1 /*
2 * linux/fs/nfs/write.c
3 *
4 * Write file data over NFS.
5 *
6 * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de>
7 */
8
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/mm.h>
12 #include <linux/pagemap.h>
13 #include <linux/file.h>
14 #include <linux/writeback.h>
15 #include <linux/swap.h>
16 #include <linux/migrate.h>
17
18 #include <linux/sunrpc/clnt.h>
19 #include <linux/nfs_fs.h>
20 #include <linux/nfs_mount.h>
21 #include <linux/nfs_page.h>
22 #include <linux/backing-dev.h>
23 #include <linux/export.h>
24
25 #include <asm/uaccess.h>
26
27 #include "delegation.h"
28 #include "internal.h"
29 #include "iostat.h"
30 #include "nfs4_fs.h"
31 #include "fscache.h"
32 #include "pnfs.h"
33
34 #define NFSDBG_FACILITY NFSDBG_PAGECACHE
35
36 #define MIN_POOL_WRITE (32)
37 #define MIN_POOL_COMMIT (4)
38
39 /*
40 * Local function declarations
41 */
42 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *desc,
43 struct inode *inode, int ioflags);
44 static void nfs_redirty_request(struct nfs_page *req);
45 static const struct rpc_call_ops nfs_write_partial_ops;
46 static const struct rpc_call_ops nfs_write_full_ops;
47 static const struct rpc_call_ops nfs_commit_ops;
48
49 static struct kmem_cache *nfs_wdata_cachep;
50 static mempool_t *nfs_wdata_mempool;
51 static mempool_t *nfs_commit_mempool;
52
nfs_commitdata_alloc(void)53 struct nfs_write_data *nfs_commitdata_alloc(void)
54 {
55 struct nfs_write_data *p = mempool_alloc(nfs_commit_mempool, GFP_NOFS);
56
57 if (p) {
58 memset(p, 0, sizeof(*p));
59 INIT_LIST_HEAD(&p->pages);
60 }
61 return p;
62 }
63 EXPORT_SYMBOL_GPL(nfs_commitdata_alloc);
64
nfs_commit_free(struct nfs_write_data * p)65 void nfs_commit_free(struct nfs_write_data *p)
66 {
67 if (p && (p->pagevec != &p->page_array[0]))
68 kfree(p->pagevec);
69 mempool_free(p, nfs_commit_mempool);
70 }
71 EXPORT_SYMBOL_GPL(nfs_commit_free);
72
nfs_writedata_alloc(unsigned int pagecount)73 struct nfs_write_data *nfs_writedata_alloc(unsigned int pagecount)
74 {
75 struct nfs_write_data *p = mempool_alloc(nfs_wdata_mempool, GFP_NOFS);
76
77 if (p) {
78 memset(p, 0, sizeof(*p));
79 INIT_LIST_HEAD(&p->pages);
80 p->npages = pagecount;
81 if (pagecount <= ARRAY_SIZE(p->page_array))
82 p->pagevec = p->page_array;
83 else {
84 p->pagevec = kcalloc(pagecount, sizeof(struct page *), GFP_NOFS);
85 if (!p->pagevec) {
86 mempool_free(p, nfs_wdata_mempool);
87 p = NULL;
88 }
89 }
90 }
91 return p;
92 }
93
nfs_writedata_free(struct nfs_write_data * p)94 void nfs_writedata_free(struct nfs_write_data *p)
95 {
96 if (p && (p->pagevec != &p->page_array[0]))
97 kfree(p->pagevec);
98 mempool_free(p, nfs_wdata_mempool);
99 }
100
nfs_writedata_release(struct nfs_write_data * wdata)101 void nfs_writedata_release(struct nfs_write_data *wdata)
102 {
103 put_lseg(wdata->lseg);
104 put_nfs_open_context(wdata->args.context);
105 nfs_writedata_free(wdata);
106 }
107
nfs_context_set_write_error(struct nfs_open_context * ctx,int error)108 static void nfs_context_set_write_error(struct nfs_open_context *ctx, int error)
109 {
110 ctx->error = error;
111 smp_wmb();
112 set_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
113 }
114
nfs_page_find_request_locked(struct page * page)115 static struct nfs_page *nfs_page_find_request_locked(struct page *page)
116 {
117 struct nfs_page *req = NULL;
118
119 if (PagePrivate(page)) {
120 req = (struct nfs_page *)page_private(page);
121 if (req != NULL)
122 kref_get(&req->wb_kref);
123 }
124 return req;
125 }
126
nfs_page_find_request(struct page * page)127 static struct nfs_page *nfs_page_find_request(struct page *page)
128 {
129 struct inode *inode = page->mapping->host;
130 struct nfs_page *req = NULL;
131
132 spin_lock(&inode->i_lock);
133 req = nfs_page_find_request_locked(page);
134 spin_unlock(&inode->i_lock);
135 return req;
136 }
137
138 /* Adjust the file length if we're writing beyond the end */
nfs_grow_file(struct page * page,unsigned int offset,unsigned int count)139 static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count)
140 {
141 struct inode *inode = page->mapping->host;
142 loff_t end, i_size;
143 pgoff_t end_index;
144
145 spin_lock(&inode->i_lock);
146 i_size = i_size_read(inode);
147 end_index = (i_size - 1) >> PAGE_CACHE_SHIFT;
148 if (i_size > 0 && page->index < end_index)
149 goto out;
150 end = ((loff_t)page->index << PAGE_CACHE_SHIFT) + ((loff_t)offset+count);
151 if (i_size >= end)
152 goto out;
153 i_size_write(inode, end);
154 nfs_inc_stats(inode, NFSIOS_EXTENDWRITE);
155 out:
156 spin_unlock(&inode->i_lock);
157 }
158
159 /* A writeback failed: mark the page as bad, and invalidate the page cache */
nfs_set_pageerror(struct page * page)160 static void nfs_set_pageerror(struct page *page)
161 {
162 SetPageError(page);
163 nfs_zap_mapping(page->mapping->host, page->mapping);
164 }
165
166 /* We can set the PG_uptodate flag if we see that a write request
167 * covers the full page.
168 */
nfs_mark_uptodate(struct page * page,unsigned int base,unsigned int count)169 static void nfs_mark_uptodate(struct page *page, unsigned int base, unsigned int count)
170 {
171 if (PageUptodate(page))
172 return;
173 if (base != 0)
174 return;
175 if (count != nfs_page_length(page))
176 return;
177 SetPageUptodate(page);
178 }
179
wb_priority(struct writeback_control * wbc)180 static int wb_priority(struct writeback_control *wbc)
181 {
182 if (wbc->for_reclaim)
183 return FLUSH_HIGHPRI | FLUSH_STABLE;
184 if (wbc->for_kupdate || wbc->for_background)
185 return FLUSH_LOWPRI | FLUSH_COND_STABLE;
186 return FLUSH_COND_STABLE;
187 }
188
189 /*
190 * NFS congestion control
191 */
192
193 int nfs_congestion_kb;
194
195 #define NFS_CONGESTION_ON_THRESH (nfs_congestion_kb >> (PAGE_SHIFT-10))
196 #define NFS_CONGESTION_OFF_THRESH \
197 (NFS_CONGESTION_ON_THRESH - (NFS_CONGESTION_ON_THRESH >> 2))
198
nfs_set_page_writeback(struct page * page)199 static int nfs_set_page_writeback(struct page *page)
200 {
201 int ret = test_set_page_writeback(page);
202
203 if (!ret) {
204 struct inode *inode = page->mapping->host;
205 struct nfs_server *nfss = NFS_SERVER(inode);
206
207 page_cache_get(page);
208 if (atomic_long_inc_return(&nfss->writeback) >
209 NFS_CONGESTION_ON_THRESH) {
210 set_bdi_congested(&nfss->backing_dev_info,
211 BLK_RW_ASYNC);
212 }
213 }
214 return ret;
215 }
216
nfs_end_page_writeback(struct page * page)217 static void nfs_end_page_writeback(struct page *page)
218 {
219 struct inode *inode = page->mapping->host;
220 struct nfs_server *nfss = NFS_SERVER(inode);
221
222 end_page_writeback(page);
223 page_cache_release(page);
224 if (atomic_long_dec_return(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH)
225 clear_bdi_congested(&nfss->backing_dev_info, BLK_RW_ASYNC);
226 }
227
nfs_find_and_lock_request(struct page * page,bool nonblock)228 static struct nfs_page *nfs_find_and_lock_request(struct page *page, bool nonblock)
229 {
230 struct inode *inode = page->mapping->host;
231 struct nfs_page *req;
232 int ret;
233
234 spin_lock(&inode->i_lock);
235 for (;;) {
236 req = nfs_page_find_request_locked(page);
237 if (req == NULL)
238 break;
239 if (nfs_set_page_tag_locked(req))
240 break;
241 /* Note: If we hold the page lock, as is the case in nfs_writepage,
242 * then the call to nfs_set_page_tag_locked() will always
243 * succeed provided that someone hasn't already marked the
244 * request as dirty (in which case we don't care).
245 */
246 spin_unlock(&inode->i_lock);
247 if (!nonblock)
248 ret = nfs_wait_on_request(req);
249 else
250 ret = -EAGAIN;
251 nfs_release_request(req);
252 if (ret != 0)
253 return ERR_PTR(ret);
254 spin_lock(&inode->i_lock);
255 }
256 spin_unlock(&inode->i_lock);
257 return req;
258 }
259
260 /*
261 * Find an associated nfs write request, and prepare to flush it out
262 * May return an error if the user signalled nfs_wait_on_request().
263 */
nfs_page_async_flush(struct nfs_pageio_descriptor * pgio,struct page * page,bool nonblock)264 static int nfs_page_async_flush(struct nfs_pageio_descriptor *pgio,
265 struct page *page, bool nonblock)
266 {
267 struct nfs_page *req;
268 int ret = 0;
269
270 req = nfs_find_and_lock_request(page, nonblock);
271 if (!req)
272 goto out;
273 ret = PTR_ERR(req);
274 if (IS_ERR(req))
275 goto out;
276
277 ret = nfs_set_page_writeback(page);
278 BUG_ON(ret != 0);
279 BUG_ON(test_bit(PG_CLEAN, &req->wb_flags));
280
281 if (!nfs_pageio_add_request(pgio, req)) {
282 nfs_redirty_request(req);
283 ret = pgio->pg_error;
284 }
285 out:
286 return ret;
287 }
288
nfs_do_writepage(struct page * page,struct writeback_control * wbc,struct nfs_pageio_descriptor * pgio)289 static int nfs_do_writepage(struct page *page, struct writeback_control *wbc, struct nfs_pageio_descriptor *pgio)
290 {
291 struct inode *inode = page->mapping->host;
292 int ret;
293
294 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE);
295 nfs_add_stats(inode, NFSIOS_WRITEPAGES, 1);
296
297 nfs_pageio_cond_complete(pgio, page->index);
298 ret = nfs_page_async_flush(pgio, page, wbc->sync_mode == WB_SYNC_NONE);
299 if (ret == -EAGAIN) {
300 redirty_page_for_writepage(wbc, page);
301 ret = 0;
302 }
303 return ret;
304 }
305
306 /*
307 * Write an mmapped page to the server.
308 */
nfs_writepage_locked(struct page * page,struct writeback_control * wbc)309 static int nfs_writepage_locked(struct page *page, struct writeback_control *wbc)
310 {
311 struct nfs_pageio_descriptor pgio;
312 int err;
313
314 nfs_pageio_init_write(&pgio, page->mapping->host, wb_priority(wbc));
315 err = nfs_do_writepage(page, wbc, &pgio);
316 nfs_pageio_complete(&pgio);
317 if (err < 0)
318 return err;
319 if (pgio.pg_error < 0)
320 return pgio.pg_error;
321 return 0;
322 }
323
nfs_writepage(struct page * page,struct writeback_control * wbc)324 int nfs_writepage(struct page *page, struct writeback_control *wbc)
325 {
326 int ret;
327
328 ret = nfs_writepage_locked(page, wbc);
329 unlock_page(page);
330 return ret;
331 }
332
nfs_writepages_callback(struct page * page,struct writeback_control * wbc,void * data)333 static int nfs_writepages_callback(struct page *page, struct writeback_control *wbc, void *data)
334 {
335 int ret;
336
337 ret = nfs_do_writepage(page, wbc, data);
338 unlock_page(page);
339 return ret;
340 }
341
nfs_writepages(struct address_space * mapping,struct writeback_control * wbc)342 int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc)
343 {
344 struct inode *inode = mapping->host;
345 unsigned long *bitlock = &NFS_I(inode)->flags;
346 struct nfs_pageio_descriptor pgio;
347 int err;
348
349 /* Stop dirtying of new pages while we sync */
350 err = wait_on_bit_lock(bitlock, NFS_INO_FLUSHING,
351 nfs_wait_bit_killable, TASK_KILLABLE);
352 if (err)
353 goto out_err;
354
355 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES);
356
357 nfs_pageio_init_write(&pgio, inode, wb_priority(wbc));
358 err = write_cache_pages(mapping, wbc, nfs_writepages_callback, &pgio);
359 nfs_pageio_complete(&pgio);
360
361 clear_bit_unlock(NFS_INO_FLUSHING, bitlock);
362 smp_mb__after_clear_bit();
363 wake_up_bit(bitlock, NFS_INO_FLUSHING);
364
365 if (err < 0)
366 goto out_err;
367 err = pgio.pg_error;
368 if (err < 0)
369 goto out_err;
370 return 0;
371 out_err:
372 return err;
373 }
374
375 /*
376 * Insert a write request into an inode
377 */
nfs_inode_add_request(struct inode * inode,struct nfs_page * req)378 static int nfs_inode_add_request(struct inode *inode, struct nfs_page *req)
379 {
380 struct nfs_inode *nfsi = NFS_I(inode);
381 int error;
382
383 error = radix_tree_preload(GFP_NOFS);
384 if (error != 0)
385 goto out;
386
387 /* Lock the request! */
388 nfs_lock_request_dontget(req);
389
390 spin_lock(&inode->i_lock);
391 error = radix_tree_insert(&nfsi->nfs_page_tree, req->wb_index, req);
392 BUG_ON(error);
393 if (!nfsi->npages && nfs_have_delegation(inode, FMODE_WRITE))
394 inode->i_version++;
395 set_bit(PG_MAPPED, &req->wb_flags);
396 SetPagePrivate(req->wb_page);
397 set_page_private(req->wb_page, (unsigned long)req);
398 nfsi->npages++;
399 kref_get(&req->wb_kref);
400 radix_tree_tag_set(&nfsi->nfs_page_tree, req->wb_index,
401 NFS_PAGE_TAG_LOCKED);
402 spin_unlock(&inode->i_lock);
403 radix_tree_preload_end();
404 out:
405 return error;
406 }
407
408 /*
409 * Remove a write request from an inode
410 */
nfs_inode_remove_request(struct nfs_page * req)411 static void nfs_inode_remove_request(struct nfs_page *req)
412 {
413 struct inode *inode = req->wb_context->dentry->d_inode;
414 struct nfs_inode *nfsi = NFS_I(inode);
415
416 BUG_ON (!NFS_WBACK_BUSY(req));
417
418 spin_lock(&inode->i_lock);
419 set_page_private(req->wb_page, 0);
420 ClearPagePrivate(req->wb_page);
421 clear_bit(PG_MAPPED, &req->wb_flags);
422 radix_tree_delete(&nfsi->nfs_page_tree, req->wb_index);
423 nfsi->npages--;
424 spin_unlock(&inode->i_lock);
425 nfs_release_request(req);
426 }
427
428 static void
nfs_mark_request_dirty(struct nfs_page * req)429 nfs_mark_request_dirty(struct nfs_page *req)
430 {
431 __set_page_dirty_nobuffers(req->wb_page);
432 }
433
434 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
435 /*
436 * Add a request to the inode's commit list.
437 */
438 static void
nfs_mark_request_commit(struct nfs_page * req,struct pnfs_layout_segment * lseg)439 nfs_mark_request_commit(struct nfs_page *req, struct pnfs_layout_segment *lseg)
440 {
441 struct inode *inode = req->wb_context->dentry->d_inode;
442 struct nfs_inode *nfsi = NFS_I(inode);
443
444 spin_lock(&inode->i_lock);
445 set_bit(PG_CLEAN, &(req)->wb_flags);
446 radix_tree_tag_set(&nfsi->nfs_page_tree,
447 req->wb_index,
448 NFS_PAGE_TAG_COMMIT);
449 nfsi->ncommit++;
450 spin_unlock(&inode->i_lock);
451 pnfs_mark_request_commit(req, lseg);
452 inc_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
453 inc_bdi_stat(req->wb_page->mapping->backing_dev_info, BDI_RECLAIMABLE);
454 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
455 }
456
457 static int
nfs_clear_request_commit(struct nfs_page * req)458 nfs_clear_request_commit(struct nfs_page *req)
459 {
460 struct page *page = req->wb_page;
461
462 if (test_and_clear_bit(PG_CLEAN, &(req)->wb_flags)) {
463 dec_zone_page_state(page, NR_UNSTABLE_NFS);
464 dec_bdi_stat(page->mapping->backing_dev_info, BDI_RECLAIMABLE);
465 return 1;
466 }
467 return 0;
468 }
469
470 static inline
nfs_write_need_commit(struct nfs_write_data * data)471 int nfs_write_need_commit(struct nfs_write_data *data)
472 {
473 if (data->verf.committed == NFS_DATA_SYNC)
474 return data->lseg == NULL;
475 else
476 return data->verf.committed != NFS_FILE_SYNC;
477 }
478
479 static inline
nfs_reschedule_unstable_write(struct nfs_page * req,struct nfs_write_data * data)480 int nfs_reschedule_unstable_write(struct nfs_page *req,
481 struct nfs_write_data *data)
482 {
483 if (test_and_clear_bit(PG_NEED_COMMIT, &req->wb_flags)) {
484 nfs_mark_request_commit(req, data->lseg);
485 return 1;
486 }
487 if (test_and_clear_bit(PG_NEED_RESCHED, &req->wb_flags)) {
488 nfs_mark_request_dirty(req);
489 return 1;
490 }
491 return 0;
492 }
493 #else
494 static inline void
nfs_mark_request_commit(struct nfs_page * req,struct pnfs_layout_segment * lseg)495 nfs_mark_request_commit(struct nfs_page *req, struct pnfs_layout_segment *lseg)
496 {
497 }
498
499 static inline int
nfs_clear_request_commit(struct nfs_page * req)500 nfs_clear_request_commit(struct nfs_page *req)
501 {
502 return 0;
503 }
504
505 static inline
nfs_write_need_commit(struct nfs_write_data * data)506 int nfs_write_need_commit(struct nfs_write_data *data)
507 {
508 return 0;
509 }
510
511 static inline
nfs_reschedule_unstable_write(struct nfs_page * req,struct nfs_write_data * data)512 int nfs_reschedule_unstable_write(struct nfs_page *req,
513 struct nfs_write_data *data)
514 {
515 return 0;
516 }
517 #endif
518
519 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
520 static int
nfs_need_commit(struct nfs_inode * nfsi)521 nfs_need_commit(struct nfs_inode *nfsi)
522 {
523 return radix_tree_tagged(&nfsi->nfs_page_tree, NFS_PAGE_TAG_COMMIT);
524 }
525
526 /*
527 * nfs_scan_commit - Scan an inode for commit requests
528 * @inode: NFS inode to scan
529 * @dst: destination list
530 * @idx_start: lower bound of page->index to scan.
531 * @npages: idx_start + npages sets the upper bound to scan.
532 *
533 * Moves requests from the inode's 'commit' request list.
534 * The requests are *not* checked to ensure that they form a contiguous set.
535 */
536 static int
nfs_scan_commit(struct inode * inode,struct list_head * dst,pgoff_t idx_start,unsigned int npages)537 nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages)
538 {
539 struct nfs_inode *nfsi = NFS_I(inode);
540 int ret;
541
542 if (!nfs_need_commit(nfsi))
543 return 0;
544
545 spin_lock(&inode->i_lock);
546 ret = nfs_scan_list(nfsi, dst, idx_start, npages, NFS_PAGE_TAG_COMMIT);
547 if (ret > 0)
548 nfsi->ncommit -= ret;
549 spin_unlock(&inode->i_lock);
550
551 if (nfs_need_commit(NFS_I(inode)))
552 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
553
554 return ret;
555 }
556 #else
nfs_need_commit(struct nfs_inode * nfsi)557 static inline int nfs_need_commit(struct nfs_inode *nfsi)
558 {
559 return 0;
560 }
561
nfs_scan_commit(struct inode * inode,struct list_head * dst,pgoff_t idx_start,unsigned int npages)562 static inline int nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages)
563 {
564 return 0;
565 }
566 #endif
567
568 /*
569 * Search for an existing write request, and attempt to update
570 * it to reflect a new dirty region on a given page.
571 *
572 * If the attempt fails, then the existing request is flushed out
573 * to disk.
574 */
nfs_try_to_update_request(struct inode * inode,struct page * page,unsigned int offset,unsigned int bytes)575 static struct nfs_page *nfs_try_to_update_request(struct inode *inode,
576 struct page *page,
577 unsigned int offset,
578 unsigned int bytes)
579 {
580 struct nfs_page *req;
581 unsigned int rqend;
582 unsigned int end;
583 int error;
584
585 if (!PagePrivate(page))
586 return NULL;
587
588 end = offset + bytes;
589 spin_lock(&inode->i_lock);
590
591 for (;;) {
592 req = nfs_page_find_request_locked(page);
593 if (req == NULL)
594 goto out_unlock;
595
596 rqend = req->wb_offset + req->wb_bytes;
597 /*
598 * Tell the caller to flush out the request if
599 * the offsets are non-contiguous.
600 * Note: nfs_flush_incompatible() will already
601 * have flushed out requests having wrong owners.
602 */
603 if (offset > rqend
604 || end < req->wb_offset)
605 goto out_flushme;
606
607 if (nfs_set_page_tag_locked(req))
608 break;
609
610 /* The request is locked, so wait and then retry */
611 spin_unlock(&inode->i_lock);
612 error = nfs_wait_on_request(req);
613 nfs_release_request(req);
614 if (error != 0)
615 goto out_err;
616 spin_lock(&inode->i_lock);
617 }
618
619 if (nfs_clear_request_commit(req) &&
620 radix_tree_tag_clear(&NFS_I(inode)->nfs_page_tree,
621 req->wb_index, NFS_PAGE_TAG_COMMIT) != NULL) {
622 NFS_I(inode)->ncommit--;
623 pnfs_clear_request_commit(req);
624 }
625
626 /* Okay, the request matches. Update the region */
627 if (offset < req->wb_offset) {
628 req->wb_offset = offset;
629 req->wb_pgbase = offset;
630 }
631 if (end > rqend)
632 req->wb_bytes = end - req->wb_offset;
633 else
634 req->wb_bytes = rqend - req->wb_offset;
635 out_unlock:
636 spin_unlock(&inode->i_lock);
637 return req;
638 out_flushme:
639 spin_unlock(&inode->i_lock);
640 nfs_release_request(req);
641 error = nfs_wb_page(inode, page);
642 out_err:
643 return ERR_PTR(error);
644 }
645
646 /*
647 * Try to update an existing write request, or create one if there is none.
648 *
649 * Note: Should always be called with the Page Lock held to prevent races
650 * if we have to add a new request. Also assumes that the caller has
651 * already called nfs_flush_incompatible() if necessary.
652 */
nfs_setup_write_request(struct nfs_open_context * ctx,struct page * page,unsigned int offset,unsigned int bytes)653 static struct nfs_page * nfs_setup_write_request(struct nfs_open_context* ctx,
654 struct page *page, unsigned int offset, unsigned int bytes)
655 {
656 struct inode *inode = page->mapping->host;
657 struct nfs_page *req;
658 int error;
659
660 req = nfs_try_to_update_request(inode, page, offset, bytes);
661 if (req != NULL)
662 goto out;
663 req = nfs_create_request(ctx, inode, page, offset, bytes);
664 if (IS_ERR(req))
665 goto out;
666 error = nfs_inode_add_request(inode, req);
667 if (error != 0) {
668 nfs_release_request(req);
669 req = ERR_PTR(error);
670 }
671 out:
672 return req;
673 }
674
nfs_writepage_setup(struct nfs_open_context * ctx,struct page * page,unsigned int offset,unsigned int count)675 static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page,
676 unsigned int offset, unsigned int count)
677 {
678 struct nfs_page *req;
679
680 req = nfs_setup_write_request(ctx, page, offset, count);
681 if (IS_ERR(req))
682 return PTR_ERR(req);
683 /* Update file length */
684 nfs_grow_file(page, offset, count);
685 nfs_mark_uptodate(page, req->wb_pgbase, req->wb_bytes);
686 nfs_mark_request_dirty(req);
687 nfs_clear_page_tag_locked(req);
688 return 0;
689 }
690
nfs_flush_incompatible(struct file * file,struct page * page)691 int nfs_flush_incompatible(struct file *file, struct page *page)
692 {
693 struct nfs_open_context *ctx = nfs_file_open_context(file);
694 struct nfs_page *req;
695 int do_flush, status;
696 /*
697 * Look for a request corresponding to this page. If there
698 * is one, and it belongs to another file, we flush it out
699 * before we try to copy anything into the page. Do this
700 * due to the lack of an ACCESS-type call in NFSv2.
701 * Also do the same if we find a request from an existing
702 * dropped page.
703 */
704 do {
705 req = nfs_page_find_request(page);
706 if (req == NULL)
707 return 0;
708 do_flush = req->wb_page != page || req->wb_context != ctx ||
709 req->wb_lock_context->lockowner != current->files ||
710 req->wb_lock_context->pid != current->tgid;
711 nfs_release_request(req);
712 if (!do_flush)
713 return 0;
714 status = nfs_wb_page(page->mapping->host, page);
715 } while (status == 0);
716 return status;
717 }
718
719 /*
720 * If the page cache is marked as unsafe or invalid, then we can't rely on
721 * the PageUptodate() flag. In this case, we will need to turn off
722 * write optimisations that depend on the page contents being correct.
723 */
nfs_write_pageuptodate(struct page * page,struct inode * inode)724 static int nfs_write_pageuptodate(struct page *page, struct inode *inode)
725 {
726 return PageUptodate(page) &&
727 !(NFS_I(inode)->cache_validity & (NFS_INO_REVAL_PAGECACHE|NFS_INO_INVALID_DATA));
728 }
729
730 /*
731 * Update and possibly write a cached page of an NFS file.
732 *
733 * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad
734 * things with a page scheduled for an RPC call (e.g. invalidate it).
735 */
nfs_updatepage(struct file * file,struct page * page,unsigned int offset,unsigned int count)736 int nfs_updatepage(struct file *file, struct page *page,
737 unsigned int offset, unsigned int count)
738 {
739 struct nfs_open_context *ctx = nfs_file_open_context(file);
740 struct inode *inode = page->mapping->host;
741 int status = 0;
742
743 nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE);
744
745 dprintk("NFS: nfs_updatepage(%s/%s %d@%lld)\n",
746 file->f_path.dentry->d_parent->d_name.name,
747 file->f_path.dentry->d_name.name, count,
748 (long long)(page_offset(page) + offset));
749
750 /* If we're not using byte range locks, and we know the page
751 * is up to date, it may be more efficient to extend the write
752 * to cover the entire page in order to avoid fragmentation
753 * inefficiencies.
754 */
755 if (nfs_write_pageuptodate(page, inode) &&
756 inode->i_flock == NULL &&
757 !(file->f_flags & O_DSYNC)) {
758 count = max(count + offset, nfs_page_length(page));
759 offset = 0;
760 }
761
762 status = nfs_writepage_setup(ctx, page, offset, count);
763 if (status < 0)
764 nfs_set_pageerror(page);
765 else
766 __set_page_dirty_nobuffers(page);
767
768 dprintk("NFS: nfs_updatepage returns %d (isize %lld)\n",
769 status, (long long)i_size_read(inode));
770 return status;
771 }
772
nfs_writepage_release(struct nfs_page * req,struct nfs_write_data * data)773 static void nfs_writepage_release(struct nfs_page *req,
774 struct nfs_write_data *data)
775 {
776 struct page *page = req->wb_page;
777
778 if (PageError(req->wb_page) || !nfs_reschedule_unstable_write(req, data))
779 nfs_inode_remove_request(req);
780 nfs_clear_page_tag_locked(req);
781 nfs_end_page_writeback(page);
782 }
783
flush_task_priority(int how)784 static int flush_task_priority(int how)
785 {
786 switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) {
787 case FLUSH_HIGHPRI:
788 return RPC_PRIORITY_HIGH;
789 case FLUSH_LOWPRI:
790 return RPC_PRIORITY_LOW;
791 }
792 return RPC_PRIORITY_NORMAL;
793 }
794
nfs_initiate_write(struct nfs_write_data * data,struct rpc_clnt * clnt,const struct rpc_call_ops * call_ops,int how)795 int nfs_initiate_write(struct nfs_write_data *data,
796 struct rpc_clnt *clnt,
797 const struct rpc_call_ops *call_ops,
798 int how)
799 {
800 struct inode *inode = data->inode;
801 int priority = flush_task_priority(how);
802 struct rpc_task *task;
803 struct rpc_message msg = {
804 .rpc_argp = &data->args,
805 .rpc_resp = &data->res,
806 .rpc_cred = data->cred,
807 };
808 struct rpc_task_setup task_setup_data = {
809 .rpc_client = clnt,
810 .task = &data->task,
811 .rpc_message = &msg,
812 .callback_ops = call_ops,
813 .callback_data = data,
814 .workqueue = nfsiod_workqueue,
815 .flags = RPC_TASK_ASYNC,
816 .priority = priority,
817 };
818 int ret = 0;
819
820 /* Set up the initial task struct. */
821 NFS_PROTO(inode)->write_setup(data, &msg);
822
823 dprintk("NFS: %5u initiated write call "
824 "(req %s/%lld, %u bytes @ offset %llu)\n",
825 data->task.tk_pid,
826 inode->i_sb->s_id,
827 (long long)NFS_FILEID(inode),
828 data->args.count,
829 (unsigned long long)data->args.offset);
830
831 task = rpc_run_task(&task_setup_data);
832 if (IS_ERR(task)) {
833 ret = PTR_ERR(task);
834 goto out;
835 }
836 if (how & FLUSH_SYNC) {
837 ret = rpc_wait_for_completion_task(task);
838 if (ret == 0)
839 ret = task->tk_status;
840 }
841 rpc_put_task(task);
842 out:
843 return ret;
844 }
845 EXPORT_SYMBOL_GPL(nfs_initiate_write);
846
847 /*
848 * Set up the argument/result storage required for the RPC call.
849 */
nfs_write_rpcsetup(struct nfs_page * req,struct nfs_write_data * data,unsigned int count,unsigned int offset,int how)850 static void nfs_write_rpcsetup(struct nfs_page *req,
851 struct nfs_write_data *data,
852 unsigned int count, unsigned int offset,
853 int how)
854 {
855 struct inode *inode = req->wb_context->dentry->d_inode;
856
857 /* Set up the RPC argument and reply structs
858 * NB: take care not to mess about with data->commit et al. */
859
860 data->req = req;
861 data->inode = inode = req->wb_context->dentry->d_inode;
862 data->cred = req->wb_context->cred;
863
864 data->args.fh = NFS_FH(inode);
865 data->args.offset = req_offset(req) + offset;
866 /* pnfs_set_layoutcommit needs this */
867 data->mds_offset = data->args.offset;
868 data->args.pgbase = req->wb_pgbase + offset;
869 data->args.pages = data->pagevec;
870 data->args.count = count;
871 data->args.context = get_nfs_open_context(req->wb_context);
872 data->args.lock_context = req->wb_lock_context;
873 data->args.stable = NFS_UNSTABLE;
874 switch (how & (FLUSH_STABLE | FLUSH_COND_STABLE)) {
875 case 0:
876 break;
877 case FLUSH_COND_STABLE:
878 if (nfs_need_commit(NFS_I(inode)))
879 break;
880 default:
881 data->args.stable = NFS_FILE_SYNC;
882 }
883
884 data->res.fattr = &data->fattr;
885 data->res.count = count;
886 data->res.verf = &data->verf;
887 nfs_fattr_init(&data->fattr);
888 }
889
nfs_do_write(struct nfs_write_data * data,const struct rpc_call_ops * call_ops,int how)890 static int nfs_do_write(struct nfs_write_data *data,
891 const struct rpc_call_ops *call_ops,
892 int how)
893 {
894 struct inode *inode = data->args.context->dentry->d_inode;
895
896 return nfs_initiate_write(data, NFS_CLIENT(inode), call_ops, how);
897 }
898
nfs_do_multiple_writes(struct list_head * head,const struct rpc_call_ops * call_ops,int how)899 static int nfs_do_multiple_writes(struct list_head *head,
900 const struct rpc_call_ops *call_ops,
901 int how)
902 {
903 struct nfs_write_data *data;
904 int ret = 0;
905
906 while (!list_empty(head)) {
907 int ret2;
908
909 data = list_entry(head->next, struct nfs_write_data, list);
910 list_del_init(&data->list);
911
912 ret2 = nfs_do_write(data, call_ops, how);
913 if (ret == 0)
914 ret = ret2;
915 }
916 return ret;
917 }
918
919 /* If a nfs_flush_* function fails, it should remove reqs from @head and
920 * call this on each, which will prepare them to be retried on next
921 * writeback using standard nfs.
922 */
nfs_redirty_request(struct nfs_page * req)923 static void nfs_redirty_request(struct nfs_page *req)
924 {
925 struct page *page = req->wb_page;
926
927 nfs_mark_request_dirty(req);
928 nfs_clear_page_tag_locked(req);
929 nfs_end_page_writeback(page);
930 }
931
932 /*
933 * Generate multiple small requests to write out a single
934 * contiguous dirty area on one page.
935 */
nfs_flush_multi(struct nfs_pageio_descriptor * desc,struct list_head * res)936 static int nfs_flush_multi(struct nfs_pageio_descriptor *desc, struct list_head *res)
937 {
938 struct nfs_page *req = nfs_list_entry(desc->pg_list.next);
939 struct page *page = req->wb_page;
940 struct nfs_write_data *data;
941 size_t wsize = desc->pg_bsize, nbytes;
942 unsigned int offset;
943 int requests = 0;
944 int ret = 0;
945
946 nfs_list_remove_request(req);
947
948 if ((desc->pg_ioflags & FLUSH_COND_STABLE) &&
949 (desc->pg_moreio || NFS_I(desc->pg_inode)->ncommit ||
950 desc->pg_count > wsize))
951 desc->pg_ioflags &= ~FLUSH_COND_STABLE;
952
953
954 offset = 0;
955 nbytes = desc->pg_count;
956 do {
957 size_t len = min(nbytes, wsize);
958
959 data = nfs_writedata_alloc(1);
960 if (!data)
961 goto out_bad;
962 data->pagevec[0] = page;
963 nfs_write_rpcsetup(req, data, len, offset, desc->pg_ioflags);
964 list_add(&data->list, res);
965 requests++;
966 nbytes -= len;
967 offset += len;
968 } while (nbytes != 0);
969 atomic_set(&req->wb_complete, requests);
970 desc->pg_rpc_callops = &nfs_write_partial_ops;
971 return ret;
972
973 out_bad:
974 while (!list_empty(res)) {
975 data = list_entry(res->next, struct nfs_write_data, list);
976 list_del(&data->list);
977 nfs_writedata_free(data);
978 }
979 nfs_redirty_request(req);
980 return -ENOMEM;
981 }
982
983 /*
984 * Create an RPC task for the given write request and kick it.
985 * The page must have been locked by the caller.
986 *
987 * It may happen that the page we're passed is not marked dirty.
988 * This is the case if nfs_updatepage detects a conflicting request
989 * that has been written but not committed.
990 */
nfs_flush_one(struct nfs_pageio_descriptor * desc,struct list_head * res)991 static int nfs_flush_one(struct nfs_pageio_descriptor *desc, struct list_head *res)
992 {
993 struct nfs_page *req;
994 struct page **pages;
995 struct nfs_write_data *data;
996 struct list_head *head = &desc->pg_list;
997 int ret = 0;
998
999 data = nfs_writedata_alloc(nfs_page_array_len(desc->pg_base,
1000 desc->pg_count));
1001 if (!data) {
1002 while (!list_empty(head)) {
1003 req = nfs_list_entry(head->next);
1004 nfs_list_remove_request(req);
1005 nfs_redirty_request(req);
1006 }
1007 ret = -ENOMEM;
1008 goto out;
1009 }
1010 pages = data->pagevec;
1011 while (!list_empty(head)) {
1012 req = nfs_list_entry(head->next);
1013 nfs_list_remove_request(req);
1014 nfs_list_add_request(req, &data->pages);
1015 *pages++ = req->wb_page;
1016 }
1017 req = nfs_list_entry(data->pages.next);
1018
1019 if ((desc->pg_ioflags & FLUSH_COND_STABLE) &&
1020 (desc->pg_moreio || NFS_I(desc->pg_inode)->ncommit))
1021 desc->pg_ioflags &= ~FLUSH_COND_STABLE;
1022
1023 /* Set up the argument struct */
1024 nfs_write_rpcsetup(req, data, desc->pg_count, 0, desc->pg_ioflags);
1025 list_add(&data->list, res);
1026 desc->pg_rpc_callops = &nfs_write_full_ops;
1027 out:
1028 return ret;
1029 }
1030
nfs_generic_flush(struct nfs_pageio_descriptor * desc,struct list_head * head)1031 int nfs_generic_flush(struct nfs_pageio_descriptor *desc, struct list_head *head)
1032 {
1033 if (desc->pg_bsize < PAGE_CACHE_SIZE)
1034 return nfs_flush_multi(desc, head);
1035 return nfs_flush_one(desc, head);
1036 }
1037
nfs_generic_pg_writepages(struct nfs_pageio_descriptor * desc)1038 static int nfs_generic_pg_writepages(struct nfs_pageio_descriptor *desc)
1039 {
1040 LIST_HEAD(head);
1041 int ret;
1042
1043 ret = nfs_generic_flush(desc, &head);
1044 if (ret == 0)
1045 ret = nfs_do_multiple_writes(&head, desc->pg_rpc_callops,
1046 desc->pg_ioflags);
1047 return ret;
1048 }
1049
1050 static const struct nfs_pageio_ops nfs_pageio_write_ops = {
1051 .pg_test = nfs_generic_pg_test,
1052 .pg_doio = nfs_generic_pg_writepages,
1053 };
1054
nfs_pageio_init_write_mds(struct nfs_pageio_descriptor * pgio,struct inode * inode,int ioflags)1055 void nfs_pageio_init_write_mds(struct nfs_pageio_descriptor *pgio,
1056 struct inode *inode, int ioflags)
1057 {
1058 nfs_pageio_init(pgio, inode, &nfs_pageio_write_ops,
1059 NFS_SERVER(inode)->wsize, ioflags);
1060 }
1061
nfs_pageio_reset_write_mds(struct nfs_pageio_descriptor * pgio)1062 void nfs_pageio_reset_write_mds(struct nfs_pageio_descriptor *pgio)
1063 {
1064 pgio->pg_ops = &nfs_pageio_write_ops;
1065 pgio->pg_bsize = NFS_SERVER(pgio->pg_inode)->wsize;
1066 }
1067 EXPORT_SYMBOL_GPL(nfs_pageio_reset_write_mds);
1068
nfs_pageio_init_write(struct nfs_pageio_descriptor * pgio,struct inode * inode,int ioflags)1069 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio,
1070 struct inode *inode, int ioflags)
1071 {
1072 if (!pnfs_pageio_init_write(pgio, inode, ioflags))
1073 nfs_pageio_init_write_mds(pgio, inode, ioflags);
1074 }
1075
1076 /*
1077 * Handle a write reply that flushed part of a page.
1078 */
nfs_writeback_done_partial(struct rpc_task * task,void * calldata)1079 static void nfs_writeback_done_partial(struct rpc_task *task, void *calldata)
1080 {
1081 struct nfs_write_data *data = calldata;
1082
1083 dprintk("NFS: %5u write(%s/%lld %d@%lld)",
1084 task->tk_pid,
1085 data->req->wb_context->dentry->d_inode->i_sb->s_id,
1086 (long long)
1087 NFS_FILEID(data->req->wb_context->dentry->d_inode),
1088 data->req->wb_bytes, (long long)req_offset(data->req));
1089
1090 nfs_writeback_done(task, data);
1091 }
1092
nfs_writeback_release_partial(void * calldata)1093 static void nfs_writeback_release_partial(void *calldata)
1094 {
1095 struct nfs_write_data *data = calldata;
1096 struct nfs_page *req = data->req;
1097 struct page *page = req->wb_page;
1098 int status = data->task.tk_status;
1099
1100 if (status < 0) {
1101 nfs_set_pageerror(page);
1102 nfs_context_set_write_error(req->wb_context, status);
1103 dprintk(", error = %d\n", status);
1104 goto out;
1105 }
1106
1107 if (nfs_write_need_commit(data)) {
1108 struct inode *inode = page->mapping->host;
1109
1110 spin_lock(&inode->i_lock);
1111 if (test_bit(PG_NEED_RESCHED, &req->wb_flags)) {
1112 /* Do nothing we need to resend the writes */
1113 } else if (!test_and_set_bit(PG_NEED_COMMIT, &req->wb_flags)) {
1114 memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
1115 dprintk(" defer commit\n");
1116 } else if (memcmp(&req->wb_verf, &data->verf, sizeof(req->wb_verf))) {
1117 set_bit(PG_NEED_RESCHED, &req->wb_flags);
1118 clear_bit(PG_NEED_COMMIT, &req->wb_flags);
1119 dprintk(" server reboot detected\n");
1120 }
1121 spin_unlock(&inode->i_lock);
1122 } else
1123 dprintk(" OK\n");
1124
1125 out:
1126 if (atomic_dec_and_test(&req->wb_complete))
1127 nfs_writepage_release(req, data);
1128 nfs_writedata_release(calldata);
1129 }
1130
1131 #if defined(CONFIG_NFS_V4_1)
nfs_write_prepare(struct rpc_task * task,void * calldata)1132 void nfs_write_prepare(struct rpc_task *task, void *calldata)
1133 {
1134 struct nfs_write_data *data = calldata;
1135
1136 if (nfs4_setup_sequence(NFS_SERVER(data->inode),
1137 &data->args.seq_args,
1138 &data->res.seq_res, 1, task))
1139 return;
1140 rpc_call_start(task);
1141 }
1142 #endif /* CONFIG_NFS_V4_1 */
1143
1144 static const struct rpc_call_ops nfs_write_partial_ops = {
1145 #if defined(CONFIG_NFS_V4_1)
1146 .rpc_call_prepare = nfs_write_prepare,
1147 #endif /* CONFIG_NFS_V4_1 */
1148 .rpc_call_done = nfs_writeback_done_partial,
1149 .rpc_release = nfs_writeback_release_partial,
1150 };
1151
1152 /*
1153 * Handle a write reply that flushes a whole page.
1154 *
1155 * FIXME: There is an inherent race with invalidate_inode_pages and
1156 * writebacks since the page->count is kept > 1 for as long
1157 * as the page has a write request pending.
1158 */
nfs_writeback_done_full(struct rpc_task * task,void * calldata)1159 static void nfs_writeback_done_full(struct rpc_task *task, void *calldata)
1160 {
1161 struct nfs_write_data *data = calldata;
1162
1163 nfs_writeback_done(task, data);
1164 }
1165
nfs_writeback_release_full(void * calldata)1166 static void nfs_writeback_release_full(void *calldata)
1167 {
1168 struct nfs_write_data *data = calldata;
1169 int status = data->task.tk_status;
1170
1171 /* Update attributes as result of writeback. */
1172 while (!list_empty(&data->pages)) {
1173 struct nfs_page *req = nfs_list_entry(data->pages.next);
1174 struct page *page = req->wb_page;
1175
1176 nfs_list_remove_request(req);
1177
1178 dprintk("NFS: %5u write (%s/%lld %d@%lld)",
1179 data->task.tk_pid,
1180 req->wb_context->dentry->d_inode->i_sb->s_id,
1181 (long long)NFS_FILEID(req->wb_context->dentry->d_inode),
1182 req->wb_bytes,
1183 (long long)req_offset(req));
1184
1185 if (status < 0) {
1186 nfs_set_pageerror(page);
1187 nfs_context_set_write_error(req->wb_context, status);
1188 dprintk(", error = %d\n", status);
1189 goto remove_request;
1190 }
1191
1192 if (nfs_write_need_commit(data)) {
1193 memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
1194 nfs_mark_request_commit(req, data->lseg);
1195 dprintk(" marked for commit\n");
1196 goto next;
1197 }
1198 dprintk(" OK\n");
1199 remove_request:
1200 nfs_inode_remove_request(req);
1201 next:
1202 nfs_clear_page_tag_locked(req);
1203 nfs_end_page_writeback(page);
1204 }
1205 nfs_writedata_release(calldata);
1206 }
1207
1208 static const struct rpc_call_ops nfs_write_full_ops = {
1209 #if defined(CONFIG_NFS_V4_1)
1210 .rpc_call_prepare = nfs_write_prepare,
1211 #endif /* CONFIG_NFS_V4_1 */
1212 .rpc_call_done = nfs_writeback_done_full,
1213 .rpc_release = nfs_writeback_release_full,
1214 };
1215
1216
1217 /*
1218 * This function is called when the WRITE call is complete.
1219 */
nfs_writeback_done(struct rpc_task * task,struct nfs_write_data * data)1220 void nfs_writeback_done(struct rpc_task *task, struct nfs_write_data *data)
1221 {
1222 struct nfs_writeargs *argp = &data->args;
1223 struct nfs_writeres *resp = &data->res;
1224 int status;
1225
1226 dprintk("NFS: %5u nfs_writeback_done (status %d)\n",
1227 task->tk_pid, task->tk_status);
1228
1229 /*
1230 * ->write_done will attempt to use post-op attributes to detect
1231 * conflicting writes by other clients. A strict interpretation
1232 * of close-to-open would allow us to continue caching even if
1233 * another writer had changed the file, but some applications
1234 * depend on tighter cache coherency when writing.
1235 */
1236 status = NFS_PROTO(data->inode)->write_done(task, data);
1237 if (status != 0)
1238 return;
1239 nfs_add_stats(data->inode, NFSIOS_SERVERWRITTENBYTES, resp->count);
1240
1241 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
1242 if (resp->verf->committed < argp->stable && task->tk_status >= 0) {
1243 /* We tried a write call, but the server did not
1244 * commit data to stable storage even though we
1245 * requested it.
1246 * Note: There is a known bug in Tru64 < 5.0 in which
1247 * the server reports NFS_DATA_SYNC, but performs
1248 * NFS_FILE_SYNC. We therefore implement this checking
1249 * as a dprintk() in order to avoid filling syslog.
1250 */
1251 static unsigned long complain;
1252
1253 /* Note this will print the MDS for a DS write */
1254 if (time_before(complain, jiffies)) {
1255 dprintk("NFS: faulty NFS server %s:"
1256 " (committed = %d) != (stable = %d)\n",
1257 NFS_SERVER(data->inode)->nfs_client->cl_hostname,
1258 resp->verf->committed, argp->stable);
1259 complain = jiffies + 300 * HZ;
1260 }
1261 }
1262 #endif
1263 /* Is this a short write? */
1264 if (task->tk_status >= 0 && resp->count < argp->count) {
1265 static unsigned long complain;
1266
1267 nfs_inc_stats(data->inode, NFSIOS_SHORTWRITE);
1268
1269 /* Has the server at least made some progress? */
1270 if (resp->count != 0) {
1271 /* Was this an NFSv2 write or an NFSv3 stable write? */
1272 if (resp->verf->committed != NFS_UNSTABLE) {
1273 /* Resend from where the server left off */
1274 data->mds_offset += resp->count;
1275 argp->offset += resp->count;
1276 argp->pgbase += resp->count;
1277 argp->count -= resp->count;
1278 } else {
1279 /* Resend as a stable write in order to avoid
1280 * headaches in the case of a server crash.
1281 */
1282 argp->stable = NFS_FILE_SYNC;
1283 }
1284 rpc_restart_call_prepare(task);
1285 return;
1286 }
1287 if (time_before(complain, jiffies)) {
1288 printk(KERN_WARNING
1289 "NFS: Server wrote zero bytes, expected %u.\n",
1290 argp->count);
1291 complain = jiffies + 300 * HZ;
1292 }
1293 /* Can't do anything about it except throw an error. */
1294 task->tk_status = -EIO;
1295 }
1296 return;
1297 }
1298
1299
1300 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
nfs_commit_set_lock(struct nfs_inode * nfsi,int may_wait)1301 static int nfs_commit_set_lock(struct nfs_inode *nfsi, int may_wait)
1302 {
1303 int ret;
1304
1305 if (!test_and_set_bit(NFS_INO_COMMIT, &nfsi->flags))
1306 return 1;
1307 if (!may_wait)
1308 return 0;
1309 ret = out_of_line_wait_on_bit_lock(&nfsi->flags,
1310 NFS_INO_COMMIT,
1311 nfs_wait_bit_killable,
1312 TASK_KILLABLE);
1313 return (ret < 0) ? ret : 1;
1314 }
1315
nfs_commit_clear_lock(struct nfs_inode * nfsi)1316 void nfs_commit_clear_lock(struct nfs_inode *nfsi)
1317 {
1318 clear_bit(NFS_INO_COMMIT, &nfsi->flags);
1319 smp_mb__after_clear_bit();
1320 wake_up_bit(&nfsi->flags, NFS_INO_COMMIT);
1321 }
1322 EXPORT_SYMBOL_GPL(nfs_commit_clear_lock);
1323
nfs_commitdata_release(void * data)1324 void nfs_commitdata_release(void *data)
1325 {
1326 struct nfs_write_data *wdata = data;
1327
1328 put_lseg(wdata->lseg);
1329 put_nfs_open_context(wdata->args.context);
1330 nfs_commit_free(wdata);
1331 }
1332 EXPORT_SYMBOL_GPL(nfs_commitdata_release);
1333
nfs_initiate_commit(struct nfs_write_data * data,struct rpc_clnt * clnt,const struct rpc_call_ops * call_ops,int how)1334 int nfs_initiate_commit(struct nfs_write_data *data, struct rpc_clnt *clnt,
1335 const struct rpc_call_ops *call_ops,
1336 int how)
1337 {
1338 struct rpc_task *task;
1339 int priority = flush_task_priority(how);
1340 struct rpc_message msg = {
1341 .rpc_argp = &data->args,
1342 .rpc_resp = &data->res,
1343 .rpc_cred = data->cred,
1344 };
1345 struct rpc_task_setup task_setup_data = {
1346 .task = &data->task,
1347 .rpc_client = clnt,
1348 .rpc_message = &msg,
1349 .callback_ops = call_ops,
1350 .callback_data = data,
1351 .workqueue = nfsiod_workqueue,
1352 .flags = RPC_TASK_ASYNC,
1353 .priority = priority,
1354 };
1355 /* Set up the initial task struct. */
1356 NFS_PROTO(data->inode)->commit_setup(data, &msg);
1357
1358 dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid);
1359
1360 task = rpc_run_task(&task_setup_data);
1361 if (IS_ERR(task))
1362 return PTR_ERR(task);
1363 if (how & FLUSH_SYNC)
1364 rpc_wait_for_completion_task(task);
1365 rpc_put_task(task);
1366 return 0;
1367 }
1368 EXPORT_SYMBOL_GPL(nfs_initiate_commit);
1369
1370 /*
1371 * Set up the argument/result storage required for the RPC call.
1372 */
nfs_init_commit(struct nfs_write_data * data,struct list_head * head,struct pnfs_layout_segment * lseg)1373 void nfs_init_commit(struct nfs_write_data *data,
1374 struct list_head *head,
1375 struct pnfs_layout_segment *lseg)
1376 {
1377 struct nfs_page *first = nfs_list_entry(head->next);
1378 struct inode *inode = first->wb_context->dentry->d_inode;
1379
1380 /* Set up the RPC argument and reply structs
1381 * NB: take care not to mess about with data->commit et al. */
1382
1383 list_splice_init(head, &data->pages);
1384
1385 data->inode = inode;
1386 data->cred = first->wb_context->cred;
1387 data->lseg = lseg; /* reference transferred */
1388 data->mds_ops = &nfs_commit_ops;
1389
1390 data->args.fh = NFS_FH(data->inode);
1391 /* Note: we always request a commit of the entire inode */
1392 data->args.offset = 0;
1393 data->args.count = 0;
1394 data->args.context = get_nfs_open_context(first->wb_context);
1395 data->res.count = 0;
1396 data->res.fattr = &data->fattr;
1397 data->res.verf = &data->verf;
1398 nfs_fattr_init(&data->fattr);
1399 }
1400 EXPORT_SYMBOL_GPL(nfs_init_commit);
1401
nfs_retry_commit(struct list_head * page_list,struct pnfs_layout_segment * lseg)1402 void nfs_retry_commit(struct list_head *page_list,
1403 struct pnfs_layout_segment *lseg)
1404 {
1405 struct nfs_page *req;
1406
1407 while (!list_empty(page_list)) {
1408 req = nfs_list_entry(page_list->next);
1409 nfs_list_remove_request(req);
1410 nfs_mark_request_commit(req, lseg);
1411 dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
1412 dec_bdi_stat(req->wb_page->mapping->backing_dev_info,
1413 BDI_RECLAIMABLE);
1414 nfs_clear_page_tag_locked(req);
1415 }
1416 }
1417 EXPORT_SYMBOL_GPL(nfs_retry_commit);
1418
1419 /*
1420 * Commit dirty pages
1421 */
1422 static int
nfs_commit_list(struct inode * inode,struct list_head * head,int how)1423 nfs_commit_list(struct inode *inode, struct list_head *head, int how)
1424 {
1425 struct nfs_write_data *data;
1426
1427 data = nfs_commitdata_alloc();
1428
1429 if (!data)
1430 goto out_bad;
1431
1432 /* Set up the argument struct */
1433 nfs_init_commit(data, head, NULL);
1434 return nfs_initiate_commit(data, NFS_CLIENT(inode), data->mds_ops, how);
1435 out_bad:
1436 nfs_retry_commit(head, NULL);
1437 nfs_commit_clear_lock(NFS_I(inode));
1438 return -ENOMEM;
1439 }
1440
1441 /*
1442 * COMMIT call returned
1443 */
nfs_commit_done(struct rpc_task * task,void * calldata)1444 static void nfs_commit_done(struct rpc_task *task, void *calldata)
1445 {
1446 struct nfs_write_data *data = calldata;
1447
1448 dprintk("NFS: %5u nfs_commit_done (status %d)\n",
1449 task->tk_pid, task->tk_status);
1450
1451 /* Call the NFS version-specific code */
1452 NFS_PROTO(data->inode)->commit_done(task, data);
1453 }
1454
nfs_commit_release_pages(struct nfs_write_data * data)1455 void nfs_commit_release_pages(struct nfs_write_data *data)
1456 {
1457 struct nfs_page *req;
1458 int status = data->task.tk_status;
1459
1460 while (!list_empty(&data->pages)) {
1461 req = nfs_list_entry(data->pages.next);
1462 nfs_list_remove_request(req);
1463 nfs_clear_request_commit(req);
1464
1465 dprintk("NFS: commit (%s/%lld %d@%lld)",
1466 req->wb_context->dentry->d_sb->s_id,
1467 (long long)NFS_FILEID(req->wb_context->dentry->d_inode),
1468 req->wb_bytes,
1469 (long long)req_offset(req));
1470 if (status < 0) {
1471 nfs_context_set_write_error(req->wb_context, status);
1472 nfs_inode_remove_request(req);
1473 dprintk(", error = %d\n", status);
1474 goto next;
1475 }
1476
1477 /* Okay, COMMIT succeeded, apparently. Check the verifier
1478 * returned by the server against all stored verfs. */
1479 if (!memcmp(req->wb_verf.verifier, data->verf.verifier, sizeof(data->verf.verifier))) {
1480 /* We have a match */
1481 nfs_inode_remove_request(req);
1482 dprintk(" OK\n");
1483 goto next;
1484 }
1485 /* We have a mismatch. Write the page again */
1486 dprintk(" mismatch\n");
1487 nfs_mark_request_dirty(req);
1488 next:
1489 nfs_clear_page_tag_locked(req);
1490 }
1491 }
1492 EXPORT_SYMBOL_GPL(nfs_commit_release_pages);
1493
nfs_commit_release(void * calldata)1494 static void nfs_commit_release(void *calldata)
1495 {
1496 struct nfs_write_data *data = calldata;
1497
1498 nfs_commit_release_pages(data);
1499 nfs_commit_clear_lock(NFS_I(data->inode));
1500 nfs_commitdata_release(calldata);
1501 }
1502
1503 static const struct rpc_call_ops nfs_commit_ops = {
1504 #if defined(CONFIG_NFS_V4_1)
1505 .rpc_call_prepare = nfs_write_prepare,
1506 #endif /* CONFIG_NFS_V4_1 */
1507 .rpc_call_done = nfs_commit_done,
1508 .rpc_release = nfs_commit_release,
1509 };
1510
nfs_commit_inode(struct inode * inode,int how)1511 int nfs_commit_inode(struct inode *inode, int how)
1512 {
1513 LIST_HEAD(head);
1514 int may_wait = how & FLUSH_SYNC;
1515 int res;
1516
1517 res = nfs_commit_set_lock(NFS_I(inode), may_wait);
1518 if (res <= 0)
1519 goto out_mark_dirty;
1520 res = nfs_scan_commit(inode, &head, 0, 0);
1521 if (res) {
1522 int error;
1523
1524 error = pnfs_commit_list(inode, &head, how);
1525 if (error == PNFS_NOT_ATTEMPTED)
1526 error = nfs_commit_list(inode, &head, how);
1527 if (error < 0)
1528 return error;
1529 if (!may_wait)
1530 goto out_mark_dirty;
1531 error = wait_on_bit(&NFS_I(inode)->flags,
1532 NFS_INO_COMMIT,
1533 nfs_wait_bit_killable,
1534 TASK_KILLABLE);
1535 if (error < 0)
1536 return error;
1537 } else
1538 nfs_commit_clear_lock(NFS_I(inode));
1539 return res;
1540 /* Note: If we exit without ensuring that the commit is complete,
1541 * we must mark the inode as dirty. Otherwise, future calls to
1542 * sync_inode() with the WB_SYNC_ALL flag set will fail to ensure
1543 * that the data is on the disk.
1544 */
1545 out_mark_dirty:
1546 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1547 return res;
1548 }
1549
nfs_commit_unstable_pages(struct inode * inode,struct writeback_control * wbc)1550 static int nfs_commit_unstable_pages(struct inode *inode, struct writeback_control *wbc)
1551 {
1552 struct nfs_inode *nfsi = NFS_I(inode);
1553 int flags = FLUSH_SYNC;
1554 int ret = 0;
1555
1556 /* no commits means nothing needs to be done */
1557 if (!nfsi->ncommit)
1558 return ret;
1559
1560 if (wbc->sync_mode == WB_SYNC_NONE) {
1561 /* Don't commit yet if this is a non-blocking flush and there
1562 * are a lot of outstanding writes for this mapping.
1563 */
1564 if (nfsi->ncommit <= (nfsi->npages >> 1))
1565 goto out_mark_dirty;
1566
1567 /* don't wait for the COMMIT response */
1568 flags = 0;
1569 }
1570
1571 ret = nfs_commit_inode(inode, flags);
1572 if (ret >= 0) {
1573 if (wbc->sync_mode == WB_SYNC_NONE) {
1574 if (ret < wbc->nr_to_write)
1575 wbc->nr_to_write -= ret;
1576 else
1577 wbc->nr_to_write = 0;
1578 }
1579 return 0;
1580 }
1581 out_mark_dirty:
1582 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1583 return ret;
1584 }
1585 #else
nfs_commit_unstable_pages(struct inode * inode,struct writeback_control * wbc)1586 static int nfs_commit_unstable_pages(struct inode *inode, struct writeback_control *wbc)
1587 {
1588 return 0;
1589 }
1590 #endif
1591
nfs_write_inode(struct inode * inode,struct writeback_control * wbc)1592 int nfs_write_inode(struct inode *inode, struct writeback_control *wbc)
1593 {
1594 int ret;
1595
1596 ret = nfs_commit_unstable_pages(inode, wbc);
1597 if (ret >= 0 && test_bit(NFS_INO_LAYOUTCOMMIT, &NFS_I(inode)->flags)) {
1598 int status;
1599 bool sync = true;
1600
1601 if (wbc->sync_mode == WB_SYNC_NONE)
1602 sync = false;
1603
1604 status = pnfs_layoutcommit_inode(inode, sync);
1605 if (status < 0)
1606 return status;
1607 }
1608 return ret;
1609 }
1610
1611 /*
1612 * flush the inode to disk.
1613 */
nfs_wb_all(struct inode * inode)1614 int nfs_wb_all(struct inode *inode)
1615 {
1616 struct writeback_control wbc = {
1617 .sync_mode = WB_SYNC_ALL,
1618 .nr_to_write = LONG_MAX,
1619 .range_start = 0,
1620 .range_end = LLONG_MAX,
1621 };
1622
1623 return sync_inode(inode, &wbc);
1624 }
1625
nfs_wb_page_cancel(struct inode * inode,struct page * page)1626 int nfs_wb_page_cancel(struct inode *inode, struct page *page)
1627 {
1628 struct nfs_page *req;
1629 int ret = 0;
1630
1631 BUG_ON(!PageLocked(page));
1632 for (;;) {
1633 wait_on_page_writeback(page);
1634 req = nfs_page_find_request(page);
1635 if (req == NULL)
1636 break;
1637 if (nfs_lock_request_dontget(req)) {
1638 nfs_inode_remove_request(req);
1639 /*
1640 * In case nfs_inode_remove_request has marked the
1641 * page as being dirty
1642 */
1643 cancel_dirty_page(page, PAGE_CACHE_SIZE);
1644 nfs_unlock_request(req);
1645 break;
1646 }
1647 ret = nfs_wait_on_request(req);
1648 nfs_release_request(req);
1649 if (ret < 0)
1650 break;
1651 }
1652 return ret;
1653 }
1654
1655 /*
1656 * Write back all requests on one page - we do this before reading it.
1657 */
nfs_wb_page(struct inode * inode,struct page * page)1658 int nfs_wb_page(struct inode *inode, struct page *page)
1659 {
1660 loff_t range_start = page_offset(page);
1661 loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1);
1662 struct writeback_control wbc = {
1663 .sync_mode = WB_SYNC_ALL,
1664 .nr_to_write = 0,
1665 .range_start = range_start,
1666 .range_end = range_end,
1667 };
1668 int ret;
1669
1670 for (;;) {
1671 wait_on_page_writeback(page);
1672 if (clear_page_dirty_for_io(page)) {
1673 ret = nfs_writepage_locked(page, &wbc);
1674 if (ret < 0)
1675 goto out_error;
1676 continue;
1677 }
1678 if (!PagePrivate(page))
1679 break;
1680 ret = nfs_commit_inode(inode, FLUSH_SYNC);
1681 if (ret < 0)
1682 goto out_error;
1683 }
1684 return 0;
1685 out_error:
1686 return ret;
1687 }
1688
1689 #ifdef CONFIG_MIGRATION
nfs_migrate_page(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)1690 int nfs_migrate_page(struct address_space *mapping, struct page *newpage,
1691 struct page *page, enum migrate_mode mode)
1692 {
1693 /*
1694 * If PagePrivate is set, then the page is currently associated with
1695 * an in-progress read or write request. Don't try to migrate it.
1696 *
1697 * FIXME: we could do this in principle, but we'll need a way to ensure
1698 * that we can safely release the inode reference while holding
1699 * the page lock.
1700 */
1701 if (PagePrivate(page))
1702 return -EBUSY;
1703
1704 nfs_fscache_release_page(page, GFP_KERNEL);
1705
1706 return migrate_page(mapping, newpage, page, mode);
1707 }
1708 #endif
1709
nfs_init_writepagecache(void)1710 int __init nfs_init_writepagecache(void)
1711 {
1712 nfs_wdata_cachep = kmem_cache_create("nfs_write_data",
1713 sizeof(struct nfs_write_data),
1714 0, SLAB_HWCACHE_ALIGN,
1715 NULL);
1716 if (nfs_wdata_cachep == NULL)
1717 return -ENOMEM;
1718
1719 nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE,
1720 nfs_wdata_cachep);
1721 if (nfs_wdata_mempool == NULL)
1722 return -ENOMEM;
1723
1724 nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT,
1725 nfs_wdata_cachep);
1726 if (nfs_commit_mempool == NULL)
1727 return -ENOMEM;
1728
1729 /*
1730 * NFS congestion size, scale with available memory.
1731 *
1732 * 64MB: 8192k
1733 * 128MB: 11585k
1734 * 256MB: 16384k
1735 * 512MB: 23170k
1736 * 1GB: 32768k
1737 * 2GB: 46340k
1738 * 4GB: 65536k
1739 * 8GB: 92681k
1740 * 16GB: 131072k
1741 *
1742 * This allows larger machines to have larger/more transfers.
1743 * Limit the default to 256M
1744 */
1745 nfs_congestion_kb = (16*int_sqrt(totalram_pages)) << (PAGE_SHIFT-10);
1746 if (nfs_congestion_kb > 256*1024)
1747 nfs_congestion_kb = 256*1024;
1748
1749 return 0;
1750 }
1751
nfs_destroy_writepagecache(void)1752 void nfs_destroy_writepagecache(void)
1753 {
1754 mempool_destroy(nfs_commit_mempool);
1755 mempool_destroy(nfs_wdata_mempool);
1756 kmem_cache_destroy(nfs_wdata_cachep);
1757 }
1758
1759