xref: /linux/drivers/gpu/drm/nouveau/nouveau_chan.c (revision ab93e0dd72c37d378dd936f031ffb83ff2bd87ce)
1 /*
2  * Copyright 2012 Red Hat Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: Ben Skeggs
23  */
24 #include <nvif/push006c.h>
25 
26 #include <nvif/class.h>
27 #include <nvif/cl0002.h>
28 #include <nvif/if0020.h>
29 
30 #include "nouveau_drv.h"
31 #include "nouveau_dma.h"
32 #include "nouveau_bo.h"
33 #include "nouveau_chan.h"
34 #include "nouveau_fence.h"
35 #include "nouveau_abi16.h"
36 #include "nouveau_vmm.h"
37 #include "nouveau_svm.h"
38 
39 MODULE_PARM_DESC(vram_pushbuf, "Create DMA push buffers in VRAM");
40 int nouveau_vram_pushbuf;
41 module_param_named(vram_pushbuf, nouveau_vram_pushbuf, int, 0400);
42 
43 void
nouveau_channel_kill(struct nouveau_channel * chan)44 nouveau_channel_kill(struct nouveau_channel *chan)
45 {
46 	atomic_set(&chan->killed, 1);
47 	if (chan->fence)
48 		nouveau_fence_context_kill(chan->fence, -ENODEV);
49 }
50 
51 static int
nouveau_channel_killed(struct nvif_event * event,void * repv,u32 repc)52 nouveau_channel_killed(struct nvif_event *event, void *repv, u32 repc)
53 {
54 	struct nouveau_channel *chan = container_of(event, typeof(*chan), kill);
55 	struct nouveau_cli *cli = chan->cli;
56 
57 	NV_PRINTK(warn, cli, "channel %d killed!\n", chan->chid);
58 
59 	if (unlikely(!atomic_read(&chan->killed)))
60 		nouveau_channel_kill(chan);
61 
62 	return NVIF_EVENT_DROP;
63 }
64 
65 int
nouveau_channel_idle(struct nouveau_channel * chan)66 nouveau_channel_idle(struct nouveau_channel *chan)
67 {
68 	if (likely(chan && chan->fence && !atomic_read(&chan->killed))) {
69 		struct nouveau_cli *cli = chan->cli;
70 		struct nouveau_fence *fence = NULL;
71 		int ret;
72 
73 		ret = nouveau_fence_new(&fence, chan);
74 		if (!ret) {
75 			ret = nouveau_fence_wait(fence, false, false);
76 			nouveau_fence_unref(&fence);
77 		}
78 
79 		if (ret) {
80 			NV_PRINTK(err, cli, "failed to idle channel %d [%s]\n",
81 				  chan->chid, cli->name);
82 			return ret;
83 		}
84 	}
85 	return 0;
86 }
87 
88 void
nouveau_channel_del(struct nouveau_channel ** pchan)89 nouveau_channel_del(struct nouveau_channel **pchan)
90 {
91 	struct nouveau_channel *chan = *pchan;
92 	if (chan) {
93 		if (chan->fence)
94 			nouveau_fence(chan->cli->drm)->context_del(chan);
95 
96 		if (nvif_object_constructed(&chan->user))
97 			nouveau_svmm_part(chan->vmm->svmm, chan->inst);
98 
99 		nvif_object_dtor(&chan->blit);
100 		nvif_object_dtor(&chan->nvsw);
101 		nvif_object_dtor(&chan->gart);
102 		nvif_object_dtor(&chan->vram);
103 		nvif_event_dtor(&chan->kill);
104 		nvif_object_dtor(&chan->user);
105 		nvif_mem_dtor(&chan->mem_userd);
106 		nouveau_vma_del(&chan->sema.vma);
107 		nouveau_bo_unpin_del(&chan->sema.bo);
108 		nvif_object_dtor(&chan->push.ctxdma);
109 		nouveau_vma_del(&chan->push.vma);
110 		nouveau_bo_unpin_del(&chan->push.buffer);
111 		kfree(chan);
112 	}
113 	*pchan = NULL;
114 }
115 
116 static void
nouveau_channel_kick(struct nvif_push * push)117 nouveau_channel_kick(struct nvif_push *push)
118 {
119 	struct nouveau_channel *chan = container_of(push, typeof(*chan), chan.push);
120 	chan->dma.cur = chan->dma.cur + (chan->chan.push.cur - chan->chan.push.bgn);
121 	FIRE_RING(chan);
122 	chan->chan.push.bgn = chan->chan.push.cur;
123 }
124 
125 static int
nouveau_channel_wait(struct nvif_push * push,u32 size)126 nouveau_channel_wait(struct nvif_push *push, u32 size)
127 {
128 	struct nouveau_channel *chan = container_of(push, typeof(*chan), chan.push);
129 	int ret;
130 	chan->dma.cur = chan->dma.cur + (chan->chan.push.cur - chan->chan.push.bgn);
131 	ret = RING_SPACE(chan, size);
132 	if (ret == 0) {
133 		chan->chan.push.bgn = chan->chan.push.mem.object.map.ptr;
134 		chan->chan.push.bgn = chan->chan.push.bgn + chan->dma.cur;
135 		chan->chan.push.cur = chan->chan.push.bgn;
136 		chan->chan.push.end = chan->chan.push.bgn + size;
137 	}
138 	return ret;
139 }
140 
141 static int
nouveau_channel_prep(struct nouveau_cli * cli,u32 size,struct nouveau_channel ** pchan)142 nouveau_channel_prep(struct nouveau_cli *cli,
143 		     u32 size, struct nouveau_channel **pchan)
144 {
145 	struct nouveau_drm *drm = cli->drm;
146 	struct nvif_device *device = &cli->device;
147 	struct nv_dma_v0 args = {};
148 	struct nouveau_channel *chan;
149 	u32 target;
150 	int ret;
151 
152 	chan = *pchan = kzalloc(sizeof(*chan), GFP_KERNEL);
153 	if (!chan)
154 		return -ENOMEM;
155 
156 	chan->cli = cli;
157 	chan->vmm = nouveau_cli_vmm(cli);
158 	atomic_set(&chan->killed, 0);
159 
160 	/* allocate memory for dma push buffer */
161 	target = NOUVEAU_GEM_DOMAIN_GART | NOUVEAU_GEM_DOMAIN_COHERENT;
162 	if (nouveau_vram_pushbuf)
163 		target = NOUVEAU_GEM_DOMAIN_VRAM;
164 
165 	ret = nouveau_bo_new_map(cli, target, size, &chan->push.buffer);
166 	if (ret) {
167 		nouveau_channel_del(pchan);
168 		return ret;
169 	}
170 
171 	chan->chan.push.mem.object.parent = cli->base.object.parent;
172 	chan->chan.push.mem.object.client = &cli->base;
173 	chan->chan.push.mem.object.name = "chanPush";
174 	chan->chan.push.mem.object.map.ptr = chan->push.buffer->kmap.virtual;
175 	chan->chan.push.wait = nouveau_channel_wait;
176 	chan->chan.push.kick = nouveau_channel_kick;
177 
178 	/* create dma object covering the *entire* memory space that the
179 	 * pushbuf lives in, this is because the GEM code requires that
180 	 * we be able to call out to other (indirect) push buffers
181 	 */
182 	chan->push.addr = chan->push.buffer->offset;
183 
184 	if (device->info.family >= NV_DEVICE_INFO_V0_TESLA) {
185 		ret = nouveau_vma_new(chan->push.buffer, chan->vmm,
186 				      &chan->push.vma);
187 		if (ret) {
188 			nouveau_channel_del(pchan);
189 			return ret;
190 		}
191 
192 		chan->push.addr = chan->push.vma->addr;
193 
194 		if (device->info.family >= NV_DEVICE_INFO_V0_FERMI) {
195 			return nouveau_bo_new_map_gpu(cli, NOUVEAU_GEM_DOMAIN_GART, PAGE_SIZE,
196 						      &chan->sema.bo, &chan->sema.vma);
197 		}
198 
199 		args.target = NV_DMA_V0_TARGET_VM;
200 		args.access = NV_DMA_V0_ACCESS_VM;
201 		args.start = 0;
202 		args.limit = chan->vmm->vmm.limit - 1;
203 	} else
204 	if (chan->push.buffer->bo.resource->mem_type == TTM_PL_VRAM) {
205 		if (device->info.family == NV_DEVICE_INFO_V0_TNT) {
206 			struct nvkm_device *nvkm_device = nvxx_device(drm);
207 
208 			/* nv04 vram pushbuf hack, retarget to its location in
209 			 * the framebuffer bar rather than direct vram access..
210 			 * nfi why this exists, it came from the -nv ddx.
211 			 */
212 			args.target = NV_DMA_V0_TARGET_PCI;
213 			args.access = NV_DMA_V0_ACCESS_RDWR;
214 			args.start = nvkm_device->func->resource_addr(nvkm_device, NVKM_BAR1_FB);
215 			args.limit = args.start + device->info.ram_user - 1;
216 		} else {
217 			args.target = NV_DMA_V0_TARGET_VRAM;
218 			args.access = NV_DMA_V0_ACCESS_RDWR;
219 			args.start = 0;
220 			args.limit = device->info.ram_user - 1;
221 		}
222 	} else {
223 		if (drm->agp.bridge) {
224 			args.target = NV_DMA_V0_TARGET_AGP;
225 			args.access = NV_DMA_V0_ACCESS_RDWR;
226 			args.start = drm->agp.base;
227 			args.limit = drm->agp.base + drm->agp.size - 1;
228 		} else {
229 			args.target = NV_DMA_V0_TARGET_VM;
230 			args.access = NV_DMA_V0_ACCESS_RDWR;
231 			args.start = 0;
232 			args.limit = chan->vmm->vmm.limit - 1;
233 		}
234 	}
235 
236 	ret = nvif_object_ctor(&device->object, "abi16PushCtxDma", 0,
237 			       NV_DMA_FROM_MEMORY, &args, sizeof(args),
238 			       &chan->push.ctxdma);
239 	if (ret) {
240 		nouveau_channel_del(pchan);
241 		return ret;
242 	}
243 
244 	return 0;
245 }
246 
247 static int
nouveau_channel_ctor(struct nouveau_cli * cli,bool priv,u64 runm,struct nouveau_channel ** pchan)248 nouveau_channel_ctor(struct nouveau_cli *cli, bool priv, u64 runm,
249 		     struct nouveau_channel **pchan)
250 {
251 	const struct nvif_mclass hosts[] = {
252 		{ BLACKWELL_CHANNEL_GPFIFO_B, 0 },
253 		{ BLACKWELL_CHANNEL_GPFIFO_A, 0 },
254 		{    HOPPER_CHANNEL_GPFIFO_A, 0 },
255 		{    AMPERE_CHANNEL_GPFIFO_B, 0 },
256 		{    AMPERE_CHANNEL_GPFIFO_A, 0 },
257 		{    TURING_CHANNEL_GPFIFO_A, 0 },
258 		{     VOLTA_CHANNEL_GPFIFO_A, 0 },
259 		{    PASCAL_CHANNEL_GPFIFO_A, 0 },
260 		{   MAXWELL_CHANNEL_GPFIFO_A, 0 },
261 		{    KEPLER_CHANNEL_GPFIFO_B, 0 },
262 		{    KEPLER_CHANNEL_GPFIFO_A, 0 },
263 		{     FERMI_CHANNEL_GPFIFO  , 0 },
264 		{       G82_CHANNEL_GPFIFO  , 0 },
265 		{      NV50_CHANNEL_GPFIFO  , 0 },
266 		{      NV40_CHANNEL_DMA     , 0 },
267 		{      NV17_CHANNEL_DMA     , 0 },
268 		{      NV10_CHANNEL_DMA     , 0 },
269 		{      NV03_CHANNEL_DMA     , 0 },
270 		{}
271 	};
272 	DEFINE_RAW_FLEX(struct nvif_chan_v0, args, name, TASK_COMM_LEN + 16);
273 	struct nvif_device *device = &cli->device;
274 	struct nouveau_channel *chan;
275 	const u64 plength = 0x10000;
276 	const u64 ioffset = plength;
277 	const u64 ilength = 0x02000;
278 	int cid, ret;
279 	u64 size;
280 
281 	cid = nvif_mclass(&device->object, hosts);
282 	if (cid < 0)
283 		return cid;
284 
285 	if (hosts[cid].oclass < NV50_CHANNEL_GPFIFO)
286 		size = plength;
287 	else
288 		size = ioffset + ilength;
289 
290 	/* allocate dma push buffer */
291 	ret = nouveau_channel_prep(cli, size, &chan);
292 	*pchan = chan;
293 	if (ret)
294 		return ret;
295 
296 	/* create channel object */
297 	args->version = 0;
298 	args->namelen = __member_size(args->name);
299 	args->runlist = __ffs64(runm);
300 	args->runq = 0;
301 	args->priv = priv;
302 	args->devm = BIT(0);
303 	if (hosts[cid].oclass < NV50_CHANNEL_GPFIFO) {
304 		args->vmm = 0;
305 		args->ctxdma = nvif_handle(&chan->push.ctxdma);
306 		args->offset = chan->push.addr;
307 		args->length = 0;
308 	} else {
309 		args->vmm = nvif_handle(&chan->vmm->vmm.object);
310 		if (hosts[cid].oclass < FERMI_CHANNEL_GPFIFO)
311 			args->ctxdma = nvif_handle(&chan->push.ctxdma);
312 		else
313 			args->ctxdma = 0;
314 		args->offset = ioffset + chan->push.addr;
315 		args->length = ilength;
316 	}
317 	args->huserd = 0;
318 	args->ouserd = 0;
319 
320 	/* allocate userd */
321 	if (hosts[cid].oclass >= VOLTA_CHANNEL_GPFIFO_A) {
322 		ret = nvif_mem_ctor(&cli->mmu, "abi16ChanUSERD", NVIF_CLASS_MEM_GF100,
323 				    NVIF_MEM_VRAM | NVIF_MEM_COHERENT | NVIF_MEM_MAPPABLE,
324 				    0, PAGE_SIZE, NULL, 0, &chan->mem_userd);
325 		if (ret)
326 			return ret;
327 
328 		args->huserd = nvif_handle(&chan->mem_userd.object);
329 		args->ouserd = 0;
330 
331 		chan->userd = &chan->mem_userd.object;
332 	} else {
333 		chan->userd = &chan->user;
334 	}
335 
336 	snprintf(args->name, __member_size(args->name), "%s[%d]",
337 		 current->comm, task_pid_nr(current));
338 
339 	ret = nvif_object_ctor(&device->object, "abi16ChanUser", 0, hosts[cid].oclass,
340 			       args, __struct_size(args), &chan->user);
341 	if (ret) {
342 		nouveau_channel_del(pchan);
343 		return ret;
344 	}
345 
346 	chan->runlist = args->runlist;
347 	chan->chid = args->chid;
348 	chan->inst = args->inst;
349 	chan->token = args->token;
350 	return 0;
351 }
352 
353 static int
nouveau_channel_init(struct nouveau_channel * chan,u32 vram,u32 gart)354 nouveau_channel_init(struct nouveau_channel *chan, u32 vram, u32 gart)
355 {
356 	struct nouveau_cli *cli = chan->cli;
357 	struct nouveau_drm *drm = cli->drm;
358 	struct nvif_device *device = &cli->device;
359 	struct nv_dma_v0 args = {};
360 	int ret, i;
361 
362 	ret = nvif_object_map(chan->userd, NULL, 0);
363 	if (ret)
364 		return ret;
365 
366 	if (chan->user.oclass >= FERMI_CHANNEL_GPFIFO) {
367 		DEFINE_RAW_FLEX(struct nvif_event_v0, args, data,
368 				sizeof(struct nvif_chan_event_v0));
369 		struct nvif_chan_event_v0 *host =
370 				(struct nvif_chan_event_v0 *)args->data;
371 
372 		host->version = 0;
373 		host->type = NVIF_CHAN_EVENT_V0_KILLED;
374 
375 		ret = nvif_event_ctor(&chan->user, "abi16ChanKilled", chan->chid,
376 				      nouveau_channel_killed, false,
377 				      args, __struct_size(args), &chan->kill);
378 		if (ret == 0)
379 			ret = nvif_event_allow(&chan->kill);
380 		if (ret) {
381 			NV_ERROR(drm, "Failed to request channel kill "
382 				      "notification: %d\n", ret);
383 			return ret;
384 		}
385 	}
386 
387 	/* allocate dma objects to cover all allowed vram, and gart */
388 	if (device->info.family < NV_DEVICE_INFO_V0_FERMI) {
389 		if (device->info.family >= NV_DEVICE_INFO_V0_TESLA) {
390 			args.target = NV_DMA_V0_TARGET_VM;
391 			args.access = NV_DMA_V0_ACCESS_VM;
392 			args.start = 0;
393 			args.limit = chan->vmm->vmm.limit - 1;
394 		} else {
395 			args.target = NV_DMA_V0_TARGET_VRAM;
396 			args.access = NV_DMA_V0_ACCESS_RDWR;
397 			args.start = 0;
398 			args.limit = device->info.ram_user - 1;
399 		}
400 
401 		ret = nvif_object_ctor(&chan->user, "abi16ChanVramCtxDma", vram,
402 				       NV_DMA_IN_MEMORY, &args, sizeof(args),
403 				       &chan->vram);
404 		if (ret)
405 			return ret;
406 
407 		if (device->info.family >= NV_DEVICE_INFO_V0_TESLA) {
408 			args.target = NV_DMA_V0_TARGET_VM;
409 			args.access = NV_DMA_V0_ACCESS_VM;
410 			args.start = 0;
411 			args.limit = chan->vmm->vmm.limit - 1;
412 		} else
413 		if (drm->agp.bridge) {
414 			args.target = NV_DMA_V0_TARGET_AGP;
415 			args.access = NV_DMA_V0_ACCESS_RDWR;
416 			args.start = drm->agp.base;
417 			args.limit = drm->agp.base + drm->agp.size - 1;
418 		} else {
419 			args.target = NV_DMA_V0_TARGET_VM;
420 			args.access = NV_DMA_V0_ACCESS_RDWR;
421 			args.start = 0;
422 			args.limit = chan->vmm->vmm.limit - 1;
423 		}
424 
425 		ret = nvif_object_ctor(&chan->user, "abi16ChanGartCtxDma", gart,
426 				       NV_DMA_IN_MEMORY, &args, sizeof(args),
427 				       &chan->gart);
428 		if (ret)
429 			return ret;
430 	}
431 
432 	/* initialise dma tracking parameters */
433 	if (chan->user.oclass < NV50_CHANNEL_GPFIFO) {
434 		chan->user_put = 0x40;
435 		chan->user_get = 0x44;
436 		chan->dma.max = (0x10000 / 4) - 2;
437 	} else
438 	if (chan->user.oclass < FERMI_CHANNEL_GPFIFO) {
439 		ret = nvif_chan506f_ctor(&chan->chan, chan->userd->map.ptr,
440 					 (u8*)chan->push.buffer->kmap.virtual + 0x10000, 0x2000,
441 					 chan->push.buffer->kmap.virtual, chan->push.addr, 0x10000);
442 		if (ret)
443 			return ret;
444 	} else
445 	if (chan->user.oclass < VOLTA_CHANNEL_GPFIFO_A) {
446 		ret = nvif_chan906f_ctor(&chan->chan, chan->userd->map.ptr,
447 					 (u8*)chan->push.buffer->kmap.virtual + 0x10000, 0x2000,
448 					 chan->push.buffer->kmap.virtual, chan->push.addr, 0x10000,
449 					 chan->sema.bo->kmap.virtual, chan->sema.vma->addr);
450 		if (ret)
451 			return ret;
452 	} else {
453 		ret = nvif_chanc36f_ctor(&chan->chan, chan->userd->map.ptr,
454 					 (u8*)chan->push.buffer->kmap.virtual + 0x10000, 0x2000,
455 					 chan->push.buffer->kmap.virtual, chan->push.addr, 0x10000,
456 					 chan->sema.bo->kmap.virtual, chan->sema.vma->addr,
457 					 &drm->client.device.user, chan->token);
458 		if (ret)
459 			return ret;
460 	}
461 
462 	chan->dma.put = 0;
463 	chan->dma.cur = chan->dma.put;
464 	chan->dma.free = chan->dma.max - chan->dma.cur;
465 
466 	ret = PUSH_WAIT(&chan->chan.push, NOUVEAU_DMA_SKIPS);
467 	if (ret)
468 		return ret;
469 
470 	for (i = 0; i < NOUVEAU_DMA_SKIPS; i++)
471 		PUSH_DATA(&chan->chan.push, 0x00000000);
472 
473 	/* allocate software object class (used for fences on <= nv05) */
474 	if (device->info.family < NV_DEVICE_INFO_V0_CELSIUS) {
475 		ret = nvif_object_ctor(&chan->user, "abi16NvswFence", 0x006e,
476 				       NVIF_CLASS_SW_NV04,
477 				       NULL, 0, &chan->nvsw);
478 		if (ret)
479 			return ret;
480 
481 		ret = PUSH_WAIT(&chan->chan.push, 2);
482 		if (ret)
483 			return ret;
484 
485 		PUSH_NVSQ(&chan->chan.push, NV_SW, 0x0000, chan->nvsw.handle);
486 		PUSH_KICK(&chan->chan.push);
487 	}
488 
489 	/* initialise synchronisation */
490 	return nouveau_fence(drm)->context_new(chan);
491 }
492 
493 int
nouveau_channel_new(struct nouveau_cli * cli,bool priv,u64 runm,u32 vram,u32 gart,struct nouveau_channel ** pchan)494 nouveau_channel_new(struct nouveau_cli *cli,
495 		    bool priv, u64 runm, u32 vram, u32 gart, struct nouveau_channel **pchan)
496 {
497 	int ret;
498 
499 	ret = nouveau_channel_ctor(cli, priv, runm, pchan);
500 	if (ret) {
501 		NV_PRINTK(dbg, cli, "channel create, %d\n", ret);
502 		return ret;
503 	}
504 
505 	ret = nouveau_channel_init(*pchan, vram, gart);
506 	if (ret) {
507 		NV_PRINTK(err, cli, "channel failed to initialise, %d\n", ret);
508 		nouveau_channel_del(pchan);
509 		return ret;
510 	}
511 
512 	ret = nouveau_svmm_join((*pchan)->vmm->svmm, (*pchan)->inst);
513 	if (ret)
514 		nouveau_channel_del(pchan);
515 
516 	return ret;
517 }
518 
519 void
nouveau_channels_fini(struct nouveau_drm * drm)520 nouveau_channels_fini(struct nouveau_drm *drm)
521 {
522 	kfree(drm->runl);
523 }
524 
525 int
nouveau_channels_init(struct nouveau_drm * drm)526 nouveau_channels_init(struct nouveau_drm *drm)
527 {
528 	DEFINE_RAW_FLEX(struct nv_device_info_v1, args, data, 2);
529 	struct nv_device_info_v1_data *channels = &args->data[0];
530 	struct nv_device_info_v1_data *runlists = &args->data[1];
531 	struct nvif_object *device = &drm->client.device.object;
532 	int ret, i;
533 
534 	args->version = 1;
535 	args->count = __member_size(args->data) / sizeof(*args->data);
536 	channels->mthd = NV_DEVICE_HOST_CHANNELS;
537 	runlists->mthd = NV_DEVICE_HOST_RUNLISTS;
538 
539 	ret = nvif_object_mthd(device, NV_DEVICE_V0_INFO, args,
540 			       __struct_size(args));
541 	if (ret ||
542 	    runlists->mthd == NV_DEVICE_INFO_INVALID || !runlists->data ||
543 	    channels->mthd == NV_DEVICE_INFO_INVALID)
544 		return -ENODEV;
545 
546 	drm->chan_nr = drm->chan_total = channels->data;
547 	drm->runl_nr = fls64(runlists->data);
548 	drm->runl = kcalloc(drm->runl_nr, sizeof(*drm->runl), GFP_KERNEL);
549 	if (!drm->runl)
550 		return -ENOMEM;
551 
552 	if (drm->chan_nr == 0) {
553 		for (i = 0; i < drm->runl_nr; i++) {
554 			if (!(runlists->data & BIT(i)))
555 				continue;
556 
557 			channels->mthd = NV_DEVICE_HOST_RUNLIST_CHANNELS;
558 			channels->data = i;
559 
560 			ret = nvif_object_mthd(device, NV_DEVICE_V0_INFO, args,
561 					       __struct_size(args));
562 			if (ret || channels->mthd == NV_DEVICE_INFO_INVALID)
563 				return -ENODEV;
564 
565 			drm->runl[i].chan_nr = channels->data;
566 			drm->runl[i].chan_id_base = drm->chan_total;
567 			drm->runl[i].context_base = dma_fence_context_alloc(drm->runl[i].chan_nr);
568 
569 			drm->chan_total += drm->runl[i].chan_nr;
570 		}
571 	} else {
572 		drm->runl[0].context_base = dma_fence_context_alloc(drm->chan_nr);
573 		for (i = 1; i < drm->runl_nr; i++)
574 			drm->runl[i].context_base = drm->runl[0].context_base;
575 
576 	}
577 
578 	return 0;
579 }
580