1 /*
2 * Copyright 2011 Red Hat Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: Ben Skeggs
23 */
24 #include "disp.h"
25 #include "atom.h"
26 #include "core.h"
27 #include "head.h"
28 #include "wndw.h"
29 #include "handles.h"
30
31 #include <linux/backlight.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/hdmi.h>
34 #include <linux/component.h>
35 #include <linux/iopoll.h>
36
37 #include <drm/display/drm_dp_helper.h>
38 #include <drm/display/drm_scdc_helper.h>
39 #include <drm/drm_atomic.h>
40 #include <drm/drm_atomic_helper.h>
41 #include <drm/drm_edid.h>
42 #include <drm/drm_eld.h>
43 #include <drm/drm_fb_helper.h>
44 #include <drm/drm_fixed.h>
45 #include <drm/drm_probe_helper.h>
46 #include <drm/drm_vblank.h>
47
48 #include <nvif/push507c.h>
49
50 #include <nvif/class.h>
51 #include <nvif/cl0002.h>
52 #include <nvif/event.h>
53 #include <nvif/if0012.h>
54 #include <nvif/if0014.h>
55 #include <nvif/timer.h>
56
57 #include <nvhw/class/cl507c.h>
58 #include <nvhw/class/cl507d.h>
59 #include <nvhw/class/cl837d.h>
60 #include <nvhw/class/cl887d.h>
61 #include <nvhw/class/cl907d.h>
62 #include <nvhw/class/cl917d.h>
63
64 #include "nouveau_drv.h"
65 #include "nouveau_dma.h"
66 #include "nouveau_gem.h"
67 #include "nouveau_connector.h"
68 #include "nouveau_encoder.h"
69 #include "nouveau_fence.h"
70 #include "nv50_display.h"
71
72 /******************************************************************************
73 * EVO channel
74 *****************************************************************************/
75
76 static int
nv50_chan_create(struct nvif_device * device,struct nvif_object * disp,const s32 * oclass,u8 head,void * data,u32 size,struct nv50_chan * chan)77 nv50_chan_create(struct nvif_device *device, struct nvif_object *disp,
78 const s32 *oclass, u8 head, void *data, u32 size,
79 struct nv50_chan *chan)
80 {
81 struct nvif_sclass *sclass;
82 int ret, i, n;
83
84 chan->device = device;
85
86 ret = n = nvif_object_sclass_get(disp, &sclass);
87 if (ret < 0)
88 return ret;
89
90 while (oclass[0]) {
91 for (i = 0; i < n; i++) {
92 if (sclass[i].oclass == oclass[0]) {
93 ret = nvif_object_ctor(disp, "kmsChan", 0,
94 oclass[0], data, size,
95 &chan->user);
96 if (ret == 0) {
97 ret = nvif_object_map(&chan->user, NULL, 0);
98 if (ret)
99 nvif_object_dtor(&chan->user);
100 }
101 nvif_object_sclass_put(&sclass);
102 return ret;
103 }
104 }
105 oclass++;
106 }
107
108 nvif_object_sclass_put(&sclass);
109 return -ENOSYS;
110 }
111
112 static void
nv50_chan_destroy(struct nv50_chan * chan)113 nv50_chan_destroy(struct nv50_chan *chan)
114 {
115 nvif_object_dtor(&chan->user);
116 }
117
118 /******************************************************************************
119 * DMA EVO channel
120 *****************************************************************************/
121
122 void
nv50_dmac_destroy(struct nv50_dmac * dmac)123 nv50_dmac_destroy(struct nv50_dmac *dmac)
124 {
125 nvif_object_dtor(&dmac->vram);
126 nvif_object_dtor(&dmac->sync);
127
128 nv50_chan_destroy(&dmac->base);
129
130 nvif_mem_dtor(&dmac->push.mem);
131 }
132
133 static void
nv50_dmac_kick(struct nvif_push * push)134 nv50_dmac_kick(struct nvif_push *push)
135 {
136 struct nv50_dmac *dmac = container_of(push, typeof(*dmac), push);
137
138 dmac->cur = push->cur - (u32 __iomem *)dmac->push.mem.object.map.ptr;
139 if (dmac->put != dmac->cur) {
140 /* Push buffer fetches are not coherent with BAR1, we need to ensure
141 * writes have been flushed right through to VRAM before writing PUT.
142 */
143 if (dmac->push.mem.type & NVIF_MEM_VRAM) {
144 struct nvif_device *device = dmac->base.device;
145 nvif_wr32(&device->object, 0x070000, 0x00000001);
146 nvif_msec(device, 2000,
147 if (!(nvif_rd32(&device->object, 0x070000) & 0x00000002))
148 break;
149 );
150 }
151
152 NVIF_WV32(&dmac->base.user, NV507C, PUT, PTR, dmac->cur);
153 dmac->put = dmac->cur;
154 }
155
156 push->bgn = push->cur;
157 }
158
159 static int
nv50_dmac_free(struct nv50_dmac * dmac)160 nv50_dmac_free(struct nv50_dmac *dmac)
161 {
162 u32 get = NVIF_RV32(&dmac->base.user, NV507C, GET, PTR);
163 if (get > dmac->cur) /* NVIDIA stay 5 away from GET, do the same. */
164 return get - dmac->cur - 5;
165 return dmac->max - dmac->cur;
166 }
167
168 static int
nv50_dmac_wind(struct nv50_dmac * dmac)169 nv50_dmac_wind(struct nv50_dmac *dmac)
170 {
171 /* Wait for GET to depart from the beginning of the push buffer to
172 * prevent writing PUT == GET, which would be ignored by HW.
173 */
174 u32 get = NVIF_RV32(&dmac->base.user, NV507C, GET, PTR);
175 if (get == 0) {
176 /* Corner-case, HW idle, but non-committed work pending. */
177 if (dmac->put == 0)
178 nv50_dmac_kick(&dmac->push);
179
180 if (nvif_msec(dmac->base.device, 2000,
181 if (NVIF_TV32(&dmac->base.user, NV507C, GET, PTR, >, 0))
182 break;
183 ) < 0)
184 return -ETIMEDOUT;
185 }
186
187 PUSH_RSVD(&dmac->push, PUSH_JUMP(&dmac->push, 0));
188 dmac->cur = 0;
189 return 0;
190 }
191
192 static int
nv50_dmac_wait(struct nvif_push * push,u32 size)193 nv50_dmac_wait(struct nvif_push *push, u32 size)
194 {
195 struct nv50_dmac *dmac = container_of(push, typeof(*dmac), push);
196 int free;
197
198 if (WARN_ON(size > dmac->max))
199 return -EINVAL;
200
201 dmac->cur = push->cur - (u32 __iomem *)dmac->push.mem.object.map.ptr;
202 if (dmac->cur + size >= dmac->max) {
203 int ret = nv50_dmac_wind(dmac);
204 if (ret)
205 return ret;
206
207 push->cur = dmac->push.mem.object.map.ptr;
208 push->cur = push->cur + dmac->cur;
209 nv50_dmac_kick(push);
210 }
211
212 if (nvif_msec(dmac->base.device, 2000,
213 if ((free = nv50_dmac_free(dmac)) >= size)
214 break;
215 ) < 0) {
216 WARN_ON(1);
217 return -ETIMEDOUT;
218 }
219
220 push->bgn = dmac->push.mem.object.map.ptr;
221 push->bgn = push->bgn + dmac->cur;
222 push->cur = push->bgn;
223 push->end = push->cur + free;
224 return 0;
225 }
226
227 MODULE_PARM_DESC(kms_vram_pushbuf, "Place EVO/NVD push buffers in VRAM (default: auto)");
228 static int nv50_dmac_vram_pushbuf = -1;
229 module_param_named(kms_vram_pushbuf, nv50_dmac_vram_pushbuf, int, 0400);
230
231 int
nv50_dmac_create(struct nouveau_drm * drm,const s32 * oclass,u8 head,void * data,u32 size,s64 syncbuf,struct nv50_dmac * dmac)232 nv50_dmac_create(struct nouveau_drm *drm,
233 const s32 *oclass, u8 head, void *data, u32 size, s64 syncbuf,
234 struct nv50_dmac *dmac)
235 {
236 struct nvif_device *device = &drm->device;
237 struct nvif_object *disp = &drm->display->disp.object;
238 struct nvif_disp_chan_v0 *args = data;
239 u8 type = NVIF_MEM_COHERENT;
240 int ret;
241
242 /* Pascal added support for 47-bit physical addresses, but some
243 * parts of EVO still only accept 40-bit PAs.
244 *
245 * To avoid issues on systems with large amounts of RAM, and on
246 * systems where an IOMMU maps pages at a high address, we need
247 * to allocate push buffers in VRAM instead.
248 *
249 * This appears to match NVIDIA's behaviour on Pascal.
250 */
251 if ((nv50_dmac_vram_pushbuf > 0) ||
252 (nv50_dmac_vram_pushbuf < 0 && device->info.family == NV_DEVICE_INFO_V0_PASCAL))
253 type |= NVIF_MEM_VRAM;
254
255 ret = nvif_mem_ctor_map(&drm->mmu, "kmsChanPush", type, 0x1000, &dmac->push.mem);
256 if (ret)
257 return ret;
258
259 dmac->push.wait = nv50_dmac_wait;
260 dmac->push.kick = nv50_dmac_kick;
261 dmac->push.bgn = dmac->push.mem.object.map.ptr;
262 dmac->push.cur = dmac->push.bgn;
263 dmac->push.end = dmac->push.bgn;
264 dmac->max = 0x1000/4 - 1;
265
266 /* EVO channels are affected by a HW bug where the last 12 DWORDs
267 * of the push buffer aren't able to be used safely.
268 */
269 if (disp->oclass < GV100_DISP)
270 dmac->max -= 12;
271
272 args->pushbuf = nvif_handle(&dmac->push.mem.object);
273
274 ret = nv50_chan_create(device, disp, oclass, head, data, size,
275 &dmac->base);
276 if (ret)
277 return ret;
278
279 if (syncbuf < 0)
280 return 0;
281
282 /* No CTXDMAs on Blackwell. */
283 if (disp->oclass >= GB202_DISP) {
284 /* "handle != NULL_HANDLE" is used to determine enable status
285 * in a number of places, so fill in some fake object handles.
286 */
287 dmac->sync.handle = NV50_DISP_HANDLE_SYNCBUF;
288 dmac->vram.handle = NV50_DISP_HANDLE_VRAM;
289 return 0;
290 }
291
292 ret = nvif_object_ctor(&dmac->base.user, "kmsSyncCtxDma", NV50_DISP_HANDLE_SYNCBUF,
293 NV_DMA_IN_MEMORY,
294 &(struct nv_dma_v0) {
295 .target = NV_DMA_V0_TARGET_VRAM,
296 .access = NV_DMA_V0_ACCESS_RDWR,
297 .start = syncbuf + 0x0000,
298 .limit = syncbuf + 0x0fff,
299 }, sizeof(struct nv_dma_v0),
300 &dmac->sync);
301 if (ret)
302 return ret;
303
304 ret = nvif_object_ctor(&dmac->base.user, "kmsVramCtxDma", NV50_DISP_HANDLE_VRAM,
305 NV_DMA_IN_MEMORY,
306 &(struct nv_dma_v0) {
307 .target = NV_DMA_V0_TARGET_VRAM,
308 .access = NV_DMA_V0_ACCESS_RDWR,
309 .start = 0,
310 .limit = device->info.ram_user - 1,
311 }, sizeof(struct nv_dma_v0),
312 &dmac->vram);
313 if (ret)
314 return ret;
315
316 return ret;
317 }
318
319 /******************************************************************************
320 * Output path helpers
321 *****************************************************************************/
322 static void
nv50_outp_dump_caps(struct nouveau_drm * drm,struct nouveau_encoder * outp)323 nv50_outp_dump_caps(struct nouveau_drm *drm,
324 struct nouveau_encoder *outp)
325 {
326 NV_DEBUG(drm, "%s caps: dp_interlace=%d\n",
327 outp->base.base.name, outp->caps.dp_interlace);
328 }
329
330 static int
nv50_outp_atomic_check_view(struct drm_encoder * encoder,struct drm_crtc_state * crtc_state,struct drm_connector_state * conn_state,struct drm_display_mode * native_mode)331 nv50_outp_atomic_check_view(struct drm_encoder *encoder,
332 struct drm_crtc_state *crtc_state,
333 struct drm_connector_state *conn_state,
334 struct drm_display_mode *native_mode)
335 {
336 struct drm_display_mode *adjusted_mode = &crtc_state->adjusted_mode;
337 struct drm_display_mode *mode = &crtc_state->mode;
338 struct drm_connector *connector = conn_state->connector;
339 struct nouveau_conn_atom *asyc = nouveau_conn_atom(conn_state);
340 struct nouveau_drm *drm = nouveau_drm(encoder->dev);
341
342 NV_ATOMIC(drm, "%s atomic_check\n", encoder->name);
343 asyc->scaler.full = false;
344 if (!native_mode)
345 return 0;
346
347 if (asyc->scaler.mode == DRM_MODE_SCALE_NONE) {
348 switch (connector->connector_type) {
349 case DRM_MODE_CONNECTOR_LVDS:
350 case DRM_MODE_CONNECTOR_eDP:
351 /* Don't force scaler for EDID modes with
352 * same size as the native one (e.g. different
353 * refresh rate)
354 */
355 if (mode->hdisplay == native_mode->hdisplay &&
356 mode->vdisplay == native_mode->vdisplay &&
357 mode->type & DRM_MODE_TYPE_DRIVER)
358 break;
359 mode = native_mode;
360 asyc->scaler.full = true;
361 break;
362 default:
363 break;
364 }
365 } else {
366 mode = native_mode;
367 }
368
369 if (!drm_mode_equal(adjusted_mode, mode)) {
370 drm_mode_copy(adjusted_mode, mode);
371 crtc_state->mode_changed = true;
372 }
373
374 return 0;
375 }
376
377 static void
nv50_outp_atomic_fix_depth(struct drm_encoder * encoder,struct drm_crtc_state * crtc_state)378 nv50_outp_atomic_fix_depth(struct drm_encoder *encoder, struct drm_crtc_state *crtc_state)
379 {
380 struct nv50_head_atom *asyh = nv50_head_atom(crtc_state);
381 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
382 struct drm_display_mode *mode = &asyh->state.adjusted_mode;
383 unsigned int max_rate, mode_rate;
384
385 switch (nv_encoder->dcb->type) {
386 case DCB_OUTPUT_DP:
387 max_rate = nv_encoder->dp.link_nr * nv_encoder->dp.link_bw;
388
389 /* we don't support more than 10 anyway */
390 asyh->or.bpc = min_t(u8, asyh->or.bpc, 10);
391
392 /* reduce the bpc until it works out */
393 while (asyh->or.bpc > 6) {
394 mode_rate = DIV_ROUND_UP(mode->clock * asyh->or.bpc * 3, 8);
395 if (mode_rate <= max_rate)
396 break;
397
398 asyh->or.bpc -= 2;
399 }
400 break;
401 default:
402 break;
403 }
404 }
405
406 static int
nv50_outp_atomic_check(struct drm_encoder * encoder,struct drm_crtc_state * crtc_state,struct drm_connector_state * conn_state)407 nv50_outp_atomic_check(struct drm_encoder *encoder,
408 struct drm_crtc_state *crtc_state,
409 struct drm_connector_state *conn_state)
410 {
411 struct drm_connector *connector = conn_state->connector;
412 struct nouveau_connector *nv_connector = nouveau_connector(connector);
413 struct nv50_head_atom *asyh = nv50_head_atom(crtc_state);
414 int ret;
415
416 ret = nv50_outp_atomic_check_view(encoder, crtc_state, conn_state,
417 nv_connector->native_mode);
418 if (ret)
419 return ret;
420
421 if (crtc_state->mode_changed || crtc_state->connectors_changed)
422 asyh->or.bpc = connector->display_info.bpc;
423
424 /* We might have to reduce the bpc */
425 nv50_outp_atomic_fix_depth(encoder, crtc_state);
426
427 return 0;
428 }
429
430 struct nouveau_connector *
nv50_outp_get_new_connector(struct drm_atomic_state * state,struct nouveau_encoder * outp)431 nv50_outp_get_new_connector(struct drm_atomic_state *state, struct nouveau_encoder *outp)
432 {
433 struct drm_connector *connector;
434 struct drm_connector_state *connector_state;
435 struct drm_encoder *encoder = to_drm_encoder(outp);
436 int i;
437
438 for_each_new_connector_in_state(state, connector, connector_state, i) {
439 if (connector_state->best_encoder == encoder)
440 return nouveau_connector(connector);
441 }
442
443 return NULL;
444 }
445
446 struct nouveau_connector *
nv50_outp_get_old_connector(struct drm_atomic_state * state,struct nouveau_encoder * outp)447 nv50_outp_get_old_connector(struct drm_atomic_state *state, struct nouveau_encoder *outp)
448 {
449 struct drm_connector *connector;
450 struct drm_connector_state *connector_state;
451 struct drm_encoder *encoder = to_drm_encoder(outp);
452 int i;
453
454 for_each_old_connector_in_state(state, connector, connector_state, i) {
455 if (connector_state->best_encoder == encoder)
456 return nouveau_connector(connector);
457 }
458
459 return NULL;
460 }
461
462 static struct nouveau_crtc *
nv50_outp_get_new_crtc(const struct drm_atomic_state * state,const struct nouveau_encoder * outp)463 nv50_outp_get_new_crtc(const struct drm_atomic_state *state, const struct nouveau_encoder *outp)
464 {
465 struct drm_crtc *crtc;
466 struct drm_crtc_state *crtc_state;
467 const u32 mask = drm_encoder_mask(&outp->base.base);
468 int i;
469
470 for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
471 if (crtc_state->encoder_mask & mask)
472 return nouveau_crtc(crtc);
473 }
474
475 return NULL;
476 }
477
478 /******************************************************************************
479 * DAC
480 *****************************************************************************/
481 static void
nv50_dac_atomic_disable(struct drm_encoder * encoder,struct drm_atomic_state * state)482 nv50_dac_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state)
483 {
484 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
485 struct nv50_core *core = nv50_disp(encoder->dev)->core;
486 const u32 ctrl = NVDEF(NV507D, DAC_SET_CONTROL, OWNER, NONE);
487
488 core->func->dac->ctrl(core, nv_encoder->outp.or.id, ctrl, NULL);
489 nv_encoder->crtc = NULL;
490 }
491
492 static void
nv50_dac_atomic_enable(struct drm_encoder * encoder,struct drm_atomic_state * state)493 nv50_dac_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state)
494 {
495 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
496 struct nouveau_crtc *nv_crtc = nv50_outp_get_new_crtc(state, nv_encoder);
497 struct nv50_head_atom *asyh =
498 nv50_head_atom(drm_atomic_get_new_crtc_state(state, &nv_crtc->base));
499 struct nv50_core *core = nv50_disp(encoder->dev)->core;
500 u32 ctrl = 0;
501
502 switch (nv_crtc->index) {
503 case 0: ctrl |= NVDEF(NV507D, DAC_SET_CONTROL, OWNER, HEAD0); break;
504 case 1: ctrl |= NVDEF(NV507D, DAC_SET_CONTROL, OWNER, HEAD1); break;
505 case 2: ctrl |= NVDEF(NV907D, DAC_SET_CONTROL, OWNER_MASK, HEAD2); break;
506 case 3: ctrl |= NVDEF(NV907D, DAC_SET_CONTROL, OWNER_MASK, HEAD3); break;
507 default:
508 WARN_ON(1);
509 break;
510 }
511
512 ctrl |= NVDEF(NV507D, DAC_SET_CONTROL, PROTOCOL, RGB_CRT);
513
514 if (!nvif_outp_acquired(&nv_encoder->outp))
515 nvif_outp_acquire_dac(&nv_encoder->outp);
516
517 core->func->dac->ctrl(core, nv_encoder->outp.or.id, ctrl, asyh);
518 asyh->or.depth = 0;
519
520 nv_encoder->crtc = &nv_crtc->base;
521 }
522
523 static enum drm_connector_status
nv50_dac_detect(struct drm_encoder * encoder,struct drm_connector * connector)524 nv50_dac_detect(struct drm_encoder *encoder, struct drm_connector *connector)
525 {
526 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
527 u32 loadval;
528 int ret;
529
530 loadval = nouveau_drm(encoder->dev)->vbios.dactestval;
531 if (loadval == 0)
532 loadval = 340;
533
534 ret = nvif_outp_load_detect(&nv_encoder->outp, loadval);
535 if (ret <= 0)
536 return connector_status_disconnected;
537
538 return connector_status_connected;
539 }
540
541 static const struct drm_encoder_helper_funcs
542 nv50_dac_help = {
543 .atomic_check = nv50_outp_atomic_check,
544 .atomic_enable = nv50_dac_atomic_enable,
545 .atomic_disable = nv50_dac_atomic_disable,
546 .detect = nv50_dac_detect
547 };
548
549 static void
nv50_dac_destroy(struct drm_encoder * encoder)550 nv50_dac_destroy(struct drm_encoder *encoder)
551 {
552 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
553
554 nvif_outp_dtor(&nv_encoder->outp);
555
556 drm_encoder_cleanup(encoder);
557 kfree(encoder);
558 }
559
560 static const struct drm_encoder_funcs
561 nv50_dac_func = {
562 .destroy = nv50_dac_destroy,
563 };
564
565 static int
nv50_dac_create(struct nouveau_encoder * nv_encoder)566 nv50_dac_create(struct nouveau_encoder *nv_encoder)
567 {
568 struct drm_connector *connector = &nv_encoder->conn->base;
569 struct nouveau_drm *drm = nouveau_drm(connector->dev);
570 struct nvkm_i2c *i2c = nvxx_i2c(drm);
571 struct nvkm_i2c_bus *bus;
572 struct drm_encoder *encoder;
573 struct dcb_output *dcbe = nv_encoder->dcb;
574 int type = DRM_MODE_ENCODER_DAC;
575
576 bus = nvkm_i2c_bus_find(i2c, dcbe->i2c_index);
577 if (bus)
578 nv_encoder->i2c = &bus->i2c;
579
580 encoder = to_drm_encoder(nv_encoder);
581 drm_encoder_init(connector->dev, encoder, &nv50_dac_func, type,
582 "dac-%04x-%04x", dcbe->hasht, dcbe->hashm);
583 drm_encoder_helper_add(encoder, &nv50_dac_help);
584
585 drm_connector_attach_encoder(connector, encoder);
586 return 0;
587 }
588
589 /*
590 * audio component binding for ELD notification
591 */
592 static void
nv50_audio_component_eld_notify(struct drm_audio_component * acomp,int port,int dev_id)593 nv50_audio_component_eld_notify(struct drm_audio_component *acomp, int port,
594 int dev_id)
595 {
596 if (acomp && acomp->audio_ops && acomp->audio_ops->pin_eld_notify)
597 acomp->audio_ops->pin_eld_notify(acomp->audio_ops->audio_ptr,
598 port, dev_id);
599 }
600
601 static int
nv50_audio_component_get_eld(struct device * kdev,int port,int dev_id,bool * enabled,unsigned char * buf,int max_bytes)602 nv50_audio_component_get_eld(struct device *kdev, int port, int dev_id,
603 bool *enabled, unsigned char *buf, int max_bytes)
604 {
605 struct nouveau_drm *drm = dev_get_drvdata(kdev);
606 struct drm_encoder *encoder;
607 struct nouveau_encoder *nv_encoder;
608 struct nouveau_crtc *nv_crtc;
609 int ret = 0;
610
611 *enabled = false;
612
613 mutex_lock(&drm->audio.lock);
614
615 drm_for_each_encoder(encoder, drm->dev) {
616 struct nouveau_connector *nv_connector = NULL;
617
618 if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST)
619 continue; /* TODO */
620
621 nv_encoder = nouveau_encoder(encoder);
622 nv_connector = nv_encoder->conn;
623 nv_crtc = nouveau_crtc(nv_encoder->crtc);
624
625 if (!nv_crtc || nv_encoder->outp.or.id != port || nv_crtc->index != dev_id)
626 continue;
627
628 *enabled = nv_encoder->audio.enabled;
629 if (*enabled) {
630 ret = drm_eld_size(nv_connector->base.eld);
631 memcpy(buf, nv_connector->base.eld,
632 min(max_bytes, ret));
633 }
634 break;
635 }
636
637 mutex_unlock(&drm->audio.lock);
638
639 return ret;
640 }
641
642 static const struct drm_audio_component_ops nv50_audio_component_ops = {
643 .get_eld = nv50_audio_component_get_eld,
644 };
645
646 static int
nv50_audio_component_bind(struct device * kdev,struct device * hda_kdev,void * data)647 nv50_audio_component_bind(struct device *kdev, struct device *hda_kdev,
648 void *data)
649 {
650 struct nouveau_drm *drm = dev_get_drvdata(kdev);
651 struct drm_audio_component *acomp = data;
652
653 if (WARN_ON(!device_link_add(hda_kdev, kdev, DL_FLAG_STATELESS)))
654 return -ENOMEM;
655
656 drm_modeset_lock_all(drm->dev);
657 acomp->ops = &nv50_audio_component_ops;
658 acomp->dev = kdev;
659 drm->audio.component = acomp;
660 drm_modeset_unlock_all(drm->dev);
661 return 0;
662 }
663
664 static void
nv50_audio_component_unbind(struct device * kdev,struct device * hda_kdev,void * data)665 nv50_audio_component_unbind(struct device *kdev, struct device *hda_kdev,
666 void *data)
667 {
668 struct nouveau_drm *drm = dev_get_drvdata(kdev);
669 struct drm_audio_component *acomp = data;
670
671 drm_modeset_lock_all(drm->dev);
672 drm->audio.component = NULL;
673 acomp->ops = NULL;
674 acomp->dev = NULL;
675 drm_modeset_unlock_all(drm->dev);
676 }
677
678 static const struct component_ops nv50_audio_component_bind_ops = {
679 .bind = nv50_audio_component_bind,
680 .unbind = nv50_audio_component_unbind,
681 };
682
683 static void
nv50_audio_component_init(struct nouveau_drm * drm)684 nv50_audio_component_init(struct nouveau_drm *drm)
685 {
686 if (component_add(drm->dev->dev, &nv50_audio_component_bind_ops))
687 return;
688
689 drm->audio.component_registered = true;
690 mutex_init(&drm->audio.lock);
691 }
692
693 static void
nv50_audio_component_fini(struct nouveau_drm * drm)694 nv50_audio_component_fini(struct nouveau_drm *drm)
695 {
696 if (!drm->audio.component_registered)
697 return;
698
699 component_del(drm->dev->dev, &nv50_audio_component_bind_ops);
700 drm->audio.component_registered = false;
701 mutex_destroy(&drm->audio.lock);
702 }
703
704 /******************************************************************************
705 * Audio
706 *****************************************************************************/
707 static bool
nv50_audio_supported(struct drm_encoder * encoder)708 nv50_audio_supported(struct drm_encoder *encoder)
709 {
710 struct nv50_disp *disp = nv50_disp(encoder->dev);
711
712 if (disp->disp->object.oclass <= GT200_DISP ||
713 disp->disp->object.oclass == GT206_DISP)
714 return false;
715
716 if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) {
717 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
718
719 switch (nv_encoder->dcb->type) {
720 case DCB_OUTPUT_TMDS:
721 case DCB_OUTPUT_DP:
722 break;
723 default:
724 return false;
725 }
726 }
727
728 return true;
729 }
730
731 static void
nv50_audio_disable(struct drm_encoder * encoder,struct nouveau_crtc * nv_crtc)732 nv50_audio_disable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc)
733 {
734 struct nouveau_drm *drm = nouveau_drm(encoder->dev);
735 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
736 struct nvif_outp *outp = &nv_encoder->outp;
737
738 if (!nv50_audio_supported(encoder))
739 return;
740
741 mutex_lock(&drm->audio.lock);
742 if (nv_encoder->audio.enabled) {
743 nv_encoder->audio.enabled = false;
744 nvif_outp_hda_eld(&nv_encoder->outp, nv_crtc->index, NULL, 0);
745 }
746 mutex_unlock(&drm->audio.lock);
747
748 nv50_audio_component_eld_notify(drm->audio.component, outp->or.id, nv_crtc->index);
749 }
750
751 static void
nv50_audio_enable(struct drm_encoder * encoder,struct nouveau_crtc * nv_crtc,struct nouveau_connector * nv_connector,struct drm_atomic_state * state,struct drm_display_mode * mode)752 nv50_audio_enable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc,
753 struct nouveau_connector *nv_connector, struct drm_atomic_state *state,
754 struct drm_display_mode *mode)
755 {
756 struct nouveau_drm *drm = nouveau_drm(encoder->dev);
757 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
758 struct nvif_outp *outp = &nv_encoder->outp;
759
760 if (!nv50_audio_supported(encoder) || !nv_connector->base.display_info.has_audio)
761 return;
762
763 mutex_lock(&drm->audio.lock);
764
765 nvif_outp_hda_eld(&nv_encoder->outp, nv_crtc->index, nv_connector->base.eld,
766 drm_eld_size(nv_connector->base.eld));
767 nv_encoder->audio.enabled = true;
768
769 mutex_unlock(&drm->audio.lock);
770
771 nv50_audio_component_eld_notify(drm->audio.component, outp->or.id, nv_crtc->index);
772 }
773
774 /******************************************************************************
775 * HDMI
776 *****************************************************************************/
777 static void
nv50_hdmi_enable(struct drm_encoder * encoder,struct nouveau_crtc * nv_crtc,struct nouveau_connector * nv_connector,struct drm_atomic_state * state,struct drm_display_mode * mode,bool hda)778 nv50_hdmi_enable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc,
779 struct nouveau_connector *nv_connector, struct drm_atomic_state *state,
780 struct drm_display_mode *mode, bool hda)
781 {
782 struct nouveau_drm *drm = nouveau_drm(encoder->dev);
783 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
784 struct drm_hdmi_info *hdmi = &nv_connector->base.display_info.hdmi;
785 union hdmi_infoframe infoframe = { 0 };
786 const u8 rekey = 56; /* binary driver, and tegra, constant */
787 u32 max_ac_packet;
788 DEFINE_RAW_FLEX(struct nvif_outp_infoframe_v0, args, data, 17);
789 const u8 data_len = __member_size(args->data);
790 int ret, size;
791
792 max_ac_packet = mode->htotal - mode->hdisplay;
793 max_ac_packet -= rekey;
794 max_ac_packet -= 18; /* constant from tegra */
795 max_ac_packet /= 32;
796
797 if (nv_encoder->i2c && hdmi->scdc.scrambling.supported) {
798 const bool high_tmds_clock_ratio = mode->clock > 340000;
799 u8 scdc;
800
801 ret = drm_scdc_readb(nv_encoder->i2c, SCDC_TMDS_CONFIG, &scdc);
802 if (ret < 0) {
803 NV_ERROR(drm, "Failure to read SCDC_TMDS_CONFIG: %d\n", ret);
804 return;
805 }
806
807 scdc &= ~(SCDC_TMDS_BIT_CLOCK_RATIO_BY_40 | SCDC_SCRAMBLING_ENABLE);
808 if (high_tmds_clock_ratio || hdmi->scdc.scrambling.low_rates)
809 scdc |= SCDC_SCRAMBLING_ENABLE;
810 if (high_tmds_clock_ratio)
811 scdc |= SCDC_TMDS_BIT_CLOCK_RATIO_BY_40;
812
813 ret = drm_scdc_writeb(nv_encoder->i2c, SCDC_TMDS_CONFIG, scdc);
814 if (ret < 0)
815 NV_ERROR(drm, "Failure to write SCDC_TMDS_CONFIG = 0x%02x: %d\n",
816 scdc, ret);
817 }
818
819 ret = nvif_outp_hdmi(&nv_encoder->outp, nv_crtc->index, true, max_ac_packet, rekey,
820 mode->clock, hdmi->scdc.supported, hdmi->scdc.scrambling.supported,
821 hdmi->scdc.scrambling.low_rates);
822 if (ret)
823 return;
824
825 /* AVI InfoFrame. */
826 args->version = 0;
827 args->head = nv_crtc->index;
828
829 if (!drm_hdmi_avi_infoframe_from_display_mode(&infoframe.avi, &nv_connector->base, mode)) {
830 drm_hdmi_avi_infoframe_quant_range(&infoframe.avi, &nv_connector->base, mode,
831 HDMI_QUANTIZATION_RANGE_FULL);
832
833 size = hdmi_infoframe_pack(&infoframe, args->data, data_len);
834 } else {
835 size = 0;
836 }
837
838 nvif_outp_infoframe(&nv_encoder->outp, NVIF_OUTP_INFOFRAME_V0_AVI, args, size);
839
840 /* Vendor InfoFrame. */
841 memset(args->data, 0, data_len);
842 if (!drm_hdmi_vendor_infoframe_from_display_mode(&infoframe.vendor.hdmi,
843 &nv_connector->base, mode))
844 size = hdmi_infoframe_pack(&infoframe, args->data, data_len);
845 else
846 size = 0;
847
848 nvif_outp_infoframe(&nv_encoder->outp, NVIF_OUTP_INFOFRAME_V0_VSI, args, size);
849
850 nv_encoder->hdmi.enabled = true;
851 }
852
853 /******************************************************************************
854 * MST
855 *****************************************************************************/
856 #define nv50_mstm(p) container_of((p), struct nv50_mstm, mgr)
857 #define nv50_mstc(p) container_of((p), struct nv50_mstc, connector)
858 #define nv50_msto(p) container_of((p), struct nv50_msto, encoder)
859
860 struct nv50_mstc {
861 struct nv50_mstm *mstm;
862 struct drm_dp_mst_port *port;
863 struct drm_connector connector;
864
865 struct drm_display_mode *native;
866 struct edid *edid;
867 };
868
869 struct nv50_msto {
870 struct drm_encoder encoder;
871
872 /* head is statically assigned on msto creation */
873 struct nv50_head *head;
874 struct nv50_mstc *mstc;
875 bool disabled;
876 bool enabled;
877
878 u32 display_id;
879 };
880
nv50_real_outp(struct drm_encoder * encoder)881 struct nouveau_encoder *nv50_real_outp(struct drm_encoder *encoder)
882 {
883 struct nv50_msto *msto;
884
885 if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST)
886 return nouveau_encoder(encoder);
887
888 msto = nv50_msto(encoder);
889 if (!msto->mstc)
890 return NULL;
891 return msto->mstc->mstm->outp;
892 }
893
894 static void
nv50_msto_cleanup(struct drm_atomic_state * state,struct drm_dp_mst_topology_state * new_mst_state,struct drm_dp_mst_topology_mgr * mgr,struct nv50_msto * msto)895 nv50_msto_cleanup(struct drm_atomic_state *state,
896 struct drm_dp_mst_topology_state *new_mst_state,
897 struct drm_dp_mst_topology_mgr *mgr,
898 struct nv50_msto *msto)
899 {
900 struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev);
901 struct drm_dp_mst_atomic_payload *new_payload =
902 drm_atomic_get_mst_payload_state(new_mst_state, msto->mstc->port);
903 struct drm_dp_mst_topology_state *old_mst_state =
904 drm_atomic_get_old_mst_topology_state(state, mgr);
905 const struct drm_dp_mst_atomic_payload *old_payload =
906 drm_atomic_get_mst_payload_state(old_mst_state, msto->mstc->port);
907 struct nv50_mstc *mstc = msto->mstc;
908 struct nv50_mstm *mstm = mstc->mstm;
909
910 NV_ATOMIC(drm, "%s: msto cleanup\n", msto->encoder.name);
911
912 if (msto->disabled) {
913 if (msto->head->func->display_id) {
914 nvif_outp_dp_mst_id_put(&mstm->outp->outp, msto->display_id);
915 msto->display_id = 0;
916 }
917
918 msto->mstc = NULL;
919 msto->disabled = false;
920 drm_dp_remove_payload_part2(mgr, new_mst_state, old_payload, new_payload);
921 } else if (msto->enabled) {
922 drm_dp_add_payload_part2(mgr, new_payload);
923 msto->enabled = false;
924 }
925 }
926
927 static void
nv50_msto_prepare(struct drm_atomic_state * state,struct drm_dp_mst_topology_state * mst_state,struct drm_dp_mst_topology_mgr * mgr,struct nv50_msto * msto)928 nv50_msto_prepare(struct drm_atomic_state *state,
929 struct drm_dp_mst_topology_state *mst_state,
930 struct drm_dp_mst_topology_mgr *mgr,
931 struct nv50_msto *msto)
932 {
933 struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev);
934 struct nv50_mstc *mstc = msto->mstc;
935 struct nv50_mstm *mstm = mstc->mstm;
936 struct drm_dp_mst_atomic_payload *payload;
937 int ret = 0;
938
939 NV_ATOMIC(drm, "%s: msto prepare\n", msto->encoder.name);
940
941 payload = drm_atomic_get_mst_payload_state(mst_state, mstc->port);
942
943 if (msto->disabled) {
944 drm_dp_remove_payload_part1(mgr, mst_state, payload);
945 nvif_outp_dp_mst_vcpi(&mstm->outp->outp, msto->head->base.index, 0, 0, 0, 0);
946 ret = 1;
947 } else {
948 if (msto->enabled)
949 ret = drm_dp_add_payload_part1(mgr, mst_state, payload);
950 }
951
952 if (ret == 0) {
953 nvif_outp_dp_mst_vcpi(&mstm->outp->outp, msto->head->base.index,
954 payload->vc_start_slot, payload->time_slots,
955 payload->pbn,
956 payload->time_slots * dfixed_trunc(mst_state->pbn_div));
957 } else {
958 nvif_outp_dp_mst_vcpi(&mstm->outp->outp, msto->head->base.index, 0, 0, 0, 0);
959 }
960 }
961
962 static int
nv50_msto_atomic_check(struct drm_encoder * encoder,struct drm_crtc_state * crtc_state,struct drm_connector_state * conn_state)963 nv50_msto_atomic_check(struct drm_encoder *encoder,
964 struct drm_crtc_state *crtc_state,
965 struct drm_connector_state *conn_state)
966 {
967 struct drm_atomic_state *state = crtc_state->state;
968 struct drm_connector *connector = conn_state->connector;
969 struct drm_dp_mst_topology_state *mst_state;
970 struct nv50_mstc *mstc = nv50_mstc(connector);
971 struct nv50_mstm *mstm = mstc->mstm;
972 struct nv50_head_atom *asyh = nv50_head_atom(crtc_state);
973 int slots;
974 int ret;
975
976 ret = nv50_outp_atomic_check_view(encoder, crtc_state, conn_state,
977 mstc->native);
978 if (ret)
979 return ret;
980
981 if (!drm_atomic_crtc_needs_modeset(crtc_state))
982 return 0;
983
984 /*
985 * When restoring duplicated states, we need to make sure that the bw
986 * remains the same and avoid recalculating it, as the connector's bpc
987 * may have changed after the state was duplicated
988 */
989 if (!state->duplicated) {
990 const int clock = crtc_state->adjusted_mode.clock;
991
992 asyh->or.bpc = connector->display_info.bpc;
993 asyh->dp.pbn = drm_dp_calc_pbn_mode(clock, asyh->or.bpc * 3 << 4);
994 }
995
996 mst_state = drm_atomic_get_mst_topology_state(state, &mstm->mgr);
997 if (IS_ERR(mst_state))
998 return PTR_ERR(mst_state);
999
1000 if (!mst_state->pbn_div.full) {
1001 struct nouveau_encoder *outp = mstc->mstm->outp;
1002
1003 mst_state->pbn_div = drm_dp_get_vc_payload_bw(outp->dp.link_bw, outp->dp.link_nr);
1004 }
1005
1006 slots = drm_dp_atomic_find_time_slots(state, &mstm->mgr, mstc->port, asyh->dp.pbn);
1007 if (slots < 0)
1008 return slots;
1009
1010 asyh->dp.tu = slots;
1011
1012 return 0;
1013 }
1014
1015 static u8
nv50_dp_bpc_to_depth(unsigned int bpc)1016 nv50_dp_bpc_to_depth(unsigned int bpc)
1017 {
1018 switch (bpc) {
1019 case 6: return NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_BPP_18_444;
1020 case 8: return NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_BPP_24_444;
1021 case 10:
1022 default: return NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_BPP_30_444;
1023 }
1024 }
1025
1026 static void
nv50_msto_atomic_enable(struct drm_encoder * encoder,struct drm_atomic_state * state)1027 nv50_msto_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state)
1028 {
1029 struct nv50_msto *msto = nv50_msto(encoder);
1030 struct nv50_head *head = msto->head;
1031 struct nv50_head_atom *asyh =
1032 nv50_head_atom(drm_atomic_get_new_crtc_state(state, &head->base.base));
1033 struct nv50_mstc *mstc = NULL;
1034 struct nv50_mstm *mstm = NULL;
1035 struct drm_connector *connector;
1036 struct drm_connector_list_iter conn_iter;
1037 u8 proto;
1038
1039 drm_connector_list_iter_begin(encoder->dev, &conn_iter);
1040 drm_for_each_connector_iter(connector, &conn_iter) {
1041 if (connector->state->best_encoder == &msto->encoder) {
1042 mstc = nv50_mstc(connector);
1043 mstm = mstc->mstm;
1044 break;
1045 }
1046 }
1047 drm_connector_list_iter_end(&conn_iter);
1048
1049 if (WARN_ON(!mstc))
1050 return;
1051
1052 if (!mstm->links++) {
1053 nvif_outp_acquire_sor(&mstm->outp->outp, false /*TODO: MST audio... */);
1054 nouveau_dp_train(mstm->outp, true, 0, 0);
1055 }
1056
1057 if (head->func->display_id) {
1058 if (!WARN_ON(nvif_outp_dp_mst_id_get(&mstm->outp->outp, &msto->display_id)))
1059 head->func->display_id(head, msto->display_id);
1060 }
1061
1062 if (mstm->outp->outp.or.link & 1)
1063 proto = NV917D_SOR_SET_CONTROL_PROTOCOL_DP_A;
1064 else
1065 proto = NV917D_SOR_SET_CONTROL_PROTOCOL_DP_B;
1066
1067 mstm->outp->update(mstm->outp, head->base.index, asyh, proto,
1068 nv50_dp_bpc_to_depth(asyh->or.bpc));
1069
1070 msto->mstc = mstc;
1071 msto->enabled = true;
1072 mstm->modified = true;
1073 }
1074
1075 static void
nv50_msto_atomic_disable(struct drm_encoder * encoder,struct drm_atomic_state * state)1076 nv50_msto_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state)
1077 {
1078 struct nv50_msto *msto = nv50_msto(encoder);
1079 struct nv50_mstc *mstc = msto->mstc;
1080 struct nv50_mstm *mstm = mstc->mstm;
1081
1082 if (msto->head->func->display_id)
1083 msto->head->func->display_id(msto->head, 0);
1084
1085 mstm->outp->update(mstm->outp, msto->head->base.index, NULL, 0, 0);
1086 mstm->modified = true;
1087 if (!--mstm->links)
1088 mstm->disabled = true;
1089 msto->disabled = true;
1090 }
1091
1092 static const struct drm_encoder_helper_funcs
1093 nv50_msto_help = {
1094 .atomic_disable = nv50_msto_atomic_disable,
1095 .atomic_enable = nv50_msto_atomic_enable,
1096 .atomic_check = nv50_msto_atomic_check,
1097 };
1098
1099 static void
nv50_msto_destroy(struct drm_encoder * encoder)1100 nv50_msto_destroy(struct drm_encoder *encoder)
1101 {
1102 struct nv50_msto *msto = nv50_msto(encoder);
1103 drm_encoder_cleanup(&msto->encoder);
1104 kfree(msto);
1105 }
1106
1107 static const struct drm_encoder_funcs
1108 nv50_msto = {
1109 .destroy = nv50_msto_destroy,
1110 };
1111
1112 static struct nv50_msto *
nv50_msto_new(struct drm_device * dev,struct nv50_head * head,int id)1113 nv50_msto_new(struct drm_device *dev, struct nv50_head *head, int id)
1114 {
1115 struct nv50_msto *msto;
1116 int ret;
1117
1118 msto = kzalloc(sizeof(*msto), GFP_KERNEL);
1119 if (!msto)
1120 return ERR_PTR(-ENOMEM);
1121
1122 ret = drm_encoder_init(dev, &msto->encoder, &nv50_msto,
1123 DRM_MODE_ENCODER_DPMST, "mst-%d", id);
1124 if (ret) {
1125 kfree(msto);
1126 return ERR_PTR(ret);
1127 }
1128
1129 drm_encoder_helper_add(&msto->encoder, &nv50_msto_help);
1130 msto->encoder.possible_crtcs = drm_crtc_mask(&head->base.base);
1131 msto->head = head;
1132 return msto;
1133 }
1134
1135 static struct drm_encoder *
nv50_mstc_atomic_best_encoder(struct drm_connector * connector,struct drm_atomic_state * state)1136 nv50_mstc_atomic_best_encoder(struct drm_connector *connector,
1137 struct drm_atomic_state *state)
1138 {
1139 struct drm_connector_state *connector_state = drm_atomic_get_new_connector_state(state,
1140 connector);
1141 struct nv50_mstc *mstc = nv50_mstc(connector);
1142 struct drm_crtc *crtc = connector_state->crtc;
1143
1144 if (!(mstc->mstm->outp->dcb->heads & drm_crtc_mask(crtc)))
1145 return NULL;
1146
1147 return &nv50_head(crtc)->msto->encoder;
1148 }
1149
1150 static enum drm_mode_status
nv50_mstc_mode_valid(struct drm_connector * connector,const struct drm_display_mode * mode)1151 nv50_mstc_mode_valid(struct drm_connector *connector,
1152 const struct drm_display_mode *mode)
1153 {
1154 struct nv50_mstc *mstc = nv50_mstc(connector);
1155 struct nouveau_encoder *outp = mstc->mstm->outp;
1156
1157 /* TODO: calculate the PBN from the dotclock and validate against the
1158 * MSTB's max possible PBN
1159 */
1160
1161 return nv50_dp_mode_valid(outp, mode, NULL);
1162 }
1163
1164 static int
nv50_mstc_get_modes(struct drm_connector * connector)1165 nv50_mstc_get_modes(struct drm_connector *connector)
1166 {
1167 struct nv50_mstc *mstc = nv50_mstc(connector);
1168 int ret = 0;
1169
1170 mstc->edid = drm_dp_mst_get_edid(&mstc->connector, mstc->port->mgr, mstc->port);
1171 drm_connector_update_edid_property(&mstc->connector, mstc->edid);
1172 if (mstc->edid)
1173 ret = drm_add_edid_modes(&mstc->connector, mstc->edid);
1174
1175 /*
1176 * XXX: Since we don't use HDR in userspace quite yet, limit the bpc
1177 * to 8 to save bandwidth on the topology. In the future, we'll want
1178 * to properly fix this by dynamically selecting the highest possible
1179 * bpc that would fit in the topology
1180 */
1181 if (connector->display_info.bpc)
1182 connector->display_info.bpc =
1183 clamp(connector->display_info.bpc, 6U, 8U);
1184 else
1185 connector->display_info.bpc = 8;
1186
1187 if (mstc->native)
1188 drm_mode_destroy(mstc->connector.dev, mstc->native);
1189 mstc->native = nouveau_conn_native_mode(&mstc->connector);
1190 return ret;
1191 }
1192
1193 static int
nv50_mstc_atomic_check(struct drm_connector * connector,struct drm_atomic_state * state)1194 nv50_mstc_atomic_check(struct drm_connector *connector,
1195 struct drm_atomic_state *state)
1196 {
1197 struct nv50_mstc *mstc = nv50_mstc(connector);
1198 struct drm_dp_mst_topology_mgr *mgr = &mstc->mstm->mgr;
1199
1200 return drm_dp_atomic_release_time_slots(state, mgr, mstc->port);
1201 }
1202
1203 static int
nv50_mstc_detect(struct drm_connector * connector,struct drm_modeset_acquire_ctx * ctx,bool force)1204 nv50_mstc_detect(struct drm_connector *connector,
1205 struct drm_modeset_acquire_ctx *ctx, bool force)
1206 {
1207 struct nv50_mstc *mstc = nv50_mstc(connector);
1208 int ret;
1209
1210 if (drm_connector_is_unregistered(connector))
1211 return connector_status_disconnected;
1212
1213 ret = pm_runtime_get_sync(connector->dev->dev);
1214 if (ret < 0 && ret != -EACCES) {
1215 pm_runtime_put_autosuspend(connector->dev->dev);
1216 return connector_status_disconnected;
1217 }
1218
1219 ret = drm_dp_mst_detect_port(connector, ctx, mstc->port->mgr,
1220 mstc->port);
1221 if (ret != connector_status_connected)
1222 goto out;
1223
1224 out:
1225 pm_runtime_mark_last_busy(connector->dev->dev);
1226 pm_runtime_put_autosuspend(connector->dev->dev);
1227 return ret;
1228 }
1229
1230 static const struct drm_connector_helper_funcs
1231 nv50_mstc_help = {
1232 .get_modes = nv50_mstc_get_modes,
1233 .mode_valid = nv50_mstc_mode_valid,
1234 .atomic_best_encoder = nv50_mstc_atomic_best_encoder,
1235 .atomic_check = nv50_mstc_atomic_check,
1236 .detect_ctx = nv50_mstc_detect,
1237 };
1238
1239 static void
nv50_mstc_destroy(struct drm_connector * connector)1240 nv50_mstc_destroy(struct drm_connector *connector)
1241 {
1242 struct nv50_mstc *mstc = nv50_mstc(connector);
1243
1244 drm_connector_cleanup(&mstc->connector);
1245 drm_dp_mst_put_port_malloc(mstc->port);
1246
1247 kfree(mstc);
1248 }
1249
1250 static const struct drm_connector_funcs
1251 nv50_mstc = {
1252 .reset = nouveau_conn_reset,
1253 .fill_modes = drm_helper_probe_single_connector_modes,
1254 .destroy = nv50_mstc_destroy,
1255 .atomic_duplicate_state = nouveau_conn_atomic_duplicate_state,
1256 .atomic_destroy_state = nouveau_conn_atomic_destroy_state,
1257 .atomic_set_property = nouveau_conn_atomic_set_property,
1258 .atomic_get_property = nouveau_conn_atomic_get_property,
1259 };
1260
1261 static int
nv50_mstc_new(struct nv50_mstm * mstm,struct drm_dp_mst_port * port,const char * path,struct nv50_mstc ** pmstc)1262 nv50_mstc_new(struct nv50_mstm *mstm, struct drm_dp_mst_port *port,
1263 const char *path, struct nv50_mstc **pmstc)
1264 {
1265 struct drm_device *dev = mstm->outp->base.base.dev;
1266 struct drm_crtc *crtc;
1267 struct nv50_mstc *mstc;
1268 int ret;
1269
1270 if (!(mstc = *pmstc = kzalloc(sizeof(*mstc), GFP_KERNEL)))
1271 return -ENOMEM;
1272 mstc->mstm = mstm;
1273 mstc->port = port;
1274
1275 ret = drm_connector_dynamic_init(dev, &mstc->connector, &nv50_mstc,
1276 DRM_MODE_CONNECTOR_DisplayPort, NULL);
1277 if (ret) {
1278 kfree(*pmstc);
1279 *pmstc = NULL;
1280 return ret;
1281 }
1282
1283 drm_connector_helper_add(&mstc->connector, &nv50_mstc_help);
1284
1285 mstc->connector.funcs->reset(&mstc->connector);
1286 nouveau_conn_attach_properties(&mstc->connector);
1287
1288 drm_for_each_crtc(crtc, dev) {
1289 if (!(mstm->outp->dcb->heads & drm_crtc_mask(crtc)))
1290 continue;
1291
1292 drm_connector_attach_encoder(&mstc->connector,
1293 &nv50_head(crtc)->msto->encoder);
1294 }
1295
1296 drm_object_attach_property(&mstc->connector.base, dev->mode_config.path_property, 0);
1297 drm_object_attach_property(&mstc->connector.base, dev->mode_config.tile_property, 0);
1298 drm_connector_set_path_property(&mstc->connector, path);
1299 drm_dp_mst_get_port_malloc(port);
1300 return 0;
1301 }
1302
1303 static void
nv50_mstm_cleanup(struct drm_atomic_state * state,struct drm_dp_mst_topology_state * mst_state,struct nv50_mstm * mstm)1304 nv50_mstm_cleanup(struct drm_atomic_state *state,
1305 struct drm_dp_mst_topology_state *mst_state,
1306 struct nv50_mstm *mstm)
1307 {
1308 struct nouveau_drm *drm = nouveau_drm(mstm->outp->base.base.dev);
1309 struct drm_encoder *encoder;
1310
1311 NV_ATOMIC(drm, "%s: mstm cleanup\n", mstm->outp->base.base.name);
1312 drm_dp_check_act_status(&mstm->mgr);
1313
1314 drm_for_each_encoder(encoder, mstm->outp->base.base.dev) {
1315 if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) {
1316 struct nv50_msto *msto = nv50_msto(encoder);
1317 struct nv50_mstc *mstc = msto->mstc;
1318 if (mstc && mstc->mstm == mstm)
1319 nv50_msto_cleanup(state, mst_state, &mstm->mgr, msto);
1320 }
1321 }
1322
1323 if (mstm->disabled) {
1324 nouveau_dp_power_down(mstm->outp);
1325 nvif_outp_release(&mstm->outp->outp);
1326 mstm->disabled = false;
1327 }
1328
1329 mstm->modified = false;
1330 }
1331
1332 static void
nv50_mstm_prepare(struct drm_atomic_state * state,struct drm_dp_mst_topology_state * mst_state,struct nv50_mstm * mstm)1333 nv50_mstm_prepare(struct drm_atomic_state *state,
1334 struct drm_dp_mst_topology_state *mst_state,
1335 struct nv50_mstm *mstm)
1336 {
1337 struct nouveau_drm *drm = nouveau_drm(mstm->outp->base.base.dev);
1338 struct drm_encoder *encoder;
1339
1340 NV_ATOMIC(drm, "%s: mstm prepare\n", mstm->outp->base.base.name);
1341
1342 /* Disable payloads first */
1343 drm_for_each_encoder(encoder, mstm->outp->base.base.dev) {
1344 if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) {
1345 struct nv50_msto *msto = nv50_msto(encoder);
1346 struct nv50_mstc *mstc = msto->mstc;
1347 if (mstc && mstc->mstm == mstm && msto->disabled)
1348 nv50_msto_prepare(state, mst_state, &mstm->mgr, msto);
1349 }
1350 }
1351
1352 /* Add payloads for new heads, while also updating the start slots of any unmodified (but
1353 * active) heads that may have had their VC slots shifted left after the previous step
1354 */
1355 drm_for_each_encoder(encoder, mstm->outp->base.base.dev) {
1356 if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) {
1357 struct nv50_msto *msto = nv50_msto(encoder);
1358 struct nv50_mstc *mstc = msto->mstc;
1359 if (mstc && mstc->mstm == mstm && !msto->disabled)
1360 nv50_msto_prepare(state, mst_state, &mstm->mgr, msto);
1361 }
1362 }
1363 }
1364
1365 static struct drm_connector *
nv50_mstm_add_connector(struct drm_dp_mst_topology_mgr * mgr,struct drm_dp_mst_port * port,const char * path)1366 nv50_mstm_add_connector(struct drm_dp_mst_topology_mgr *mgr,
1367 struct drm_dp_mst_port *port, const char *path)
1368 {
1369 struct nv50_mstm *mstm = nv50_mstm(mgr);
1370 struct nv50_mstc *mstc;
1371 int ret;
1372
1373 ret = nv50_mstc_new(mstm, port, path, &mstc);
1374 if (ret)
1375 return NULL;
1376
1377 return &mstc->connector;
1378 }
1379
1380 static const struct drm_dp_mst_topology_cbs
1381 nv50_mstm = {
1382 .add_connector = nv50_mstm_add_connector,
1383 };
1384
1385 bool
nv50_mstm_service(struct nouveau_drm * drm,struct nouveau_connector * nv_connector,struct nv50_mstm * mstm)1386 nv50_mstm_service(struct nouveau_drm *drm,
1387 struct nouveau_connector *nv_connector,
1388 struct nv50_mstm *mstm)
1389 {
1390 struct drm_dp_aux *aux = &nv_connector->aux;
1391 bool handled = true, ret = true;
1392 int rc;
1393 u8 esi[8] = {};
1394
1395 while (handled) {
1396 u8 ack[8] = {};
1397
1398 rc = drm_dp_dpcd_read(aux, DP_SINK_COUNT_ESI, esi, 8);
1399 if (rc != 8) {
1400 ret = false;
1401 break;
1402 }
1403
1404 drm_dp_mst_hpd_irq_handle_event(&mstm->mgr, esi, ack, &handled);
1405 if (!handled)
1406 break;
1407
1408 rc = drm_dp_dpcd_writeb(aux, DP_SINK_COUNT_ESI + 1, ack[1]);
1409
1410 if (rc != 1) {
1411 ret = false;
1412 break;
1413 }
1414
1415 drm_dp_mst_hpd_irq_send_new_request(&mstm->mgr);
1416 }
1417
1418 if (!ret)
1419 NV_DEBUG(drm, "Failed to handle ESI on %s: %d\n",
1420 nv_connector->base.name, rc);
1421
1422 return ret;
1423 }
1424
1425 void
nv50_mstm_remove(struct nv50_mstm * mstm)1426 nv50_mstm_remove(struct nv50_mstm *mstm)
1427 {
1428 mstm->is_mst = false;
1429 drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, false);
1430 }
1431
1432 int
nv50_mstm_detect(struct nouveau_encoder * outp)1433 nv50_mstm_detect(struct nouveau_encoder *outp)
1434 {
1435 struct nv50_mstm *mstm = outp->dp.mstm;
1436 struct drm_dp_aux *aux;
1437 int ret;
1438
1439 if (!mstm || !mstm->can_mst)
1440 return 0;
1441
1442 aux = mstm->mgr.aux;
1443
1444 /* Clear any leftover MST state we didn't set ourselves by first
1445 * disabling MST if it was already enabled
1446 */
1447 ret = drm_dp_dpcd_writeb(aux, DP_MSTM_CTRL, 0);
1448 if (ret < 0)
1449 return ret;
1450
1451 /* And start enabling */
1452 ret = drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, true);
1453 if (ret)
1454 return ret;
1455
1456 mstm->is_mst = true;
1457 return 1;
1458 }
1459
1460 static void
nv50_mstm_fini(struct nouveau_encoder * outp)1461 nv50_mstm_fini(struct nouveau_encoder *outp)
1462 {
1463 struct nv50_mstm *mstm = outp->dp.mstm;
1464
1465 if (!mstm)
1466 return;
1467
1468 /* Don't change the MST state of this connector until we've finished
1469 * resuming, since we can't safely grab hpd_irq_lock in our resume
1470 * path to protect mstm->is_mst without potentially deadlocking
1471 */
1472 mutex_lock(&outp->dp.hpd_irq_lock);
1473 mstm->suspended = true;
1474 mutex_unlock(&outp->dp.hpd_irq_lock);
1475
1476 if (mstm->is_mst)
1477 drm_dp_mst_topology_mgr_suspend(&mstm->mgr);
1478 }
1479
1480 static void
nv50_mstm_init(struct nouveau_encoder * outp,bool runtime)1481 nv50_mstm_init(struct nouveau_encoder *outp, bool runtime)
1482 {
1483 struct nv50_mstm *mstm = outp->dp.mstm;
1484 int ret = 0;
1485
1486 if (!mstm)
1487 return;
1488
1489 if (mstm->is_mst) {
1490 ret = drm_dp_mst_topology_mgr_resume(&mstm->mgr, !runtime);
1491 if (ret == -1)
1492 nv50_mstm_remove(mstm);
1493 }
1494
1495 mutex_lock(&outp->dp.hpd_irq_lock);
1496 mstm->suspended = false;
1497 mutex_unlock(&outp->dp.hpd_irq_lock);
1498
1499 if (ret == -1)
1500 drm_kms_helper_hotplug_event(mstm->mgr.dev);
1501 }
1502
1503 static void
nv50_mstm_del(struct nv50_mstm ** pmstm)1504 nv50_mstm_del(struct nv50_mstm **pmstm)
1505 {
1506 struct nv50_mstm *mstm = *pmstm;
1507 if (mstm) {
1508 drm_dp_mst_topology_mgr_destroy(&mstm->mgr);
1509 kfree(*pmstm);
1510 *pmstm = NULL;
1511 }
1512 }
1513
1514 static int
nv50_mstm_new(struct nouveau_encoder * outp,struct drm_dp_aux * aux,int aux_max,int conn_base_id,struct nv50_mstm ** pmstm)1515 nv50_mstm_new(struct nouveau_encoder *outp, struct drm_dp_aux *aux, int aux_max,
1516 int conn_base_id, struct nv50_mstm **pmstm)
1517 {
1518 const int max_payloads = hweight8(outp->dcb->heads);
1519 struct drm_device *dev = outp->base.base.dev;
1520 struct nv50_mstm *mstm;
1521 int ret;
1522
1523 if (!(mstm = *pmstm = kzalloc(sizeof(*mstm), GFP_KERNEL)))
1524 return -ENOMEM;
1525 mstm->outp = outp;
1526 mstm->mgr.cbs = &nv50_mstm;
1527
1528 ret = drm_dp_mst_topology_mgr_init(&mstm->mgr, dev, aux, aux_max,
1529 max_payloads, conn_base_id);
1530 if (ret)
1531 return ret;
1532
1533 return 0;
1534 }
1535
1536 /******************************************************************************
1537 * SOR
1538 *****************************************************************************/
1539 static void
nv50_sor_update(struct nouveau_encoder * nv_encoder,u8 head,struct nv50_head_atom * asyh,u8 proto,u8 depth)1540 nv50_sor_update(struct nouveau_encoder *nv_encoder, u8 head,
1541 struct nv50_head_atom *asyh, u8 proto, u8 depth)
1542 {
1543 struct nv50_disp *disp = nv50_disp(nv_encoder->base.base.dev);
1544 struct nv50_core *core = disp->core;
1545
1546 if (!asyh) {
1547 nv_encoder->ctrl &= ~BIT(head);
1548 if (NVDEF_TEST(nv_encoder->ctrl, NV507D, SOR_SET_CONTROL, OWNER, ==, NONE))
1549 nv_encoder->ctrl = 0;
1550 } else {
1551 nv_encoder->ctrl |= NVVAL(NV507D, SOR_SET_CONTROL, PROTOCOL, proto);
1552 nv_encoder->ctrl |= BIT(head);
1553 asyh->or.depth = depth;
1554 }
1555
1556 core->func->sor->ctrl(core, nv_encoder->outp.or.id, nv_encoder->ctrl, asyh);
1557 }
1558
1559 /* TODO: Should we extend this to PWM-only backlights?
1560 * As well, should we add a DRM helper for waiting for the backlight to acknowledge
1561 * the panel backlight has been shut off? Intel doesn't seem to do this, and uses a
1562 * fixed time delay from the vbios…
1563 */
1564 static void
nv50_sor_atomic_disable(struct drm_encoder * encoder,struct drm_atomic_state * state)1565 nv50_sor_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state)
1566 {
1567 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1568 struct nv50_head *head = nv50_head(nv_encoder->crtc);
1569 #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT
1570 struct nouveau_connector *nv_connector = nv50_outp_get_old_connector(state, nv_encoder);
1571 struct nouveau_drm *drm = nouveau_drm(nv_encoder->base.base.dev);
1572 struct nouveau_backlight *backlight = nv_connector->backlight;
1573 struct drm_dp_aux *aux = &nv_connector->aux;
1574 int ret;
1575
1576 if (backlight && backlight->uses_dpcd) {
1577 ret = drm_edp_backlight_disable(aux, &backlight->edp_info);
1578 if (ret < 0)
1579 NV_ERROR(drm, "Failed to disable backlight on [CONNECTOR:%d:%s]: %d\n",
1580 nv_connector->base.base.id, nv_connector->base.name, ret);
1581 }
1582 #endif
1583
1584 if (nv_encoder->dcb->type == DCB_OUTPUT_TMDS && nv_encoder->hdmi.enabled) {
1585 nvif_outp_hdmi(&nv_encoder->outp, head->base.index,
1586 false, 0, 0, 0, false, false, false);
1587 nv_encoder->hdmi.enabled = false;
1588 }
1589
1590 if (nv_encoder->dcb->type == DCB_OUTPUT_DP)
1591 nouveau_dp_power_down(nv_encoder);
1592
1593 if (head->func->display_id)
1594 head->func->display_id(head, 0);
1595
1596 nv_encoder->update(nv_encoder, head->base.index, NULL, 0, 0);
1597 nv50_audio_disable(encoder, &head->base);
1598 nv_encoder->crtc = NULL;
1599 }
1600
1601 // common/inc/displayport/displayport.h
1602 #define DP_CONFIG_WATERMARK_ADJUST 2
1603 #define DP_CONFIG_WATERMARK_LIMIT 20
1604 #define DP_CONFIG_INCREASED_WATERMARK_ADJUST 8
1605 #define DP_CONFIG_INCREASED_WATERMARK_LIMIT 22
1606
1607 static bool
nv50_sor_dp_watermark_sst(struct nouveau_encoder * outp,struct nv50_head * head,struct nv50_head_atom * asyh)1608 nv50_sor_dp_watermark_sst(struct nouveau_encoder *outp,
1609 struct nv50_head *head, struct nv50_head_atom *asyh)
1610 {
1611 bool enhancedFraming = outp->dp.dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP;
1612 u64 minRate = outp->dp.link_bw * 1000;
1613 unsigned tuSize = 64;
1614 unsigned waterMark;
1615 unsigned hBlankSym;
1616 unsigned vBlankSym;
1617 unsigned watermarkAdjust = DP_CONFIG_WATERMARK_ADJUST;
1618 unsigned watermarkMinimum = DP_CONFIG_WATERMARK_LIMIT;
1619 // depth is multiplied by 16 in case of DSC enable
1620 s32 hblank_symbols;
1621 // number of link clocks per line.
1622 int vblank_symbols = 0;
1623 bool bEnableDsc = false;
1624 unsigned surfaceWidth = asyh->mode.h.blanks - asyh->mode.h.blanke;
1625 unsigned rasterWidth = asyh->mode.h.active;
1626 unsigned depth = asyh->or.bpc * 3;
1627 unsigned DSC_FACTOR = bEnableDsc ? 16 : 1;
1628 u64 pixelClockHz = asyh->mode.clock * 1000;
1629 u64 PrecisionFactor = 100000, ratioF, watermarkF;
1630 u32 numLanesPerLink = outp->dp.link_nr;
1631 u32 numSymbolsPerLine;
1632 u32 BlankingBits;
1633 u32 surfaceWidthPerLink;
1634 u32 PixelSteeringBits;
1635 u64 NumBlankingLinkClocks;
1636 u32 MinHBlank;
1637
1638 if (outp->outp.info.dp.increased_wm) {
1639 watermarkAdjust = DP_CONFIG_INCREASED_WATERMARK_ADJUST;
1640 watermarkMinimum = DP_CONFIG_INCREASED_WATERMARK_LIMIT;
1641 }
1642
1643 if ((pixelClockHz * depth) >= (8 * minRate * outp->dp.link_nr * DSC_FACTOR))
1644 {
1645 return false;
1646 }
1647
1648 //
1649 // For DSC, if (pclk * bpp) < (1/64 * orclk * 8 * lanes) then some TU may end up with
1650 // 0 active symbols. This may cause HW hang. Bug 200379426
1651 //
1652 if ((bEnableDsc) &&
1653 ((pixelClockHz * depth) < div_u64(8 * minRate * outp->dp.link_nr * DSC_FACTOR, 64)))
1654 {
1655 return false;
1656 }
1657
1658 //
1659 // Perform the SST calculation.
1660 // For auto mode the watermark calculation does not need to track accumulated error the
1661 // formulas for manual mode will not work. So below calculation was extracted from the DTB.
1662 //
1663 ratioF = div_u64((u64)pixelClockHz * depth * PrecisionFactor, DSC_FACTOR);
1664
1665 ratioF = div_u64(ratioF, 8 * (u64) minRate * outp->dp.link_nr);
1666
1667 if (PrecisionFactor < ratioF) // Assert if we will end up with a negative number in below
1668 return false;
1669
1670 watermarkF = div_u64(ratioF * tuSize * (PrecisionFactor - ratioF), PrecisionFactor);
1671 waterMark = (unsigned)(watermarkAdjust + (div_u64(2 * div_u64(depth * PrecisionFactor, 8 * numLanesPerLink * DSC_FACTOR) + watermarkF, PrecisionFactor)));
1672
1673 //
1674 // Bounds check the watermark
1675 //
1676 numSymbolsPerLine = div_u64(surfaceWidth * depth, 8 * outp->dp.link_nr * DSC_FACTOR);
1677
1678 if (WARN_ON(waterMark > 39 || waterMark > numSymbolsPerLine))
1679 return false;
1680
1681 //
1682 // Clamp the low side
1683 //
1684 if (waterMark < watermarkMinimum)
1685 waterMark = watermarkMinimum;
1686
1687 //Bits to send BS/BE/Extra symbols due to pixel padding
1688 //Also accounts for enhanced framing.
1689 BlankingBits = 3*8*numLanesPerLink + (enhancedFraming ? 3*8*numLanesPerLink : 0);
1690
1691 //VBID/MVID/MAUD sent 4 times all the time
1692 BlankingBits += 3*8*4;
1693
1694 surfaceWidthPerLink = surfaceWidth;
1695
1696 //Extra bits sent due to pixel steering
1697 u32 remain;
1698 div_u64_rem(surfaceWidthPerLink, numLanesPerLink, &remain);
1699 PixelSteeringBits = remain ? div_u64((numLanesPerLink - remain) * depth, DSC_FACTOR) : 0;
1700
1701 BlankingBits += PixelSteeringBits;
1702 NumBlankingLinkClocks = div_u64((u64)BlankingBits * PrecisionFactor, (8 * numLanesPerLink));
1703 MinHBlank = (u32)(div_u64(div_u64(NumBlankingLinkClocks * pixelClockHz, minRate), PrecisionFactor));
1704 MinHBlank += 12;
1705
1706 if (WARN_ON(MinHBlank > rasterWidth - surfaceWidth))
1707 return false;
1708
1709 // Bug 702290 - Active Width should be greater than 60
1710 if (WARN_ON(surfaceWidth <= 60))
1711 return false;
1712
1713
1714 hblank_symbols = (s32)(div_u64((u64)(rasterWidth - surfaceWidth - MinHBlank) * minRate, pixelClockHz));
1715
1716 //reduce HBlank Symbols to account for secondary data packet
1717 hblank_symbols -= 1; //Stuffer latency to send BS
1718 hblank_symbols -= 3; //SPKT latency to send data to stuffer
1719
1720 hblank_symbols -= numLanesPerLink == 1 ? 9 : numLanesPerLink == 2 ? 6 : 3;
1721
1722 hBlankSym = (hblank_symbols < 0) ? 0 : hblank_symbols;
1723
1724 // Refer to dev_disp.ref for more information.
1725 // # symbols/vblank = ((SetRasterBlankEnd.X + SetRasterSize.Width - SetRasterBlankStart.X - 40) * link_clk / pclk) - Y - 1;
1726 // where Y = (# lanes == 4) 12 : (# lanes == 2) ? 21 : 39
1727 if (surfaceWidth < 40)
1728 {
1729 vblank_symbols = 0;
1730 }
1731 else
1732 {
1733 vblank_symbols = (s32)((div_u64((u64)(surfaceWidth - 40) * minRate, pixelClockHz))) - 1;
1734
1735 vblank_symbols -= numLanesPerLink == 1 ? 39 : numLanesPerLink == 2 ? 21 : 12;
1736 }
1737
1738 vBlankSym = (vblank_symbols < 0) ? 0 : vblank_symbols;
1739
1740 return nvif_outp_dp_sst(&outp->outp, head->base.index, waterMark, hBlankSym, vBlankSym);
1741 }
1742
1743 static void
nv50_sor_atomic_enable(struct drm_encoder * encoder,struct drm_atomic_state * state)1744 nv50_sor_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state)
1745 {
1746 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1747 struct nouveau_crtc *nv_crtc = nv50_outp_get_new_crtc(state, nv_encoder);
1748 struct nv50_head_atom *asyh =
1749 nv50_head_atom(drm_atomic_get_new_crtc_state(state, &nv_crtc->base));
1750 struct drm_display_mode *mode = &asyh->state.adjusted_mode;
1751 struct nv50_disp *disp = nv50_disp(encoder->dev);
1752 struct nv50_head *head = nv50_head(&nv_crtc->base);
1753 struct nvif_outp *outp = &nv_encoder->outp;
1754 struct drm_device *dev = encoder->dev;
1755 struct nouveau_drm *drm = nouveau_drm(dev);
1756 struct nouveau_connector *nv_connector;
1757 #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT
1758 struct nouveau_backlight *backlight;
1759 #endif
1760 struct nvbios *bios = &drm->vbios;
1761 bool lvds_dual = false, lvds_8bpc = false, hda = false;
1762 u8 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_CUSTOM;
1763 u8 depth = NV837D_SOR_SET_CONTROL_PIXEL_DEPTH_DEFAULT;
1764
1765 nv_connector = nv50_outp_get_new_connector(state, nv_encoder);
1766 nv_encoder->crtc = &nv_crtc->base;
1767
1768 if ((disp->disp->object.oclass == GT214_DISP ||
1769 disp->disp->object.oclass >= GF110_DISP) &&
1770 nv_encoder->dcb->type != DCB_OUTPUT_LVDS &&
1771 nv_connector->base.display_info.has_audio)
1772 hda = true;
1773
1774 if (!nvif_outp_acquired(outp))
1775 nvif_outp_acquire_sor(outp, hda);
1776
1777 switch (nv_encoder->dcb->type) {
1778 case DCB_OUTPUT_TMDS:
1779 if (disp->disp->object.oclass != NV50_DISP &&
1780 nv_connector->base.display_info.is_hdmi)
1781 nv50_hdmi_enable(encoder, nv_crtc, nv_connector, state, mode, hda);
1782
1783 if (nv_encoder->outp.or.link & 1) {
1784 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_SINGLE_TMDS_A;
1785 /* Only enable dual-link if:
1786 * - Need to (i.e. rate > 165MHz)
1787 * - DCB says we can
1788 * - Not an HDMI monitor, since there's no dual-link
1789 * on HDMI.
1790 */
1791 if (mode->clock >= 165000 &&
1792 nv_encoder->dcb->duallink_possible &&
1793 !nv_connector->base.display_info.is_hdmi)
1794 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_DUAL_TMDS;
1795 } else {
1796 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_SINGLE_TMDS_B;
1797 }
1798 break;
1799 case DCB_OUTPUT_LVDS:
1800 proto = NV507D_SOR_SET_CONTROL_PROTOCOL_LVDS_CUSTOM;
1801
1802 if (bios->fp_no_ddc) {
1803 lvds_dual = bios->fp.dual_link;
1804 lvds_8bpc = bios->fp.if_is_24bit;
1805 } else {
1806 if (nv_connector->type == DCB_CONNECTOR_LVDS_SPWG) {
1807 if (((u8 *)nv_connector->edid)[121] == 2)
1808 lvds_dual = true;
1809 } else
1810 if (mode->clock >= bios->fp.duallink_transition_clk) {
1811 lvds_dual = true;
1812 }
1813
1814 if (lvds_dual) {
1815 if (bios->fp.strapless_is_24bit & 2)
1816 lvds_8bpc = true;
1817 } else {
1818 if (bios->fp.strapless_is_24bit & 1)
1819 lvds_8bpc = true;
1820 }
1821
1822 if (asyh->or.bpc == 8)
1823 lvds_8bpc = true;
1824 }
1825
1826 nvif_outp_lvds(&nv_encoder->outp, lvds_dual, lvds_8bpc);
1827 break;
1828 case DCB_OUTPUT_DP:
1829 nouveau_dp_train(nv_encoder, false, mode->clock, asyh->or.bpc);
1830 nv50_sor_dp_watermark_sst(nv_encoder, head, asyh);
1831 depth = nv50_dp_bpc_to_depth(asyh->or.bpc);
1832
1833 if (nv_encoder->outp.or.link & 1)
1834 proto = NV887D_SOR_SET_CONTROL_PROTOCOL_DP_A;
1835 else
1836 proto = NV887D_SOR_SET_CONTROL_PROTOCOL_DP_B;
1837
1838 #ifdef CONFIG_DRM_NOUVEAU_BACKLIGHT
1839 backlight = nv_connector->backlight;
1840 if (backlight && backlight->uses_dpcd)
1841 drm_edp_backlight_enable(&nv_connector->aux, &backlight->edp_info,
1842 backlight->dev->props.brightness);
1843 #endif
1844
1845 break;
1846 default:
1847 BUG();
1848 break;
1849 }
1850
1851 if (head->func->display_id)
1852 head->func->display_id(head, BIT(nv_encoder->outp.id));
1853
1854 nv_encoder->update(nv_encoder, nv_crtc->index, asyh, proto, depth);
1855 }
1856
1857 static const struct drm_encoder_helper_funcs
1858 nv50_sor_help = {
1859 .atomic_check = nv50_outp_atomic_check,
1860 .atomic_enable = nv50_sor_atomic_enable,
1861 .atomic_disable = nv50_sor_atomic_disable,
1862 };
1863
1864 static void
nv50_sor_destroy(struct drm_encoder * encoder)1865 nv50_sor_destroy(struct drm_encoder *encoder)
1866 {
1867 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1868
1869 nv50_mstm_del(&nv_encoder->dp.mstm);
1870 drm_encoder_cleanup(encoder);
1871
1872 if (nv_encoder->dcb->type == DCB_OUTPUT_DP)
1873 mutex_destroy(&nv_encoder->dp.hpd_irq_lock);
1874
1875 nvif_outp_dtor(&nv_encoder->outp);
1876 kfree(encoder);
1877 }
1878
1879 static const struct drm_encoder_funcs
1880 nv50_sor_func = {
1881 .destroy = nv50_sor_destroy,
1882 };
1883
1884 static int
nv50_sor_create(struct nouveau_encoder * nv_encoder)1885 nv50_sor_create(struct nouveau_encoder *nv_encoder)
1886 {
1887 struct drm_connector *connector = &nv_encoder->conn->base;
1888 struct nouveau_connector *nv_connector = nouveau_connector(connector);
1889 struct nouveau_drm *drm = nouveau_drm(connector->dev);
1890 struct nvkm_i2c *i2c = nvxx_i2c(drm);
1891 struct drm_encoder *encoder;
1892 struct dcb_output *dcbe = nv_encoder->dcb;
1893 struct nv50_disp *disp = nv50_disp(connector->dev);
1894 int type, ret;
1895
1896 switch (dcbe->type) {
1897 case DCB_OUTPUT_LVDS: type = DRM_MODE_ENCODER_LVDS; break;
1898 case DCB_OUTPUT_TMDS:
1899 case DCB_OUTPUT_DP:
1900 default:
1901 type = DRM_MODE_ENCODER_TMDS;
1902 break;
1903 }
1904
1905 nv_encoder->update = nv50_sor_update;
1906
1907 encoder = to_drm_encoder(nv_encoder);
1908 drm_encoder_init(connector->dev, encoder, &nv50_sor_func, type,
1909 "sor-%04x-%04x", dcbe->hasht, dcbe->hashm);
1910 drm_encoder_helper_add(encoder, &nv50_sor_help);
1911
1912 drm_connector_attach_encoder(connector, encoder);
1913
1914 disp->core->func->sor->get_caps(disp, nv_encoder, ffs(dcbe->or) - 1);
1915 nv50_outp_dump_caps(drm, nv_encoder);
1916
1917 if (dcbe->type == DCB_OUTPUT_DP) {
1918 mutex_init(&nv_encoder->dp.hpd_irq_lock);
1919
1920 if (disp->disp->object.oclass < GF110_DISP) {
1921 /* HW has no support for address-only
1922 * transactions, so we're required to
1923 * use custom I2C-over-AUX code.
1924 */
1925 struct nvkm_i2c_aux *aux;
1926
1927 aux = nvkm_i2c_aux_find(i2c, dcbe->i2c_index);
1928 if (!aux)
1929 return -EINVAL;
1930
1931 nv_encoder->i2c = &aux->i2c;
1932 } else {
1933 nv_encoder->i2c = &nv_connector->aux.ddc;
1934 }
1935
1936 if (nv_connector->type != DCB_CONNECTOR_eDP && nv_encoder->outp.info.dp.mst) {
1937 ret = nv50_mstm_new(nv_encoder, &nv_connector->aux,
1938 16, nv_connector->base.base.id,
1939 &nv_encoder->dp.mstm);
1940 if (ret)
1941 return ret;
1942 }
1943 } else
1944 if (nv_encoder->outp.info.ddc != NVIF_OUTP_DDC_INVALID) {
1945 struct nvkm_i2c_bus *bus =
1946 nvkm_i2c_bus_find(i2c, dcbe->i2c_index);
1947 if (bus)
1948 nv_encoder->i2c = &bus->i2c;
1949 }
1950
1951 return 0;
1952 }
1953
1954 /******************************************************************************
1955 * PIOR
1956 *****************************************************************************/
1957 static int
nv50_pior_atomic_check(struct drm_encoder * encoder,struct drm_crtc_state * crtc_state,struct drm_connector_state * conn_state)1958 nv50_pior_atomic_check(struct drm_encoder *encoder,
1959 struct drm_crtc_state *crtc_state,
1960 struct drm_connector_state *conn_state)
1961 {
1962 int ret = nv50_outp_atomic_check(encoder, crtc_state, conn_state);
1963 if (ret)
1964 return ret;
1965 crtc_state->adjusted_mode.clock *= 2;
1966 return 0;
1967 }
1968
1969 static void
nv50_pior_atomic_disable(struct drm_encoder * encoder,struct drm_atomic_state * state)1970 nv50_pior_atomic_disable(struct drm_encoder *encoder, struct drm_atomic_state *state)
1971 {
1972 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1973 struct nv50_core *core = nv50_disp(encoder->dev)->core;
1974 const u32 ctrl = NVDEF(NV507D, PIOR_SET_CONTROL, OWNER, NONE);
1975
1976 core->func->pior->ctrl(core, nv_encoder->outp.or.id, ctrl, NULL);
1977 nv_encoder->crtc = NULL;
1978 }
1979
1980 static void
nv50_pior_atomic_enable(struct drm_encoder * encoder,struct drm_atomic_state * state)1981 nv50_pior_atomic_enable(struct drm_encoder *encoder, struct drm_atomic_state *state)
1982 {
1983 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1984 struct nouveau_crtc *nv_crtc = nv50_outp_get_new_crtc(state, nv_encoder);
1985 struct nv50_head_atom *asyh =
1986 nv50_head_atom(drm_atomic_get_new_crtc_state(state, &nv_crtc->base));
1987 struct nv50_core *core = nv50_disp(encoder->dev)->core;
1988 u32 ctrl = 0;
1989
1990 switch (nv_crtc->index) {
1991 case 0: ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, OWNER, HEAD0); break;
1992 case 1: ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, OWNER, HEAD1); break;
1993 default:
1994 WARN_ON(1);
1995 break;
1996 }
1997
1998 switch (asyh->or.bpc) {
1999 case 10: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_BPP_30_444; break;
2000 case 8: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_BPP_24_444; break;
2001 case 6: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_BPP_18_444; break;
2002 default: asyh->or.depth = NV837D_PIOR_SET_CONTROL_PIXEL_DEPTH_DEFAULT; break;
2003 }
2004
2005 if (!nvif_outp_acquired(&nv_encoder->outp))
2006 nvif_outp_acquire_pior(&nv_encoder->outp);
2007
2008 switch (nv_encoder->dcb->type) {
2009 case DCB_OUTPUT_TMDS:
2010 ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, PROTOCOL, EXT_TMDS_ENC);
2011 break;
2012 case DCB_OUTPUT_DP:
2013 ctrl |= NVDEF(NV507D, PIOR_SET_CONTROL, PROTOCOL, EXT_TMDS_ENC);
2014 nouveau_dp_train(nv_encoder, false, asyh->state.adjusted_mode.clock, 6);
2015 break;
2016 default:
2017 BUG();
2018 break;
2019 }
2020
2021 core->func->pior->ctrl(core, nv_encoder->outp.or.id, ctrl, asyh);
2022 nv_encoder->crtc = &nv_crtc->base;
2023 }
2024
2025 static const struct drm_encoder_helper_funcs
2026 nv50_pior_help = {
2027 .atomic_check = nv50_pior_atomic_check,
2028 .atomic_enable = nv50_pior_atomic_enable,
2029 .atomic_disable = nv50_pior_atomic_disable,
2030 };
2031
2032 static void
nv50_pior_destroy(struct drm_encoder * encoder)2033 nv50_pior_destroy(struct drm_encoder *encoder)
2034 {
2035 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
2036
2037 nvif_outp_dtor(&nv_encoder->outp);
2038
2039 drm_encoder_cleanup(encoder);
2040
2041 mutex_destroy(&nv_encoder->dp.hpd_irq_lock);
2042 kfree(encoder);
2043 }
2044
2045 static const struct drm_encoder_funcs
2046 nv50_pior_func = {
2047 .destroy = nv50_pior_destroy,
2048 };
2049
2050 static int
nv50_pior_create(struct nouveau_encoder * nv_encoder)2051 nv50_pior_create(struct nouveau_encoder *nv_encoder)
2052 {
2053 struct drm_connector *connector = &nv_encoder->conn->base;
2054 struct drm_device *dev = connector->dev;
2055 struct nouveau_drm *drm = nouveau_drm(dev);
2056 struct nv50_disp *disp = nv50_disp(dev);
2057 struct nvkm_i2c *i2c = nvxx_i2c(drm);
2058 struct nvkm_i2c_bus *bus = NULL;
2059 struct nvkm_i2c_aux *aux = NULL;
2060 struct i2c_adapter *ddc;
2061 struct drm_encoder *encoder;
2062 struct dcb_output *dcbe = nv_encoder->dcb;
2063 int type;
2064
2065 switch (dcbe->type) {
2066 case DCB_OUTPUT_TMDS:
2067 bus = nvkm_i2c_bus_find(i2c, nv_encoder->outp.info.ddc);
2068 ddc = bus ? &bus->i2c : NULL;
2069 type = DRM_MODE_ENCODER_TMDS;
2070 break;
2071 case DCB_OUTPUT_DP:
2072 aux = nvkm_i2c_aux_find(i2c, nv_encoder->outp.info.dp.aux);
2073 ddc = aux ? &aux->i2c : NULL;
2074 type = DRM_MODE_ENCODER_TMDS;
2075 break;
2076 default:
2077 return -ENODEV;
2078 }
2079
2080 nv_encoder->i2c = ddc;
2081
2082 mutex_init(&nv_encoder->dp.hpd_irq_lock);
2083
2084 encoder = to_drm_encoder(nv_encoder);
2085 drm_encoder_init(connector->dev, encoder, &nv50_pior_func, type,
2086 "pior-%04x-%04x", dcbe->hasht, dcbe->hashm);
2087 drm_encoder_helper_add(encoder, &nv50_pior_help);
2088
2089 drm_connector_attach_encoder(connector, encoder);
2090
2091 disp->core->func->pior->get_caps(disp, nv_encoder, ffs(dcbe->or) - 1);
2092 nv50_outp_dump_caps(drm, nv_encoder);
2093
2094 return 0;
2095 }
2096
2097 /******************************************************************************
2098 * Atomic
2099 *****************************************************************************/
2100
2101 static void
nv50_disp_atomic_commit_core(struct drm_atomic_state * state,u32 * interlock)2102 nv50_disp_atomic_commit_core(struct drm_atomic_state *state, u32 *interlock)
2103 {
2104 struct drm_dp_mst_topology_mgr *mgr;
2105 struct drm_dp_mst_topology_state *mst_state;
2106 struct nouveau_drm *drm = nouveau_drm(state->dev);
2107 struct nv50_disp *disp = nv50_disp(drm->dev);
2108 struct nv50_atom *atom = nv50_atom(state);
2109 struct nv50_core *core = disp->core;
2110 struct nv50_outp_atom *outp;
2111 struct nv50_mstm *mstm;
2112 int i;
2113
2114 NV_ATOMIC(drm, "commit core %08x\n", interlock[NV50_DISP_INTERLOCK_BASE]);
2115
2116 for_each_new_mst_mgr_in_state(state, mgr, mst_state, i) {
2117 mstm = nv50_mstm(mgr);
2118 if (mstm->modified)
2119 nv50_mstm_prepare(state, mst_state, mstm);
2120 }
2121
2122 core->func->ntfy_init(disp->sync, NV50_DISP_CORE_NTFY);
2123 core->func->update(core, interlock, true);
2124 if (core->func->ntfy_wait_done(disp->sync, NV50_DISP_CORE_NTFY,
2125 disp->core->chan.base.device))
2126 NV_ERROR(drm, "core notifier timeout\n");
2127
2128 for_each_new_mst_mgr_in_state(state, mgr, mst_state, i) {
2129 mstm = nv50_mstm(mgr);
2130 if (mstm->modified)
2131 nv50_mstm_cleanup(state, mst_state, mstm);
2132 }
2133
2134 list_for_each_entry(outp, &atom->outp, head) {
2135 if (outp->encoder->encoder_type != DRM_MODE_ENCODER_DPMST) {
2136 struct nouveau_encoder *nv_encoder = nouveau_encoder(outp->encoder);
2137
2138 if (outp->enabled) {
2139 nv50_audio_enable(outp->encoder, nouveau_crtc(nv_encoder->crtc),
2140 nv_encoder->conn, NULL, NULL);
2141 outp->enabled = outp->disabled = false;
2142 } else {
2143 if (outp->disabled) {
2144 nvif_outp_release(&nv_encoder->outp);
2145 outp->disabled = false;
2146 }
2147 }
2148 }
2149 }
2150 }
2151
2152 static void
nv50_disp_atomic_commit_wndw(struct drm_atomic_state * state,u32 * interlock)2153 nv50_disp_atomic_commit_wndw(struct drm_atomic_state *state, u32 *interlock)
2154 {
2155 struct drm_plane_state *new_plane_state;
2156 struct drm_plane *plane;
2157 int i;
2158
2159 for_each_new_plane_in_state(state, plane, new_plane_state, i) {
2160 struct nv50_wndw *wndw = nv50_wndw(plane);
2161 if (interlock[wndw->interlock.type] & wndw->interlock.data) {
2162 if (wndw->func->update)
2163 wndw->func->update(wndw, interlock);
2164 }
2165 }
2166 }
2167
2168 static void
nv50_disp_atomic_commit_tail(struct drm_atomic_state * state)2169 nv50_disp_atomic_commit_tail(struct drm_atomic_state *state)
2170 {
2171 struct drm_device *dev = state->dev;
2172 struct drm_crtc_state *new_crtc_state, *old_crtc_state;
2173 struct drm_crtc *crtc;
2174 struct drm_plane_state *new_plane_state;
2175 struct drm_plane *plane;
2176 struct nouveau_drm *drm = nouveau_drm(dev);
2177 struct nv50_disp *disp = nv50_disp(dev);
2178 struct nv50_atom *atom = nv50_atom(state);
2179 struct nv50_core *core = disp->core;
2180 struct nv50_outp_atom *outp, *outt;
2181 u32 interlock[NV50_DISP_INTERLOCK__SIZE] = {};
2182 int i;
2183 bool flushed = false;
2184
2185 NV_ATOMIC(drm, "commit %d %d\n", atom->lock_core, atom->flush_disable);
2186 nv50_crc_atomic_stop_reporting(state);
2187 drm_atomic_helper_wait_for_fences(dev, state, false);
2188 drm_atomic_helper_wait_for_dependencies(state);
2189 drm_dp_mst_atomic_wait_for_dependencies(state);
2190 drm_atomic_helper_update_legacy_modeset_state(dev, state);
2191 drm_atomic_helper_calc_timestamping_constants(state);
2192
2193 if (atom->lock_core)
2194 mutex_lock(&disp->mutex);
2195
2196 /* Disable head(s). */
2197 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
2198 struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state);
2199 struct nv50_head *head = nv50_head(crtc);
2200
2201 NV_ATOMIC(drm, "%s: clr %04x (set %04x)\n", crtc->name,
2202 asyh->clr.mask, asyh->set.mask);
2203
2204 if (old_crtc_state->active && !new_crtc_state->active) {
2205 pm_runtime_put_noidle(dev->dev);
2206 drm_crtc_vblank_off(crtc);
2207 }
2208
2209 if (asyh->clr.mask) {
2210 nv50_head_flush_clr(head, asyh, atom->flush_disable);
2211 interlock[NV50_DISP_INTERLOCK_CORE] |= 1;
2212 }
2213 }
2214
2215 /* Disable plane(s). */
2216 for_each_new_plane_in_state(state, plane, new_plane_state, i) {
2217 struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state);
2218 struct nv50_wndw *wndw = nv50_wndw(plane);
2219
2220 NV_ATOMIC(drm, "%s: clr %02x (set %02x)\n", plane->name,
2221 asyw->clr.mask, asyw->set.mask);
2222 if (!asyw->clr.mask)
2223 continue;
2224
2225 nv50_wndw_flush_clr(wndw, interlock, atom->flush_disable, asyw);
2226 }
2227
2228 /* Disable output path(s). */
2229 list_for_each_entry(outp, &atom->outp, head) {
2230 const struct drm_encoder_helper_funcs *help;
2231 struct drm_encoder *encoder;
2232
2233 encoder = outp->encoder;
2234 help = encoder->helper_private;
2235
2236 NV_ATOMIC(drm, "%s: clr %02x (set %02x)\n", encoder->name,
2237 outp->clr.mask, outp->set.mask);
2238
2239 if (outp->clr.mask) {
2240 help->atomic_disable(encoder, state);
2241 outp->disabled = true;
2242 interlock[NV50_DISP_INTERLOCK_CORE] |= 1;
2243 }
2244 }
2245
2246 /* Flush disable. */
2247 if (interlock[NV50_DISP_INTERLOCK_CORE]) {
2248 if (atom->flush_disable) {
2249 nv50_disp_atomic_commit_wndw(state, interlock);
2250 nv50_disp_atomic_commit_core(state, interlock);
2251 memset(interlock, 0x00, sizeof(interlock));
2252
2253 flushed = true;
2254 }
2255 }
2256
2257 if (flushed)
2258 nv50_crc_atomic_release_notifier_contexts(state);
2259 nv50_crc_atomic_init_notifier_contexts(state);
2260
2261 /* Update output path(s). */
2262 list_for_each_entry(outp, &atom->outp, head) {
2263 const struct drm_encoder_helper_funcs *help;
2264 struct drm_encoder *encoder;
2265
2266 encoder = outp->encoder;
2267 help = encoder->helper_private;
2268
2269 NV_ATOMIC(drm, "%s: set %02x (clr %02x)\n", encoder->name,
2270 outp->set.mask, outp->clr.mask);
2271
2272 if (outp->set.mask) {
2273 help->atomic_enable(encoder, state);
2274 outp->enabled = true;
2275 interlock[NV50_DISP_INTERLOCK_CORE] = 1;
2276 }
2277 }
2278
2279 /* Update head(s). */
2280 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
2281 struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state);
2282 struct nv50_head *head = nv50_head(crtc);
2283
2284 NV_ATOMIC(drm, "%s: set %04x (clr %04x)\n", crtc->name,
2285 asyh->set.mask, asyh->clr.mask);
2286
2287 if (asyh->set.mask) {
2288 nv50_head_flush_set(head, asyh);
2289 interlock[NV50_DISP_INTERLOCK_CORE] = 1;
2290 }
2291
2292 if (new_crtc_state->active) {
2293 if (!old_crtc_state->active) {
2294 drm_crtc_vblank_on(crtc);
2295 pm_runtime_get_noresume(dev->dev);
2296 }
2297 if (new_crtc_state->event)
2298 drm_crtc_vblank_get(crtc);
2299 }
2300 }
2301
2302 /* Update window->head assignment.
2303 *
2304 * This has to happen in an update that's not interlocked with
2305 * any window channels to avoid hitting HW error checks.
2306 *
2307 *TODO: Proper handling of window ownership (Turing apparently
2308 * supports non-fixed mappings).
2309 */
2310 if (core->assign_windows) {
2311 core->func->wndw.owner(core);
2312 nv50_disp_atomic_commit_core(state, interlock);
2313 core->assign_windows = false;
2314 interlock[NV50_DISP_INTERLOCK_CORE] = 0;
2315 }
2316
2317 /* Finish updating head(s)...
2318 *
2319 * NVD is rather picky about both where window assignments can change,
2320 * *and* about certain core and window channel states matching.
2321 *
2322 * The EFI GOP driver on newer GPUs configures window channels with a
2323 * different output format to what we do, and the core channel update
2324 * in the assign_windows case above would result in a state mismatch.
2325 *
2326 * Delay some of the head update until after that point to workaround
2327 * the issue. This only affects the initial modeset.
2328 *
2329 * TODO: handle this better when adding flexible window mapping
2330 */
2331 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
2332 struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state);
2333 struct nv50_head *head = nv50_head(crtc);
2334
2335 NV_ATOMIC(drm, "%s: set %04x (clr %04x)\n", crtc->name,
2336 asyh->set.mask, asyh->clr.mask);
2337
2338 if (asyh->set.mask) {
2339 nv50_head_flush_set_wndw(head, asyh);
2340 interlock[NV50_DISP_INTERLOCK_CORE] = 1;
2341 }
2342 }
2343
2344 /* Update plane(s). */
2345 for_each_new_plane_in_state(state, plane, new_plane_state, i) {
2346 struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state);
2347 struct nv50_wndw *wndw = nv50_wndw(plane);
2348
2349 NV_ATOMIC(drm, "%s: set %02x (clr %02x)\n", plane->name,
2350 asyw->set.mask, asyw->clr.mask);
2351 if ( !asyw->set.mask &&
2352 (!asyw->clr.mask || atom->flush_disable))
2353 continue;
2354
2355 nv50_wndw_flush_set(wndw, interlock, asyw);
2356 }
2357
2358 /* Flush update. */
2359 nv50_disp_atomic_commit_wndw(state, interlock);
2360
2361 if (interlock[NV50_DISP_INTERLOCK_CORE]) {
2362 if (interlock[NV50_DISP_INTERLOCK_BASE] ||
2363 interlock[NV50_DISP_INTERLOCK_OVLY] ||
2364 interlock[NV50_DISP_INTERLOCK_WNDW] ||
2365 !atom->state.legacy_cursor_update)
2366 nv50_disp_atomic_commit_core(state, interlock);
2367 else
2368 disp->core->func->update(disp->core, interlock, false);
2369 }
2370
2371 if (atom->lock_core)
2372 mutex_unlock(&disp->mutex);
2373
2374 list_for_each_entry_safe(outp, outt, &atom->outp, head) {
2375 list_del(&outp->head);
2376 kfree(outp);
2377 }
2378
2379 /* Wait for HW to signal completion. */
2380 for_each_new_plane_in_state(state, plane, new_plane_state, i) {
2381 struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state);
2382 struct nv50_wndw *wndw = nv50_wndw(plane);
2383 int ret = nv50_wndw_wait_armed(wndw, asyw);
2384 if (ret)
2385 NV_ERROR(drm, "%s: timeout\n", plane->name);
2386 }
2387
2388 for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
2389 if (new_crtc_state->event) {
2390 unsigned long flags;
2391 /* Get correct count/ts if racing with vblank irq */
2392 if (new_crtc_state->active)
2393 drm_crtc_accurate_vblank_count(crtc);
2394 spin_lock_irqsave(&crtc->dev->event_lock, flags);
2395 drm_crtc_send_vblank_event(crtc, new_crtc_state->event);
2396 spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
2397
2398 new_crtc_state->event = NULL;
2399 if (new_crtc_state->active)
2400 drm_crtc_vblank_put(crtc);
2401 }
2402 }
2403
2404 nv50_crc_atomic_start_reporting(state);
2405 if (!flushed)
2406 nv50_crc_atomic_release_notifier_contexts(state);
2407
2408 drm_atomic_helper_commit_hw_done(state);
2409 drm_atomic_helper_cleanup_planes(dev, state);
2410 drm_atomic_helper_commit_cleanup_done(state);
2411 drm_atomic_state_put(state);
2412
2413 /* Drop the RPM ref we got from nv50_disp_atomic_commit() */
2414 pm_runtime_mark_last_busy(dev->dev);
2415 pm_runtime_put_autosuspend(dev->dev);
2416 }
2417
2418 static void
nv50_disp_atomic_commit_work(struct work_struct * work)2419 nv50_disp_atomic_commit_work(struct work_struct *work)
2420 {
2421 struct drm_atomic_state *state =
2422 container_of(work, typeof(*state), commit_work);
2423 nv50_disp_atomic_commit_tail(state);
2424 }
2425
2426 static int
nv50_disp_atomic_commit(struct drm_device * dev,struct drm_atomic_state * state,bool nonblock)2427 nv50_disp_atomic_commit(struct drm_device *dev,
2428 struct drm_atomic_state *state, bool nonblock)
2429 {
2430 struct drm_plane_state *new_plane_state;
2431 struct drm_plane *plane;
2432 int ret, i;
2433
2434 ret = pm_runtime_get_sync(dev->dev);
2435 if (ret < 0 && ret != -EACCES) {
2436 pm_runtime_put_autosuspend(dev->dev);
2437 return ret;
2438 }
2439
2440 ret = drm_atomic_helper_setup_commit(state, nonblock);
2441 if (ret)
2442 goto done;
2443
2444 INIT_WORK(&state->commit_work, nv50_disp_atomic_commit_work);
2445
2446 ret = drm_atomic_helper_prepare_planes(dev, state);
2447 if (ret)
2448 goto done;
2449
2450 if (!nonblock) {
2451 ret = drm_atomic_helper_wait_for_fences(dev, state, true);
2452 if (ret)
2453 goto err_cleanup;
2454 }
2455
2456 ret = drm_atomic_helper_swap_state(state, true);
2457 if (ret)
2458 goto err_cleanup;
2459
2460 for_each_new_plane_in_state(state, plane, new_plane_state, i) {
2461 struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state);
2462 struct nv50_wndw *wndw = nv50_wndw(plane);
2463
2464 if (asyw->set.image)
2465 nv50_wndw_ntfy_enable(wndw, asyw);
2466 }
2467
2468 drm_atomic_state_get(state);
2469
2470 /*
2471 * Grab another RPM ref for the commit tail, which will release the
2472 * ref when it's finished
2473 */
2474 pm_runtime_get_noresume(dev->dev);
2475
2476 if (nonblock)
2477 queue_work(system_unbound_wq, &state->commit_work);
2478 else
2479 nv50_disp_atomic_commit_tail(state);
2480
2481 err_cleanup:
2482 if (ret)
2483 drm_atomic_helper_unprepare_planes(dev, state);
2484 done:
2485 pm_runtime_put_autosuspend(dev->dev);
2486 return ret;
2487 }
2488
2489 static struct nv50_outp_atom *
nv50_disp_outp_atomic_add(struct nv50_atom * atom,struct drm_encoder * encoder)2490 nv50_disp_outp_atomic_add(struct nv50_atom *atom, struct drm_encoder *encoder)
2491 {
2492 struct nv50_outp_atom *outp;
2493
2494 list_for_each_entry(outp, &atom->outp, head) {
2495 if (outp->encoder == encoder)
2496 return outp;
2497 }
2498
2499 outp = kzalloc(sizeof(*outp), GFP_KERNEL);
2500 if (!outp)
2501 return ERR_PTR(-ENOMEM);
2502
2503 list_add(&outp->head, &atom->outp);
2504 outp->encoder = encoder;
2505 return outp;
2506 }
2507
2508 static int
nv50_disp_outp_atomic_check_clr(struct nv50_atom * atom,struct drm_connector_state * old_connector_state)2509 nv50_disp_outp_atomic_check_clr(struct nv50_atom *atom,
2510 struct drm_connector_state *old_connector_state)
2511 {
2512 struct drm_encoder *encoder = old_connector_state->best_encoder;
2513 struct drm_crtc_state *old_crtc_state, *new_crtc_state;
2514 struct drm_crtc *crtc;
2515 struct nv50_outp_atom *outp;
2516
2517 if (!(crtc = old_connector_state->crtc))
2518 return 0;
2519
2520 old_crtc_state = drm_atomic_get_old_crtc_state(&atom->state, crtc);
2521 new_crtc_state = drm_atomic_get_new_crtc_state(&atom->state, crtc);
2522 if (old_crtc_state->active && drm_atomic_crtc_needs_modeset(new_crtc_state)) {
2523 outp = nv50_disp_outp_atomic_add(atom, encoder);
2524 if (IS_ERR(outp))
2525 return PTR_ERR(outp);
2526
2527 if (outp->encoder->encoder_type == DRM_MODE_ENCODER_DPMST ||
2528 nouveau_encoder(outp->encoder)->dcb->type == DCB_OUTPUT_DP)
2529 atom->flush_disable = true;
2530 outp->clr.ctrl = true;
2531 atom->lock_core = true;
2532 }
2533
2534 return 0;
2535 }
2536
2537 static int
nv50_disp_outp_atomic_check_set(struct nv50_atom * atom,struct drm_connector_state * connector_state)2538 nv50_disp_outp_atomic_check_set(struct nv50_atom *atom,
2539 struct drm_connector_state *connector_state)
2540 {
2541 struct drm_encoder *encoder = connector_state->best_encoder;
2542 struct drm_crtc_state *new_crtc_state;
2543 struct drm_crtc *crtc;
2544 struct nv50_outp_atom *outp;
2545
2546 if (!(crtc = connector_state->crtc))
2547 return 0;
2548
2549 new_crtc_state = drm_atomic_get_new_crtc_state(&atom->state, crtc);
2550 if (new_crtc_state->active && drm_atomic_crtc_needs_modeset(new_crtc_state)) {
2551 outp = nv50_disp_outp_atomic_add(atom, encoder);
2552 if (IS_ERR(outp))
2553 return PTR_ERR(outp);
2554
2555 outp->set.ctrl = true;
2556 atom->lock_core = true;
2557 }
2558
2559 return 0;
2560 }
2561
2562 static int
nv50_disp_atomic_check(struct drm_device * dev,struct drm_atomic_state * state)2563 nv50_disp_atomic_check(struct drm_device *dev, struct drm_atomic_state *state)
2564 {
2565 struct nv50_atom *atom = nv50_atom(state);
2566 struct nv50_core *core = nv50_disp(dev)->core;
2567 struct drm_connector_state *old_connector_state, *new_connector_state;
2568 struct drm_connector *connector;
2569 struct drm_crtc_state *new_crtc_state;
2570 struct drm_crtc *crtc;
2571 struct nv50_head *head;
2572 struct nv50_head_atom *asyh;
2573 int ret, i;
2574
2575 if (core->assign_windows && core->func->head->static_wndw_map) {
2576 drm_for_each_crtc(crtc, dev) {
2577 new_crtc_state = drm_atomic_get_crtc_state(state,
2578 crtc);
2579 if (IS_ERR(new_crtc_state))
2580 return PTR_ERR(new_crtc_state);
2581
2582 head = nv50_head(crtc);
2583 asyh = nv50_head_atom(new_crtc_state);
2584 core->func->head->static_wndw_map(head, asyh);
2585 }
2586 }
2587
2588 /* We need to handle colour management on a per-plane basis. */
2589 for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
2590 if (new_crtc_state->color_mgmt_changed) {
2591 ret = drm_atomic_add_affected_planes(state, crtc);
2592 if (ret)
2593 return ret;
2594 }
2595 }
2596
2597 ret = drm_atomic_helper_check(dev, state);
2598 if (ret)
2599 return ret;
2600
2601 for_each_oldnew_connector_in_state(state, connector, old_connector_state, new_connector_state, i) {
2602 ret = nv50_disp_outp_atomic_check_clr(atom, old_connector_state);
2603 if (ret)
2604 return ret;
2605
2606 ret = nv50_disp_outp_atomic_check_set(atom, new_connector_state);
2607 if (ret)
2608 return ret;
2609 }
2610
2611 ret = drm_dp_mst_atomic_check(state);
2612 if (ret)
2613 return ret;
2614
2615 nv50_crc_atomic_check_outp(atom);
2616
2617 return 0;
2618 }
2619
2620 static void
nv50_disp_atomic_state_clear(struct drm_atomic_state * state)2621 nv50_disp_atomic_state_clear(struct drm_atomic_state *state)
2622 {
2623 struct nv50_atom *atom = nv50_atom(state);
2624 struct nv50_outp_atom *outp, *outt;
2625
2626 list_for_each_entry_safe(outp, outt, &atom->outp, head) {
2627 list_del(&outp->head);
2628 kfree(outp);
2629 }
2630
2631 drm_atomic_state_default_clear(state);
2632 }
2633
2634 static void
nv50_disp_atomic_state_free(struct drm_atomic_state * state)2635 nv50_disp_atomic_state_free(struct drm_atomic_state *state)
2636 {
2637 struct nv50_atom *atom = nv50_atom(state);
2638 drm_atomic_state_default_release(&atom->state);
2639 kfree(atom);
2640 }
2641
2642 static struct drm_atomic_state *
nv50_disp_atomic_state_alloc(struct drm_device * dev)2643 nv50_disp_atomic_state_alloc(struct drm_device *dev)
2644 {
2645 struct nv50_atom *atom;
2646 if (!(atom = kzalloc(sizeof(*atom), GFP_KERNEL)) ||
2647 drm_atomic_state_init(dev, &atom->state) < 0) {
2648 kfree(atom);
2649 return NULL;
2650 }
2651 INIT_LIST_HEAD(&atom->outp);
2652 return &atom->state;
2653 }
2654
2655 static const struct drm_mode_config_funcs
2656 nv50_disp_func = {
2657 .fb_create = nouveau_user_framebuffer_create,
2658 .atomic_check = nv50_disp_atomic_check,
2659 .atomic_commit = nv50_disp_atomic_commit,
2660 .atomic_state_alloc = nv50_disp_atomic_state_alloc,
2661 .atomic_state_clear = nv50_disp_atomic_state_clear,
2662 .atomic_state_free = nv50_disp_atomic_state_free,
2663 };
2664
2665 static const struct drm_mode_config_helper_funcs
2666 nv50_disp_helper_func = {
2667 .atomic_commit_setup = drm_dp_mst_atomic_setup_commit,
2668 };
2669
2670 /******************************************************************************
2671 * Init
2672 *****************************************************************************/
2673
2674 static void
nv50_display_fini(struct drm_device * dev,bool runtime,bool suspend)2675 nv50_display_fini(struct drm_device *dev, bool runtime, bool suspend)
2676 {
2677 struct nouveau_drm *drm = nouveau_drm(dev);
2678 struct drm_encoder *encoder;
2679
2680 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
2681 if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST)
2682 nv50_mstm_fini(nouveau_encoder(encoder));
2683 }
2684
2685 if (!runtime && !drm->headless)
2686 cancel_work_sync(&drm->hpd_work);
2687 }
2688
2689 static inline void
nv50_display_read_hw_or_state(struct drm_device * dev,struct nv50_disp * disp,struct nouveau_encoder * outp)2690 nv50_display_read_hw_or_state(struct drm_device *dev, struct nv50_disp *disp,
2691 struct nouveau_encoder *outp)
2692 {
2693 struct drm_crtc *crtc;
2694 struct drm_connector_list_iter conn_iter;
2695 struct drm_connector *conn;
2696 struct nv50_head_atom *armh;
2697 const u32 encoder_mask = drm_encoder_mask(&outp->base.base);
2698 bool found_conn = false, found_head = false;
2699 u8 proto;
2700 int head_idx;
2701 int ret;
2702
2703 switch (outp->dcb->type) {
2704 case DCB_OUTPUT_TMDS:
2705 ret = nvif_outp_inherit_tmds(&outp->outp, &proto);
2706 break;
2707 case DCB_OUTPUT_DP:
2708 ret = nvif_outp_inherit_dp(&outp->outp, &proto);
2709 break;
2710 case DCB_OUTPUT_LVDS:
2711 ret = nvif_outp_inherit_lvds(&outp->outp, &proto);
2712 break;
2713 case DCB_OUTPUT_ANALOG:
2714 ret = nvif_outp_inherit_rgb_crt(&outp->outp, &proto);
2715 break;
2716 default:
2717 drm_dbg_kms(dev, "Readback for %s not implemented yet, skipping\n",
2718 outp->base.base.name);
2719 drm_WARN_ON(dev, true);
2720 return;
2721 }
2722
2723 if (ret < 0)
2724 return;
2725
2726 head_idx = ret;
2727
2728 drm_for_each_crtc(crtc, dev) {
2729 if (crtc->index != head_idx)
2730 continue;
2731
2732 armh = nv50_head_atom(crtc->state);
2733 found_head = true;
2734 break;
2735 }
2736 if (drm_WARN_ON(dev, !found_head))
2737 return;
2738
2739 /* Figure out which connector is being used by this encoder */
2740 drm_connector_list_iter_begin(dev, &conn_iter);
2741 nouveau_for_each_non_mst_connector_iter(conn, &conn_iter) {
2742 if (nouveau_connector(conn)->index == outp->dcb->connector) {
2743 found_conn = true;
2744 break;
2745 }
2746 }
2747 drm_connector_list_iter_end(&conn_iter);
2748 if (drm_WARN_ON(dev, !found_conn))
2749 return;
2750
2751 armh->state.encoder_mask = encoder_mask;
2752 armh->state.connector_mask = drm_connector_mask(conn);
2753 armh->state.active = true;
2754 armh->state.enable = true;
2755 pm_runtime_get_noresume(dev->dev);
2756
2757 outp->crtc = crtc;
2758 outp->ctrl = NVVAL(NV507D, SOR_SET_CONTROL, PROTOCOL, proto) | BIT(crtc->index);
2759
2760 drm_connector_get(conn);
2761 conn->state->crtc = crtc;
2762 conn->state->best_encoder = &outp->base.base;
2763 }
2764
2765 /* Read back the currently programmed display state */
2766 static void
nv50_display_read_hw_state(struct nouveau_drm * drm)2767 nv50_display_read_hw_state(struct nouveau_drm *drm)
2768 {
2769 struct drm_device *dev = drm->dev;
2770 struct drm_encoder *encoder;
2771 struct drm_modeset_acquire_ctx ctx;
2772 struct nv50_disp *disp = nv50_disp(dev);
2773 int ret;
2774
2775 DRM_MODESET_LOCK_ALL_BEGIN(dev, ctx, 0, ret);
2776
2777 drm_for_each_encoder(encoder, dev) {
2778 if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST)
2779 continue;
2780
2781 nv50_display_read_hw_or_state(dev, disp, nouveau_encoder(encoder));
2782 }
2783
2784 DRM_MODESET_LOCK_ALL_END(dev, ctx, ret);
2785 }
2786
2787 static int
nv50_display_init(struct drm_device * dev,bool resume,bool runtime)2788 nv50_display_init(struct drm_device *dev, bool resume, bool runtime)
2789 {
2790 struct nv50_core *core = nv50_disp(dev)->core;
2791 struct drm_encoder *encoder;
2792
2793 if (resume || runtime)
2794 core->func->init(core);
2795
2796 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
2797 if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) {
2798 struct nouveau_encoder *nv_encoder =
2799 nouveau_encoder(encoder);
2800 nv50_mstm_init(nv_encoder, runtime);
2801 }
2802 }
2803
2804 if (!resume)
2805 nv50_display_read_hw_state(nouveau_drm(dev));
2806
2807 return 0;
2808 }
2809
2810 static void
nv50_display_destroy(struct drm_device * dev)2811 nv50_display_destroy(struct drm_device *dev)
2812 {
2813 struct nv50_disp *disp = nv50_disp(dev);
2814
2815 nv50_audio_component_fini(nouveau_drm(dev));
2816
2817 nvif_object_unmap(&disp->caps);
2818 nvif_object_dtor(&disp->caps);
2819 nv50_core_del(&disp->core);
2820
2821 nouveau_bo_unpin_del(&disp->sync);
2822
2823 nouveau_display(dev)->priv = NULL;
2824 kfree(disp);
2825 }
2826
2827 int
nv50_display_create(struct drm_device * dev)2828 nv50_display_create(struct drm_device *dev)
2829 {
2830 struct nouveau_drm *drm = nouveau_drm(dev);
2831 struct drm_connector *connector, *tmp;
2832 struct nv50_disp *disp;
2833 int ret, i;
2834 bool has_mst = false;
2835
2836 disp = kzalloc(sizeof(*disp), GFP_KERNEL);
2837 if (!disp)
2838 return -ENOMEM;
2839
2840 mutex_init(&disp->mutex);
2841
2842 nouveau_display(dev)->priv = disp;
2843 nouveau_display(dev)->dtor = nv50_display_destroy;
2844 nouveau_display(dev)->init = nv50_display_init;
2845 nouveau_display(dev)->fini = nv50_display_fini;
2846 disp->disp = &nouveau_display(dev)->disp;
2847 dev->mode_config.funcs = &nv50_disp_func;
2848 dev->mode_config.helper_private = &nv50_disp_helper_func;
2849 dev->mode_config.quirk_addfb_prefer_xbgr_30bpp = true;
2850 dev->mode_config.normalize_zpos = true;
2851
2852 /* small shared memory area we use for notifiers and semaphores */
2853 ret = nouveau_bo_new_map(&drm->client, NOUVEAU_GEM_DOMAIN_VRAM, PAGE_SIZE, &disp->sync);
2854 if (ret)
2855 goto out;
2856
2857 /* allocate master evo channel */
2858 ret = nv50_core_new(drm, &disp->core);
2859 if (ret)
2860 goto out;
2861
2862 disp->core->func->init(disp->core);
2863 if (disp->core->func->caps_init) {
2864 ret = disp->core->func->caps_init(drm, disp);
2865 if (ret)
2866 goto out;
2867 }
2868
2869 /* Assign the correct format modifiers */
2870 if (disp->disp->object.oclass >= TU102_DISP)
2871 nouveau_display(dev)->format_modifiers = wndwc57e_modifiers;
2872 else
2873 if (drm->client.device.info.family >= NV_DEVICE_INFO_V0_FERMI)
2874 nouveau_display(dev)->format_modifiers = disp90xx_modifiers;
2875 else
2876 nouveau_display(dev)->format_modifiers = disp50xx_modifiers;
2877
2878 /* FIXME: 256x256 cursors are supported on Kepler, however unlike Maxwell and later
2879 * generations Kepler requires that we use small pages (4K) for cursor scanout surfaces. The
2880 * proper fix for this is to teach nouveau to migrate fbs being used for the cursor plane to
2881 * small page allocations in prepare_fb(). When this is implemented, we should also force
2882 * large pages (128K) for ovly fbs in order to fix Kepler ovlys.
2883 * But until then, just limit cursors to 128x128 - which is small enough to avoid ever using
2884 * large pages.
2885 */
2886 if (disp->disp->object.oclass >= GM107_DISP) {
2887 dev->mode_config.cursor_width = 256;
2888 dev->mode_config.cursor_height = 256;
2889 } else if (disp->disp->object.oclass >= GK104_DISP) {
2890 dev->mode_config.cursor_width = 128;
2891 dev->mode_config.cursor_height = 128;
2892 } else {
2893 dev->mode_config.cursor_width = 64;
2894 dev->mode_config.cursor_height = 64;
2895 }
2896
2897 /* create encoder/connector objects based on VBIOS DCB table */
2898 for_each_set_bit(i, &disp->disp->outp_mask, sizeof(disp->disp->outp_mask) * 8) {
2899 struct nouveau_encoder *outp;
2900
2901 outp = kzalloc(sizeof(*outp), GFP_KERNEL);
2902 if (!outp)
2903 break;
2904
2905 ret = nvif_outp_ctor(disp->disp, "kmsOutp", i, &outp->outp);
2906 if (ret) {
2907 kfree(outp);
2908 continue;
2909 }
2910
2911 connector = nouveau_connector_create(dev, outp->outp.info.conn);
2912 if (IS_ERR(connector)) {
2913 nvif_outp_dtor(&outp->outp);
2914 kfree(outp);
2915 continue;
2916 }
2917
2918 outp->base.base.possible_crtcs = outp->outp.info.heads;
2919 outp->base.base.possible_clones = 0;
2920 outp->conn = nouveau_connector(connector);
2921
2922 outp->dcb = kzalloc(sizeof(*outp->dcb), GFP_KERNEL);
2923 if (!outp->dcb)
2924 break;
2925
2926 switch (outp->outp.info.proto) {
2927 case NVIF_OUTP_RGB_CRT:
2928 outp->dcb->type = DCB_OUTPUT_ANALOG;
2929 outp->dcb->crtconf.maxfreq = outp->outp.info.rgb_crt.freq_max;
2930 break;
2931 case NVIF_OUTP_TMDS:
2932 outp->dcb->type = DCB_OUTPUT_TMDS;
2933 outp->dcb->duallink_possible = outp->outp.info.tmds.dual;
2934 break;
2935 case NVIF_OUTP_LVDS:
2936 outp->dcb->type = DCB_OUTPUT_LVDS;
2937 outp->dcb->lvdsconf.use_acpi_for_edid = outp->outp.info.lvds.acpi_edid;
2938 break;
2939 case NVIF_OUTP_DP:
2940 outp->dcb->type = DCB_OUTPUT_DP;
2941 outp->dcb->dpconf.link_nr = outp->outp.info.dp.link_nr;
2942 outp->dcb->dpconf.link_bw = outp->outp.info.dp.link_bw;
2943 if (outp->outp.info.dp.mst)
2944 has_mst = true;
2945 break;
2946 default:
2947 WARN_ON(1);
2948 continue;
2949 }
2950
2951 outp->dcb->heads = outp->outp.info.heads;
2952 outp->dcb->connector = outp->outp.info.conn;
2953 outp->dcb->i2c_index = outp->outp.info.ddc;
2954
2955 switch (outp->outp.info.type) {
2956 case NVIF_OUTP_DAC : ret = nv50_dac_create(outp); break;
2957 case NVIF_OUTP_SOR : ret = nv50_sor_create(outp); break;
2958 case NVIF_OUTP_PIOR: ret = nv50_pior_create(outp); break;
2959 default:
2960 WARN_ON(1);
2961 continue;
2962 }
2963
2964 if (ret) {
2965 NV_WARN(drm, "failed to create encoder %d/%d/%d: %d\n",
2966 i, outp->outp.info.type, outp->outp.info.proto, ret);
2967 }
2968 }
2969
2970 /* cull any connectors we created that don't have an encoder */
2971 list_for_each_entry_safe(connector, tmp, &dev->mode_config.connector_list, head) {
2972 if (connector->possible_encoders)
2973 continue;
2974
2975 NV_WARN(drm, "%s has no encoders, removing\n",
2976 connector->name);
2977 connector->funcs->destroy(connector);
2978 }
2979
2980 /* create crtc objects to represent the hw heads */
2981 for_each_set_bit(i, &disp->disp->head_mask, sizeof(disp->disp->head_mask) * 8) {
2982 struct nv50_head *head;
2983
2984 head = nv50_head_create(dev, i);
2985 if (IS_ERR(head)) {
2986 ret = PTR_ERR(head);
2987 goto out;
2988 }
2989
2990 if (has_mst) {
2991 head->msto = nv50_msto_new(dev, head, i);
2992 if (IS_ERR(head->msto)) {
2993 ret = PTR_ERR(head->msto);
2994 head->msto = NULL;
2995 goto out;
2996 }
2997
2998 /*
2999 * FIXME: This is a hack to workaround the following
3000 * issues:
3001 *
3002 * https://gitlab.gnome.org/GNOME/mutter/issues/759
3003 * https://gitlab.freedesktop.org/xorg/xserver/merge_requests/277
3004 *
3005 * Once these issues are closed, this should be
3006 * removed
3007 */
3008 head->msto->encoder.possible_crtcs = disp->disp->head_mask;
3009 }
3010 }
3011
3012 /* Disable vblank irqs aggressively for power-saving, safe on nv50+ */
3013 dev->vblank_disable_immediate = true;
3014
3015 nv50_audio_component_init(drm);
3016
3017 out:
3018 if (ret)
3019 nv50_display_destroy(dev);
3020 return ret;
3021 }
3022
3023 /******************************************************************************
3024 * Format modifiers
3025 *****************************************************************************/
3026
3027 /****************************************************************
3028 * Log2(block height) ----------------------------+ *
3029 * Page Kind ----------------------------------+ | *
3030 * Gob Height/Page Kind Generation ------+ | | *
3031 * Sector layout -------+ | | | *
3032 * Compression ------+ | | | | */
3033 const u64 disp50xx_modifiers[] = { /* | | | | | */
3034 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 0),
3035 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 1),
3036 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 2),
3037 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 3),
3038 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 4),
3039 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x7a, 5),
3040 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 0),
3041 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 1),
3042 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 2),
3043 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 3),
3044 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 4),
3045 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x78, 5),
3046 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 0),
3047 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 1),
3048 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 2),
3049 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 3),
3050 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 4),
3051 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 1, 0x70, 5),
3052 DRM_FORMAT_MOD_LINEAR,
3053 DRM_FORMAT_MOD_INVALID
3054 };
3055
3056 /****************************************************************
3057 * Log2(block height) ----------------------------+ *
3058 * Page Kind ----------------------------------+ | *
3059 * Gob Height/Page Kind Generation ------+ | | *
3060 * Sector layout -------+ | | | *
3061 * Compression ------+ | | | | */
3062 const u64 disp90xx_modifiers[] = { /* | | | | | */
3063 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 0),
3064 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 1),
3065 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 2),
3066 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 3),
3067 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 4),
3068 DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 1, 0, 0xfe, 5),
3069 DRM_FORMAT_MOD_LINEAR,
3070 DRM_FORMAT_MOD_INVALID
3071 };
3072