1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2017-2018 Christoph Hellwig.
4 */
5
6 #include <linux/backing-dev.h>
7 #include <linux/moduleparam.h>
8 #include <linux/vmalloc.h>
9 #include <trace/events/block.h>
10 #include "nvme.h"
11
12 bool multipath = true;
13 module_param(multipath, bool, 0444);
14 MODULE_PARM_DESC(multipath,
15 "turn on native support for multiple controllers per subsystem");
16
17 static const char *nvme_iopolicy_names[] = {
18 [NVME_IOPOLICY_NUMA] = "numa",
19 [NVME_IOPOLICY_RR] = "round-robin",
20 [NVME_IOPOLICY_QD] = "queue-depth",
21 };
22
23 static int iopolicy = NVME_IOPOLICY_NUMA;
24
nvme_set_iopolicy(const char * val,const struct kernel_param * kp)25 static int nvme_set_iopolicy(const char *val, const struct kernel_param *kp)
26 {
27 if (!val)
28 return -EINVAL;
29 if (!strncmp(val, "numa", 4))
30 iopolicy = NVME_IOPOLICY_NUMA;
31 else if (!strncmp(val, "round-robin", 11))
32 iopolicy = NVME_IOPOLICY_RR;
33 else if (!strncmp(val, "queue-depth", 11))
34 iopolicy = NVME_IOPOLICY_QD;
35 else
36 return -EINVAL;
37
38 return 0;
39 }
40
nvme_get_iopolicy(char * buf,const struct kernel_param * kp)41 static int nvme_get_iopolicy(char *buf, const struct kernel_param *kp)
42 {
43 return sprintf(buf, "%s\n", nvme_iopolicy_names[iopolicy]);
44 }
45
46 module_param_call(iopolicy, nvme_set_iopolicy, nvme_get_iopolicy,
47 &iopolicy, 0644);
48 MODULE_PARM_DESC(iopolicy,
49 "Default multipath I/O policy; 'numa' (default), 'round-robin' or 'queue-depth'");
50
nvme_mpath_default_iopolicy(struct nvme_subsystem * subsys)51 void nvme_mpath_default_iopolicy(struct nvme_subsystem *subsys)
52 {
53 subsys->iopolicy = iopolicy;
54 }
55
nvme_mpath_unfreeze(struct nvme_subsystem * subsys)56 void nvme_mpath_unfreeze(struct nvme_subsystem *subsys)
57 {
58 struct nvme_ns_head *h;
59
60 lockdep_assert_held(&subsys->lock);
61 list_for_each_entry(h, &subsys->nsheads, entry)
62 if (h->disk)
63 blk_mq_unfreeze_queue_nomemrestore(h->disk->queue);
64 }
65
nvme_mpath_wait_freeze(struct nvme_subsystem * subsys)66 void nvme_mpath_wait_freeze(struct nvme_subsystem *subsys)
67 {
68 struct nvme_ns_head *h;
69
70 lockdep_assert_held(&subsys->lock);
71 list_for_each_entry(h, &subsys->nsheads, entry)
72 if (h->disk)
73 blk_mq_freeze_queue_wait(h->disk->queue);
74 }
75
nvme_mpath_start_freeze(struct nvme_subsystem * subsys)76 void nvme_mpath_start_freeze(struct nvme_subsystem *subsys)
77 {
78 struct nvme_ns_head *h;
79
80 lockdep_assert_held(&subsys->lock);
81 list_for_each_entry(h, &subsys->nsheads, entry)
82 if (h->disk)
83 blk_freeze_queue_start(h->disk->queue);
84 }
85
nvme_failover_req(struct request * req)86 void nvme_failover_req(struct request *req)
87 {
88 struct nvme_ns *ns = req->q->queuedata;
89 u16 status = nvme_req(req)->status & NVME_SCT_SC_MASK;
90 unsigned long flags;
91 struct bio *bio;
92
93 nvme_mpath_clear_current_path(ns);
94
95 /*
96 * If we got back an ANA error, we know the controller is alive but not
97 * ready to serve this namespace. Kick of a re-read of the ANA
98 * information page, and just try any other available path for now.
99 */
100 if (nvme_is_ana_error(status) && ns->ctrl->ana_log_buf) {
101 set_bit(NVME_NS_ANA_PENDING, &ns->flags);
102 queue_work(nvme_wq, &ns->ctrl->ana_work);
103 }
104
105 spin_lock_irqsave(&ns->head->requeue_lock, flags);
106 for (bio = req->bio; bio; bio = bio->bi_next) {
107 bio_set_dev(bio, ns->head->disk->part0);
108 if (bio->bi_opf & REQ_POLLED) {
109 bio->bi_opf &= ~REQ_POLLED;
110 bio->bi_cookie = BLK_QC_T_NONE;
111 }
112 /*
113 * The alternate request queue that we may end up submitting
114 * the bio to may be frozen temporarily, in this case REQ_NOWAIT
115 * will fail the I/O immediately with EAGAIN to the issuer.
116 * We are not in the issuer context which cannot block. Clear
117 * the flag to avoid spurious EAGAIN I/O failures.
118 */
119 bio->bi_opf &= ~REQ_NOWAIT;
120 }
121 blk_steal_bios(&ns->head->requeue_list, req);
122 spin_unlock_irqrestore(&ns->head->requeue_lock, flags);
123
124 nvme_req(req)->status = 0;
125 nvme_end_req(req);
126 kblockd_schedule_work(&ns->head->requeue_work);
127 }
128
nvme_mpath_start_request(struct request * rq)129 void nvme_mpath_start_request(struct request *rq)
130 {
131 struct nvme_ns *ns = rq->q->queuedata;
132 struct gendisk *disk = ns->head->disk;
133
134 if (READ_ONCE(ns->head->subsys->iopolicy) == NVME_IOPOLICY_QD) {
135 atomic_inc(&ns->ctrl->nr_active);
136 nvme_req(rq)->flags |= NVME_MPATH_CNT_ACTIVE;
137 }
138
139 if (!blk_queue_io_stat(disk->queue) || blk_rq_is_passthrough(rq))
140 return;
141
142 nvme_req(rq)->flags |= NVME_MPATH_IO_STATS;
143 nvme_req(rq)->start_time = bdev_start_io_acct(disk->part0, req_op(rq),
144 jiffies);
145 }
146 EXPORT_SYMBOL_GPL(nvme_mpath_start_request);
147
nvme_mpath_end_request(struct request * rq)148 void nvme_mpath_end_request(struct request *rq)
149 {
150 struct nvme_ns *ns = rq->q->queuedata;
151
152 if (nvme_req(rq)->flags & NVME_MPATH_CNT_ACTIVE)
153 atomic_dec_if_positive(&ns->ctrl->nr_active);
154
155 if (!(nvme_req(rq)->flags & NVME_MPATH_IO_STATS))
156 return;
157 bdev_end_io_acct(ns->head->disk->part0, req_op(rq),
158 blk_rq_bytes(rq) >> SECTOR_SHIFT,
159 nvme_req(rq)->start_time);
160 }
161
nvme_kick_requeue_lists(struct nvme_ctrl * ctrl)162 void nvme_kick_requeue_lists(struct nvme_ctrl *ctrl)
163 {
164 struct nvme_ns *ns;
165 int srcu_idx;
166
167 srcu_idx = srcu_read_lock(&ctrl->srcu);
168 list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
169 srcu_read_lock_held(&ctrl->srcu)) {
170 if (!ns->head->disk)
171 continue;
172 kblockd_schedule_work(&ns->head->requeue_work);
173 if (nvme_ctrl_state(ns->ctrl) == NVME_CTRL_LIVE)
174 disk_uevent(ns->head->disk, KOBJ_CHANGE);
175 }
176 srcu_read_unlock(&ctrl->srcu, srcu_idx);
177 }
178
179 static const char *nvme_ana_state_names[] = {
180 [0] = "invalid state",
181 [NVME_ANA_OPTIMIZED] = "optimized",
182 [NVME_ANA_NONOPTIMIZED] = "non-optimized",
183 [NVME_ANA_INACCESSIBLE] = "inaccessible",
184 [NVME_ANA_PERSISTENT_LOSS] = "persistent-loss",
185 [NVME_ANA_CHANGE] = "change",
186 };
187
nvme_mpath_clear_current_path(struct nvme_ns * ns)188 bool nvme_mpath_clear_current_path(struct nvme_ns *ns)
189 {
190 struct nvme_ns_head *head = ns->head;
191 bool changed = false;
192 int node;
193
194 if (!head)
195 goto out;
196
197 for_each_node(node) {
198 if (ns == rcu_access_pointer(head->current_path[node])) {
199 rcu_assign_pointer(head->current_path[node], NULL);
200 changed = true;
201 }
202 }
203 out:
204 return changed;
205 }
206
nvme_mpath_clear_ctrl_paths(struct nvme_ctrl * ctrl)207 void nvme_mpath_clear_ctrl_paths(struct nvme_ctrl *ctrl)
208 {
209 struct nvme_ns *ns;
210 int srcu_idx;
211
212 srcu_idx = srcu_read_lock(&ctrl->srcu);
213 list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
214 srcu_read_lock_held(&ctrl->srcu)) {
215 nvme_mpath_clear_current_path(ns);
216 kblockd_schedule_work(&ns->head->requeue_work);
217 }
218 srcu_read_unlock(&ctrl->srcu, srcu_idx);
219 }
220
nvme_mpath_revalidate_paths(struct nvme_ns * ns)221 void nvme_mpath_revalidate_paths(struct nvme_ns *ns)
222 {
223 struct nvme_ns_head *head = ns->head;
224 sector_t capacity = get_capacity(head->disk);
225 int node;
226 int srcu_idx;
227
228 srcu_idx = srcu_read_lock(&head->srcu);
229 list_for_each_entry_srcu(ns, &head->list, siblings,
230 srcu_read_lock_held(&head->srcu)) {
231 if (capacity != get_capacity(ns->disk))
232 clear_bit(NVME_NS_READY, &ns->flags);
233 }
234 srcu_read_unlock(&head->srcu, srcu_idx);
235
236 for_each_node(node)
237 rcu_assign_pointer(head->current_path[node], NULL);
238 kblockd_schedule_work(&head->requeue_work);
239 }
240
nvme_path_is_disabled(struct nvme_ns * ns)241 static bool nvme_path_is_disabled(struct nvme_ns *ns)
242 {
243 enum nvme_ctrl_state state = nvme_ctrl_state(ns->ctrl);
244
245 /*
246 * We don't treat NVME_CTRL_DELETING as a disabled path as I/O should
247 * still be able to complete assuming that the controller is connected.
248 * Otherwise it will fail immediately and return to the requeue list.
249 */
250 if (state != NVME_CTRL_LIVE && state != NVME_CTRL_DELETING)
251 return true;
252 if (test_bit(NVME_NS_ANA_PENDING, &ns->flags) ||
253 !test_bit(NVME_NS_READY, &ns->flags))
254 return true;
255 return false;
256 }
257
__nvme_find_path(struct nvme_ns_head * head,int node)258 static struct nvme_ns *__nvme_find_path(struct nvme_ns_head *head, int node)
259 {
260 int found_distance = INT_MAX, fallback_distance = INT_MAX, distance;
261 struct nvme_ns *found = NULL, *fallback = NULL, *ns;
262
263 list_for_each_entry_srcu(ns, &head->list, siblings,
264 srcu_read_lock_held(&head->srcu)) {
265 if (nvme_path_is_disabled(ns))
266 continue;
267
268 if (ns->ctrl->numa_node != NUMA_NO_NODE &&
269 READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_NUMA)
270 distance = node_distance(node, ns->ctrl->numa_node);
271 else
272 distance = LOCAL_DISTANCE;
273
274 switch (ns->ana_state) {
275 case NVME_ANA_OPTIMIZED:
276 if (distance < found_distance) {
277 found_distance = distance;
278 found = ns;
279 }
280 break;
281 case NVME_ANA_NONOPTIMIZED:
282 if (distance < fallback_distance) {
283 fallback_distance = distance;
284 fallback = ns;
285 }
286 break;
287 default:
288 break;
289 }
290 }
291
292 if (!found)
293 found = fallback;
294 if (found)
295 rcu_assign_pointer(head->current_path[node], found);
296 return found;
297 }
298
nvme_next_ns(struct nvme_ns_head * head,struct nvme_ns * ns)299 static struct nvme_ns *nvme_next_ns(struct nvme_ns_head *head,
300 struct nvme_ns *ns)
301 {
302 ns = list_next_or_null_rcu(&head->list, &ns->siblings, struct nvme_ns,
303 siblings);
304 if (ns)
305 return ns;
306 return list_first_or_null_rcu(&head->list, struct nvme_ns, siblings);
307 }
308
nvme_round_robin_path(struct nvme_ns_head * head)309 static struct nvme_ns *nvme_round_robin_path(struct nvme_ns_head *head)
310 {
311 struct nvme_ns *ns, *found = NULL;
312 int node = numa_node_id();
313 struct nvme_ns *old = srcu_dereference(head->current_path[node],
314 &head->srcu);
315
316 if (unlikely(!old))
317 return __nvme_find_path(head, node);
318
319 if (list_is_singular(&head->list)) {
320 if (nvme_path_is_disabled(old))
321 return NULL;
322 return old;
323 }
324
325 for (ns = nvme_next_ns(head, old);
326 ns && ns != old;
327 ns = nvme_next_ns(head, ns)) {
328 if (nvme_path_is_disabled(ns))
329 continue;
330
331 if (ns->ana_state == NVME_ANA_OPTIMIZED) {
332 found = ns;
333 goto out;
334 }
335 if (ns->ana_state == NVME_ANA_NONOPTIMIZED)
336 found = ns;
337 }
338
339 /*
340 * The loop above skips the current path for round-robin semantics.
341 * Fall back to the current path if either:
342 * - no other optimized path found and current is optimized,
343 * - no other usable path found and current is usable.
344 */
345 if (!nvme_path_is_disabled(old) &&
346 (old->ana_state == NVME_ANA_OPTIMIZED ||
347 (!found && old->ana_state == NVME_ANA_NONOPTIMIZED)))
348 return old;
349
350 if (!found)
351 return NULL;
352 out:
353 rcu_assign_pointer(head->current_path[node], found);
354 return found;
355 }
356
nvme_queue_depth_path(struct nvme_ns_head * head)357 static struct nvme_ns *nvme_queue_depth_path(struct nvme_ns_head *head)
358 {
359 struct nvme_ns *best_opt = NULL, *best_nonopt = NULL, *ns;
360 unsigned int min_depth_opt = UINT_MAX, min_depth_nonopt = UINT_MAX;
361 unsigned int depth;
362
363 list_for_each_entry_srcu(ns, &head->list, siblings,
364 srcu_read_lock_held(&head->srcu)) {
365 if (nvme_path_is_disabled(ns))
366 continue;
367
368 depth = atomic_read(&ns->ctrl->nr_active);
369
370 switch (ns->ana_state) {
371 case NVME_ANA_OPTIMIZED:
372 if (depth < min_depth_opt) {
373 min_depth_opt = depth;
374 best_opt = ns;
375 }
376 break;
377 case NVME_ANA_NONOPTIMIZED:
378 if (depth < min_depth_nonopt) {
379 min_depth_nonopt = depth;
380 best_nonopt = ns;
381 }
382 break;
383 default:
384 break;
385 }
386
387 if (min_depth_opt == 0)
388 return best_opt;
389 }
390
391 return best_opt ? best_opt : best_nonopt;
392 }
393
nvme_path_is_optimized(struct nvme_ns * ns)394 static inline bool nvme_path_is_optimized(struct nvme_ns *ns)
395 {
396 return nvme_ctrl_state(ns->ctrl) == NVME_CTRL_LIVE &&
397 ns->ana_state == NVME_ANA_OPTIMIZED;
398 }
399
nvme_numa_path(struct nvme_ns_head * head)400 static struct nvme_ns *nvme_numa_path(struct nvme_ns_head *head)
401 {
402 int node = numa_node_id();
403 struct nvme_ns *ns;
404
405 ns = srcu_dereference(head->current_path[node], &head->srcu);
406 if (unlikely(!ns))
407 return __nvme_find_path(head, node);
408 if (unlikely(!nvme_path_is_optimized(ns)))
409 return __nvme_find_path(head, node);
410 return ns;
411 }
412
nvme_find_path(struct nvme_ns_head * head)413 inline struct nvme_ns *nvme_find_path(struct nvme_ns_head *head)
414 {
415 switch (READ_ONCE(head->subsys->iopolicy)) {
416 case NVME_IOPOLICY_QD:
417 return nvme_queue_depth_path(head);
418 case NVME_IOPOLICY_RR:
419 return nvme_round_robin_path(head);
420 default:
421 return nvme_numa_path(head);
422 }
423 }
424
nvme_available_path(struct nvme_ns_head * head)425 static bool nvme_available_path(struct nvme_ns_head *head)
426 {
427 struct nvme_ns *ns;
428
429 if (!test_bit(NVME_NSHEAD_DISK_LIVE, &head->flags))
430 return false;
431
432 list_for_each_entry_srcu(ns, &head->list, siblings,
433 srcu_read_lock_held(&head->srcu)) {
434 if (test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ns->ctrl->flags))
435 continue;
436 switch (nvme_ctrl_state(ns->ctrl)) {
437 case NVME_CTRL_LIVE:
438 case NVME_CTRL_RESETTING:
439 case NVME_CTRL_CONNECTING:
440 return true;
441 default:
442 break;
443 }
444 }
445 return false;
446 }
447
nvme_ns_head_submit_bio(struct bio * bio)448 static void nvme_ns_head_submit_bio(struct bio *bio)
449 {
450 struct nvme_ns_head *head = bio->bi_bdev->bd_disk->private_data;
451 struct device *dev = disk_to_dev(head->disk);
452 struct nvme_ns *ns;
453 int srcu_idx;
454
455 /*
456 * The namespace might be going away and the bio might be moved to a
457 * different queue via blk_steal_bios(), so we need to use the bio_split
458 * pool from the original queue to allocate the bvecs from.
459 */
460 bio = bio_split_to_limits(bio);
461 if (!bio)
462 return;
463
464 srcu_idx = srcu_read_lock(&head->srcu);
465 ns = nvme_find_path(head);
466 if (likely(ns)) {
467 bio_set_dev(bio, ns->disk->part0);
468 bio->bi_opf |= REQ_NVME_MPATH;
469 trace_block_bio_remap(bio, disk_devt(ns->head->disk),
470 bio->bi_iter.bi_sector);
471 submit_bio_noacct(bio);
472 } else if (nvme_available_path(head)) {
473 dev_warn_ratelimited(dev, "no usable path - requeuing I/O\n");
474
475 spin_lock_irq(&head->requeue_lock);
476 bio_list_add(&head->requeue_list, bio);
477 spin_unlock_irq(&head->requeue_lock);
478 } else {
479 dev_warn_ratelimited(dev, "no available path - failing I/O\n");
480
481 bio_io_error(bio);
482 }
483
484 srcu_read_unlock(&head->srcu, srcu_idx);
485 }
486
nvme_ns_head_open(struct gendisk * disk,blk_mode_t mode)487 static int nvme_ns_head_open(struct gendisk *disk, blk_mode_t mode)
488 {
489 if (!nvme_tryget_ns_head(disk->private_data))
490 return -ENXIO;
491 return 0;
492 }
493
nvme_ns_head_release(struct gendisk * disk)494 static void nvme_ns_head_release(struct gendisk *disk)
495 {
496 nvme_put_ns_head(disk->private_data);
497 }
498
nvme_ns_head_get_unique_id(struct gendisk * disk,u8 id[16],enum blk_unique_id type)499 static int nvme_ns_head_get_unique_id(struct gendisk *disk, u8 id[16],
500 enum blk_unique_id type)
501 {
502 struct nvme_ns_head *head = disk->private_data;
503 struct nvme_ns *ns;
504 int srcu_idx, ret = -EWOULDBLOCK;
505
506 srcu_idx = srcu_read_lock(&head->srcu);
507 ns = nvme_find_path(head);
508 if (ns)
509 ret = nvme_ns_get_unique_id(ns, id, type);
510 srcu_read_unlock(&head->srcu, srcu_idx);
511 return ret;
512 }
513
514 #ifdef CONFIG_BLK_DEV_ZONED
nvme_ns_head_report_zones(struct gendisk * disk,sector_t sector,unsigned int nr_zones,report_zones_cb cb,void * data)515 static int nvme_ns_head_report_zones(struct gendisk *disk, sector_t sector,
516 unsigned int nr_zones, report_zones_cb cb, void *data)
517 {
518 struct nvme_ns_head *head = disk->private_data;
519 struct nvme_ns *ns;
520 int srcu_idx, ret = -EWOULDBLOCK;
521
522 srcu_idx = srcu_read_lock(&head->srcu);
523 ns = nvme_find_path(head);
524 if (ns)
525 ret = nvme_ns_report_zones(ns, sector, nr_zones, cb, data);
526 srcu_read_unlock(&head->srcu, srcu_idx);
527 return ret;
528 }
529 #else
530 #define nvme_ns_head_report_zones NULL
531 #endif /* CONFIG_BLK_DEV_ZONED */
532
533 const struct block_device_operations nvme_ns_head_ops = {
534 .owner = THIS_MODULE,
535 .submit_bio = nvme_ns_head_submit_bio,
536 .open = nvme_ns_head_open,
537 .release = nvme_ns_head_release,
538 .ioctl = nvme_ns_head_ioctl,
539 .compat_ioctl = blkdev_compat_ptr_ioctl,
540 .getgeo = nvme_getgeo,
541 .get_unique_id = nvme_ns_head_get_unique_id,
542 .report_zones = nvme_ns_head_report_zones,
543 .pr_ops = &nvme_pr_ops,
544 };
545
cdev_to_ns_head(struct cdev * cdev)546 static inline struct nvme_ns_head *cdev_to_ns_head(struct cdev *cdev)
547 {
548 return container_of(cdev, struct nvme_ns_head, cdev);
549 }
550
nvme_ns_head_chr_open(struct inode * inode,struct file * file)551 static int nvme_ns_head_chr_open(struct inode *inode, struct file *file)
552 {
553 if (!nvme_tryget_ns_head(cdev_to_ns_head(inode->i_cdev)))
554 return -ENXIO;
555 return 0;
556 }
557
nvme_ns_head_chr_release(struct inode * inode,struct file * file)558 static int nvme_ns_head_chr_release(struct inode *inode, struct file *file)
559 {
560 nvme_put_ns_head(cdev_to_ns_head(inode->i_cdev));
561 return 0;
562 }
563
564 static const struct file_operations nvme_ns_head_chr_fops = {
565 .owner = THIS_MODULE,
566 .open = nvme_ns_head_chr_open,
567 .release = nvme_ns_head_chr_release,
568 .unlocked_ioctl = nvme_ns_head_chr_ioctl,
569 .compat_ioctl = compat_ptr_ioctl,
570 .uring_cmd = nvme_ns_head_chr_uring_cmd,
571 .uring_cmd_iopoll = nvme_ns_chr_uring_cmd_iopoll,
572 };
573
nvme_add_ns_head_cdev(struct nvme_ns_head * head)574 static int nvme_add_ns_head_cdev(struct nvme_ns_head *head)
575 {
576 int ret;
577
578 head->cdev_device.parent = &head->subsys->dev;
579 ret = dev_set_name(&head->cdev_device, "ng%dn%d",
580 head->subsys->instance, head->instance);
581 if (ret)
582 return ret;
583 ret = nvme_cdev_add(&head->cdev, &head->cdev_device,
584 &nvme_ns_head_chr_fops, THIS_MODULE);
585 return ret;
586 }
587
nvme_partition_scan_work(struct work_struct * work)588 static void nvme_partition_scan_work(struct work_struct *work)
589 {
590 struct nvme_ns_head *head =
591 container_of(work, struct nvme_ns_head, partition_scan_work);
592
593 if (WARN_ON_ONCE(!test_and_clear_bit(GD_SUPPRESS_PART_SCAN,
594 &head->disk->state)))
595 return;
596
597 mutex_lock(&head->disk->open_mutex);
598 bdev_disk_changed(head->disk, false);
599 mutex_unlock(&head->disk->open_mutex);
600 }
601
nvme_requeue_work(struct work_struct * work)602 static void nvme_requeue_work(struct work_struct *work)
603 {
604 struct nvme_ns_head *head =
605 container_of(work, struct nvme_ns_head, requeue_work);
606 struct bio *bio, *next;
607
608 spin_lock_irq(&head->requeue_lock);
609 next = bio_list_get(&head->requeue_list);
610 spin_unlock_irq(&head->requeue_lock);
611
612 while ((bio = next) != NULL) {
613 next = bio->bi_next;
614 bio->bi_next = NULL;
615
616 submit_bio_noacct(bio);
617 }
618 }
619
nvme_mpath_alloc_disk(struct nvme_ctrl * ctrl,struct nvme_ns_head * head)620 int nvme_mpath_alloc_disk(struct nvme_ctrl *ctrl, struct nvme_ns_head *head)
621 {
622 struct queue_limits lim;
623
624 mutex_init(&head->lock);
625 bio_list_init(&head->requeue_list);
626 spin_lock_init(&head->requeue_lock);
627 INIT_WORK(&head->requeue_work, nvme_requeue_work);
628 INIT_WORK(&head->partition_scan_work, nvme_partition_scan_work);
629
630 /*
631 * Add a multipath node if the subsystems supports multiple controllers.
632 * We also do this for private namespaces as the namespace sharing flag
633 * could change after a rescan.
634 */
635 if (!(ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
636 !nvme_is_unique_nsid(ctrl, head) || !multipath)
637 return 0;
638
639 blk_set_stacking_limits(&lim);
640 lim.dma_alignment = 3;
641 lim.features |= BLK_FEAT_IO_STAT | BLK_FEAT_NOWAIT |
642 BLK_FEAT_POLL | BLK_FEAT_ATOMIC_WRITES;
643 if (head->ids.csi == NVME_CSI_ZNS)
644 lim.features |= BLK_FEAT_ZONED;
645
646 head->disk = blk_alloc_disk(&lim, ctrl->numa_node);
647 if (IS_ERR(head->disk))
648 return PTR_ERR(head->disk);
649 head->disk->fops = &nvme_ns_head_ops;
650 head->disk->private_data = head;
651
652 /*
653 * We need to suppress the partition scan from occuring within the
654 * controller's scan_work context. If a path error occurs here, the IO
655 * will wait until a path becomes available or all paths are torn down,
656 * but that action also occurs within scan_work, so it would deadlock.
657 * Defer the partion scan to a different context that does not block
658 * scan_work.
659 */
660 set_bit(GD_SUPPRESS_PART_SCAN, &head->disk->state);
661 sprintf(head->disk->disk_name, "nvme%dn%d",
662 ctrl->subsys->instance, head->instance);
663 return 0;
664 }
665
nvme_mpath_set_live(struct nvme_ns * ns)666 static void nvme_mpath_set_live(struct nvme_ns *ns)
667 {
668 struct nvme_ns_head *head = ns->head;
669 int rc;
670
671 if (!head->disk)
672 return;
673
674 /*
675 * test_and_set_bit() is used because it is protecting against two nvme
676 * paths simultaneously calling device_add_disk() on the same namespace
677 * head.
678 */
679 if (!test_and_set_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) {
680 rc = device_add_disk(&head->subsys->dev, head->disk,
681 nvme_ns_attr_groups);
682 if (rc) {
683 clear_bit(NVME_NSHEAD_DISK_LIVE, &head->flags);
684 return;
685 }
686 nvme_add_ns_head_cdev(head);
687 kblockd_schedule_work(&head->partition_scan_work);
688 }
689
690 nvme_mpath_add_sysfs_link(ns->head);
691
692 mutex_lock(&head->lock);
693 if (nvme_path_is_optimized(ns)) {
694 int node, srcu_idx;
695
696 srcu_idx = srcu_read_lock(&head->srcu);
697 for_each_online_node(node)
698 __nvme_find_path(head, node);
699 srcu_read_unlock(&head->srcu, srcu_idx);
700 }
701 mutex_unlock(&head->lock);
702
703 synchronize_srcu(&head->srcu);
704 kblockd_schedule_work(&head->requeue_work);
705 }
706
nvme_parse_ana_log(struct nvme_ctrl * ctrl,void * data,int (* cb)(struct nvme_ctrl * ctrl,struct nvme_ana_group_desc *,void *))707 static int nvme_parse_ana_log(struct nvme_ctrl *ctrl, void *data,
708 int (*cb)(struct nvme_ctrl *ctrl, struct nvme_ana_group_desc *,
709 void *))
710 {
711 void *base = ctrl->ana_log_buf;
712 size_t offset = sizeof(struct nvme_ana_rsp_hdr);
713 int error, i;
714
715 lockdep_assert_held(&ctrl->ana_lock);
716
717 for (i = 0; i < le16_to_cpu(ctrl->ana_log_buf->ngrps); i++) {
718 struct nvme_ana_group_desc *desc = base + offset;
719 u32 nr_nsids;
720 size_t nsid_buf_size;
721
722 if (WARN_ON_ONCE(offset > ctrl->ana_log_size - sizeof(*desc)))
723 return -EINVAL;
724
725 nr_nsids = le32_to_cpu(desc->nnsids);
726 nsid_buf_size = flex_array_size(desc, nsids, nr_nsids);
727
728 if (WARN_ON_ONCE(desc->grpid == 0))
729 return -EINVAL;
730 if (WARN_ON_ONCE(le32_to_cpu(desc->grpid) > ctrl->anagrpmax))
731 return -EINVAL;
732 if (WARN_ON_ONCE(desc->state == 0))
733 return -EINVAL;
734 if (WARN_ON_ONCE(desc->state > NVME_ANA_CHANGE))
735 return -EINVAL;
736
737 offset += sizeof(*desc);
738 if (WARN_ON_ONCE(offset > ctrl->ana_log_size - nsid_buf_size))
739 return -EINVAL;
740
741 error = cb(ctrl, desc, data);
742 if (error)
743 return error;
744
745 offset += nsid_buf_size;
746 }
747
748 return 0;
749 }
750
nvme_state_is_live(enum nvme_ana_state state)751 static inline bool nvme_state_is_live(enum nvme_ana_state state)
752 {
753 return state == NVME_ANA_OPTIMIZED || state == NVME_ANA_NONOPTIMIZED;
754 }
755
nvme_update_ns_ana_state(struct nvme_ana_group_desc * desc,struct nvme_ns * ns)756 static void nvme_update_ns_ana_state(struct nvme_ana_group_desc *desc,
757 struct nvme_ns *ns)
758 {
759 ns->ana_grpid = le32_to_cpu(desc->grpid);
760 ns->ana_state = desc->state;
761 clear_bit(NVME_NS_ANA_PENDING, &ns->flags);
762 /*
763 * nvme_mpath_set_live() will trigger I/O to the multipath path device
764 * and in turn to this path device. However we cannot accept this I/O
765 * if the controller is not live. This may deadlock if called from
766 * nvme_mpath_init_identify() and the ctrl will never complete
767 * initialization, preventing I/O from completing. For this case we
768 * will reprocess the ANA log page in nvme_mpath_update() once the
769 * controller is ready.
770 */
771 if (nvme_state_is_live(ns->ana_state) &&
772 nvme_ctrl_state(ns->ctrl) == NVME_CTRL_LIVE)
773 nvme_mpath_set_live(ns);
774 else {
775 /*
776 * Add sysfs link from multipath head gendisk node to path
777 * device gendisk node.
778 * If path's ana state is live (i.e. state is either optimized
779 * or non-optimized) while we alloc the ns then sysfs link would
780 * be created from nvme_mpath_set_live(). In that case we would
781 * not fallthrough this code path. However for the path's ana
782 * state other than live, we call nvme_mpath_set_live() only
783 * after ana state transitioned to the live state. But we still
784 * want to create the sysfs link from head node to a path device
785 * irrespctive of the path's ana state.
786 * If we reach through here then it means that path's ana state
787 * is not live but still create the sysfs link to this path from
788 * head node if head node of the path has already come alive.
789 */
790 if (test_bit(NVME_NSHEAD_DISK_LIVE, &ns->head->flags))
791 nvme_mpath_add_sysfs_link(ns->head);
792 }
793 }
794
nvme_update_ana_state(struct nvme_ctrl * ctrl,struct nvme_ana_group_desc * desc,void * data)795 static int nvme_update_ana_state(struct nvme_ctrl *ctrl,
796 struct nvme_ana_group_desc *desc, void *data)
797 {
798 u32 nr_nsids = le32_to_cpu(desc->nnsids), n = 0;
799 unsigned *nr_change_groups = data;
800 struct nvme_ns *ns;
801 int srcu_idx;
802
803 dev_dbg(ctrl->device, "ANA group %d: %s.\n",
804 le32_to_cpu(desc->grpid),
805 nvme_ana_state_names[desc->state]);
806
807 if (desc->state == NVME_ANA_CHANGE)
808 (*nr_change_groups)++;
809
810 if (!nr_nsids)
811 return 0;
812
813 srcu_idx = srcu_read_lock(&ctrl->srcu);
814 list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
815 srcu_read_lock_held(&ctrl->srcu)) {
816 unsigned nsid;
817 again:
818 nsid = le32_to_cpu(desc->nsids[n]);
819 if (ns->head->ns_id < nsid)
820 continue;
821 if (ns->head->ns_id == nsid)
822 nvme_update_ns_ana_state(desc, ns);
823 if (++n == nr_nsids)
824 break;
825 if (ns->head->ns_id > nsid)
826 goto again;
827 }
828 srcu_read_unlock(&ctrl->srcu, srcu_idx);
829 return 0;
830 }
831
nvme_read_ana_log(struct nvme_ctrl * ctrl)832 static int nvme_read_ana_log(struct nvme_ctrl *ctrl)
833 {
834 u32 nr_change_groups = 0;
835 int error;
836
837 mutex_lock(&ctrl->ana_lock);
838 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_ANA, 0, NVME_CSI_NVM,
839 ctrl->ana_log_buf, ctrl->ana_log_size, 0);
840 if (error) {
841 dev_warn(ctrl->device, "Failed to get ANA log: %d\n", error);
842 goto out_unlock;
843 }
844
845 error = nvme_parse_ana_log(ctrl, &nr_change_groups,
846 nvme_update_ana_state);
847 if (error)
848 goto out_unlock;
849
850 /*
851 * In theory we should have an ANATT timer per group as they might enter
852 * the change state at different times. But that is a lot of overhead
853 * just to protect against a target that keeps entering new changes
854 * states while never finishing previous ones. But we'll still
855 * eventually time out once all groups are in change state, so this
856 * isn't a big deal.
857 *
858 * We also double the ANATT value to provide some slack for transports
859 * or AEN processing overhead.
860 */
861 if (nr_change_groups)
862 mod_timer(&ctrl->anatt_timer, ctrl->anatt * HZ * 2 + jiffies);
863 else
864 timer_delete_sync(&ctrl->anatt_timer);
865 out_unlock:
866 mutex_unlock(&ctrl->ana_lock);
867 return error;
868 }
869
nvme_ana_work(struct work_struct * work)870 static void nvme_ana_work(struct work_struct *work)
871 {
872 struct nvme_ctrl *ctrl = container_of(work, struct nvme_ctrl, ana_work);
873
874 if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE)
875 return;
876
877 nvme_read_ana_log(ctrl);
878 }
879
nvme_mpath_update(struct nvme_ctrl * ctrl)880 void nvme_mpath_update(struct nvme_ctrl *ctrl)
881 {
882 u32 nr_change_groups = 0;
883
884 if (!ctrl->ana_log_buf)
885 return;
886
887 mutex_lock(&ctrl->ana_lock);
888 nvme_parse_ana_log(ctrl, &nr_change_groups, nvme_update_ana_state);
889 mutex_unlock(&ctrl->ana_lock);
890 }
891
nvme_anatt_timeout(struct timer_list * t)892 static void nvme_anatt_timeout(struct timer_list *t)
893 {
894 struct nvme_ctrl *ctrl = from_timer(ctrl, t, anatt_timer);
895
896 dev_info(ctrl->device, "ANATT timeout, resetting controller.\n");
897 nvme_reset_ctrl(ctrl);
898 }
899
nvme_mpath_stop(struct nvme_ctrl * ctrl)900 void nvme_mpath_stop(struct nvme_ctrl *ctrl)
901 {
902 if (!nvme_ctrl_use_ana(ctrl))
903 return;
904 timer_delete_sync(&ctrl->anatt_timer);
905 cancel_work_sync(&ctrl->ana_work);
906 }
907
908 #define SUBSYS_ATTR_RW(_name, _mode, _show, _store) \
909 struct device_attribute subsys_attr_##_name = \
910 __ATTR(_name, _mode, _show, _store)
911
nvme_subsys_iopolicy_show(struct device * dev,struct device_attribute * attr,char * buf)912 static ssize_t nvme_subsys_iopolicy_show(struct device *dev,
913 struct device_attribute *attr, char *buf)
914 {
915 struct nvme_subsystem *subsys =
916 container_of(dev, struct nvme_subsystem, dev);
917
918 return sysfs_emit(buf, "%s\n",
919 nvme_iopolicy_names[READ_ONCE(subsys->iopolicy)]);
920 }
921
nvme_subsys_iopolicy_update(struct nvme_subsystem * subsys,int iopolicy)922 static void nvme_subsys_iopolicy_update(struct nvme_subsystem *subsys,
923 int iopolicy)
924 {
925 struct nvme_ctrl *ctrl;
926 int old_iopolicy = READ_ONCE(subsys->iopolicy);
927
928 if (old_iopolicy == iopolicy)
929 return;
930
931 WRITE_ONCE(subsys->iopolicy, iopolicy);
932
933 /* iopolicy changes clear the mpath by design */
934 mutex_lock(&nvme_subsystems_lock);
935 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
936 nvme_mpath_clear_ctrl_paths(ctrl);
937 mutex_unlock(&nvme_subsystems_lock);
938
939 pr_notice("subsysnqn %s iopolicy changed from %s to %s\n",
940 subsys->subnqn,
941 nvme_iopolicy_names[old_iopolicy],
942 nvme_iopolicy_names[iopolicy]);
943 }
944
nvme_subsys_iopolicy_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)945 static ssize_t nvme_subsys_iopolicy_store(struct device *dev,
946 struct device_attribute *attr, const char *buf, size_t count)
947 {
948 struct nvme_subsystem *subsys =
949 container_of(dev, struct nvme_subsystem, dev);
950 int i;
951
952 for (i = 0; i < ARRAY_SIZE(nvme_iopolicy_names); i++) {
953 if (sysfs_streq(buf, nvme_iopolicy_names[i])) {
954 nvme_subsys_iopolicy_update(subsys, i);
955 return count;
956 }
957 }
958
959 return -EINVAL;
960 }
961 SUBSYS_ATTR_RW(iopolicy, S_IRUGO | S_IWUSR,
962 nvme_subsys_iopolicy_show, nvme_subsys_iopolicy_store);
963
ana_grpid_show(struct device * dev,struct device_attribute * attr,char * buf)964 static ssize_t ana_grpid_show(struct device *dev, struct device_attribute *attr,
965 char *buf)
966 {
967 return sysfs_emit(buf, "%d\n", nvme_get_ns_from_dev(dev)->ana_grpid);
968 }
969 DEVICE_ATTR_RO(ana_grpid);
970
ana_state_show(struct device * dev,struct device_attribute * attr,char * buf)971 static ssize_t ana_state_show(struct device *dev, struct device_attribute *attr,
972 char *buf)
973 {
974 struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
975
976 return sysfs_emit(buf, "%s\n", nvme_ana_state_names[ns->ana_state]);
977 }
978 DEVICE_ATTR_RO(ana_state);
979
queue_depth_show(struct device * dev,struct device_attribute * attr,char * buf)980 static ssize_t queue_depth_show(struct device *dev,
981 struct device_attribute *attr, char *buf)
982 {
983 struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
984
985 if (ns->head->subsys->iopolicy != NVME_IOPOLICY_QD)
986 return 0;
987
988 return sysfs_emit(buf, "%d\n", atomic_read(&ns->ctrl->nr_active));
989 }
990 DEVICE_ATTR_RO(queue_depth);
991
numa_nodes_show(struct device * dev,struct device_attribute * attr,char * buf)992 static ssize_t numa_nodes_show(struct device *dev, struct device_attribute *attr,
993 char *buf)
994 {
995 int node, srcu_idx;
996 nodemask_t numa_nodes;
997 struct nvme_ns *current_ns;
998 struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
999 struct nvme_ns_head *head = ns->head;
1000
1001 if (head->subsys->iopolicy != NVME_IOPOLICY_NUMA)
1002 return 0;
1003
1004 nodes_clear(numa_nodes);
1005
1006 srcu_idx = srcu_read_lock(&head->srcu);
1007 for_each_node(node) {
1008 current_ns = srcu_dereference(head->current_path[node],
1009 &head->srcu);
1010 if (ns == current_ns)
1011 node_set(node, numa_nodes);
1012 }
1013 srcu_read_unlock(&head->srcu, srcu_idx);
1014
1015 return sysfs_emit(buf, "%*pbl\n", nodemask_pr_args(&numa_nodes));
1016 }
1017 DEVICE_ATTR_RO(numa_nodes);
1018
nvme_lookup_ana_group_desc(struct nvme_ctrl * ctrl,struct nvme_ana_group_desc * desc,void * data)1019 static int nvme_lookup_ana_group_desc(struct nvme_ctrl *ctrl,
1020 struct nvme_ana_group_desc *desc, void *data)
1021 {
1022 struct nvme_ana_group_desc *dst = data;
1023
1024 if (desc->grpid != dst->grpid)
1025 return 0;
1026
1027 *dst = *desc;
1028 return -ENXIO; /* just break out of the loop */
1029 }
1030
nvme_mpath_add_sysfs_link(struct nvme_ns_head * head)1031 void nvme_mpath_add_sysfs_link(struct nvme_ns_head *head)
1032 {
1033 struct device *target;
1034 int rc, srcu_idx;
1035 struct nvme_ns *ns;
1036 struct kobject *kobj;
1037
1038 /*
1039 * Ensure head disk node is already added otherwise we may get invalid
1040 * kobj for head disk node
1041 */
1042 if (!test_bit(GD_ADDED, &head->disk->state))
1043 return;
1044
1045 kobj = &disk_to_dev(head->disk)->kobj;
1046
1047 /*
1048 * loop through each ns chained through the head->list and create the
1049 * sysfs link from head node to the ns path node
1050 */
1051 srcu_idx = srcu_read_lock(&head->srcu);
1052
1053 list_for_each_entry_rcu(ns, &head->list, siblings) {
1054 /*
1055 * Ensure that ns path disk node is already added otherwise we
1056 * may get invalid kobj name for target
1057 */
1058 if (!test_bit(GD_ADDED, &ns->disk->state))
1059 continue;
1060
1061 /*
1062 * Avoid creating link if it already exists for the given path.
1063 * When path ana state transitions from optimized to non-
1064 * optimized or vice-versa, the nvme_mpath_set_live() is
1065 * invoked which in truns call this function. Now if the sysfs
1066 * link already exists for the given path and we attempt to re-
1067 * create the link then sysfs code would warn about it loudly.
1068 * So we evaluate NVME_NS_SYSFS_ATTR_LINK flag here to ensure
1069 * that we're not creating duplicate link.
1070 * The test_and_set_bit() is used because it is protecting
1071 * against multiple nvme paths being simultaneously added.
1072 */
1073 if (test_and_set_bit(NVME_NS_SYSFS_ATTR_LINK, &ns->flags))
1074 continue;
1075
1076 target = disk_to_dev(ns->disk);
1077 /*
1078 * Create sysfs link from head gendisk kobject @kobj to the
1079 * ns path gendisk kobject @target->kobj.
1080 */
1081 rc = sysfs_add_link_to_group(kobj, nvme_ns_mpath_attr_group.name,
1082 &target->kobj, dev_name(target));
1083 if (unlikely(rc)) {
1084 dev_err(disk_to_dev(ns->head->disk),
1085 "failed to create link to %s\n",
1086 dev_name(target));
1087 clear_bit(NVME_NS_SYSFS_ATTR_LINK, &ns->flags);
1088 }
1089 }
1090
1091 srcu_read_unlock(&head->srcu, srcu_idx);
1092 }
1093
nvme_mpath_remove_sysfs_link(struct nvme_ns * ns)1094 void nvme_mpath_remove_sysfs_link(struct nvme_ns *ns)
1095 {
1096 struct device *target;
1097 struct kobject *kobj;
1098
1099 if (!test_bit(NVME_NS_SYSFS_ATTR_LINK, &ns->flags))
1100 return;
1101
1102 target = disk_to_dev(ns->disk);
1103 kobj = &disk_to_dev(ns->head->disk)->kobj;
1104 sysfs_remove_link_from_group(kobj, nvme_ns_mpath_attr_group.name,
1105 dev_name(target));
1106 clear_bit(NVME_NS_SYSFS_ATTR_LINK, &ns->flags);
1107 }
1108
nvme_mpath_add_disk(struct nvme_ns * ns,__le32 anagrpid)1109 void nvme_mpath_add_disk(struct nvme_ns *ns, __le32 anagrpid)
1110 {
1111 if (nvme_ctrl_use_ana(ns->ctrl)) {
1112 struct nvme_ana_group_desc desc = {
1113 .grpid = anagrpid,
1114 .state = 0,
1115 };
1116
1117 mutex_lock(&ns->ctrl->ana_lock);
1118 ns->ana_grpid = le32_to_cpu(anagrpid);
1119 nvme_parse_ana_log(ns->ctrl, &desc, nvme_lookup_ana_group_desc);
1120 mutex_unlock(&ns->ctrl->ana_lock);
1121 if (desc.state) {
1122 /* found the group desc: update */
1123 nvme_update_ns_ana_state(&desc, ns);
1124 } else {
1125 /* group desc not found: trigger a re-read */
1126 set_bit(NVME_NS_ANA_PENDING, &ns->flags);
1127 queue_work(nvme_wq, &ns->ctrl->ana_work);
1128 }
1129 } else {
1130 ns->ana_state = NVME_ANA_OPTIMIZED;
1131 nvme_mpath_set_live(ns);
1132 }
1133
1134 #ifdef CONFIG_BLK_DEV_ZONED
1135 if (blk_queue_is_zoned(ns->queue) && ns->head->disk)
1136 ns->head->disk->nr_zones = ns->disk->nr_zones;
1137 #endif
1138 }
1139
nvme_mpath_shutdown_disk(struct nvme_ns_head * head)1140 void nvme_mpath_shutdown_disk(struct nvme_ns_head *head)
1141 {
1142 if (!head->disk)
1143 return;
1144 if (test_and_clear_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) {
1145 nvme_cdev_del(&head->cdev, &head->cdev_device);
1146 /*
1147 * requeue I/O after NVME_NSHEAD_DISK_LIVE has been cleared
1148 * to allow multipath to fail all I/O.
1149 */
1150 synchronize_srcu(&head->srcu);
1151 kblockd_schedule_work(&head->requeue_work);
1152 del_gendisk(head->disk);
1153 }
1154 }
1155
nvme_mpath_remove_disk(struct nvme_ns_head * head)1156 void nvme_mpath_remove_disk(struct nvme_ns_head *head)
1157 {
1158 if (!head->disk)
1159 return;
1160 /* make sure all pending bios are cleaned up */
1161 kblockd_schedule_work(&head->requeue_work);
1162 flush_work(&head->requeue_work);
1163 flush_work(&head->partition_scan_work);
1164 put_disk(head->disk);
1165 }
1166
nvme_mpath_init_ctrl(struct nvme_ctrl * ctrl)1167 void nvme_mpath_init_ctrl(struct nvme_ctrl *ctrl)
1168 {
1169 mutex_init(&ctrl->ana_lock);
1170 timer_setup(&ctrl->anatt_timer, nvme_anatt_timeout, 0);
1171 INIT_WORK(&ctrl->ana_work, nvme_ana_work);
1172 }
1173
nvme_mpath_init_identify(struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)1174 int nvme_mpath_init_identify(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
1175 {
1176 size_t max_transfer_size = ctrl->max_hw_sectors << SECTOR_SHIFT;
1177 size_t ana_log_size;
1178 int error = 0;
1179
1180 /* check if multipath is enabled and we have the capability */
1181 if (!multipath || !ctrl->subsys ||
1182 !(ctrl->subsys->cmic & NVME_CTRL_CMIC_ANA))
1183 return 0;
1184
1185 /* initialize this in the identify path to cover controller resets */
1186 atomic_set(&ctrl->nr_active, 0);
1187
1188 if (!ctrl->max_namespaces ||
1189 ctrl->max_namespaces > le32_to_cpu(id->nn)) {
1190 dev_err(ctrl->device,
1191 "Invalid MNAN value %u\n", ctrl->max_namespaces);
1192 return -EINVAL;
1193 }
1194
1195 ctrl->anacap = id->anacap;
1196 ctrl->anatt = id->anatt;
1197 ctrl->nanagrpid = le32_to_cpu(id->nanagrpid);
1198 ctrl->anagrpmax = le32_to_cpu(id->anagrpmax);
1199
1200 ana_log_size = sizeof(struct nvme_ana_rsp_hdr) +
1201 ctrl->nanagrpid * sizeof(struct nvme_ana_group_desc) +
1202 ctrl->max_namespaces * sizeof(__le32);
1203 if (ana_log_size > max_transfer_size) {
1204 dev_err(ctrl->device,
1205 "ANA log page size (%zd) larger than MDTS (%zd).\n",
1206 ana_log_size, max_transfer_size);
1207 dev_err(ctrl->device, "disabling ANA support.\n");
1208 goto out_uninit;
1209 }
1210 if (ana_log_size > ctrl->ana_log_size) {
1211 nvme_mpath_stop(ctrl);
1212 nvme_mpath_uninit(ctrl);
1213 ctrl->ana_log_buf = kvmalloc(ana_log_size, GFP_KERNEL);
1214 if (!ctrl->ana_log_buf)
1215 return -ENOMEM;
1216 }
1217 ctrl->ana_log_size = ana_log_size;
1218 error = nvme_read_ana_log(ctrl);
1219 if (error)
1220 goto out_uninit;
1221 return 0;
1222
1223 out_uninit:
1224 nvme_mpath_uninit(ctrl);
1225 return error;
1226 }
1227
nvme_mpath_uninit(struct nvme_ctrl * ctrl)1228 void nvme_mpath_uninit(struct nvme_ctrl *ctrl)
1229 {
1230 kvfree(ctrl->ana_log_buf);
1231 ctrl->ana_log_buf = NULL;
1232 ctrl->ana_log_size = 0;
1233 }
1234