1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2012 Regents of the University of California
4 * Copyright (C) 2019 Western Digital Corporation or its affiliates.
5 * Copyright (C) 2020 FORTH-ICS/CARV
6 * Nick Kossifidis <mick@ics.forth.gr>
7 */
8
9 #include <linux/init.h>
10 #include <linux/mm.h>
11 #include <linux/memblock.h>
12 #include <linux/initrd.h>
13 #include <linux/swap.h>
14 #include <linux/swiotlb.h>
15 #include <linux/sizes.h>
16 #include <linux/of_fdt.h>
17 #include <linux/of_reserved_mem.h>
18 #include <linux/libfdt.h>
19 #include <linux/set_memory.h>
20 #include <linux/dma-map-ops.h>
21 #include <linux/crash_dump.h>
22 #include <linux/hugetlb.h>
23 #include <linux/kfence.h>
24 #include <linux/execmem.h>
25
26 #include <asm/fixmap.h>
27 #include <asm/io.h>
28 #include <asm/kasan.h>
29 #include <asm/module.h>
30 #include <asm/numa.h>
31 #include <asm/pgtable.h>
32 #include <asm/sections.h>
33 #include <asm/soc.h>
34 #include <asm/sparsemem.h>
35 #include <asm/tlbflush.h>
36
37 #include "../kernel/head.h"
38
39 u64 new_vmalloc[NR_CPUS / sizeof(u64) + 1];
40
41 struct kernel_mapping kernel_map __ro_after_init;
42 EXPORT_SYMBOL(kernel_map);
43 #ifdef CONFIG_XIP_KERNEL
44 #define kernel_map (*(struct kernel_mapping *)XIP_FIXUP(&kernel_map))
45 #endif
46
47 #ifdef CONFIG_64BIT
48 u64 satp_mode __ro_after_init = !IS_ENABLED(CONFIG_XIP_KERNEL) ? SATP_MODE_57 : SATP_MODE_39;
49 #else
50 u64 satp_mode __ro_after_init = SATP_MODE_32;
51 #endif
52 EXPORT_SYMBOL(satp_mode);
53
54 #ifdef CONFIG_64BIT
55 bool pgtable_l4_enabled __ro_after_init = !IS_ENABLED(CONFIG_XIP_KERNEL);
56 bool pgtable_l5_enabled __ro_after_init = !IS_ENABLED(CONFIG_XIP_KERNEL);
57 EXPORT_SYMBOL(pgtable_l4_enabled);
58 EXPORT_SYMBOL(pgtable_l5_enabled);
59 #endif
60
61 phys_addr_t phys_ram_base __ro_after_init;
62 EXPORT_SYMBOL(phys_ram_base);
63
64 #ifdef CONFIG_SPARSEMEM_VMEMMAP
65 #define VMEMMAP_ADDR_ALIGN (1ULL << SECTION_SIZE_BITS)
66
67 unsigned long vmemmap_start_pfn __ro_after_init;
68 EXPORT_SYMBOL(vmemmap_start_pfn);
69 #endif
70
71 unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)]
72 __page_aligned_bss;
73 EXPORT_SYMBOL(empty_zero_page);
74
75 extern char _start[];
76 void *_dtb_early_va __initdata;
77 uintptr_t _dtb_early_pa __initdata;
78
79 phys_addr_t dma32_phys_limit __initdata;
80
zone_sizes_init(void)81 static void __init zone_sizes_init(void)
82 {
83 unsigned long max_zone_pfns[MAX_NR_ZONES] = { 0, };
84
85 #ifdef CONFIG_ZONE_DMA32
86 max_zone_pfns[ZONE_DMA32] = PFN_DOWN(dma32_phys_limit);
87 #endif
88 max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
89
90 free_area_init(max_zone_pfns);
91 }
92
93 #if defined(CONFIG_MMU) && defined(CONFIG_DEBUG_VM)
94
95 #define LOG2_SZ_1K ilog2(SZ_1K)
96 #define LOG2_SZ_1M ilog2(SZ_1M)
97 #define LOG2_SZ_1G ilog2(SZ_1G)
98 #define LOG2_SZ_1T ilog2(SZ_1T)
99
print_mlk(char * name,unsigned long b,unsigned long t)100 static inline void print_mlk(char *name, unsigned long b, unsigned long t)
101 {
102 pr_notice("%12s : 0x%08lx - 0x%08lx (%4ld kB)\n", name, b, t,
103 (((t) - (b)) >> LOG2_SZ_1K));
104 }
105
print_mlm(char * name,unsigned long b,unsigned long t)106 static inline void print_mlm(char *name, unsigned long b, unsigned long t)
107 {
108 pr_notice("%12s : 0x%08lx - 0x%08lx (%4ld MB)\n", name, b, t,
109 (((t) - (b)) >> LOG2_SZ_1M));
110 }
111
print_mlg(char * name,unsigned long b,unsigned long t)112 static inline void print_mlg(char *name, unsigned long b, unsigned long t)
113 {
114 pr_notice("%12s : 0x%08lx - 0x%08lx (%4ld GB)\n", name, b, t,
115 (((t) - (b)) >> LOG2_SZ_1G));
116 }
117
118 #ifdef CONFIG_64BIT
print_mlt(char * name,unsigned long b,unsigned long t)119 static inline void print_mlt(char *name, unsigned long b, unsigned long t)
120 {
121 pr_notice("%12s : 0x%08lx - 0x%08lx (%4ld TB)\n", name, b, t,
122 (((t) - (b)) >> LOG2_SZ_1T));
123 }
124 #else
125 #define print_mlt(n, b, t) do {} while (0)
126 #endif
127
print_ml(char * name,unsigned long b,unsigned long t)128 static inline void print_ml(char *name, unsigned long b, unsigned long t)
129 {
130 unsigned long diff = t - b;
131
132 if (IS_ENABLED(CONFIG_64BIT) && (diff >> LOG2_SZ_1T) >= 10)
133 print_mlt(name, b, t);
134 else if ((diff >> LOG2_SZ_1G) >= 10)
135 print_mlg(name, b, t);
136 else if ((diff >> LOG2_SZ_1M) >= 10)
137 print_mlm(name, b, t);
138 else
139 print_mlk(name, b, t);
140 }
141
print_vm_layout(void)142 static void __init print_vm_layout(void)
143 {
144 pr_notice("Virtual kernel memory layout:\n");
145 print_ml("fixmap", (unsigned long)FIXADDR_START,
146 (unsigned long)FIXADDR_TOP);
147 print_ml("pci io", (unsigned long)PCI_IO_START,
148 (unsigned long)PCI_IO_END);
149 print_ml("vmemmap", (unsigned long)VMEMMAP_START,
150 (unsigned long)VMEMMAP_END);
151 print_ml("vmalloc", (unsigned long)VMALLOC_START,
152 (unsigned long)VMALLOC_END);
153 #ifdef CONFIG_64BIT
154 print_ml("modules", (unsigned long)MODULES_VADDR,
155 (unsigned long)MODULES_END);
156 #endif
157 print_ml("lowmem", (unsigned long)PAGE_OFFSET,
158 (unsigned long)high_memory);
159 if (IS_ENABLED(CONFIG_64BIT)) {
160 #ifdef CONFIG_KASAN
161 print_ml("kasan", KASAN_SHADOW_START, KASAN_SHADOW_END);
162 #endif
163
164 print_ml("kernel", (unsigned long)kernel_map.virt_addr,
165 (unsigned long)ADDRESS_SPACE_END);
166 }
167 }
168 #else
print_vm_layout(void)169 static void print_vm_layout(void) { }
170 #endif /* CONFIG_DEBUG_VM */
171
arch_mm_preinit(void)172 void __init arch_mm_preinit(void)
173 {
174 bool swiotlb = max_pfn > PFN_DOWN(dma32_phys_limit);
175 #ifdef CONFIG_FLATMEM
176 BUG_ON(!mem_map);
177 #endif /* CONFIG_FLATMEM */
178
179 if (IS_ENABLED(CONFIG_DMA_BOUNCE_UNALIGNED_KMALLOC) && !swiotlb &&
180 dma_cache_alignment != 1) {
181 /*
182 * If no bouncing needed for ZONE_DMA, allocate 1MB swiotlb
183 * buffer per 1GB of RAM for kmalloc() bouncing on
184 * non-coherent platforms.
185 */
186 unsigned long size =
187 DIV_ROUND_UP(memblock_phys_mem_size(), 1024);
188 swiotlb_adjust_size(min(swiotlb_size_or_default(), size));
189 swiotlb = true;
190 }
191
192 swiotlb_init(swiotlb, SWIOTLB_VERBOSE);
193
194 print_vm_layout();
195 }
196
197 /* Limit the memory size via mem. */
198 static phys_addr_t memory_limit;
199 #ifdef CONFIG_XIP_KERNEL
200 #define memory_limit (*(phys_addr_t *)XIP_FIXUP(&memory_limit))
201 #endif /* CONFIG_XIP_KERNEL */
202
early_mem(char * p)203 static int __init early_mem(char *p)
204 {
205 u64 size;
206
207 if (!p)
208 return 1;
209
210 size = memparse(p, &p) & PAGE_MASK;
211 memory_limit = min_t(u64, size, memory_limit);
212
213 pr_notice("Memory limited to %lldMB\n", (u64)memory_limit >> 20);
214
215 return 0;
216 }
217 early_param("mem", early_mem);
218
setup_bootmem(void)219 static void __init setup_bootmem(void)
220 {
221 phys_addr_t vmlinux_end = __pa_symbol(&_end);
222 phys_addr_t max_mapped_addr;
223 phys_addr_t phys_ram_end, vmlinux_start;
224
225 if (IS_ENABLED(CONFIG_XIP_KERNEL))
226 vmlinux_start = __pa_symbol(&_sdata);
227 else
228 vmlinux_start = __pa_symbol(&_start);
229
230 memblock_enforce_memory_limit(memory_limit);
231
232 /*
233 * Make sure we align the reservation on PMD_SIZE since we will
234 * map the kernel in the linear mapping as read-only: we do not want
235 * any allocation to happen between _end and the next pmd aligned page.
236 */
237 if (IS_ENABLED(CONFIG_64BIT) && IS_ENABLED(CONFIG_STRICT_KERNEL_RWX))
238 vmlinux_end = (vmlinux_end + PMD_SIZE - 1) & PMD_MASK;
239 /*
240 * Reserve from the start of the kernel to the end of the kernel
241 */
242 memblock_reserve(vmlinux_start, vmlinux_end - vmlinux_start);
243
244 /*
245 * Make sure we align the start of the memory on a PMD boundary so that
246 * at worst, we map the linear mapping with PMD mappings.
247 */
248 if (!IS_ENABLED(CONFIG_XIP_KERNEL)) {
249 phys_ram_base = memblock_start_of_DRAM() & PMD_MASK;
250 #ifdef CONFIG_SPARSEMEM_VMEMMAP
251 vmemmap_start_pfn = round_down(phys_ram_base, VMEMMAP_ADDR_ALIGN) >> PAGE_SHIFT;
252 #endif
253 }
254
255 /*
256 * In 64-bit, any use of __va/__pa before this point is wrong as we
257 * did not know the start of DRAM before.
258 */
259 if (IS_ENABLED(CONFIG_64BIT) && IS_ENABLED(CONFIG_MMU))
260 kernel_map.va_pa_offset = PAGE_OFFSET - phys_ram_base;
261
262 /*
263 * The size of the linear page mapping may restrict the amount of
264 * usable RAM.
265 */
266 if (IS_ENABLED(CONFIG_64BIT) && IS_ENABLED(CONFIG_MMU)) {
267 max_mapped_addr = __pa(PAGE_OFFSET) + KERN_VIRT_SIZE;
268 if (memblock_end_of_DRAM() > max_mapped_addr) {
269 memblock_cap_memory_range(phys_ram_base,
270 max_mapped_addr - phys_ram_base);
271 pr_warn("Physical memory overflows the linear mapping size: region above %pa removed",
272 &max_mapped_addr);
273 }
274 }
275
276 /*
277 * Reserve physical address space that would be mapped to virtual
278 * addresses greater than (void *)(-PAGE_SIZE) because:
279 * - This memory would overlap with ERR_PTR
280 * - This memory belongs to high memory, which is not supported
281 *
282 * This is not applicable to 64-bit kernel, because virtual addresses
283 * after (void *)(-PAGE_SIZE) are not linearly mapped: they are
284 * occupied by kernel mapping. Also it is unrealistic for high memory
285 * to exist on 64-bit platforms.
286 */
287 if (!IS_ENABLED(CONFIG_64BIT)) {
288 max_mapped_addr = __va_to_pa_nodebug(-PAGE_SIZE);
289 memblock_reserve(max_mapped_addr, (phys_addr_t)-max_mapped_addr);
290 }
291
292 phys_ram_end = memblock_end_of_DRAM();
293 min_low_pfn = PFN_UP(phys_ram_base);
294 max_low_pfn = max_pfn = PFN_DOWN(phys_ram_end);
295
296 dma32_phys_limit = min(4UL * SZ_1G, (unsigned long)PFN_PHYS(max_low_pfn));
297
298 reserve_initrd_mem();
299
300 /*
301 * No allocation should be done before reserving the memory as defined
302 * in the device tree, otherwise the allocation could end up in a
303 * reserved region.
304 */
305 early_init_fdt_scan_reserved_mem();
306
307 /*
308 * If DTB is built in, no need to reserve its memblock.
309 * Otherwise, do reserve it but avoid using
310 * early_init_fdt_reserve_self() since __pa() does
311 * not work for DTB pointers that are fixmap addresses
312 */
313 if (!IS_ENABLED(CONFIG_BUILTIN_DTB))
314 memblock_reserve(dtb_early_pa, fdt_totalsize(dtb_early_va));
315
316 dma_contiguous_reserve(dma32_phys_limit);
317 if (IS_ENABLED(CONFIG_64BIT))
318 hugetlb_cma_reserve(PUD_SHIFT - PAGE_SHIFT);
319 }
320
321 #ifdef CONFIG_RELOCATABLE
322 extern unsigned long __rela_dyn_start, __rela_dyn_end;
323
relocate_kernel(void)324 static void __init relocate_kernel(void)
325 {
326 Elf_Rela *rela = (Elf_Rela *)&__rela_dyn_start;
327 /*
328 * This holds the offset between the linked virtual address and the
329 * relocated virtual address.
330 */
331 uintptr_t reloc_offset = kernel_map.virt_addr - KERNEL_LINK_ADDR;
332 /*
333 * This holds the offset between kernel linked virtual address and
334 * physical address.
335 */
336 uintptr_t va_kernel_link_pa_offset = KERNEL_LINK_ADDR - kernel_map.phys_addr;
337
338 for ( ; rela < (Elf_Rela *)&__rela_dyn_end; rela++) {
339 Elf_Addr addr = (rela->r_offset - va_kernel_link_pa_offset);
340 Elf_Addr relocated_addr = rela->r_addend;
341
342 if (rela->r_info != R_RISCV_RELATIVE)
343 continue;
344
345 /*
346 * Make sure to not relocate vdso symbols like rt_sigreturn
347 * which are linked from the address 0 in vmlinux since
348 * vdso symbol addresses are actually used as an offset from
349 * mm->context.vdso in VDSO_OFFSET macro.
350 */
351 if (relocated_addr >= KERNEL_LINK_ADDR)
352 relocated_addr += reloc_offset;
353
354 *(Elf_Addr *)addr = relocated_addr;
355 }
356 }
357 #endif /* CONFIG_RELOCATABLE */
358
359 #ifdef CONFIG_MMU
360 struct pt_alloc_ops pt_ops __meminitdata;
361
362 pgd_t swapper_pg_dir[PTRS_PER_PGD] __page_aligned_bss;
363 pgd_t trampoline_pg_dir[PTRS_PER_PGD] __page_aligned_bss;
364 static pte_t fixmap_pte[PTRS_PER_PTE] __page_aligned_bss;
365
366 pgd_t early_pg_dir[PTRS_PER_PGD] __initdata __aligned(PAGE_SIZE);
367
368 #ifdef CONFIG_XIP_KERNEL
369 #define pt_ops (*(struct pt_alloc_ops *)XIP_FIXUP(&pt_ops))
370 #define trampoline_pg_dir ((pgd_t *)XIP_FIXUP(trampoline_pg_dir))
371 #define fixmap_pte ((pte_t *)XIP_FIXUP(fixmap_pte))
372 #define early_pg_dir ((pgd_t *)XIP_FIXUP(early_pg_dir))
373 #endif /* CONFIG_XIP_KERNEL */
374
375 static const pgprot_t protection_map[16] = {
376 [VM_NONE] = PAGE_NONE,
377 [VM_READ] = PAGE_READ,
378 [VM_WRITE] = PAGE_COPY,
379 [VM_WRITE | VM_READ] = PAGE_COPY,
380 [VM_EXEC] = PAGE_EXEC,
381 [VM_EXEC | VM_READ] = PAGE_READ_EXEC,
382 [VM_EXEC | VM_WRITE] = PAGE_COPY_EXEC,
383 [VM_EXEC | VM_WRITE | VM_READ] = PAGE_COPY_EXEC,
384 [VM_SHARED] = PAGE_NONE,
385 [VM_SHARED | VM_READ] = PAGE_READ,
386 [VM_SHARED | VM_WRITE] = PAGE_SHARED,
387 [VM_SHARED | VM_WRITE | VM_READ] = PAGE_SHARED,
388 [VM_SHARED | VM_EXEC] = PAGE_EXEC,
389 [VM_SHARED | VM_EXEC | VM_READ] = PAGE_READ_EXEC,
390 [VM_SHARED | VM_EXEC | VM_WRITE] = PAGE_SHARED_EXEC,
391 [VM_SHARED | VM_EXEC | VM_WRITE | VM_READ] = PAGE_SHARED_EXEC
392 };
393 DECLARE_VM_GET_PAGE_PROT
394
__set_fixmap(enum fixed_addresses idx,phys_addr_t phys,pgprot_t prot)395 void __set_fixmap(enum fixed_addresses idx, phys_addr_t phys, pgprot_t prot)
396 {
397 unsigned long addr = __fix_to_virt(idx);
398 pte_t *ptep;
399
400 BUG_ON(idx <= FIX_HOLE || idx >= __end_of_fixed_addresses);
401
402 ptep = &fixmap_pte[pte_index(addr)];
403
404 if (pgprot_val(prot))
405 set_pte(ptep, pfn_pte(phys >> PAGE_SHIFT, prot));
406 else
407 pte_clear(&init_mm, addr, ptep);
408 local_flush_tlb_page(addr);
409 }
410
get_pte_virt_early(phys_addr_t pa)411 static inline pte_t *__init get_pte_virt_early(phys_addr_t pa)
412 {
413 return (pte_t *)((uintptr_t)pa);
414 }
415
get_pte_virt_fixmap(phys_addr_t pa)416 static inline pte_t *__init get_pte_virt_fixmap(phys_addr_t pa)
417 {
418 clear_fixmap(FIX_PTE);
419 return (pte_t *)set_fixmap_offset(FIX_PTE, pa);
420 }
421
get_pte_virt_late(phys_addr_t pa)422 static inline pte_t *__meminit get_pte_virt_late(phys_addr_t pa)
423 {
424 return (pte_t *) __va(pa);
425 }
426
alloc_pte_early(uintptr_t va)427 static inline phys_addr_t __init alloc_pte_early(uintptr_t va)
428 {
429 /*
430 * We only create PMD or PGD early mappings so we
431 * should never reach here with MMU disabled.
432 */
433 BUG();
434 }
435
alloc_pte_fixmap(uintptr_t va)436 static inline phys_addr_t __init alloc_pte_fixmap(uintptr_t va)
437 {
438 return memblock_phys_alloc(PAGE_SIZE, PAGE_SIZE);
439 }
440
alloc_pte_late(uintptr_t va)441 static phys_addr_t __meminit alloc_pte_late(uintptr_t va)
442 {
443 struct ptdesc *ptdesc = pagetable_alloc(GFP_KERNEL & ~__GFP_HIGHMEM, 0);
444
445 BUG_ON(!ptdesc || !pagetable_pte_ctor(ptdesc));
446 return __pa((pte_t *)ptdesc_address(ptdesc));
447 }
448
create_pte_mapping(pte_t * ptep,uintptr_t va,phys_addr_t pa,phys_addr_t sz,pgprot_t prot)449 static void __meminit create_pte_mapping(pte_t *ptep, uintptr_t va, phys_addr_t pa, phys_addr_t sz,
450 pgprot_t prot)
451 {
452 uintptr_t pte_idx = pte_index(va);
453
454 BUG_ON(sz != PAGE_SIZE);
455
456 if (pte_none(ptep[pte_idx]))
457 ptep[pte_idx] = pfn_pte(PFN_DOWN(pa), prot);
458 }
459
460 #ifndef __PAGETABLE_PMD_FOLDED
461
462 static pmd_t trampoline_pmd[PTRS_PER_PMD] __page_aligned_bss;
463 static pmd_t fixmap_pmd[PTRS_PER_PMD] __page_aligned_bss;
464 static pmd_t early_pmd[PTRS_PER_PMD] __initdata __aligned(PAGE_SIZE);
465
466 #ifdef CONFIG_XIP_KERNEL
467 #define trampoline_pmd ((pmd_t *)XIP_FIXUP(trampoline_pmd))
468 #define fixmap_pmd ((pmd_t *)XIP_FIXUP(fixmap_pmd))
469 #define early_pmd ((pmd_t *)XIP_FIXUP(early_pmd))
470 #endif /* CONFIG_XIP_KERNEL */
471
472 static p4d_t trampoline_p4d[PTRS_PER_P4D] __page_aligned_bss;
473 static p4d_t fixmap_p4d[PTRS_PER_P4D] __page_aligned_bss;
474 static p4d_t early_p4d[PTRS_PER_P4D] __initdata __aligned(PAGE_SIZE);
475
476 #ifdef CONFIG_XIP_KERNEL
477 #define trampoline_p4d ((p4d_t *)XIP_FIXUP(trampoline_p4d))
478 #define fixmap_p4d ((p4d_t *)XIP_FIXUP(fixmap_p4d))
479 #define early_p4d ((p4d_t *)XIP_FIXUP(early_p4d))
480 #endif /* CONFIG_XIP_KERNEL */
481
482 static pud_t trampoline_pud[PTRS_PER_PUD] __page_aligned_bss;
483 static pud_t fixmap_pud[PTRS_PER_PUD] __page_aligned_bss;
484 static pud_t early_pud[PTRS_PER_PUD] __initdata __aligned(PAGE_SIZE);
485
486 #ifdef CONFIG_XIP_KERNEL
487 #define trampoline_pud ((pud_t *)XIP_FIXUP(trampoline_pud))
488 #define fixmap_pud ((pud_t *)XIP_FIXUP(fixmap_pud))
489 #define early_pud ((pud_t *)XIP_FIXUP(early_pud))
490 #endif /* CONFIG_XIP_KERNEL */
491
get_pmd_virt_early(phys_addr_t pa)492 static pmd_t *__init get_pmd_virt_early(phys_addr_t pa)
493 {
494 /* Before MMU is enabled */
495 return (pmd_t *)((uintptr_t)pa);
496 }
497
get_pmd_virt_fixmap(phys_addr_t pa)498 static pmd_t *__init get_pmd_virt_fixmap(phys_addr_t pa)
499 {
500 clear_fixmap(FIX_PMD);
501 return (pmd_t *)set_fixmap_offset(FIX_PMD, pa);
502 }
503
get_pmd_virt_late(phys_addr_t pa)504 static pmd_t *__meminit get_pmd_virt_late(phys_addr_t pa)
505 {
506 return (pmd_t *) __va(pa);
507 }
508
alloc_pmd_early(uintptr_t va)509 static phys_addr_t __init alloc_pmd_early(uintptr_t va)
510 {
511 BUG_ON((va - kernel_map.virt_addr) >> PUD_SHIFT);
512
513 return (uintptr_t)early_pmd;
514 }
515
alloc_pmd_fixmap(uintptr_t va)516 static phys_addr_t __init alloc_pmd_fixmap(uintptr_t va)
517 {
518 return memblock_phys_alloc(PAGE_SIZE, PAGE_SIZE);
519 }
520
alloc_pmd_late(uintptr_t va)521 static phys_addr_t __meminit alloc_pmd_late(uintptr_t va)
522 {
523 struct ptdesc *ptdesc = pagetable_alloc(GFP_KERNEL & ~__GFP_HIGHMEM, 0);
524
525 BUG_ON(!ptdesc || !pagetable_pmd_ctor(ptdesc));
526 return __pa((pmd_t *)ptdesc_address(ptdesc));
527 }
528
create_pmd_mapping(pmd_t * pmdp,uintptr_t va,phys_addr_t pa,phys_addr_t sz,pgprot_t prot)529 static void __meminit create_pmd_mapping(pmd_t *pmdp,
530 uintptr_t va, phys_addr_t pa,
531 phys_addr_t sz, pgprot_t prot)
532 {
533 pte_t *ptep;
534 phys_addr_t pte_phys;
535 uintptr_t pmd_idx = pmd_index(va);
536
537 if (sz == PMD_SIZE) {
538 if (pmd_none(pmdp[pmd_idx]))
539 pmdp[pmd_idx] = pfn_pmd(PFN_DOWN(pa), prot);
540 return;
541 }
542
543 if (pmd_none(pmdp[pmd_idx])) {
544 pte_phys = pt_ops.alloc_pte(va);
545 pmdp[pmd_idx] = pfn_pmd(PFN_DOWN(pte_phys), PAGE_TABLE);
546 ptep = pt_ops.get_pte_virt(pte_phys);
547 memset(ptep, 0, PAGE_SIZE);
548 } else {
549 pte_phys = PFN_PHYS(_pmd_pfn(pmdp[pmd_idx]));
550 ptep = pt_ops.get_pte_virt(pte_phys);
551 }
552
553 create_pte_mapping(ptep, va, pa, sz, prot);
554 }
555
get_pud_virt_early(phys_addr_t pa)556 static pud_t *__init get_pud_virt_early(phys_addr_t pa)
557 {
558 return (pud_t *)((uintptr_t)pa);
559 }
560
get_pud_virt_fixmap(phys_addr_t pa)561 static pud_t *__init get_pud_virt_fixmap(phys_addr_t pa)
562 {
563 clear_fixmap(FIX_PUD);
564 return (pud_t *)set_fixmap_offset(FIX_PUD, pa);
565 }
566
get_pud_virt_late(phys_addr_t pa)567 static pud_t *__meminit get_pud_virt_late(phys_addr_t pa)
568 {
569 return (pud_t *)__va(pa);
570 }
571
alloc_pud_early(uintptr_t va)572 static phys_addr_t __init alloc_pud_early(uintptr_t va)
573 {
574 /* Only one PUD is available for early mapping */
575 BUG_ON((va - kernel_map.virt_addr) >> PGDIR_SHIFT);
576
577 return (uintptr_t)early_pud;
578 }
579
alloc_pud_fixmap(uintptr_t va)580 static phys_addr_t __init alloc_pud_fixmap(uintptr_t va)
581 {
582 return memblock_phys_alloc(PAGE_SIZE, PAGE_SIZE);
583 }
584
alloc_pud_late(uintptr_t va)585 static phys_addr_t __meminit alloc_pud_late(uintptr_t va)
586 {
587 unsigned long vaddr;
588
589 vaddr = __get_free_page(GFP_KERNEL);
590 BUG_ON(!vaddr);
591 return __pa(vaddr);
592 }
593
get_p4d_virt_early(phys_addr_t pa)594 static p4d_t *__init get_p4d_virt_early(phys_addr_t pa)
595 {
596 return (p4d_t *)((uintptr_t)pa);
597 }
598
get_p4d_virt_fixmap(phys_addr_t pa)599 static p4d_t *__init get_p4d_virt_fixmap(phys_addr_t pa)
600 {
601 clear_fixmap(FIX_P4D);
602 return (p4d_t *)set_fixmap_offset(FIX_P4D, pa);
603 }
604
get_p4d_virt_late(phys_addr_t pa)605 static p4d_t *__meminit get_p4d_virt_late(phys_addr_t pa)
606 {
607 return (p4d_t *)__va(pa);
608 }
609
alloc_p4d_early(uintptr_t va)610 static phys_addr_t __init alloc_p4d_early(uintptr_t va)
611 {
612 /* Only one P4D is available for early mapping */
613 BUG_ON((va - kernel_map.virt_addr) >> PGDIR_SHIFT);
614
615 return (uintptr_t)early_p4d;
616 }
617
alloc_p4d_fixmap(uintptr_t va)618 static phys_addr_t __init alloc_p4d_fixmap(uintptr_t va)
619 {
620 return memblock_phys_alloc(PAGE_SIZE, PAGE_SIZE);
621 }
622
alloc_p4d_late(uintptr_t va)623 static phys_addr_t __meminit alloc_p4d_late(uintptr_t va)
624 {
625 unsigned long vaddr;
626
627 vaddr = __get_free_page(GFP_KERNEL);
628 BUG_ON(!vaddr);
629 return __pa(vaddr);
630 }
631
create_pud_mapping(pud_t * pudp,uintptr_t va,phys_addr_t pa,phys_addr_t sz,pgprot_t prot)632 static void __meminit create_pud_mapping(pud_t *pudp, uintptr_t va, phys_addr_t pa, phys_addr_t sz,
633 pgprot_t prot)
634 {
635 pmd_t *nextp;
636 phys_addr_t next_phys;
637 uintptr_t pud_index = pud_index(va);
638
639 if (sz == PUD_SIZE) {
640 if (pud_val(pudp[pud_index]) == 0)
641 pudp[pud_index] = pfn_pud(PFN_DOWN(pa), prot);
642 return;
643 }
644
645 if (pud_val(pudp[pud_index]) == 0) {
646 next_phys = pt_ops.alloc_pmd(va);
647 pudp[pud_index] = pfn_pud(PFN_DOWN(next_phys), PAGE_TABLE);
648 nextp = pt_ops.get_pmd_virt(next_phys);
649 memset(nextp, 0, PAGE_SIZE);
650 } else {
651 next_phys = PFN_PHYS(_pud_pfn(pudp[pud_index]));
652 nextp = pt_ops.get_pmd_virt(next_phys);
653 }
654
655 create_pmd_mapping(nextp, va, pa, sz, prot);
656 }
657
create_p4d_mapping(p4d_t * p4dp,uintptr_t va,phys_addr_t pa,phys_addr_t sz,pgprot_t prot)658 static void __meminit create_p4d_mapping(p4d_t *p4dp, uintptr_t va, phys_addr_t pa, phys_addr_t sz,
659 pgprot_t prot)
660 {
661 pud_t *nextp;
662 phys_addr_t next_phys;
663 uintptr_t p4d_index = p4d_index(va);
664
665 if (sz == P4D_SIZE) {
666 if (p4d_val(p4dp[p4d_index]) == 0)
667 p4dp[p4d_index] = pfn_p4d(PFN_DOWN(pa), prot);
668 return;
669 }
670
671 if (p4d_val(p4dp[p4d_index]) == 0) {
672 next_phys = pt_ops.alloc_pud(va);
673 p4dp[p4d_index] = pfn_p4d(PFN_DOWN(next_phys), PAGE_TABLE);
674 nextp = pt_ops.get_pud_virt(next_phys);
675 memset(nextp, 0, PAGE_SIZE);
676 } else {
677 next_phys = PFN_PHYS(_p4d_pfn(p4dp[p4d_index]));
678 nextp = pt_ops.get_pud_virt(next_phys);
679 }
680
681 create_pud_mapping(nextp, va, pa, sz, prot);
682 }
683
684 #define pgd_next_t p4d_t
685 #define alloc_pgd_next(__va) (pgtable_l5_enabled ? \
686 pt_ops.alloc_p4d(__va) : (pgtable_l4_enabled ? \
687 pt_ops.alloc_pud(__va) : pt_ops.alloc_pmd(__va)))
688 #define get_pgd_next_virt(__pa) (pgtable_l5_enabled ? \
689 pt_ops.get_p4d_virt(__pa) : (pgd_next_t *)(pgtable_l4_enabled ? \
690 pt_ops.get_pud_virt(__pa) : (pud_t *)pt_ops.get_pmd_virt(__pa)))
691 #define create_pgd_next_mapping(__nextp, __va, __pa, __sz, __prot) \
692 (pgtable_l5_enabled ? \
693 create_p4d_mapping(__nextp, __va, __pa, __sz, __prot) : \
694 (pgtable_l4_enabled ? \
695 create_pud_mapping((pud_t *)__nextp, __va, __pa, __sz, __prot) : \
696 create_pmd_mapping((pmd_t *)__nextp, __va, __pa, __sz, __prot)))
697 #define fixmap_pgd_next (pgtable_l5_enabled ? \
698 (uintptr_t)fixmap_p4d : (pgtable_l4_enabled ? \
699 (uintptr_t)fixmap_pud : (uintptr_t)fixmap_pmd))
700 #define trampoline_pgd_next (pgtable_l5_enabled ? \
701 (uintptr_t)trampoline_p4d : (pgtable_l4_enabled ? \
702 (uintptr_t)trampoline_pud : (uintptr_t)trampoline_pmd))
703 #else
704 #define pgd_next_t pte_t
705 #define alloc_pgd_next(__va) pt_ops.alloc_pte(__va)
706 #define get_pgd_next_virt(__pa) pt_ops.get_pte_virt(__pa)
707 #define create_pgd_next_mapping(__nextp, __va, __pa, __sz, __prot) \
708 create_pte_mapping(__nextp, __va, __pa, __sz, __prot)
709 #define fixmap_pgd_next ((uintptr_t)fixmap_pte)
710 #define create_p4d_mapping(__pmdp, __va, __pa, __sz, __prot) do {} while(0)
711 #define create_pud_mapping(__pmdp, __va, __pa, __sz, __prot) do {} while(0)
712 #define create_pmd_mapping(__pmdp, __va, __pa, __sz, __prot) do {} while(0)
713 #endif /* __PAGETABLE_PMD_FOLDED */
714
create_pgd_mapping(pgd_t * pgdp,uintptr_t va,phys_addr_t pa,phys_addr_t sz,pgprot_t prot)715 void __meminit create_pgd_mapping(pgd_t *pgdp, uintptr_t va, phys_addr_t pa, phys_addr_t sz,
716 pgprot_t prot)
717 {
718 pgd_next_t *nextp;
719 phys_addr_t next_phys;
720 uintptr_t pgd_idx = pgd_index(va);
721
722 if (sz == PGDIR_SIZE) {
723 if (pgd_val(pgdp[pgd_idx]) == 0)
724 pgdp[pgd_idx] = pfn_pgd(PFN_DOWN(pa), prot);
725 return;
726 }
727
728 if (pgd_val(pgdp[pgd_idx]) == 0) {
729 next_phys = alloc_pgd_next(va);
730 pgdp[pgd_idx] = pfn_pgd(PFN_DOWN(next_phys), PAGE_TABLE);
731 nextp = get_pgd_next_virt(next_phys);
732 memset(nextp, 0, PAGE_SIZE);
733 } else {
734 next_phys = PFN_PHYS(_pgd_pfn(pgdp[pgd_idx]));
735 nextp = get_pgd_next_virt(next_phys);
736 }
737
738 create_pgd_next_mapping(nextp, va, pa, sz, prot);
739 }
740
best_map_size(phys_addr_t pa,uintptr_t va,phys_addr_t size)741 static uintptr_t __meminit best_map_size(phys_addr_t pa, uintptr_t va, phys_addr_t size)
742 {
743 if (debug_pagealloc_enabled())
744 return PAGE_SIZE;
745
746 if (pgtable_l5_enabled &&
747 !(pa & (P4D_SIZE - 1)) && !(va & (P4D_SIZE - 1)) && size >= P4D_SIZE)
748 return P4D_SIZE;
749
750 if (pgtable_l4_enabled &&
751 !(pa & (PUD_SIZE - 1)) && !(va & (PUD_SIZE - 1)) && size >= PUD_SIZE)
752 return PUD_SIZE;
753
754 if (IS_ENABLED(CONFIG_64BIT) &&
755 !(pa & (PMD_SIZE - 1)) && !(va & (PMD_SIZE - 1)) && size >= PMD_SIZE)
756 return PMD_SIZE;
757
758 return PAGE_SIZE;
759 }
760
761 #ifdef CONFIG_XIP_KERNEL
762 #define phys_ram_base (*(phys_addr_t *)XIP_FIXUP(&phys_ram_base))
763 extern char _xiprom[], _exiprom[], __data_loc;
764
765 /* called from head.S with MMU off */
__copy_data(void)766 asmlinkage void __init __copy_data(void)
767 {
768 void *from = (void *)(&__data_loc);
769 void *to = (void *)CONFIG_PHYS_RAM_BASE;
770 size_t sz = (size_t)((uintptr_t)(&_end) - (uintptr_t)(&_sdata));
771
772 memcpy(to, from, sz);
773 }
774 #endif
775
776 #ifdef CONFIG_STRICT_KERNEL_RWX
pgprot_from_va(uintptr_t va)777 static __meminit pgprot_t pgprot_from_va(uintptr_t va)
778 {
779 if (is_va_kernel_text(va))
780 return PAGE_KERNEL_READ_EXEC;
781
782 /*
783 * In 64-bit kernel, the kernel mapping is outside the linear mapping so
784 * we must protect its linear mapping alias from being executed and
785 * written.
786 * And rodata section is marked readonly in mark_rodata_ro.
787 */
788 if (IS_ENABLED(CONFIG_64BIT) && is_va_kernel_lm_alias_text(va))
789 return PAGE_KERNEL_READ;
790
791 return PAGE_KERNEL;
792 }
793
mark_rodata_ro(void)794 void mark_rodata_ro(void)
795 {
796 set_kernel_memory(__start_rodata, _data, set_memory_ro);
797 if (IS_ENABLED(CONFIG_64BIT))
798 set_kernel_memory(lm_alias(__start_rodata), lm_alias(_data),
799 set_memory_ro);
800 }
801 #else
pgprot_from_va(uintptr_t va)802 static __meminit pgprot_t pgprot_from_va(uintptr_t va)
803 {
804 if (IS_ENABLED(CONFIG_64BIT) && !is_kernel_mapping(va))
805 return PAGE_KERNEL;
806
807 return PAGE_KERNEL_EXEC;
808 }
809 #endif /* CONFIG_STRICT_KERNEL_RWX */
810
811 #if defined(CONFIG_64BIT) && !defined(CONFIG_XIP_KERNEL)
812 u64 __pi_set_satp_mode_from_cmdline(uintptr_t dtb_pa);
813
disable_pgtable_l5(void)814 static void __init disable_pgtable_l5(void)
815 {
816 pgtable_l5_enabled = false;
817 kernel_map.page_offset = PAGE_OFFSET_L4;
818 satp_mode = SATP_MODE_48;
819 }
820
disable_pgtable_l4(void)821 static void __init disable_pgtable_l4(void)
822 {
823 pgtable_l4_enabled = false;
824 kernel_map.page_offset = PAGE_OFFSET_L3;
825 satp_mode = SATP_MODE_39;
826 }
827
print_no4lvl(char * p)828 static int __init print_no4lvl(char *p)
829 {
830 pr_info("Disabled 4-level and 5-level paging");
831 return 0;
832 }
833 early_param("no4lvl", print_no4lvl);
834
print_no5lvl(char * p)835 static int __init print_no5lvl(char *p)
836 {
837 pr_info("Disabled 5-level paging");
838 return 0;
839 }
840 early_param("no5lvl", print_no5lvl);
841
set_mmap_rnd_bits_max(void)842 static void __init set_mmap_rnd_bits_max(void)
843 {
844 mmap_rnd_bits_max = MMAP_VA_BITS - PAGE_SHIFT - 3;
845 }
846
847 /*
848 * There is a simple way to determine if 4-level is supported by the
849 * underlying hardware: establish 1:1 mapping in 4-level page table mode
850 * then read SATP to see if the configuration was taken into account
851 * meaning sv48 is supported.
852 */
set_satp_mode(uintptr_t dtb_pa)853 static __init void set_satp_mode(uintptr_t dtb_pa)
854 {
855 u64 identity_satp, hw_satp;
856 uintptr_t set_satp_mode_pmd = ((unsigned long)set_satp_mode) & PMD_MASK;
857 u64 satp_mode_cmdline = __pi_set_satp_mode_from_cmdline(dtb_pa);
858
859 kernel_map.page_offset = PAGE_OFFSET_L5;
860
861 if (satp_mode_cmdline == SATP_MODE_57) {
862 disable_pgtable_l5();
863 } else if (satp_mode_cmdline == SATP_MODE_48) {
864 disable_pgtable_l5();
865 disable_pgtable_l4();
866 return;
867 }
868
869 create_p4d_mapping(early_p4d,
870 set_satp_mode_pmd, (uintptr_t)early_pud,
871 P4D_SIZE, PAGE_TABLE);
872 create_pud_mapping(early_pud,
873 set_satp_mode_pmd, (uintptr_t)early_pmd,
874 PUD_SIZE, PAGE_TABLE);
875 /* Handle the case where set_satp_mode straddles 2 PMDs */
876 create_pmd_mapping(early_pmd,
877 set_satp_mode_pmd, set_satp_mode_pmd,
878 PMD_SIZE, PAGE_KERNEL_EXEC);
879 create_pmd_mapping(early_pmd,
880 set_satp_mode_pmd + PMD_SIZE,
881 set_satp_mode_pmd + PMD_SIZE,
882 PMD_SIZE, PAGE_KERNEL_EXEC);
883 retry:
884 create_pgd_mapping(early_pg_dir,
885 set_satp_mode_pmd,
886 pgtable_l5_enabled ?
887 (uintptr_t)early_p4d : (uintptr_t)early_pud,
888 PGDIR_SIZE, PAGE_TABLE);
889
890 identity_satp = PFN_DOWN((uintptr_t)&early_pg_dir) | satp_mode;
891
892 local_flush_tlb_all();
893 csr_write(CSR_SATP, identity_satp);
894 hw_satp = csr_swap(CSR_SATP, 0ULL);
895 local_flush_tlb_all();
896
897 if (hw_satp != identity_satp) {
898 if (pgtable_l5_enabled) {
899 disable_pgtable_l5();
900 memset(early_pg_dir, 0, PAGE_SIZE);
901 goto retry;
902 }
903 disable_pgtable_l4();
904 }
905
906 memset(early_pg_dir, 0, PAGE_SIZE);
907 memset(early_p4d, 0, PAGE_SIZE);
908 memset(early_pud, 0, PAGE_SIZE);
909 memset(early_pmd, 0, PAGE_SIZE);
910 }
911 #endif
912
913 /*
914 * setup_vm() is called from head.S with MMU-off.
915 *
916 * Following requirements should be honoured for setup_vm() to work
917 * correctly:
918 * 1) It should use PC-relative addressing for accessing kernel symbols.
919 * To achieve this we always use GCC cmodel=medany.
920 * 2) The compiler instrumentation for FTRACE will not work for setup_vm()
921 * so disable compiler instrumentation when FTRACE is enabled.
922 *
923 * Currently, the above requirements are honoured by using custom CFLAGS
924 * for init.o in mm/Makefile.
925 */
926
927 #ifndef __riscv_cmodel_medany
928 #error "setup_vm() is called from head.S before relocate so it should not use absolute addressing."
929 #endif
930
931 #ifdef CONFIG_XIP_KERNEL
create_kernel_page_table(pgd_t * pgdir,__always_unused bool early)932 static void __init create_kernel_page_table(pgd_t *pgdir,
933 __always_unused bool early)
934 {
935 uintptr_t va, start_va, end_va;
936
937 /* Map the flash resident part */
938 end_va = kernel_map.virt_addr + kernel_map.xiprom_sz;
939 for (va = kernel_map.virt_addr; va < end_va; va += PMD_SIZE)
940 create_pgd_mapping(pgdir, va,
941 kernel_map.xiprom + (va - kernel_map.virt_addr),
942 PMD_SIZE, PAGE_KERNEL_EXEC);
943
944 /* Map the data in RAM */
945 start_va = kernel_map.virt_addr + (uintptr_t)&_sdata - (uintptr_t)&_start;
946 end_va = kernel_map.virt_addr + kernel_map.size;
947 for (va = start_va; va < end_va; va += PMD_SIZE)
948 create_pgd_mapping(pgdir, va,
949 kernel_map.phys_addr + (va - start_va),
950 PMD_SIZE, PAGE_KERNEL);
951 }
952 #else
create_kernel_page_table(pgd_t * pgdir,bool early)953 static void __init create_kernel_page_table(pgd_t *pgdir, bool early)
954 {
955 uintptr_t va, end_va;
956
957 end_va = kernel_map.virt_addr + kernel_map.size;
958 for (va = kernel_map.virt_addr; va < end_va; va += PMD_SIZE)
959 create_pgd_mapping(pgdir, va,
960 kernel_map.phys_addr + (va - kernel_map.virt_addr),
961 PMD_SIZE,
962 early ?
963 PAGE_KERNEL_EXEC : pgprot_from_va(va));
964 }
965 #endif
966
967 /*
968 * Setup a 4MB mapping that encompasses the device tree: for 64-bit kernel,
969 * this means 2 PMD entries whereas for 32-bit kernel, this is only 1 PGDIR
970 * entry.
971 */
create_fdt_early_page_table(uintptr_t fix_fdt_va,uintptr_t dtb_pa)972 static void __init create_fdt_early_page_table(uintptr_t fix_fdt_va,
973 uintptr_t dtb_pa)
974 {
975 #ifndef CONFIG_BUILTIN_DTB
976 uintptr_t pa = dtb_pa & ~(PMD_SIZE - 1);
977
978 /* Make sure the fdt fixmap address is always aligned on PMD size */
979 BUILD_BUG_ON(FIX_FDT % (PMD_SIZE / PAGE_SIZE));
980
981 /* In 32-bit only, the fdt lies in its own PGD */
982 if (!IS_ENABLED(CONFIG_64BIT)) {
983 create_pgd_mapping(early_pg_dir, fix_fdt_va,
984 pa, MAX_FDT_SIZE, PAGE_KERNEL);
985 } else {
986 create_pmd_mapping(fixmap_pmd, fix_fdt_va,
987 pa, PMD_SIZE, PAGE_KERNEL);
988 create_pmd_mapping(fixmap_pmd, fix_fdt_va + PMD_SIZE,
989 pa + PMD_SIZE, PMD_SIZE, PAGE_KERNEL);
990 }
991
992 dtb_early_va = (void *)fix_fdt_va + (dtb_pa & (PMD_SIZE - 1));
993 #else
994 /*
995 * For 64-bit kernel, __va can't be used since it would return a linear
996 * mapping address whereas dtb_early_va will be used before
997 * setup_vm_final installs the linear mapping. For 32-bit kernel, as the
998 * kernel is mapped in the linear mapping, that makes no difference.
999 */
1000 dtb_early_va = kernel_mapping_pa_to_va(dtb_pa);
1001 #endif
1002
1003 dtb_early_pa = dtb_pa;
1004 }
1005
1006 /*
1007 * MMU is not enabled, the page tables are allocated directly using
1008 * early_pmd/pud/p4d and the address returned is the physical one.
1009 */
pt_ops_set_early(void)1010 static void __init pt_ops_set_early(void)
1011 {
1012 pt_ops.alloc_pte = alloc_pte_early;
1013 pt_ops.get_pte_virt = get_pte_virt_early;
1014 #ifndef __PAGETABLE_PMD_FOLDED
1015 pt_ops.alloc_pmd = alloc_pmd_early;
1016 pt_ops.get_pmd_virt = get_pmd_virt_early;
1017 pt_ops.alloc_pud = alloc_pud_early;
1018 pt_ops.get_pud_virt = get_pud_virt_early;
1019 pt_ops.alloc_p4d = alloc_p4d_early;
1020 pt_ops.get_p4d_virt = get_p4d_virt_early;
1021 #endif
1022 }
1023
1024 /*
1025 * MMU is enabled but page table setup is not complete yet.
1026 * fixmap page table alloc functions must be used as a means to temporarily
1027 * map the allocated physical pages since the linear mapping does not exist yet.
1028 *
1029 * Note that this is called with MMU disabled, hence kernel_mapping_pa_to_va,
1030 * but it will be used as described above.
1031 */
pt_ops_set_fixmap(void)1032 static void __init pt_ops_set_fixmap(void)
1033 {
1034 pt_ops.alloc_pte = kernel_mapping_pa_to_va(alloc_pte_fixmap);
1035 pt_ops.get_pte_virt = kernel_mapping_pa_to_va(get_pte_virt_fixmap);
1036 #ifndef __PAGETABLE_PMD_FOLDED
1037 pt_ops.alloc_pmd = kernel_mapping_pa_to_va(alloc_pmd_fixmap);
1038 pt_ops.get_pmd_virt = kernel_mapping_pa_to_va(get_pmd_virt_fixmap);
1039 pt_ops.alloc_pud = kernel_mapping_pa_to_va(alloc_pud_fixmap);
1040 pt_ops.get_pud_virt = kernel_mapping_pa_to_va(get_pud_virt_fixmap);
1041 pt_ops.alloc_p4d = kernel_mapping_pa_to_va(alloc_p4d_fixmap);
1042 pt_ops.get_p4d_virt = kernel_mapping_pa_to_va(get_p4d_virt_fixmap);
1043 #endif
1044 }
1045
1046 /*
1047 * MMU is enabled and page table setup is complete, so from now, we can use
1048 * generic page allocation functions to setup page table.
1049 */
pt_ops_set_late(void)1050 static void __init pt_ops_set_late(void)
1051 {
1052 pt_ops.alloc_pte = alloc_pte_late;
1053 pt_ops.get_pte_virt = get_pte_virt_late;
1054 #ifndef __PAGETABLE_PMD_FOLDED
1055 pt_ops.alloc_pmd = alloc_pmd_late;
1056 pt_ops.get_pmd_virt = get_pmd_virt_late;
1057 pt_ops.alloc_pud = alloc_pud_late;
1058 pt_ops.get_pud_virt = get_pud_virt_late;
1059 pt_ops.alloc_p4d = alloc_p4d_late;
1060 pt_ops.get_p4d_virt = get_p4d_virt_late;
1061 #endif
1062 }
1063
1064 #ifdef CONFIG_RANDOMIZE_BASE
1065 extern bool __init __pi_set_nokaslr_from_cmdline(uintptr_t dtb_pa);
1066 extern u64 __init __pi_get_kaslr_seed(uintptr_t dtb_pa);
1067 extern u64 __init __pi_get_kaslr_seed_zkr(const uintptr_t dtb_pa);
1068
print_nokaslr(char * p)1069 static int __init print_nokaslr(char *p)
1070 {
1071 pr_info("Disabled KASLR");
1072 return 0;
1073 }
1074 early_param("nokaslr", print_nokaslr);
1075
kaslr_offset(void)1076 unsigned long kaslr_offset(void)
1077 {
1078 return kernel_map.virt_offset;
1079 }
1080 #endif
1081
setup_vm(uintptr_t dtb_pa)1082 asmlinkage void __init setup_vm(uintptr_t dtb_pa)
1083 {
1084 pmd_t __maybe_unused fix_bmap_spmd, fix_bmap_epmd;
1085
1086 #ifdef CONFIG_RANDOMIZE_BASE
1087 if (!__pi_set_nokaslr_from_cmdline(dtb_pa)) {
1088 u64 kaslr_seed = __pi_get_kaslr_seed_zkr(dtb_pa);
1089 u32 kernel_size = (uintptr_t)(&_end) - (uintptr_t)(&_start);
1090 u32 nr_pos;
1091
1092 if (kaslr_seed == 0)
1093 kaslr_seed = __pi_get_kaslr_seed(dtb_pa);
1094 /*
1095 * Compute the number of positions available: we are limited
1096 * by the early page table that only has one PUD and we must
1097 * be aligned on PMD_SIZE.
1098 */
1099 nr_pos = (PUD_SIZE - kernel_size) / PMD_SIZE;
1100
1101 kernel_map.virt_offset = (kaslr_seed % nr_pos) * PMD_SIZE;
1102 }
1103 #endif
1104
1105 kernel_map.virt_addr = KERNEL_LINK_ADDR + kernel_map.virt_offset;
1106
1107 #ifdef CONFIG_XIP_KERNEL
1108 kernel_map.xiprom = (uintptr_t)CONFIG_XIP_PHYS_ADDR;
1109 kernel_map.xiprom_sz = (uintptr_t)(&_exiprom) - (uintptr_t)(&_xiprom);
1110
1111 phys_ram_base = CONFIG_PHYS_RAM_BASE;
1112 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1113 vmemmap_start_pfn = round_down(phys_ram_base, VMEMMAP_ADDR_ALIGN) >> PAGE_SHIFT;
1114 #endif
1115 kernel_map.phys_addr = (uintptr_t)CONFIG_PHYS_RAM_BASE;
1116 kernel_map.size = (uintptr_t)(&_end) - (uintptr_t)(&_start);
1117
1118 kernel_map.va_kernel_xip_text_pa_offset = kernel_map.virt_addr - kernel_map.xiprom;
1119 kernel_map.va_kernel_xip_data_pa_offset = kernel_map.virt_addr - kernel_map.phys_addr
1120 + (uintptr_t)&_sdata - (uintptr_t)&_start;
1121 #else
1122 kernel_map.phys_addr = (uintptr_t)(&_start);
1123 kernel_map.size = (uintptr_t)(&_end) - kernel_map.phys_addr;
1124 kernel_map.va_kernel_pa_offset = kernel_map.virt_addr - kernel_map.phys_addr;
1125 #endif
1126
1127 #if defined(CONFIG_64BIT) && !defined(CONFIG_XIP_KERNEL)
1128 set_satp_mode(dtb_pa);
1129 set_mmap_rnd_bits_max();
1130 #endif
1131
1132 /*
1133 * In 64-bit, we defer the setup of va_pa_offset to setup_bootmem,
1134 * where we have the system memory layout: this allows us to align
1135 * the physical and virtual mappings and then make use of PUD/P4D/PGD
1136 * for the linear mapping. This is only possible because the kernel
1137 * mapping lies outside the linear mapping.
1138 * In 32-bit however, as the kernel resides in the linear mapping,
1139 * setup_vm_final can not change the mapping established here,
1140 * otherwise the same kernel addresses would get mapped to different
1141 * physical addresses (if the start of dram is different from the
1142 * kernel physical address start).
1143 */
1144 kernel_map.va_pa_offset = IS_ENABLED(CONFIG_64BIT) ?
1145 0UL : PAGE_OFFSET - kernel_map.phys_addr;
1146
1147 memory_limit = KERN_VIRT_SIZE;
1148
1149 /* Sanity check alignment and size */
1150 BUG_ON((PAGE_OFFSET % PGDIR_SIZE) != 0);
1151 BUG_ON((kernel_map.phys_addr % PMD_SIZE) != 0);
1152
1153 #ifdef CONFIG_64BIT
1154 /*
1155 * The last 4K bytes of the addressable memory can not be mapped because
1156 * of IS_ERR_VALUE macro.
1157 */
1158 BUG_ON((kernel_map.virt_addr + kernel_map.size) > ADDRESS_SPACE_END - SZ_4K);
1159 #endif
1160
1161 #ifdef CONFIG_RELOCATABLE
1162 /*
1163 * Early page table uses only one PUD, which makes it possible
1164 * to map PUD_SIZE aligned on PUD_SIZE: if the relocation offset
1165 * makes the kernel cross over a PUD_SIZE boundary, raise a bug
1166 * since a part of the kernel would not get mapped.
1167 */
1168 if (IS_ENABLED(CONFIG_64BIT))
1169 BUG_ON(PUD_SIZE - (kernel_map.virt_addr & (PUD_SIZE - 1)) < kernel_map.size);
1170 relocate_kernel();
1171 #endif
1172
1173 apply_early_boot_alternatives();
1174 pt_ops_set_early();
1175
1176 /* Setup early PGD for fixmap */
1177 create_pgd_mapping(early_pg_dir, FIXADDR_START,
1178 fixmap_pgd_next, PGDIR_SIZE, PAGE_TABLE);
1179
1180 #ifndef __PAGETABLE_PMD_FOLDED
1181 /* Setup fixmap P4D and PUD */
1182 if (pgtable_l5_enabled)
1183 create_p4d_mapping(fixmap_p4d, FIXADDR_START,
1184 (uintptr_t)fixmap_pud, P4D_SIZE, PAGE_TABLE);
1185 /* Setup fixmap PUD and PMD */
1186 if (pgtable_l4_enabled)
1187 create_pud_mapping(fixmap_pud, FIXADDR_START,
1188 (uintptr_t)fixmap_pmd, PUD_SIZE, PAGE_TABLE);
1189 create_pmd_mapping(fixmap_pmd, FIXADDR_START,
1190 (uintptr_t)fixmap_pte, PMD_SIZE, PAGE_TABLE);
1191 /* Setup trampoline PGD and PMD */
1192 create_pgd_mapping(trampoline_pg_dir, kernel_map.virt_addr,
1193 trampoline_pgd_next, PGDIR_SIZE, PAGE_TABLE);
1194 if (pgtable_l5_enabled)
1195 create_p4d_mapping(trampoline_p4d, kernel_map.virt_addr,
1196 (uintptr_t)trampoline_pud, P4D_SIZE, PAGE_TABLE);
1197 if (pgtable_l4_enabled)
1198 create_pud_mapping(trampoline_pud, kernel_map.virt_addr,
1199 (uintptr_t)trampoline_pmd, PUD_SIZE, PAGE_TABLE);
1200 #ifdef CONFIG_XIP_KERNEL
1201 create_pmd_mapping(trampoline_pmd, kernel_map.virt_addr,
1202 kernel_map.xiprom, PMD_SIZE, PAGE_KERNEL_EXEC);
1203 #else
1204 create_pmd_mapping(trampoline_pmd, kernel_map.virt_addr,
1205 kernel_map.phys_addr, PMD_SIZE, PAGE_KERNEL_EXEC);
1206 #endif
1207 #else
1208 /* Setup trampoline PGD */
1209 create_pgd_mapping(trampoline_pg_dir, kernel_map.virt_addr,
1210 kernel_map.phys_addr, PGDIR_SIZE, PAGE_KERNEL_EXEC);
1211 #endif
1212
1213 /*
1214 * Setup early PGD covering entire kernel which will allow
1215 * us to reach paging_init(). We map all memory banks later
1216 * in setup_vm_final() below.
1217 */
1218 create_kernel_page_table(early_pg_dir, true);
1219
1220 /* Setup early mapping for FDT early scan */
1221 create_fdt_early_page_table(__fix_to_virt(FIX_FDT), dtb_pa);
1222
1223 /*
1224 * Bootime fixmap only can handle PMD_SIZE mapping. Thus, boot-ioremap
1225 * range can not span multiple pmds.
1226 */
1227 BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT)
1228 != (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT));
1229
1230 #ifndef __PAGETABLE_PMD_FOLDED
1231 /*
1232 * Early ioremap fixmap is already created as it lies within first 2MB
1233 * of fixmap region. We always map PMD_SIZE. Thus, both FIX_BTMAP_END
1234 * FIX_BTMAP_BEGIN should lie in the same pmd. Verify that and warn
1235 * the user if not.
1236 */
1237 fix_bmap_spmd = fixmap_pmd[pmd_index(__fix_to_virt(FIX_BTMAP_BEGIN))];
1238 fix_bmap_epmd = fixmap_pmd[pmd_index(__fix_to_virt(FIX_BTMAP_END))];
1239 if (pmd_val(fix_bmap_spmd) != pmd_val(fix_bmap_epmd)) {
1240 WARN_ON(1);
1241 pr_warn("fixmap btmap start [%08lx] != end [%08lx]\n",
1242 pmd_val(fix_bmap_spmd), pmd_val(fix_bmap_epmd));
1243 pr_warn("fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n",
1244 fix_to_virt(FIX_BTMAP_BEGIN));
1245 pr_warn("fix_to_virt(FIX_BTMAP_END): %08lx\n",
1246 fix_to_virt(FIX_BTMAP_END));
1247
1248 pr_warn("FIX_BTMAP_END: %d\n", FIX_BTMAP_END);
1249 pr_warn("FIX_BTMAP_BEGIN: %d\n", FIX_BTMAP_BEGIN);
1250 }
1251 #endif
1252
1253 pt_ops_set_fixmap();
1254 }
1255
create_linear_mapping_range(phys_addr_t start,phys_addr_t end,uintptr_t fixed_map_size,const pgprot_t * pgprot)1256 static void __meminit create_linear_mapping_range(phys_addr_t start, phys_addr_t end,
1257 uintptr_t fixed_map_size, const pgprot_t *pgprot)
1258 {
1259 phys_addr_t pa;
1260 uintptr_t va, map_size;
1261
1262 for (pa = start; pa < end; pa += map_size) {
1263 va = (uintptr_t)__va(pa);
1264 map_size = fixed_map_size ? fixed_map_size :
1265 best_map_size(pa, va, end - pa);
1266
1267 create_pgd_mapping(swapper_pg_dir, va, pa, map_size,
1268 pgprot ? *pgprot : pgprot_from_va(va));
1269 }
1270 }
1271
create_linear_mapping_page_table(void)1272 static void __init create_linear_mapping_page_table(void)
1273 {
1274 phys_addr_t start, end;
1275 phys_addr_t kfence_pool __maybe_unused;
1276 u64 i;
1277
1278 #ifdef CONFIG_STRICT_KERNEL_RWX
1279 phys_addr_t ktext_start = __pa_symbol(_start);
1280 phys_addr_t ktext_size = __init_data_begin - _start;
1281 phys_addr_t krodata_start = __pa_symbol(__start_rodata);
1282 phys_addr_t krodata_size = _data - __start_rodata;
1283
1284 /* Isolate kernel text and rodata so they don't get mapped with a PUD */
1285 memblock_mark_nomap(ktext_start, ktext_size);
1286 memblock_mark_nomap(krodata_start, krodata_size);
1287 #endif
1288
1289 #ifdef CONFIG_KFENCE
1290 /*
1291 * kfence pool must be backed by PAGE_SIZE mappings, so allocate it
1292 * before we setup the linear mapping so that we avoid using hugepages
1293 * for this region.
1294 */
1295 kfence_pool = memblock_phys_alloc(KFENCE_POOL_SIZE, PAGE_SIZE);
1296 BUG_ON(!kfence_pool);
1297
1298 memblock_mark_nomap(kfence_pool, KFENCE_POOL_SIZE);
1299 __kfence_pool = __va(kfence_pool);
1300 #endif
1301
1302 /* Map all memory banks in the linear mapping */
1303 for_each_mem_range(i, &start, &end) {
1304 if (start >= end)
1305 break;
1306 if (start <= __pa(PAGE_OFFSET) &&
1307 __pa(PAGE_OFFSET) < end)
1308 start = __pa(PAGE_OFFSET);
1309
1310 create_linear_mapping_range(start, end, 0, NULL);
1311 }
1312
1313 #ifdef CONFIG_STRICT_KERNEL_RWX
1314 create_linear_mapping_range(ktext_start, ktext_start + ktext_size, 0, NULL);
1315 create_linear_mapping_range(krodata_start, krodata_start + krodata_size, 0, NULL);
1316
1317 memblock_clear_nomap(ktext_start, ktext_size);
1318 memblock_clear_nomap(krodata_start, krodata_size);
1319 #endif
1320
1321 #ifdef CONFIG_KFENCE
1322 create_linear_mapping_range(kfence_pool, kfence_pool + KFENCE_POOL_SIZE, PAGE_SIZE, NULL);
1323
1324 memblock_clear_nomap(kfence_pool, KFENCE_POOL_SIZE);
1325 #endif
1326 }
1327
setup_vm_final(void)1328 static void __init setup_vm_final(void)
1329 {
1330 /* Setup swapper PGD for fixmap */
1331 #if !defined(CONFIG_64BIT)
1332 /*
1333 * In 32-bit, the device tree lies in a pgd entry, so it must be copied
1334 * directly in swapper_pg_dir in addition to the pgd entry that points
1335 * to fixmap_pte.
1336 */
1337 unsigned long idx = pgd_index(__fix_to_virt(FIX_FDT));
1338
1339 set_pgd(&swapper_pg_dir[idx], early_pg_dir[idx]);
1340 #endif
1341 create_pgd_mapping(swapper_pg_dir, FIXADDR_START,
1342 __pa_symbol(fixmap_pgd_next),
1343 PGDIR_SIZE, PAGE_TABLE);
1344
1345 /* Map the linear mapping */
1346 create_linear_mapping_page_table();
1347
1348 /* Map the kernel */
1349 if (IS_ENABLED(CONFIG_64BIT))
1350 create_kernel_page_table(swapper_pg_dir, false);
1351
1352 #ifdef CONFIG_KASAN
1353 kasan_swapper_init();
1354 #endif
1355
1356 /* Clear fixmap PTE and PMD mappings */
1357 clear_fixmap(FIX_PTE);
1358 clear_fixmap(FIX_PMD);
1359 clear_fixmap(FIX_PUD);
1360 clear_fixmap(FIX_P4D);
1361
1362 /* Move to swapper page table */
1363 csr_write(CSR_SATP, PFN_DOWN(__pa_symbol(swapper_pg_dir)) | satp_mode);
1364 local_flush_tlb_all();
1365
1366 pt_ops_set_late();
1367 }
1368 #else
setup_vm(uintptr_t dtb_pa)1369 asmlinkage void __init setup_vm(uintptr_t dtb_pa)
1370 {
1371 dtb_early_va = (void *)dtb_pa;
1372 dtb_early_pa = dtb_pa;
1373
1374 #ifdef CONFIG_RELOCATABLE
1375 kernel_map.virt_addr = (uintptr_t)_start;
1376 kernel_map.phys_addr = (uintptr_t)_start;
1377 relocate_kernel();
1378 #endif
1379 }
1380
setup_vm_final(void)1381 static inline void setup_vm_final(void)
1382 {
1383 }
1384 #endif /* CONFIG_MMU */
1385
1386 /*
1387 * reserve_crashkernel() - reserves memory for crash kernel
1388 *
1389 * This function reserves memory area given in "crashkernel=" kernel command
1390 * line parameter. The memory reserved is used by dump capture kernel when
1391 * primary kernel is crashing.
1392 */
arch_reserve_crashkernel(void)1393 static void __init arch_reserve_crashkernel(void)
1394 {
1395 unsigned long long low_size = 0;
1396 unsigned long long crash_base, crash_size;
1397 bool high = false;
1398 int ret;
1399
1400 if (!IS_ENABLED(CONFIG_CRASH_RESERVE))
1401 return;
1402
1403 ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(),
1404 &crash_size, &crash_base,
1405 &low_size, &high);
1406 if (ret)
1407 return;
1408
1409 reserve_crashkernel_generic(crash_size, crash_base, low_size, high);
1410 }
1411
paging_init(void)1412 void __init paging_init(void)
1413 {
1414 setup_bootmem();
1415 setup_vm_final();
1416
1417 /* Depend on that Linear Mapping is ready */
1418 memblock_allow_resize();
1419 }
1420
misc_mem_init(void)1421 void __init misc_mem_init(void)
1422 {
1423 early_memtest(min_low_pfn << PAGE_SHIFT, max_low_pfn << PAGE_SHIFT);
1424 arch_numa_init();
1425 sparse_init();
1426 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1427 /* The entire VMEMMAP region has been populated. Flush TLB for this region */
1428 local_flush_tlb_kernel_range(VMEMMAP_START, VMEMMAP_END);
1429 #endif
1430 zone_sizes_init();
1431 arch_reserve_crashkernel();
1432 memblock_dump_all();
1433 }
1434
1435 #ifdef CONFIG_SPARSEMEM_VMEMMAP
vmemmap_set_pmd(pmd_t * pmd,void * p,int node,unsigned long addr,unsigned long next)1436 void __meminit vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
1437 unsigned long addr, unsigned long next)
1438 {
1439 pmd_set_huge(pmd, virt_to_phys(p), PAGE_KERNEL);
1440 }
1441
vmemmap_check_pmd(pmd_t * pmdp,int node,unsigned long addr,unsigned long next)1442 int __meminit vmemmap_check_pmd(pmd_t *pmdp, int node,
1443 unsigned long addr, unsigned long next)
1444 {
1445 vmemmap_verify((pte_t *)pmdp, node, addr, next);
1446 return 1;
1447 }
1448
vmemmap_populate(unsigned long start,unsigned long end,int node,struct vmem_altmap * altmap)1449 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
1450 struct vmem_altmap *altmap)
1451 {
1452 /*
1453 * Note that SPARSEMEM_VMEMMAP is only selected for rv64 and that we
1454 * can't use hugepage mappings for 2-level page table because in case of
1455 * memory hotplug, we are not able to update all the page tables with
1456 * the new PMDs.
1457 */
1458 return vmemmap_populate_hugepages(start, end, node, altmap);
1459 }
1460 #endif
1461
1462 #if defined(CONFIG_MMU) && defined(CONFIG_64BIT)
1463 /*
1464 * Pre-allocates page-table pages for a specific area in the kernel
1465 * page-table. Only the level which needs to be synchronized between
1466 * all page-tables is allocated because the synchronization can be
1467 * expensive.
1468 */
preallocate_pgd_pages_range(unsigned long start,unsigned long end,const char * area)1469 static void __init preallocate_pgd_pages_range(unsigned long start, unsigned long end,
1470 const char *area)
1471 {
1472 unsigned long addr;
1473 const char *lvl;
1474
1475 for (addr = start; addr < end && addr >= start; addr = ALIGN(addr + 1, PGDIR_SIZE)) {
1476 pgd_t *pgd = pgd_offset_k(addr);
1477 p4d_t *p4d;
1478 pud_t *pud;
1479 pmd_t *pmd;
1480
1481 lvl = "p4d";
1482 p4d = p4d_alloc(&init_mm, pgd, addr);
1483 if (!p4d)
1484 goto failed;
1485
1486 if (pgtable_l5_enabled)
1487 continue;
1488
1489 lvl = "pud";
1490 pud = pud_alloc(&init_mm, p4d, addr);
1491 if (!pud)
1492 goto failed;
1493
1494 if (pgtable_l4_enabled)
1495 continue;
1496
1497 lvl = "pmd";
1498 pmd = pmd_alloc(&init_mm, pud, addr);
1499 if (!pmd)
1500 goto failed;
1501 }
1502 return;
1503
1504 failed:
1505 /*
1506 * The pages have to be there now or they will be missing in
1507 * process page-tables later.
1508 */
1509 panic("Failed to pre-allocate %s pages for %s area\n", lvl, area);
1510 }
1511
1512 #define PAGE_END KASAN_SHADOW_START
1513
pgtable_cache_init(void)1514 void __init pgtable_cache_init(void)
1515 {
1516 preallocate_pgd_pages_range(VMALLOC_START, VMALLOC_END, "vmalloc");
1517 if (IS_ENABLED(CONFIG_MODULES))
1518 preallocate_pgd_pages_range(MODULES_VADDR, MODULES_END, "bpf/modules");
1519 if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG)) {
1520 preallocate_pgd_pages_range(VMEMMAP_START, VMEMMAP_END, "vmemmap");
1521 preallocate_pgd_pages_range(PAGE_OFFSET, PAGE_END, "direct map");
1522 if (IS_ENABLED(CONFIG_KASAN))
1523 preallocate_pgd_pages_range(KASAN_SHADOW_START, KASAN_SHADOW_END, "kasan");
1524 }
1525 }
1526 #endif
1527
1528 #ifdef CONFIG_EXECMEM
1529 #ifdef CONFIG_MMU
1530 static struct execmem_info execmem_info __ro_after_init;
1531
execmem_arch_setup(void)1532 struct execmem_info __init *execmem_arch_setup(void)
1533 {
1534 execmem_info = (struct execmem_info){
1535 .ranges = {
1536 [EXECMEM_DEFAULT] = {
1537 .start = MODULES_VADDR,
1538 .end = MODULES_END,
1539 .pgprot = PAGE_KERNEL,
1540 .alignment = 1,
1541 },
1542 [EXECMEM_KPROBES] = {
1543 .start = VMALLOC_START,
1544 .end = VMALLOC_END,
1545 .pgprot = PAGE_KERNEL_READ_EXEC,
1546 .alignment = 1,
1547 },
1548 [EXECMEM_BPF] = {
1549 .start = BPF_JIT_REGION_START,
1550 .end = BPF_JIT_REGION_END,
1551 .pgprot = PAGE_KERNEL,
1552 .alignment = PAGE_SIZE,
1553 },
1554 },
1555 };
1556
1557 return &execmem_info;
1558 }
1559 #endif /* CONFIG_MMU */
1560 #endif /* CONFIG_EXECMEM */
1561
1562 #ifdef CONFIG_MEMORY_HOTPLUG
free_pte_table(pte_t * pte_start,pmd_t * pmd)1563 static void __meminit free_pte_table(pte_t *pte_start, pmd_t *pmd)
1564 {
1565 struct page *page = pmd_page(*pmd);
1566 struct ptdesc *ptdesc = page_ptdesc(page);
1567 pte_t *pte;
1568 int i;
1569
1570 for (i = 0; i < PTRS_PER_PTE; i++) {
1571 pte = pte_start + i;
1572 if (!pte_none(*pte))
1573 return;
1574 }
1575
1576 pagetable_dtor(ptdesc);
1577 if (PageReserved(page))
1578 free_reserved_page(page);
1579 else
1580 pagetable_free(ptdesc);
1581 pmd_clear(pmd);
1582 }
1583
free_pmd_table(pmd_t * pmd_start,pud_t * pud,bool is_vmemmap)1584 static void __meminit free_pmd_table(pmd_t *pmd_start, pud_t *pud, bool is_vmemmap)
1585 {
1586 struct page *page = pud_page(*pud);
1587 struct ptdesc *ptdesc = page_ptdesc(page);
1588 pmd_t *pmd;
1589 int i;
1590
1591 for (i = 0; i < PTRS_PER_PMD; i++) {
1592 pmd = pmd_start + i;
1593 if (!pmd_none(*pmd))
1594 return;
1595 }
1596
1597 if (!is_vmemmap)
1598 pagetable_dtor(ptdesc);
1599 if (PageReserved(page))
1600 free_reserved_page(page);
1601 else
1602 pagetable_free(ptdesc);
1603 pud_clear(pud);
1604 }
1605
free_pud_table(pud_t * pud_start,p4d_t * p4d)1606 static void __meminit free_pud_table(pud_t *pud_start, p4d_t *p4d)
1607 {
1608 struct page *page = p4d_page(*p4d);
1609 pud_t *pud;
1610 int i;
1611
1612 for (i = 0; i < PTRS_PER_PUD; i++) {
1613 pud = pud_start + i;
1614 if (!pud_none(*pud))
1615 return;
1616 }
1617
1618 if (PageReserved(page))
1619 free_reserved_page(page);
1620 else
1621 free_pages((unsigned long)page_address(page), 0);
1622 p4d_clear(p4d);
1623 }
1624
free_vmemmap_storage(struct page * page,size_t size,struct vmem_altmap * altmap)1625 static void __meminit free_vmemmap_storage(struct page *page, size_t size,
1626 struct vmem_altmap *altmap)
1627 {
1628 int order = get_order(size);
1629
1630 if (altmap) {
1631 vmem_altmap_free(altmap, size >> PAGE_SHIFT);
1632 return;
1633 }
1634
1635 if (PageReserved(page)) {
1636 unsigned int nr_pages = 1 << order;
1637
1638 while (nr_pages--)
1639 free_reserved_page(page++);
1640 return;
1641 }
1642
1643 free_pages((unsigned long)page_address(page), order);
1644 }
1645
remove_pte_mapping(pte_t * pte_base,unsigned long addr,unsigned long end,bool is_vmemmap,struct vmem_altmap * altmap)1646 static void __meminit remove_pte_mapping(pte_t *pte_base, unsigned long addr, unsigned long end,
1647 bool is_vmemmap, struct vmem_altmap *altmap)
1648 {
1649 unsigned long next;
1650 pte_t *ptep, pte;
1651
1652 for (; addr < end; addr = next) {
1653 next = (addr + PAGE_SIZE) & PAGE_MASK;
1654 if (next > end)
1655 next = end;
1656
1657 ptep = pte_base + pte_index(addr);
1658 pte = ptep_get(ptep);
1659 if (!pte_present(*ptep))
1660 continue;
1661
1662 pte_clear(&init_mm, addr, ptep);
1663 if (is_vmemmap)
1664 free_vmemmap_storage(pte_page(pte), PAGE_SIZE, altmap);
1665 }
1666 }
1667
remove_pmd_mapping(pmd_t * pmd_base,unsigned long addr,unsigned long end,bool is_vmemmap,struct vmem_altmap * altmap)1668 static void __meminit remove_pmd_mapping(pmd_t *pmd_base, unsigned long addr, unsigned long end,
1669 bool is_vmemmap, struct vmem_altmap *altmap)
1670 {
1671 unsigned long next;
1672 pte_t *pte_base;
1673 pmd_t *pmdp, pmd;
1674
1675 for (; addr < end; addr = next) {
1676 next = pmd_addr_end(addr, end);
1677 pmdp = pmd_base + pmd_index(addr);
1678 pmd = pmdp_get(pmdp);
1679 if (!pmd_present(pmd))
1680 continue;
1681
1682 if (pmd_leaf(pmd)) {
1683 pmd_clear(pmdp);
1684 if (is_vmemmap)
1685 free_vmemmap_storage(pmd_page(pmd), PMD_SIZE, altmap);
1686 continue;
1687 }
1688
1689 pte_base = (pte_t *)pmd_page_vaddr(*pmdp);
1690 remove_pte_mapping(pte_base, addr, next, is_vmemmap, altmap);
1691 free_pte_table(pte_base, pmdp);
1692 }
1693 }
1694
remove_pud_mapping(pud_t * pud_base,unsigned long addr,unsigned long end,bool is_vmemmap,struct vmem_altmap * altmap)1695 static void __meminit remove_pud_mapping(pud_t *pud_base, unsigned long addr, unsigned long end,
1696 bool is_vmemmap, struct vmem_altmap *altmap)
1697 {
1698 unsigned long next;
1699 pud_t *pudp, pud;
1700 pmd_t *pmd_base;
1701
1702 for (; addr < end; addr = next) {
1703 next = pud_addr_end(addr, end);
1704 pudp = pud_base + pud_index(addr);
1705 pud = pudp_get(pudp);
1706 if (!pud_present(pud))
1707 continue;
1708
1709 if (pud_leaf(pud)) {
1710 if (pgtable_l4_enabled) {
1711 pud_clear(pudp);
1712 if (is_vmemmap)
1713 free_vmemmap_storage(pud_page(pud), PUD_SIZE, altmap);
1714 }
1715 continue;
1716 }
1717
1718 pmd_base = pmd_offset(pudp, 0);
1719 remove_pmd_mapping(pmd_base, addr, next, is_vmemmap, altmap);
1720
1721 if (pgtable_l4_enabled)
1722 free_pmd_table(pmd_base, pudp, is_vmemmap);
1723 }
1724 }
1725
remove_p4d_mapping(p4d_t * p4d_base,unsigned long addr,unsigned long end,bool is_vmemmap,struct vmem_altmap * altmap)1726 static void __meminit remove_p4d_mapping(p4d_t *p4d_base, unsigned long addr, unsigned long end,
1727 bool is_vmemmap, struct vmem_altmap *altmap)
1728 {
1729 unsigned long next;
1730 p4d_t *p4dp, p4d;
1731 pud_t *pud_base;
1732
1733 for (; addr < end; addr = next) {
1734 next = p4d_addr_end(addr, end);
1735 p4dp = p4d_base + p4d_index(addr);
1736 p4d = p4dp_get(p4dp);
1737 if (!p4d_present(p4d))
1738 continue;
1739
1740 if (p4d_leaf(p4d)) {
1741 if (pgtable_l5_enabled) {
1742 p4d_clear(p4dp);
1743 if (is_vmemmap)
1744 free_vmemmap_storage(p4d_page(p4d), P4D_SIZE, altmap);
1745 }
1746 continue;
1747 }
1748
1749 pud_base = pud_offset(p4dp, 0);
1750 remove_pud_mapping(pud_base, addr, next, is_vmemmap, altmap);
1751
1752 if (pgtable_l5_enabled)
1753 free_pud_table(pud_base, p4dp);
1754 }
1755 }
1756
remove_pgd_mapping(unsigned long va,unsigned long end,bool is_vmemmap,struct vmem_altmap * altmap)1757 static void __meminit remove_pgd_mapping(unsigned long va, unsigned long end, bool is_vmemmap,
1758 struct vmem_altmap *altmap)
1759 {
1760 unsigned long addr, next;
1761 p4d_t *p4d_base;
1762 pgd_t *pgd;
1763
1764 for (addr = va; addr < end; addr = next) {
1765 next = pgd_addr_end(addr, end);
1766 pgd = pgd_offset_k(addr);
1767
1768 if (!pgd_present(*pgd))
1769 continue;
1770
1771 if (pgd_leaf(*pgd))
1772 continue;
1773
1774 p4d_base = p4d_offset(pgd, 0);
1775 remove_p4d_mapping(p4d_base, addr, next, is_vmemmap, altmap);
1776 }
1777
1778 flush_tlb_all();
1779 }
1780
remove_linear_mapping(phys_addr_t start,u64 size)1781 static void __meminit remove_linear_mapping(phys_addr_t start, u64 size)
1782 {
1783 unsigned long va = (unsigned long)__va(start);
1784 unsigned long end = (unsigned long)__va(start + size);
1785
1786 remove_pgd_mapping(va, end, false, NULL);
1787 }
1788
arch_get_mappable_range(void)1789 struct range arch_get_mappable_range(void)
1790 {
1791 struct range mhp_range;
1792
1793 mhp_range.start = __pa(PAGE_OFFSET);
1794 mhp_range.end = __pa(PAGE_END - 1);
1795 return mhp_range;
1796 }
1797
arch_add_memory(int nid,u64 start,u64 size,struct mhp_params * params)1798 int __ref arch_add_memory(int nid, u64 start, u64 size, struct mhp_params *params)
1799 {
1800 int ret = 0;
1801
1802 create_linear_mapping_range(start, start + size, 0, ¶ms->pgprot);
1803 ret = __add_pages(nid, start >> PAGE_SHIFT, size >> PAGE_SHIFT, params);
1804 if (ret) {
1805 remove_linear_mapping(start, size);
1806 goto out;
1807 }
1808
1809 max_pfn = PFN_UP(start + size);
1810 max_low_pfn = max_pfn;
1811
1812 out:
1813 flush_tlb_all();
1814 return ret;
1815 }
1816
arch_remove_memory(u64 start,u64 size,struct vmem_altmap * altmap)1817 void __ref arch_remove_memory(u64 start, u64 size, struct vmem_altmap *altmap)
1818 {
1819 __remove_pages(start >> PAGE_SHIFT, size >> PAGE_SHIFT, altmap);
1820 remove_linear_mapping(start, size);
1821 flush_tlb_all();
1822 }
1823
vmemmap_free(unsigned long start,unsigned long end,struct vmem_altmap * altmap)1824 void __ref vmemmap_free(unsigned long start, unsigned long end, struct vmem_altmap *altmap)
1825 {
1826 remove_pgd_mapping(start, end, true, altmap);
1827 }
1828 #endif /* CONFIG_MEMORY_HOTPLUG */
1829