1 // SPDX-License-Identifier: GPL-2.0
2 
3 //! A condition variable.
4 //!
5 //! This module allows Rust code to use the kernel's [`struct wait_queue_head`] as a condition
6 //! variable.
7 
8 use super::{lock::Backend, lock::Guard, LockClassKey};
9 use crate::{
10     ffi::{c_int, c_long},
11     str::CStr,
12     task::{
13         MAX_SCHEDULE_TIMEOUT, TASK_FREEZABLE, TASK_INTERRUPTIBLE, TASK_NORMAL, TASK_UNINTERRUPTIBLE,
14     },
15     time::Jiffies,
16     types::Opaque,
17 };
18 use core::{marker::PhantomPinned, pin::Pin, ptr};
19 use pin_init::{pin_data, pin_init, PinInit};
20 
21 /// Creates a [`CondVar`] initialiser with the given name and a newly-created lock class.
22 #[macro_export]
23 macro_rules! new_condvar {
24     ($($name:literal)?) => {
25         $crate::sync::CondVar::new($crate::optional_name!($($name)?), $crate::static_lock_class!())
26     };
27 }
28 pub use new_condvar;
29 
30 /// A conditional variable.
31 ///
32 /// Exposes the kernel's [`struct wait_queue_head`] as a condition variable. It allows the caller to
33 /// atomically release the given lock and go to sleep. It reacquires the lock when it wakes up. And
34 /// it wakes up when notified by another thread (via [`CondVar::notify_one`] or
35 /// [`CondVar::notify_all`]) or because the thread received a signal. It may also wake up
36 /// spuriously.
37 ///
38 /// Instances of [`CondVar`] need a lock class and to be pinned. The recommended way to create such
39 /// instances is with the [`pin_init`](crate::pin_init!) and [`new_condvar`] macros.
40 ///
41 /// # Examples
42 ///
43 /// The following is an example of using a condvar with a mutex:
44 ///
45 /// ```
46 /// use kernel::sync::{new_condvar, new_mutex, CondVar, Mutex};
47 ///
48 /// #[pin_data]
49 /// pub struct Example {
50 ///     #[pin]
51 ///     value: Mutex<u32>,
52 ///
53 ///     #[pin]
54 ///     value_changed: CondVar,
55 /// }
56 ///
57 /// /// Waits for `e.value` to become `v`.
58 /// fn wait_for_value(e: &Example, v: u32) {
59 ///     let mut guard = e.value.lock();
60 ///     while *guard != v {
61 ///         e.value_changed.wait(&mut guard);
62 ///     }
63 /// }
64 ///
65 /// /// Increments `e.value` and notifies all potential waiters.
66 /// fn increment(e: &Example) {
67 ///     *e.value.lock() += 1;
68 ///     e.value_changed.notify_all();
69 /// }
70 ///
71 /// /// Allocates a new boxed `Example`.
72 /// fn new_example() -> Result<Pin<KBox<Example>>> {
73 ///     KBox::pin_init(pin_init!(Example {
74 ///         value <- new_mutex!(0),
75 ///         value_changed <- new_condvar!(),
76 ///     }), GFP_KERNEL)
77 /// }
78 /// ```
79 ///
80 /// [`struct wait_queue_head`]: srctree/include/linux/wait.h
81 #[pin_data]
82 pub struct CondVar {
83     #[pin]
84     pub(crate) wait_queue_head: Opaque<bindings::wait_queue_head>,
85 
86     /// A condvar needs to be pinned because it contains a [`struct list_head`] that is
87     /// self-referential, so it cannot be safely moved once it is initialised.
88     ///
89     /// [`struct list_head`]: srctree/include/linux/types.h
90     #[pin]
91     _pin: PhantomPinned,
92 }
93 
94 // SAFETY: `CondVar` only uses a `struct wait_queue_head`, which is safe to use on any thread.
95 unsafe impl Send for CondVar {}
96 
97 // SAFETY: `CondVar` only uses a `struct wait_queue_head`, which is safe to use on multiple threads
98 // concurrently.
99 unsafe impl Sync for CondVar {}
100 
101 impl CondVar {
102     /// Constructs a new condvar initialiser.
new(name: &'static CStr, key: Pin<&'static LockClassKey>) -> impl PinInit<Self>103     pub fn new(name: &'static CStr, key: Pin<&'static LockClassKey>) -> impl PinInit<Self> {
104         pin_init!(Self {
105             _pin: PhantomPinned,
106             // SAFETY: `slot` is valid while the closure is called and both `name` and `key` have
107             // static lifetimes so they live indefinitely.
108             wait_queue_head <- Opaque::ffi_init(|slot| unsafe {
109                 bindings::__init_waitqueue_head(slot, name.as_char_ptr(), key.as_ptr())
110             }),
111         })
112     }
113 
wait_internal<T: ?Sized, B: Backend>( &self, wait_state: c_int, guard: &mut Guard<'_, T, B>, timeout_in_jiffies: c_long, ) -> c_long114     fn wait_internal<T: ?Sized, B: Backend>(
115         &self,
116         wait_state: c_int,
117         guard: &mut Guard<'_, T, B>,
118         timeout_in_jiffies: c_long,
119     ) -> c_long {
120         let wait = Opaque::<bindings::wait_queue_entry>::uninit();
121 
122         // SAFETY: `wait` points to valid memory.
123         unsafe { bindings::init_wait(wait.get()) };
124 
125         // SAFETY: Both `wait` and `wait_queue_head` point to valid memory.
126         unsafe {
127             bindings::prepare_to_wait_exclusive(self.wait_queue_head.get(), wait.get(), wait_state)
128         };
129 
130         // SAFETY: Switches to another thread. The timeout can be any number.
131         let ret = guard.do_unlocked(|| unsafe { bindings::schedule_timeout(timeout_in_jiffies) });
132 
133         // SAFETY: Both `wait` and `wait_queue_head` point to valid memory.
134         unsafe { bindings::finish_wait(self.wait_queue_head.get(), wait.get()) };
135 
136         ret
137     }
138 
139     /// Releases the lock and waits for a notification in uninterruptible mode.
140     ///
141     /// Atomically releases the given lock (whose ownership is proven by the guard) and puts the
142     /// thread to sleep, reacquiring the lock on wake up. It wakes up when notified by
143     /// [`CondVar::notify_one`] or [`CondVar::notify_all`]. Note that it may also wake up
144     /// spuriously.
wait<T: ?Sized, B: Backend>(&self, guard: &mut Guard<'_, T, B>)145     pub fn wait<T: ?Sized, B: Backend>(&self, guard: &mut Guard<'_, T, B>) {
146         self.wait_internal(TASK_UNINTERRUPTIBLE, guard, MAX_SCHEDULE_TIMEOUT);
147     }
148 
149     /// Releases the lock and waits for a notification in interruptible mode.
150     ///
151     /// Similar to [`CondVar::wait`], except that the wait is interruptible. That is, the thread may
152     /// wake up due to signals. It may also wake up spuriously.
153     ///
154     /// Returns whether there is a signal pending.
155     #[must_use = "wait_interruptible returns if a signal is pending, so the caller must check the return value"]
wait_interruptible<T: ?Sized, B: Backend>(&self, guard: &mut Guard<'_, T, B>) -> bool156     pub fn wait_interruptible<T: ?Sized, B: Backend>(&self, guard: &mut Guard<'_, T, B>) -> bool {
157         self.wait_internal(TASK_INTERRUPTIBLE, guard, MAX_SCHEDULE_TIMEOUT);
158         crate::current!().signal_pending()
159     }
160 
161     /// Releases the lock and waits for a notification in interruptible and freezable mode.
162     ///
163     /// The process is allowed to be frozen during this sleep. No lock should be held when calling
164     /// this function, and there is a lockdep assertion for this. Freezing a task that holds a lock
165     /// can trivially deadlock vs another task that needs that lock to complete before it too can
166     /// hit freezable.
167     #[must_use = "wait_interruptible_freezable returns if a signal is pending, so the caller must check the return value"]
wait_interruptible_freezable<T: ?Sized, B: Backend>( &self, guard: &mut Guard<'_, T, B>, ) -> bool168     pub fn wait_interruptible_freezable<T: ?Sized, B: Backend>(
169         &self,
170         guard: &mut Guard<'_, T, B>,
171     ) -> bool {
172         self.wait_internal(
173             TASK_INTERRUPTIBLE | TASK_FREEZABLE,
174             guard,
175             MAX_SCHEDULE_TIMEOUT,
176         );
177         crate::current!().signal_pending()
178     }
179 
180     /// Releases the lock and waits for a notification in interruptible mode.
181     ///
182     /// Atomically releases the given lock (whose ownership is proven by the guard) and puts the
183     /// thread to sleep. It wakes up when notified by [`CondVar::notify_one`] or
184     /// [`CondVar::notify_all`], or when a timeout occurs, or when the thread receives a signal.
185     #[must_use = "wait_interruptible_timeout returns if a signal is pending, so the caller must check the return value"]
wait_interruptible_timeout<T: ?Sized, B: Backend>( &self, guard: &mut Guard<'_, T, B>, jiffies: Jiffies, ) -> CondVarTimeoutResult186     pub fn wait_interruptible_timeout<T: ?Sized, B: Backend>(
187         &self,
188         guard: &mut Guard<'_, T, B>,
189         jiffies: Jiffies,
190     ) -> CondVarTimeoutResult {
191         let jiffies = jiffies.try_into().unwrap_or(MAX_SCHEDULE_TIMEOUT);
192         let res = self.wait_internal(TASK_INTERRUPTIBLE, guard, jiffies);
193 
194         match (res as Jiffies, crate::current!().signal_pending()) {
195             (jiffies, true) => CondVarTimeoutResult::Signal { jiffies },
196             (0, false) => CondVarTimeoutResult::Timeout,
197             (jiffies, false) => CondVarTimeoutResult::Woken { jiffies },
198         }
199     }
200 
201     /// Calls the kernel function to notify the appropriate number of threads.
notify(&self, count: c_int)202     fn notify(&self, count: c_int) {
203         // SAFETY: `wait_queue_head` points to valid memory.
204         unsafe {
205             bindings::__wake_up(
206                 self.wait_queue_head.get(),
207                 TASK_NORMAL,
208                 count,
209                 ptr::null_mut(),
210             )
211         };
212     }
213 
214     /// Calls the kernel function to notify one thread synchronously.
215     ///
216     /// This method behaves like `notify_one`, except that it hints to the scheduler that the
217     /// current thread is about to go to sleep, so it should schedule the target thread on the same
218     /// CPU.
notify_sync(&self)219     pub fn notify_sync(&self) {
220         // SAFETY: `wait_queue_head` points to valid memory.
221         unsafe { bindings::__wake_up_sync(self.wait_queue_head.get(), TASK_NORMAL) };
222     }
223 
224     /// Wakes a single waiter up, if any.
225     ///
226     /// This is not 'sticky' in the sense that if no thread is waiting, the notification is lost
227     /// completely (as opposed to automatically waking up the next waiter).
notify_one(&self)228     pub fn notify_one(&self) {
229         self.notify(1);
230     }
231 
232     /// Wakes all waiters up, if any.
233     ///
234     /// This is not 'sticky' in the sense that if no thread is waiting, the notification is lost
235     /// completely (as opposed to automatically waking up the next waiter).
notify_all(&self)236     pub fn notify_all(&self) {
237         self.notify(0);
238     }
239 }
240 
241 /// The return type of `wait_timeout`.
242 pub enum CondVarTimeoutResult {
243     /// The timeout was reached.
244     Timeout,
245     /// Somebody woke us up.
246     Woken {
247         /// Remaining sleep duration.
248         jiffies: Jiffies,
249     },
250     /// A signal occurred.
251     Signal {
252         /// Remaining sleep duration.
253         jiffies: Jiffies,
254     },
255 }
256