  *
771  * Search for a property in a device tree node and retrieve the number of null
772  * terminated string contain in it. Returns the number of strings on
773  * success, -EINVAL if the property does not exist, -ENODATA if property
774  * does not have a value, and -EILSEQ if the string is not null-terminated
775  * within the length of the property data.
776  */
of_property_count_strings(struct device_node * np,const char * propname)777 int of_property_count_strings(struct device_node *np, const char *propname)
778 {
779 	struct property *prop = of_find_property(np, propname, NULL);
780 	int i = 0;
781 	size_t l = 0, total = 0;
782 	const char *p;
783 
784 	if (!prop)
785 		return -EINVAL;
786 	if (!prop->value)
787 		return -ENODATA;
788 	if (strnlen(prop->value, prop->length) >= prop->length)
789 		return -EILSEQ;
790 
791 	p = prop->value;
792 
793 	for (i = 0; total < prop->length; total += l, p += l, i++)
794 		l = strlen(p) + 1;
795 
796 	return i;
797 }
798 EXPORT_SYMBOL_GPL(of_property_count_strings);
799 
800 /**
801  * of_parse_phandle - Resolve a phandle property to a device_node pointer
802  * @np: Pointer to device node holding phandle property
803  * @phandle_name: Name of property holding a phandle value
804  * @index: For properties holding a table of phandles, this is the index into
805  *         the table
806  *
807  * Returns the device_node pointer with refcount incremented.  Use
808  * of_node_put() on it when done.
809  */
810 struct device_node *
of_parse_phandle(struct device_node * np,const char * phandle_name,int index)811 of_parse_phandle(struct device_node *np, const char *phandle_name, int index)
812 {
813 	const __be32 *phandle;
814 	int size;
815 
816 	phandle = of_get_property(np, phandle_name, &size);
817 	if ((!phandle) || (size < sizeof(*phandle) * (index + 1)))
818 		return NULL;
819 
820 	return of_find_node_by_phandle(be32_to_cpup(phandle + index));
821 }
822 EXPORT_SYMBOL(of_parse_phandle);
823 
824 /**
825  * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
826  * @np:		pointer to a device tree node containing a list
827  * @list_name:	property name that contains a list
828  * @cells_name:	property name that specifies phandles' arguments count
829  * @index:	index of a phandle to parse out
830  * @out_args:	optional pointer to output arguments structure (will be filled)
831  *
832  * This function is useful to parse lists of phandles and their arguments.
833  * Returns 0 on success and fills out_args, on error returns appropriate
834  * errno value.
835  *
836  * Caller is responsible to call of_node_put() on the returned out_args->node
837  * pointer.
838  *
839  * Example:
840  *
841  * phandle1: node1 {
842  * 	#list-cells = <2>;
843  * }
844  *
845  * phandle2: node2 {
846  * 	#list-cells = <1>;
847  * }
848  *
849  * node3 {
850  * 	list = <&phandle1 1 2 &phandle2 3>;
851  * }
852  *
853  * To get a device_node of the `node2' node you may call this:
854  * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
855  */
of_parse_phandle_with_args(struct device_node * np,const char * list_name,const char * cells_name,int index,struct of_phandle_args * out_args)856 int of_parse_phandle_with_args(struct device_node *np, const char *list_name,
857 				const char *cells_name, int index,
858 				struct of_phandle_args *out_args)
859 {
860 	const __be32 *list, *list_end;
861 	int size, cur_index = 0;
862 	uint32_t count = 0;
863 	struct device_node *node = NULL;
864 	phandle phandle;
865 
866 	/* Retrieve the phandle list property */
867 	list = of_get_property(np, list_name, &size);
868 	if (!list)
869 		return -EINVAL;
870 	list_end = list + size / sizeof(*list);
871 
872 	/* Loop over the phandles until all the requested entry is found */
873 	while (list < list_end) {
874 		count = 0;
875 
876 		/*
877 		 * If phandle is 0, then it is an empty entry with no
878 		 * arguments.  Skip forward to the next entry.
879 		 */
880 		phandle = be32_to_cpup(list++);
881 		if (phandle) {
882 			/*
883 			 * Find the provider node and parse the #*-cells
884 			 * property to determine the argument length
885 			 */
886 			node = of_find_node_by_phandle(phandle);
887 			if (!node) {
888 				pr_err("%s: could not find phandle\n",
889 					 np->full_name);
890 				break;
891 			}
892 			if (of_property_read_u32(node, cells_name, &count)) {
893 				pr_err("%s: could not get %s for %s\n",
894 					 np->full_name, cells_name,
895 					 node->full_name);
896 				break;
897 			}
898 
899 			/*
900 			 * Make sure that the arguments actually fit in the
901 			 * remaining property data length
902 			 */
903 			if (list + count > list_end) {
904 				pr_err("%s: arguments longer than property\n",
905 					 np->full_name);
906 				break;
907 			}
908 		}
909 
910 		/*
911 		 * All of the error cases above bail out of the loop, so at
912 		 * this point, the parsing is successful. If the requested
913 		 * index matches, then fill the out_args structure and return,
914 		 * or return -ENOENT for an empty entry.
915 		 */
916 		if (cur_index == index) {
917 			if (!phandle)
918 				return -ENOENT;
919 
920 			if (out_args) {
921 				int i;
922 				if (WARN_ON(count > MAX_PHANDLE_ARGS))
923 					count = MAX_PHANDLE_ARGS;
924 				out_args->np = node;
925 				out_args->args_count = count;
926 				for (i = 0; i < count; i++)
927 					out_args->args[i] = be32_to_cpup(list++);
928 			}
929 			return 0;
930 		}
931 
932 		of_node_put(node);
933 		node = NULL;
934 		list += count;
935 		cur_index++;
936 	}
937 
938 	/* Loop exited without finding a valid entry; return an error */
939 	if (node)
940 		of_node_put(node);
941 	return -EINVAL;
942 }
943 EXPORT_SYMBOL(of_parse_phandle_with_args);
944 
945 /**
946  * prom_add_property - Add a property to a node
947  */
prom_add_property(struct device_node * np,struct property * prop)948 int prom_add_property(struct device_node *np, struct property *prop)
949 {
950 	struct property **next;
951 	unsigned long flags;
952 
953 	prop->next = NULL;
954 	write_lock_irqsave(&devtree_lock, flags);
955 	next = &np->properties;
956 	while (*next) {
957 		if (strcmp(prop->name, (*next)->name) == 0) {
958 			/* duplicate ! don't insert it */
959 			write_unlock_irqrestore(&devtree_lock, flags);
960 			return -1;
961 		}
962 		next = &(*next)->next;
963 	}
964 	*next = prop;
965 	write_unlock_irqrestore(&devtree_lock, flags);
966 
967 #ifdef CONFIG_PROC_DEVICETREE
968 	/* try to add to proc as well if it was initialized */
969 	if (np->pde)
970 		proc_device_tree_add_prop(np->pde, prop);
971 #endif /* CONFIG_PROC_DEVICETREE */
972 
973 	return 0;
974 }
975 
976 /**
977  * prom_remove_property - Remove a property from a node.
978  *
979  * Note that we don't actually remove it, since we have given out
980  * who-knows-how-many pointers to the data using get-property.
981  * Instead we just move the property to the "dead properties"
982  * list, so it won't be found any more.
983  */
prom_remove_property(struct device_node * np,struct property * prop)984 int prom_remove_property(struct device_node *np, struct property *prop)
985 {
986 	struct property **next;
987 	unsigned long flags;
988 	int found = 0;
989 
990 	write_lock_irqsave(&devtree_lock, flags);
991 	next = &np->properties;
992 	while (*next) {
993 		if (*next == prop) {
994 			/* found the node */
995 			*next = prop->next;
996 			prop->next = np->deadprops;
997 			np->deadprops = prop;
998 			found = 1;
999 			break;
1000 		}
1001 		next = &(*next)->next;
1002 	}
1003 	write_unlock_irqrestore(&devtree_lock, flags);
1004 
1005 	if (!found)
1006 		return -ENODEV;
1007 
1008 #ifdef CONFIG_PROC_DEVICETREE
1009 	/* try to remove the proc node as well */
1010 	if (np->pde)
1011 		proc_device_tree_remove_prop(np->pde, prop);
1012 #endif /* CONFIG_PROC_DEVICETREE */
1013 
1014 	return 0;
1015 }
1016 
1017 /*
1018  * prom_update_property - Update a property in a node.
1019  *
1020  * Note that we don't actually remove it, since we have given out
1021  * who-knows-how-many pointers to the data using get-property.
1022  * Instead we just move the property to the "dead properties" list,
1023  * and add the new property to the property list
1024  */
prom_update_property(struct device_node * np,struct property * newprop,struct property * oldprop)1025 int prom_update_property(struct device_node *np,
1026 			 struct property *newprop,
1027 			 struct property *oldprop)
1028 {
1029 	struct property **next;
1030 	unsigned long flags;
1031 	int found = 0;
1032 
1033 	write_lock_irqsave(&devtree_lock, flags);
1034 	next = &np->properties;
1035 	while (*next) {
1036 		if (*next == oldprop) {
1037 			/* found the node */
1038 			newprop->next = oldprop->next;
1039 			*next = newprop;
1040 			oldprop->next = np->deadprops;
1041 			np->deadprops = oldprop;
1042 			found = 1;
1043 			break;
1044 		}
1045 		next = &(*next)->next;
1046 	}
1047 	write_unlock_irqrestore(&devtree_lock, flags);
1048 
1049 	if (!found)
1050 		return -ENODEV;
1051 
1052 #ifdef CONFIG_PROC_DEVICETREE
1053 	/* try to add to proc as well if it was initialized */
1054 	if (np->pde)
1055 		proc_device_tree_update_prop(np->pde, newprop, oldprop);
1056 #endif /* CONFIG_PROC_DEVICETREE */
1057 
1058 	return 0;
1059 }
1060 
1061 #if defined(CONFIG_OF_DYNAMIC)
1062 /*
1063  * Support for dynamic device trees.
1064  *
1065  * On some platforms, the device tree can be manipulated at runtime.
1066  * The routines in this section support adding, removing and changing
1067  * device tree nodes.
1068  */
1069 
1070 /**
1071  * of_attach_node - Plug a device node into the tree and global list.
1072  */
of_attach_node(struct device_node * np)1073 void of_attach_node(struct device_node *np)
1074 {
1075 	unsigned long flags;
1076 
1077 	write_lock_irqsave(&devtree_lock, flags);
1078 	np->sibling = np->parent->child;
1079 	np->allnext = allnodes;
1080 	np->parent->child = np;
1081 	allnodes = np;
1082 	write_unlock_irqrestore(&devtree_lock, flags);
1083 }
1084 
1085 /**
1086  * of_detach_node - "Unplug" a node from the device tree.
1087  *
1088  * The caller must hold a reference to the node.  The memory associated with
1089  * the node is not freed until its refcount goes to zero.
1090  */
of_detach_node(struct device_node * np)1091 void of_detach_node(struct device_node *np)
1092 {
1093 	struct device_node *parent;
1094 	unsigned long flags;
1095 
1096 	write_lock_irqsave(&devtree_lock, flags);
1097 
1098 	parent = np->parent;
1099 	if (!parent)
1100 		goto out_unlock;
1101 
1102 	if (allnodes == np)
1103 		allnodes = np->allnext;
1104 	else {
1105 		struct device_node *prev;
1106 		for (prev = allnodes;
1107 		     prev->allnext != np;
1108 		     prev = prev->allnext)
1109 			;
1110 		prev->allnext = np->allnext;
1111 	}
1112 
1113 	if (parent->child == np)
1114 		parent->child = np->sibling;
1115 	else {
1116 		struct device_node *prevsib;
1117 		for (prevsib = np->parent->child;
1118 		     prevsib->sibling != np;
1119 		     prevsib = prevsib->sibling)
1120 			;
1121 		prevsib->sibling = np->sibling;
1122 	}
1123 
1124 	of_node_set_flag(np, OF_DETACHED);
1125 
1126 out_unlock:
1127 	write_unlock_irqrestore(&devtree_lock, flags);
1128 }
1129 #endif /* defined(CONFIG_OF_DYNAMIC) */
1130 
of_alias_add(struct alias_prop * ap,struct device_node * np,int id,const char * stem,int stem_len)1131 static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1132 			 int id, const char *stem, int stem_len)
1133 {
1134 	ap->np = np;
1135 	ap->id = id;
1136 	strncpy(ap->stem, stem, stem_len);
1137 	ap->stem[stem_len] = 0;
1138 	list_add_tail(&ap->link, &aliases_lookup);
1139 	pr_debug("adding DT alias:%s: stem=%s id=%i node=%s\n",
1140 		 ap->alias, ap->stem, ap->id, np ? np->full_name : NULL);
1141 }
1142 
1143 /**
1144  * of_alias_scan - Scan all properties of 'aliases' node
1145  *
1146  * The function scans all the properties of 'aliases' node and populate
1147  * the the global lookup table with the properties.  It returns the
1148  * number of alias_prop found, or error code in error case.
1149  *
1150  * @dt_alloc:	An allocator that provides a virtual address to memory
1151  *		for the resulting tree
1152  */
of_alias_scan(void * (* dt_alloc)(u64 size,u64 align))1153 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1154 {
1155 	struct property *pp;
1156 
1157 	of_chosen = of_find_node_by_path("/chosen");
1158 	if (of_chosen == NULL)
1159 		of_chosen = of_find_node_by_path("/chosen@0");
1160 	of_aliases = of_find_node_by_path("/aliases");
1161 	if (!of_aliases)
1162 		return;
1163 
1164 	for_each_property_of_node(of_aliases, pp) {
1165 		const char *start = pp->name;
1166 		const char *end = start + strlen(start);
1167 		struct device_node *np;
1168 		struct alias_prop *ap;
1169 		int id, len;
1170 
1171 		/* Skip those we do not want to proceed */
1172 		if (!strcmp(pp->name, "name") ||
1173 		    !strcmp(pp->name, "phandle") ||
1174 		    !strcmp(pp->name, "linux,phandle"))
1175 			continue;
1176 
1177 		np = of_find_node_by_path(pp->value);
1178 		if (!np)
1179 			continue;
1180 
1181 		/* walk the alias backwards to extract the id and work out
1182 		 * the 'stem' string */
1183 		while (isdigit(*(end-1)) && end > start)
1184 			end--;
1185 		len = end - start;
1186 
1187 		if (kstrtoint(end, 10, &id) < 0)
1188 			continue;
1189 
1190 		/* Allocate an alias_prop with enough space for the stem */
1191 		ap = dt_alloc(sizeof(*ap) + len + 1, 4);
1192 		if (!ap)
1193 			continue;
1194 		ap->alias = start;
1195 		of_alias_add(ap, np, id, start, len);
1196 	}
1197 }
1198 
1199 /**
1200  * of_alias_get_id - Get alias id for the given device_node
1201  * @np:		Pointer to the given device_node
1202  * @stem:	Alias stem of the given device_node
1203  *
1204  * The function travels the lookup table to get alias id for the given
1205  * device_node and alias stem.  It returns the alias id if find it.
1206  */
of_alias_get_id(struct device_node * np,const char * stem)1207 int of_alias_get_id(struct device_node *np, const char *stem)
1208 {
1209 	struct alias_prop *app;
1210 	int id = -ENODEV;
1211 
1212 	mutex_lock(&of_aliases_mutex);
1213 	list_for_each_entry(app, &aliases_lookup, link) {
1214 		if (strcmp(app->stem, stem) != 0)
1215 			continue;
1216 
1217 		if (np == app->np) {
1218 			id = app->id;
1219 			break;
1220 		}
1221 	}
1222 	mutex_unlock(&of_aliases_mutex);
1223 
1224 	return id;
1225 }
1226 EXPORT_SYMBOL_GPL(of_alias_get_id);
1227