1 #ifndef _LINUX_MMZONE_H
2 #define _LINUX_MMZONE_H
3 
4 #ifndef __ASSEMBLY__
5 #ifndef __GENERATING_BOUNDS_H
6 
7 #include <linux/spinlock.h>
8 #include <linux/list.h>
9 #include <linux/wait.h>
10 #include <linux/bitops.h>
11 #include <linux/cache.h>
12 #include <linux/threads.h>
13 #include <linux/numa.h>
14 #include <linux/init.h>
15 #include <linux/seqlock.h>
16 #include <linux/nodemask.h>
17 #include <linux/pageblock-flags.h>
18 #include <generated/bounds.h>
19 #include <linux/atomic.h>
20 #include <asm/page.h>
21 
22 /* Free memory management - zoned buddy allocator.  */
23 #ifndef CONFIG_FORCE_MAX_ZONEORDER
24 #define MAX_ORDER 11
25 #else
26 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
27 #endif
28 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
29 
30 /*
31  * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32  * costly to service.  That is between allocation orders which should
33  * coelesce naturally under reasonable reclaim pressure and those which
34  * will not.
35  */
36 #define PAGE_ALLOC_COSTLY_ORDER 3
37 
38 #define MIGRATE_UNMOVABLE     0
39 #define MIGRATE_RECLAIMABLE   1
40 #define MIGRATE_MOVABLE       2
41 #define MIGRATE_PCPTYPES      3 /* the number of types on the pcp lists */
42 #define MIGRATE_RESERVE       3
43 #define MIGRATE_ISOLATE       4 /* can't allocate from here */
44 #define MIGRATE_TYPES         5
45 
46 #define for_each_migratetype_order(order, type) \
47 	for (order = 0; order < MAX_ORDER; order++) \
48 		for (type = 0; type < MIGRATE_TYPES; type++)
49 
50 extern int page_group_by_mobility_disabled;
51 
get_pageblock_migratetype(struct page * page)52 static inline int get_pageblock_migratetype(struct page *page)
53 {
54 	return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
55 }
56 
57 struct free_area {
58 	struct list_head	free_list[MIGRATE_TYPES];
59 	unsigned long		nr_free;
60 };
61 
62 struct pglist_data;
63 
64 /*
65  * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
66  * So add a wild amount of padding here to ensure that they fall into separate
67  * cachelines.  There are very few zone structures in the machine, so space
68  * consumption is not a concern here.
69  */
70 #if defined(CONFIG_SMP)
71 struct zone_padding {
72 	char x[0];
73 } ____cacheline_internodealigned_in_smp;
74 #define ZONE_PADDING(name)	struct zone_padding name;
75 #else
76 #define ZONE_PADDING(name)
77 #endif
78 
79 enum zone_stat_item {
80 	/* First 128 byte cacheline (assuming 64 bit words) */
81 	NR_FREE_PAGES,
82 	NR_LRU_BASE,
83 	NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
84 	NR_ACTIVE_ANON,		/*  "     "     "   "       "         */
85 	NR_INACTIVE_FILE,	/*  "     "     "   "       "         */
86 	NR_ACTIVE_FILE,		/*  "     "     "   "       "         */
87 	NR_UNEVICTABLE,		/*  "     "     "   "       "         */
88 	NR_MLOCK,		/* mlock()ed pages found and moved off LRU */
89 	NR_ANON_PAGES,	/* Mapped anonymous pages */
90 	NR_FILE_MAPPED,	/* pagecache pages mapped into pagetables.
91 			   only modified from process context */
92 	NR_FILE_PAGES,
93 	NR_FILE_DIRTY,
94 	NR_WRITEBACK,
95 	NR_SLAB_RECLAIMABLE,
96 	NR_SLAB_UNRECLAIMABLE,
97 	NR_PAGETABLE,		/* used for pagetables */
98 	NR_KERNEL_STACK,
99 	/* Second 128 byte cacheline */
100 	NR_UNSTABLE_NFS,	/* NFS unstable pages */
101 	NR_BOUNCE,
102 	NR_VMSCAN_WRITE,
103 	NR_VMSCAN_IMMEDIATE,	/* Prioritise for reclaim when writeback ends */
104 	NR_WRITEBACK_TEMP,	/* Writeback using temporary buffers */
105 	NR_ISOLATED_ANON,	/* Temporary isolated pages from anon lru */
106 	NR_ISOLATED_FILE,	/* Temporary isolated pages from file lru */
107 	NR_SHMEM,		/* shmem pages (included tmpfs/GEM pages) */
108 	NR_DIRTIED,		/* page dirtyings since bootup */
109 	NR_WRITTEN,		/* page writings since bootup */
110 #ifdef CONFIG_NUMA
111 	NUMA_HIT,		/* allocated in intended node */
112 	NUMA_MISS,		/* allocated in non intended node */
113 	NUMA_FOREIGN,		/* was intended here, hit elsewhere */
114 	NUMA_INTERLEAVE_HIT,	/* interleaver preferred this zone */
115 	NUMA_LOCAL,		/* allocation from local node */
116 	NUMA_OTHER,		/* allocation from other node */
117 #endif
118 	NR_ANON_TRANSPARENT_HUGEPAGES,
119 	NR_VM_ZONE_STAT_ITEMS };
120 
121 /*
122  * We do arithmetic on the LRU lists in various places in the code,
123  * so it is important to keep the active lists LRU_ACTIVE higher in
124  * the array than the corresponding inactive lists, and to keep
125  * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
126  *
127  * This has to be kept in sync with the statistics in zone_stat_item
128  * above and the descriptions in vmstat_text in mm/vmstat.c
129  */
130 #define LRU_BASE 0
131 #define LRU_ACTIVE 1
132 #define LRU_FILE 2
133 
134 enum lru_list {
135 	LRU_INACTIVE_ANON = LRU_BASE,
136 	LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
137 	LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
138 	LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
139 	LRU_UNEVICTABLE,
140 	NR_LRU_LISTS
141 };
142 
143 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
144 
145 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
146 
is_file_lru(enum lru_list lru)147 static inline int is_file_lru(enum lru_list lru)
148 {
149 	return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
150 }
151 
is_active_lru(enum lru_list lru)152 static inline int is_active_lru(enum lru_list lru)
153 {
154 	return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
155 }
156 
is_unevictable_lru(enum lru_list lru)157 static inline int is_unevictable_lru(enum lru_list lru)
158 {
159 	return (lru == LRU_UNEVICTABLE);
160 }
161 
162 struct lruvec {
163 	struct list_head lists[NR_LRU_LISTS];
164 };
165 
166 /* Mask used at gathering information at once (see memcontrol.c) */
167 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
168 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
169 #define LRU_ALL_EVICTABLE (LRU_ALL_FILE | LRU_ALL_ANON)
170 #define LRU_ALL	     ((1 << NR_LRU_LISTS) - 1)
171 
172 /* Isolate inactive pages */
173 #define ISOLATE_INACTIVE	((__force isolate_mode_t)0x1)
174 /* Isolate active pages */
175 #define ISOLATE_ACTIVE		((__force isolate_mode_t)0x2)
176 /* Isolate clean file */
177 #define ISOLATE_CLEAN		((__force isolate_mode_t)0x4)
178 /* Isolate unmapped file */
179 #define ISOLATE_UNMAPPED	((__force isolate_mode_t)0x8)
180 /* Isolate for asynchronous migration */
181 #define ISOLATE_ASYNC_MIGRATE	((__force isolate_mode_t)0x10)
182 
183 /* LRU Isolation modes. */
184 typedef unsigned __bitwise__ isolate_mode_t;
185 
186 enum zone_watermarks {
187 	WMARK_MIN,
188 	WMARK_LOW,
189 	WMARK_HIGH,
190 	NR_WMARK
191 };
192 
193 #define min_wmark_pages(z) (z->watermark[WMARK_MIN])
194 #define low_wmark_pages(z) (z->watermark[WMARK_LOW])
195 #define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
196 
197 struct per_cpu_pages {
198 	int count;		/* number of pages in the list */
199 	int high;		/* high watermark, emptying needed */
200 	int batch;		/* chunk size for buddy add/remove */
201 
202 	/* Lists of pages, one per migrate type stored on the pcp-lists */
203 	struct list_head lists[MIGRATE_PCPTYPES];
204 };
205 
206 struct per_cpu_pageset {
207 	struct per_cpu_pages pcp;
208 #ifdef CONFIG_NUMA
209 	s8 expire;
210 #endif
211 #ifdef CONFIG_SMP
212 	s8 stat_threshold;
213 	s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
214 #endif
215 };
216 
217 #endif /* !__GENERATING_BOUNDS.H */
218 
219 enum zone_type {
220 #ifdef CONFIG_ZONE_DMA
221 	/*
222 	 * ZONE_DMA is used when there are devices that are not able
223 	 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
224 	 * carve out the portion of memory that is needed for these devices.
225 	 * The range is arch specific.
226 	 *
227 	 * Some examples
228 	 *
229 	 * Architecture		Limit
230 	 * ---------------------------
231 	 * parisc, ia64, sparc	<4G
232 	 * s390			<2G
233 	 * arm			Various
234 	 * alpha		Unlimited or 0-16MB.
235 	 *
236 	 * i386, x86_64 and multiple other arches
237 	 * 			<16M.
238 	 */
239 	ZONE_DMA,
240 #endif
241 #ifdef CONFIG_ZONE_DMA32
242 	/*
243 	 * x86_64 needs two ZONE_DMAs because it supports devices that are
244 	 * only able to do DMA to the lower 16M but also 32 bit devices that
245 	 * can only do DMA areas below 4G.
246 	 */
247 	ZONE_DMA32,
248 #endif
249 	/*
250 	 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
251 	 * performed on pages in ZONE_NORMAL if the DMA devices support
252 	 * transfers to all addressable memory.
253 	 */
254 	ZONE_NORMAL,
255 #ifdef CONFIG_HIGHMEM
256 	/*
257 	 * A memory area that is only addressable by the kernel through
258 	 * mapping portions into its own address space. This is for example
259 	 * used by i386 to allow the kernel to address the memory beyond
260 	 * 900MB. The kernel will set up special mappings (page
261 	 * table entries on i386) for each page that the kernel needs to
262 	 * access.
263 	 */
264 	ZONE_HIGHMEM,
265 #endif
266 	ZONE_MOVABLE,
267 	__MAX_NR_ZONES
268 };
269 
270 #ifndef __GENERATING_BOUNDS_H
271 
272 /*
273  * When a memory allocation must conform to specific limitations (such
274  * as being suitable for DMA) the caller will pass in hints to the
275  * allocator in the gfp_mask, in the zone modifier bits.  These bits
276  * are used to select a priority ordered list of memory zones which
277  * match the requested limits. See gfp_zone() in include/linux/gfp.h
278  */
279 
280 #if MAX_NR_ZONES < 2
281 #define ZONES_SHIFT 0
282 #elif MAX_NR_ZONES <= 2
283 #define ZONES_SHIFT 1
284 #elif MAX_NR_ZONES <= 4
285 #define ZONES_SHIFT 2
286 #else
287 #error ZONES_SHIFT -- too many zones configured adjust calculation
288 #endif
289 
290 struct zone_reclaim_stat {
291 	/*
292 	 * The pageout code in vmscan.c keeps track of how many of the
293 	 * mem/swap backed and file backed pages are refeferenced.
294 	 * The higher the rotated/scanned ratio, the more valuable
295 	 * that cache is.
296 	 *
297 	 * The anon LRU stats live in [0], file LRU stats in [1]
298 	 */
299 	unsigned long		recent_rotated[2];
300 	unsigned long		recent_scanned[2];
301 };
302 
303 struct zone {
304 	/* Fields commonly accessed by the page allocator */
305 
306 	/* zone watermarks, access with *_wmark_pages(zone) macros */
307 	unsigned long watermark[NR_WMARK];
308 
309 	/*
310 	 * When free pages are below this point, additional steps are taken
311 	 * when reading the number of free pages to avoid per-cpu counter
312 	 * drift allowing watermarks to be breached
313 	 */
314 	unsigned long percpu_drift_mark;
315 
316 	/*
317 	 * We don't know if the memory that we're going to allocate will be freeable
318 	 * or/and it will be released eventually, so to avoid totally wasting several
319 	 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
320 	 * to run OOM on the lower zones despite there's tons of freeable ram
321 	 * on the higher zones). This array is recalculated at runtime if the
322 	 * sysctl_lowmem_reserve_ratio sysctl changes.
323 	 */
324 	unsigned long		lowmem_reserve[MAX_NR_ZONES];
325 
326 	/*
327 	 * This is a per-zone reserve of pages that should not be
328 	 * considered dirtyable memory.
329 	 */
330 	unsigned long		dirty_balance_reserve;
331 
332 #ifdef CONFIG_NUMA
333 	int node;
334 	/*
335 	 * zone reclaim becomes active if more unmapped pages exist.
336 	 */
337 	unsigned long		min_unmapped_pages;
338 	unsigned long		min_slab_pages;
339 #endif
340 	struct per_cpu_pageset __percpu *pageset;
341 	/*
342 	 * free areas of different sizes
343 	 */
344 	spinlock_t		lock;
345 	int                     all_unreclaimable; /* All pages pinned */
346 #ifdef CONFIG_MEMORY_HOTPLUG
347 	/* see spanned/present_pages for more description */
348 	seqlock_t		span_seqlock;
349 #endif
350 	struct free_area	free_area[MAX_ORDER];
351 
352 #ifndef CONFIG_SPARSEMEM
353 	/*
354 	 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
355 	 * In SPARSEMEM, this map is stored in struct mem_section
356 	 */
357 	unsigned long		*pageblock_flags;
358 #endif /* CONFIG_SPARSEMEM */
359 
360 #ifdef CONFIG_COMPACTION
361 	/*
362 	 * On compaction failure, 1<<compact_defer_shift compactions
363 	 * are skipped before trying again. The number attempted since
364 	 * last failure is tracked with compact_considered.
365 	 */
366 	unsigned int		compact_considered;
367 	unsigned int		compact_defer_shift;
368 #endif
369 
370 	ZONE_PADDING(_pad1_)
371 
372 	/* Fields commonly accessed by the page reclaim scanner */
373 	spinlock_t		lru_lock;
374 	struct lruvec		lruvec;
375 
376 	struct zone_reclaim_stat reclaim_stat;
377 
378 	unsigned long		pages_scanned;	   /* since last reclaim */
379 	unsigned long		flags;		   /* zone flags, see below */
380 
381 	/* Zone statistics */
382 	atomic_long_t		vm_stat[NR_VM_ZONE_STAT_ITEMS];
383 
384 	/*
385 	 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
386 	 * this zone's LRU.  Maintained by the pageout code.
387 	 */
388 	unsigned int inactive_ratio;
389 
390 
391 	ZONE_PADDING(_pad2_)
392 	/* Rarely used or read-mostly fields */
393 
394 	/*
395 	 * wait_table		-- the array holding the hash table
396 	 * wait_table_hash_nr_entries	-- the size of the hash table array
397 	 * wait_table_bits	-- wait_table_size == (1 << wait_table_bits)
398 	 *
399 	 * The purpose of all these is to keep track of the people
400 	 * waiting for a page to become available and make them
401 	 * runnable again when possible. The trouble is that this
402 	 * consumes a lot of space, especially when so few things
403 	 * wait on pages at a given time. So instead of using
404 	 * per-page waitqueues, we use a waitqueue hash table.
405 	 *
406 	 * The bucket discipline is to sleep on the same queue when
407 	 * colliding and wake all in that wait queue when removing.
408 	 * When something wakes, it must check to be sure its page is
409 	 * truly available, a la thundering herd. The cost of a
410 	 * collision is great, but given the expected load of the
411 	 * table, they should be so rare as to be outweighed by the
412 	 * benefits from the saved space.
413 	 *
414 	 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
415 	 * primary users of these fields, and in mm/page_alloc.c
416 	 * free_area_init_core() performs the initialization of them.
417 	 */
418 	wait_queue_head_t	* wait_table;
419 	unsigned long		wait_table_hash_nr_entries;
420 	unsigned long		wait_table_bits;
421 
422 	/*
423 	 * Discontig memory support fields.
424 	 */
425 	struct pglist_data	*zone_pgdat;
426 	/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
427 	unsigned long		zone_start_pfn;
428 
429 	/*
430 	 * zone_start_pfn, spanned_pages and present_pages are all
431 	 * protected by span_seqlock.  It is a seqlock because it has
432 	 * to be read outside of zone->lock, and it is done in the main
433 	 * allocator path.  But, it is written quite infrequently.
434 	 *
435 	 * The lock is declared along with zone->lock because it is
436 	 * frequently read in proximity to zone->lock.  It's good to
437 	 * give them a chance of being in the same cacheline.
438 	 */
439 	unsigned long		spanned_pages;	/* total size, including holes */
440 	unsigned long		present_pages;	/* amount of memory (excluding holes) */
441 
442 	/*
443 	 * rarely used fields:
444 	 */
445 	const char		*name;
446 } ____cacheline_internodealigned_in_smp;
447 
448 typedef enum {
449 	ZONE_RECLAIM_LOCKED,		/* prevents concurrent reclaim */
450 	ZONE_OOM_LOCKED,		/* zone is in OOM killer zonelist */
451 	ZONE_CONGESTED,			/* zone has many dirty pages backed by
452 					 * a congested BDI
453 					 */
454 } zone_flags_t;
455 
zone_set_flag(struct zone * zone,zone_flags_t flag)456 static inline void zone_set_flag(struct zone *zone, zone_flags_t flag)
457 {
458 	set_bit(flag, &zone->flags);
459 }
460 
zone_test_and_set_flag(struct zone * zone,zone_flags_t flag)461 static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag)
462 {
463 	return test_and_set_bit(flag, &zone->flags);
464 }
465 
zone_clear_flag(struct zone * zone,zone_flags_t flag)466 static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag)
467 {
468 	clear_bit(flag, &zone->flags);
469 }
470 
zone_is_reclaim_congested(const struct zone * zone)471 static inline int zone_is_reclaim_congested(const struct zone *zone)
472 {
473 	return test_bit(ZONE_CONGESTED, &zone->flags);
474 }
475 
zone_is_reclaim_locked(const struct zone * zone)476 static inline int zone_is_reclaim_locked(const struct zone *zone)
477 {
478 	return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
479 }
480 
zone_is_oom_locked(const struct zone * zone)481 static inline int zone_is_oom_locked(const struct zone *zone)
482 {
483 	return test_bit(ZONE_OOM_LOCKED, &zone->flags);
484 }
485 
486 /*
487  * The "priority" of VM scanning is how much of the queues we will scan in one
488  * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
489  * queues ("queue_length >> 12") during an aging round.
490  */
491 #define DEF_PRIORITY 12
492 
493 /* Maximum number of zones on a zonelist */
494 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
495 
496 #ifdef CONFIG_NUMA
497 
498 /*
499  * The NUMA zonelists are doubled because we need zonelists that restrict the
500  * allocations to a single node for GFP_THISNODE.
501  *
502  * [0]	: Zonelist with fallback
503  * [1]	: No fallback (GFP_THISNODE)
504  */
505 #define MAX_ZONELISTS 2
506 
507 
508 /*
509  * We cache key information from each zonelist for smaller cache
510  * footprint when scanning for free pages in get_page_from_freelist().
511  *
512  * 1) The BITMAP fullzones tracks which zones in a zonelist have come
513  *    up short of free memory since the last time (last_fullzone_zap)
514  *    we zero'd fullzones.
515  * 2) The array z_to_n[] maps each zone in the zonelist to its node
516  *    id, so that we can efficiently evaluate whether that node is
517  *    set in the current tasks mems_allowed.
518  *
519  * Both fullzones and z_to_n[] are one-to-one with the zonelist,
520  * indexed by a zones offset in the zonelist zones[] array.
521  *
522  * The get_page_from_freelist() routine does two scans.  During the
523  * first scan, we skip zones whose corresponding bit in 'fullzones'
524  * is set or whose corresponding node in current->mems_allowed (which
525  * comes from cpusets) is not set.  During the second scan, we bypass
526  * this zonelist_cache, to ensure we look methodically at each zone.
527  *
528  * Once per second, we zero out (zap) fullzones, forcing us to
529  * reconsider nodes that might have regained more free memory.
530  * The field last_full_zap is the time we last zapped fullzones.
531  *
532  * This mechanism reduces the amount of time we waste repeatedly
533  * reexaming zones for free memory when they just came up low on
534  * memory momentarilly ago.
535  *
536  * The zonelist_cache struct members logically belong in struct
537  * zonelist.  However, the mempolicy zonelists constructed for
538  * MPOL_BIND are intentionally variable length (and usually much
539  * shorter).  A general purpose mechanism for handling structs with
540  * multiple variable length members is more mechanism than we want
541  * here.  We resort to some special case hackery instead.
542  *
543  * The MPOL_BIND zonelists don't need this zonelist_cache (in good
544  * part because they are shorter), so we put the fixed length stuff
545  * at the front of the zonelist struct, ending in a variable length
546  * zones[], as is needed by MPOL_BIND.
547  *
548  * Then we put the optional zonelist cache on the end of the zonelist
549  * struct.  This optional stuff is found by a 'zlcache_ptr' pointer in
550  * the fixed length portion at the front of the struct.  This pointer
551  * both enables us to find the zonelist cache, and in the case of
552  * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
553  * to know that the zonelist cache is not there.
554  *
555  * The end result is that struct zonelists come in two flavors:
556  *  1) The full, fixed length version, shown below, and
557  *  2) The custom zonelists for MPOL_BIND.
558  * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
559  *
560  * Even though there may be multiple CPU cores on a node modifying
561  * fullzones or last_full_zap in the same zonelist_cache at the same
562  * time, we don't lock it.  This is just hint data - if it is wrong now
563  * and then, the allocator will still function, perhaps a bit slower.
564  */
565 
566 
567 struct zonelist_cache {
568 	unsigned short z_to_n[MAX_ZONES_PER_ZONELIST];		/* zone->nid */
569 	DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST);	/* zone full? */
570 	unsigned long last_full_zap;		/* when last zap'd (jiffies) */
571 };
572 #else
573 #define MAX_ZONELISTS 1
574 struct zonelist_cache;
575 #endif
576 
577 /*
578  * This struct contains information about a zone in a zonelist. It is stored
579  * here to avoid dereferences into large structures and lookups of tables
580  */
581 struct zoneref {
582 	struct zone *zone;	/* Pointer to actual zone */
583 	int zone_idx;		/* zone_idx(zoneref->zone) */
584 };
585 
586 /*
587  * One allocation request operates on a zonelist. A zonelist
588  * is a list of zones, the first one is the 'goal' of the
589  * allocation, the other zones are fallback zones, in decreasing
590  * priority.
591  *
592  * If zlcache_ptr is not NULL, then it is just the address of zlcache,
593  * as explained above.  If zlcache_ptr is NULL, there is no zlcache.
594  * *
595  * To speed the reading of the zonelist, the zonerefs contain the zone index
596  * of the entry being read. Helper functions to access information given
597  * a struct zoneref are
598  *
599  * zonelist_zone()	- Return the struct zone * for an entry in _zonerefs
600  * zonelist_zone_idx()	- Return the index of the zone for an entry
601  * zonelist_node_idx()	- Return the index of the node for an entry
602  */
603 struct zonelist {
604 	struct zonelist_cache *zlcache_ptr;		     // NULL or &zlcache
605 	struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
606 #ifdef CONFIG_NUMA
607 	struct zonelist_cache zlcache;			     // optional ...
608 #endif
609 };
610 
611 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
612 struct node_active_region {
613 	unsigned long start_pfn;
614 	unsigned long end_pfn;
615 	int nid;
616 };
617 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
618 
619 #ifndef CONFIG_DISCONTIGMEM
620 /* The array of struct pages - for discontigmem use pgdat->lmem_map */
621 extern struct page *mem_map;
622 #endif
623 
624 /*
625  * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
626  * (mostly NUMA machines?) to denote a higher-level memory zone than the
627  * zone denotes.
628  *
629  * On NUMA machines, each NUMA node would have a pg_data_t to describe
630  * it's memory layout.
631  *
632  * Memory statistics and page replacement data structures are maintained on a
633  * per-zone basis.
634  */
635 struct bootmem_data;
636 typedef struct pglist_data {
637 	struct zone node_zones[MAX_NR_ZONES];
638 	struct zonelist node_zonelists[MAX_ZONELISTS];
639 	int nr_zones;
640 #ifdef CONFIG_FLAT_NODE_MEM_MAP	/* means !SPARSEMEM */
641 	struct page *node_mem_map;
642 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
643 	struct page_cgroup *node_page_cgroup;
644 #endif
645 #endif
646 #ifndef CONFIG_NO_BOOTMEM
647 	struct bootmem_data *bdata;
648 #endif
649 #ifdef CONFIG_MEMORY_HOTPLUG
650 	/*
651 	 * Must be held any time you expect node_start_pfn, node_present_pages
652 	 * or node_spanned_pages stay constant.  Holding this will also
653 	 * guarantee that any pfn_valid() stays that way.
654 	 *
655 	 * Nests above zone->lock and zone->size_seqlock.
656 	 */
657 	spinlock_t node_size_lock;
658 #endif
659 	unsigned long node_start_pfn;
660 	unsigned long node_present_pages; /* total number of physical pages */
661 	unsigned long node_spanned_pages; /* total size of physical page
662 					     range, including holes */
663 	int node_id;
664 	wait_queue_head_t kswapd_wait;
665 	struct task_struct *kswapd;
666 	int kswapd_max_order;
667 	enum zone_type classzone_idx;
668 } pg_data_t;
669 
670 #define node_present_pages(nid)	(NODE_DATA(nid)->node_present_pages)
671 #define node_spanned_pages(nid)	(NODE_DATA(nid)->node_spanned_pages)
672 #ifdef CONFIG_FLAT_NODE_MEM_MAP
673 #define pgdat_page_nr(pgdat, pagenr)	((pgdat)->node_mem_map + (pagenr))
674 #else
675 #define pgdat_page_nr(pgdat, pagenr)	pfn_to_page((pgdat)->node_start_pfn + (pagenr))
676 #endif
677 #define nid_page_nr(nid, pagenr) 	pgdat_page_nr(NODE_DATA(nid),(pagenr))
678 
679 #define node_start_pfn(nid)	(NODE_DATA(nid)->node_start_pfn)
680 
681 #define node_end_pfn(nid) ({\
682 	pg_data_t *__pgdat = NODE_DATA(nid);\
683 	__pgdat->node_start_pfn + __pgdat->node_spanned_pages;\
684 })
685 
686 #include <linux/memory_hotplug.h>
687 
688 extern struct mutex zonelists_mutex;
689 void build_all_zonelists(void *data);
690 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
691 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
692 		int classzone_idx, int alloc_flags);
693 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
694 		int classzone_idx, int alloc_flags);
695 enum memmap_context {
696 	MEMMAP_EARLY,
697 	MEMMAP_HOTPLUG,
698 };
699 extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
700 				     unsigned long size,
701 				     enum memmap_context context);
702 
703 #ifdef CONFIG_HAVE_MEMORY_PRESENT
704 void memory_present(int nid, unsigned long start, unsigned long end);
705 #else
memory_present(int nid,unsigned long start,unsigned long end)706 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
707 #endif
708 
709 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
710 int local_memory_node(int node_id);
711 #else
local_memory_node(int node_id)712 static inline int local_memory_node(int node_id) { return node_id; };
713 #endif
714 
715 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
716 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
717 #endif
718 
719 /*
720  * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
721  */
722 #define zone_idx(zone)		((zone) - (zone)->zone_pgdat->node_zones)
723 
populated_zone(struct zone * zone)724 static inline int populated_zone(struct zone *zone)
725 {
726 	return (!!zone->present_pages);
727 }
728 
729 extern int movable_zone;
730 
zone_movable_is_highmem(void)731 static inline int zone_movable_is_highmem(void)
732 {
733 #if defined(CONFIG_HIGHMEM) && defined(CONFIG_HAVE_MEMBLOCK_NODE)
734 	return movable_zone == ZONE_HIGHMEM;
735 #else
736 	return 0;
737 #endif
738 }
739 
is_highmem_idx(enum zone_type idx)740 static inline int is_highmem_idx(enum zone_type idx)
741 {
742 #ifdef CONFIG_HIGHMEM
743 	return (idx == ZONE_HIGHMEM ||
744 		(idx == ZONE_MOVABLE && zone_movable_is_highmem()));
745 #else
746 	return 0;
747 #endif
748 }
749 
is_normal_idx(enum zone_type idx)750 static inline int is_normal_idx(enum zone_type idx)
751 {
752 	return (idx == ZONE_NORMAL);
753 }
754 
755 /**
756  * is_highmem - helper function to quickly check if a struct zone is a
757  *              highmem zone or not.  This is an attempt to keep references
758  *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
759  * @zone - pointer to struct zone variable
760  */
is_highmem(struct zone * zone)761 static inline int is_highmem(struct zone *zone)
762 {
763 #ifdef CONFIG_HIGHMEM
764 	int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
765 	return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
766 	       (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
767 		zone_movable_is_highmem());
768 #else
769 	return 0;
770 #endif
771 }
772 
is_normal(struct zone * zone)773 static inline int is_normal(struct zone *zone)
774 {
775 	return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
776 }
777 
is_dma32(struct zone * zone)778 static inline int is_dma32(struct zone *zone)
779 {
780 #ifdef CONFIG_ZONE_DMA32
781 	return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
782 #else
783 	return 0;
784 #endif
785 }
786 
is_dma(struct zone * zone)787 static inline int is_dma(struct zone *zone)
788 {
789 #ifdef CONFIG_ZONE_DMA
790 	return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
791 #else
792 	return 0;
793 #endif
794 }
795 
796 /* These two functions are used to setup the per zone pages min values */
797 struct ctl_table;
798 int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
799 					void __user *, size_t *, loff_t *);
800 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
801 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
802 					void __user *, size_t *, loff_t *);
803 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
804 					void __user *, size_t *, loff_t *);
805 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
806 			void __user *, size_t *, loff_t *);
807 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
808 			void __user *, size_t *, loff_t *);
809 
810 extern int numa_zonelist_order_handler(struct ctl_table *, int,
811 			void __user *, size_t *, loff_t *);
812 extern char numa_zonelist_order[];
813 #define NUMA_ZONELIST_ORDER_LEN 16	/* string buffer size */
814 
815 #ifndef CONFIG_NEED_MULTIPLE_NODES
816 
817 extern struct pglist_data contig_page_data;
818 #define NODE_DATA(nid)		(&contig_page_data)
819 #define NODE_MEM_MAP(nid)	mem_map
820 
821 #else /* CONFIG_NEED_MULTIPLE_NODES */
822 
823 #include <asm/mmzone.h>
824 
825 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
826 
827 extern struct pglist_data *first_online_pgdat(void);
828 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
829 extern struct zone *next_zone(struct zone *zone);
830 
831 /**
832  * for_each_online_pgdat - helper macro to iterate over all online nodes
833  * @pgdat - pointer to a pg_data_t variable
834  */
835 #define for_each_online_pgdat(pgdat)			\
836 	for (pgdat = first_online_pgdat();		\
837 	     pgdat;					\
838 	     pgdat = next_online_pgdat(pgdat))
839 /**
840  * for_each_zone - helper macro to iterate over all memory zones
841  * @zone - pointer to struct zone variable
842  *
843  * The user only needs to declare the zone variable, for_each_zone
844  * fills it in.
845  */
846 #define for_each_zone(zone)			        \
847 	for (zone = (first_online_pgdat())->node_zones; \
848 	     zone;					\
849 	     zone = next_zone(zone))
850 
851 #define for_each_populated_zone(zone)		        \
852 	for (zone = (first_online_pgdat())->node_zones; \
853 	     zone;					\
854 	     zone = next_zone(zone))			\
855 		if (!populated_zone(zone))		\
856 			; /* do nothing */		\
857 		else
858 
zonelist_zone(struct zoneref * zoneref)859 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
860 {
861 	return zoneref->zone;
862 }
863 
zonelist_zone_idx(struct zoneref * zoneref)864 static inline int zonelist_zone_idx(struct zoneref *zoneref)
865 {
866 	return zoneref->zone_idx;
867 }
868 
zonelist_node_idx(struct zoneref * zoneref)869 static inline int zonelist_node_idx(struct zoneref *zoneref)
870 {
871 #ifdef CONFIG_NUMA
872 	/* zone_to_nid not available in this context */
873 	return zoneref->zone->node;
874 #else
875 	return 0;
876 #endif /* CONFIG_NUMA */
877 }
878 
879 /**
880  * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
881  * @z - The cursor used as a starting point for the search
882  * @highest_zoneidx - The zone index of the highest zone to return
883  * @nodes - An optional nodemask to filter the zonelist with
884  * @zone - The first suitable zone found is returned via this parameter
885  *
886  * This function returns the next zone at or below a given zone index that is
887  * within the allowed nodemask using a cursor as the starting point for the
888  * search. The zoneref returned is a cursor that represents the current zone
889  * being examined. It should be advanced by one before calling
890  * next_zones_zonelist again.
891  */
892 struct zoneref *next_zones_zonelist(struct zoneref *z,
893 					enum zone_type highest_zoneidx,
894 					nodemask_t *nodes,
895 					struct zone **zone);
896 
897 /**
898  * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
899  * @zonelist - The zonelist to search for a suitable zone
900  * @highest_zoneidx - The zone index of the highest zone to return
901  * @nodes - An optional nodemask to filter the zonelist with
902  * @zone - The first suitable zone found is returned via this parameter
903  *
904  * This function returns the first zone at or below a given zone index that is
905  * within the allowed nodemask. The zoneref returned is a cursor that can be
906  * used to iterate the zonelist with next_zones_zonelist by advancing it by
907  * one before calling.
908  */
first_zones_zonelist(struct zonelist * zonelist,enum zone_type highest_zoneidx,nodemask_t * nodes,struct zone ** zone)909 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
910 					enum zone_type highest_zoneidx,
911 					nodemask_t *nodes,
912 					struct zone **zone)
913 {
914 	return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes,
915 								zone);
916 }
917 
918 /**
919  * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
920  * @zone - The current zone in the iterator
921  * @z - The current pointer within zonelist->zones being iterated
922  * @zlist - The zonelist being iterated
923  * @highidx - The zone index of the highest zone to return
924  * @nodemask - Nodemask allowed by the allocator
925  *
926  * This iterator iterates though all zones at or below a given zone index and
927  * within a given nodemask
928  */
929 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
930 	for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone);	\
931 		zone;							\
932 		z = next_zones_zonelist(++z, highidx, nodemask, &zone))	\
933 
934 /**
935  * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
936  * @zone - The current zone in the iterator
937  * @z - The current pointer within zonelist->zones being iterated
938  * @zlist - The zonelist being iterated
939  * @highidx - The zone index of the highest zone to return
940  *
941  * This iterator iterates though all zones at or below a given zone index.
942  */
943 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
944 	for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
945 
946 #ifdef CONFIG_SPARSEMEM
947 #include <asm/sparsemem.h>
948 #endif
949 
950 #if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
951 	!defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
early_pfn_to_nid(unsigned long pfn)952 static inline unsigned long early_pfn_to_nid(unsigned long pfn)
953 {
954 	return 0;
955 }
956 #endif
957 
958 #ifdef CONFIG_FLATMEM
959 #define pfn_to_nid(pfn)		(0)
960 #endif
961 
962 #ifdef CONFIG_SPARSEMEM
963 
964 /*
965  * SECTION_SHIFT    		#bits space required to store a section #
966  *
967  * PA_SECTION_SHIFT		physical address to/from section number
968  * PFN_SECTION_SHIFT		pfn to/from section number
969  */
970 #define SECTIONS_SHIFT		(MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
971 
972 #define PA_SECTION_SHIFT	(SECTION_SIZE_BITS)
973 #define PFN_SECTION_SHIFT	(SECTION_SIZE_BITS - PAGE_SHIFT)
974 
975 #define NR_MEM_SECTIONS		(1UL << SECTIONS_SHIFT)
976 
977 #define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
978 #define PAGE_SECTION_MASK	(~(PAGES_PER_SECTION-1))
979 
980 #define SECTION_BLOCKFLAGS_BITS \
981 	((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
982 
983 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
984 #error Allocator MAX_ORDER exceeds SECTION_SIZE
985 #endif
986 
987 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
988 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
989 
990 #define SECTION_ALIGN_UP(pfn)	(((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
991 #define SECTION_ALIGN_DOWN(pfn)	((pfn) & PAGE_SECTION_MASK)
992 
993 struct page;
994 struct page_cgroup;
995 struct mem_section {
996 	/*
997 	 * This is, logically, a pointer to an array of struct
998 	 * pages.  However, it is stored with some other magic.
999 	 * (see sparse.c::sparse_init_one_section())
1000 	 *
1001 	 * Additionally during early boot we encode node id of
1002 	 * the location of the section here to guide allocation.
1003 	 * (see sparse.c::memory_present())
1004 	 *
1005 	 * Making it a UL at least makes someone do a cast
1006 	 * before using it wrong.
1007 	 */
1008 	unsigned long section_mem_map;
1009 
1010 	/* See declaration of similar field in struct zone */
1011 	unsigned long *pageblock_flags;
1012 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1013 	/*
1014 	 * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use
1015 	 * section. (see memcontrol.h/page_cgroup.h about this.)
1016 	 */
1017 	struct page_cgroup *page_cgroup;
1018 	unsigned long pad;
1019 #endif
1020 };
1021 
1022 #ifdef CONFIG_SPARSEMEM_EXTREME
1023 #define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
1024 #else
1025 #define SECTIONS_PER_ROOT	1
1026 #endif
1027 
1028 #define SECTION_NR_TO_ROOT(sec)	((sec) / SECTIONS_PER_ROOT)
1029 #define NR_SECTION_ROOTS	DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1030 #define SECTION_ROOT_MASK	(SECTIONS_PER_ROOT - 1)
1031 
1032 #ifdef CONFIG_SPARSEMEM_EXTREME
1033 extern struct mem_section *mem_section[NR_SECTION_ROOTS];
1034 #else
1035 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1036 #endif
1037 
__nr_to_section(unsigned long nr)1038 static inline struct mem_section *__nr_to_section(unsigned long nr)
1039 {
1040 	if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1041 		return NULL;
1042 	return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1043 }
1044 extern int __section_nr(struct mem_section* ms);
1045 extern unsigned long usemap_size(void);
1046 
1047 /*
1048  * We use the lower bits of the mem_map pointer to store
1049  * a little bit of information.  There should be at least
1050  * 3 bits here due to 32-bit alignment.
1051  */
1052 #define	SECTION_MARKED_PRESENT	(1UL<<0)
1053 #define SECTION_HAS_MEM_MAP	(1UL<<1)
1054 #define SECTION_MAP_LAST_BIT	(1UL<<2)
1055 #define SECTION_MAP_MASK	(~(SECTION_MAP_LAST_BIT-1))
1056 #define SECTION_NID_SHIFT	2
1057 
__section_mem_map_addr(struct mem_section * section)1058 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1059 {
1060 	unsigned long map = section->section_mem_map;
1061 	map &= SECTION_MAP_MASK;
1062 	return (struct page *)map;
1063 }
1064 
present_section(struct mem_section * section)1065 static inline int present_section(struct mem_section *section)
1066 {
1067 	return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1068 }
1069 
present_section_nr(unsigned long nr)1070 static inline int present_section_nr(unsigned long nr)
1071 {
1072 	return present_section(__nr_to_section(nr));
1073 }
1074 
valid_section(struct mem_section * section)1075 static inline int valid_section(struct mem_section *section)
1076 {
1077 	return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1078 }
1079 
valid_section_nr(unsigned long nr)1080 static inline int valid_section_nr(unsigned long nr)
1081 {
1082 	return valid_section(__nr_to_section(nr));
1083 }
1084 
__pfn_to_section(unsigned long pfn)1085 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1086 {
1087 	return __nr_to_section(pfn_to_section_nr(pfn));
1088 }
1089 
1090 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
pfn_valid(unsigned long pfn)1091 static inline int pfn_valid(unsigned long pfn)
1092 {
1093 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1094 		return 0;
1095 	return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
1096 }
1097 #endif
1098 
pfn_present(unsigned long pfn)1099 static inline int pfn_present(unsigned long pfn)
1100 {
1101 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1102 		return 0;
1103 	return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1104 }
1105 
1106 /*
1107  * These are _only_ used during initialisation, therefore they
1108  * can use __initdata ...  They could have names to indicate
1109  * this restriction.
1110  */
1111 #ifdef CONFIG_NUMA
1112 #define pfn_to_nid(pfn)							\
1113 ({									\
1114 	unsigned long __pfn_to_nid_pfn = (pfn);				\
1115 	page_to_nid(pfn_to_page(__pfn_to_nid_pfn));			\
1116 })
1117 #else
1118 #define pfn_to_nid(pfn)		(0)
1119 #endif
1120 
1121 #define early_pfn_valid(pfn)	pfn_valid(pfn)
1122 void sparse_init(void);
1123 #else
1124 #define sparse_init()	do {} while (0)
1125 #define sparse_index_init(_sec, _nid)  do {} while (0)
1126 #endif /* CONFIG_SPARSEMEM */
1127 
1128 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1129 bool early_pfn_in_nid(unsigned long pfn, int nid);
1130 #else
1131 #define early_pfn_in_nid(pfn, nid)	(1)
1132 #endif
1133 
1134 #ifndef early_pfn_valid
1135 #define early_pfn_valid(pfn)	(1)
1136 #endif
1137 
1138 void memory_present(int nid, unsigned long start, unsigned long end);
1139 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1140 
1141 /*
1142  * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1143  * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1144  * pfn_valid_within() should be used in this case; we optimise this away
1145  * when we have no holes within a MAX_ORDER_NR_PAGES block.
1146  */
1147 #ifdef CONFIG_HOLES_IN_ZONE
1148 #define pfn_valid_within(pfn) pfn_valid(pfn)
1149 #else
1150 #define pfn_valid_within(pfn) (1)
1151 #endif
1152 
1153 #ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1154 /*
1155  * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1156  * associated with it or not. In FLATMEM, it is expected that holes always
1157  * have valid memmap as long as there is valid PFNs either side of the hole.
1158  * In SPARSEMEM, it is assumed that a valid section has a memmap for the
1159  * entire section.
1160  *
1161  * However, an ARM, and maybe other embedded architectures in the future
1162  * free memmap backing holes to save memory on the assumption the memmap is
1163  * never used. The page_zone linkages are then broken even though pfn_valid()
1164  * returns true. A walker of the full memmap must then do this additional
1165  * check to ensure the memmap they are looking at is sane by making sure
1166  * the zone and PFN linkages are still valid. This is expensive, but walkers
1167  * of the full memmap are extremely rare.
1168  */
1169 int memmap_valid_within(unsigned long pfn,
1170 					struct page *page, struct zone *zone);
1171 #else
memmap_valid_within(unsigned long pfn,struct page * page,struct zone * zone)1172 static inline int memmap_valid_within(unsigned long pfn,
1173 					struct page *page, struct zone *zone)
1174 {
1175 	return 1;
1176 }
1177 #endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1178 
1179 #endif /* !__GENERATING_BOUNDS.H */
1180 #endif /* !__ASSEMBLY__ */
1181 #endif /* _LINUX_MMZONE_H */
1182