1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the Interfaces handler.
7  *
8  * Version:	@(#)dev.h	1.0.10	08/12/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
15  *		Bjorn Ekwall. <bj0rn@blox.se>
16  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
17  *
18  *		This program is free software; you can redistribute it and/or
19  *		modify it under the terms of the GNU General Public License
20  *		as published by the Free Software Foundation; either version
21  *		2 of the License, or (at your option) any later version.
22  *
23  *		Moved to /usr/include/linux for NET3
24  */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27 
28 #include <linux/if.h>
29 #include <linux/if_ether.h>
30 #include <linux/if_packet.h>
31 #include <linux/if_link.h>
32 
33 #ifdef __KERNEL__
34 #include <linux/pm_qos.h>
35 #include <linux/timer.h>
36 #include <linux/delay.h>
37 #include <linux/atomic.h>
38 #include <asm/cache.h>
39 #include <asm/byteorder.h>
40 
41 #include <linux/device.h>
42 #include <linux/percpu.h>
43 #include <linux/rculist.h>
44 #include <linux/dmaengine.h>
45 #include <linux/workqueue.h>
46 #include <linux/dynamic_queue_limits.h>
47 
48 #include <linux/ethtool.h>
49 #include <net/net_namespace.h>
50 #include <net/dsa.h>
51 #ifdef CONFIG_DCB
52 #include <net/dcbnl.h>
53 #endif
54 #include <net/netprio_cgroup.h>
55 
56 #include <linux/netdev_features.h>
57 
58 struct netpoll_info;
59 struct phy_device;
60 /* 802.11 specific */
61 struct wireless_dev;
62 					/* source back-compat hooks */
63 #define SET_ETHTOOL_OPS(netdev,ops) \
64 	( (netdev)->ethtool_ops = (ops) )
65 
66 /* hardware address assignment types */
67 #define NET_ADDR_PERM		0	/* address is permanent (default) */
68 #define NET_ADDR_RANDOM		1	/* address is generated randomly */
69 #define NET_ADDR_STOLEN		2	/* address is stolen from other device */
70 
71 /* Backlog congestion levels */
72 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
73 #define NET_RX_DROP		1	/* packet dropped */
74 
75 /*
76  * Transmit return codes: transmit return codes originate from three different
77  * namespaces:
78  *
79  * - qdisc return codes
80  * - driver transmit return codes
81  * - errno values
82  *
83  * Drivers are allowed to return any one of those in their hard_start_xmit()
84  * function. Real network devices commonly used with qdiscs should only return
85  * the driver transmit return codes though - when qdiscs are used, the actual
86  * transmission happens asynchronously, so the value is not propagated to
87  * higher layers. Virtual network devices transmit synchronously, in this case
88  * the driver transmit return codes are consumed by dev_queue_xmit(), all
89  * others are propagated to higher layers.
90  */
91 
92 /* qdisc ->enqueue() return codes. */
93 #define NET_XMIT_SUCCESS	0x00
94 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
95 #define NET_XMIT_CN		0x02	/* congestion notification	*/
96 #define NET_XMIT_POLICED	0x03	/* skb is shot by police	*/
97 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
98 
99 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
100  * indicates that the device will soon be dropping packets, or already drops
101  * some packets of the same priority; prompting us to send less aggressively. */
102 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
103 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
104 
105 /* Driver transmit return codes */
106 #define NETDEV_TX_MASK		0xf0
107 
108 enum netdev_tx {
109 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
110 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
111 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
112 	NETDEV_TX_LOCKED = 0x20,	/* driver tx lock was already taken */
113 };
114 typedef enum netdev_tx netdev_tx_t;
115 
116 /*
117  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
118  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
119  */
dev_xmit_complete(int rc)120 static inline bool dev_xmit_complete(int rc)
121 {
122 	/*
123 	 * Positive cases with an skb consumed by a driver:
124 	 * - successful transmission (rc == NETDEV_TX_OK)
125 	 * - error while transmitting (rc < 0)
126 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
127 	 */
128 	if (likely(rc < NET_XMIT_MASK))
129 		return true;
130 
131 	return false;
132 }
133 
134 #endif
135 
136 #define MAX_ADDR_LEN	32		/* Largest hardware address length */
137 
138 /* Initial net device group. All devices belong to group 0 by default. */
139 #define INIT_NETDEV_GROUP	0
140 
141 #ifdef  __KERNEL__
142 /*
143  *	Compute the worst case header length according to the protocols
144  *	used.
145  */
146 
147 #if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
148 # if defined(CONFIG_MAC80211_MESH)
149 #  define LL_MAX_HEADER 128
150 # else
151 #  define LL_MAX_HEADER 96
152 # endif
153 #elif IS_ENABLED(CONFIG_TR)
154 # define LL_MAX_HEADER 48
155 #else
156 # define LL_MAX_HEADER 32
157 #endif
158 
159 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
160     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
161 #define MAX_HEADER LL_MAX_HEADER
162 #else
163 #define MAX_HEADER (LL_MAX_HEADER + 48)
164 #endif
165 
166 /*
167  *	Old network device statistics. Fields are native words
168  *	(unsigned long) so they can be read and written atomically.
169  */
170 
171 struct net_device_stats {
172 	unsigned long	rx_packets;
173 	unsigned long	tx_packets;
174 	unsigned long	rx_bytes;
175 	unsigned long	tx_bytes;
176 	unsigned long	rx_errors;
177 	unsigned long	tx_errors;
178 	unsigned long	rx_dropped;
179 	unsigned long	tx_dropped;
180 	unsigned long	multicast;
181 	unsigned long	collisions;
182 	unsigned long	rx_length_errors;
183 	unsigned long	rx_over_errors;
184 	unsigned long	rx_crc_errors;
185 	unsigned long	rx_frame_errors;
186 	unsigned long	rx_fifo_errors;
187 	unsigned long	rx_missed_errors;
188 	unsigned long	tx_aborted_errors;
189 	unsigned long	tx_carrier_errors;
190 	unsigned long	tx_fifo_errors;
191 	unsigned long	tx_heartbeat_errors;
192 	unsigned long	tx_window_errors;
193 	unsigned long	rx_compressed;
194 	unsigned long	tx_compressed;
195 };
196 
197 #endif  /*  __KERNEL__  */
198 
199 
200 /* Media selection options. */
201 enum {
202         IF_PORT_UNKNOWN = 0,
203         IF_PORT_10BASE2,
204         IF_PORT_10BASET,
205         IF_PORT_AUI,
206         IF_PORT_100BASET,
207         IF_PORT_100BASETX,
208         IF_PORT_100BASEFX
209 };
210 
211 #ifdef __KERNEL__
212 
213 #include <linux/cache.h>
214 #include <linux/skbuff.h>
215 
216 #ifdef CONFIG_RPS
217 #include <linux/jump_label.h>
218 extern struct jump_label_key rps_needed;
219 #endif
220 
221 struct neighbour;
222 struct neigh_parms;
223 struct sk_buff;
224 
225 struct netdev_hw_addr {
226 	struct list_head	list;
227 	unsigned char		addr[MAX_ADDR_LEN];
228 	unsigned char		type;
229 #define NETDEV_HW_ADDR_T_LAN		1
230 #define NETDEV_HW_ADDR_T_SAN		2
231 #define NETDEV_HW_ADDR_T_SLAVE		3
232 #define NETDEV_HW_ADDR_T_UNICAST	4
233 #define NETDEV_HW_ADDR_T_MULTICAST	5
234 	bool			synced;
235 	bool			global_use;
236 	int			refcount;
237 	struct rcu_head		rcu_head;
238 };
239 
240 struct netdev_hw_addr_list {
241 	struct list_head	list;
242 	int			count;
243 };
244 
245 #define netdev_hw_addr_list_count(l) ((l)->count)
246 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
247 #define netdev_hw_addr_list_for_each(ha, l) \
248 	list_for_each_entry(ha, &(l)->list, list)
249 
250 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
251 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
252 #define netdev_for_each_uc_addr(ha, dev) \
253 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
254 
255 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
256 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
257 #define netdev_for_each_mc_addr(ha, dev) \
258 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
259 
260 struct hh_cache {
261 	u16		hh_len;
262 	u16		__pad;
263 	seqlock_t	hh_lock;
264 
265 	/* cached hardware header; allow for machine alignment needs.        */
266 #define HH_DATA_MOD	16
267 #define HH_DATA_OFF(__len) \
268 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
269 #define HH_DATA_ALIGN(__len) \
270 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
271 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
272 };
273 
274 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
275  * Alternative is:
276  *   dev->hard_header_len ? (dev->hard_header_len +
277  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
278  *
279  * We could use other alignment values, but we must maintain the
280  * relationship HH alignment <= LL alignment.
281  */
282 #define LL_RESERVED_SPACE(dev) \
283 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
284 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
285 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
286 
287 struct header_ops {
288 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
289 			   unsigned short type, const void *daddr,
290 			   const void *saddr, unsigned len);
291 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
292 	int	(*rebuild)(struct sk_buff *skb);
293 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
294 	void	(*cache_update)(struct hh_cache *hh,
295 				const struct net_device *dev,
296 				const unsigned char *haddr);
297 };
298 
299 /* These flag bits are private to the generic network queueing
300  * layer, they may not be explicitly referenced by any other
301  * code.
302  */
303 
304 enum netdev_state_t {
305 	__LINK_STATE_START,
306 	__LINK_STATE_PRESENT,
307 	__LINK_STATE_NOCARRIER,
308 	__LINK_STATE_LINKWATCH_PENDING,
309 	__LINK_STATE_DORMANT,
310 };
311 
312 
313 /*
314  * This structure holds at boot time configured netdevice settings. They
315  * are then used in the device probing.
316  */
317 struct netdev_boot_setup {
318 	char name[IFNAMSIZ];
319 	struct ifmap map;
320 };
321 #define NETDEV_BOOT_SETUP_MAX 8
322 
323 extern int __init netdev_boot_setup(char *str);
324 
325 /*
326  * Structure for NAPI scheduling similar to tasklet but with weighting
327  */
328 struct napi_struct {
329 	/* The poll_list must only be managed by the entity which
330 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
331 	 * whoever atomically sets that bit can add this napi_struct
332 	 * to the per-cpu poll_list, and whoever clears that bit
333 	 * can remove from the list right before clearing the bit.
334 	 */
335 	struct list_head	poll_list;
336 
337 	unsigned long		state;
338 	int			weight;
339 	int			(*poll)(struct napi_struct *, int);
340 #ifdef CONFIG_NETPOLL
341 	spinlock_t		poll_lock;
342 	int			poll_owner;
343 #endif
344 
345 	unsigned int		gro_count;
346 
347 	struct net_device	*dev;
348 	struct list_head	dev_list;
349 	struct sk_buff		*gro_list;
350 	struct sk_buff		*skb;
351 };
352 
353 enum {
354 	NAPI_STATE_SCHED,	/* Poll is scheduled */
355 	NAPI_STATE_DISABLE,	/* Disable pending */
356 	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
357 };
358 
359 enum gro_result {
360 	GRO_MERGED,
361 	GRO_MERGED_FREE,
362 	GRO_HELD,
363 	GRO_NORMAL,
364 	GRO_DROP,
365 };
366 typedef enum gro_result gro_result_t;
367 
368 /*
369  * enum rx_handler_result - Possible return values for rx_handlers.
370  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
371  * further.
372  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
373  * case skb->dev was changed by rx_handler.
374  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
375  * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
376  *
377  * rx_handlers are functions called from inside __netif_receive_skb(), to do
378  * special processing of the skb, prior to delivery to protocol handlers.
379  *
380  * Currently, a net_device can only have a single rx_handler registered. Trying
381  * to register a second rx_handler will return -EBUSY.
382  *
383  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
384  * To unregister a rx_handler on a net_device, use
385  * netdev_rx_handler_unregister().
386  *
387  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
388  * do with the skb.
389  *
390  * If the rx_handler consumed to skb in some way, it should return
391  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
392  * the skb to be delivered in some other ways.
393  *
394  * If the rx_handler changed skb->dev, to divert the skb to another
395  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
396  * new device will be called if it exists.
397  *
398  * If the rx_handler consider the skb should be ignored, it should return
399  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
400  * are registred on exact device (ptype->dev == skb->dev).
401  *
402  * If the rx_handler didn't changed skb->dev, but want the skb to be normally
403  * delivered, it should return RX_HANDLER_PASS.
404  *
405  * A device without a registered rx_handler will behave as if rx_handler
406  * returned RX_HANDLER_PASS.
407  */
408 
409 enum rx_handler_result {
410 	RX_HANDLER_CONSUMED,
411 	RX_HANDLER_ANOTHER,
412 	RX_HANDLER_EXACT,
413 	RX_HANDLER_PASS,
414 };
415 typedef enum rx_handler_result rx_handler_result_t;
416 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
417 
418 extern void __napi_schedule(struct napi_struct *n);
419 
napi_disable_pending(struct napi_struct * n)420 static inline int napi_disable_pending(struct napi_struct *n)
421 {
422 	return test_bit(NAPI_STATE_DISABLE, &n->state);
423 }
424 
425 /**
426  *	napi_schedule_prep - check if napi can be scheduled
427  *	@n: napi context
428  *
429  * Test if NAPI routine is already running, and if not mark
430  * it as running.  This is used as a condition variable
431  * insure only one NAPI poll instance runs.  We also make
432  * sure there is no pending NAPI disable.
433  */
napi_schedule_prep(struct napi_struct * n)434 static inline int napi_schedule_prep(struct napi_struct *n)
435 {
436 	return !napi_disable_pending(n) &&
437 		!test_and_set_bit(NAPI_STATE_SCHED, &n->state);
438 }
439 
440 /**
441  *	napi_schedule - schedule NAPI poll
442  *	@n: napi context
443  *
444  * Schedule NAPI poll routine to be called if it is not already
445  * running.
446  */
napi_schedule(struct napi_struct * n)447 static inline void napi_schedule(struct napi_struct *n)
448 {
449 	if (napi_schedule_prep(n))
450 		__napi_schedule(n);
451 }
452 
453 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
napi_reschedule(struct napi_struct * napi)454 static inline int napi_reschedule(struct napi_struct *napi)
455 {
456 	if (napi_schedule_prep(napi)) {
457 		__napi_schedule(napi);
458 		return 1;
459 	}
460 	return 0;
461 }
462 
463 /**
464  *	napi_complete - NAPI processing complete
465  *	@n: napi context
466  *
467  * Mark NAPI processing as complete.
468  */
469 extern void __napi_complete(struct napi_struct *n);
470 extern void napi_complete(struct napi_struct *n);
471 
472 /**
473  *	napi_disable - prevent NAPI from scheduling
474  *	@n: napi context
475  *
476  * Stop NAPI from being scheduled on this context.
477  * Waits till any outstanding processing completes.
478  */
napi_disable(struct napi_struct * n)479 static inline void napi_disable(struct napi_struct *n)
480 {
481 	set_bit(NAPI_STATE_DISABLE, &n->state);
482 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
483 		msleep(1);
484 	clear_bit(NAPI_STATE_DISABLE, &n->state);
485 }
486 
487 /**
488  *	napi_enable - enable NAPI scheduling
489  *	@n: napi context
490  *
491  * Resume NAPI from being scheduled on this context.
492  * Must be paired with napi_disable.
493  */
napi_enable(struct napi_struct * n)494 static inline void napi_enable(struct napi_struct *n)
495 {
496 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
497 	smp_mb__before_clear_bit();
498 	clear_bit(NAPI_STATE_SCHED, &n->state);
499 }
500 
501 #ifdef CONFIG_SMP
502 /**
503  *	napi_synchronize - wait until NAPI is not running
504  *	@n: napi context
505  *
506  * Wait until NAPI is done being scheduled on this context.
507  * Waits till any outstanding processing completes but
508  * does not disable future activations.
509  */
napi_synchronize(const struct napi_struct * n)510 static inline void napi_synchronize(const struct napi_struct *n)
511 {
512 	while (test_bit(NAPI_STATE_SCHED, &n->state))
513 		msleep(1);
514 }
515 #else
516 # define napi_synchronize(n)	barrier()
517 #endif
518 
519 enum netdev_queue_state_t {
520 	__QUEUE_STATE_DRV_XOFF,
521 	__QUEUE_STATE_STACK_XOFF,
522 	__QUEUE_STATE_FROZEN,
523 #define QUEUE_STATE_ANY_XOFF ((1 << __QUEUE_STATE_DRV_XOFF)		| \
524 			      (1 << __QUEUE_STATE_STACK_XOFF))
525 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF		| \
526 					(1 << __QUEUE_STATE_FROZEN))
527 };
528 /*
529  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
530  * netif_tx_* functions below are used to manipulate this flag.  The
531  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
532  * queue independently.  The netif_xmit_*stopped functions below are called
533  * to check if the queue has been stopped by the driver or stack (either
534  * of the XOFF bits are set in the state).  Drivers should not need to call
535  * netif_xmit*stopped functions, they should only be using netif_tx_*.
536  */
537 
538 struct netdev_queue {
539 /*
540  * read mostly part
541  */
542 	struct net_device	*dev;
543 	struct Qdisc		*qdisc;
544 	struct Qdisc		*qdisc_sleeping;
545 #ifdef CONFIG_SYSFS
546 	struct kobject		kobj;
547 #endif
548 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
549 	int			numa_node;
550 #endif
551 /*
552  * write mostly part
553  */
554 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
555 	int			xmit_lock_owner;
556 	/*
557 	 * please use this field instead of dev->trans_start
558 	 */
559 	unsigned long		trans_start;
560 
561 	/*
562 	 * Number of TX timeouts for this queue
563 	 * (/sys/class/net/DEV/Q/trans_timeout)
564 	 */
565 	unsigned long		trans_timeout;
566 
567 	unsigned long		state;
568 
569 #ifdef CONFIG_BQL
570 	struct dql		dql;
571 #endif
572 } ____cacheline_aligned_in_smp;
573 
netdev_queue_numa_node_read(const struct netdev_queue * q)574 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
575 {
576 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
577 	return q->numa_node;
578 #else
579 	return NUMA_NO_NODE;
580 #endif
581 }
582 
netdev_queue_numa_node_write(struct netdev_queue * q,int node)583 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
584 {
585 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
586 	q->numa_node = node;
587 #endif
588 }
589 
590 #ifdef CONFIG_RPS
591 /*
592  * This structure holds an RPS map which can be of variable length.  The
593  * map is an array of CPUs.
594  */
595 struct rps_map {
596 	unsigned int len;
597 	struct rcu_head rcu;
598 	u16 cpus[0];
599 };
600 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
601 
602 /*
603  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
604  * tail pointer for that CPU's input queue at the time of last enqueue, and
605  * a hardware filter index.
606  */
607 struct rps_dev_flow {
608 	u16 cpu;
609 	u16 filter;
610 	unsigned int last_qtail;
611 };
612 #define RPS_NO_FILTER 0xffff
613 
614 /*
615  * The rps_dev_flow_table structure contains a table of flow mappings.
616  */
617 struct rps_dev_flow_table {
618 	unsigned int mask;
619 	struct rcu_head rcu;
620 	struct work_struct free_work;
621 	struct rps_dev_flow flows[0];
622 };
623 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
624     ((_num) * sizeof(struct rps_dev_flow)))
625 
626 /*
627  * The rps_sock_flow_table contains mappings of flows to the last CPU
628  * on which they were processed by the application (set in recvmsg).
629  */
630 struct rps_sock_flow_table {
631 	unsigned int mask;
632 	u16 ents[0];
633 };
634 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \
635     ((_num) * sizeof(u16)))
636 
637 #define RPS_NO_CPU 0xffff
638 
rps_record_sock_flow(struct rps_sock_flow_table * table,u32 hash)639 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
640 					u32 hash)
641 {
642 	if (table && hash) {
643 		unsigned int cpu, index = hash & table->mask;
644 
645 		/* We only give a hint, preemption can change cpu under us */
646 		cpu = raw_smp_processor_id();
647 
648 		if (table->ents[index] != cpu)
649 			table->ents[index] = cpu;
650 	}
651 }
652 
rps_reset_sock_flow(struct rps_sock_flow_table * table,u32 hash)653 static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table,
654 				       u32 hash)
655 {
656 	if (table && hash)
657 		table->ents[hash & table->mask] = RPS_NO_CPU;
658 }
659 
660 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
661 
662 #ifdef CONFIG_RFS_ACCEL
663 extern bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
664 				u32 flow_id, u16 filter_id);
665 #endif
666 
667 /* This structure contains an instance of an RX queue. */
668 struct netdev_rx_queue {
669 	struct rps_map __rcu		*rps_map;
670 	struct rps_dev_flow_table __rcu	*rps_flow_table;
671 	struct kobject			kobj;
672 	struct net_device		*dev;
673 } ____cacheline_aligned_in_smp;
674 #endif /* CONFIG_RPS */
675 
676 #ifdef CONFIG_XPS
677 /*
678  * This structure holds an XPS map which can be of variable length.  The
679  * map is an array of queues.
680  */
681 struct xps_map {
682 	unsigned int len;
683 	unsigned int alloc_len;
684 	struct rcu_head rcu;
685 	u16 queues[0];
686 };
687 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
688 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map))	\
689     / sizeof(u16))
690 
691 /*
692  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
693  */
694 struct xps_dev_maps {
695 	struct rcu_head rcu;
696 	struct xps_map __rcu *cpu_map[0];
697 };
698 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) +		\
699     (nr_cpu_ids * sizeof(struct xps_map *)))
700 #endif /* CONFIG_XPS */
701 
702 #define TC_MAX_QUEUE	16
703 #define TC_BITMASK	15
704 /* HW offloaded queuing disciplines txq count and offset maps */
705 struct netdev_tc_txq {
706 	u16 count;
707 	u16 offset;
708 };
709 
710 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
711 /*
712  * This structure is to hold information about the device
713  * configured to run FCoE protocol stack.
714  */
715 struct netdev_fcoe_hbainfo {
716 	char	manufacturer[64];
717 	char	serial_number[64];
718 	char	hardware_version[64];
719 	char	driver_version[64];
720 	char	optionrom_version[64];
721 	char	firmware_version[64];
722 	char	model[256];
723 	char	model_description[256];
724 };
725 #endif
726 
727 /*
728  * This structure defines the management hooks for network devices.
729  * The following hooks can be defined; unless noted otherwise, they are
730  * optional and can be filled with a null pointer.
731  *
732  * int (*ndo_init)(struct net_device *dev);
733  *     This function is called once when network device is registered.
734  *     The network device can use this to any late stage initializaton
735  *     or semantic validattion. It can fail with an error code which will
736  *     be propogated back to register_netdev
737  *
738  * void (*ndo_uninit)(struct net_device *dev);
739  *     This function is called when device is unregistered or when registration
740  *     fails. It is not called if init fails.
741  *
742  * int (*ndo_open)(struct net_device *dev);
743  *     This function is called when network device transistions to the up
744  *     state.
745  *
746  * int (*ndo_stop)(struct net_device *dev);
747  *     This function is called when network device transistions to the down
748  *     state.
749  *
750  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
751  *                               struct net_device *dev);
752  *	Called when a packet needs to be transmitted.
753  *	Must return NETDEV_TX_OK , NETDEV_TX_BUSY.
754  *        (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
755  *	Required can not be NULL.
756  *
757  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb);
758  *	Called to decide which queue to when device supports multiple
759  *	transmit queues.
760  *
761  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
762  *	This function is called to allow device receiver to make
763  *	changes to configuration when multicast or promiscious is enabled.
764  *
765  * void (*ndo_set_rx_mode)(struct net_device *dev);
766  *	This function is called device changes address list filtering.
767  *	If driver handles unicast address filtering, it should set
768  *	IFF_UNICAST_FLT to its priv_flags.
769  *
770  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
771  *	This function  is called when the Media Access Control address
772  *	needs to be changed. If this interface is not defined, the
773  *	mac address can not be changed.
774  *
775  * int (*ndo_validate_addr)(struct net_device *dev);
776  *	Test if Media Access Control address is valid for the device.
777  *
778  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
779  *	Called when a user request an ioctl which can't be handled by
780  *	the generic interface code. If not defined ioctl's return
781  *	not supported error code.
782  *
783  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
784  *	Used to set network devices bus interface parameters. This interface
785  *	is retained for legacy reason, new devices should use the bus
786  *	interface (PCI) for low level management.
787  *
788  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
789  *	Called when a user wants to change the Maximum Transfer Unit
790  *	of a device. If not defined, any request to change MTU will
791  *	will return an error.
792  *
793  * void (*ndo_tx_timeout)(struct net_device *dev);
794  *	Callback uses when the transmitter has not made any progress
795  *	for dev->watchdog ticks.
796  *
797  * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
798  *                      struct rtnl_link_stats64 *storage);
799  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
800  *	Called when a user wants to get the network device usage
801  *	statistics. Drivers must do one of the following:
802  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
803  *	   rtnl_link_stats64 structure passed by the caller.
804  *	2. Define @ndo_get_stats to update a net_device_stats structure
805  *	   (which should normally be dev->stats) and return a pointer to
806  *	   it. The structure may be changed asynchronously only if each
807  *	   field is written atomically.
808  *	3. Update dev->stats asynchronously and atomically, and define
809  *	   neither operation.
810  *
811  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, unsigned short vid);
812  *	If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER)
813  *	this function is called when a VLAN id is registered.
814  *
815  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, unsigned short vid);
816  *	If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER)
817  *	this function is called when a VLAN id is unregistered.
818  *
819  * void (*ndo_poll_controller)(struct net_device *dev);
820  *
821  *	SR-IOV management functions.
822  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
823  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
824  * int (*ndo_set_vf_tx_rate)(struct net_device *dev, int vf, int rate);
825  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
826  * int (*ndo_get_vf_config)(struct net_device *dev,
827  *			    int vf, struct ifla_vf_info *ivf);
828  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
829  *			  struct nlattr *port[]);
830  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
831  * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
832  * 	Called to setup 'tc' number of traffic classes in the net device. This
833  * 	is always called from the stack with the rtnl lock held and netif tx
834  * 	queues stopped. This allows the netdevice to perform queue management
835  * 	safely.
836  *
837  *	Fiber Channel over Ethernet (FCoE) offload functions.
838  * int (*ndo_fcoe_enable)(struct net_device *dev);
839  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
840  *	so the underlying device can perform whatever needed configuration or
841  *	initialization to support acceleration of FCoE traffic.
842  *
843  * int (*ndo_fcoe_disable)(struct net_device *dev);
844  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
845  *	so the underlying device can perform whatever needed clean-ups to
846  *	stop supporting acceleration of FCoE traffic.
847  *
848  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
849  *			     struct scatterlist *sgl, unsigned int sgc);
850  *	Called when the FCoE Initiator wants to initialize an I/O that
851  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
852  *	perform necessary setup and returns 1 to indicate the device is set up
853  *	successfully to perform DDP on this I/O, otherwise this returns 0.
854  *
855  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
856  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
857  *	indicated by the FC exchange id 'xid', so the underlying device can
858  *	clean up and reuse resources for later DDP requests.
859  *
860  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
861  *			      struct scatterlist *sgl, unsigned int sgc);
862  *	Called when the FCoE Target wants to initialize an I/O that
863  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
864  *	perform necessary setup and returns 1 to indicate the device is set up
865  *	successfully to perform DDP on this I/O, otherwise this returns 0.
866  *
867  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
868  *			       struct netdev_fcoe_hbainfo *hbainfo);
869  *	Called when the FCoE Protocol stack wants information on the underlying
870  *	device. This information is utilized by the FCoE protocol stack to
871  *	register attributes with Fiber Channel management service as per the
872  *	FC-GS Fabric Device Management Information(FDMI) specification.
873  *
874  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
875  *	Called when the underlying device wants to override default World Wide
876  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
877  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
878  *	protocol stack to use.
879  *
880  *	RFS acceleration.
881  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
882  *			    u16 rxq_index, u32 flow_id);
883  *	Set hardware filter for RFS.  rxq_index is the target queue index;
884  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
885  *	Return the filter ID on success, or a negative error code.
886  *
887  *	Slave management functions (for bridge, bonding, etc). User should
888  *	call netdev_set_master() to set dev->master properly.
889  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
890  *	Called to make another netdev an underling.
891  *
892  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
893  *	Called to release previously enslaved netdev.
894  *
895  *      Feature/offload setting functions.
896  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
897  *		netdev_features_t features);
898  *	Adjusts the requested feature flags according to device-specific
899  *	constraints, and returns the resulting flags. Must not modify
900  *	the device state.
901  *
902  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
903  *	Called to update device configuration to new features. Passed
904  *	feature set might be less than what was returned by ndo_fix_features()).
905  *	Must return >0 or -errno if it changed dev->features itself.
906  *
907  */
908 struct net_device_ops {
909 	int			(*ndo_init)(struct net_device *dev);
910 	void			(*ndo_uninit)(struct net_device *dev);
911 	int			(*ndo_open)(struct net_device *dev);
912 	int			(*ndo_stop)(struct net_device *dev);
913 	netdev_tx_t		(*ndo_start_xmit) (struct sk_buff *skb,
914 						   struct net_device *dev);
915 	u16			(*ndo_select_queue)(struct net_device *dev,
916 						    struct sk_buff *skb);
917 	void			(*ndo_change_rx_flags)(struct net_device *dev,
918 						       int flags);
919 	void			(*ndo_set_rx_mode)(struct net_device *dev);
920 	int			(*ndo_set_mac_address)(struct net_device *dev,
921 						       void *addr);
922 	int			(*ndo_validate_addr)(struct net_device *dev);
923 	int			(*ndo_do_ioctl)(struct net_device *dev,
924 					        struct ifreq *ifr, int cmd);
925 	int			(*ndo_set_config)(struct net_device *dev,
926 					          struct ifmap *map);
927 	int			(*ndo_change_mtu)(struct net_device *dev,
928 						  int new_mtu);
929 	int			(*ndo_neigh_setup)(struct net_device *dev,
930 						   struct neigh_parms *);
931 	void			(*ndo_tx_timeout) (struct net_device *dev);
932 
933 	struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
934 						     struct rtnl_link_stats64 *storage);
935 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
936 
937 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
938 						       unsigned short vid);
939 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
940 						        unsigned short vid);
941 #ifdef CONFIG_NET_POLL_CONTROLLER
942 	void                    (*ndo_poll_controller)(struct net_device *dev);
943 	int			(*ndo_netpoll_setup)(struct net_device *dev,
944 						     struct netpoll_info *info);
945 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
946 #endif
947 	int			(*ndo_set_vf_mac)(struct net_device *dev,
948 						  int queue, u8 *mac);
949 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
950 						   int queue, u16 vlan, u8 qos);
951 	int			(*ndo_set_vf_tx_rate)(struct net_device *dev,
952 						      int vf, int rate);
953 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
954 						       int vf, bool setting);
955 	int			(*ndo_get_vf_config)(struct net_device *dev,
956 						     int vf,
957 						     struct ifla_vf_info *ivf);
958 	int			(*ndo_set_vf_port)(struct net_device *dev,
959 						   int vf,
960 						   struct nlattr *port[]);
961 	int			(*ndo_get_vf_port)(struct net_device *dev,
962 						   int vf, struct sk_buff *skb);
963 	int			(*ndo_setup_tc)(struct net_device *dev, u8 tc);
964 #if IS_ENABLED(CONFIG_FCOE)
965 	int			(*ndo_fcoe_enable)(struct net_device *dev);
966 	int			(*ndo_fcoe_disable)(struct net_device *dev);
967 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
968 						      u16 xid,
969 						      struct scatterlist *sgl,
970 						      unsigned int sgc);
971 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
972 						     u16 xid);
973 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
974 						       u16 xid,
975 						       struct scatterlist *sgl,
976 						       unsigned int sgc);
977 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
978 							struct netdev_fcoe_hbainfo *hbainfo);
979 #endif
980 
981 #if IS_ENABLED(CONFIG_LIBFCOE)
982 #define NETDEV_FCOE_WWNN 0
983 #define NETDEV_FCOE_WWPN 1
984 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
985 						    u64 *wwn, int type);
986 #endif
987 
988 #ifdef CONFIG_RFS_ACCEL
989 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
990 						     const struct sk_buff *skb,
991 						     u16 rxq_index,
992 						     u32 flow_id);
993 #endif
994 	int			(*ndo_add_slave)(struct net_device *dev,
995 						 struct net_device *slave_dev);
996 	int			(*ndo_del_slave)(struct net_device *dev,
997 						 struct net_device *slave_dev);
998 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
999 						    netdev_features_t features);
1000 	int			(*ndo_set_features)(struct net_device *dev,
1001 						    netdev_features_t features);
1002 	int			(*ndo_neigh_construct)(struct neighbour *n);
1003 	void			(*ndo_neigh_destroy)(struct neighbour *n);
1004 };
1005 
1006 /*
1007  *	The DEVICE structure.
1008  *	Actually, this whole structure is a big mistake.  It mixes I/O
1009  *	data with strictly "high-level" data, and it has to know about
1010  *	almost every data structure used in the INET module.
1011  *
1012  *	FIXME: cleanup struct net_device such that network protocol info
1013  *	moves out.
1014  */
1015 
1016 struct net_device {
1017 
1018 	/*
1019 	 * This is the first field of the "visible" part of this structure
1020 	 * (i.e. as seen by users in the "Space.c" file).  It is the name
1021 	 * of the interface.
1022 	 */
1023 	char			name[IFNAMSIZ];
1024 
1025 	struct pm_qos_request	pm_qos_req;
1026 
1027 	/* device name hash chain */
1028 	struct hlist_node	name_hlist;
1029 	/* snmp alias */
1030 	char 			*ifalias;
1031 
1032 	/*
1033 	 *	I/O specific fields
1034 	 *	FIXME: Merge these and struct ifmap into one
1035 	 */
1036 	unsigned long		mem_end;	/* shared mem end	*/
1037 	unsigned long		mem_start;	/* shared mem start	*/
1038 	unsigned long		base_addr;	/* device I/O address	*/
1039 	unsigned int		irq;		/* device IRQ number	*/
1040 
1041 	/*
1042 	 *	Some hardware also needs these fields, but they are not
1043 	 *	part of the usual set specified in Space.c.
1044 	 */
1045 
1046 	unsigned long		state;
1047 
1048 	struct list_head	dev_list;
1049 	struct list_head	napi_list;
1050 	struct list_head	unreg_list;
1051 
1052 	/* currently active device features */
1053 	netdev_features_t	features;
1054 	/* user-changeable features */
1055 	netdev_features_t	hw_features;
1056 	/* user-requested features */
1057 	netdev_features_t	wanted_features;
1058 	/* mask of features inheritable by VLAN devices */
1059 	netdev_features_t	vlan_features;
1060 
1061 	/* Interface index. Unique device identifier	*/
1062 	int			ifindex;
1063 	int			iflink;
1064 
1065 	struct net_device_stats	stats;
1066 	atomic_long_t		rx_dropped; /* dropped packets by core network
1067 					     * Do not use this in drivers.
1068 					     */
1069 
1070 #ifdef CONFIG_WIRELESS_EXT
1071 	/* List of functions to handle Wireless Extensions (instead of ioctl).
1072 	 * See <net/iw_handler.h> for details. Jean II */
1073 	const struct iw_handler_def *	wireless_handlers;
1074 	/* Instance data managed by the core of Wireless Extensions. */
1075 	struct iw_public_data *	wireless_data;
1076 #endif
1077 	/* Management operations */
1078 	const struct net_device_ops *netdev_ops;
1079 	const struct ethtool_ops *ethtool_ops;
1080 
1081 	/* Hardware header description */
1082 	const struct header_ops *header_ops;
1083 
1084 	unsigned int		flags;	/* interface flags (a la BSD)	*/
1085 	unsigned int		priv_flags; /* Like 'flags' but invisible to userspace. */
1086 	unsigned short		gflags;
1087 	unsigned short		padded;	/* How much padding added by alloc_netdev() */
1088 
1089 	unsigned char		operstate; /* RFC2863 operstate */
1090 	unsigned char		link_mode; /* mapping policy to operstate */
1091 
1092 	unsigned char		if_port;	/* Selectable AUI, TP,..*/
1093 	unsigned char		dma;		/* DMA channel		*/
1094 
1095 	unsigned int		mtu;	/* interface MTU value		*/
1096 	unsigned short		type;	/* interface hardware type	*/
1097 	unsigned short		hard_header_len;	/* hardware hdr length	*/
1098 
1099 	/* extra head- and tailroom the hardware may need, but not in all cases
1100 	 * can this be guaranteed, especially tailroom. Some cases also use
1101 	 * LL_MAX_HEADER instead to allocate the skb.
1102 	 */
1103 	unsigned short		needed_headroom;
1104 	unsigned short		needed_tailroom;
1105 
1106 	/* Interface address info. */
1107 	unsigned char		perm_addr[MAX_ADDR_LEN]; /* permanent hw address */
1108 	unsigned char		addr_assign_type; /* hw address assignment type */
1109 	unsigned char		addr_len;	/* hardware address length	*/
1110 	unsigned char		neigh_priv_len;
1111 	unsigned short          dev_id;		/* for shared network cards */
1112 
1113 	spinlock_t		addr_list_lock;
1114 	struct netdev_hw_addr_list	uc;	/* Unicast mac addresses */
1115 	struct netdev_hw_addr_list	mc;	/* Multicast mac addresses */
1116 	bool			uc_promisc;
1117 	unsigned int		promiscuity;
1118 	unsigned int		allmulti;
1119 
1120 
1121 	/* Protocol specific pointers */
1122 
1123 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1124 	struct vlan_info __rcu	*vlan_info;	/* VLAN info */
1125 #endif
1126 #if IS_ENABLED(CONFIG_NET_DSA)
1127 	struct dsa_switch_tree	*dsa_ptr;	/* dsa specific data */
1128 #endif
1129 	void 			*atalk_ptr;	/* AppleTalk link 	*/
1130 	struct in_device __rcu	*ip_ptr;	/* IPv4 specific data	*/
1131 	struct dn_dev __rcu     *dn_ptr;        /* DECnet specific data */
1132 	struct inet6_dev __rcu	*ip6_ptr;       /* IPv6 specific data */
1133 	void			*ec_ptr;	/* Econet specific data	*/
1134 	void			*ax25_ptr;	/* AX.25 specific data */
1135 	struct wireless_dev	*ieee80211_ptr;	/* IEEE 802.11 specific data,
1136 						   assign before registering */
1137 
1138 /*
1139  * Cache lines mostly used on receive path (including eth_type_trans())
1140  */
1141 	unsigned long		last_rx;	/* Time of last Rx
1142 						 * This should not be set in
1143 						 * drivers, unless really needed,
1144 						 * because network stack (bonding)
1145 						 * use it if/when necessary, to
1146 						 * avoid dirtying this cache line.
1147 						 */
1148 
1149 	struct net_device	*master; /* Pointer to master device of a group,
1150 					  * which this device is member of.
1151 					  */
1152 
1153 	/* Interface address info used in eth_type_trans() */
1154 	unsigned char		*dev_addr;	/* hw address, (before bcast
1155 						   because most packets are
1156 						   unicast) */
1157 
1158 	struct netdev_hw_addr_list	dev_addrs; /* list of device
1159 						      hw addresses */
1160 
1161 	unsigned char		broadcast[MAX_ADDR_LEN];	/* hw bcast add	*/
1162 
1163 #ifdef CONFIG_SYSFS
1164 	struct kset		*queues_kset;
1165 #endif
1166 
1167 #ifdef CONFIG_RPS
1168 	struct netdev_rx_queue	*_rx;
1169 
1170 	/* Number of RX queues allocated at register_netdev() time */
1171 	unsigned int		num_rx_queues;
1172 
1173 	/* Number of RX queues currently active in device */
1174 	unsigned int		real_num_rx_queues;
1175 
1176 #ifdef CONFIG_RFS_ACCEL
1177 	/* CPU reverse-mapping for RX completion interrupts, indexed
1178 	 * by RX queue number.  Assigned by driver.  This must only be
1179 	 * set if the ndo_rx_flow_steer operation is defined. */
1180 	struct cpu_rmap		*rx_cpu_rmap;
1181 #endif
1182 #endif
1183 
1184 	rx_handler_func_t __rcu	*rx_handler;
1185 	void __rcu		*rx_handler_data;
1186 
1187 	struct netdev_queue __rcu *ingress_queue;
1188 
1189 /*
1190  * Cache lines mostly used on transmit path
1191  */
1192 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
1193 
1194 	/* Number of TX queues allocated at alloc_netdev_mq() time  */
1195 	unsigned int		num_tx_queues;
1196 
1197 	/* Number of TX queues currently active in device  */
1198 	unsigned int		real_num_tx_queues;
1199 
1200 	/* root qdisc from userspace point of view */
1201 	struct Qdisc		*qdisc;
1202 
1203 	unsigned long		tx_queue_len;	/* Max frames per queue allowed */
1204 	spinlock_t		tx_global_lock;
1205 
1206 #ifdef CONFIG_XPS
1207 	struct xps_dev_maps __rcu *xps_maps;
1208 #endif
1209 
1210 	/* These may be needed for future network-power-down code. */
1211 
1212 	/*
1213 	 * trans_start here is expensive for high speed devices on SMP,
1214 	 * please use netdev_queue->trans_start instead.
1215 	 */
1216 	unsigned long		trans_start;	/* Time (in jiffies) of last Tx	*/
1217 
1218 	int			watchdog_timeo; /* used by dev_watchdog() */
1219 	struct timer_list	watchdog_timer;
1220 
1221 	/* Number of references to this device */
1222 	int __percpu		*pcpu_refcnt;
1223 
1224 	/* delayed register/unregister */
1225 	struct list_head	todo_list;
1226 	/* device index hash chain */
1227 	struct hlist_node	index_hlist;
1228 
1229 	struct list_head	link_watch_list;
1230 
1231 	/* register/unregister state machine */
1232 	enum { NETREG_UNINITIALIZED=0,
1233 	       NETREG_REGISTERED,	/* completed register_netdevice */
1234 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
1235 	       NETREG_UNREGISTERED,	/* completed unregister todo */
1236 	       NETREG_RELEASED,		/* called free_netdev */
1237 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
1238 	} reg_state:8;
1239 
1240 	bool dismantle; /* device is going do be freed */
1241 
1242 	enum {
1243 		RTNL_LINK_INITIALIZED,
1244 		RTNL_LINK_INITIALIZING,
1245 	} rtnl_link_state:16;
1246 
1247 	/* Called from unregister, can be used to call free_netdev */
1248 	void (*destructor)(struct net_device *dev);
1249 
1250 #ifdef CONFIG_NETPOLL
1251 	struct netpoll_info	*npinfo;
1252 #endif
1253 
1254 #ifdef CONFIG_NET_NS
1255 	/* Network namespace this network device is inside */
1256 	struct net		*nd_net;
1257 #endif
1258 
1259 	/* mid-layer private */
1260 	union {
1261 		void				*ml_priv;
1262 		struct pcpu_lstats __percpu	*lstats; /* loopback stats */
1263 		struct pcpu_tstats __percpu	*tstats; /* tunnel stats */
1264 		struct pcpu_dstats __percpu	*dstats; /* dummy stats */
1265 	};
1266 	/* GARP */
1267 	struct garp_port __rcu	*garp_port;
1268 
1269 	/* class/net/name entry */
1270 	struct device		dev;
1271 	/* space for optional device, statistics, and wireless sysfs groups */
1272 	const struct attribute_group *sysfs_groups[4];
1273 
1274 	/* rtnetlink link ops */
1275 	const struct rtnl_link_ops *rtnl_link_ops;
1276 
1277 	/* for setting kernel sock attribute on TCP connection setup */
1278 #define GSO_MAX_SIZE		65536
1279 	unsigned int		gso_max_size;
1280 
1281 #ifdef CONFIG_DCB
1282 	/* Data Center Bridging netlink ops */
1283 	const struct dcbnl_rtnl_ops *dcbnl_ops;
1284 #endif
1285 	u8 num_tc;
1286 	struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1287 	u8 prio_tc_map[TC_BITMASK + 1];
1288 
1289 #if IS_ENABLED(CONFIG_FCOE)
1290 	/* max exchange id for FCoE LRO by ddp */
1291 	unsigned int		fcoe_ddp_xid;
1292 #endif
1293 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
1294 	struct netprio_map __rcu *priomap;
1295 #endif
1296 	/* phy device may attach itself for hardware timestamping */
1297 	struct phy_device *phydev;
1298 
1299 	/* group the device belongs to */
1300 	int group;
1301 };
1302 #define to_net_dev(d) container_of(d, struct net_device, dev)
1303 
1304 #define	NETDEV_ALIGN		32
1305 
1306 static inline
netdev_get_prio_tc_map(const struct net_device * dev,u32 prio)1307 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1308 {
1309 	return dev->prio_tc_map[prio & TC_BITMASK];
1310 }
1311 
1312 static inline
netdev_set_prio_tc_map(struct net_device * dev,u8 prio,u8 tc)1313 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1314 {
1315 	if (tc >= dev->num_tc)
1316 		return -EINVAL;
1317 
1318 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1319 	return 0;
1320 }
1321 
1322 static inline
netdev_reset_tc(struct net_device * dev)1323 void netdev_reset_tc(struct net_device *dev)
1324 {
1325 	dev->num_tc = 0;
1326 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1327 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1328 }
1329 
1330 static inline
netdev_set_tc_queue(struct net_device * dev,u8 tc,u16 count,u16 offset)1331 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1332 {
1333 	if (tc >= dev->num_tc)
1334 		return -EINVAL;
1335 
1336 	dev->tc_to_txq[tc].count = count;
1337 	dev->tc_to_txq[tc].offset = offset;
1338 	return 0;
1339 }
1340 
1341 static inline
netdev_set_num_tc(struct net_device * dev,u8 num_tc)1342 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1343 {
1344 	if (num_tc > TC_MAX_QUEUE)
1345 		return -EINVAL;
1346 
1347 	dev->num_tc = num_tc;
1348 	return 0;
1349 }
1350 
1351 static inline
netdev_get_num_tc(struct net_device * dev)1352 int netdev_get_num_tc(struct net_device *dev)
1353 {
1354 	return dev->num_tc;
1355 }
1356 
1357 static inline
netdev_get_tx_queue(const struct net_device * dev,unsigned int index)1358 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1359 					 unsigned int index)
1360 {
1361 	return &dev->_tx[index];
1362 }
1363 
netdev_for_each_tx_queue(struct net_device * dev,void (* f)(struct net_device *,struct netdev_queue *,void *),void * arg)1364 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1365 					    void (*f)(struct net_device *,
1366 						      struct netdev_queue *,
1367 						      void *),
1368 					    void *arg)
1369 {
1370 	unsigned int i;
1371 
1372 	for (i = 0; i < dev->num_tx_queues; i++)
1373 		f(dev, &dev->_tx[i], arg);
1374 }
1375 
1376 /*
1377  * Net namespace inlines
1378  */
1379 static inline
dev_net(const struct net_device * dev)1380 struct net *dev_net(const struct net_device *dev)
1381 {
1382 	return read_pnet(&dev->nd_net);
1383 }
1384 
1385 static inline
dev_net_set(struct net_device * dev,struct net * net)1386 void dev_net_set(struct net_device *dev, struct net *net)
1387 {
1388 #ifdef CONFIG_NET_NS
1389 	release_net(dev->nd_net);
1390 	dev->nd_net = hold_net(net);
1391 #endif
1392 }
1393 
netdev_uses_dsa_tags(struct net_device * dev)1394 static inline bool netdev_uses_dsa_tags(struct net_device *dev)
1395 {
1396 #ifdef CONFIG_NET_DSA_TAG_DSA
1397 	if (dev->dsa_ptr != NULL)
1398 		return dsa_uses_dsa_tags(dev->dsa_ptr);
1399 #endif
1400 
1401 	return 0;
1402 }
1403 
1404 #ifndef CONFIG_NET_NS
skb_set_dev(struct sk_buff * skb,struct net_device * dev)1405 static inline void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1406 {
1407 	skb->dev = dev;
1408 }
1409 #else /* CONFIG_NET_NS */
1410 void skb_set_dev(struct sk_buff *skb, struct net_device *dev);
1411 #endif
1412 
netdev_uses_trailer_tags(struct net_device * dev)1413 static inline bool netdev_uses_trailer_tags(struct net_device *dev)
1414 {
1415 #ifdef CONFIG_NET_DSA_TAG_TRAILER
1416 	if (dev->dsa_ptr != NULL)
1417 		return dsa_uses_trailer_tags(dev->dsa_ptr);
1418 #endif
1419 
1420 	return 0;
1421 }
1422 
1423 /**
1424  *	netdev_priv - access network device private data
1425  *	@dev: network device
1426  *
1427  * Get network device private data
1428  */
netdev_priv(const struct net_device * dev)1429 static inline void *netdev_priv(const struct net_device *dev)
1430 {
1431 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1432 }
1433 
1434 /* Set the sysfs physical device reference for the network logical device
1435  * if set prior to registration will cause a symlink during initialization.
1436  */
1437 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
1438 
1439 /* Set the sysfs device type for the network logical device to allow
1440  * fin grained indentification of different network device types. For
1441  * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1442  */
1443 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
1444 
1445 /**
1446  *	netif_napi_add - initialize a napi context
1447  *	@dev:  network device
1448  *	@napi: napi context
1449  *	@poll: polling function
1450  *	@weight: default weight
1451  *
1452  * netif_napi_add() must be used to initialize a napi context prior to calling
1453  * *any* of the other napi related functions.
1454  */
1455 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1456 		    int (*poll)(struct napi_struct *, int), int weight);
1457 
1458 /**
1459  *  netif_napi_del - remove a napi context
1460  *  @napi: napi context
1461  *
1462  *  netif_napi_del() removes a napi context from the network device napi list
1463  */
1464 void netif_napi_del(struct napi_struct *napi);
1465 
1466 struct napi_gro_cb {
1467 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1468 	void *frag0;
1469 
1470 	/* Length of frag0. */
1471 	unsigned int frag0_len;
1472 
1473 	/* This indicates where we are processing relative to skb->data. */
1474 	int data_offset;
1475 
1476 	/* This is non-zero if the packet may be of the same flow. */
1477 	int same_flow;
1478 
1479 	/* This is non-zero if the packet cannot be merged with the new skb. */
1480 	int flush;
1481 
1482 	/* Number of segments aggregated. */
1483 	int count;
1484 
1485 	/* Free the skb? */
1486 	int free;
1487 };
1488 
1489 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
1490 
1491 struct packet_type {
1492 	__be16			type;	/* This is really htons(ether_type). */
1493 	struct net_device	*dev;	/* NULL is wildcarded here	     */
1494 	int			(*func) (struct sk_buff *,
1495 					 struct net_device *,
1496 					 struct packet_type *,
1497 					 struct net_device *);
1498 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
1499 						netdev_features_t features);
1500 	int			(*gso_send_check)(struct sk_buff *skb);
1501 	struct sk_buff		**(*gro_receive)(struct sk_buff **head,
1502 					       struct sk_buff *skb);
1503 	int			(*gro_complete)(struct sk_buff *skb);
1504 	void			*af_packet_priv;
1505 	struct list_head	list;
1506 };
1507 
1508 #include <linux/notifier.h>
1509 
1510 /* netdevice notifier chain. Please remember to update the rtnetlink
1511  * notification exclusion list in rtnetlink_event() when adding new
1512  * types.
1513  */
1514 #define NETDEV_UP	0x0001	/* For now you can't veto a device up/down */
1515 #define NETDEV_DOWN	0x0002
1516 #define NETDEV_REBOOT	0x0003	/* Tell a protocol stack a network interface
1517 				   detected a hardware crash and restarted
1518 				   - we can use this eg to kick tcp sessions
1519 				   once done */
1520 #define NETDEV_CHANGE	0x0004	/* Notify device state change */
1521 #define NETDEV_REGISTER 0x0005
1522 #define NETDEV_UNREGISTER	0x0006
1523 #define NETDEV_CHANGEMTU	0x0007
1524 #define NETDEV_CHANGEADDR	0x0008
1525 #define NETDEV_GOING_DOWN	0x0009
1526 #define NETDEV_CHANGENAME	0x000A
1527 #define NETDEV_FEAT_CHANGE	0x000B
1528 #define NETDEV_BONDING_FAILOVER 0x000C
1529 #define NETDEV_PRE_UP		0x000D
1530 #define NETDEV_PRE_TYPE_CHANGE	0x000E
1531 #define NETDEV_POST_TYPE_CHANGE	0x000F
1532 #define NETDEV_POST_INIT	0x0010
1533 #define NETDEV_UNREGISTER_BATCH 0x0011
1534 #define NETDEV_RELEASE		0x0012
1535 #define NETDEV_NOTIFY_PEERS	0x0013
1536 #define NETDEV_JOIN		0x0014
1537 
1538 extern int register_netdevice_notifier(struct notifier_block *nb);
1539 extern int unregister_netdevice_notifier(struct notifier_block *nb);
1540 extern int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
1541 
1542 
1543 extern rwlock_t				dev_base_lock;		/* Device list lock */
1544 
1545 
1546 #define for_each_netdev(net, d)		\
1547 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
1548 #define for_each_netdev_reverse(net, d)	\
1549 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
1550 #define for_each_netdev_rcu(net, d)		\
1551 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
1552 #define for_each_netdev_safe(net, d, n)	\
1553 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
1554 #define for_each_netdev_continue(net, d)		\
1555 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
1556 #define for_each_netdev_continue_rcu(net, d)		\
1557 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
1558 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
1559 
next_net_device(struct net_device * dev)1560 static inline struct net_device *next_net_device(struct net_device *dev)
1561 {
1562 	struct list_head *lh;
1563 	struct net *net;
1564 
1565 	net = dev_net(dev);
1566 	lh = dev->dev_list.next;
1567 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1568 }
1569 
next_net_device_rcu(struct net_device * dev)1570 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
1571 {
1572 	struct list_head *lh;
1573 	struct net *net;
1574 
1575 	net = dev_net(dev);
1576 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
1577 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1578 }
1579 
first_net_device(struct net * net)1580 static inline struct net_device *first_net_device(struct net *net)
1581 {
1582 	return list_empty(&net->dev_base_head) ? NULL :
1583 		net_device_entry(net->dev_base_head.next);
1584 }
1585 
first_net_device_rcu(struct net * net)1586 static inline struct net_device *first_net_device_rcu(struct net *net)
1587 {
1588 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
1589 
1590 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1591 }
1592 
1593 extern int 			netdev_boot_setup_check(struct net_device *dev);
1594 extern unsigned long		netdev_boot_base(const char *prefix, int unit);
1595 extern struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1596 					      const char *hwaddr);
1597 extern struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
1598 extern struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
1599 extern void		dev_add_pack(struct packet_type *pt);
1600 extern void		dev_remove_pack(struct packet_type *pt);
1601 extern void		__dev_remove_pack(struct packet_type *pt);
1602 
1603 extern struct net_device	*dev_get_by_flags_rcu(struct net *net, unsigned short flags,
1604 						      unsigned short mask);
1605 extern struct net_device	*dev_get_by_name(struct net *net, const char *name);
1606 extern struct net_device	*dev_get_by_name_rcu(struct net *net, const char *name);
1607 extern struct net_device	*__dev_get_by_name(struct net *net, const char *name);
1608 extern int		dev_alloc_name(struct net_device *dev, const char *name);
1609 extern int		dev_open(struct net_device *dev);
1610 extern int		dev_close(struct net_device *dev);
1611 extern void		dev_disable_lro(struct net_device *dev);
1612 extern int		dev_queue_xmit(struct sk_buff *skb);
1613 extern int		register_netdevice(struct net_device *dev);
1614 extern void		unregister_netdevice_queue(struct net_device *dev,
1615 						   struct list_head *head);
1616 extern void		unregister_netdevice_many(struct list_head *head);
unregister_netdevice(struct net_device * dev)1617 static inline void unregister_netdevice(struct net_device *dev)
1618 {
1619 	unregister_netdevice_queue(dev, NULL);
1620 }
1621 
1622 extern int 		netdev_refcnt_read(const struct net_device *dev);
1623 extern void		free_netdev(struct net_device *dev);
1624 extern void		synchronize_net(void);
1625 extern int		init_dummy_netdev(struct net_device *dev);
1626 extern void		netdev_resync_ops(struct net_device *dev);
1627 
1628 extern struct net_device	*dev_get_by_index(struct net *net, int ifindex);
1629 extern struct net_device	*__dev_get_by_index(struct net *net, int ifindex);
1630 extern struct net_device	*dev_get_by_index_rcu(struct net *net, int ifindex);
1631 extern int		dev_restart(struct net_device *dev);
1632 #ifdef CONFIG_NETPOLL_TRAP
1633 extern int		netpoll_trap(void);
1634 #endif
1635 extern int	       skb_gro_receive(struct sk_buff **head,
1636 				       struct sk_buff *skb);
1637 extern void	       skb_gro_reset_offset(struct sk_buff *skb);
1638 
skb_gro_offset(const struct sk_buff * skb)1639 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
1640 {
1641 	return NAPI_GRO_CB(skb)->data_offset;
1642 }
1643 
skb_gro_len(const struct sk_buff * skb)1644 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
1645 {
1646 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
1647 }
1648 
skb_gro_pull(struct sk_buff * skb,unsigned int len)1649 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
1650 {
1651 	NAPI_GRO_CB(skb)->data_offset += len;
1652 }
1653 
skb_gro_header_fast(struct sk_buff * skb,unsigned int offset)1654 static inline void *skb_gro_header_fast(struct sk_buff *skb,
1655 					unsigned int offset)
1656 {
1657 	return NAPI_GRO_CB(skb)->frag0 + offset;
1658 }
1659 
skb_gro_header_hard(struct sk_buff * skb,unsigned int hlen)1660 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
1661 {
1662 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
1663 }
1664 
skb_gro_header_slow(struct sk_buff * skb,unsigned int hlen,unsigned int offset)1665 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
1666 					unsigned int offset)
1667 {
1668 	if (!pskb_may_pull(skb, hlen))
1669 		return NULL;
1670 
1671 	NAPI_GRO_CB(skb)->frag0 = NULL;
1672 	NAPI_GRO_CB(skb)->frag0_len = 0;
1673 	return skb->data + offset;
1674 }
1675 
skb_gro_mac_header(struct sk_buff * skb)1676 static inline void *skb_gro_mac_header(struct sk_buff *skb)
1677 {
1678 	return NAPI_GRO_CB(skb)->frag0 ?: skb_mac_header(skb);
1679 }
1680 
skb_gro_network_header(struct sk_buff * skb)1681 static inline void *skb_gro_network_header(struct sk_buff *skb)
1682 {
1683 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
1684 	       skb_network_offset(skb);
1685 }
1686 
dev_hard_header(struct sk_buff * skb,struct net_device * dev,unsigned short type,const void * daddr,const void * saddr,unsigned len)1687 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
1688 				  unsigned short type,
1689 				  const void *daddr, const void *saddr,
1690 				  unsigned len)
1691 {
1692 	if (!dev->header_ops || !dev->header_ops->create)
1693 		return 0;
1694 
1695 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
1696 }
1697 
dev_parse_header(const struct sk_buff * skb,unsigned char * haddr)1698 static inline int dev_parse_header(const struct sk_buff *skb,
1699 				   unsigned char *haddr)
1700 {
1701 	const struct net_device *dev = skb->dev;
1702 
1703 	if (!dev->header_ops || !dev->header_ops->parse)
1704 		return 0;
1705 	return dev->header_ops->parse(skb, haddr);
1706 }
1707 
1708 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
1709 extern int		register_gifconf(unsigned int family, gifconf_func_t * gifconf);
unregister_gifconf(unsigned int family)1710 static inline int unregister_gifconf(unsigned int family)
1711 {
1712 	return register_gifconf(family, NULL);
1713 }
1714 
1715 /*
1716  * Incoming packets are placed on per-cpu queues
1717  */
1718 struct softnet_data {
1719 	struct Qdisc		*output_queue;
1720 	struct Qdisc		**output_queue_tailp;
1721 	struct list_head	poll_list;
1722 	struct sk_buff		*completion_queue;
1723 	struct sk_buff_head	process_queue;
1724 
1725 	/* stats */
1726 	unsigned int		processed;
1727 	unsigned int		time_squeeze;
1728 	unsigned int		cpu_collision;
1729 	unsigned int		received_rps;
1730 
1731 #ifdef CONFIG_RPS
1732 	struct softnet_data	*rps_ipi_list;
1733 
1734 	/* Elements below can be accessed between CPUs for RPS */
1735 	struct call_single_data	csd ____cacheline_aligned_in_smp;
1736 	struct softnet_data	*rps_ipi_next;
1737 	unsigned int		cpu;
1738 	unsigned int		input_queue_head;
1739 	unsigned int		input_queue_tail;
1740 #endif
1741 	unsigned		dropped;
1742 	struct sk_buff_head	input_pkt_queue;
1743 	struct napi_struct	backlog;
1744 };
1745 
input_queue_head_incr(struct softnet_data * sd)1746 static inline void input_queue_head_incr(struct softnet_data *sd)
1747 {
1748 #ifdef CONFIG_RPS
1749 	sd->input_queue_head++;
1750 #endif
1751 }
1752 
input_queue_tail_incr_save(struct softnet_data * sd,unsigned int * qtail)1753 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
1754 					      unsigned int *qtail)
1755 {
1756 #ifdef CONFIG_RPS
1757 	*qtail = ++sd->input_queue_tail;
1758 #endif
1759 }
1760 
1761 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
1762 
1763 extern void __netif_schedule(struct Qdisc *q);
1764 
netif_schedule_queue(struct netdev_queue * txq)1765 static inline void netif_schedule_queue(struct netdev_queue *txq)
1766 {
1767 	if (!(txq->state & QUEUE_STATE_ANY_XOFF))
1768 		__netif_schedule(txq->qdisc);
1769 }
1770 
netif_tx_schedule_all(struct net_device * dev)1771 static inline void netif_tx_schedule_all(struct net_device *dev)
1772 {
1773 	unsigned int i;
1774 
1775 	for (i = 0; i < dev->num_tx_queues; i++)
1776 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
1777 }
1778 
netif_tx_start_queue(struct netdev_queue * dev_queue)1779 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
1780 {
1781 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
1782 }
1783 
1784 /**
1785  *	netif_start_queue - allow transmit
1786  *	@dev: network device
1787  *
1788  *	Allow upper layers to call the device hard_start_xmit routine.
1789  */
netif_start_queue(struct net_device * dev)1790 static inline void netif_start_queue(struct net_device *dev)
1791 {
1792 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
1793 }
1794 
netif_tx_start_all_queues(struct net_device * dev)1795 static inline void netif_tx_start_all_queues(struct net_device *dev)
1796 {
1797 	unsigned int i;
1798 
1799 	for (i = 0; i < dev->num_tx_queues; i++) {
1800 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1801 		netif_tx_start_queue(txq);
1802 	}
1803 }
1804 
netif_tx_wake_queue(struct netdev_queue * dev_queue)1805 static inline void netif_tx_wake_queue(struct netdev_queue *dev_queue)
1806 {
1807 #ifdef CONFIG_NETPOLL_TRAP
1808 	if (netpoll_trap()) {
1809 		netif_tx_start_queue(dev_queue);
1810 		return;
1811 	}
1812 #endif
1813 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state))
1814 		__netif_schedule(dev_queue->qdisc);
1815 }
1816 
1817 /**
1818  *	netif_wake_queue - restart transmit
1819  *	@dev: network device
1820  *
1821  *	Allow upper layers to call the device hard_start_xmit routine.
1822  *	Used for flow control when transmit resources are available.
1823  */
netif_wake_queue(struct net_device * dev)1824 static inline void netif_wake_queue(struct net_device *dev)
1825 {
1826 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
1827 }
1828 
netif_tx_wake_all_queues(struct net_device * dev)1829 static inline void netif_tx_wake_all_queues(struct net_device *dev)
1830 {
1831 	unsigned int i;
1832 
1833 	for (i = 0; i < dev->num_tx_queues; i++) {
1834 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1835 		netif_tx_wake_queue(txq);
1836 	}
1837 }
1838 
netif_tx_stop_queue(struct netdev_queue * dev_queue)1839 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
1840 {
1841 	if (WARN_ON(!dev_queue)) {
1842 		pr_info("netif_stop_queue() cannot be called before register_netdev()\n");
1843 		return;
1844 	}
1845 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
1846 }
1847 
1848 /**
1849  *	netif_stop_queue - stop transmitted packets
1850  *	@dev: network device
1851  *
1852  *	Stop upper layers calling the device hard_start_xmit routine.
1853  *	Used for flow control when transmit resources are unavailable.
1854  */
netif_stop_queue(struct net_device * dev)1855 static inline void netif_stop_queue(struct net_device *dev)
1856 {
1857 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
1858 }
1859 
netif_tx_stop_all_queues(struct net_device * dev)1860 static inline void netif_tx_stop_all_queues(struct net_device *dev)
1861 {
1862 	unsigned int i;
1863 
1864 	for (i = 0; i < dev->num_tx_queues; i++) {
1865 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1866 		netif_tx_stop_queue(txq);
1867 	}
1868 }
1869 
netif_tx_queue_stopped(const struct netdev_queue * dev_queue)1870 static inline int netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
1871 {
1872 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
1873 }
1874 
1875 /**
1876  *	netif_queue_stopped - test if transmit queue is flowblocked
1877  *	@dev: network device
1878  *
1879  *	Test if transmit queue on device is currently unable to send.
1880  */
netif_queue_stopped(const struct net_device * dev)1881 static inline int netif_queue_stopped(const struct net_device *dev)
1882 {
1883 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
1884 }
1885 
netif_xmit_stopped(const struct netdev_queue * dev_queue)1886 static inline int netif_xmit_stopped(const struct netdev_queue *dev_queue)
1887 {
1888 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
1889 }
1890 
netif_xmit_frozen_or_stopped(const struct netdev_queue * dev_queue)1891 static inline int netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
1892 {
1893 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
1894 }
1895 
netdev_tx_sent_queue(struct netdev_queue * dev_queue,unsigned int bytes)1896 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
1897 					unsigned int bytes)
1898 {
1899 #ifdef CONFIG_BQL
1900 	dql_queued(&dev_queue->dql, bytes);
1901 	if (unlikely(dql_avail(&dev_queue->dql) < 0)) {
1902 		set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
1903 		if (unlikely(dql_avail(&dev_queue->dql) >= 0))
1904 			clear_bit(__QUEUE_STATE_STACK_XOFF,
1905 			    &dev_queue->state);
1906 	}
1907 #endif
1908 }
1909 
netdev_sent_queue(struct net_device * dev,unsigned int bytes)1910 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
1911 {
1912 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
1913 }
1914 
netdev_tx_completed_queue(struct netdev_queue * dev_queue,unsigned pkts,unsigned bytes)1915 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
1916 					     unsigned pkts, unsigned bytes)
1917 {
1918 #ifdef CONFIG_BQL
1919 	if (likely(bytes)) {
1920 		dql_completed(&dev_queue->dql, bytes);
1921 		if (unlikely(test_bit(__QUEUE_STATE_STACK_XOFF,
1922 		    &dev_queue->state) &&
1923 		    dql_avail(&dev_queue->dql) >= 0)) {
1924 			if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF,
1925 			     &dev_queue->state))
1926 				netif_schedule_queue(dev_queue);
1927 		}
1928 	}
1929 #endif
1930 }
1931 
netdev_completed_queue(struct net_device * dev,unsigned pkts,unsigned bytes)1932 static inline void netdev_completed_queue(struct net_device *dev,
1933 					  unsigned pkts, unsigned bytes)
1934 {
1935 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
1936 }
1937 
netdev_tx_reset_queue(struct netdev_queue * q)1938 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
1939 {
1940 #ifdef CONFIG_BQL
1941 	dql_reset(&q->dql);
1942 #endif
1943 }
1944 
netdev_reset_queue(struct net_device * dev_queue)1945 static inline void netdev_reset_queue(struct net_device *dev_queue)
1946 {
1947 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
1948 }
1949 
1950 /**
1951  *	netif_running - test if up
1952  *	@dev: network device
1953  *
1954  *	Test if the device has been brought up.
1955  */
netif_running(const struct net_device * dev)1956 static inline int netif_running(const struct net_device *dev)
1957 {
1958 	return test_bit(__LINK_STATE_START, &dev->state);
1959 }
1960 
1961 /*
1962  * Routines to manage the subqueues on a device.  We only need start
1963  * stop, and a check if it's stopped.  All other device management is
1964  * done at the overall netdevice level.
1965  * Also test the device if we're multiqueue.
1966  */
1967 
1968 /**
1969  *	netif_start_subqueue - allow sending packets on subqueue
1970  *	@dev: network device
1971  *	@queue_index: sub queue index
1972  *
1973  * Start individual transmit queue of a device with multiple transmit queues.
1974  */
netif_start_subqueue(struct net_device * dev,u16 queue_index)1975 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
1976 {
1977 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
1978 
1979 	netif_tx_start_queue(txq);
1980 }
1981 
1982 /**
1983  *	netif_stop_subqueue - stop sending packets on subqueue
1984  *	@dev: network device
1985  *	@queue_index: sub queue index
1986  *
1987  * Stop individual transmit queue of a device with multiple transmit queues.
1988  */
netif_stop_subqueue(struct net_device * dev,u16 queue_index)1989 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
1990 {
1991 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
1992 #ifdef CONFIG_NETPOLL_TRAP
1993 	if (netpoll_trap())
1994 		return;
1995 #endif
1996 	netif_tx_stop_queue(txq);
1997 }
1998 
1999 /**
2000  *	netif_subqueue_stopped - test status of subqueue
2001  *	@dev: network device
2002  *	@queue_index: sub queue index
2003  *
2004  * Check individual transmit queue of a device with multiple transmit queues.
2005  */
__netif_subqueue_stopped(const struct net_device * dev,u16 queue_index)2006 static inline int __netif_subqueue_stopped(const struct net_device *dev,
2007 					 u16 queue_index)
2008 {
2009 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2010 
2011 	return netif_tx_queue_stopped(txq);
2012 }
2013 
netif_subqueue_stopped(const struct net_device * dev,struct sk_buff * skb)2014 static inline int netif_subqueue_stopped(const struct net_device *dev,
2015 					 struct sk_buff *skb)
2016 {
2017 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
2018 }
2019 
2020 /**
2021  *	netif_wake_subqueue - allow sending packets on subqueue
2022  *	@dev: network device
2023  *	@queue_index: sub queue index
2024  *
2025  * Resume individual transmit queue of a device with multiple transmit queues.
2026  */
netif_wake_subqueue(struct net_device * dev,u16 queue_index)2027 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2028 {
2029 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2030 #ifdef CONFIG_NETPOLL_TRAP
2031 	if (netpoll_trap())
2032 		return;
2033 #endif
2034 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state))
2035 		__netif_schedule(txq->qdisc);
2036 }
2037 
2038 /*
2039  * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
2040  * as a distribution range limit for the returned value.
2041  */
skb_tx_hash(const struct net_device * dev,const struct sk_buff * skb)2042 static inline u16 skb_tx_hash(const struct net_device *dev,
2043 			      const struct sk_buff *skb)
2044 {
2045 	return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
2046 }
2047 
2048 /**
2049  *	netif_is_multiqueue - test if device has multiple transmit queues
2050  *	@dev: network device
2051  *
2052  * Check if device has multiple transmit queues
2053  */
netif_is_multiqueue(const struct net_device * dev)2054 static inline int netif_is_multiqueue(const struct net_device *dev)
2055 {
2056 	return dev->num_tx_queues > 1;
2057 }
2058 
2059 extern int netif_set_real_num_tx_queues(struct net_device *dev,
2060 					unsigned int txq);
2061 
2062 #ifdef CONFIG_RPS
2063 extern int netif_set_real_num_rx_queues(struct net_device *dev,
2064 					unsigned int rxq);
2065 #else
netif_set_real_num_rx_queues(struct net_device * dev,unsigned int rxq)2066 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
2067 						unsigned int rxq)
2068 {
2069 	return 0;
2070 }
2071 #endif
2072 
netif_copy_real_num_queues(struct net_device * to_dev,const struct net_device * from_dev)2073 static inline int netif_copy_real_num_queues(struct net_device *to_dev,
2074 					     const struct net_device *from_dev)
2075 {
2076 	netif_set_real_num_tx_queues(to_dev, from_dev->real_num_tx_queues);
2077 #ifdef CONFIG_RPS
2078 	return netif_set_real_num_rx_queues(to_dev,
2079 					    from_dev->real_num_rx_queues);
2080 #else
2081 	return 0;
2082 #endif
2083 }
2084 
2085 /* Use this variant when it is known for sure that it
2086  * is executing from hardware interrupt context or with hardware interrupts
2087  * disabled.
2088  */
2089 extern void dev_kfree_skb_irq(struct sk_buff *skb);
2090 
2091 /* Use this variant in places where it could be invoked
2092  * from either hardware interrupt or other context, with hardware interrupts
2093  * either disabled or enabled.
2094  */
2095 extern void dev_kfree_skb_any(struct sk_buff *skb);
2096 
2097 extern int		netif_rx(struct sk_buff *skb);
2098 extern int		netif_rx_ni(struct sk_buff *skb);
2099 extern int		netif_receive_skb(struct sk_buff *skb);
2100 extern gro_result_t	dev_gro_receive(struct napi_struct *napi,
2101 					struct sk_buff *skb);
2102 extern gro_result_t	napi_skb_finish(gro_result_t ret, struct sk_buff *skb);
2103 extern gro_result_t	napi_gro_receive(struct napi_struct *napi,
2104 					 struct sk_buff *skb);
2105 extern void		napi_gro_flush(struct napi_struct *napi);
2106 extern struct sk_buff *	napi_get_frags(struct napi_struct *napi);
2107 extern gro_result_t	napi_frags_finish(struct napi_struct *napi,
2108 					  struct sk_buff *skb,
2109 					  gro_result_t ret);
2110 extern struct sk_buff *	napi_frags_skb(struct napi_struct *napi);
2111 extern gro_result_t	napi_gro_frags(struct napi_struct *napi);
2112 
napi_free_frags(struct napi_struct * napi)2113 static inline void napi_free_frags(struct napi_struct *napi)
2114 {
2115 	kfree_skb(napi->skb);
2116 	napi->skb = NULL;
2117 }
2118 
2119 extern int netdev_rx_handler_register(struct net_device *dev,
2120 				      rx_handler_func_t *rx_handler,
2121 				      void *rx_handler_data);
2122 extern void netdev_rx_handler_unregister(struct net_device *dev);
2123 
2124 extern int		dev_valid_name(const char *name);
2125 extern int		dev_ioctl(struct net *net, unsigned int cmd, void __user *);
2126 extern int		dev_ethtool(struct net *net, struct ifreq *);
2127 extern unsigned		dev_get_flags(const struct net_device *);
2128 extern int		__dev_change_flags(struct net_device *, unsigned int flags);
2129 extern int		dev_change_flags(struct net_device *, unsigned);
2130 extern void		__dev_notify_flags(struct net_device *, unsigned int old_flags);
2131 extern int		dev_change_name(struct net_device *, const char *);
2132 extern int		dev_set_alias(struct net_device *, const char *, size_t);
2133 extern int		dev_change_net_namespace(struct net_device *,
2134 						 struct net *, const char *);
2135 extern int		dev_set_mtu(struct net_device *, int);
2136 extern void		dev_set_group(struct net_device *, int);
2137 extern int		dev_set_mac_address(struct net_device *,
2138 					    struct sockaddr *);
2139 extern int		dev_hard_start_xmit(struct sk_buff *skb,
2140 					    struct net_device *dev,
2141 					    struct netdev_queue *txq);
2142 extern int		dev_forward_skb(struct net_device *dev,
2143 					struct sk_buff *skb);
2144 
2145 extern int		netdev_budget;
2146 
2147 /* Called by rtnetlink.c:rtnl_unlock() */
2148 extern void netdev_run_todo(void);
2149 
2150 /**
2151  *	dev_put - release reference to device
2152  *	@dev: network device
2153  *
2154  * Release reference to device to allow it to be freed.
2155  */
dev_put(struct net_device * dev)2156 static inline void dev_put(struct net_device *dev)
2157 {
2158 	this_cpu_dec(*dev->pcpu_refcnt);
2159 }
2160 
2161 /**
2162  *	dev_hold - get reference to device
2163  *	@dev: network device
2164  *
2165  * Hold reference to device to keep it from being freed.
2166  */
dev_hold(struct net_device * dev)2167 static inline void dev_hold(struct net_device *dev)
2168 {
2169 	this_cpu_inc(*dev->pcpu_refcnt);
2170 }
2171 
2172 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
2173  * and _off may be called from IRQ context, but it is caller
2174  * who is responsible for serialization of these calls.
2175  *
2176  * The name carrier is inappropriate, these functions should really be
2177  * called netif_lowerlayer_*() because they represent the state of any
2178  * kind of lower layer not just hardware media.
2179  */
2180 
2181 extern void linkwatch_fire_event(struct net_device *dev);
2182 extern void linkwatch_forget_dev(struct net_device *dev);
2183 
2184 /**
2185  *	netif_carrier_ok - test if carrier present
2186  *	@dev: network device
2187  *
2188  * Check if carrier is present on device
2189  */
netif_carrier_ok(const struct net_device * dev)2190 static inline int netif_carrier_ok(const struct net_device *dev)
2191 {
2192 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
2193 }
2194 
2195 extern unsigned long dev_trans_start(struct net_device *dev);
2196 
2197 extern void __netdev_watchdog_up(struct net_device *dev);
2198 
2199 extern void netif_carrier_on(struct net_device *dev);
2200 
2201 extern void netif_carrier_off(struct net_device *dev);
2202 
2203 extern void netif_notify_peers(struct net_device *dev);
2204 
2205 /**
2206  *	netif_dormant_on - mark device as dormant.
2207  *	@dev: network device
2208  *
2209  * Mark device as dormant (as per RFC2863).
2210  *
2211  * The dormant state indicates that the relevant interface is not
2212  * actually in a condition to pass packets (i.e., it is not 'up') but is
2213  * in a "pending" state, waiting for some external event.  For "on-
2214  * demand" interfaces, this new state identifies the situation where the
2215  * interface is waiting for events to place it in the up state.
2216  *
2217  */
netif_dormant_on(struct net_device * dev)2218 static inline void netif_dormant_on(struct net_device *dev)
2219 {
2220 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
2221 		linkwatch_fire_event(dev);
2222 }
2223 
2224 /**
2225  *	netif_dormant_off - set device as not dormant.
2226  *	@dev: network device
2227  *
2228  * Device is not in dormant state.
2229  */
netif_dormant_off(struct net_device * dev)2230 static inline void netif_dormant_off(struct net_device *dev)
2231 {
2232 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
2233 		linkwatch_fire_event(dev);
2234 }
2235 
2236 /**
2237  *	netif_dormant - test if carrier present
2238  *	@dev: network device
2239  *
2240  * Check if carrier is present on device
2241  */
netif_dormant(const struct net_device * dev)2242 static inline int netif_dormant(const struct net_device *dev)
2243 {
2244 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
2245 }
2246 
2247 
2248 /**
2249  *	netif_oper_up - test if device is operational
2250  *	@dev: network device
2251  *
2252  * Check if carrier is operational
2253  */
netif_oper_up(const struct net_device * dev)2254 static inline int netif_oper_up(const struct net_device *dev)
2255 {
2256 	return (dev->operstate == IF_OPER_UP ||
2257 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
2258 }
2259 
2260 /**
2261  *	netif_device_present - is device available or removed
2262  *	@dev: network device
2263  *
2264  * Check if device has not been removed from system.
2265  */
netif_device_present(struct net_device * dev)2266 static inline int netif_device_present(struct net_device *dev)
2267 {
2268 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
2269 }
2270 
2271 extern void netif_device_detach(struct net_device *dev);
2272 
2273 extern void netif_device_attach(struct net_device *dev);
2274 
2275 /*
2276  * Network interface message level settings
2277  */
2278 
2279 enum {
2280 	NETIF_MSG_DRV		= 0x0001,
2281 	NETIF_MSG_PROBE		= 0x0002,
2282 	NETIF_MSG_LINK		= 0x0004,
2283 	NETIF_MSG_TIMER		= 0x0008,
2284 	NETIF_MSG_IFDOWN	= 0x0010,
2285 	NETIF_MSG_IFUP		= 0x0020,
2286 	NETIF_MSG_RX_ERR	= 0x0040,
2287 	NETIF_MSG_TX_ERR	= 0x0080,
2288 	NETIF_MSG_TX_QUEUED	= 0x0100,
2289 	NETIF_MSG_INTR		= 0x0200,
2290 	NETIF_MSG_TX_DONE	= 0x0400,
2291 	NETIF_MSG_RX_STATUS	= 0x0800,
2292 	NETIF_MSG_PKTDATA	= 0x1000,
2293 	NETIF_MSG_HW		= 0x2000,
2294 	NETIF_MSG_WOL		= 0x4000,
2295 };
2296 
2297 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
2298 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
2299 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
2300 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
2301 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
2302 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
2303 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
2304 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
2305 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
2306 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
2307 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
2308 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
2309 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
2310 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
2311 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
2312 
netif_msg_init(int debug_value,int default_msg_enable_bits)2313 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
2314 {
2315 	/* use default */
2316 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
2317 		return default_msg_enable_bits;
2318 	if (debug_value == 0)	/* no output */
2319 		return 0;
2320 	/* set low N bits */
2321 	return (1 << debug_value) - 1;
2322 }
2323 
__netif_tx_lock(struct netdev_queue * txq,int cpu)2324 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
2325 {
2326 	spin_lock(&txq->_xmit_lock);
2327 	txq->xmit_lock_owner = cpu;
2328 }
2329 
__netif_tx_lock_bh(struct netdev_queue * txq)2330 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
2331 {
2332 	spin_lock_bh(&txq->_xmit_lock);
2333 	txq->xmit_lock_owner = smp_processor_id();
2334 }
2335 
__netif_tx_trylock(struct netdev_queue * txq)2336 static inline int __netif_tx_trylock(struct netdev_queue *txq)
2337 {
2338 	int ok = spin_trylock(&txq->_xmit_lock);
2339 	if (likely(ok))
2340 		txq->xmit_lock_owner = smp_processor_id();
2341 	return ok;
2342 }
2343 
__netif_tx_unlock(struct netdev_queue * txq)2344 static inline void __netif_tx_unlock(struct netdev_queue *txq)
2345 {
2346 	txq->xmit_lock_owner = -1;
2347 	spin_unlock(&txq->_xmit_lock);
2348 }
2349 
__netif_tx_unlock_bh(struct netdev_queue * txq)2350 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
2351 {
2352 	txq->xmit_lock_owner = -1;
2353 	spin_unlock_bh(&txq->_xmit_lock);
2354 }
2355 
txq_trans_update(struct netdev_queue * txq)2356 static inline void txq_trans_update(struct netdev_queue *txq)
2357 {
2358 	if (txq->xmit_lock_owner != -1)
2359 		txq->trans_start = jiffies;
2360 }
2361 
2362 /**
2363  *	netif_tx_lock - grab network device transmit lock
2364  *	@dev: network device
2365  *
2366  * Get network device transmit lock
2367  */
netif_tx_lock(struct net_device * dev)2368 static inline void netif_tx_lock(struct net_device *dev)
2369 {
2370 	unsigned int i;
2371 	int cpu;
2372 
2373 	spin_lock(&dev->tx_global_lock);
2374 	cpu = smp_processor_id();
2375 	for (i = 0; i < dev->num_tx_queues; i++) {
2376 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2377 
2378 		/* We are the only thread of execution doing a
2379 		 * freeze, but we have to grab the _xmit_lock in
2380 		 * order to synchronize with threads which are in
2381 		 * the ->hard_start_xmit() handler and already
2382 		 * checked the frozen bit.
2383 		 */
2384 		__netif_tx_lock(txq, cpu);
2385 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
2386 		__netif_tx_unlock(txq);
2387 	}
2388 }
2389 
netif_tx_lock_bh(struct net_device * dev)2390 static inline void netif_tx_lock_bh(struct net_device *dev)
2391 {
2392 	local_bh_disable();
2393 	netif_tx_lock(dev);
2394 }
2395 
netif_tx_unlock(struct net_device * dev)2396 static inline void netif_tx_unlock(struct net_device *dev)
2397 {
2398 	unsigned int i;
2399 
2400 	for (i = 0; i < dev->num_tx_queues; i++) {
2401 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2402 
2403 		/* No need to grab the _xmit_lock here.  If the
2404 		 * queue is not stopped for another reason, we
2405 		 * force a schedule.
2406 		 */
2407 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
2408 		netif_schedule_queue(txq);
2409 	}
2410 	spin_unlock(&dev->tx_global_lock);
2411 }
2412 
netif_tx_unlock_bh(struct net_device * dev)2413 static inline void netif_tx_unlock_bh(struct net_device *dev)
2414 {
2415 	netif_tx_unlock(dev);
2416 	local_bh_enable();
2417 }
2418 
2419 #define HARD_TX_LOCK(dev, txq, cpu) {			\
2420 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
2421 		__netif_tx_lock(txq, cpu);		\
2422 	}						\
2423 }
2424 
2425 #define HARD_TX_UNLOCK(dev, txq) {			\
2426 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
2427 		__netif_tx_unlock(txq);			\
2428 	}						\
2429 }
2430 
netif_tx_disable(struct net_device * dev)2431 static inline void netif_tx_disable(struct net_device *dev)
2432 {
2433 	unsigned int i;
2434 	int cpu;
2435 
2436 	local_bh_disable();
2437 	cpu = smp_processor_id();
2438 	for (i = 0; i < dev->num_tx_queues; i++) {
2439 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2440 
2441 		__netif_tx_lock(txq, cpu);
2442 		netif_tx_stop_queue(txq);
2443 		__netif_tx_unlock(txq);
2444 	}
2445 	local_bh_enable();
2446 }
2447 
netif_addr_lock(struct net_device * dev)2448 static inline void netif_addr_lock(struct net_device *dev)
2449 {
2450 	spin_lock(&dev->addr_list_lock);
2451 }
2452 
netif_addr_lock_nested(struct net_device * dev)2453 static inline void netif_addr_lock_nested(struct net_device *dev)
2454 {
2455 	spin_lock_nested(&dev->addr_list_lock, SINGLE_DEPTH_NESTING);
2456 }
2457 
netif_addr_lock_bh(struct net_device * dev)2458 static inline void netif_addr_lock_bh(struct net_device *dev)
2459 {
2460 	spin_lock_bh(&dev->addr_list_lock);
2461 }
2462 
netif_addr_unlock(struct net_device * dev)2463 static inline void netif_addr_unlock(struct net_device *dev)
2464 {
2465 	spin_unlock(&dev->addr_list_lock);
2466 }
2467 
netif_addr_unlock_bh(struct net_device * dev)2468 static inline void netif_addr_unlock_bh(struct net_device *dev)
2469 {
2470 	spin_unlock_bh(&dev->addr_list_lock);
2471 }
2472 
2473 /*
2474  * dev_addrs walker. Should be used only for read access. Call with
2475  * rcu_read_lock held.
2476  */
2477 #define for_each_dev_addr(dev, ha) \
2478 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
2479 
2480 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
2481 
2482 extern void		ether_setup(struct net_device *dev);
2483 
2484 /* Support for loadable net-drivers */
2485 extern struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
2486 				       void (*setup)(struct net_device *),
2487 				       unsigned int txqs, unsigned int rxqs);
2488 #define alloc_netdev(sizeof_priv, name, setup) \
2489 	alloc_netdev_mqs(sizeof_priv, name, setup, 1, 1)
2490 
2491 #define alloc_netdev_mq(sizeof_priv, name, setup, count) \
2492 	alloc_netdev_mqs(sizeof_priv, name, setup, count, count)
2493 
2494 extern int		register_netdev(struct net_device *dev);
2495 extern void		unregister_netdev(struct net_device *dev);
2496 
2497 /* General hardware address lists handling functions */
2498 extern int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list,
2499 				  struct netdev_hw_addr_list *from_list,
2500 				  int addr_len, unsigned char addr_type);
2501 extern void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list,
2502 				   struct netdev_hw_addr_list *from_list,
2503 				   int addr_len, unsigned char addr_type);
2504 extern int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
2505 			  struct netdev_hw_addr_list *from_list,
2506 			  int addr_len);
2507 extern void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
2508 			     struct netdev_hw_addr_list *from_list,
2509 			     int addr_len);
2510 extern void __hw_addr_flush(struct netdev_hw_addr_list *list);
2511 extern void __hw_addr_init(struct netdev_hw_addr_list *list);
2512 
2513 /* Functions used for device addresses handling */
2514 extern int dev_addr_add(struct net_device *dev, unsigned char *addr,
2515 			unsigned char addr_type);
2516 extern int dev_addr_del(struct net_device *dev, unsigned char *addr,
2517 			unsigned char addr_type);
2518 extern int dev_addr_add_multiple(struct net_device *to_dev,
2519 				 struct net_device *from_dev,
2520 				 unsigned char addr_type);
2521 extern int dev_addr_del_multiple(struct net_device *to_dev,
2522 				 struct net_device *from_dev,
2523 				 unsigned char addr_type);
2524 extern void dev_addr_flush(struct net_device *dev);
2525 extern int dev_addr_init(struct net_device *dev);
2526 
2527 /* Functions used for unicast addresses handling */
2528 extern int dev_uc_add(struct net_device *dev, unsigned char *addr);
2529 extern int dev_uc_del(struct net_device *dev, unsigned char *addr);
2530 extern int dev_uc_sync(struct net_device *to, struct net_device *from);
2531 extern void dev_uc_unsync(struct net_device *to, struct net_device *from);
2532 extern void dev_uc_flush(struct net_device *dev);
2533 extern void dev_uc_init(struct net_device *dev);
2534 
2535 /* Functions used for multicast addresses handling */
2536 extern int dev_mc_add(struct net_device *dev, unsigned char *addr);
2537 extern int dev_mc_add_global(struct net_device *dev, unsigned char *addr);
2538 extern int dev_mc_del(struct net_device *dev, unsigned char *addr);
2539 extern int dev_mc_del_global(struct net_device *dev, unsigned char *addr);
2540 extern int dev_mc_sync(struct net_device *to, struct net_device *from);
2541 extern void dev_mc_unsync(struct net_device *to, struct net_device *from);
2542 extern void dev_mc_flush(struct net_device *dev);
2543 extern void dev_mc_init(struct net_device *dev);
2544 
2545 /* Functions used for secondary unicast and multicast support */
2546 extern void		dev_set_rx_mode(struct net_device *dev);
2547 extern void		__dev_set_rx_mode(struct net_device *dev);
2548 extern int		dev_set_promiscuity(struct net_device *dev, int inc);
2549 extern int		dev_set_allmulti(struct net_device *dev, int inc);
2550 extern void		netdev_state_change(struct net_device *dev);
2551 extern int		netdev_bonding_change(struct net_device *dev,
2552 					      unsigned long event);
2553 extern void		netdev_features_change(struct net_device *dev);
2554 /* Load a device via the kmod */
2555 extern void		dev_load(struct net *net, const char *name);
2556 extern void		dev_mcast_init(void);
2557 extern struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
2558 					       struct rtnl_link_stats64 *storage);
2559 
2560 extern int		netdev_max_backlog;
2561 extern int		netdev_tstamp_prequeue;
2562 extern int		weight_p;
2563 extern int		bpf_jit_enable;
2564 extern int		netdev_set_master(struct net_device *dev, struct net_device *master);
2565 extern int netdev_set_bond_master(struct net_device *dev,
2566 				  struct net_device *master);
2567 extern int skb_checksum_help(struct sk_buff *skb);
2568 extern struct sk_buff *skb_gso_segment(struct sk_buff *skb,
2569 	netdev_features_t features);
2570 #ifdef CONFIG_BUG
2571 extern void netdev_rx_csum_fault(struct net_device *dev);
2572 #else
netdev_rx_csum_fault(struct net_device * dev)2573 static inline void netdev_rx_csum_fault(struct net_device *dev)
2574 {
2575 }
2576 #endif
2577 /* rx skb timestamps */
2578 extern void		net_enable_timestamp(void);
2579 extern void		net_disable_timestamp(void);
2580 
2581 #ifdef CONFIG_PROC_FS
2582 extern void *dev_seq_start(struct seq_file *seq, loff_t *pos);
2583 extern void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos);
2584 extern void dev_seq_stop(struct seq_file *seq, void *v);
2585 extern int dev_seq_open_ops(struct inode *inode, struct file *file,
2586 			    const struct seq_operations *ops);
2587 #endif
2588 
2589 extern int netdev_class_create_file(struct class_attribute *class_attr);
2590 extern void netdev_class_remove_file(struct class_attribute *class_attr);
2591 
2592 extern struct kobj_ns_type_operations net_ns_type_operations;
2593 
2594 extern const char *netdev_drivername(const struct net_device *dev);
2595 
2596 extern void linkwatch_run_queue(void);
2597 
netdev_get_wanted_features(struct net_device * dev)2598 static inline netdev_features_t netdev_get_wanted_features(
2599 	struct net_device *dev)
2600 {
2601 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
2602 }
2603 netdev_features_t netdev_increment_features(netdev_features_t all,
2604 	netdev_features_t one, netdev_features_t mask);
2605 int __netdev_update_features(struct net_device *dev);
2606 void netdev_update_features(struct net_device *dev);
2607 void netdev_change_features(struct net_device *dev);
2608 
2609 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
2610 					struct net_device *dev);
2611 
2612 netdev_features_t netif_skb_features(struct sk_buff *skb);
2613 
net_gso_ok(netdev_features_t features,int gso_type)2614 static inline int net_gso_ok(netdev_features_t features, int gso_type)
2615 {
2616 	netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
2617 
2618 	/* check flags correspondence */
2619 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
2620 	BUILD_BUG_ON(SKB_GSO_UDP     != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
2621 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
2622 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
2623 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
2624 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
2625 
2626 	return (features & feature) == feature;
2627 }
2628 
skb_gso_ok(struct sk_buff * skb,netdev_features_t features)2629 static inline int skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
2630 {
2631 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
2632 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
2633 }
2634 
netif_needs_gso(struct sk_buff * skb,netdev_features_t features)2635 static inline int netif_needs_gso(struct sk_buff *skb,
2636 	netdev_features_t features)
2637 {
2638 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
2639 		unlikely(skb->ip_summed != CHECKSUM_PARTIAL));
2640 }
2641 
netif_set_gso_max_size(struct net_device * dev,unsigned int size)2642 static inline void netif_set_gso_max_size(struct net_device *dev,
2643 					  unsigned int size)
2644 {
2645 	dev->gso_max_size = size;
2646 }
2647 
netif_is_bond_slave(struct net_device * dev)2648 static inline int netif_is_bond_slave(struct net_device *dev)
2649 {
2650 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
2651 }
2652 
2653 extern struct pernet_operations __net_initdata loopback_net_ops;
2654 
2655 /* Logging, debugging and troubleshooting/diagnostic helpers. */
2656 
2657 /* netdev_printk helpers, similar to dev_printk */
2658 
netdev_name(const struct net_device * dev)2659 static inline const char *netdev_name(const struct net_device *dev)
2660 {
2661 	if (dev->reg_state != NETREG_REGISTERED)
2662 		return "(unregistered net_device)";
2663 	return dev->name;
2664 }
2665 
2666 extern int __netdev_printk(const char *level, const struct net_device *dev,
2667 			struct va_format *vaf);
2668 
2669 extern __printf(3, 4)
2670 int netdev_printk(const char *level, const struct net_device *dev,
2671 		  const char *format, ...);
2672 extern __printf(2, 3)
2673 int netdev_emerg(const struct net_device *dev, const char *format, ...);
2674 extern __printf(2, 3)
2675 int netdev_alert(const struct net_device *dev, const char *format, ...);
2676 extern __printf(2, 3)
2677 int netdev_crit(const struct net_device *dev, const char *format, ...);
2678 extern __printf(2, 3)
2679 int netdev_err(const struct net_device *dev, const char *format, ...);
2680 extern __printf(2, 3)
2681 int netdev_warn(const struct net_device *dev, const char *format, ...);
2682 extern __printf(2, 3)
2683 int netdev_notice(const struct net_device *dev, const char *format, ...);
2684 extern __printf(2, 3)
2685 int netdev_info(const struct net_device *dev, const char *format, ...);
2686 
2687 #define MODULE_ALIAS_NETDEV(device) \
2688 	MODULE_ALIAS("netdev-" device)
2689 
2690 #if defined(DEBUG)
2691 #define netdev_dbg(__dev, format, args...)			\
2692 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
2693 #elif defined(CONFIG_DYNAMIC_DEBUG)
2694 #define netdev_dbg(__dev, format, args...)			\
2695 do {								\
2696 	dynamic_netdev_dbg(__dev, format, ##args);		\
2697 } while (0)
2698 #else
2699 #define netdev_dbg(__dev, format, args...)			\
2700 ({								\
2701 	if (0)							\
2702 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
2703 	0;							\
2704 })
2705 #endif
2706 
2707 #if defined(VERBOSE_DEBUG)
2708 #define netdev_vdbg	netdev_dbg
2709 #else
2710 
2711 #define netdev_vdbg(dev, format, args...)			\
2712 ({								\
2713 	if (0)							\
2714 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
2715 	0;							\
2716 })
2717 #endif
2718 
2719 /*
2720  * netdev_WARN() acts like dev_printk(), but with the key difference
2721  * of using a WARN/WARN_ON to get the message out, including the
2722  * file/line information and a backtrace.
2723  */
2724 #define netdev_WARN(dev, format, args...)			\
2725 	WARN(1, "netdevice: %s\n" format, netdev_name(dev), ##args);
2726 
2727 /* netif printk helpers, similar to netdev_printk */
2728 
2729 #define netif_printk(priv, type, level, dev, fmt, args...)	\
2730 do {					  			\
2731 	if (netif_msg_##type(priv))				\
2732 		netdev_printk(level, (dev), fmt, ##args);	\
2733 } while (0)
2734 
2735 #define netif_level(level, priv, type, dev, fmt, args...)	\
2736 do {								\
2737 	if (netif_msg_##type(priv))				\
2738 		netdev_##level(dev, fmt, ##args);		\
2739 } while (0)
2740 
2741 #define netif_emerg(priv, type, dev, fmt, args...)		\
2742 	netif_level(emerg, priv, type, dev, fmt, ##args)
2743 #define netif_alert(priv, type, dev, fmt, args...)		\
2744 	netif_level(alert, priv, type, dev, fmt, ##args)
2745 #define netif_crit(priv, type, dev, fmt, args...)		\
2746 	netif_level(crit, priv, type, dev, fmt, ##args)
2747 #define netif_err(priv, type, dev, fmt, args...)		\
2748 	netif_level(err, priv, type, dev, fmt, ##args)
2749 #define netif_warn(priv, type, dev, fmt, args...)		\
2750 	netif_level(warn, priv, type, dev, fmt, ##args)
2751 #define netif_notice(priv, type, dev, fmt, args...)		\
2752 	netif_level(notice, priv, type, dev, fmt, ##args)
2753 #define netif_info(priv, type, dev, fmt, args...)		\
2754 	netif_level(info, priv, type, dev, fmt, ##args)
2755 
2756 #if defined(DEBUG)
2757 #define netif_dbg(priv, type, dev, format, args...)		\
2758 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
2759 #elif defined(CONFIG_DYNAMIC_DEBUG)
2760 #define netif_dbg(priv, type, netdev, format, args...)		\
2761 do {								\
2762 	if (netif_msg_##type(priv))				\
2763 		dynamic_netdev_dbg(netdev, format, ##args);	\
2764 } while (0)
2765 #else
2766 #define netif_dbg(priv, type, dev, format, args...)			\
2767 ({									\
2768 	if (0)								\
2769 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
2770 	0;								\
2771 })
2772 #endif
2773 
2774 #if defined(VERBOSE_DEBUG)
2775 #define netif_vdbg	netif_dbg
2776 #else
2777 #define netif_vdbg(priv, type, dev, format, args...)		\
2778 ({								\
2779 	if (0)							\
2780 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
2781 	0;							\
2782 })
2783 #endif
2784 
2785 #endif /* __KERNEL__ */
2786 
2787 #endif	/* _LINUX_NETDEVICE_H */
2788