1 /* NAT for netfilter; shared with compatibility layer. */
2 
3 /* (C) 1999-2001 Paul `Rusty' Russell
4  * (C) 2002-2006 Netfilter Core Team <coreteam@netfilter.org>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 
11 #include <linux/module.h>
12 #include <linux/types.h>
13 #include <linux/timer.h>
14 #include <linux/skbuff.h>
15 #include <linux/gfp.h>
16 #include <net/checksum.h>
17 #include <net/icmp.h>
18 #include <net/ip.h>
19 #include <net/tcp.h>  /* For tcp_prot in getorigdst */
20 #include <linux/icmp.h>
21 #include <linux/udp.h>
22 #include <linux/jhash.h>
23 
24 #include <linux/netfilter_ipv4.h>
25 #include <net/netfilter/nf_conntrack.h>
26 #include <net/netfilter/nf_conntrack_core.h>
27 #include <net/netfilter/nf_nat.h>
28 #include <net/netfilter/nf_nat_protocol.h>
29 #include <net/netfilter/nf_nat_core.h>
30 #include <net/netfilter/nf_nat_helper.h>
31 #include <net/netfilter/nf_conntrack_helper.h>
32 #include <net/netfilter/nf_conntrack_l3proto.h>
33 #include <net/netfilter/nf_conntrack_zones.h>
34 
35 static DEFINE_SPINLOCK(nf_nat_lock);
36 
37 static struct nf_conntrack_l3proto *l3proto __read_mostly;
38 
39 #define MAX_IP_NAT_PROTO 256
40 static const struct nf_nat_protocol __rcu *nf_nat_protos[MAX_IP_NAT_PROTO]
41 						__read_mostly;
42 
43 static inline const struct nf_nat_protocol *
__nf_nat_proto_find(u_int8_t protonum)44 __nf_nat_proto_find(u_int8_t protonum)
45 {
46 	return rcu_dereference(nf_nat_protos[protonum]);
47 }
48 
49 /* We keep an extra hash for each conntrack, for fast searching. */
50 static inline unsigned int
hash_by_src(const struct net * net,u16 zone,const struct nf_conntrack_tuple * tuple)51 hash_by_src(const struct net *net, u16 zone,
52 	    const struct nf_conntrack_tuple *tuple)
53 {
54 	unsigned int hash;
55 
56 	/* Original src, to ensure we map it consistently if poss. */
57 	hash = jhash_3words((__force u32)tuple->src.u3.ip,
58 			    (__force u32)tuple->src.u.all ^ zone,
59 			    tuple->dst.protonum, nf_conntrack_hash_rnd);
60 	return ((u64)hash * net->ipv4.nat_htable_size) >> 32;
61 }
62 
63 /* Is this tuple already taken? (not by us) */
64 int
nf_nat_used_tuple(const struct nf_conntrack_tuple * tuple,const struct nf_conn * ignored_conntrack)65 nf_nat_used_tuple(const struct nf_conntrack_tuple *tuple,
66 		  const struct nf_conn *ignored_conntrack)
67 {
68 	/* Conntrack tracking doesn't keep track of outgoing tuples; only
69 	   incoming ones.  NAT means they don't have a fixed mapping,
70 	   so we invert the tuple and look for the incoming reply.
71 
72 	   We could keep a separate hash if this proves too slow. */
73 	struct nf_conntrack_tuple reply;
74 
75 	nf_ct_invert_tuplepr(&reply, tuple);
76 	return nf_conntrack_tuple_taken(&reply, ignored_conntrack);
77 }
78 EXPORT_SYMBOL(nf_nat_used_tuple);
79 
80 /* If we source map this tuple so reply looks like reply_tuple, will
81  * that meet the constraints of range. */
82 static int
in_range(const struct nf_conntrack_tuple * tuple,const struct nf_nat_ipv4_range * range)83 in_range(const struct nf_conntrack_tuple *tuple,
84 	 const struct nf_nat_ipv4_range *range)
85 {
86 	const struct nf_nat_protocol *proto;
87 	int ret = 0;
88 
89 	/* If we are supposed to map IPs, then we must be in the
90 	   range specified, otherwise let this drag us onto a new src IP. */
91 	if (range->flags & NF_NAT_RANGE_MAP_IPS) {
92 		if (ntohl(tuple->src.u3.ip) < ntohl(range->min_ip) ||
93 		    ntohl(tuple->src.u3.ip) > ntohl(range->max_ip))
94 			return 0;
95 	}
96 
97 	rcu_read_lock();
98 	proto = __nf_nat_proto_find(tuple->dst.protonum);
99 	if (!(range->flags & NF_NAT_RANGE_PROTO_SPECIFIED) ||
100 	    proto->in_range(tuple, NF_NAT_MANIP_SRC,
101 			    &range->min, &range->max))
102 		ret = 1;
103 	rcu_read_unlock();
104 
105 	return ret;
106 }
107 
108 static inline int
same_src(const struct nf_conn * ct,const struct nf_conntrack_tuple * tuple)109 same_src(const struct nf_conn *ct,
110 	 const struct nf_conntrack_tuple *tuple)
111 {
112 	const struct nf_conntrack_tuple *t;
113 
114 	t = &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple;
115 	return (t->dst.protonum == tuple->dst.protonum &&
116 		t->src.u3.ip == tuple->src.u3.ip &&
117 		t->src.u.all == tuple->src.u.all);
118 }
119 
120 /* Only called for SRC manip */
121 static int
find_appropriate_src(struct net * net,u16 zone,const struct nf_conntrack_tuple * tuple,struct nf_conntrack_tuple * result,const struct nf_nat_ipv4_range * range)122 find_appropriate_src(struct net *net, u16 zone,
123 		     const struct nf_conntrack_tuple *tuple,
124 		     struct nf_conntrack_tuple *result,
125 		     const struct nf_nat_ipv4_range *range)
126 {
127 	unsigned int h = hash_by_src(net, zone, tuple);
128 	const struct nf_conn_nat *nat;
129 	const struct nf_conn *ct;
130 	const struct hlist_node *n;
131 
132 	rcu_read_lock();
133 	hlist_for_each_entry_rcu(nat, n, &net->ipv4.nat_bysource[h], bysource) {
134 		ct = nat->ct;
135 		if (same_src(ct, tuple) && nf_ct_zone(ct) == zone) {
136 			/* Copy source part from reply tuple. */
137 			nf_ct_invert_tuplepr(result,
138 				       &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
139 			result->dst = tuple->dst;
140 
141 			if (in_range(result, range)) {
142 				rcu_read_unlock();
143 				return 1;
144 			}
145 		}
146 	}
147 	rcu_read_unlock();
148 	return 0;
149 }
150 
151 /* For [FUTURE] fragmentation handling, we want the least-used
152    src-ip/dst-ip/proto triple.  Fairness doesn't come into it.  Thus
153    if the range specifies 1.2.3.4 ports 10000-10005 and 1.2.3.5 ports
154    1-65535, we don't do pro-rata allocation based on ports; we choose
155    the ip with the lowest src-ip/dst-ip/proto usage.
156 */
157 static void
find_best_ips_proto(u16 zone,struct nf_conntrack_tuple * tuple,const struct nf_nat_ipv4_range * range,const struct nf_conn * ct,enum nf_nat_manip_type maniptype)158 find_best_ips_proto(u16 zone, struct nf_conntrack_tuple *tuple,
159 		    const struct nf_nat_ipv4_range *range,
160 		    const struct nf_conn *ct,
161 		    enum nf_nat_manip_type maniptype)
162 {
163 	__be32 *var_ipp;
164 	/* Host order */
165 	u_int32_t minip, maxip, j;
166 
167 	/* No IP mapping?  Do nothing. */
168 	if (!(range->flags & NF_NAT_RANGE_MAP_IPS))
169 		return;
170 
171 	if (maniptype == NF_NAT_MANIP_SRC)
172 		var_ipp = &tuple->src.u3.ip;
173 	else
174 		var_ipp = &tuple->dst.u3.ip;
175 
176 	/* Fast path: only one choice. */
177 	if (range->min_ip == range->max_ip) {
178 		*var_ipp = range->min_ip;
179 		return;
180 	}
181 
182 	/* Hashing source and destination IPs gives a fairly even
183 	 * spread in practice (if there are a small number of IPs
184 	 * involved, there usually aren't that many connections
185 	 * anyway).  The consistency means that servers see the same
186 	 * client coming from the same IP (some Internet Banking sites
187 	 * like this), even across reboots. */
188 	minip = ntohl(range->min_ip);
189 	maxip = ntohl(range->max_ip);
190 	j = jhash_2words((__force u32)tuple->src.u3.ip,
191 			 range->flags & NF_NAT_RANGE_PERSISTENT ?
192 				0 : (__force u32)tuple->dst.u3.ip ^ zone, 0);
193 	j = ((u64)j * (maxip - minip + 1)) >> 32;
194 	*var_ipp = htonl(minip + j);
195 }
196 
197 /* Manipulate the tuple into the range given.  For NF_INET_POST_ROUTING,
198  * we change the source to map into the range.  For NF_INET_PRE_ROUTING
199  * and NF_INET_LOCAL_OUT, we change the destination to map into the
200  * range.  It might not be possible to get a unique tuple, but we try.
201  * At worst (or if we race), we will end up with a final duplicate in
202  * __ip_conntrack_confirm and drop the packet. */
203 static void
get_unique_tuple(struct nf_conntrack_tuple * tuple,const struct nf_conntrack_tuple * orig_tuple,const struct nf_nat_ipv4_range * range,struct nf_conn * ct,enum nf_nat_manip_type maniptype)204 get_unique_tuple(struct nf_conntrack_tuple *tuple,
205 		 const struct nf_conntrack_tuple *orig_tuple,
206 		 const struct nf_nat_ipv4_range *range,
207 		 struct nf_conn *ct,
208 		 enum nf_nat_manip_type maniptype)
209 {
210 	struct net *net = nf_ct_net(ct);
211 	const struct nf_nat_protocol *proto;
212 	u16 zone = nf_ct_zone(ct);
213 
214 	/* 1) If this srcip/proto/src-proto-part is currently mapped,
215 	   and that same mapping gives a unique tuple within the given
216 	   range, use that.
217 
218 	   This is only required for source (ie. NAT/masq) mappings.
219 	   So far, we don't do local source mappings, so multiple
220 	   manips not an issue.  */
221 	if (maniptype == NF_NAT_MANIP_SRC &&
222 	    !(range->flags & NF_NAT_RANGE_PROTO_RANDOM)) {
223 		/* try the original tuple first */
224 		if (in_range(orig_tuple, range)) {
225 			if (!nf_nat_used_tuple(orig_tuple, ct)) {
226 				*tuple = *orig_tuple;
227 				return;
228 			}
229 		} else if (find_appropriate_src(net, zone, orig_tuple, tuple,
230 			   range)) {
231 			pr_debug("get_unique_tuple: Found current src map\n");
232 			if (!nf_nat_used_tuple(tuple, ct))
233 				return;
234 		}
235 	}
236 
237 	/* 2) Select the least-used IP/proto combination in the given
238 	   range. */
239 	*tuple = *orig_tuple;
240 	find_best_ips_proto(zone, tuple, range, ct, maniptype);
241 
242 	/* 3) The per-protocol part of the manip is made to map into
243 	   the range to make a unique tuple. */
244 
245 	rcu_read_lock();
246 	proto = __nf_nat_proto_find(orig_tuple->dst.protonum);
247 
248 	/* Only bother mapping if it's not already in range and unique */
249 	if (!(range->flags & NF_NAT_RANGE_PROTO_RANDOM)) {
250 		if (range->flags & NF_NAT_RANGE_PROTO_SPECIFIED) {
251 			if (proto->in_range(tuple, maniptype, &range->min,
252 					    &range->max) &&
253 			    (range->min.all == range->max.all ||
254 			     !nf_nat_used_tuple(tuple, ct)))
255 				goto out;
256 		} else if (!nf_nat_used_tuple(tuple, ct)) {
257 			goto out;
258 		}
259 	}
260 
261 	/* Last change: get protocol to try to obtain unique tuple. */
262 	proto->unique_tuple(tuple, range, maniptype, ct);
263 out:
264 	rcu_read_unlock();
265 }
266 
267 unsigned int
nf_nat_setup_info(struct nf_conn * ct,const struct nf_nat_ipv4_range * range,enum nf_nat_manip_type maniptype)268 nf_nat_setup_info(struct nf_conn *ct,
269 		  const struct nf_nat_ipv4_range *range,
270 		  enum nf_nat_manip_type maniptype)
271 {
272 	struct net *net = nf_ct_net(ct);
273 	struct nf_conntrack_tuple curr_tuple, new_tuple;
274 	struct nf_conn_nat *nat;
275 
276 	/* nat helper or nfctnetlink also setup binding */
277 	nat = nfct_nat(ct);
278 	if (!nat) {
279 		nat = nf_ct_ext_add(ct, NF_CT_EXT_NAT, GFP_ATOMIC);
280 		if (nat == NULL) {
281 			pr_debug("failed to add NAT extension\n");
282 			return NF_ACCEPT;
283 		}
284 	}
285 
286 	NF_CT_ASSERT(maniptype == NF_NAT_MANIP_SRC ||
287 		     maniptype == NF_NAT_MANIP_DST);
288 	BUG_ON(nf_nat_initialized(ct, maniptype));
289 
290 	/* What we've got will look like inverse of reply. Normally
291 	   this is what is in the conntrack, except for prior
292 	   manipulations (future optimization: if num_manips == 0,
293 	   orig_tp =
294 	   conntrack->tuplehash[IP_CT_DIR_ORIGINAL].tuple) */
295 	nf_ct_invert_tuplepr(&curr_tuple,
296 			     &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
297 
298 	get_unique_tuple(&new_tuple, &curr_tuple, range, ct, maniptype);
299 
300 	if (!nf_ct_tuple_equal(&new_tuple, &curr_tuple)) {
301 		struct nf_conntrack_tuple reply;
302 
303 		/* Alter conntrack table so will recognize replies. */
304 		nf_ct_invert_tuplepr(&reply, &new_tuple);
305 		nf_conntrack_alter_reply(ct, &reply);
306 
307 		/* Non-atomic: we own this at the moment. */
308 		if (maniptype == NF_NAT_MANIP_SRC)
309 			ct->status |= IPS_SRC_NAT;
310 		else
311 			ct->status |= IPS_DST_NAT;
312 	}
313 
314 	if (maniptype == NF_NAT_MANIP_SRC) {
315 		unsigned int srchash;
316 
317 		srchash = hash_by_src(net, nf_ct_zone(ct),
318 				      &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
319 		spin_lock_bh(&nf_nat_lock);
320 		/* nf_conntrack_alter_reply might re-allocate extension area */
321 		nat = nfct_nat(ct);
322 		nat->ct = ct;
323 		hlist_add_head_rcu(&nat->bysource,
324 				   &net->ipv4.nat_bysource[srchash]);
325 		spin_unlock_bh(&nf_nat_lock);
326 	}
327 
328 	/* It's done. */
329 	if (maniptype == NF_NAT_MANIP_DST)
330 		ct->status |= IPS_DST_NAT_DONE;
331 	else
332 		ct->status |= IPS_SRC_NAT_DONE;
333 
334 	return NF_ACCEPT;
335 }
336 EXPORT_SYMBOL(nf_nat_setup_info);
337 
338 /* Returns true if succeeded. */
339 static bool
manip_pkt(u_int16_t proto,struct sk_buff * skb,unsigned int iphdroff,const struct nf_conntrack_tuple * target,enum nf_nat_manip_type maniptype)340 manip_pkt(u_int16_t proto,
341 	  struct sk_buff *skb,
342 	  unsigned int iphdroff,
343 	  const struct nf_conntrack_tuple *target,
344 	  enum nf_nat_manip_type maniptype)
345 {
346 	struct iphdr *iph;
347 	const struct nf_nat_protocol *p;
348 
349 	if (!skb_make_writable(skb, iphdroff + sizeof(*iph)))
350 		return false;
351 
352 	iph = (void *)skb->data + iphdroff;
353 
354 	/* Manipulate protcol part. */
355 
356 	/* rcu_read_lock()ed by nf_hook_slow */
357 	p = __nf_nat_proto_find(proto);
358 	if (!p->manip_pkt(skb, iphdroff, target, maniptype))
359 		return false;
360 
361 	iph = (void *)skb->data + iphdroff;
362 
363 	if (maniptype == NF_NAT_MANIP_SRC) {
364 		csum_replace4(&iph->check, iph->saddr, target->src.u3.ip);
365 		iph->saddr = target->src.u3.ip;
366 	} else {
367 		csum_replace4(&iph->check, iph->daddr, target->dst.u3.ip);
368 		iph->daddr = target->dst.u3.ip;
369 	}
370 	return true;
371 }
372 
373 /* Do packet manipulations according to nf_nat_setup_info. */
nf_nat_packet(struct nf_conn * ct,enum ip_conntrack_info ctinfo,unsigned int hooknum,struct sk_buff * skb)374 unsigned int nf_nat_packet(struct nf_conn *ct,
375 			   enum ip_conntrack_info ctinfo,
376 			   unsigned int hooknum,
377 			   struct sk_buff *skb)
378 {
379 	enum ip_conntrack_dir dir = CTINFO2DIR(ctinfo);
380 	unsigned long statusbit;
381 	enum nf_nat_manip_type mtype = HOOK2MANIP(hooknum);
382 
383 	if (mtype == NF_NAT_MANIP_SRC)
384 		statusbit = IPS_SRC_NAT;
385 	else
386 		statusbit = IPS_DST_NAT;
387 
388 	/* Invert if this is reply dir. */
389 	if (dir == IP_CT_DIR_REPLY)
390 		statusbit ^= IPS_NAT_MASK;
391 
392 	/* Non-atomic: these bits don't change. */
393 	if (ct->status & statusbit) {
394 		struct nf_conntrack_tuple target;
395 
396 		/* We are aiming to look like inverse of other direction. */
397 		nf_ct_invert_tuplepr(&target, &ct->tuplehash[!dir].tuple);
398 
399 		if (!manip_pkt(target.dst.protonum, skb, 0, &target, mtype))
400 			return NF_DROP;
401 	}
402 	return NF_ACCEPT;
403 }
404 EXPORT_SYMBOL_GPL(nf_nat_packet);
405 
406 /* Dir is direction ICMP is coming from (opposite to packet it contains) */
nf_nat_icmp_reply_translation(struct nf_conn * ct,enum ip_conntrack_info ctinfo,unsigned int hooknum,struct sk_buff * skb)407 int nf_nat_icmp_reply_translation(struct nf_conn *ct,
408 				  enum ip_conntrack_info ctinfo,
409 				  unsigned int hooknum,
410 				  struct sk_buff *skb)
411 {
412 	struct {
413 		struct icmphdr icmp;
414 		struct iphdr ip;
415 	} *inside;
416 	struct nf_conntrack_tuple target;
417 	int hdrlen = ip_hdrlen(skb);
418 	enum ip_conntrack_dir dir = CTINFO2DIR(ctinfo);
419 	unsigned long statusbit;
420 	enum nf_nat_manip_type manip = HOOK2MANIP(hooknum);
421 
422 	if (!skb_make_writable(skb, hdrlen + sizeof(*inside)))
423 		return 0;
424 
425 	inside = (void *)skb->data + hdrlen;
426 
427 	/* We're actually going to mangle it beyond trivial checksum
428 	   adjustment, so make sure the current checksum is correct. */
429 	if (nf_ip_checksum(skb, hooknum, hdrlen, 0))
430 		return 0;
431 
432 	/* Must be RELATED */
433 	NF_CT_ASSERT(skb->nfctinfo == IP_CT_RELATED ||
434 		     skb->nfctinfo == IP_CT_RELATED_REPLY);
435 
436 	/* Redirects on non-null nats must be dropped, else they'll
437 	   start talking to each other without our translation, and be
438 	   confused... --RR */
439 	if (inside->icmp.type == ICMP_REDIRECT) {
440 		/* If NAT isn't finished, assume it and drop. */
441 		if ((ct->status & IPS_NAT_DONE_MASK) != IPS_NAT_DONE_MASK)
442 			return 0;
443 
444 		if (ct->status & IPS_NAT_MASK)
445 			return 0;
446 	}
447 
448 	if (manip == NF_NAT_MANIP_SRC)
449 		statusbit = IPS_SRC_NAT;
450 	else
451 		statusbit = IPS_DST_NAT;
452 
453 	/* Invert if this is reply dir. */
454 	if (dir == IP_CT_DIR_REPLY)
455 		statusbit ^= IPS_NAT_MASK;
456 
457 	if (!(ct->status & statusbit))
458 		return 1;
459 
460 	pr_debug("icmp_reply_translation: translating error %p manip %u "
461 		 "dir %s\n", skb, manip,
462 		 dir == IP_CT_DIR_ORIGINAL ? "ORIG" : "REPLY");
463 
464 	/* Change inner back to look like incoming packet.  We do the
465 	   opposite manip on this hook to normal, because it might not
466 	   pass all hooks (locally-generated ICMP).  Consider incoming
467 	   packet: PREROUTING (DST manip), routing produces ICMP, goes
468 	   through POSTROUTING (which must correct the DST manip). */
469 	if (!manip_pkt(inside->ip.protocol, skb, hdrlen + sizeof(inside->icmp),
470 		       &ct->tuplehash[!dir].tuple, !manip))
471 		return 0;
472 
473 	if (skb->ip_summed != CHECKSUM_PARTIAL) {
474 		/* Reloading "inside" here since manip_pkt inner. */
475 		inside = (void *)skb->data + hdrlen;
476 		inside->icmp.checksum = 0;
477 		inside->icmp.checksum =
478 			csum_fold(skb_checksum(skb, hdrlen,
479 					       skb->len - hdrlen, 0));
480 	}
481 
482 	/* Change outer to look the reply to an incoming packet
483 	 * (proto 0 means don't invert per-proto part). */
484 	nf_ct_invert_tuplepr(&target, &ct->tuplehash[!dir].tuple);
485 	if (!manip_pkt(0, skb, 0, &target, manip))
486 		return 0;
487 
488 	return 1;
489 }
490 EXPORT_SYMBOL_GPL(nf_nat_icmp_reply_translation);
491 
492 /* Protocol registration. */
nf_nat_protocol_register(const struct nf_nat_protocol * proto)493 int nf_nat_protocol_register(const struct nf_nat_protocol *proto)
494 {
495 	int ret = 0;
496 
497 	spin_lock_bh(&nf_nat_lock);
498 	if (rcu_dereference_protected(
499 			nf_nat_protos[proto->protonum],
500 			lockdep_is_held(&nf_nat_lock)
501 			) != &nf_nat_unknown_protocol) {
502 		ret = -EBUSY;
503 		goto out;
504 	}
505 	RCU_INIT_POINTER(nf_nat_protos[proto->protonum], proto);
506  out:
507 	spin_unlock_bh(&nf_nat_lock);
508 	return ret;
509 }
510 EXPORT_SYMBOL(nf_nat_protocol_register);
511 
512 /* No one stores the protocol anywhere; simply delete it. */
nf_nat_protocol_unregister(const struct nf_nat_protocol * proto)513 void nf_nat_protocol_unregister(const struct nf_nat_protocol *proto)
514 {
515 	spin_lock_bh(&nf_nat_lock);
516 	RCU_INIT_POINTER(nf_nat_protos[proto->protonum],
517 			   &nf_nat_unknown_protocol);
518 	spin_unlock_bh(&nf_nat_lock);
519 	synchronize_rcu();
520 }
521 EXPORT_SYMBOL(nf_nat_protocol_unregister);
522 
523 /* No one using conntrack by the time this called. */
nf_nat_cleanup_conntrack(struct nf_conn * ct)524 static void nf_nat_cleanup_conntrack(struct nf_conn *ct)
525 {
526 	struct nf_conn_nat *nat = nf_ct_ext_find(ct, NF_CT_EXT_NAT);
527 
528 	if (nat == NULL || nat->ct == NULL)
529 		return;
530 
531 	NF_CT_ASSERT(nat->ct->status & IPS_SRC_NAT_DONE);
532 
533 	spin_lock_bh(&nf_nat_lock);
534 	hlist_del_rcu(&nat->bysource);
535 	spin_unlock_bh(&nf_nat_lock);
536 }
537 
nf_nat_move_storage(void * new,void * old)538 static void nf_nat_move_storage(void *new, void *old)
539 {
540 	struct nf_conn_nat *new_nat = new;
541 	struct nf_conn_nat *old_nat = old;
542 	struct nf_conn *ct = old_nat->ct;
543 
544 	if (!ct || !(ct->status & IPS_SRC_NAT_DONE))
545 		return;
546 
547 	spin_lock_bh(&nf_nat_lock);
548 	hlist_replace_rcu(&old_nat->bysource, &new_nat->bysource);
549 	spin_unlock_bh(&nf_nat_lock);
550 }
551 
552 static struct nf_ct_ext_type nat_extend __read_mostly = {
553 	.len		= sizeof(struct nf_conn_nat),
554 	.align		= __alignof__(struct nf_conn_nat),
555 	.destroy	= nf_nat_cleanup_conntrack,
556 	.move		= nf_nat_move_storage,
557 	.id		= NF_CT_EXT_NAT,
558 	.flags		= NF_CT_EXT_F_PREALLOC,
559 };
560 
561 #if defined(CONFIG_NF_CT_NETLINK) || defined(CONFIG_NF_CT_NETLINK_MODULE)
562 
563 #include <linux/netfilter/nfnetlink.h>
564 #include <linux/netfilter/nfnetlink_conntrack.h>
565 
566 static const struct nla_policy protonat_nla_policy[CTA_PROTONAT_MAX+1] = {
567 	[CTA_PROTONAT_PORT_MIN]	= { .type = NLA_U16 },
568 	[CTA_PROTONAT_PORT_MAX]	= { .type = NLA_U16 },
569 };
570 
nfnetlink_parse_nat_proto(struct nlattr * attr,const struct nf_conn * ct,struct nf_nat_ipv4_range * range)571 static int nfnetlink_parse_nat_proto(struct nlattr *attr,
572 				     const struct nf_conn *ct,
573 				     struct nf_nat_ipv4_range *range)
574 {
575 	struct nlattr *tb[CTA_PROTONAT_MAX+1];
576 	const struct nf_nat_protocol *npt;
577 	int err;
578 
579 	err = nla_parse_nested(tb, CTA_PROTONAT_MAX, attr, protonat_nla_policy);
580 	if (err < 0)
581 		return err;
582 
583 	rcu_read_lock();
584 	npt = __nf_nat_proto_find(nf_ct_protonum(ct));
585 	if (npt->nlattr_to_range)
586 		err = npt->nlattr_to_range(tb, range);
587 	rcu_read_unlock();
588 	return err;
589 }
590 
591 static const struct nla_policy nat_nla_policy[CTA_NAT_MAX+1] = {
592 	[CTA_NAT_MINIP]		= { .type = NLA_U32 },
593 	[CTA_NAT_MAXIP]		= { .type = NLA_U32 },
594 	[CTA_NAT_PROTO]		= { .type = NLA_NESTED },
595 };
596 
597 static int
nfnetlink_parse_nat(const struct nlattr * nat,const struct nf_conn * ct,struct nf_nat_ipv4_range * range)598 nfnetlink_parse_nat(const struct nlattr *nat,
599 		    const struct nf_conn *ct, struct nf_nat_ipv4_range *range)
600 {
601 	struct nlattr *tb[CTA_NAT_MAX+1];
602 	int err;
603 
604 	memset(range, 0, sizeof(*range));
605 
606 	err = nla_parse_nested(tb, CTA_NAT_MAX, nat, nat_nla_policy);
607 	if (err < 0)
608 		return err;
609 
610 	if (tb[CTA_NAT_MINIP])
611 		range->min_ip = nla_get_be32(tb[CTA_NAT_MINIP]);
612 
613 	if (!tb[CTA_NAT_MAXIP])
614 		range->max_ip = range->min_ip;
615 	else
616 		range->max_ip = nla_get_be32(tb[CTA_NAT_MAXIP]);
617 
618 	if (range->min_ip)
619 		range->flags |= NF_NAT_RANGE_MAP_IPS;
620 
621 	if (!tb[CTA_NAT_PROTO])
622 		return 0;
623 
624 	err = nfnetlink_parse_nat_proto(tb[CTA_NAT_PROTO], ct, range);
625 	if (err < 0)
626 		return err;
627 
628 	return 0;
629 }
630 
631 static int
nfnetlink_parse_nat_setup(struct nf_conn * ct,enum nf_nat_manip_type manip,const struct nlattr * attr)632 nfnetlink_parse_nat_setup(struct nf_conn *ct,
633 			  enum nf_nat_manip_type manip,
634 			  const struct nlattr *attr)
635 {
636 	struct nf_nat_ipv4_range range;
637 
638 	if (nfnetlink_parse_nat(attr, ct, &range) < 0)
639 		return -EINVAL;
640 	if (nf_nat_initialized(ct, manip))
641 		return -EEXIST;
642 
643 	return nf_nat_setup_info(ct, &range, manip);
644 }
645 #else
646 static int
nfnetlink_parse_nat_setup(struct nf_conn * ct,enum nf_nat_manip_type manip,const struct nlattr * attr)647 nfnetlink_parse_nat_setup(struct nf_conn *ct,
648 			  enum nf_nat_manip_type manip,
649 			  const struct nlattr *attr)
650 {
651 	return -EOPNOTSUPP;
652 }
653 #endif
654 
nf_nat_net_init(struct net * net)655 static int __net_init nf_nat_net_init(struct net *net)
656 {
657 	/* Leave them the same for the moment. */
658 	net->ipv4.nat_htable_size = net->ct.htable_size;
659 	net->ipv4.nat_bysource = nf_ct_alloc_hashtable(&net->ipv4.nat_htable_size, 0);
660 	if (!net->ipv4.nat_bysource)
661 		return -ENOMEM;
662 	return 0;
663 }
664 
665 /* Clear NAT section of all conntracks, in case we're loaded again. */
clean_nat(struct nf_conn * i,void * data)666 static int clean_nat(struct nf_conn *i, void *data)
667 {
668 	struct nf_conn_nat *nat = nfct_nat(i);
669 
670 	if (!nat)
671 		return 0;
672 	memset(nat, 0, sizeof(*nat));
673 	i->status &= ~(IPS_NAT_MASK | IPS_NAT_DONE_MASK | IPS_SEQ_ADJUST);
674 	return 0;
675 }
676 
nf_nat_net_exit(struct net * net)677 static void __net_exit nf_nat_net_exit(struct net *net)
678 {
679 	nf_ct_iterate_cleanup(net, &clean_nat, NULL);
680 	synchronize_rcu();
681 	nf_ct_free_hashtable(net->ipv4.nat_bysource, net->ipv4.nat_htable_size);
682 }
683 
684 static struct pernet_operations nf_nat_net_ops = {
685 	.init = nf_nat_net_init,
686 	.exit = nf_nat_net_exit,
687 };
688 
nf_nat_init(void)689 static int __init nf_nat_init(void)
690 {
691 	size_t i;
692 	int ret;
693 
694 	need_ipv4_conntrack();
695 
696 	ret = nf_ct_extend_register(&nat_extend);
697 	if (ret < 0) {
698 		printk(KERN_ERR "nf_nat_core: Unable to register extension\n");
699 		return ret;
700 	}
701 
702 	ret = register_pernet_subsys(&nf_nat_net_ops);
703 	if (ret < 0)
704 		goto cleanup_extend;
705 
706 	/* Sew in builtin protocols. */
707 	spin_lock_bh(&nf_nat_lock);
708 	for (i = 0; i < MAX_IP_NAT_PROTO; i++)
709 		RCU_INIT_POINTER(nf_nat_protos[i], &nf_nat_unknown_protocol);
710 	RCU_INIT_POINTER(nf_nat_protos[IPPROTO_TCP], &nf_nat_protocol_tcp);
711 	RCU_INIT_POINTER(nf_nat_protos[IPPROTO_UDP], &nf_nat_protocol_udp);
712 	RCU_INIT_POINTER(nf_nat_protos[IPPROTO_ICMP], &nf_nat_protocol_icmp);
713 	spin_unlock_bh(&nf_nat_lock);
714 
715 	/* Initialize fake conntrack so that NAT will skip it */
716 	nf_ct_untracked_status_or(IPS_NAT_DONE_MASK);
717 
718 	l3proto = nf_ct_l3proto_find_get((u_int16_t)AF_INET);
719 
720 	BUG_ON(nf_nat_seq_adjust_hook != NULL);
721 	RCU_INIT_POINTER(nf_nat_seq_adjust_hook, nf_nat_seq_adjust);
722 	BUG_ON(nfnetlink_parse_nat_setup_hook != NULL);
723 	RCU_INIT_POINTER(nfnetlink_parse_nat_setup_hook,
724 			   nfnetlink_parse_nat_setup);
725 	BUG_ON(nf_ct_nat_offset != NULL);
726 	RCU_INIT_POINTER(nf_ct_nat_offset, nf_nat_get_offset);
727 	return 0;
728 
729  cleanup_extend:
730 	nf_ct_extend_unregister(&nat_extend);
731 	return ret;
732 }
733 
nf_nat_cleanup(void)734 static void __exit nf_nat_cleanup(void)
735 {
736 	unregister_pernet_subsys(&nf_nat_net_ops);
737 	nf_ct_l3proto_put(l3proto);
738 	nf_ct_extend_unregister(&nat_extend);
739 	RCU_INIT_POINTER(nf_nat_seq_adjust_hook, NULL);
740 	RCU_INIT_POINTER(nfnetlink_parse_nat_setup_hook, NULL);
741 	RCU_INIT_POINTER(nf_ct_nat_offset, NULL);
742 	synchronize_net();
743 }
744 
745 MODULE_LICENSE("GPL");
746 MODULE_ALIAS("nf-nat-ipv4");
747 
748 module_init(nf_nat_init);
749 module_exit(nf_nat_cleanup);
750