1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2017-2018 Christoph Hellwig.
4 */
5
6 #include <linux/backing-dev.h>
7 #include <linux/moduleparam.h>
8 #include <linux/vmalloc.h>
9 #include <trace/events/block.h>
10 #include "nvme.h"
11
12 bool multipath = true;
13 module_param(multipath, bool, 0444);
14 MODULE_PARM_DESC(multipath,
15 "turn on native support for multiple controllers per subsystem");
16
17 static const char *nvme_iopolicy_names[] = {
18 [NVME_IOPOLICY_NUMA] = "numa",
19 [NVME_IOPOLICY_RR] = "round-robin",
20 };
21
22 static int iopolicy = NVME_IOPOLICY_NUMA;
23
nvme_set_iopolicy(const char * val,const struct kernel_param * kp)24 static int nvme_set_iopolicy(const char *val, const struct kernel_param *kp)
25 {
26 if (!val)
27 return -EINVAL;
28 if (!strncmp(val, "numa", 4))
29 iopolicy = NVME_IOPOLICY_NUMA;
30 else if (!strncmp(val, "round-robin", 11))
31 iopolicy = NVME_IOPOLICY_RR;
32 else
33 return -EINVAL;
34
35 return 0;
36 }
37
nvme_get_iopolicy(char * buf,const struct kernel_param * kp)38 static int nvme_get_iopolicy(char *buf, const struct kernel_param *kp)
39 {
40 return sprintf(buf, "%s\n", nvme_iopolicy_names[iopolicy]);
41 }
42
43 module_param_call(iopolicy, nvme_set_iopolicy, nvme_get_iopolicy,
44 &iopolicy, 0644);
45 MODULE_PARM_DESC(iopolicy,
46 "Default multipath I/O policy; 'numa' (default) or 'round-robin'");
47
nvme_mpath_default_iopolicy(struct nvme_subsystem * subsys)48 void nvme_mpath_default_iopolicy(struct nvme_subsystem *subsys)
49 {
50 subsys->iopolicy = iopolicy;
51 }
52
nvme_mpath_unfreeze(struct nvme_subsystem * subsys)53 void nvme_mpath_unfreeze(struct nvme_subsystem *subsys)
54 {
55 struct nvme_ns_head *h;
56
57 lockdep_assert_held(&subsys->lock);
58 list_for_each_entry(h, &subsys->nsheads, entry)
59 if (h->disk)
60 blk_mq_unfreeze_queue(h->disk->queue);
61 }
62
nvme_mpath_wait_freeze(struct nvme_subsystem * subsys)63 void nvme_mpath_wait_freeze(struct nvme_subsystem *subsys)
64 {
65 struct nvme_ns_head *h;
66
67 lockdep_assert_held(&subsys->lock);
68 list_for_each_entry(h, &subsys->nsheads, entry)
69 if (h->disk)
70 blk_mq_freeze_queue_wait(h->disk->queue);
71 }
72
nvme_mpath_start_freeze(struct nvme_subsystem * subsys)73 void nvme_mpath_start_freeze(struct nvme_subsystem *subsys)
74 {
75 struct nvme_ns_head *h;
76
77 lockdep_assert_held(&subsys->lock);
78 list_for_each_entry(h, &subsys->nsheads, entry)
79 if (h->disk)
80 blk_freeze_queue_start(h->disk->queue);
81 }
82
nvme_failover_req(struct request * req)83 void nvme_failover_req(struct request *req)
84 {
85 struct nvme_ns *ns = req->q->queuedata;
86 u16 status = nvme_req(req)->status & 0x7ff;
87 unsigned long flags;
88 struct bio *bio;
89
90 nvme_mpath_clear_current_path(ns);
91
92 /*
93 * If we got back an ANA error, we know the controller is alive but not
94 * ready to serve this namespace. Kick of a re-read of the ANA
95 * information page, and just try any other available path for now.
96 */
97 if (nvme_is_ana_error(status) && ns->ctrl->ana_log_buf) {
98 set_bit(NVME_NS_ANA_PENDING, &ns->flags);
99 queue_work(nvme_wq, &ns->ctrl->ana_work);
100 }
101
102 spin_lock_irqsave(&ns->head->requeue_lock, flags);
103 for (bio = req->bio; bio; bio = bio->bi_next) {
104 bio_set_dev(bio, ns->head->disk->part0);
105 if (bio->bi_opf & REQ_POLLED) {
106 bio->bi_opf &= ~REQ_POLLED;
107 bio->bi_cookie = BLK_QC_T_NONE;
108 }
109 /*
110 * The alternate request queue that we may end up submitting
111 * the bio to may be frozen temporarily, in this case REQ_NOWAIT
112 * will fail the I/O immediately with EAGAIN to the issuer.
113 * We are not in the issuer context which cannot block. Clear
114 * the flag to avoid spurious EAGAIN I/O failures.
115 */
116 bio->bi_opf &= ~REQ_NOWAIT;
117 }
118 blk_steal_bios(&ns->head->requeue_list, req);
119 spin_unlock_irqrestore(&ns->head->requeue_lock, flags);
120
121 blk_mq_end_request(req, 0);
122 kblockd_schedule_work(&ns->head->requeue_work);
123 }
124
nvme_mpath_start_request(struct request * rq)125 void nvme_mpath_start_request(struct request *rq)
126 {
127 struct nvme_ns *ns = rq->q->queuedata;
128 struct gendisk *disk = ns->head->disk;
129
130 if (!blk_queue_io_stat(disk->queue) || blk_rq_is_passthrough(rq))
131 return;
132
133 nvme_req(rq)->flags |= NVME_MPATH_IO_STATS;
134 nvme_req(rq)->start_time = bdev_start_io_acct(disk->part0, req_op(rq),
135 jiffies);
136 }
137 EXPORT_SYMBOL_GPL(nvme_mpath_start_request);
138
nvme_mpath_end_request(struct request * rq)139 void nvme_mpath_end_request(struct request *rq)
140 {
141 struct nvme_ns *ns = rq->q->queuedata;
142
143 if (!(nvme_req(rq)->flags & NVME_MPATH_IO_STATS))
144 return;
145 bdev_end_io_acct(ns->head->disk->part0, req_op(rq),
146 blk_rq_bytes(rq) >> SECTOR_SHIFT,
147 nvme_req(rq)->start_time);
148 }
149
nvme_kick_requeue_lists(struct nvme_ctrl * ctrl)150 void nvme_kick_requeue_lists(struct nvme_ctrl *ctrl)
151 {
152 struct nvme_ns *ns;
153
154 down_read(&ctrl->namespaces_rwsem);
155 list_for_each_entry(ns, &ctrl->namespaces, list) {
156 if (!ns->head->disk)
157 continue;
158 kblockd_schedule_work(&ns->head->requeue_work);
159 if (nvme_ctrl_state(ns->ctrl) == NVME_CTRL_LIVE)
160 disk_uevent(ns->head->disk, KOBJ_CHANGE);
161 }
162 up_read(&ctrl->namespaces_rwsem);
163 }
164
165 static const char *nvme_ana_state_names[] = {
166 [0] = "invalid state",
167 [NVME_ANA_OPTIMIZED] = "optimized",
168 [NVME_ANA_NONOPTIMIZED] = "non-optimized",
169 [NVME_ANA_INACCESSIBLE] = "inaccessible",
170 [NVME_ANA_PERSISTENT_LOSS] = "persistent-loss",
171 [NVME_ANA_CHANGE] = "change",
172 };
173
nvme_mpath_clear_current_path(struct nvme_ns * ns)174 bool nvme_mpath_clear_current_path(struct nvme_ns *ns)
175 {
176 struct nvme_ns_head *head = ns->head;
177 bool changed = false;
178 int node;
179
180 if (!head)
181 goto out;
182
183 for_each_node(node) {
184 if (ns == rcu_access_pointer(head->current_path[node])) {
185 rcu_assign_pointer(head->current_path[node], NULL);
186 changed = true;
187 }
188 }
189 out:
190 return changed;
191 }
192
nvme_mpath_clear_ctrl_paths(struct nvme_ctrl * ctrl)193 void nvme_mpath_clear_ctrl_paths(struct nvme_ctrl *ctrl)
194 {
195 struct nvme_ns *ns;
196
197 down_read(&ctrl->namespaces_rwsem);
198 list_for_each_entry(ns, &ctrl->namespaces, list) {
199 nvme_mpath_clear_current_path(ns);
200 kblockd_schedule_work(&ns->head->requeue_work);
201 }
202 up_read(&ctrl->namespaces_rwsem);
203 }
204
nvme_mpath_revalidate_paths(struct nvme_ns * ns)205 void nvme_mpath_revalidate_paths(struct nvme_ns *ns)
206 {
207 struct nvme_ns_head *head = ns->head;
208 sector_t capacity = get_capacity(head->disk);
209 int node;
210 int srcu_idx;
211
212 srcu_idx = srcu_read_lock(&head->srcu);
213 list_for_each_entry_rcu(ns, &head->list, siblings) {
214 if (capacity != get_capacity(ns->disk))
215 clear_bit(NVME_NS_READY, &ns->flags);
216 }
217 srcu_read_unlock(&head->srcu, srcu_idx);
218
219 for_each_node(node)
220 rcu_assign_pointer(head->current_path[node], NULL);
221 kblockd_schedule_work(&head->requeue_work);
222 }
223
nvme_path_is_disabled(struct nvme_ns * ns)224 static bool nvme_path_is_disabled(struct nvme_ns *ns)
225 {
226 enum nvme_ctrl_state state = nvme_ctrl_state(ns->ctrl);
227
228 /*
229 * We don't treat NVME_CTRL_DELETING as a disabled path as I/O should
230 * still be able to complete assuming that the controller is connected.
231 * Otherwise it will fail immediately and return to the requeue list.
232 */
233 if (state != NVME_CTRL_LIVE && state != NVME_CTRL_DELETING)
234 return true;
235 if (test_bit(NVME_NS_ANA_PENDING, &ns->flags) ||
236 !test_bit(NVME_NS_READY, &ns->flags))
237 return true;
238 return false;
239 }
240
__nvme_find_path(struct nvme_ns_head * head,int node)241 static struct nvme_ns *__nvme_find_path(struct nvme_ns_head *head, int node)
242 {
243 int found_distance = INT_MAX, fallback_distance = INT_MAX, distance;
244 struct nvme_ns *found = NULL, *fallback = NULL, *ns;
245
246 list_for_each_entry_rcu(ns, &head->list, siblings) {
247 if (nvme_path_is_disabled(ns))
248 continue;
249
250 if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_NUMA)
251 distance = node_distance(node, ns->ctrl->numa_node);
252 else
253 distance = LOCAL_DISTANCE;
254
255 switch (ns->ana_state) {
256 case NVME_ANA_OPTIMIZED:
257 if (distance < found_distance) {
258 found_distance = distance;
259 found = ns;
260 }
261 break;
262 case NVME_ANA_NONOPTIMIZED:
263 if (distance < fallback_distance) {
264 fallback_distance = distance;
265 fallback = ns;
266 }
267 break;
268 default:
269 break;
270 }
271 }
272
273 if (!found)
274 found = fallback;
275 if (found)
276 rcu_assign_pointer(head->current_path[node], found);
277 return found;
278 }
279
nvme_next_ns(struct nvme_ns_head * head,struct nvme_ns * ns)280 static struct nvme_ns *nvme_next_ns(struct nvme_ns_head *head,
281 struct nvme_ns *ns)
282 {
283 ns = list_next_or_null_rcu(&head->list, &ns->siblings, struct nvme_ns,
284 siblings);
285 if (ns)
286 return ns;
287 return list_first_or_null_rcu(&head->list, struct nvme_ns, siblings);
288 }
289
nvme_round_robin_path(struct nvme_ns_head * head,int node,struct nvme_ns * old)290 static struct nvme_ns *nvme_round_robin_path(struct nvme_ns_head *head,
291 int node, struct nvme_ns *old)
292 {
293 struct nvme_ns *ns, *found = NULL;
294
295 if (list_is_singular(&head->list)) {
296 if (nvme_path_is_disabled(old))
297 return NULL;
298 return old;
299 }
300
301 for (ns = nvme_next_ns(head, old);
302 ns && ns != old;
303 ns = nvme_next_ns(head, ns)) {
304 if (nvme_path_is_disabled(ns))
305 continue;
306
307 if (ns->ana_state == NVME_ANA_OPTIMIZED) {
308 found = ns;
309 goto out;
310 }
311 if (ns->ana_state == NVME_ANA_NONOPTIMIZED)
312 found = ns;
313 }
314
315 /*
316 * The loop above skips the current path for round-robin semantics.
317 * Fall back to the current path if either:
318 * - no other optimized path found and current is optimized,
319 * - no other usable path found and current is usable.
320 */
321 if (!nvme_path_is_disabled(old) &&
322 (old->ana_state == NVME_ANA_OPTIMIZED ||
323 (!found && old->ana_state == NVME_ANA_NONOPTIMIZED)))
324 return old;
325
326 if (!found)
327 return NULL;
328 out:
329 rcu_assign_pointer(head->current_path[node], found);
330 return found;
331 }
332
nvme_path_is_optimized(struct nvme_ns * ns)333 static inline bool nvme_path_is_optimized(struct nvme_ns *ns)
334 {
335 return nvme_ctrl_state(ns->ctrl) == NVME_CTRL_LIVE &&
336 ns->ana_state == NVME_ANA_OPTIMIZED;
337 }
338
nvme_find_path(struct nvme_ns_head * head)339 inline struct nvme_ns *nvme_find_path(struct nvme_ns_head *head)
340 {
341 int node = numa_node_id();
342 struct nvme_ns *ns;
343
344 ns = srcu_dereference(head->current_path[node], &head->srcu);
345 if (unlikely(!ns))
346 return __nvme_find_path(head, node);
347
348 if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_RR)
349 return nvme_round_robin_path(head, node, ns);
350 if (unlikely(!nvme_path_is_optimized(ns)))
351 return __nvme_find_path(head, node);
352 return ns;
353 }
354
nvme_available_path(struct nvme_ns_head * head)355 static bool nvme_available_path(struct nvme_ns_head *head)
356 {
357 struct nvme_ns *ns;
358
359 list_for_each_entry_rcu(ns, &head->list, siblings) {
360 if (test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ns->ctrl->flags))
361 continue;
362 switch (nvme_ctrl_state(ns->ctrl)) {
363 case NVME_CTRL_LIVE:
364 case NVME_CTRL_RESETTING:
365 case NVME_CTRL_CONNECTING:
366 /* fallthru */
367 return true;
368 default:
369 break;
370 }
371 }
372 return false;
373 }
374
nvme_ns_head_submit_bio(struct bio * bio)375 static void nvme_ns_head_submit_bio(struct bio *bio)
376 {
377 struct nvme_ns_head *head = bio->bi_bdev->bd_disk->private_data;
378 struct device *dev = disk_to_dev(head->disk);
379 struct nvme_ns *ns;
380 int srcu_idx;
381
382 /*
383 * The namespace might be going away and the bio might be moved to a
384 * different queue via blk_steal_bios(), so we need to use the bio_split
385 * pool from the original queue to allocate the bvecs from.
386 */
387 bio = bio_split_to_limits(bio);
388 if (!bio)
389 return;
390
391 srcu_idx = srcu_read_lock(&head->srcu);
392 ns = nvme_find_path(head);
393 if (likely(ns)) {
394 bio_set_dev(bio, ns->disk->part0);
395 bio->bi_opf |= REQ_NVME_MPATH;
396 trace_block_bio_remap(bio, disk_devt(ns->head->disk),
397 bio->bi_iter.bi_sector);
398 submit_bio_noacct(bio);
399 } else if (nvme_available_path(head)) {
400 dev_warn_ratelimited(dev, "no usable path - requeuing I/O\n");
401
402 spin_lock_irq(&head->requeue_lock);
403 bio_list_add(&head->requeue_list, bio);
404 spin_unlock_irq(&head->requeue_lock);
405 } else {
406 dev_warn_ratelimited(dev, "no available path - failing I/O\n");
407
408 bio_io_error(bio);
409 }
410
411 srcu_read_unlock(&head->srcu, srcu_idx);
412 }
413
nvme_ns_head_open(struct gendisk * disk,blk_mode_t mode)414 static int nvme_ns_head_open(struct gendisk *disk, blk_mode_t mode)
415 {
416 if (!nvme_tryget_ns_head(disk->private_data))
417 return -ENXIO;
418 return 0;
419 }
420
nvme_ns_head_release(struct gendisk * disk)421 static void nvme_ns_head_release(struct gendisk *disk)
422 {
423 nvme_put_ns_head(disk->private_data);
424 }
425
426 #ifdef CONFIG_BLK_DEV_ZONED
nvme_ns_head_report_zones(struct gendisk * disk,sector_t sector,unsigned int nr_zones,report_zones_cb cb,void * data)427 static int nvme_ns_head_report_zones(struct gendisk *disk, sector_t sector,
428 unsigned int nr_zones, report_zones_cb cb, void *data)
429 {
430 struct nvme_ns_head *head = disk->private_data;
431 struct nvme_ns *ns;
432 int srcu_idx, ret = -EWOULDBLOCK;
433
434 srcu_idx = srcu_read_lock(&head->srcu);
435 ns = nvme_find_path(head);
436 if (ns)
437 ret = nvme_ns_report_zones(ns, sector, nr_zones, cb, data);
438 srcu_read_unlock(&head->srcu, srcu_idx);
439 return ret;
440 }
441 #else
442 #define nvme_ns_head_report_zones NULL
443 #endif /* CONFIG_BLK_DEV_ZONED */
444
445 const struct block_device_operations nvme_ns_head_ops = {
446 .owner = THIS_MODULE,
447 .submit_bio = nvme_ns_head_submit_bio,
448 .open = nvme_ns_head_open,
449 .release = nvme_ns_head_release,
450 .ioctl = nvme_ns_head_ioctl,
451 .compat_ioctl = blkdev_compat_ptr_ioctl,
452 .getgeo = nvme_getgeo,
453 .report_zones = nvme_ns_head_report_zones,
454 .pr_ops = &nvme_pr_ops,
455 };
456
cdev_to_ns_head(struct cdev * cdev)457 static inline struct nvme_ns_head *cdev_to_ns_head(struct cdev *cdev)
458 {
459 return container_of(cdev, struct nvme_ns_head, cdev);
460 }
461
nvme_ns_head_chr_open(struct inode * inode,struct file * file)462 static int nvme_ns_head_chr_open(struct inode *inode, struct file *file)
463 {
464 if (!nvme_tryget_ns_head(cdev_to_ns_head(inode->i_cdev)))
465 return -ENXIO;
466 return 0;
467 }
468
nvme_ns_head_chr_release(struct inode * inode,struct file * file)469 static int nvme_ns_head_chr_release(struct inode *inode, struct file *file)
470 {
471 nvme_put_ns_head(cdev_to_ns_head(inode->i_cdev));
472 return 0;
473 }
474
475 static const struct file_operations nvme_ns_head_chr_fops = {
476 .owner = THIS_MODULE,
477 .open = nvme_ns_head_chr_open,
478 .release = nvme_ns_head_chr_release,
479 .unlocked_ioctl = nvme_ns_head_chr_ioctl,
480 .compat_ioctl = compat_ptr_ioctl,
481 .uring_cmd = nvme_ns_head_chr_uring_cmd,
482 .uring_cmd_iopoll = nvme_ns_chr_uring_cmd_iopoll,
483 };
484
nvme_add_ns_head_cdev(struct nvme_ns_head * head)485 static int nvme_add_ns_head_cdev(struct nvme_ns_head *head)
486 {
487 int ret;
488
489 head->cdev_device.parent = &head->subsys->dev;
490 ret = dev_set_name(&head->cdev_device, "ng%dn%d",
491 head->subsys->instance, head->instance);
492 if (ret)
493 return ret;
494 ret = nvme_cdev_add(&head->cdev, &head->cdev_device,
495 &nvme_ns_head_chr_fops, THIS_MODULE);
496 return ret;
497 }
498
nvme_requeue_work(struct work_struct * work)499 static void nvme_requeue_work(struct work_struct *work)
500 {
501 struct nvme_ns_head *head =
502 container_of(work, struct nvme_ns_head, requeue_work);
503 struct bio *bio, *next;
504
505 spin_lock_irq(&head->requeue_lock);
506 next = bio_list_get(&head->requeue_list);
507 spin_unlock_irq(&head->requeue_lock);
508
509 while ((bio = next) != NULL) {
510 next = bio->bi_next;
511 bio->bi_next = NULL;
512
513 submit_bio_noacct(bio);
514 }
515 }
516
nvme_mpath_alloc_disk(struct nvme_ctrl * ctrl,struct nvme_ns_head * head)517 int nvme_mpath_alloc_disk(struct nvme_ctrl *ctrl, struct nvme_ns_head *head)
518 {
519 bool vwc = false;
520
521 mutex_init(&head->lock);
522 bio_list_init(&head->requeue_list);
523 spin_lock_init(&head->requeue_lock);
524 INIT_WORK(&head->requeue_work, nvme_requeue_work);
525
526 /*
527 * Add a multipath node if the subsystems supports multiple controllers.
528 * We also do this for private namespaces as the namespace sharing flag
529 * could change after a rescan.
530 */
531 if (!(ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
532 !nvme_is_unique_nsid(ctrl, head) || !multipath)
533 return 0;
534
535 head->disk = blk_alloc_disk(ctrl->numa_node);
536 if (!head->disk)
537 return -ENOMEM;
538 head->disk->fops = &nvme_ns_head_ops;
539 head->disk->private_data = head;
540 sprintf(head->disk->disk_name, "nvme%dn%d",
541 ctrl->subsys->instance, head->instance);
542
543 blk_queue_flag_set(QUEUE_FLAG_NONROT, head->disk->queue);
544 blk_queue_flag_set(QUEUE_FLAG_NOWAIT, head->disk->queue);
545 blk_queue_flag_set(QUEUE_FLAG_IO_STAT, head->disk->queue);
546 /*
547 * This assumes all controllers that refer to a namespace either
548 * support poll queues or not. That is not a strict guarantee,
549 * but if the assumption is wrong the effect is only suboptimal
550 * performance but not correctness problem.
551 */
552 if (ctrl->tagset->nr_maps > HCTX_TYPE_POLL &&
553 ctrl->tagset->map[HCTX_TYPE_POLL].nr_queues)
554 blk_queue_flag_set(QUEUE_FLAG_POLL, head->disk->queue);
555
556 /* set to a default value of 512 until the disk is validated */
557 blk_queue_logical_block_size(head->disk->queue, 512);
558 blk_set_stacking_limits(&head->disk->queue->limits);
559 blk_queue_dma_alignment(head->disk->queue, 3);
560
561 /* we need to propagate up the VMC settings */
562 if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
563 vwc = true;
564 blk_queue_write_cache(head->disk->queue, vwc, vwc);
565 return 0;
566 }
567
nvme_mpath_set_live(struct nvme_ns * ns)568 static void nvme_mpath_set_live(struct nvme_ns *ns)
569 {
570 struct nvme_ns_head *head = ns->head;
571 int rc;
572
573 if (!head->disk)
574 return;
575
576 /*
577 * test_and_set_bit() is used because it is protecting against two nvme
578 * paths simultaneously calling device_add_disk() on the same namespace
579 * head.
580 */
581 if (!test_and_set_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) {
582 rc = device_add_disk(&head->subsys->dev, head->disk,
583 nvme_ns_attr_groups);
584 if (rc) {
585 clear_bit(NVME_NSHEAD_DISK_LIVE, &ns->flags);
586 return;
587 }
588 nvme_add_ns_head_cdev(head);
589 }
590
591 mutex_lock(&head->lock);
592 if (nvme_path_is_optimized(ns)) {
593 int node, srcu_idx;
594
595 srcu_idx = srcu_read_lock(&head->srcu);
596 for_each_node(node)
597 __nvme_find_path(head, node);
598 srcu_read_unlock(&head->srcu, srcu_idx);
599 }
600 mutex_unlock(&head->lock);
601
602 synchronize_srcu(&head->srcu);
603 kblockd_schedule_work(&head->requeue_work);
604 }
605
nvme_parse_ana_log(struct nvme_ctrl * ctrl,void * data,int (* cb)(struct nvme_ctrl * ctrl,struct nvme_ana_group_desc *,void *))606 static int nvme_parse_ana_log(struct nvme_ctrl *ctrl, void *data,
607 int (*cb)(struct nvme_ctrl *ctrl, struct nvme_ana_group_desc *,
608 void *))
609 {
610 void *base = ctrl->ana_log_buf;
611 size_t offset = sizeof(struct nvme_ana_rsp_hdr);
612 int error, i;
613
614 lockdep_assert_held(&ctrl->ana_lock);
615
616 for (i = 0; i < le16_to_cpu(ctrl->ana_log_buf->ngrps); i++) {
617 struct nvme_ana_group_desc *desc = base + offset;
618 u32 nr_nsids;
619 size_t nsid_buf_size;
620
621 if (WARN_ON_ONCE(offset > ctrl->ana_log_size - sizeof(*desc)))
622 return -EINVAL;
623
624 nr_nsids = le32_to_cpu(desc->nnsids);
625 nsid_buf_size = flex_array_size(desc, nsids, nr_nsids);
626
627 if (WARN_ON_ONCE(desc->grpid == 0))
628 return -EINVAL;
629 if (WARN_ON_ONCE(le32_to_cpu(desc->grpid) > ctrl->anagrpmax))
630 return -EINVAL;
631 if (WARN_ON_ONCE(desc->state == 0))
632 return -EINVAL;
633 if (WARN_ON_ONCE(desc->state > NVME_ANA_CHANGE))
634 return -EINVAL;
635
636 offset += sizeof(*desc);
637 if (WARN_ON_ONCE(offset > ctrl->ana_log_size - nsid_buf_size))
638 return -EINVAL;
639
640 error = cb(ctrl, desc, data);
641 if (error)
642 return error;
643
644 offset += nsid_buf_size;
645 }
646
647 return 0;
648 }
649
nvme_state_is_live(enum nvme_ana_state state)650 static inline bool nvme_state_is_live(enum nvme_ana_state state)
651 {
652 return state == NVME_ANA_OPTIMIZED || state == NVME_ANA_NONOPTIMIZED;
653 }
654
nvme_update_ns_ana_state(struct nvme_ana_group_desc * desc,struct nvme_ns * ns)655 static void nvme_update_ns_ana_state(struct nvme_ana_group_desc *desc,
656 struct nvme_ns *ns)
657 {
658 ns->ana_grpid = le32_to_cpu(desc->grpid);
659 ns->ana_state = desc->state;
660 clear_bit(NVME_NS_ANA_PENDING, &ns->flags);
661 /*
662 * nvme_mpath_set_live() will trigger I/O to the multipath path device
663 * and in turn to this path device. However we cannot accept this I/O
664 * if the controller is not live. This may deadlock if called from
665 * nvme_mpath_init_identify() and the ctrl will never complete
666 * initialization, preventing I/O from completing. For this case we
667 * will reprocess the ANA log page in nvme_mpath_update() once the
668 * controller is ready.
669 */
670 if (nvme_state_is_live(ns->ana_state) &&
671 nvme_ctrl_state(ns->ctrl) == NVME_CTRL_LIVE)
672 nvme_mpath_set_live(ns);
673 }
674
nvme_update_ana_state(struct nvme_ctrl * ctrl,struct nvme_ana_group_desc * desc,void * data)675 static int nvme_update_ana_state(struct nvme_ctrl *ctrl,
676 struct nvme_ana_group_desc *desc, void *data)
677 {
678 u32 nr_nsids = le32_to_cpu(desc->nnsids), n = 0;
679 unsigned *nr_change_groups = data;
680 struct nvme_ns *ns;
681
682 dev_dbg(ctrl->device, "ANA group %d: %s.\n",
683 le32_to_cpu(desc->grpid),
684 nvme_ana_state_names[desc->state]);
685
686 if (desc->state == NVME_ANA_CHANGE)
687 (*nr_change_groups)++;
688
689 if (!nr_nsids)
690 return 0;
691
692 down_read(&ctrl->namespaces_rwsem);
693 list_for_each_entry(ns, &ctrl->namespaces, list) {
694 unsigned nsid;
695 again:
696 nsid = le32_to_cpu(desc->nsids[n]);
697 if (ns->head->ns_id < nsid)
698 continue;
699 if (ns->head->ns_id == nsid)
700 nvme_update_ns_ana_state(desc, ns);
701 if (++n == nr_nsids)
702 break;
703 if (ns->head->ns_id > nsid)
704 goto again;
705 }
706 up_read(&ctrl->namespaces_rwsem);
707 return 0;
708 }
709
nvme_read_ana_log(struct nvme_ctrl * ctrl)710 static int nvme_read_ana_log(struct nvme_ctrl *ctrl)
711 {
712 u32 nr_change_groups = 0;
713 int error;
714
715 mutex_lock(&ctrl->ana_lock);
716 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_ANA, 0, NVME_CSI_NVM,
717 ctrl->ana_log_buf, ctrl->ana_log_size, 0);
718 if (error) {
719 dev_warn(ctrl->device, "Failed to get ANA log: %d\n", error);
720 goto out_unlock;
721 }
722
723 error = nvme_parse_ana_log(ctrl, &nr_change_groups,
724 nvme_update_ana_state);
725 if (error)
726 goto out_unlock;
727
728 /*
729 * In theory we should have an ANATT timer per group as they might enter
730 * the change state at different times. But that is a lot of overhead
731 * just to protect against a target that keeps entering new changes
732 * states while never finishing previous ones. But we'll still
733 * eventually time out once all groups are in change state, so this
734 * isn't a big deal.
735 *
736 * We also double the ANATT value to provide some slack for transports
737 * or AEN processing overhead.
738 */
739 if (nr_change_groups)
740 mod_timer(&ctrl->anatt_timer, ctrl->anatt * HZ * 2 + jiffies);
741 else
742 del_timer_sync(&ctrl->anatt_timer);
743 out_unlock:
744 mutex_unlock(&ctrl->ana_lock);
745 return error;
746 }
747
nvme_ana_work(struct work_struct * work)748 static void nvme_ana_work(struct work_struct *work)
749 {
750 struct nvme_ctrl *ctrl = container_of(work, struct nvme_ctrl, ana_work);
751
752 if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE)
753 return;
754
755 nvme_read_ana_log(ctrl);
756 }
757
nvme_mpath_update(struct nvme_ctrl * ctrl)758 void nvme_mpath_update(struct nvme_ctrl *ctrl)
759 {
760 u32 nr_change_groups = 0;
761
762 if (!ctrl->ana_log_buf)
763 return;
764
765 mutex_lock(&ctrl->ana_lock);
766 nvme_parse_ana_log(ctrl, &nr_change_groups, nvme_update_ana_state);
767 mutex_unlock(&ctrl->ana_lock);
768 }
769
nvme_anatt_timeout(struct timer_list * t)770 static void nvme_anatt_timeout(struct timer_list *t)
771 {
772 struct nvme_ctrl *ctrl = from_timer(ctrl, t, anatt_timer);
773
774 dev_info(ctrl->device, "ANATT timeout, resetting controller.\n");
775 nvme_reset_ctrl(ctrl);
776 }
777
nvme_mpath_stop(struct nvme_ctrl * ctrl)778 void nvme_mpath_stop(struct nvme_ctrl *ctrl)
779 {
780 if (!nvme_ctrl_use_ana(ctrl))
781 return;
782 del_timer_sync(&ctrl->anatt_timer);
783 cancel_work_sync(&ctrl->ana_work);
784 }
785
786 #define SUBSYS_ATTR_RW(_name, _mode, _show, _store) \
787 struct device_attribute subsys_attr_##_name = \
788 __ATTR(_name, _mode, _show, _store)
789
nvme_subsys_iopolicy_show(struct device * dev,struct device_attribute * attr,char * buf)790 static ssize_t nvme_subsys_iopolicy_show(struct device *dev,
791 struct device_attribute *attr, char *buf)
792 {
793 struct nvme_subsystem *subsys =
794 container_of(dev, struct nvme_subsystem, dev);
795
796 return sysfs_emit(buf, "%s\n",
797 nvme_iopolicy_names[READ_ONCE(subsys->iopolicy)]);
798 }
799
nvme_subsys_iopolicy_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)800 static ssize_t nvme_subsys_iopolicy_store(struct device *dev,
801 struct device_attribute *attr, const char *buf, size_t count)
802 {
803 struct nvme_subsystem *subsys =
804 container_of(dev, struct nvme_subsystem, dev);
805 int i;
806
807 for (i = 0; i < ARRAY_SIZE(nvme_iopolicy_names); i++) {
808 if (sysfs_streq(buf, nvme_iopolicy_names[i])) {
809 WRITE_ONCE(subsys->iopolicy, i);
810 return count;
811 }
812 }
813
814 return -EINVAL;
815 }
816 SUBSYS_ATTR_RW(iopolicy, S_IRUGO | S_IWUSR,
817 nvme_subsys_iopolicy_show, nvme_subsys_iopolicy_store);
818
ana_grpid_show(struct device * dev,struct device_attribute * attr,char * buf)819 static ssize_t ana_grpid_show(struct device *dev, struct device_attribute *attr,
820 char *buf)
821 {
822 return sysfs_emit(buf, "%d\n", nvme_get_ns_from_dev(dev)->ana_grpid);
823 }
824 DEVICE_ATTR_RO(ana_grpid);
825
ana_state_show(struct device * dev,struct device_attribute * attr,char * buf)826 static ssize_t ana_state_show(struct device *dev, struct device_attribute *attr,
827 char *buf)
828 {
829 struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
830
831 return sysfs_emit(buf, "%s\n", nvme_ana_state_names[ns->ana_state]);
832 }
833 DEVICE_ATTR_RO(ana_state);
834
nvme_lookup_ana_group_desc(struct nvme_ctrl * ctrl,struct nvme_ana_group_desc * desc,void * data)835 static int nvme_lookup_ana_group_desc(struct nvme_ctrl *ctrl,
836 struct nvme_ana_group_desc *desc, void *data)
837 {
838 struct nvme_ana_group_desc *dst = data;
839
840 if (desc->grpid != dst->grpid)
841 return 0;
842
843 *dst = *desc;
844 return -ENXIO; /* just break out of the loop */
845 }
846
nvme_mpath_add_disk(struct nvme_ns * ns,__le32 anagrpid)847 void nvme_mpath_add_disk(struct nvme_ns *ns, __le32 anagrpid)
848 {
849 if (nvme_ctrl_use_ana(ns->ctrl)) {
850 struct nvme_ana_group_desc desc = {
851 .grpid = anagrpid,
852 .state = 0,
853 };
854
855 mutex_lock(&ns->ctrl->ana_lock);
856 ns->ana_grpid = le32_to_cpu(anagrpid);
857 nvme_parse_ana_log(ns->ctrl, &desc, nvme_lookup_ana_group_desc);
858 mutex_unlock(&ns->ctrl->ana_lock);
859 if (desc.state) {
860 /* found the group desc: update */
861 nvme_update_ns_ana_state(&desc, ns);
862 } else {
863 /* group desc not found: trigger a re-read */
864 set_bit(NVME_NS_ANA_PENDING, &ns->flags);
865 queue_work(nvme_wq, &ns->ctrl->ana_work);
866 }
867 } else {
868 ns->ana_state = NVME_ANA_OPTIMIZED;
869 nvme_mpath_set_live(ns);
870 }
871
872 if (blk_queue_stable_writes(ns->queue) && ns->head->disk)
873 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES,
874 ns->head->disk->queue);
875 #ifdef CONFIG_BLK_DEV_ZONED
876 if (blk_queue_is_zoned(ns->queue) && ns->head->disk)
877 ns->head->disk->nr_zones = ns->disk->nr_zones;
878 #endif
879 }
880
nvme_mpath_shutdown_disk(struct nvme_ns_head * head)881 void nvme_mpath_shutdown_disk(struct nvme_ns_head *head)
882 {
883 if (!head->disk)
884 return;
885 kblockd_schedule_work(&head->requeue_work);
886 if (test_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) {
887 nvme_cdev_del(&head->cdev, &head->cdev_device);
888 del_gendisk(head->disk);
889 }
890 }
891
nvme_mpath_remove_disk(struct nvme_ns_head * head)892 void nvme_mpath_remove_disk(struct nvme_ns_head *head)
893 {
894 if (!head->disk)
895 return;
896 /* make sure all pending bios are cleaned up */
897 kblockd_schedule_work(&head->requeue_work);
898 flush_work(&head->requeue_work);
899 put_disk(head->disk);
900 }
901
nvme_mpath_init_ctrl(struct nvme_ctrl * ctrl)902 void nvme_mpath_init_ctrl(struct nvme_ctrl *ctrl)
903 {
904 mutex_init(&ctrl->ana_lock);
905 timer_setup(&ctrl->anatt_timer, nvme_anatt_timeout, 0);
906 INIT_WORK(&ctrl->ana_work, nvme_ana_work);
907 }
908
nvme_mpath_init_identify(struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)909 int nvme_mpath_init_identify(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
910 {
911 size_t max_transfer_size = ctrl->max_hw_sectors << SECTOR_SHIFT;
912 size_t ana_log_size;
913 int error = 0;
914
915 /* check if multipath is enabled and we have the capability */
916 if (!multipath || !ctrl->subsys ||
917 !(ctrl->subsys->cmic & NVME_CTRL_CMIC_ANA))
918 return 0;
919
920 if (!ctrl->max_namespaces ||
921 ctrl->max_namespaces > le32_to_cpu(id->nn)) {
922 dev_err(ctrl->device,
923 "Invalid MNAN value %u\n", ctrl->max_namespaces);
924 return -EINVAL;
925 }
926
927 ctrl->anacap = id->anacap;
928 ctrl->anatt = id->anatt;
929 ctrl->nanagrpid = le32_to_cpu(id->nanagrpid);
930 ctrl->anagrpmax = le32_to_cpu(id->anagrpmax);
931
932 ana_log_size = sizeof(struct nvme_ana_rsp_hdr) +
933 ctrl->nanagrpid * sizeof(struct nvme_ana_group_desc) +
934 ctrl->max_namespaces * sizeof(__le32);
935 if (ana_log_size > max_transfer_size) {
936 dev_err(ctrl->device,
937 "ANA log page size (%zd) larger than MDTS (%zd).\n",
938 ana_log_size, max_transfer_size);
939 dev_err(ctrl->device, "disabling ANA support.\n");
940 goto out_uninit;
941 }
942 if (ana_log_size > ctrl->ana_log_size) {
943 nvme_mpath_stop(ctrl);
944 nvme_mpath_uninit(ctrl);
945 ctrl->ana_log_buf = kvmalloc(ana_log_size, GFP_KERNEL);
946 if (!ctrl->ana_log_buf)
947 return -ENOMEM;
948 }
949 ctrl->ana_log_size = ana_log_size;
950 error = nvme_read_ana_log(ctrl);
951 if (error)
952 goto out_uninit;
953 return 0;
954
955 out_uninit:
956 nvme_mpath_uninit(ctrl);
957 return error;
958 }
959
nvme_mpath_uninit(struct nvme_ctrl * ctrl)960 void nvme_mpath_uninit(struct nvme_ctrl *ctrl)
961 {
962 kvfree(ctrl->ana_log_buf);
963 ctrl->ana_log_buf = NULL;
964 ctrl->ana_log_size = 0;
965 }
966