1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * NET3 Protocol independent device support routines.
4 *
5 * Derived from the non IP parts of dev.c 1.0.19
6 * Authors: Ross Biro
7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8 * Mark Evans, <evansmp@uhura.aston.ac.uk>
9 *
10 * Additional Authors:
11 * Florian la Roche <rzsfl@rz.uni-sb.de>
12 * Alan Cox <gw4pts@gw4pts.ampr.org>
13 * David Hinds <dahinds@users.sourceforge.net>
14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15 * Adam Sulmicki <adam@cfar.umd.edu>
16 * Pekka Riikonen <priikone@poesidon.pspt.fi>
17 *
18 * Changes:
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
30 * drivers
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
40 * call a packet.
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
45 * Alan Cox : Fixed nasty side effect of device close
46 * changes.
47 * Rudi Cilibrasi : Pass the right thing to
48 * set_mac_address()
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
54 * 1 device.
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
62 * the backlog queue.
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
68 * - netif_rx() feedback
69 */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitmap.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/isolation.h>
81 #include <linux/sched/mm.h>
82 #include <linux/smpboot.h>
83 #include <linux/mutex.h>
84 #include <linux/rwsem.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/ethtool_netlink.h>
96 #include <linux/skbuff.h>
97 #include <linux/kthread.h>
98 #include <linux/bpf.h>
99 #include <linux/bpf_trace.h>
100 #include <net/net_namespace.h>
101 #include <net/sock.h>
102 #include <net/busy_poll.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/stat.h>
105 #include <net/dsa.h>
106 #include <net/dst.h>
107 #include <net/dst_metadata.h>
108 #include <net/gro.h>
109 #include <net/netdev_queues.h>
110 #include <net/pkt_sched.h>
111 #include <net/pkt_cls.h>
112 #include <net/checksum.h>
113 #include <net/xfrm.h>
114 #include <net/tcx.h>
115 #include <linux/highmem.h>
116 #include <linux/init.h>
117 #include <linux/module.h>
118 #include <linux/netpoll.h>
119 #include <linux/rcupdate.h>
120 #include <linux/delay.h>
121 #include <net/iw_handler.h>
122 #include <asm/current.h>
123 #include <linux/audit.h>
124 #include <linux/dmaengine.h>
125 #include <linux/err.h>
126 #include <linux/ctype.h>
127 #include <linux/if_arp.h>
128 #include <linux/if_vlan.h>
129 #include <linux/ip.h>
130 #include <net/ip.h>
131 #include <net/mpls.h>
132 #include <linux/ipv6.h>
133 #include <linux/in.h>
134 #include <linux/jhash.h>
135 #include <linux/random.h>
136 #include <trace/events/napi.h>
137 #include <trace/events/net.h>
138 #include <trace/events/skb.h>
139 #include <trace/events/qdisc.h>
140 #include <trace/events/xdp.h>
141 #include <linux/inetdevice.h>
142 #include <linux/cpu_rmap.h>
143 #include <linux/static_key.h>
144 #include <linux/hashtable.h>
145 #include <linux/vmalloc.h>
146 #include <linux/if_macvlan.h>
147 #include <linux/errqueue.h>
148 #include <linux/hrtimer.h>
149 #include <linux/netfilter_netdev.h>
150 #include <linux/crash_dump.h>
151 #include <linux/sctp.h>
152 #include <net/udp_tunnel.h>
153 #include <linux/net_namespace.h>
154 #include <linux/indirect_call_wrapper.h>
155 #include <net/devlink.h>
156 #include <linux/pm_runtime.h>
157 #include <linux/prandom.h>
158 #include <linux/once_lite.h>
159 #include <net/netdev_lock.h>
160 #include <net/netdev_rx_queue.h>
161 #include <net/page_pool/types.h>
162 #include <net/page_pool/helpers.h>
163 #include <net/page_pool/memory_provider.h>
164 #include <net/rps.h>
165 #include <linux/phy_link_topology.h>
166
167 #include "dev.h"
168 #include "devmem.h"
169 #include "net-sysfs.h"
170
171 static DEFINE_SPINLOCK(ptype_lock);
172 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
173
174 static int netif_rx_internal(struct sk_buff *skb);
175 static int call_netdevice_notifiers_extack(unsigned long val,
176 struct net_device *dev,
177 struct netlink_ext_ack *extack);
178
179 static DEFINE_MUTEX(ifalias_mutex);
180
181 /* protects napi_hash addition/deletion and napi_gen_id */
182 static DEFINE_SPINLOCK(napi_hash_lock);
183
184 static unsigned int napi_gen_id = NR_CPUS;
185 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
186
dev_base_seq_inc(struct net * net)187 static inline void dev_base_seq_inc(struct net *net)
188 {
189 unsigned int val = net->dev_base_seq + 1;
190
191 WRITE_ONCE(net->dev_base_seq, val ?: 1);
192 }
193
dev_name_hash(struct net * net,const char * name)194 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
195 {
196 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
197
198 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
199 }
200
dev_index_hash(struct net * net,int ifindex)201 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
202 {
203 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
204 }
205
206 #ifndef CONFIG_PREEMPT_RT
207
208 static DEFINE_STATIC_KEY_FALSE(use_backlog_threads_key);
209
setup_backlog_napi_threads(char * arg)210 static int __init setup_backlog_napi_threads(char *arg)
211 {
212 static_branch_enable(&use_backlog_threads_key);
213 return 0;
214 }
215 early_param("thread_backlog_napi", setup_backlog_napi_threads);
216
use_backlog_threads(void)217 static bool use_backlog_threads(void)
218 {
219 return static_branch_unlikely(&use_backlog_threads_key);
220 }
221
222 #else
223
use_backlog_threads(void)224 static bool use_backlog_threads(void)
225 {
226 return true;
227 }
228
229 #endif
230
backlog_lock_irq_save(struct softnet_data * sd,unsigned long * flags)231 static inline void backlog_lock_irq_save(struct softnet_data *sd,
232 unsigned long *flags)
233 {
234 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
235 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
236 else
237 local_irq_save(*flags);
238 }
239
backlog_lock_irq_disable(struct softnet_data * sd)240 static inline void backlog_lock_irq_disable(struct softnet_data *sd)
241 {
242 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
243 spin_lock_irq(&sd->input_pkt_queue.lock);
244 else
245 local_irq_disable();
246 }
247
backlog_unlock_irq_restore(struct softnet_data * sd,unsigned long * flags)248 static inline void backlog_unlock_irq_restore(struct softnet_data *sd,
249 unsigned long *flags)
250 {
251 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
252 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
253 else
254 local_irq_restore(*flags);
255 }
256
backlog_unlock_irq_enable(struct softnet_data * sd)257 static inline void backlog_unlock_irq_enable(struct softnet_data *sd)
258 {
259 if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
260 spin_unlock_irq(&sd->input_pkt_queue.lock);
261 else
262 local_irq_enable();
263 }
264
netdev_name_node_alloc(struct net_device * dev,const char * name)265 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
266 const char *name)
267 {
268 struct netdev_name_node *name_node;
269
270 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
271 if (!name_node)
272 return NULL;
273 INIT_HLIST_NODE(&name_node->hlist);
274 name_node->dev = dev;
275 name_node->name = name;
276 return name_node;
277 }
278
279 static struct netdev_name_node *
netdev_name_node_head_alloc(struct net_device * dev)280 netdev_name_node_head_alloc(struct net_device *dev)
281 {
282 struct netdev_name_node *name_node;
283
284 name_node = netdev_name_node_alloc(dev, dev->name);
285 if (!name_node)
286 return NULL;
287 INIT_LIST_HEAD(&name_node->list);
288 return name_node;
289 }
290
netdev_name_node_free(struct netdev_name_node * name_node)291 static void netdev_name_node_free(struct netdev_name_node *name_node)
292 {
293 kfree(name_node);
294 }
295
netdev_name_node_add(struct net * net,struct netdev_name_node * name_node)296 static void netdev_name_node_add(struct net *net,
297 struct netdev_name_node *name_node)
298 {
299 hlist_add_head_rcu(&name_node->hlist,
300 dev_name_hash(net, name_node->name));
301 }
302
netdev_name_node_del(struct netdev_name_node * name_node)303 static void netdev_name_node_del(struct netdev_name_node *name_node)
304 {
305 hlist_del_rcu(&name_node->hlist);
306 }
307
netdev_name_node_lookup(struct net * net,const char * name)308 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
309 const char *name)
310 {
311 struct hlist_head *head = dev_name_hash(net, name);
312 struct netdev_name_node *name_node;
313
314 hlist_for_each_entry(name_node, head, hlist)
315 if (!strcmp(name_node->name, name))
316 return name_node;
317 return NULL;
318 }
319
netdev_name_node_lookup_rcu(struct net * net,const char * name)320 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
321 const char *name)
322 {
323 struct hlist_head *head = dev_name_hash(net, name);
324 struct netdev_name_node *name_node;
325
326 hlist_for_each_entry_rcu(name_node, head, hlist)
327 if (!strcmp(name_node->name, name))
328 return name_node;
329 return NULL;
330 }
331
netdev_name_in_use(struct net * net,const char * name)332 bool netdev_name_in_use(struct net *net, const char *name)
333 {
334 return netdev_name_node_lookup(net, name);
335 }
336 EXPORT_SYMBOL(netdev_name_in_use);
337
netdev_name_node_alt_create(struct net_device * dev,const char * name)338 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
339 {
340 struct netdev_name_node *name_node;
341 struct net *net = dev_net(dev);
342
343 name_node = netdev_name_node_lookup(net, name);
344 if (name_node)
345 return -EEXIST;
346 name_node = netdev_name_node_alloc(dev, name);
347 if (!name_node)
348 return -ENOMEM;
349 netdev_name_node_add(net, name_node);
350 /* The node that holds dev->name acts as a head of per-device list. */
351 list_add_tail_rcu(&name_node->list, &dev->name_node->list);
352
353 return 0;
354 }
355
netdev_name_node_alt_free(struct rcu_head * head)356 static void netdev_name_node_alt_free(struct rcu_head *head)
357 {
358 struct netdev_name_node *name_node =
359 container_of(head, struct netdev_name_node, rcu);
360
361 kfree(name_node->name);
362 netdev_name_node_free(name_node);
363 }
364
__netdev_name_node_alt_destroy(struct netdev_name_node * name_node)365 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
366 {
367 netdev_name_node_del(name_node);
368 list_del(&name_node->list);
369 call_rcu(&name_node->rcu, netdev_name_node_alt_free);
370 }
371
netdev_name_node_alt_destroy(struct net_device * dev,const char * name)372 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
373 {
374 struct netdev_name_node *name_node;
375 struct net *net = dev_net(dev);
376
377 name_node = netdev_name_node_lookup(net, name);
378 if (!name_node)
379 return -ENOENT;
380 /* lookup might have found our primary name or a name belonging
381 * to another device.
382 */
383 if (name_node == dev->name_node || name_node->dev != dev)
384 return -EINVAL;
385
386 __netdev_name_node_alt_destroy(name_node);
387 return 0;
388 }
389
netdev_name_node_alt_flush(struct net_device * dev)390 static void netdev_name_node_alt_flush(struct net_device *dev)
391 {
392 struct netdev_name_node *name_node, *tmp;
393
394 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) {
395 list_del(&name_node->list);
396 netdev_name_node_alt_free(&name_node->rcu);
397 }
398 }
399
400 /* Device list insertion */
list_netdevice(struct net_device * dev)401 static void list_netdevice(struct net_device *dev)
402 {
403 struct netdev_name_node *name_node;
404 struct net *net = dev_net(dev);
405
406 ASSERT_RTNL();
407
408 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
409 netdev_name_node_add(net, dev->name_node);
410 hlist_add_head_rcu(&dev->index_hlist,
411 dev_index_hash(net, dev->ifindex));
412
413 netdev_for_each_altname(dev, name_node)
414 netdev_name_node_add(net, name_node);
415
416 /* We reserved the ifindex, this can't fail */
417 WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
418
419 dev_base_seq_inc(net);
420 }
421
422 /* Device list removal
423 * caller must respect a RCU grace period before freeing/reusing dev
424 */
unlist_netdevice(struct net_device * dev)425 static void unlist_netdevice(struct net_device *dev)
426 {
427 struct netdev_name_node *name_node;
428 struct net *net = dev_net(dev);
429
430 ASSERT_RTNL();
431
432 xa_erase(&net->dev_by_index, dev->ifindex);
433
434 netdev_for_each_altname(dev, name_node)
435 netdev_name_node_del(name_node);
436
437 /* Unlink dev from the device chain */
438 list_del_rcu(&dev->dev_list);
439 netdev_name_node_del(dev->name_node);
440 hlist_del_rcu(&dev->index_hlist);
441
442 dev_base_seq_inc(dev_net(dev));
443 }
444
445 /*
446 * Our notifier list
447 */
448
449 static RAW_NOTIFIER_HEAD(netdev_chain);
450
451 /*
452 * Device drivers call our routines to queue packets here. We empty the
453 * queue in the local softnet handler.
454 */
455
456 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data) = {
457 .process_queue_bh_lock = INIT_LOCAL_LOCK(process_queue_bh_lock),
458 };
459 EXPORT_PER_CPU_SYMBOL(softnet_data);
460
461 /* Page_pool has a lockless array/stack to alloc/recycle pages.
462 * PP consumers must pay attention to run APIs in the appropriate context
463 * (e.g. NAPI context).
464 */
465 DEFINE_PER_CPU(struct page_pool_bh, system_page_pool) = {
466 .bh_lock = INIT_LOCAL_LOCK(bh_lock),
467 };
468
469 #ifdef CONFIG_LOCKDEP
470 /*
471 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
472 * according to dev->type
473 */
474 static const unsigned short netdev_lock_type[] = {
475 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
476 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
477 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
478 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
479 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
480 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
481 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
482 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
483 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
484 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
485 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
486 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
487 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
488 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
489 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
490
491 static const char *const netdev_lock_name[] = {
492 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
493 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
494 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
495 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
496 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
497 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
498 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
499 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
500 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
501 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
502 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
503 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
504 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
505 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
506 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
507
508 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
509 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
510
netdev_lock_pos(unsigned short dev_type)511 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
512 {
513 int i;
514
515 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
516 if (netdev_lock_type[i] == dev_type)
517 return i;
518 /* the last key is used by default */
519 return ARRAY_SIZE(netdev_lock_type) - 1;
520 }
521
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)522 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
523 unsigned short dev_type)
524 {
525 int i;
526
527 i = netdev_lock_pos(dev_type);
528 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
529 netdev_lock_name[i]);
530 }
531
netdev_set_addr_lockdep_class(struct net_device * dev)532 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
533 {
534 int i;
535
536 i = netdev_lock_pos(dev->type);
537 lockdep_set_class_and_name(&dev->addr_list_lock,
538 &netdev_addr_lock_key[i],
539 netdev_lock_name[i]);
540 }
541 #else
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)542 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
543 unsigned short dev_type)
544 {
545 }
546
netdev_set_addr_lockdep_class(struct net_device * dev)547 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
548 {
549 }
550 #endif
551
552 /*******************************************************************************
553 *
554 * Protocol management and registration routines
555 *
556 *******************************************************************************/
557
558
559 /*
560 * Add a protocol ID to the list. Now that the input handler is
561 * smarter we can dispense with all the messy stuff that used to be
562 * here.
563 *
564 * BEWARE!!! Protocol handlers, mangling input packets,
565 * MUST BE last in hash buckets and checking protocol handlers
566 * MUST start from promiscuous ptype_all chain in net_bh.
567 * It is true now, do not change it.
568 * Explanation follows: if protocol handler, mangling packet, will
569 * be the first on list, it is not able to sense, that packet
570 * is cloned and should be copied-on-write, so that it will
571 * change it and subsequent readers will get broken packet.
572 * --ANK (980803)
573 */
574
ptype_head(const struct packet_type * pt)575 static inline struct list_head *ptype_head(const struct packet_type *pt)
576 {
577 if (pt->type == htons(ETH_P_ALL)) {
578 if (!pt->af_packet_net && !pt->dev)
579 return NULL;
580
581 return pt->dev ? &pt->dev->ptype_all :
582 &pt->af_packet_net->ptype_all;
583 }
584
585 if (pt->dev)
586 return &pt->dev->ptype_specific;
587
588 return pt->af_packet_net ? &pt->af_packet_net->ptype_specific :
589 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
590 }
591
592 /**
593 * dev_add_pack - add packet handler
594 * @pt: packet type declaration
595 *
596 * Add a protocol handler to the networking stack. The passed &packet_type
597 * is linked into kernel lists and may not be freed until it has been
598 * removed from the kernel lists.
599 *
600 * This call does not sleep therefore it can not
601 * guarantee all CPU's that are in middle of receiving packets
602 * will see the new packet type (until the next received packet).
603 */
604
dev_add_pack(struct packet_type * pt)605 void dev_add_pack(struct packet_type *pt)
606 {
607 struct list_head *head = ptype_head(pt);
608
609 if (WARN_ON_ONCE(!head))
610 return;
611
612 spin_lock(&ptype_lock);
613 list_add_rcu(&pt->list, head);
614 spin_unlock(&ptype_lock);
615 }
616 EXPORT_SYMBOL(dev_add_pack);
617
618 /**
619 * __dev_remove_pack - remove packet handler
620 * @pt: packet type declaration
621 *
622 * Remove a protocol handler that was previously added to the kernel
623 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
624 * from the kernel lists and can be freed or reused once this function
625 * returns.
626 *
627 * The packet type might still be in use by receivers
628 * and must not be freed until after all the CPU's have gone
629 * through a quiescent state.
630 */
__dev_remove_pack(struct packet_type * pt)631 void __dev_remove_pack(struct packet_type *pt)
632 {
633 struct list_head *head = ptype_head(pt);
634 struct packet_type *pt1;
635
636 if (!head)
637 return;
638
639 spin_lock(&ptype_lock);
640
641 list_for_each_entry(pt1, head, list) {
642 if (pt == pt1) {
643 list_del_rcu(&pt->list);
644 goto out;
645 }
646 }
647
648 pr_warn("dev_remove_pack: %p not found\n", pt);
649 out:
650 spin_unlock(&ptype_lock);
651 }
652 EXPORT_SYMBOL(__dev_remove_pack);
653
654 /**
655 * dev_remove_pack - remove packet handler
656 * @pt: packet type declaration
657 *
658 * Remove a protocol handler that was previously added to the kernel
659 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
660 * from the kernel lists and can be freed or reused once this function
661 * returns.
662 *
663 * This call sleeps to guarantee that no CPU is looking at the packet
664 * type after return.
665 */
dev_remove_pack(struct packet_type * pt)666 void dev_remove_pack(struct packet_type *pt)
667 {
668 __dev_remove_pack(pt);
669
670 synchronize_net();
671 }
672 EXPORT_SYMBOL(dev_remove_pack);
673
674
675 /*******************************************************************************
676 *
677 * Device Interface Subroutines
678 *
679 *******************************************************************************/
680
681 /**
682 * dev_get_iflink - get 'iflink' value of a interface
683 * @dev: targeted interface
684 *
685 * Indicates the ifindex the interface is linked to.
686 * Physical interfaces have the same 'ifindex' and 'iflink' values.
687 */
688
dev_get_iflink(const struct net_device * dev)689 int dev_get_iflink(const struct net_device *dev)
690 {
691 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
692 return dev->netdev_ops->ndo_get_iflink(dev);
693
694 return READ_ONCE(dev->ifindex);
695 }
696 EXPORT_SYMBOL(dev_get_iflink);
697
698 /**
699 * dev_fill_metadata_dst - Retrieve tunnel egress information.
700 * @dev: targeted interface
701 * @skb: The packet.
702 *
703 * For better visibility of tunnel traffic OVS needs to retrieve
704 * egress tunnel information for a packet. Following API allows
705 * user to get this info.
706 */
dev_fill_metadata_dst(struct net_device * dev,struct sk_buff * skb)707 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
708 {
709 struct ip_tunnel_info *info;
710
711 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
712 return -EINVAL;
713
714 info = skb_tunnel_info_unclone(skb);
715 if (!info)
716 return -ENOMEM;
717 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
718 return -EINVAL;
719
720 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
721 }
722 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
723
dev_fwd_path(struct net_device_path_stack * stack)724 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
725 {
726 int k = stack->num_paths++;
727
728 if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
729 return NULL;
730
731 return &stack->path[k];
732 }
733
dev_fill_forward_path(const struct net_device * dev,const u8 * daddr,struct net_device_path_stack * stack)734 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
735 struct net_device_path_stack *stack)
736 {
737 const struct net_device *last_dev;
738 struct net_device_path_ctx ctx = {
739 .dev = dev,
740 };
741 struct net_device_path *path;
742 int ret = 0;
743
744 memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
745 stack->num_paths = 0;
746 while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
747 last_dev = ctx.dev;
748 path = dev_fwd_path(stack);
749 if (!path)
750 return -1;
751
752 memset(path, 0, sizeof(struct net_device_path));
753 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
754 if (ret < 0)
755 return -1;
756
757 if (WARN_ON_ONCE(last_dev == ctx.dev))
758 return -1;
759 }
760
761 if (!ctx.dev)
762 return ret;
763
764 path = dev_fwd_path(stack);
765 if (!path)
766 return -1;
767 path->type = DEV_PATH_ETHERNET;
768 path->dev = ctx.dev;
769
770 return ret;
771 }
772 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
773
774 /* must be called under rcu_read_lock(), as we dont take a reference */
napi_by_id(unsigned int napi_id)775 static struct napi_struct *napi_by_id(unsigned int napi_id)
776 {
777 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
778 struct napi_struct *napi;
779
780 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
781 if (napi->napi_id == napi_id)
782 return napi;
783
784 return NULL;
785 }
786
787 /* must be called under rcu_read_lock(), as we dont take a reference */
788 static struct napi_struct *
netdev_napi_by_id(struct net * net,unsigned int napi_id)789 netdev_napi_by_id(struct net *net, unsigned int napi_id)
790 {
791 struct napi_struct *napi;
792
793 napi = napi_by_id(napi_id);
794 if (!napi)
795 return NULL;
796
797 if (WARN_ON_ONCE(!napi->dev))
798 return NULL;
799 if (!net_eq(net, dev_net(napi->dev)))
800 return NULL;
801
802 return napi;
803 }
804
805 /**
806 * netdev_napi_by_id_lock() - find a device by NAPI ID and lock it
807 * @net: the applicable net namespace
808 * @napi_id: ID of a NAPI of a target device
809 *
810 * Find a NAPI instance with @napi_id. Lock its device.
811 * The device must be in %NETREG_REGISTERED state for lookup to succeed.
812 * netdev_unlock() must be called to release it.
813 *
814 * Return: pointer to NAPI, its device with lock held, NULL if not found.
815 */
816 struct napi_struct *
netdev_napi_by_id_lock(struct net * net,unsigned int napi_id)817 netdev_napi_by_id_lock(struct net *net, unsigned int napi_id)
818 {
819 struct napi_struct *napi;
820 struct net_device *dev;
821
822 rcu_read_lock();
823 napi = netdev_napi_by_id(net, napi_id);
824 if (!napi || READ_ONCE(napi->dev->reg_state) != NETREG_REGISTERED) {
825 rcu_read_unlock();
826 return NULL;
827 }
828
829 dev = napi->dev;
830 dev_hold(dev);
831 rcu_read_unlock();
832
833 dev = __netdev_put_lock(dev, net);
834 if (!dev)
835 return NULL;
836
837 rcu_read_lock();
838 napi = netdev_napi_by_id(net, napi_id);
839 if (napi && napi->dev != dev)
840 napi = NULL;
841 rcu_read_unlock();
842
843 if (!napi)
844 netdev_unlock(dev);
845 return napi;
846 }
847
848 /**
849 * __dev_get_by_name - find a device by its name
850 * @net: the applicable net namespace
851 * @name: name to find
852 *
853 * Find an interface by name. Must be called under RTNL semaphore.
854 * If the name is found a pointer to the device is returned.
855 * If the name is not found then %NULL is returned. The
856 * reference counters are not incremented so the caller must be
857 * careful with locks.
858 */
859
__dev_get_by_name(struct net * net,const char * name)860 struct net_device *__dev_get_by_name(struct net *net, const char *name)
861 {
862 struct netdev_name_node *node_name;
863
864 node_name = netdev_name_node_lookup(net, name);
865 return node_name ? node_name->dev : NULL;
866 }
867 EXPORT_SYMBOL(__dev_get_by_name);
868
869 /**
870 * dev_get_by_name_rcu - find a device by its name
871 * @net: the applicable net namespace
872 * @name: name to find
873 *
874 * Find an interface by name.
875 * If the name is found a pointer to the device is returned.
876 * If the name is not found then %NULL is returned.
877 * The reference counters are not incremented so the caller must be
878 * careful with locks. The caller must hold RCU lock.
879 */
880
dev_get_by_name_rcu(struct net * net,const char * name)881 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
882 {
883 struct netdev_name_node *node_name;
884
885 node_name = netdev_name_node_lookup_rcu(net, name);
886 return node_name ? node_name->dev : NULL;
887 }
888 EXPORT_SYMBOL(dev_get_by_name_rcu);
889
890 /* Deprecated for new users, call netdev_get_by_name() instead */
dev_get_by_name(struct net * net,const char * name)891 struct net_device *dev_get_by_name(struct net *net, const char *name)
892 {
893 struct net_device *dev;
894
895 rcu_read_lock();
896 dev = dev_get_by_name_rcu(net, name);
897 dev_hold(dev);
898 rcu_read_unlock();
899 return dev;
900 }
901 EXPORT_SYMBOL(dev_get_by_name);
902
903 /**
904 * netdev_get_by_name() - find a device by its name
905 * @net: the applicable net namespace
906 * @name: name to find
907 * @tracker: tracking object for the acquired reference
908 * @gfp: allocation flags for the tracker
909 *
910 * Find an interface by name. This can be called from any
911 * context and does its own locking. The returned handle has
912 * the usage count incremented and the caller must use netdev_put() to
913 * release it when it is no longer needed. %NULL is returned if no
914 * matching device is found.
915 */
netdev_get_by_name(struct net * net,const char * name,netdevice_tracker * tracker,gfp_t gfp)916 struct net_device *netdev_get_by_name(struct net *net, const char *name,
917 netdevice_tracker *tracker, gfp_t gfp)
918 {
919 struct net_device *dev;
920
921 dev = dev_get_by_name(net, name);
922 if (dev)
923 netdev_tracker_alloc(dev, tracker, gfp);
924 return dev;
925 }
926 EXPORT_SYMBOL(netdev_get_by_name);
927
928 /**
929 * __dev_get_by_index - find a device by its ifindex
930 * @net: the applicable net namespace
931 * @ifindex: index of device
932 *
933 * Search for an interface by index. Returns %NULL if the device
934 * is not found or a pointer to the device. The device has not
935 * had its reference counter increased so the caller must be careful
936 * about locking. The caller must hold the RTNL semaphore.
937 */
938
__dev_get_by_index(struct net * net,int ifindex)939 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
940 {
941 struct net_device *dev;
942 struct hlist_head *head = dev_index_hash(net, ifindex);
943
944 hlist_for_each_entry(dev, head, index_hlist)
945 if (dev->ifindex == ifindex)
946 return dev;
947
948 return NULL;
949 }
950 EXPORT_SYMBOL(__dev_get_by_index);
951
952 /**
953 * dev_get_by_index_rcu - find a device by its ifindex
954 * @net: the applicable net namespace
955 * @ifindex: index of device
956 *
957 * Search for an interface by index. Returns %NULL if the device
958 * is not found or a pointer to the device. The device has not
959 * had its reference counter increased so the caller must be careful
960 * about locking. The caller must hold RCU lock.
961 */
962
dev_get_by_index_rcu(struct net * net,int ifindex)963 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
964 {
965 struct net_device *dev;
966 struct hlist_head *head = dev_index_hash(net, ifindex);
967
968 hlist_for_each_entry_rcu(dev, head, index_hlist)
969 if (dev->ifindex == ifindex)
970 return dev;
971
972 return NULL;
973 }
974 EXPORT_SYMBOL(dev_get_by_index_rcu);
975
976 /* Deprecated for new users, call netdev_get_by_index() instead */
dev_get_by_index(struct net * net,int ifindex)977 struct net_device *dev_get_by_index(struct net *net, int ifindex)
978 {
979 struct net_device *dev;
980
981 rcu_read_lock();
982 dev = dev_get_by_index_rcu(net, ifindex);
983 dev_hold(dev);
984 rcu_read_unlock();
985 return dev;
986 }
987 EXPORT_SYMBOL(dev_get_by_index);
988
989 /**
990 * netdev_get_by_index() - find a device by its ifindex
991 * @net: the applicable net namespace
992 * @ifindex: index of device
993 * @tracker: tracking object for the acquired reference
994 * @gfp: allocation flags for the tracker
995 *
996 * Search for an interface by index. Returns NULL if the device
997 * is not found or a pointer to the device. The device returned has
998 * had a reference added and the pointer is safe until the user calls
999 * netdev_put() to indicate they have finished with it.
1000 */
netdev_get_by_index(struct net * net,int ifindex,netdevice_tracker * tracker,gfp_t gfp)1001 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
1002 netdevice_tracker *tracker, gfp_t gfp)
1003 {
1004 struct net_device *dev;
1005
1006 dev = dev_get_by_index(net, ifindex);
1007 if (dev)
1008 netdev_tracker_alloc(dev, tracker, gfp);
1009 return dev;
1010 }
1011 EXPORT_SYMBOL(netdev_get_by_index);
1012
1013 /**
1014 * dev_get_by_napi_id - find a device by napi_id
1015 * @napi_id: ID of the NAPI struct
1016 *
1017 * Search for an interface by NAPI ID. Returns %NULL if the device
1018 * is not found or a pointer to the device. The device has not had
1019 * its reference counter increased so the caller must be careful
1020 * about locking. The caller must hold RCU lock.
1021 */
dev_get_by_napi_id(unsigned int napi_id)1022 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1023 {
1024 struct napi_struct *napi;
1025
1026 WARN_ON_ONCE(!rcu_read_lock_held());
1027
1028 if (!napi_id_valid(napi_id))
1029 return NULL;
1030
1031 napi = napi_by_id(napi_id);
1032
1033 return napi ? napi->dev : NULL;
1034 }
1035
1036 /* Release the held reference on the net_device, and if the net_device
1037 * is still registered try to lock the instance lock. If device is being
1038 * unregistered NULL will be returned (but the reference has been released,
1039 * either way!)
1040 *
1041 * This helper is intended for locking net_device after it has been looked up
1042 * using a lockless lookup helper. Lock prevents the instance from going away.
1043 */
__netdev_put_lock(struct net_device * dev,struct net * net)1044 struct net_device *__netdev_put_lock(struct net_device *dev, struct net *net)
1045 {
1046 netdev_lock(dev);
1047 if (dev->reg_state > NETREG_REGISTERED ||
1048 dev->moving_ns || !net_eq(dev_net(dev), net)) {
1049 netdev_unlock(dev);
1050 dev_put(dev);
1051 return NULL;
1052 }
1053 dev_put(dev);
1054 return dev;
1055 }
1056
1057 static struct net_device *
__netdev_put_lock_ops_compat(struct net_device * dev,struct net * net)1058 __netdev_put_lock_ops_compat(struct net_device *dev, struct net *net)
1059 {
1060 netdev_lock_ops_compat(dev);
1061 if (dev->reg_state > NETREG_REGISTERED ||
1062 dev->moving_ns || !net_eq(dev_net(dev), net)) {
1063 netdev_unlock_ops_compat(dev);
1064 dev_put(dev);
1065 return NULL;
1066 }
1067 dev_put(dev);
1068 return dev;
1069 }
1070
1071 /**
1072 * netdev_get_by_index_lock() - find a device by its ifindex
1073 * @net: the applicable net namespace
1074 * @ifindex: index of device
1075 *
1076 * Search for an interface by index. If a valid device
1077 * with @ifindex is found it will be returned with netdev->lock held.
1078 * netdev_unlock() must be called to release it.
1079 *
1080 * Return: pointer to a device with lock held, NULL if not found.
1081 */
netdev_get_by_index_lock(struct net * net,int ifindex)1082 struct net_device *netdev_get_by_index_lock(struct net *net, int ifindex)
1083 {
1084 struct net_device *dev;
1085
1086 dev = dev_get_by_index(net, ifindex);
1087 if (!dev)
1088 return NULL;
1089
1090 return __netdev_put_lock(dev, net);
1091 }
1092
1093 struct net_device *
netdev_get_by_index_lock_ops_compat(struct net * net,int ifindex)1094 netdev_get_by_index_lock_ops_compat(struct net *net, int ifindex)
1095 {
1096 struct net_device *dev;
1097
1098 dev = dev_get_by_index(net, ifindex);
1099 if (!dev)
1100 return NULL;
1101
1102 return __netdev_put_lock_ops_compat(dev, net);
1103 }
1104
1105 struct net_device *
netdev_xa_find_lock(struct net * net,struct net_device * dev,unsigned long * index)1106 netdev_xa_find_lock(struct net *net, struct net_device *dev,
1107 unsigned long *index)
1108 {
1109 if (dev)
1110 netdev_unlock(dev);
1111
1112 do {
1113 rcu_read_lock();
1114 dev = xa_find(&net->dev_by_index, index, ULONG_MAX, XA_PRESENT);
1115 if (!dev) {
1116 rcu_read_unlock();
1117 return NULL;
1118 }
1119 dev_hold(dev);
1120 rcu_read_unlock();
1121
1122 dev = __netdev_put_lock(dev, net);
1123 if (dev)
1124 return dev;
1125
1126 (*index)++;
1127 } while (true);
1128 }
1129
1130 struct net_device *
netdev_xa_find_lock_ops_compat(struct net * net,struct net_device * dev,unsigned long * index)1131 netdev_xa_find_lock_ops_compat(struct net *net, struct net_device *dev,
1132 unsigned long *index)
1133 {
1134 if (dev)
1135 netdev_unlock_ops_compat(dev);
1136
1137 do {
1138 rcu_read_lock();
1139 dev = xa_find(&net->dev_by_index, index, ULONG_MAX, XA_PRESENT);
1140 if (!dev) {
1141 rcu_read_unlock();
1142 return NULL;
1143 }
1144 dev_hold(dev);
1145 rcu_read_unlock();
1146
1147 dev = __netdev_put_lock_ops_compat(dev, net);
1148 if (dev)
1149 return dev;
1150
1151 (*index)++;
1152 } while (true);
1153 }
1154
1155 static DEFINE_SEQLOCK(netdev_rename_lock);
1156
netdev_copy_name(struct net_device * dev,char * name)1157 void netdev_copy_name(struct net_device *dev, char *name)
1158 {
1159 unsigned int seq;
1160
1161 do {
1162 seq = read_seqbegin(&netdev_rename_lock);
1163 strscpy(name, dev->name, IFNAMSIZ);
1164 } while (read_seqretry(&netdev_rename_lock, seq));
1165 }
1166
1167 /**
1168 * netdev_get_name - get a netdevice name, knowing its ifindex.
1169 * @net: network namespace
1170 * @name: a pointer to the buffer where the name will be stored.
1171 * @ifindex: the ifindex of the interface to get the name from.
1172 */
netdev_get_name(struct net * net,char * name,int ifindex)1173 int netdev_get_name(struct net *net, char *name, int ifindex)
1174 {
1175 struct net_device *dev;
1176 int ret;
1177
1178 rcu_read_lock();
1179
1180 dev = dev_get_by_index_rcu(net, ifindex);
1181 if (!dev) {
1182 ret = -ENODEV;
1183 goto out;
1184 }
1185
1186 netdev_copy_name(dev, name);
1187
1188 ret = 0;
1189 out:
1190 rcu_read_unlock();
1191 return ret;
1192 }
1193
dev_addr_cmp(struct net_device * dev,unsigned short type,const char * ha)1194 static bool dev_addr_cmp(struct net_device *dev, unsigned short type,
1195 const char *ha)
1196 {
1197 return dev->type == type && !memcmp(dev->dev_addr, ha, dev->addr_len);
1198 }
1199
1200 /**
1201 * dev_getbyhwaddr_rcu - find a device by its hardware address
1202 * @net: the applicable net namespace
1203 * @type: media type of device
1204 * @ha: hardware address
1205 *
1206 * Search for an interface by MAC address. Returns NULL if the device
1207 * is not found or a pointer to the device.
1208 * The caller must hold RCU.
1209 * The returned device has not had its ref count increased
1210 * and the caller must therefore be careful about locking
1211 *
1212 */
1213
dev_getbyhwaddr_rcu(struct net * net,unsigned short type,const char * ha)1214 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1215 const char *ha)
1216 {
1217 struct net_device *dev;
1218
1219 for_each_netdev_rcu(net, dev)
1220 if (dev_addr_cmp(dev, type, ha))
1221 return dev;
1222
1223 return NULL;
1224 }
1225 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1226
1227 /**
1228 * dev_getbyhwaddr() - find a device by its hardware address
1229 * @net: the applicable net namespace
1230 * @type: media type of device
1231 * @ha: hardware address
1232 *
1233 * Similar to dev_getbyhwaddr_rcu(), but the owner needs to hold
1234 * rtnl_lock.
1235 *
1236 * Context: rtnl_lock() must be held.
1237 * Return: pointer to the net_device, or NULL if not found
1238 */
dev_getbyhwaddr(struct net * net,unsigned short type,const char * ha)1239 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type,
1240 const char *ha)
1241 {
1242 struct net_device *dev;
1243
1244 ASSERT_RTNL();
1245 for_each_netdev(net, dev)
1246 if (dev_addr_cmp(dev, type, ha))
1247 return dev;
1248
1249 return NULL;
1250 }
1251 EXPORT_SYMBOL(dev_getbyhwaddr);
1252
dev_getfirstbyhwtype(struct net * net,unsigned short type)1253 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1254 {
1255 struct net_device *dev, *ret = NULL;
1256
1257 rcu_read_lock();
1258 for_each_netdev_rcu(net, dev)
1259 if (dev->type == type) {
1260 dev_hold(dev);
1261 ret = dev;
1262 break;
1263 }
1264 rcu_read_unlock();
1265 return ret;
1266 }
1267 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1268
1269 /**
1270 * netdev_get_by_flags_rcu - find any device with given flags
1271 * @net: the applicable net namespace
1272 * @tracker: tracking object for the acquired reference
1273 * @if_flags: IFF_* values
1274 * @mask: bitmask of bits in if_flags to check
1275 *
1276 * Search for any interface with the given flags.
1277 *
1278 * Context: rcu_read_lock() must be held.
1279 * Returns: NULL if a device is not found or a pointer to the device.
1280 */
netdev_get_by_flags_rcu(struct net * net,netdevice_tracker * tracker,unsigned short if_flags,unsigned short mask)1281 struct net_device *netdev_get_by_flags_rcu(struct net *net, netdevice_tracker *tracker,
1282 unsigned short if_flags, unsigned short mask)
1283 {
1284 struct net_device *dev;
1285
1286 for_each_netdev_rcu(net, dev) {
1287 if (((READ_ONCE(dev->flags) ^ if_flags) & mask) == 0) {
1288 netdev_hold(dev, tracker, GFP_ATOMIC);
1289 return dev;
1290 }
1291 }
1292
1293 return NULL;
1294 }
1295 EXPORT_IPV6_MOD(netdev_get_by_flags_rcu);
1296
1297 /**
1298 * dev_valid_name - check if name is okay for network device
1299 * @name: name string
1300 *
1301 * Network device names need to be valid file names to
1302 * allow sysfs to work. We also disallow any kind of
1303 * whitespace.
1304 */
dev_valid_name(const char * name)1305 bool dev_valid_name(const char *name)
1306 {
1307 if (*name == '\0')
1308 return false;
1309 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1310 return false;
1311 if (!strcmp(name, ".") || !strcmp(name, ".."))
1312 return false;
1313
1314 while (*name) {
1315 if (*name == '/' || *name == ':' || isspace(*name))
1316 return false;
1317 name++;
1318 }
1319 return true;
1320 }
1321 EXPORT_SYMBOL(dev_valid_name);
1322
1323 /**
1324 * __dev_alloc_name - allocate a name for a device
1325 * @net: network namespace to allocate the device name in
1326 * @name: name format string
1327 * @res: result name string
1328 *
1329 * Passed a format string - eg "lt%d" it will try and find a suitable
1330 * id. It scans list of devices to build up a free map, then chooses
1331 * the first empty slot. The caller must hold the dev_base or rtnl lock
1332 * while allocating the name and adding the device in order to avoid
1333 * duplicates.
1334 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1335 * Returns the number of the unit assigned or a negative errno code.
1336 */
1337
__dev_alloc_name(struct net * net,const char * name,char * res)1338 static int __dev_alloc_name(struct net *net, const char *name, char *res)
1339 {
1340 int i = 0;
1341 const char *p;
1342 const int max_netdevices = 8*PAGE_SIZE;
1343 unsigned long *inuse;
1344 struct net_device *d;
1345 char buf[IFNAMSIZ];
1346
1347 /* Verify the string as this thing may have come from the user.
1348 * There must be one "%d" and no other "%" characters.
1349 */
1350 p = strchr(name, '%');
1351 if (!p || p[1] != 'd' || strchr(p + 2, '%'))
1352 return -EINVAL;
1353
1354 /* Use one page as a bit array of possible slots */
1355 inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
1356 if (!inuse)
1357 return -ENOMEM;
1358
1359 for_each_netdev(net, d) {
1360 struct netdev_name_node *name_node;
1361
1362 netdev_for_each_altname(d, name_node) {
1363 if (!sscanf(name_node->name, name, &i))
1364 continue;
1365 if (i < 0 || i >= max_netdevices)
1366 continue;
1367
1368 /* avoid cases where sscanf is not exact inverse of printf */
1369 snprintf(buf, IFNAMSIZ, name, i);
1370 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1371 __set_bit(i, inuse);
1372 }
1373 if (!sscanf(d->name, name, &i))
1374 continue;
1375 if (i < 0 || i >= max_netdevices)
1376 continue;
1377
1378 /* avoid cases where sscanf is not exact inverse of printf */
1379 snprintf(buf, IFNAMSIZ, name, i);
1380 if (!strncmp(buf, d->name, IFNAMSIZ))
1381 __set_bit(i, inuse);
1382 }
1383
1384 i = find_first_zero_bit(inuse, max_netdevices);
1385 bitmap_free(inuse);
1386 if (i == max_netdevices)
1387 return -ENFILE;
1388
1389 /* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */
1390 strscpy(buf, name, IFNAMSIZ);
1391 snprintf(res, IFNAMSIZ, buf, i);
1392 return i;
1393 }
1394
1395 /* Returns negative errno or allocated unit id (see __dev_alloc_name()) */
dev_prep_valid_name(struct net * net,struct net_device * dev,const char * want_name,char * out_name,int dup_errno)1396 static int dev_prep_valid_name(struct net *net, struct net_device *dev,
1397 const char *want_name, char *out_name,
1398 int dup_errno)
1399 {
1400 if (!dev_valid_name(want_name))
1401 return -EINVAL;
1402
1403 if (strchr(want_name, '%'))
1404 return __dev_alloc_name(net, want_name, out_name);
1405
1406 if (netdev_name_in_use(net, want_name))
1407 return -dup_errno;
1408 if (out_name != want_name)
1409 strscpy(out_name, want_name, IFNAMSIZ);
1410 return 0;
1411 }
1412
1413 /**
1414 * dev_alloc_name - allocate a name for a device
1415 * @dev: device
1416 * @name: name format string
1417 *
1418 * Passed a format string - eg "lt%d" it will try and find a suitable
1419 * id. It scans list of devices to build up a free map, then chooses
1420 * the first empty slot. The caller must hold the dev_base or rtnl lock
1421 * while allocating the name and adding the device in order to avoid
1422 * duplicates.
1423 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1424 * Returns the number of the unit assigned or a negative errno code.
1425 */
1426
dev_alloc_name(struct net_device * dev,const char * name)1427 int dev_alloc_name(struct net_device *dev, const char *name)
1428 {
1429 return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE);
1430 }
1431 EXPORT_SYMBOL(dev_alloc_name);
1432
dev_get_valid_name(struct net * net,struct net_device * dev,const char * name)1433 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1434 const char *name)
1435 {
1436 int ret;
1437
1438 ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST);
1439 return ret < 0 ? ret : 0;
1440 }
1441
netif_change_name(struct net_device * dev,const char * newname)1442 int netif_change_name(struct net_device *dev, const char *newname)
1443 {
1444 struct net *net = dev_net(dev);
1445 unsigned char old_assign_type;
1446 char oldname[IFNAMSIZ];
1447 int err = 0;
1448 int ret;
1449
1450 ASSERT_RTNL_NET(net);
1451
1452 if (!strncmp(newname, dev->name, IFNAMSIZ))
1453 return 0;
1454
1455 memcpy(oldname, dev->name, IFNAMSIZ);
1456
1457 write_seqlock_bh(&netdev_rename_lock);
1458 err = dev_get_valid_name(net, dev, newname);
1459 write_sequnlock_bh(&netdev_rename_lock);
1460
1461 if (err < 0)
1462 return err;
1463
1464 if (oldname[0] && !strchr(oldname, '%'))
1465 netdev_info(dev, "renamed from %s%s\n", oldname,
1466 dev->flags & IFF_UP ? " (while UP)" : "");
1467
1468 old_assign_type = dev->name_assign_type;
1469 WRITE_ONCE(dev->name_assign_type, NET_NAME_RENAMED);
1470
1471 rollback:
1472 ret = device_rename(&dev->dev, dev->name);
1473 if (ret) {
1474 write_seqlock_bh(&netdev_rename_lock);
1475 memcpy(dev->name, oldname, IFNAMSIZ);
1476 write_sequnlock_bh(&netdev_rename_lock);
1477 WRITE_ONCE(dev->name_assign_type, old_assign_type);
1478 return ret;
1479 }
1480
1481 netdev_adjacent_rename_links(dev, oldname);
1482
1483 netdev_name_node_del(dev->name_node);
1484
1485 synchronize_net();
1486
1487 netdev_name_node_add(net, dev->name_node);
1488
1489 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1490 ret = notifier_to_errno(ret);
1491
1492 if (ret) {
1493 /* err >= 0 after dev_alloc_name() or stores the first errno */
1494 if (err >= 0) {
1495 err = ret;
1496 write_seqlock_bh(&netdev_rename_lock);
1497 memcpy(dev->name, oldname, IFNAMSIZ);
1498 write_sequnlock_bh(&netdev_rename_lock);
1499 memcpy(oldname, newname, IFNAMSIZ);
1500 WRITE_ONCE(dev->name_assign_type, old_assign_type);
1501 old_assign_type = NET_NAME_RENAMED;
1502 goto rollback;
1503 } else {
1504 netdev_err(dev, "name change rollback failed: %d\n",
1505 ret);
1506 }
1507 }
1508
1509 return err;
1510 }
1511
netif_set_alias(struct net_device * dev,const char * alias,size_t len)1512 int netif_set_alias(struct net_device *dev, const char *alias, size_t len)
1513 {
1514 struct dev_ifalias *new_alias = NULL;
1515
1516 if (len >= IFALIASZ)
1517 return -EINVAL;
1518
1519 if (len) {
1520 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1521 if (!new_alias)
1522 return -ENOMEM;
1523
1524 memcpy(new_alias->ifalias, alias, len);
1525 new_alias->ifalias[len] = 0;
1526 }
1527
1528 mutex_lock(&ifalias_mutex);
1529 new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1530 mutex_is_locked(&ifalias_mutex));
1531 mutex_unlock(&ifalias_mutex);
1532
1533 if (new_alias)
1534 kfree_rcu(new_alias, rcuhead);
1535
1536 return len;
1537 }
1538
1539 /**
1540 * dev_get_alias - get ifalias of a device
1541 * @dev: device
1542 * @name: buffer to store name of ifalias
1543 * @len: size of buffer
1544 *
1545 * get ifalias for a device. Caller must make sure dev cannot go
1546 * away, e.g. rcu read lock or own a reference count to device.
1547 */
dev_get_alias(const struct net_device * dev,char * name,size_t len)1548 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1549 {
1550 const struct dev_ifalias *alias;
1551 int ret = 0;
1552
1553 rcu_read_lock();
1554 alias = rcu_dereference(dev->ifalias);
1555 if (alias)
1556 ret = snprintf(name, len, "%s", alias->ifalias);
1557 rcu_read_unlock();
1558
1559 return ret;
1560 }
1561
1562 /**
1563 * netdev_features_change - device changes features
1564 * @dev: device to cause notification
1565 *
1566 * Called to indicate a device has changed features.
1567 */
netdev_features_change(struct net_device * dev)1568 void netdev_features_change(struct net_device *dev)
1569 {
1570 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1571 }
1572 EXPORT_SYMBOL(netdev_features_change);
1573
netif_state_change(struct net_device * dev)1574 void netif_state_change(struct net_device *dev)
1575 {
1576 netdev_ops_assert_locked_or_invisible(dev);
1577
1578 if (dev->flags & IFF_UP) {
1579 struct netdev_notifier_change_info change_info = {
1580 .info.dev = dev,
1581 };
1582
1583 call_netdevice_notifiers_info(NETDEV_CHANGE,
1584 &change_info.info);
1585 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1586 }
1587 }
1588
1589 /**
1590 * __netdev_notify_peers - notify network peers about existence of @dev,
1591 * to be called when rtnl lock is already held.
1592 * @dev: network device
1593 *
1594 * Generate traffic such that interested network peers are aware of
1595 * @dev, such as by generating a gratuitous ARP. This may be used when
1596 * a device wants to inform the rest of the network about some sort of
1597 * reconfiguration such as a failover event or virtual machine
1598 * migration.
1599 */
__netdev_notify_peers(struct net_device * dev)1600 void __netdev_notify_peers(struct net_device *dev)
1601 {
1602 ASSERT_RTNL();
1603 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1604 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1605 }
1606 EXPORT_SYMBOL(__netdev_notify_peers);
1607
1608 /**
1609 * netdev_notify_peers - notify network peers about existence of @dev
1610 * @dev: network device
1611 *
1612 * Generate traffic such that interested network peers are aware of
1613 * @dev, such as by generating a gratuitous ARP. This may be used when
1614 * a device wants to inform the rest of the network about some sort of
1615 * reconfiguration such as a failover event or virtual machine
1616 * migration.
1617 */
netdev_notify_peers(struct net_device * dev)1618 void netdev_notify_peers(struct net_device *dev)
1619 {
1620 rtnl_lock();
1621 __netdev_notify_peers(dev);
1622 rtnl_unlock();
1623 }
1624 EXPORT_SYMBOL(netdev_notify_peers);
1625
1626 static int napi_threaded_poll(void *data);
1627
napi_kthread_create(struct napi_struct * n)1628 static int napi_kthread_create(struct napi_struct *n)
1629 {
1630 int err = 0;
1631
1632 /* Create and wake up the kthread once to put it in
1633 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1634 * warning and work with loadavg.
1635 */
1636 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1637 n->dev->name, n->napi_id);
1638 if (IS_ERR(n->thread)) {
1639 err = PTR_ERR(n->thread);
1640 pr_err("kthread_run failed with err %d\n", err);
1641 n->thread = NULL;
1642 }
1643
1644 return err;
1645 }
1646
__dev_open(struct net_device * dev,struct netlink_ext_ack * extack)1647 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1648 {
1649 const struct net_device_ops *ops = dev->netdev_ops;
1650 int ret;
1651
1652 ASSERT_RTNL();
1653 dev_addr_check(dev);
1654
1655 if (!netif_device_present(dev)) {
1656 /* may be detached because parent is runtime-suspended */
1657 if (dev->dev.parent)
1658 pm_runtime_resume(dev->dev.parent);
1659 if (!netif_device_present(dev))
1660 return -ENODEV;
1661 }
1662
1663 /* Block netpoll from trying to do any rx path servicing.
1664 * If we don't do this there is a chance ndo_poll_controller
1665 * or ndo_poll may be running while we open the device
1666 */
1667 netpoll_poll_disable(dev);
1668
1669 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1670 ret = notifier_to_errno(ret);
1671 if (ret)
1672 return ret;
1673
1674 set_bit(__LINK_STATE_START, &dev->state);
1675
1676 netdev_ops_assert_locked(dev);
1677
1678 if (ops->ndo_validate_addr)
1679 ret = ops->ndo_validate_addr(dev);
1680
1681 if (!ret && ops->ndo_open)
1682 ret = ops->ndo_open(dev);
1683
1684 netpoll_poll_enable(dev);
1685
1686 if (ret)
1687 clear_bit(__LINK_STATE_START, &dev->state);
1688 else {
1689 netif_set_up(dev, true);
1690 dev_set_rx_mode(dev);
1691 dev_activate(dev);
1692 add_device_randomness(dev->dev_addr, dev->addr_len);
1693 }
1694
1695 return ret;
1696 }
1697
netif_open(struct net_device * dev,struct netlink_ext_ack * extack)1698 int netif_open(struct net_device *dev, struct netlink_ext_ack *extack)
1699 {
1700 int ret;
1701
1702 if (dev->flags & IFF_UP)
1703 return 0;
1704
1705 ret = __dev_open(dev, extack);
1706 if (ret < 0)
1707 return ret;
1708
1709 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1710 call_netdevice_notifiers(NETDEV_UP, dev);
1711
1712 return ret;
1713 }
1714
__dev_close_many(struct list_head * head)1715 static void __dev_close_many(struct list_head *head)
1716 {
1717 struct net_device *dev;
1718
1719 ASSERT_RTNL();
1720 might_sleep();
1721
1722 list_for_each_entry(dev, head, close_list) {
1723 /* Temporarily disable netpoll until the interface is down */
1724 netpoll_poll_disable(dev);
1725
1726 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1727
1728 clear_bit(__LINK_STATE_START, &dev->state);
1729
1730 /* Synchronize to scheduled poll. We cannot touch poll list, it
1731 * can be even on different cpu. So just clear netif_running().
1732 *
1733 * dev->stop() will invoke napi_disable() on all of it's
1734 * napi_struct instances on this device.
1735 */
1736 smp_mb__after_atomic(); /* Commit netif_running(). */
1737 }
1738
1739 dev_deactivate_many(head);
1740
1741 list_for_each_entry(dev, head, close_list) {
1742 const struct net_device_ops *ops = dev->netdev_ops;
1743
1744 /*
1745 * Call the device specific close. This cannot fail.
1746 * Only if device is UP
1747 *
1748 * We allow it to be called even after a DETACH hot-plug
1749 * event.
1750 */
1751
1752 netdev_ops_assert_locked(dev);
1753
1754 if (ops->ndo_stop)
1755 ops->ndo_stop(dev);
1756
1757 netif_set_up(dev, false);
1758 netpoll_poll_enable(dev);
1759 }
1760 }
1761
__dev_close(struct net_device * dev)1762 static void __dev_close(struct net_device *dev)
1763 {
1764 LIST_HEAD(single);
1765
1766 list_add(&dev->close_list, &single);
1767 __dev_close_many(&single);
1768 list_del(&single);
1769 }
1770
netif_close_many(struct list_head * head,bool unlink)1771 void netif_close_many(struct list_head *head, bool unlink)
1772 {
1773 struct net_device *dev, *tmp;
1774
1775 /* Remove the devices that don't need to be closed */
1776 list_for_each_entry_safe(dev, tmp, head, close_list)
1777 if (!(dev->flags & IFF_UP))
1778 list_del_init(&dev->close_list);
1779
1780 __dev_close_many(head);
1781
1782 list_for_each_entry_safe(dev, tmp, head, close_list) {
1783 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1784 call_netdevice_notifiers(NETDEV_DOWN, dev);
1785 if (unlink)
1786 list_del_init(&dev->close_list);
1787 }
1788 }
1789 EXPORT_SYMBOL_NS_GPL(netif_close_many, "NETDEV_INTERNAL");
1790
netif_close(struct net_device * dev)1791 void netif_close(struct net_device *dev)
1792 {
1793 if (dev->flags & IFF_UP) {
1794 LIST_HEAD(single);
1795
1796 list_add(&dev->close_list, &single);
1797 netif_close_many(&single, true);
1798 list_del(&single);
1799 }
1800 }
1801 EXPORT_SYMBOL(netif_close);
1802
netif_disable_lro(struct net_device * dev)1803 void netif_disable_lro(struct net_device *dev)
1804 {
1805 struct net_device *lower_dev;
1806 struct list_head *iter;
1807
1808 dev->wanted_features &= ~NETIF_F_LRO;
1809 netdev_update_features(dev);
1810
1811 if (unlikely(dev->features & NETIF_F_LRO))
1812 netdev_WARN(dev, "failed to disable LRO!\n");
1813
1814 netdev_for_each_lower_dev(dev, lower_dev, iter) {
1815 netdev_lock_ops(lower_dev);
1816 netif_disable_lro(lower_dev);
1817 netdev_unlock_ops(lower_dev);
1818 }
1819 }
1820 EXPORT_IPV6_MOD(netif_disable_lro);
1821
1822 /**
1823 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1824 * @dev: device
1825 *
1826 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1827 * called under RTNL. This is needed if Generic XDP is installed on
1828 * the device.
1829 */
dev_disable_gro_hw(struct net_device * dev)1830 static void dev_disable_gro_hw(struct net_device *dev)
1831 {
1832 dev->wanted_features &= ~NETIF_F_GRO_HW;
1833 netdev_update_features(dev);
1834
1835 if (unlikely(dev->features & NETIF_F_GRO_HW))
1836 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1837 }
1838
netdev_cmd_to_name(enum netdev_cmd cmd)1839 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1840 {
1841 #define N(val) \
1842 case NETDEV_##val: \
1843 return "NETDEV_" __stringify(val);
1844 switch (cmd) {
1845 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1846 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1847 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1848 N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1849 N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1850 N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1851 N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1852 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1853 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1854 N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1855 N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1856 N(XDP_FEAT_CHANGE)
1857 }
1858 #undef N
1859 return "UNKNOWN_NETDEV_EVENT";
1860 }
1861 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1862
call_netdevice_notifier(struct notifier_block * nb,unsigned long val,struct net_device * dev)1863 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1864 struct net_device *dev)
1865 {
1866 struct netdev_notifier_info info = {
1867 .dev = dev,
1868 };
1869
1870 return nb->notifier_call(nb, val, &info);
1871 }
1872
call_netdevice_register_notifiers(struct notifier_block * nb,struct net_device * dev)1873 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1874 struct net_device *dev)
1875 {
1876 int err;
1877
1878 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1879 err = notifier_to_errno(err);
1880 if (err)
1881 return err;
1882
1883 if (!(dev->flags & IFF_UP))
1884 return 0;
1885
1886 call_netdevice_notifier(nb, NETDEV_UP, dev);
1887 return 0;
1888 }
1889
call_netdevice_unregister_notifiers(struct notifier_block * nb,struct net_device * dev)1890 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1891 struct net_device *dev)
1892 {
1893 if (dev->flags & IFF_UP) {
1894 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1895 dev);
1896 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1897 }
1898 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1899 }
1900
call_netdevice_register_net_notifiers(struct notifier_block * nb,struct net * net)1901 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1902 struct net *net)
1903 {
1904 struct net_device *dev;
1905 int err;
1906
1907 for_each_netdev(net, dev) {
1908 netdev_lock_ops(dev);
1909 err = call_netdevice_register_notifiers(nb, dev);
1910 netdev_unlock_ops(dev);
1911 if (err)
1912 goto rollback;
1913 }
1914 return 0;
1915
1916 rollback:
1917 for_each_netdev_continue_reverse(net, dev)
1918 call_netdevice_unregister_notifiers(nb, dev);
1919 return err;
1920 }
1921
call_netdevice_unregister_net_notifiers(struct notifier_block * nb,struct net * net)1922 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1923 struct net *net)
1924 {
1925 struct net_device *dev;
1926
1927 for_each_netdev(net, dev)
1928 call_netdevice_unregister_notifiers(nb, dev);
1929 }
1930
1931 static int dev_boot_phase = 1;
1932
1933 /**
1934 * register_netdevice_notifier - register a network notifier block
1935 * @nb: notifier
1936 *
1937 * Register a notifier to be called when network device events occur.
1938 * The notifier passed is linked into the kernel structures and must
1939 * not be reused until it has been unregistered. A negative errno code
1940 * is returned on a failure.
1941 *
1942 * When registered all registration and up events are replayed
1943 * to the new notifier to allow device to have a race free
1944 * view of the network device list.
1945 */
1946
register_netdevice_notifier(struct notifier_block * nb)1947 int register_netdevice_notifier(struct notifier_block *nb)
1948 {
1949 struct net *net;
1950 int err;
1951
1952 /* Close race with setup_net() and cleanup_net() */
1953 down_write(&pernet_ops_rwsem);
1954
1955 /* When RTNL is removed, we need protection for netdev_chain. */
1956 rtnl_lock();
1957
1958 err = raw_notifier_chain_register(&netdev_chain, nb);
1959 if (err)
1960 goto unlock;
1961 if (dev_boot_phase)
1962 goto unlock;
1963 for_each_net(net) {
1964 __rtnl_net_lock(net);
1965 err = call_netdevice_register_net_notifiers(nb, net);
1966 __rtnl_net_unlock(net);
1967 if (err)
1968 goto rollback;
1969 }
1970
1971 unlock:
1972 rtnl_unlock();
1973 up_write(&pernet_ops_rwsem);
1974 return err;
1975
1976 rollback:
1977 for_each_net_continue_reverse(net) {
1978 __rtnl_net_lock(net);
1979 call_netdevice_unregister_net_notifiers(nb, net);
1980 __rtnl_net_unlock(net);
1981 }
1982
1983 raw_notifier_chain_unregister(&netdev_chain, nb);
1984 goto unlock;
1985 }
1986 EXPORT_SYMBOL(register_netdevice_notifier);
1987
1988 /**
1989 * unregister_netdevice_notifier - unregister a network notifier block
1990 * @nb: notifier
1991 *
1992 * Unregister a notifier previously registered by
1993 * register_netdevice_notifier(). The notifier is unlinked into the
1994 * kernel structures and may then be reused. A negative errno code
1995 * is returned on a failure.
1996 *
1997 * After unregistering unregister and down device events are synthesized
1998 * for all devices on the device list to the removed notifier to remove
1999 * the need for special case cleanup code.
2000 */
2001
unregister_netdevice_notifier(struct notifier_block * nb)2002 int unregister_netdevice_notifier(struct notifier_block *nb)
2003 {
2004 struct net *net;
2005 int err;
2006
2007 /* Close race with setup_net() and cleanup_net() */
2008 down_write(&pernet_ops_rwsem);
2009 rtnl_lock();
2010 err = raw_notifier_chain_unregister(&netdev_chain, nb);
2011 if (err)
2012 goto unlock;
2013
2014 for_each_net(net) {
2015 __rtnl_net_lock(net);
2016 call_netdevice_unregister_net_notifiers(nb, net);
2017 __rtnl_net_unlock(net);
2018 }
2019
2020 unlock:
2021 rtnl_unlock();
2022 up_write(&pernet_ops_rwsem);
2023 return err;
2024 }
2025 EXPORT_SYMBOL(unregister_netdevice_notifier);
2026
__register_netdevice_notifier_net(struct net * net,struct notifier_block * nb,bool ignore_call_fail)2027 static int __register_netdevice_notifier_net(struct net *net,
2028 struct notifier_block *nb,
2029 bool ignore_call_fail)
2030 {
2031 int err;
2032
2033 err = raw_notifier_chain_register(&net->netdev_chain, nb);
2034 if (err)
2035 return err;
2036 if (dev_boot_phase)
2037 return 0;
2038
2039 err = call_netdevice_register_net_notifiers(nb, net);
2040 if (err && !ignore_call_fail)
2041 goto chain_unregister;
2042
2043 return 0;
2044
2045 chain_unregister:
2046 raw_notifier_chain_unregister(&net->netdev_chain, nb);
2047 return err;
2048 }
2049
__unregister_netdevice_notifier_net(struct net * net,struct notifier_block * nb)2050 static int __unregister_netdevice_notifier_net(struct net *net,
2051 struct notifier_block *nb)
2052 {
2053 int err;
2054
2055 err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
2056 if (err)
2057 return err;
2058
2059 call_netdevice_unregister_net_notifiers(nb, net);
2060 return 0;
2061 }
2062
2063 /**
2064 * register_netdevice_notifier_net - register a per-netns network notifier block
2065 * @net: network namespace
2066 * @nb: notifier
2067 *
2068 * Register a notifier to be called when network device events occur.
2069 * The notifier passed is linked into the kernel structures and must
2070 * not be reused until it has been unregistered. A negative errno code
2071 * is returned on a failure.
2072 *
2073 * When registered all registration and up events are replayed
2074 * to the new notifier to allow device to have a race free
2075 * view of the network device list.
2076 */
2077
register_netdevice_notifier_net(struct net * net,struct notifier_block * nb)2078 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
2079 {
2080 int err;
2081
2082 rtnl_net_lock(net);
2083 err = __register_netdevice_notifier_net(net, nb, false);
2084 rtnl_net_unlock(net);
2085
2086 return err;
2087 }
2088 EXPORT_SYMBOL(register_netdevice_notifier_net);
2089
2090 /**
2091 * unregister_netdevice_notifier_net - unregister a per-netns
2092 * network notifier block
2093 * @net: network namespace
2094 * @nb: notifier
2095 *
2096 * Unregister a notifier previously registered by
2097 * register_netdevice_notifier_net(). The notifier is unlinked from the
2098 * kernel structures and may then be reused. A negative errno code
2099 * is returned on a failure.
2100 *
2101 * After unregistering unregister and down device events are synthesized
2102 * for all devices on the device list to the removed notifier to remove
2103 * the need for special case cleanup code.
2104 */
2105
unregister_netdevice_notifier_net(struct net * net,struct notifier_block * nb)2106 int unregister_netdevice_notifier_net(struct net *net,
2107 struct notifier_block *nb)
2108 {
2109 int err;
2110
2111 rtnl_net_lock(net);
2112 err = __unregister_netdevice_notifier_net(net, nb);
2113 rtnl_net_unlock(net);
2114
2115 return err;
2116 }
2117 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
2118
__move_netdevice_notifier_net(struct net * src_net,struct net * dst_net,struct notifier_block * nb)2119 static void __move_netdevice_notifier_net(struct net *src_net,
2120 struct net *dst_net,
2121 struct notifier_block *nb)
2122 {
2123 __unregister_netdevice_notifier_net(src_net, nb);
2124 __register_netdevice_notifier_net(dst_net, nb, true);
2125 }
2126
rtnl_net_dev_lock(struct net_device * dev)2127 static void rtnl_net_dev_lock(struct net_device *dev)
2128 {
2129 bool again;
2130
2131 do {
2132 struct net *net;
2133
2134 again = false;
2135
2136 /* netns might be being dismantled. */
2137 rcu_read_lock();
2138 net = dev_net_rcu(dev);
2139 net_passive_inc(net);
2140 rcu_read_unlock();
2141
2142 rtnl_net_lock(net);
2143
2144 #ifdef CONFIG_NET_NS
2145 /* dev might have been moved to another netns. */
2146 if (!net_eq(net, rcu_access_pointer(dev->nd_net.net))) {
2147 rtnl_net_unlock(net);
2148 net_passive_dec(net);
2149 again = true;
2150 }
2151 #endif
2152 } while (again);
2153 }
2154
rtnl_net_dev_unlock(struct net_device * dev)2155 static void rtnl_net_dev_unlock(struct net_device *dev)
2156 {
2157 struct net *net = dev_net(dev);
2158
2159 rtnl_net_unlock(net);
2160 net_passive_dec(net);
2161 }
2162
register_netdevice_notifier_dev_net(struct net_device * dev,struct notifier_block * nb,struct netdev_net_notifier * nn)2163 int register_netdevice_notifier_dev_net(struct net_device *dev,
2164 struct notifier_block *nb,
2165 struct netdev_net_notifier *nn)
2166 {
2167 int err;
2168
2169 rtnl_net_dev_lock(dev);
2170 err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
2171 if (!err) {
2172 nn->nb = nb;
2173 list_add(&nn->list, &dev->net_notifier_list);
2174 }
2175 rtnl_net_dev_unlock(dev);
2176
2177 return err;
2178 }
2179 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
2180
unregister_netdevice_notifier_dev_net(struct net_device * dev,struct notifier_block * nb,struct netdev_net_notifier * nn)2181 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2182 struct notifier_block *nb,
2183 struct netdev_net_notifier *nn)
2184 {
2185 int err;
2186
2187 rtnl_net_dev_lock(dev);
2188 list_del(&nn->list);
2189 err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
2190 rtnl_net_dev_unlock(dev);
2191
2192 return err;
2193 }
2194 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
2195
move_netdevice_notifiers_dev_net(struct net_device * dev,struct net * net)2196 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2197 struct net *net)
2198 {
2199 struct netdev_net_notifier *nn;
2200
2201 list_for_each_entry(nn, &dev->net_notifier_list, list)
2202 __move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
2203 }
2204
2205 /**
2206 * call_netdevice_notifiers_info - call all network notifier blocks
2207 * @val: value passed unmodified to notifier function
2208 * @info: notifier information data
2209 *
2210 * Call all network notifier blocks. Parameters and return value
2211 * are as for raw_notifier_call_chain().
2212 */
2213
call_netdevice_notifiers_info(unsigned long val,struct netdev_notifier_info * info)2214 int call_netdevice_notifiers_info(unsigned long val,
2215 struct netdev_notifier_info *info)
2216 {
2217 struct net *net = dev_net(info->dev);
2218 int ret;
2219
2220 ASSERT_RTNL();
2221
2222 /* Run per-netns notifier block chain first, then run the global one.
2223 * Hopefully, one day, the global one is going to be removed after
2224 * all notifier block registrators get converted to be per-netns.
2225 */
2226 ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2227 if (ret & NOTIFY_STOP_MASK)
2228 return ret;
2229 return raw_notifier_call_chain(&netdev_chain, val, info);
2230 }
2231
2232 /**
2233 * call_netdevice_notifiers_info_robust - call per-netns notifier blocks
2234 * for and rollback on error
2235 * @val_up: value passed unmodified to notifier function
2236 * @val_down: value passed unmodified to the notifier function when
2237 * recovering from an error on @val_up
2238 * @info: notifier information data
2239 *
2240 * Call all per-netns network notifier blocks, but not notifier blocks on
2241 * the global notifier chain. Parameters and return value are as for
2242 * raw_notifier_call_chain_robust().
2243 */
2244
2245 static int
call_netdevice_notifiers_info_robust(unsigned long val_up,unsigned long val_down,struct netdev_notifier_info * info)2246 call_netdevice_notifiers_info_robust(unsigned long val_up,
2247 unsigned long val_down,
2248 struct netdev_notifier_info *info)
2249 {
2250 struct net *net = dev_net(info->dev);
2251
2252 ASSERT_RTNL();
2253
2254 return raw_notifier_call_chain_robust(&net->netdev_chain,
2255 val_up, val_down, info);
2256 }
2257
call_netdevice_notifiers_extack(unsigned long val,struct net_device * dev,struct netlink_ext_ack * extack)2258 static int call_netdevice_notifiers_extack(unsigned long val,
2259 struct net_device *dev,
2260 struct netlink_ext_ack *extack)
2261 {
2262 struct netdev_notifier_info info = {
2263 .dev = dev,
2264 .extack = extack,
2265 };
2266
2267 return call_netdevice_notifiers_info(val, &info);
2268 }
2269
2270 /**
2271 * call_netdevice_notifiers - call all network notifier blocks
2272 * @val: value passed unmodified to notifier function
2273 * @dev: net_device pointer passed unmodified to notifier function
2274 *
2275 * Call all network notifier blocks. Parameters and return value
2276 * are as for raw_notifier_call_chain().
2277 */
2278
call_netdevice_notifiers(unsigned long val,struct net_device * dev)2279 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2280 {
2281 return call_netdevice_notifiers_extack(val, dev, NULL);
2282 }
2283 EXPORT_SYMBOL(call_netdevice_notifiers);
2284
2285 /**
2286 * call_netdevice_notifiers_mtu - call all network notifier blocks
2287 * @val: value passed unmodified to notifier function
2288 * @dev: net_device pointer passed unmodified to notifier function
2289 * @arg: additional u32 argument passed to the notifier function
2290 *
2291 * Call all network notifier blocks. Parameters and return value
2292 * are as for raw_notifier_call_chain().
2293 */
call_netdevice_notifiers_mtu(unsigned long val,struct net_device * dev,u32 arg)2294 static int call_netdevice_notifiers_mtu(unsigned long val,
2295 struct net_device *dev, u32 arg)
2296 {
2297 struct netdev_notifier_info_ext info = {
2298 .info.dev = dev,
2299 .ext.mtu = arg,
2300 };
2301
2302 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2303
2304 return call_netdevice_notifiers_info(val, &info.info);
2305 }
2306
2307 #ifdef CONFIG_NET_INGRESS
2308 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2309
net_inc_ingress_queue(void)2310 void net_inc_ingress_queue(void)
2311 {
2312 static_branch_inc(&ingress_needed_key);
2313 }
2314 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2315
net_dec_ingress_queue(void)2316 void net_dec_ingress_queue(void)
2317 {
2318 static_branch_dec(&ingress_needed_key);
2319 }
2320 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2321 #endif
2322
2323 #ifdef CONFIG_NET_EGRESS
2324 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2325
net_inc_egress_queue(void)2326 void net_inc_egress_queue(void)
2327 {
2328 static_branch_inc(&egress_needed_key);
2329 }
2330 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2331
net_dec_egress_queue(void)2332 void net_dec_egress_queue(void)
2333 {
2334 static_branch_dec(&egress_needed_key);
2335 }
2336 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2337 #endif
2338
2339 #ifdef CONFIG_NET_CLS_ACT
2340 DEFINE_STATIC_KEY_FALSE(tcf_sw_enabled_key);
2341 EXPORT_SYMBOL(tcf_sw_enabled_key);
2342 #endif
2343
2344 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2345 EXPORT_SYMBOL(netstamp_needed_key);
2346 #ifdef CONFIG_JUMP_LABEL
2347 static atomic_t netstamp_needed_deferred;
2348 static atomic_t netstamp_wanted;
netstamp_clear(struct work_struct * work)2349 static void netstamp_clear(struct work_struct *work)
2350 {
2351 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2352 int wanted;
2353
2354 wanted = atomic_add_return(deferred, &netstamp_wanted);
2355 if (wanted > 0)
2356 static_branch_enable(&netstamp_needed_key);
2357 else
2358 static_branch_disable(&netstamp_needed_key);
2359 }
2360 static DECLARE_WORK(netstamp_work, netstamp_clear);
2361 #endif
2362
net_enable_timestamp(void)2363 void net_enable_timestamp(void)
2364 {
2365 #ifdef CONFIG_JUMP_LABEL
2366 int wanted = atomic_read(&netstamp_wanted);
2367
2368 while (wanted > 0) {
2369 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2370 return;
2371 }
2372 atomic_inc(&netstamp_needed_deferred);
2373 schedule_work(&netstamp_work);
2374 #else
2375 static_branch_inc(&netstamp_needed_key);
2376 #endif
2377 }
2378 EXPORT_SYMBOL(net_enable_timestamp);
2379
net_disable_timestamp(void)2380 void net_disable_timestamp(void)
2381 {
2382 #ifdef CONFIG_JUMP_LABEL
2383 int wanted = atomic_read(&netstamp_wanted);
2384
2385 while (wanted > 1) {
2386 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2387 return;
2388 }
2389 atomic_dec(&netstamp_needed_deferred);
2390 schedule_work(&netstamp_work);
2391 #else
2392 static_branch_dec(&netstamp_needed_key);
2393 #endif
2394 }
2395 EXPORT_SYMBOL(net_disable_timestamp);
2396
net_timestamp_set(struct sk_buff * skb)2397 static inline void net_timestamp_set(struct sk_buff *skb)
2398 {
2399 skb->tstamp = 0;
2400 skb->tstamp_type = SKB_CLOCK_REALTIME;
2401 if (static_branch_unlikely(&netstamp_needed_key))
2402 skb->tstamp = ktime_get_real();
2403 }
2404
2405 #define net_timestamp_check(COND, SKB) \
2406 if (static_branch_unlikely(&netstamp_needed_key)) { \
2407 if ((COND) && !(SKB)->tstamp) \
2408 (SKB)->tstamp = ktime_get_real(); \
2409 } \
2410
is_skb_forwardable(const struct net_device * dev,const struct sk_buff * skb)2411 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2412 {
2413 return __is_skb_forwardable(dev, skb, true);
2414 }
2415 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2416
__dev_forward_skb2(struct net_device * dev,struct sk_buff * skb,bool check_mtu)2417 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2418 bool check_mtu)
2419 {
2420 int ret = ____dev_forward_skb(dev, skb, check_mtu);
2421
2422 if (likely(!ret)) {
2423 skb->protocol = eth_type_trans(skb, dev);
2424 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2425 }
2426
2427 return ret;
2428 }
2429
__dev_forward_skb(struct net_device * dev,struct sk_buff * skb)2430 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2431 {
2432 return __dev_forward_skb2(dev, skb, true);
2433 }
2434 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2435
2436 /**
2437 * dev_forward_skb - loopback an skb to another netif
2438 *
2439 * @dev: destination network device
2440 * @skb: buffer to forward
2441 *
2442 * return values:
2443 * NET_RX_SUCCESS (no congestion)
2444 * NET_RX_DROP (packet was dropped, but freed)
2445 *
2446 * dev_forward_skb can be used for injecting an skb from the
2447 * start_xmit function of one device into the receive queue
2448 * of another device.
2449 *
2450 * The receiving device may be in another namespace, so
2451 * we have to clear all information in the skb that could
2452 * impact namespace isolation.
2453 */
dev_forward_skb(struct net_device * dev,struct sk_buff * skb)2454 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2455 {
2456 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2457 }
2458 EXPORT_SYMBOL_GPL(dev_forward_skb);
2459
dev_forward_skb_nomtu(struct net_device * dev,struct sk_buff * skb)2460 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2461 {
2462 return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2463 }
2464
deliver_skb(struct sk_buff * skb,struct packet_type * pt_prev,struct net_device * orig_dev)2465 static inline int deliver_skb(struct sk_buff *skb,
2466 struct packet_type *pt_prev,
2467 struct net_device *orig_dev)
2468 {
2469 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2470 return -ENOMEM;
2471 refcount_inc(&skb->users);
2472 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2473 }
2474
deliver_ptype_list_skb(struct sk_buff * skb,struct packet_type ** pt,struct net_device * orig_dev,__be16 type,struct list_head * ptype_list)2475 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2476 struct packet_type **pt,
2477 struct net_device *orig_dev,
2478 __be16 type,
2479 struct list_head *ptype_list)
2480 {
2481 struct packet_type *ptype, *pt_prev = *pt;
2482
2483 list_for_each_entry_rcu(ptype, ptype_list, list) {
2484 if (ptype->type != type)
2485 continue;
2486 if (pt_prev)
2487 deliver_skb(skb, pt_prev, orig_dev);
2488 pt_prev = ptype;
2489 }
2490 *pt = pt_prev;
2491 }
2492
skb_loop_sk(struct packet_type * ptype,struct sk_buff * skb)2493 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2494 {
2495 if (!ptype->af_packet_priv || !skb->sk)
2496 return false;
2497
2498 if (ptype->id_match)
2499 return ptype->id_match(ptype, skb->sk);
2500 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2501 return true;
2502
2503 return false;
2504 }
2505
2506 /**
2507 * dev_nit_active_rcu - return true if any network interface taps are in use
2508 *
2509 * The caller must hold the RCU lock
2510 *
2511 * @dev: network device to check for the presence of taps
2512 */
dev_nit_active_rcu(const struct net_device * dev)2513 bool dev_nit_active_rcu(const struct net_device *dev)
2514 {
2515 /* Callers may hold either RCU or RCU BH lock */
2516 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
2517
2518 return !list_empty(&dev_net(dev)->ptype_all) ||
2519 !list_empty(&dev->ptype_all);
2520 }
2521 EXPORT_SYMBOL_GPL(dev_nit_active_rcu);
2522
2523 /*
2524 * Support routine. Sends outgoing frames to any network
2525 * taps currently in use.
2526 */
2527
dev_queue_xmit_nit(struct sk_buff * skb,struct net_device * dev)2528 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2529 {
2530 struct packet_type *ptype, *pt_prev = NULL;
2531 struct list_head *ptype_list;
2532 struct sk_buff *skb2 = NULL;
2533
2534 rcu_read_lock();
2535 ptype_list = &dev_net_rcu(dev)->ptype_all;
2536 again:
2537 list_for_each_entry_rcu(ptype, ptype_list, list) {
2538 if (READ_ONCE(ptype->ignore_outgoing))
2539 continue;
2540
2541 /* Never send packets back to the socket
2542 * they originated from - MvS (miquels@drinkel.ow.org)
2543 */
2544 if (skb_loop_sk(ptype, skb))
2545 continue;
2546
2547 if (pt_prev) {
2548 deliver_skb(skb2, pt_prev, skb->dev);
2549 pt_prev = ptype;
2550 continue;
2551 }
2552
2553 /* need to clone skb, done only once */
2554 skb2 = skb_clone(skb, GFP_ATOMIC);
2555 if (!skb2)
2556 goto out_unlock;
2557
2558 net_timestamp_set(skb2);
2559
2560 /* skb->nh should be correctly
2561 * set by sender, so that the second statement is
2562 * just protection against buggy protocols.
2563 */
2564 skb_reset_mac_header(skb2);
2565
2566 if (skb_network_header(skb2) < skb2->data ||
2567 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2568 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2569 ntohs(skb2->protocol),
2570 dev->name);
2571 skb_reset_network_header(skb2);
2572 }
2573
2574 skb2->transport_header = skb2->network_header;
2575 skb2->pkt_type = PACKET_OUTGOING;
2576 pt_prev = ptype;
2577 }
2578
2579 if (ptype_list != &dev->ptype_all) {
2580 ptype_list = &dev->ptype_all;
2581 goto again;
2582 }
2583 out_unlock:
2584 if (pt_prev) {
2585 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2586 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2587 else
2588 kfree_skb(skb2);
2589 }
2590 rcu_read_unlock();
2591 }
2592 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2593
2594 /**
2595 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2596 * @dev: Network device
2597 * @txq: number of queues available
2598 *
2599 * If real_num_tx_queues is changed the tc mappings may no longer be
2600 * valid. To resolve this verify the tc mapping remains valid and if
2601 * not NULL the mapping. With no priorities mapping to this
2602 * offset/count pair it will no longer be used. In the worst case TC0
2603 * is invalid nothing can be done so disable priority mappings. If is
2604 * expected that drivers will fix this mapping if they can before
2605 * calling netif_set_real_num_tx_queues.
2606 */
netif_setup_tc(struct net_device * dev,unsigned int txq)2607 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2608 {
2609 int i;
2610 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2611
2612 /* If TC0 is invalidated disable TC mapping */
2613 if (tc->offset + tc->count > txq) {
2614 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2615 dev->num_tc = 0;
2616 return;
2617 }
2618
2619 /* Invalidated prio to tc mappings set to TC0 */
2620 for (i = 1; i < TC_BITMASK + 1; i++) {
2621 int q = netdev_get_prio_tc_map(dev, i);
2622
2623 tc = &dev->tc_to_txq[q];
2624 if (tc->offset + tc->count > txq) {
2625 netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2626 i, q);
2627 netdev_set_prio_tc_map(dev, i, 0);
2628 }
2629 }
2630 }
2631
netdev_txq_to_tc(struct net_device * dev,unsigned int txq)2632 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2633 {
2634 if (dev->num_tc) {
2635 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2636 int i;
2637
2638 /* walk through the TCs and see if it falls into any of them */
2639 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2640 if ((txq - tc->offset) < tc->count)
2641 return i;
2642 }
2643
2644 /* didn't find it, just return -1 to indicate no match */
2645 return -1;
2646 }
2647
2648 return 0;
2649 }
2650 EXPORT_SYMBOL(netdev_txq_to_tc);
2651
2652 #ifdef CONFIG_XPS
2653 static struct static_key xps_needed __read_mostly;
2654 static struct static_key xps_rxqs_needed __read_mostly;
2655 static DEFINE_MUTEX(xps_map_mutex);
2656 #define xmap_dereference(P) \
2657 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2658
remove_xps_queue(struct xps_dev_maps * dev_maps,struct xps_dev_maps * old_maps,int tci,u16 index)2659 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2660 struct xps_dev_maps *old_maps, int tci, u16 index)
2661 {
2662 struct xps_map *map = NULL;
2663 int pos;
2664
2665 map = xmap_dereference(dev_maps->attr_map[tci]);
2666 if (!map)
2667 return false;
2668
2669 for (pos = map->len; pos--;) {
2670 if (map->queues[pos] != index)
2671 continue;
2672
2673 if (map->len > 1) {
2674 map->queues[pos] = map->queues[--map->len];
2675 break;
2676 }
2677
2678 if (old_maps)
2679 RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2680 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2681 kfree_rcu(map, rcu);
2682 return false;
2683 }
2684
2685 return true;
2686 }
2687
remove_xps_queue_cpu(struct net_device * dev,struct xps_dev_maps * dev_maps,int cpu,u16 offset,u16 count)2688 static bool remove_xps_queue_cpu(struct net_device *dev,
2689 struct xps_dev_maps *dev_maps,
2690 int cpu, u16 offset, u16 count)
2691 {
2692 int num_tc = dev_maps->num_tc;
2693 bool active = false;
2694 int tci;
2695
2696 for (tci = cpu * num_tc; num_tc--; tci++) {
2697 int i, j;
2698
2699 for (i = count, j = offset; i--; j++) {
2700 if (!remove_xps_queue(dev_maps, NULL, tci, j))
2701 break;
2702 }
2703
2704 active |= i < 0;
2705 }
2706
2707 return active;
2708 }
2709
reset_xps_maps(struct net_device * dev,struct xps_dev_maps * dev_maps,enum xps_map_type type)2710 static void reset_xps_maps(struct net_device *dev,
2711 struct xps_dev_maps *dev_maps,
2712 enum xps_map_type type)
2713 {
2714 static_key_slow_dec_cpuslocked(&xps_needed);
2715 if (type == XPS_RXQS)
2716 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2717
2718 RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2719
2720 kfree_rcu(dev_maps, rcu);
2721 }
2722
clean_xps_maps(struct net_device * dev,enum xps_map_type type,u16 offset,u16 count)2723 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2724 u16 offset, u16 count)
2725 {
2726 struct xps_dev_maps *dev_maps;
2727 bool active = false;
2728 int i, j;
2729
2730 dev_maps = xmap_dereference(dev->xps_maps[type]);
2731 if (!dev_maps)
2732 return;
2733
2734 for (j = 0; j < dev_maps->nr_ids; j++)
2735 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2736 if (!active)
2737 reset_xps_maps(dev, dev_maps, type);
2738
2739 if (type == XPS_CPUS) {
2740 for (i = offset + (count - 1); count--; i--)
2741 netdev_queue_numa_node_write(
2742 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2743 }
2744 }
2745
netif_reset_xps_queues(struct net_device * dev,u16 offset,u16 count)2746 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2747 u16 count)
2748 {
2749 if (!static_key_false(&xps_needed))
2750 return;
2751
2752 cpus_read_lock();
2753 mutex_lock(&xps_map_mutex);
2754
2755 if (static_key_false(&xps_rxqs_needed))
2756 clean_xps_maps(dev, XPS_RXQS, offset, count);
2757
2758 clean_xps_maps(dev, XPS_CPUS, offset, count);
2759
2760 mutex_unlock(&xps_map_mutex);
2761 cpus_read_unlock();
2762 }
2763
netif_reset_xps_queues_gt(struct net_device * dev,u16 index)2764 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2765 {
2766 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2767 }
2768
expand_xps_map(struct xps_map * map,int attr_index,u16 index,bool is_rxqs_map)2769 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2770 u16 index, bool is_rxqs_map)
2771 {
2772 struct xps_map *new_map;
2773 int alloc_len = XPS_MIN_MAP_ALLOC;
2774 int i, pos;
2775
2776 for (pos = 0; map && pos < map->len; pos++) {
2777 if (map->queues[pos] != index)
2778 continue;
2779 return map;
2780 }
2781
2782 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2783 if (map) {
2784 if (pos < map->alloc_len)
2785 return map;
2786
2787 alloc_len = map->alloc_len * 2;
2788 }
2789
2790 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2791 * map
2792 */
2793 if (is_rxqs_map)
2794 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2795 else
2796 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2797 cpu_to_node(attr_index));
2798 if (!new_map)
2799 return NULL;
2800
2801 for (i = 0; i < pos; i++)
2802 new_map->queues[i] = map->queues[i];
2803 new_map->alloc_len = alloc_len;
2804 new_map->len = pos;
2805
2806 return new_map;
2807 }
2808
2809 /* Copy xps maps at a given index */
xps_copy_dev_maps(struct xps_dev_maps * dev_maps,struct xps_dev_maps * new_dev_maps,int index,int tc,bool skip_tc)2810 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2811 struct xps_dev_maps *new_dev_maps, int index,
2812 int tc, bool skip_tc)
2813 {
2814 int i, tci = index * dev_maps->num_tc;
2815 struct xps_map *map;
2816
2817 /* copy maps belonging to foreign traffic classes */
2818 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2819 if (i == tc && skip_tc)
2820 continue;
2821
2822 /* fill in the new device map from the old device map */
2823 map = xmap_dereference(dev_maps->attr_map[tci]);
2824 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2825 }
2826 }
2827
2828 /* Must be called under cpus_read_lock */
__netif_set_xps_queue(struct net_device * dev,const unsigned long * mask,u16 index,enum xps_map_type type)2829 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2830 u16 index, enum xps_map_type type)
2831 {
2832 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2833 const unsigned long *online_mask = NULL;
2834 bool active = false, copy = false;
2835 int i, j, tci, numa_node_id = -2;
2836 int maps_sz, num_tc = 1, tc = 0;
2837 struct xps_map *map, *new_map;
2838 unsigned int nr_ids;
2839
2840 WARN_ON_ONCE(index >= dev->num_tx_queues);
2841
2842 if (dev->num_tc) {
2843 /* Do not allow XPS on subordinate device directly */
2844 num_tc = dev->num_tc;
2845 if (num_tc < 0)
2846 return -EINVAL;
2847
2848 /* If queue belongs to subordinate dev use its map */
2849 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2850
2851 tc = netdev_txq_to_tc(dev, index);
2852 if (tc < 0)
2853 return -EINVAL;
2854 }
2855
2856 mutex_lock(&xps_map_mutex);
2857
2858 dev_maps = xmap_dereference(dev->xps_maps[type]);
2859 if (type == XPS_RXQS) {
2860 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2861 nr_ids = dev->num_rx_queues;
2862 } else {
2863 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2864 if (num_possible_cpus() > 1)
2865 online_mask = cpumask_bits(cpu_online_mask);
2866 nr_ids = nr_cpu_ids;
2867 }
2868
2869 if (maps_sz < L1_CACHE_BYTES)
2870 maps_sz = L1_CACHE_BYTES;
2871
2872 /* The old dev_maps could be larger or smaller than the one we're
2873 * setting up now, as dev->num_tc or nr_ids could have been updated in
2874 * between. We could try to be smart, but let's be safe instead and only
2875 * copy foreign traffic classes if the two map sizes match.
2876 */
2877 if (dev_maps &&
2878 dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2879 copy = true;
2880
2881 /* allocate memory for queue storage */
2882 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2883 j < nr_ids;) {
2884 if (!new_dev_maps) {
2885 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2886 if (!new_dev_maps) {
2887 mutex_unlock(&xps_map_mutex);
2888 return -ENOMEM;
2889 }
2890
2891 new_dev_maps->nr_ids = nr_ids;
2892 new_dev_maps->num_tc = num_tc;
2893 }
2894
2895 tci = j * num_tc + tc;
2896 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2897
2898 map = expand_xps_map(map, j, index, type == XPS_RXQS);
2899 if (!map)
2900 goto error;
2901
2902 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2903 }
2904
2905 if (!new_dev_maps)
2906 goto out_no_new_maps;
2907
2908 if (!dev_maps) {
2909 /* Increment static keys at most once per type */
2910 static_key_slow_inc_cpuslocked(&xps_needed);
2911 if (type == XPS_RXQS)
2912 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2913 }
2914
2915 for (j = 0; j < nr_ids; j++) {
2916 bool skip_tc = false;
2917
2918 tci = j * num_tc + tc;
2919 if (netif_attr_test_mask(j, mask, nr_ids) &&
2920 netif_attr_test_online(j, online_mask, nr_ids)) {
2921 /* add tx-queue to CPU/rx-queue maps */
2922 int pos = 0;
2923
2924 skip_tc = true;
2925
2926 map = xmap_dereference(new_dev_maps->attr_map[tci]);
2927 while ((pos < map->len) && (map->queues[pos] != index))
2928 pos++;
2929
2930 if (pos == map->len)
2931 map->queues[map->len++] = index;
2932 #ifdef CONFIG_NUMA
2933 if (type == XPS_CPUS) {
2934 if (numa_node_id == -2)
2935 numa_node_id = cpu_to_node(j);
2936 else if (numa_node_id != cpu_to_node(j))
2937 numa_node_id = -1;
2938 }
2939 #endif
2940 }
2941
2942 if (copy)
2943 xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2944 skip_tc);
2945 }
2946
2947 rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2948
2949 /* Cleanup old maps */
2950 if (!dev_maps)
2951 goto out_no_old_maps;
2952
2953 for (j = 0; j < dev_maps->nr_ids; j++) {
2954 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2955 map = xmap_dereference(dev_maps->attr_map[tci]);
2956 if (!map)
2957 continue;
2958
2959 if (copy) {
2960 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2961 if (map == new_map)
2962 continue;
2963 }
2964
2965 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2966 kfree_rcu(map, rcu);
2967 }
2968 }
2969
2970 old_dev_maps = dev_maps;
2971
2972 out_no_old_maps:
2973 dev_maps = new_dev_maps;
2974 active = true;
2975
2976 out_no_new_maps:
2977 if (type == XPS_CPUS)
2978 /* update Tx queue numa node */
2979 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2980 (numa_node_id >= 0) ?
2981 numa_node_id : NUMA_NO_NODE);
2982
2983 if (!dev_maps)
2984 goto out_no_maps;
2985
2986 /* removes tx-queue from unused CPUs/rx-queues */
2987 for (j = 0; j < dev_maps->nr_ids; j++) {
2988 tci = j * dev_maps->num_tc;
2989
2990 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2991 if (i == tc &&
2992 netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2993 netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2994 continue;
2995
2996 active |= remove_xps_queue(dev_maps,
2997 copy ? old_dev_maps : NULL,
2998 tci, index);
2999 }
3000 }
3001
3002 if (old_dev_maps)
3003 kfree_rcu(old_dev_maps, rcu);
3004
3005 /* free map if not active */
3006 if (!active)
3007 reset_xps_maps(dev, dev_maps, type);
3008
3009 out_no_maps:
3010 mutex_unlock(&xps_map_mutex);
3011
3012 return 0;
3013 error:
3014 /* remove any maps that we added */
3015 for (j = 0; j < nr_ids; j++) {
3016 for (i = num_tc, tci = j * num_tc; i--; tci++) {
3017 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
3018 map = copy ?
3019 xmap_dereference(dev_maps->attr_map[tci]) :
3020 NULL;
3021 if (new_map && new_map != map)
3022 kfree(new_map);
3023 }
3024 }
3025
3026 mutex_unlock(&xps_map_mutex);
3027
3028 kfree(new_dev_maps);
3029 return -ENOMEM;
3030 }
3031 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
3032
netif_set_xps_queue(struct net_device * dev,const struct cpumask * mask,u16 index)3033 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3034 u16 index)
3035 {
3036 int ret;
3037
3038 cpus_read_lock();
3039 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
3040 cpus_read_unlock();
3041
3042 return ret;
3043 }
3044 EXPORT_SYMBOL(netif_set_xps_queue);
3045
3046 #endif
netdev_unbind_all_sb_channels(struct net_device * dev)3047 static void netdev_unbind_all_sb_channels(struct net_device *dev)
3048 {
3049 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
3050
3051 /* Unbind any subordinate channels */
3052 while (txq-- != &dev->_tx[0]) {
3053 if (txq->sb_dev)
3054 netdev_unbind_sb_channel(dev, txq->sb_dev);
3055 }
3056 }
3057
netdev_reset_tc(struct net_device * dev)3058 void netdev_reset_tc(struct net_device *dev)
3059 {
3060 #ifdef CONFIG_XPS
3061 netif_reset_xps_queues_gt(dev, 0);
3062 #endif
3063 netdev_unbind_all_sb_channels(dev);
3064
3065 /* Reset TC configuration of device */
3066 dev->num_tc = 0;
3067 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
3068 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
3069 }
3070 EXPORT_SYMBOL(netdev_reset_tc);
3071
netdev_set_tc_queue(struct net_device * dev,u8 tc,u16 count,u16 offset)3072 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
3073 {
3074 if (tc >= dev->num_tc)
3075 return -EINVAL;
3076
3077 #ifdef CONFIG_XPS
3078 netif_reset_xps_queues(dev, offset, count);
3079 #endif
3080 dev->tc_to_txq[tc].count = count;
3081 dev->tc_to_txq[tc].offset = offset;
3082 return 0;
3083 }
3084 EXPORT_SYMBOL(netdev_set_tc_queue);
3085
netdev_set_num_tc(struct net_device * dev,u8 num_tc)3086 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
3087 {
3088 if (num_tc > TC_MAX_QUEUE)
3089 return -EINVAL;
3090
3091 #ifdef CONFIG_XPS
3092 netif_reset_xps_queues_gt(dev, 0);
3093 #endif
3094 netdev_unbind_all_sb_channels(dev);
3095
3096 dev->num_tc = num_tc;
3097 return 0;
3098 }
3099 EXPORT_SYMBOL(netdev_set_num_tc);
3100
netdev_unbind_sb_channel(struct net_device * dev,struct net_device * sb_dev)3101 void netdev_unbind_sb_channel(struct net_device *dev,
3102 struct net_device *sb_dev)
3103 {
3104 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
3105
3106 #ifdef CONFIG_XPS
3107 netif_reset_xps_queues_gt(sb_dev, 0);
3108 #endif
3109 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
3110 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
3111
3112 while (txq-- != &dev->_tx[0]) {
3113 if (txq->sb_dev == sb_dev)
3114 txq->sb_dev = NULL;
3115 }
3116 }
3117 EXPORT_SYMBOL(netdev_unbind_sb_channel);
3118
netdev_bind_sb_channel_queue(struct net_device * dev,struct net_device * sb_dev,u8 tc,u16 count,u16 offset)3119 int netdev_bind_sb_channel_queue(struct net_device *dev,
3120 struct net_device *sb_dev,
3121 u8 tc, u16 count, u16 offset)
3122 {
3123 /* Make certain the sb_dev and dev are already configured */
3124 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
3125 return -EINVAL;
3126
3127 /* We cannot hand out queues we don't have */
3128 if ((offset + count) > dev->real_num_tx_queues)
3129 return -EINVAL;
3130
3131 /* Record the mapping */
3132 sb_dev->tc_to_txq[tc].count = count;
3133 sb_dev->tc_to_txq[tc].offset = offset;
3134
3135 /* Provide a way for Tx queue to find the tc_to_txq map or
3136 * XPS map for itself.
3137 */
3138 while (count--)
3139 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
3140
3141 return 0;
3142 }
3143 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
3144
netdev_set_sb_channel(struct net_device * dev,u16 channel)3145 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
3146 {
3147 /* Do not use a multiqueue device to represent a subordinate channel */
3148 if (netif_is_multiqueue(dev))
3149 return -ENODEV;
3150
3151 /* We allow channels 1 - 32767 to be used for subordinate channels.
3152 * Channel 0 is meant to be "native" mode and used only to represent
3153 * the main root device. We allow writing 0 to reset the device back
3154 * to normal mode after being used as a subordinate channel.
3155 */
3156 if (channel > S16_MAX)
3157 return -EINVAL;
3158
3159 dev->num_tc = -channel;
3160
3161 return 0;
3162 }
3163 EXPORT_SYMBOL(netdev_set_sb_channel);
3164
3165 /*
3166 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
3167 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
3168 */
netif_set_real_num_tx_queues(struct net_device * dev,unsigned int txq)3169 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
3170 {
3171 bool disabling;
3172 int rc;
3173
3174 disabling = txq < dev->real_num_tx_queues;
3175
3176 if (txq < 1 || txq > dev->num_tx_queues)
3177 return -EINVAL;
3178
3179 if (dev->reg_state == NETREG_REGISTERED ||
3180 dev->reg_state == NETREG_UNREGISTERING) {
3181 netdev_ops_assert_locked(dev);
3182
3183 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
3184 txq);
3185 if (rc)
3186 return rc;
3187
3188 if (dev->num_tc)
3189 netif_setup_tc(dev, txq);
3190
3191 net_shaper_set_real_num_tx_queues(dev, txq);
3192
3193 dev_qdisc_change_real_num_tx(dev, txq);
3194
3195 dev->real_num_tx_queues = txq;
3196
3197 if (disabling) {
3198 synchronize_net();
3199 qdisc_reset_all_tx_gt(dev, txq);
3200 #ifdef CONFIG_XPS
3201 netif_reset_xps_queues_gt(dev, txq);
3202 #endif
3203 }
3204 } else {
3205 dev->real_num_tx_queues = txq;
3206 }
3207
3208 return 0;
3209 }
3210 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
3211
3212 /**
3213 * netif_set_real_num_rx_queues - set actual number of RX queues used
3214 * @dev: Network device
3215 * @rxq: Actual number of RX queues
3216 *
3217 * This must be called either with the rtnl_lock held or before
3218 * registration of the net device. Returns 0 on success, or a
3219 * negative error code. If called before registration, it always
3220 * succeeds.
3221 */
netif_set_real_num_rx_queues(struct net_device * dev,unsigned int rxq)3222 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
3223 {
3224 int rc;
3225
3226 if (rxq < 1 || rxq > dev->num_rx_queues)
3227 return -EINVAL;
3228
3229 if (dev->reg_state == NETREG_REGISTERED) {
3230 netdev_ops_assert_locked(dev);
3231
3232 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3233 rxq);
3234 if (rc)
3235 return rc;
3236 }
3237
3238 dev->real_num_rx_queues = rxq;
3239 return 0;
3240 }
3241 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3242
3243 /**
3244 * netif_set_real_num_queues - set actual number of RX and TX queues used
3245 * @dev: Network device
3246 * @txq: Actual number of TX queues
3247 * @rxq: Actual number of RX queues
3248 *
3249 * Set the real number of both TX and RX queues.
3250 * Does nothing if the number of queues is already correct.
3251 */
netif_set_real_num_queues(struct net_device * dev,unsigned int txq,unsigned int rxq)3252 int netif_set_real_num_queues(struct net_device *dev,
3253 unsigned int txq, unsigned int rxq)
3254 {
3255 unsigned int old_rxq = dev->real_num_rx_queues;
3256 int err;
3257
3258 if (txq < 1 || txq > dev->num_tx_queues ||
3259 rxq < 1 || rxq > dev->num_rx_queues)
3260 return -EINVAL;
3261
3262 /* Start from increases, so the error path only does decreases -
3263 * decreases can't fail.
3264 */
3265 if (rxq > dev->real_num_rx_queues) {
3266 err = netif_set_real_num_rx_queues(dev, rxq);
3267 if (err)
3268 return err;
3269 }
3270 if (txq > dev->real_num_tx_queues) {
3271 err = netif_set_real_num_tx_queues(dev, txq);
3272 if (err)
3273 goto undo_rx;
3274 }
3275 if (rxq < dev->real_num_rx_queues)
3276 WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3277 if (txq < dev->real_num_tx_queues)
3278 WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3279
3280 return 0;
3281 undo_rx:
3282 WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3283 return err;
3284 }
3285 EXPORT_SYMBOL(netif_set_real_num_queues);
3286
3287 /**
3288 * netif_set_tso_max_size() - set the max size of TSO frames supported
3289 * @dev: netdev to update
3290 * @size: max skb->len of a TSO frame
3291 *
3292 * Set the limit on the size of TSO super-frames the device can handle.
3293 * Unless explicitly set the stack will assume the value of
3294 * %GSO_LEGACY_MAX_SIZE.
3295 */
netif_set_tso_max_size(struct net_device * dev,unsigned int size)3296 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3297 {
3298 dev->tso_max_size = min(GSO_MAX_SIZE, size);
3299 if (size < READ_ONCE(dev->gso_max_size))
3300 netif_set_gso_max_size(dev, size);
3301 if (size < READ_ONCE(dev->gso_ipv4_max_size))
3302 netif_set_gso_ipv4_max_size(dev, size);
3303 }
3304 EXPORT_SYMBOL(netif_set_tso_max_size);
3305
3306 /**
3307 * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3308 * @dev: netdev to update
3309 * @segs: max number of TCP segments
3310 *
3311 * Set the limit on the number of TCP segments the device can generate from
3312 * a single TSO super-frame.
3313 * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3314 */
netif_set_tso_max_segs(struct net_device * dev,unsigned int segs)3315 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3316 {
3317 dev->tso_max_segs = segs;
3318 if (segs < READ_ONCE(dev->gso_max_segs))
3319 netif_set_gso_max_segs(dev, segs);
3320 }
3321 EXPORT_SYMBOL(netif_set_tso_max_segs);
3322
3323 /**
3324 * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3325 * @to: netdev to update
3326 * @from: netdev from which to copy the limits
3327 */
netif_inherit_tso_max(struct net_device * to,const struct net_device * from)3328 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3329 {
3330 netif_set_tso_max_size(to, from->tso_max_size);
3331 netif_set_tso_max_segs(to, from->tso_max_segs);
3332 }
3333 EXPORT_SYMBOL(netif_inherit_tso_max);
3334
3335 /**
3336 * netif_get_num_default_rss_queues - default number of RSS queues
3337 *
3338 * Default value is the number of physical cores if there are only 1 or 2, or
3339 * divided by 2 if there are more.
3340 */
netif_get_num_default_rss_queues(void)3341 int netif_get_num_default_rss_queues(void)
3342 {
3343 cpumask_var_t cpus;
3344 int cpu, count = 0;
3345
3346 if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3347 return 1;
3348
3349 cpumask_copy(cpus, cpu_online_mask);
3350 for_each_cpu(cpu, cpus) {
3351 ++count;
3352 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3353 }
3354 free_cpumask_var(cpus);
3355
3356 return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3357 }
3358 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3359
__netif_reschedule(struct Qdisc * q)3360 static void __netif_reschedule(struct Qdisc *q)
3361 {
3362 struct softnet_data *sd;
3363 unsigned long flags;
3364
3365 local_irq_save(flags);
3366 sd = this_cpu_ptr(&softnet_data);
3367 q->next_sched = NULL;
3368 *sd->output_queue_tailp = q;
3369 sd->output_queue_tailp = &q->next_sched;
3370 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3371 local_irq_restore(flags);
3372 }
3373
__netif_schedule(struct Qdisc * q)3374 void __netif_schedule(struct Qdisc *q)
3375 {
3376 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3377 __netif_reschedule(q);
3378 }
3379 EXPORT_SYMBOL(__netif_schedule);
3380
3381 struct dev_kfree_skb_cb {
3382 enum skb_drop_reason reason;
3383 };
3384
get_kfree_skb_cb(const struct sk_buff * skb)3385 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3386 {
3387 return (struct dev_kfree_skb_cb *)skb->cb;
3388 }
3389
netif_schedule_queue(struct netdev_queue * txq)3390 void netif_schedule_queue(struct netdev_queue *txq)
3391 {
3392 rcu_read_lock();
3393 if (!netif_xmit_stopped(txq)) {
3394 struct Qdisc *q = rcu_dereference(txq->qdisc);
3395
3396 __netif_schedule(q);
3397 }
3398 rcu_read_unlock();
3399 }
3400 EXPORT_SYMBOL(netif_schedule_queue);
3401
netif_tx_wake_queue(struct netdev_queue * dev_queue)3402 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3403 {
3404 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3405 struct Qdisc *q;
3406
3407 rcu_read_lock();
3408 q = rcu_dereference(dev_queue->qdisc);
3409 __netif_schedule(q);
3410 rcu_read_unlock();
3411 }
3412 }
3413 EXPORT_SYMBOL(netif_tx_wake_queue);
3414
dev_kfree_skb_irq_reason(struct sk_buff * skb,enum skb_drop_reason reason)3415 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3416 {
3417 unsigned long flags;
3418
3419 if (unlikely(!skb))
3420 return;
3421
3422 if (likely(refcount_read(&skb->users) == 1)) {
3423 smp_rmb();
3424 refcount_set(&skb->users, 0);
3425 } else if (likely(!refcount_dec_and_test(&skb->users))) {
3426 return;
3427 }
3428 get_kfree_skb_cb(skb)->reason = reason;
3429 local_irq_save(flags);
3430 skb->next = __this_cpu_read(softnet_data.completion_queue);
3431 __this_cpu_write(softnet_data.completion_queue, skb);
3432 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3433 local_irq_restore(flags);
3434 }
3435 EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3436
dev_kfree_skb_any_reason(struct sk_buff * skb,enum skb_drop_reason reason)3437 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3438 {
3439 if (in_hardirq() || irqs_disabled())
3440 dev_kfree_skb_irq_reason(skb, reason);
3441 else
3442 kfree_skb_reason(skb, reason);
3443 }
3444 EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3445
3446
3447 /**
3448 * netif_device_detach - mark device as removed
3449 * @dev: network device
3450 *
3451 * Mark device as removed from system and therefore no longer available.
3452 */
netif_device_detach(struct net_device * dev)3453 void netif_device_detach(struct net_device *dev)
3454 {
3455 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3456 netif_running(dev)) {
3457 netif_tx_stop_all_queues(dev);
3458 }
3459 }
3460 EXPORT_SYMBOL(netif_device_detach);
3461
3462 /**
3463 * netif_device_attach - mark device as attached
3464 * @dev: network device
3465 *
3466 * Mark device as attached from system and restart if needed.
3467 */
netif_device_attach(struct net_device * dev)3468 void netif_device_attach(struct net_device *dev)
3469 {
3470 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3471 netif_running(dev)) {
3472 netif_tx_wake_all_queues(dev);
3473 netdev_watchdog_up(dev);
3474 }
3475 }
3476 EXPORT_SYMBOL(netif_device_attach);
3477
3478 /*
3479 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3480 * to be used as a distribution range.
3481 */
skb_tx_hash(const struct net_device * dev,const struct net_device * sb_dev,struct sk_buff * skb)3482 static u16 skb_tx_hash(const struct net_device *dev,
3483 const struct net_device *sb_dev,
3484 struct sk_buff *skb)
3485 {
3486 u32 hash;
3487 u16 qoffset = 0;
3488 u16 qcount = dev->real_num_tx_queues;
3489
3490 if (dev->num_tc) {
3491 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3492
3493 qoffset = sb_dev->tc_to_txq[tc].offset;
3494 qcount = sb_dev->tc_to_txq[tc].count;
3495 if (unlikely(!qcount)) {
3496 net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3497 sb_dev->name, qoffset, tc);
3498 qoffset = 0;
3499 qcount = dev->real_num_tx_queues;
3500 }
3501 }
3502
3503 if (skb_rx_queue_recorded(skb)) {
3504 DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3505 hash = skb_get_rx_queue(skb);
3506 if (hash >= qoffset)
3507 hash -= qoffset;
3508 while (unlikely(hash >= qcount))
3509 hash -= qcount;
3510 return hash + qoffset;
3511 }
3512
3513 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3514 }
3515
skb_warn_bad_offload(const struct sk_buff * skb)3516 void skb_warn_bad_offload(const struct sk_buff *skb)
3517 {
3518 static const netdev_features_t null_features;
3519 struct net_device *dev = skb->dev;
3520 const char *name = "";
3521
3522 if (!net_ratelimit())
3523 return;
3524
3525 if (dev) {
3526 if (dev->dev.parent)
3527 name = dev_driver_string(dev->dev.parent);
3528 else
3529 name = netdev_name(dev);
3530 }
3531 skb_dump(KERN_WARNING, skb, false);
3532 WARN(1, "%s: caps=(%pNF, %pNF)\n",
3533 name, dev ? &dev->features : &null_features,
3534 skb->sk ? &skb->sk->sk_route_caps : &null_features);
3535 }
3536
3537 /*
3538 * Invalidate hardware checksum when packet is to be mangled, and
3539 * complete checksum manually on outgoing path.
3540 */
skb_checksum_help(struct sk_buff * skb)3541 int skb_checksum_help(struct sk_buff *skb)
3542 {
3543 __wsum csum;
3544 int ret = 0, offset;
3545
3546 if (skb->ip_summed == CHECKSUM_COMPLETE)
3547 goto out_set_summed;
3548
3549 if (unlikely(skb_is_gso(skb))) {
3550 skb_warn_bad_offload(skb);
3551 return -EINVAL;
3552 }
3553
3554 if (!skb_frags_readable(skb)) {
3555 return -EFAULT;
3556 }
3557
3558 /* Before computing a checksum, we should make sure no frag could
3559 * be modified by an external entity : checksum could be wrong.
3560 */
3561 if (skb_has_shared_frag(skb)) {
3562 ret = __skb_linearize(skb);
3563 if (ret)
3564 goto out;
3565 }
3566
3567 offset = skb_checksum_start_offset(skb);
3568 ret = -EINVAL;
3569 if (unlikely(offset >= skb_headlen(skb))) {
3570 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3571 WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3572 offset, skb_headlen(skb));
3573 goto out;
3574 }
3575 csum = skb_checksum(skb, offset, skb->len - offset, 0);
3576
3577 offset += skb->csum_offset;
3578 if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3579 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3580 WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3581 offset + sizeof(__sum16), skb_headlen(skb));
3582 goto out;
3583 }
3584 ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3585 if (ret)
3586 goto out;
3587
3588 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3589 out_set_summed:
3590 skb->ip_summed = CHECKSUM_NONE;
3591 out:
3592 return ret;
3593 }
3594 EXPORT_SYMBOL(skb_checksum_help);
3595
3596 #ifdef CONFIG_NET_CRC32C
skb_crc32c_csum_help(struct sk_buff * skb)3597 int skb_crc32c_csum_help(struct sk_buff *skb)
3598 {
3599 u32 crc;
3600 int ret = 0, offset, start;
3601
3602 if (skb->ip_summed != CHECKSUM_PARTIAL)
3603 goto out;
3604
3605 if (unlikely(skb_is_gso(skb)))
3606 goto out;
3607
3608 /* Before computing a checksum, we should make sure no frag could
3609 * be modified by an external entity : checksum could be wrong.
3610 */
3611 if (unlikely(skb_has_shared_frag(skb))) {
3612 ret = __skb_linearize(skb);
3613 if (ret)
3614 goto out;
3615 }
3616 start = skb_checksum_start_offset(skb);
3617 offset = start + offsetof(struct sctphdr, checksum);
3618 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3619 ret = -EINVAL;
3620 goto out;
3621 }
3622
3623 ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3624 if (ret)
3625 goto out;
3626
3627 crc = ~skb_crc32c(skb, start, skb->len - start, ~0);
3628 *(__le32 *)(skb->data + offset) = cpu_to_le32(crc);
3629 skb_reset_csum_not_inet(skb);
3630 out:
3631 return ret;
3632 }
3633 EXPORT_SYMBOL(skb_crc32c_csum_help);
3634 #endif /* CONFIG_NET_CRC32C */
3635
skb_network_protocol(struct sk_buff * skb,int * depth)3636 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3637 {
3638 __be16 type = skb->protocol;
3639
3640 /* Tunnel gso handlers can set protocol to ethernet. */
3641 if (type == htons(ETH_P_TEB)) {
3642 struct ethhdr *eth;
3643
3644 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3645 return 0;
3646
3647 eth = (struct ethhdr *)skb->data;
3648 type = eth->h_proto;
3649 }
3650
3651 return vlan_get_protocol_and_depth(skb, type, depth);
3652 }
3653
3654
3655 /* Take action when hardware reception checksum errors are detected. */
3656 #ifdef CONFIG_BUG
do_netdev_rx_csum_fault(struct net_device * dev,struct sk_buff * skb)3657 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3658 {
3659 netdev_err(dev, "hw csum failure\n");
3660 skb_dump(KERN_ERR, skb, true);
3661 dump_stack();
3662 }
3663
netdev_rx_csum_fault(struct net_device * dev,struct sk_buff * skb)3664 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3665 {
3666 DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3667 }
3668 EXPORT_SYMBOL(netdev_rx_csum_fault);
3669 #endif
3670
3671 /* XXX: check that highmem exists at all on the given machine. */
illegal_highdma(struct net_device * dev,struct sk_buff * skb)3672 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3673 {
3674 #ifdef CONFIG_HIGHMEM
3675 int i;
3676
3677 if (!(dev->features & NETIF_F_HIGHDMA)) {
3678 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3679 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3680 struct page *page = skb_frag_page(frag);
3681
3682 if (page && PageHighMem(page))
3683 return 1;
3684 }
3685 }
3686 #endif
3687 return 0;
3688 }
3689
3690 /* If MPLS offload request, verify we are testing hardware MPLS features
3691 * instead of standard features for the netdev.
3692 */
3693 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)3694 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3695 netdev_features_t features,
3696 __be16 type)
3697 {
3698 if (eth_p_mpls(type))
3699 features &= skb->dev->mpls_features;
3700
3701 return features;
3702 }
3703 #else
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)3704 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3705 netdev_features_t features,
3706 __be16 type)
3707 {
3708 return features;
3709 }
3710 #endif
3711
harmonize_features(struct sk_buff * skb,netdev_features_t features)3712 static netdev_features_t harmonize_features(struct sk_buff *skb,
3713 netdev_features_t features)
3714 {
3715 __be16 type;
3716
3717 type = skb_network_protocol(skb, NULL);
3718 features = net_mpls_features(skb, features, type);
3719
3720 if (skb->ip_summed != CHECKSUM_NONE &&
3721 !can_checksum_protocol(features, type)) {
3722 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3723 }
3724 if (illegal_highdma(skb->dev, skb))
3725 features &= ~NETIF_F_SG;
3726
3727 return features;
3728 }
3729
passthru_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3730 netdev_features_t passthru_features_check(struct sk_buff *skb,
3731 struct net_device *dev,
3732 netdev_features_t features)
3733 {
3734 return features;
3735 }
3736 EXPORT_SYMBOL(passthru_features_check);
3737
dflt_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3738 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3739 struct net_device *dev,
3740 netdev_features_t features)
3741 {
3742 return vlan_features_check(skb, features);
3743 }
3744
gso_features_check(const struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3745 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3746 struct net_device *dev,
3747 netdev_features_t features)
3748 {
3749 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3750
3751 if (gso_segs > READ_ONCE(dev->gso_max_segs))
3752 return features & ~NETIF_F_GSO_MASK;
3753
3754 if (unlikely(skb->len >= netif_get_gso_max_size(dev, skb)))
3755 return features & ~NETIF_F_GSO_MASK;
3756
3757 if (!skb_shinfo(skb)->gso_type) {
3758 skb_warn_bad_offload(skb);
3759 return features & ~NETIF_F_GSO_MASK;
3760 }
3761
3762 /* Support for GSO partial features requires software
3763 * intervention before we can actually process the packets
3764 * so we need to strip support for any partial features now
3765 * and we can pull them back in after we have partially
3766 * segmented the frame.
3767 */
3768 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3769 features &= ~dev->gso_partial_features;
3770
3771 /* Make sure to clear the IPv4 ID mangling feature if the
3772 * IPv4 header has the potential to be fragmented.
3773 */
3774 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3775 struct iphdr *iph = skb->encapsulation ?
3776 inner_ip_hdr(skb) : ip_hdr(skb);
3777
3778 if (!(iph->frag_off & htons(IP_DF)))
3779 features &= ~NETIF_F_TSO_MANGLEID;
3780 }
3781
3782 return features;
3783 }
3784
netif_skb_features(struct sk_buff * skb)3785 netdev_features_t netif_skb_features(struct sk_buff *skb)
3786 {
3787 struct net_device *dev = skb->dev;
3788 netdev_features_t features = dev->features;
3789
3790 if (skb_is_gso(skb))
3791 features = gso_features_check(skb, dev, features);
3792
3793 /* If encapsulation offload request, verify we are testing
3794 * hardware encapsulation features instead of standard
3795 * features for the netdev
3796 */
3797 if (skb->encapsulation)
3798 features &= dev->hw_enc_features;
3799
3800 if (skb_vlan_tagged(skb))
3801 features = netdev_intersect_features(features,
3802 dev->vlan_features |
3803 NETIF_F_HW_VLAN_CTAG_TX |
3804 NETIF_F_HW_VLAN_STAG_TX);
3805
3806 if (dev->netdev_ops->ndo_features_check)
3807 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3808 features);
3809 else
3810 features &= dflt_features_check(skb, dev, features);
3811
3812 return harmonize_features(skb, features);
3813 }
3814 EXPORT_SYMBOL(netif_skb_features);
3815
xmit_one(struct sk_buff * skb,struct net_device * dev,struct netdev_queue * txq,bool more)3816 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3817 struct netdev_queue *txq, bool more)
3818 {
3819 unsigned int len;
3820 int rc;
3821
3822 if (dev_nit_active_rcu(dev))
3823 dev_queue_xmit_nit(skb, dev);
3824
3825 len = skb->len;
3826 trace_net_dev_start_xmit(skb, dev);
3827 rc = netdev_start_xmit(skb, dev, txq, more);
3828 trace_net_dev_xmit(skb, rc, dev, len);
3829
3830 return rc;
3831 }
3832
dev_hard_start_xmit(struct sk_buff * first,struct net_device * dev,struct netdev_queue * txq,int * ret)3833 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3834 struct netdev_queue *txq, int *ret)
3835 {
3836 struct sk_buff *skb = first;
3837 int rc = NETDEV_TX_OK;
3838
3839 while (skb) {
3840 struct sk_buff *next = skb->next;
3841
3842 skb_mark_not_on_list(skb);
3843 rc = xmit_one(skb, dev, txq, next != NULL);
3844 if (unlikely(!dev_xmit_complete(rc))) {
3845 skb->next = next;
3846 goto out;
3847 }
3848
3849 skb = next;
3850 if (netif_tx_queue_stopped(txq) && skb) {
3851 rc = NETDEV_TX_BUSY;
3852 break;
3853 }
3854 }
3855
3856 out:
3857 *ret = rc;
3858 return skb;
3859 }
3860
validate_xmit_vlan(struct sk_buff * skb,netdev_features_t features)3861 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3862 netdev_features_t features)
3863 {
3864 if (skb_vlan_tag_present(skb) &&
3865 !vlan_hw_offload_capable(features, skb->vlan_proto))
3866 skb = __vlan_hwaccel_push_inside(skb);
3867 return skb;
3868 }
3869
skb_csum_hwoffload_help(struct sk_buff * skb,const netdev_features_t features)3870 int skb_csum_hwoffload_help(struct sk_buff *skb,
3871 const netdev_features_t features)
3872 {
3873 if (unlikely(skb_csum_is_sctp(skb)))
3874 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3875 skb_crc32c_csum_help(skb);
3876
3877 if (features & NETIF_F_HW_CSUM)
3878 return 0;
3879
3880 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3881 if (vlan_get_protocol(skb) == htons(ETH_P_IPV6) &&
3882 skb_network_header_len(skb) != sizeof(struct ipv6hdr) &&
3883 !ipv6_has_hopopt_jumbo(skb))
3884 goto sw_checksum;
3885
3886 switch (skb->csum_offset) {
3887 case offsetof(struct tcphdr, check):
3888 case offsetof(struct udphdr, check):
3889 return 0;
3890 }
3891 }
3892
3893 sw_checksum:
3894 return skb_checksum_help(skb);
3895 }
3896 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3897
validate_xmit_unreadable_skb(struct sk_buff * skb,struct net_device * dev)3898 static struct sk_buff *validate_xmit_unreadable_skb(struct sk_buff *skb,
3899 struct net_device *dev)
3900 {
3901 struct skb_shared_info *shinfo;
3902 struct net_iov *niov;
3903
3904 if (likely(skb_frags_readable(skb)))
3905 goto out;
3906
3907 if (!dev->netmem_tx)
3908 goto out_free;
3909
3910 shinfo = skb_shinfo(skb);
3911
3912 if (shinfo->nr_frags > 0) {
3913 niov = netmem_to_net_iov(skb_frag_netmem(&shinfo->frags[0]));
3914 if (net_is_devmem_iov(niov) &&
3915 net_devmem_iov_binding(niov)->dev != dev)
3916 goto out_free;
3917 }
3918
3919 out:
3920 return skb;
3921
3922 out_free:
3923 kfree_skb(skb);
3924 return NULL;
3925 }
3926
validate_xmit_skb(struct sk_buff * skb,struct net_device * dev,bool * again)3927 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3928 {
3929 netdev_features_t features;
3930
3931 skb = validate_xmit_unreadable_skb(skb, dev);
3932 if (unlikely(!skb))
3933 goto out_null;
3934
3935 features = netif_skb_features(skb);
3936 skb = validate_xmit_vlan(skb, features);
3937 if (unlikely(!skb))
3938 goto out_null;
3939
3940 skb = sk_validate_xmit_skb(skb, dev);
3941 if (unlikely(!skb))
3942 goto out_null;
3943
3944 if (netif_needs_gso(skb, features)) {
3945 struct sk_buff *segs;
3946
3947 segs = skb_gso_segment(skb, features);
3948 if (IS_ERR(segs)) {
3949 goto out_kfree_skb;
3950 } else if (segs) {
3951 consume_skb(skb);
3952 skb = segs;
3953 }
3954 } else {
3955 if (skb_needs_linearize(skb, features) &&
3956 __skb_linearize(skb))
3957 goto out_kfree_skb;
3958
3959 /* If packet is not checksummed and device does not
3960 * support checksumming for this protocol, complete
3961 * checksumming here.
3962 */
3963 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3964 if (skb->encapsulation)
3965 skb_set_inner_transport_header(skb,
3966 skb_checksum_start_offset(skb));
3967 else
3968 skb_set_transport_header(skb,
3969 skb_checksum_start_offset(skb));
3970 if (skb_csum_hwoffload_help(skb, features))
3971 goto out_kfree_skb;
3972 }
3973 }
3974
3975 skb = validate_xmit_xfrm(skb, features, again);
3976
3977 return skb;
3978
3979 out_kfree_skb:
3980 kfree_skb(skb);
3981 out_null:
3982 dev_core_stats_tx_dropped_inc(dev);
3983 return NULL;
3984 }
3985
validate_xmit_skb_list(struct sk_buff * skb,struct net_device * dev,bool * again)3986 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3987 {
3988 struct sk_buff *next, *head = NULL, *tail;
3989
3990 for (; skb != NULL; skb = next) {
3991 next = skb->next;
3992 skb_mark_not_on_list(skb);
3993
3994 /* in case skb won't be segmented, point to itself */
3995 skb->prev = skb;
3996
3997 skb = validate_xmit_skb(skb, dev, again);
3998 if (!skb)
3999 continue;
4000
4001 if (!head)
4002 head = skb;
4003 else
4004 tail->next = skb;
4005 /* If skb was segmented, skb->prev points to
4006 * the last segment. If not, it still contains skb.
4007 */
4008 tail = skb->prev;
4009 }
4010 return head;
4011 }
4012 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
4013
qdisc_pkt_len_init(struct sk_buff * skb)4014 static void qdisc_pkt_len_init(struct sk_buff *skb)
4015 {
4016 const struct skb_shared_info *shinfo = skb_shinfo(skb);
4017
4018 qdisc_skb_cb(skb)->pkt_len = skb->len;
4019
4020 /* To get more precise estimation of bytes sent on wire,
4021 * we add to pkt_len the headers size of all segments
4022 */
4023 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
4024 u16 gso_segs = shinfo->gso_segs;
4025 unsigned int hdr_len;
4026
4027 /* mac layer + network layer */
4028 if (!skb->encapsulation)
4029 hdr_len = skb_transport_offset(skb);
4030 else
4031 hdr_len = skb_inner_transport_offset(skb);
4032
4033 /* + transport layer */
4034 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
4035 const struct tcphdr *th;
4036 struct tcphdr _tcphdr;
4037
4038 th = skb_header_pointer(skb, hdr_len,
4039 sizeof(_tcphdr), &_tcphdr);
4040 if (likely(th))
4041 hdr_len += __tcp_hdrlen(th);
4042 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
4043 struct udphdr _udphdr;
4044
4045 if (skb_header_pointer(skb, hdr_len,
4046 sizeof(_udphdr), &_udphdr))
4047 hdr_len += sizeof(struct udphdr);
4048 }
4049
4050 if (unlikely(shinfo->gso_type & SKB_GSO_DODGY)) {
4051 int payload = skb->len - hdr_len;
4052
4053 /* Malicious packet. */
4054 if (payload <= 0)
4055 return;
4056 gso_segs = DIV_ROUND_UP(payload, shinfo->gso_size);
4057 }
4058 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
4059 }
4060 }
4061
dev_qdisc_enqueue(struct sk_buff * skb,struct Qdisc * q,struct sk_buff ** to_free,struct netdev_queue * txq)4062 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
4063 struct sk_buff **to_free,
4064 struct netdev_queue *txq)
4065 {
4066 int rc;
4067
4068 rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
4069 if (rc == NET_XMIT_SUCCESS)
4070 trace_qdisc_enqueue(q, txq, skb);
4071 return rc;
4072 }
4073
__dev_xmit_skb(struct sk_buff * skb,struct Qdisc * q,struct net_device * dev,struct netdev_queue * txq)4074 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
4075 struct net_device *dev,
4076 struct netdev_queue *txq)
4077 {
4078 spinlock_t *root_lock = qdisc_lock(q);
4079 struct sk_buff *to_free = NULL;
4080 bool contended;
4081 int rc;
4082
4083 qdisc_calculate_pkt_len(skb, q);
4084
4085 tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP);
4086
4087 if (q->flags & TCQ_F_NOLOCK) {
4088 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
4089 qdisc_run_begin(q)) {
4090 /* Retest nolock_qdisc_is_empty() within the protection
4091 * of q->seqlock to protect from racing with requeuing.
4092 */
4093 if (unlikely(!nolock_qdisc_is_empty(q))) {
4094 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4095 __qdisc_run(q);
4096 qdisc_run_end(q);
4097
4098 goto no_lock_out;
4099 }
4100
4101 qdisc_bstats_cpu_update(q, skb);
4102 if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
4103 !nolock_qdisc_is_empty(q))
4104 __qdisc_run(q);
4105
4106 qdisc_run_end(q);
4107 return NET_XMIT_SUCCESS;
4108 }
4109
4110 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4111 qdisc_run(q);
4112
4113 no_lock_out:
4114 if (unlikely(to_free))
4115 kfree_skb_list_reason(to_free,
4116 tcf_get_drop_reason(to_free));
4117 return rc;
4118 }
4119
4120 if (unlikely(READ_ONCE(q->owner) == smp_processor_id())) {
4121 kfree_skb_reason(skb, SKB_DROP_REASON_TC_RECLASSIFY_LOOP);
4122 return NET_XMIT_DROP;
4123 }
4124 /*
4125 * Heuristic to force contended enqueues to serialize on a
4126 * separate lock before trying to get qdisc main lock.
4127 * This permits qdisc->running owner to get the lock more
4128 * often and dequeue packets faster.
4129 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
4130 * and then other tasks will only enqueue packets. The packets will be
4131 * sent after the qdisc owner is scheduled again. To prevent this
4132 * scenario the task always serialize on the lock.
4133 */
4134 contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
4135 if (unlikely(contended))
4136 spin_lock(&q->busylock);
4137
4138 spin_lock(root_lock);
4139 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
4140 __qdisc_drop(skb, &to_free);
4141 rc = NET_XMIT_DROP;
4142 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
4143 qdisc_run_begin(q)) {
4144 /*
4145 * This is a work-conserving queue; there are no old skbs
4146 * waiting to be sent out; and the qdisc is not running -
4147 * xmit the skb directly.
4148 */
4149
4150 qdisc_bstats_update(q, skb);
4151
4152 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
4153 if (unlikely(contended)) {
4154 spin_unlock(&q->busylock);
4155 contended = false;
4156 }
4157 __qdisc_run(q);
4158 }
4159
4160 qdisc_run_end(q);
4161 rc = NET_XMIT_SUCCESS;
4162 } else {
4163 WRITE_ONCE(q->owner, smp_processor_id());
4164 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4165 WRITE_ONCE(q->owner, -1);
4166 if (qdisc_run_begin(q)) {
4167 if (unlikely(contended)) {
4168 spin_unlock(&q->busylock);
4169 contended = false;
4170 }
4171 __qdisc_run(q);
4172 qdisc_run_end(q);
4173 }
4174 }
4175 spin_unlock(root_lock);
4176 if (unlikely(to_free))
4177 kfree_skb_list_reason(to_free,
4178 tcf_get_drop_reason(to_free));
4179 if (unlikely(contended))
4180 spin_unlock(&q->busylock);
4181 return rc;
4182 }
4183
4184 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
skb_update_prio(struct sk_buff * skb)4185 static void skb_update_prio(struct sk_buff *skb)
4186 {
4187 const struct netprio_map *map;
4188 const struct sock *sk;
4189 unsigned int prioidx;
4190
4191 if (skb->priority)
4192 return;
4193 map = rcu_dereference_bh(skb->dev->priomap);
4194 if (!map)
4195 return;
4196 sk = skb_to_full_sk(skb);
4197 if (!sk)
4198 return;
4199
4200 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
4201
4202 if (prioidx < map->priomap_len)
4203 skb->priority = map->priomap[prioidx];
4204 }
4205 #else
4206 #define skb_update_prio(skb)
4207 #endif
4208
4209 /**
4210 * dev_loopback_xmit - loop back @skb
4211 * @net: network namespace this loopback is happening in
4212 * @sk: sk needed to be a netfilter okfn
4213 * @skb: buffer to transmit
4214 */
dev_loopback_xmit(struct net * net,struct sock * sk,struct sk_buff * skb)4215 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
4216 {
4217 skb_reset_mac_header(skb);
4218 __skb_pull(skb, skb_network_offset(skb));
4219 skb->pkt_type = PACKET_LOOPBACK;
4220 if (skb->ip_summed == CHECKSUM_NONE)
4221 skb->ip_summed = CHECKSUM_UNNECESSARY;
4222 DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
4223 skb_dst_force(skb);
4224 netif_rx(skb);
4225 return 0;
4226 }
4227 EXPORT_SYMBOL(dev_loopback_xmit);
4228
4229 #ifdef CONFIG_NET_EGRESS
4230 static struct netdev_queue *
netdev_tx_queue_mapping(struct net_device * dev,struct sk_buff * skb)4231 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
4232 {
4233 int qm = skb_get_queue_mapping(skb);
4234
4235 return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
4236 }
4237
4238 #ifndef CONFIG_PREEMPT_RT
netdev_xmit_txqueue_skipped(void)4239 static bool netdev_xmit_txqueue_skipped(void)
4240 {
4241 return __this_cpu_read(softnet_data.xmit.skip_txqueue);
4242 }
4243
netdev_xmit_skip_txqueue(bool skip)4244 void netdev_xmit_skip_txqueue(bool skip)
4245 {
4246 __this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
4247 }
4248 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
4249
4250 #else
netdev_xmit_txqueue_skipped(void)4251 static bool netdev_xmit_txqueue_skipped(void)
4252 {
4253 return current->net_xmit.skip_txqueue;
4254 }
4255
netdev_xmit_skip_txqueue(bool skip)4256 void netdev_xmit_skip_txqueue(bool skip)
4257 {
4258 current->net_xmit.skip_txqueue = skip;
4259 }
4260 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
4261 #endif
4262 #endif /* CONFIG_NET_EGRESS */
4263
4264 #ifdef CONFIG_NET_XGRESS
tc_run(struct tcx_entry * entry,struct sk_buff * skb,enum skb_drop_reason * drop_reason)4265 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb,
4266 enum skb_drop_reason *drop_reason)
4267 {
4268 int ret = TC_ACT_UNSPEC;
4269 #ifdef CONFIG_NET_CLS_ACT
4270 struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
4271 struct tcf_result res;
4272
4273 if (!miniq)
4274 return ret;
4275
4276 /* Global bypass */
4277 if (!static_branch_likely(&tcf_sw_enabled_key))
4278 return ret;
4279
4280 /* Block-wise bypass */
4281 if (tcf_block_bypass_sw(miniq->block))
4282 return ret;
4283
4284 tc_skb_cb(skb)->mru = 0;
4285 tc_skb_cb(skb)->post_ct = false;
4286 tcf_set_drop_reason(skb, *drop_reason);
4287
4288 mini_qdisc_bstats_cpu_update(miniq, skb);
4289 ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
4290 /* Only tcf related quirks below. */
4291 switch (ret) {
4292 case TC_ACT_SHOT:
4293 *drop_reason = tcf_get_drop_reason(skb);
4294 mini_qdisc_qstats_cpu_drop(miniq);
4295 break;
4296 case TC_ACT_OK:
4297 case TC_ACT_RECLASSIFY:
4298 skb->tc_index = TC_H_MIN(res.classid);
4299 break;
4300 }
4301 #endif /* CONFIG_NET_CLS_ACT */
4302 return ret;
4303 }
4304
4305 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
4306
tcx_inc(void)4307 void tcx_inc(void)
4308 {
4309 static_branch_inc(&tcx_needed_key);
4310 }
4311
tcx_dec(void)4312 void tcx_dec(void)
4313 {
4314 static_branch_dec(&tcx_needed_key);
4315 }
4316
4317 static __always_inline enum tcx_action_base
tcx_run(const struct bpf_mprog_entry * entry,struct sk_buff * skb,const bool needs_mac)4318 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
4319 const bool needs_mac)
4320 {
4321 const struct bpf_mprog_fp *fp;
4322 const struct bpf_prog *prog;
4323 int ret = TCX_NEXT;
4324
4325 if (needs_mac)
4326 __skb_push(skb, skb->mac_len);
4327 bpf_mprog_foreach_prog(entry, fp, prog) {
4328 bpf_compute_data_pointers(skb);
4329 ret = bpf_prog_run(prog, skb);
4330 if (ret != TCX_NEXT)
4331 break;
4332 }
4333 if (needs_mac)
4334 __skb_pull(skb, skb->mac_len);
4335 return tcx_action_code(skb, ret);
4336 }
4337
4338 static __always_inline struct sk_buff *
sch_handle_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev,bool * another)4339 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4340 struct net_device *orig_dev, bool *another)
4341 {
4342 struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
4343 enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS;
4344 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4345 int sch_ret;
4346
4347 if (!entry)
4348 return skb;
4349
4350 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4351 if (*pt_prev) {
4352 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4353 *pt_prev = NULL;
4354 }
4355
4356 qdisc_skb_cb(skb)->pkt_len = skb->len;
4357 tcx_set_ingress(skb, true);
4358
4359 if (static_branch_unlikely(&tcx_needed_key)) {
4360 sch_ret = tcx_run(entry, skb, true);
4361 if (sch_ret != TC_ACT_UNSPEC)
4362 goto ingress_verdict;
4363 }
4364 sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4365 ingress_verdict:
4366 switch (sch_ret) {
4367 case TC_ACT_REDIRECT:
4368 /* skb_mac_header check was done by BPF, so we can safely
4369 * push the L2 header back before redirecting to another
4370 * netdev.
4371 */
4372 __skb_push(skb, skb->mac_len);
4373 if (skb_do_redirect(skb) == -EAGAIN) {
4374 __skb_pull(skb, skb->mac_len);
4375 *another = true;
4376 break;
4377 }
4378 *ret = NET_RX_SUCCESS;
4379 bpf_net_ctx_clear(bpf_net_ctx);
4380 return NULL;
4381 case TC_ACT_SHOT:
4382 kfree_skb_reason(skb, drop_reason);
4383 *ret = NET_RX_DROP;
4384 bpf_net_ctx_clear(bpf_net_ctx);
4385 return NULL;
4386 /* used by tc_run */
4387 case TC_ACT_STOLEN:
4388 case TC_ACT_QUEUED:
4389 case TC_ACT_TRAP:
4390 consume_skb(skb);
4391 fallthrough;
4392 case TC_ACT_CONSUMED:
4393 *ret = NET_RX_SUCCESS;
4394 bpf_net_ctx_clear(bpf_net_ctx);
4395 return NULL;
4396 }
4397 bpf_net_ctx_clear(bpf_net_ctx);
4398
4399 return skb;
4400 }
4401
4402 static __always_inline struct sk_buff *
sch_handle_egress(struct sk_buff * skb,int * ret,struct net_device * dev)4403 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4404 {
4405 struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4406 enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS;
4407 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4408 int sch_ret;
4409
4410 if (!entry)
4411 return skb;
4412
4413 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4414
4415 /* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4416 * already set by the caller.
4417 */
4418 if (static_branch_unlikely(&tcx_needed_key)) {
4419 sch_ret = tcx_run(entry, skb, false);
4420 if (sch_ret != TC_ACT_UNSPEC)
4421 goto egress_verdict;
4422 }
4423 sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4424 egress_verdict:
4425 switch (sch_ret) {
4426 case TC_ACT_REDIRECT:
4427 /* No need to push/pop skb's mac_header here on egress! */
4428 skb_do_redirect(skb);
4429 *ret = NET_XMIT_SUCCESS;
4430 bpf_net_ctx_clear(bpf_net_ctx);
4431 return NULL;
4432 case TC_ACT_SHOT:
4433 kfree_skb_reason(skb, drop_reason);
4434 *ret = NET_XMIT_DROP;
4435 bpf_net_ctx_clear(bpf_net_ctx);
4436 return NULL;
4437 /* used by tc_run */
4438 case TC_ACT_STOLEN:
4439 case TC_ACT_QUEUED:
4440 case TC_ACT_TRAP:
4441 consume_skb(skb);
4442 fallthrough;
4443 case TC_ACT_CONSUMED:
4444 *ret = NET_XMIT_SUCCESS;
4445 bpf_net_ctx_clear(bpf_net_ctx);
4446 return NULL;
4447 }
4448 bpf_net_ctx_clear(bpf_net_ctx);
4449
4450 return skb;
4451 }
4452 #else
4453 static __always_inline struct sk_buff *
sch_handle_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev,bool * another)4454 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4455 struct net_device *orig_dev, bool *another)
4456 {
4457 return skb;
4458 }
4459
4460 static __always_inline struct sk_buff *
sch_handle_egress(struct sk_buff * skb,int * ret,struct net_device * dev)4461 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4462 {
4463 return skb;
4464 }
4465 #endif /* CONFIG_NET_XGRESS */
4466
4467 #ifdef CONFIG_XPS
__get_xps_queue_idx(struct net_device * dev,struct sk_buff * skb,struct xps_dev_maps * dev_maps,unsigned int tci)4468 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4469 struct xps_dev_maps *dev_maps, unsigned int tci)
4470 {
4471 int tc = netdev_get_prio_tc_map(dev, skb->priority);
4472 struct xps_map *map;
4473 int queue_index = -1;
4474
4475 if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4476 return queue_index;
4477
4478 tci *= dev_maps->num_tc;
4479 tci += tc;
4480
4481 map = rcu_dereference(dev_maps->attr_map[tci]);
4482 if (map) {
4483 if (map->len == 1)
4484 queue_index = map->queues[0];
4485 else
4486 queue_index = map->queues[reciprocal_scale(
4487 skb_get_hash(skb), map->len)];
4488 if (unlikely(queue_index >= dev->real_num_tx_queues))
4489 queue_index = -1;
4490 }
4491 return queue_index;
4492 }
4493 #endif
4494
get_xps_queue(struct net_device * dev,struct net_device * sb_dev,struct sk_buff * skb)4495 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4496 struct sk_buff *skb)
4497 {
4498 #ifdef CONFIG_XPS
4499 struct xps_dev_maps *dev_maps;
4500 struct sock *sk = skb->sk;
4501 int queue_index = -1;
4502
4503 if (!static_key_false(&xps_needed))
4504 return -1;
4505
4506 rcu_read_lock();
4507 if (!static_key_false(&xps_rxqs_needed))
4508 goto get_cpus_map;
4509
4510 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4511 if (dev_maps) {
4512 int tci = sk_rx_queue_get(sk);
4513
4514 if (tci >= 0)
4515 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4516 tci);
4517 }
4518
4519 get_cpus_map:
4520 if (queue_index < 0) {
4521 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4522 if (dev_maps) {
4523 unsigned int tci = skb->sender_cpu - 1;
4524
4525 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4526 tci);
4527 }
4528 }
4529 rcu_read_unlock();
4530
4531 return queue_index;
4532 #else
4533 return -1;
4534 #endif
4535 }
4536
dev_pick_tx_zero(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4537 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4538 struct net_device *sb_dev)
4539 {
4540 return 0;
4541 }
4542 EXPORT_SYMBOL(dev_pick_tx_zero);
4543
netdev_pick_tx(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4544 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4545 struct net_device *sb_dev)
4546 {
4547 struct sock *sk = skb->sk;
4548 int queue_index = sk_tx_queue_get(sk);
4549
4550 sb_dev = sb_dev ? : dev;
4551
4552 if (queue_index < 0 || skb->ooo_okay ||
4553 queue_index >= dev->real_num_tx_queues) {
4554 int new_index = get_xps_queue(dev, sb_dev, skb);
4555
4556 if (new_index < 0)
4557 new_index = skb_tx_hash(dev, sb_dev, skb);
4558
4559 if (queue_index != new_index && sk &&
4560 sk_fullsock(sk) &&
4561 rcu_access_pointer(sk->sk_dst_cache))
4562 sk_tx_queue_set(sk, new_index);
4563
4564 queue_index = new_index;
4565 }
4566
4567 return queue_index;
4568 }
4569 EXPORT_SYMBOL(netdev_pick_tx);
4570
netdev_core_pick_tx(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4571 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4572 struct sk_buff *skb,
4573 struct net_device *sb_dev)
4574 {
4575 int queue_index = 0;
4576
4577 #ifdef CONFIG_XPS
4578 u32 sender_cpu = skb->sender_cpu - 1;
4579
4580 if (sender_cpu >= (u32)NR_CPUS)
4581 skb->sender_cpu = raw_smp_processor_id() + 1;
4582 #endif
4583
4584 if (dev->real_num_tx_queues != 1) {
4585 const struct net_device_ops *ops = dev->netdev_ops;
4586
4587 if (ops->ndo_select_queue)
4588 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4589 else
4590 queue_index = netdev_pick_tx(dev, skb, sb_dev);
4591
4592 queue_index = netdev_cap_txqueue(dev, queue_index);
4593 }
4594
4595 skb_set_queue_mapping(skb, queue_index);
4596 return netdev_get_tx_queue(dev, queue_index);
4597 }
4598
4599 /**
4600 * __dev_queue_xmit() - transmit a buffer
4601 * @skb: buffer to transmit
4602 * @sb_dev: suboordinate device used for L2 forwarding offload
4603 *
4604 * Queue a buffer for transmission to a network device. The caller must
4605 * have set the device and priority and built the buffer before calling
4606 * this function. The function can be called from an interrupt.
4607 *
4608 * When calling this method, interrupts MUST be enabled. This is because
4609 * the BH enable code must have IRQs enabled so that it will not deadlock.
4610 *
4611 * Regardless of the return value, the skb is consumed, so it is currently
4612 * difficult to retry a send to this method. (You can bump the ref count
4613 * before sending to hold a reference for retry if you are careful.)
4614 *
4615 * Return:
4616 * * 0 - buffer successfully transmitted
4617 * * positive qdisc return code - NET_XMIT_DROP etc.
4618 * * negative errno - other errors
4619 */
__dev_queue_xmit(struct sk_buff * skb,struct net_device * sb_dev)4620 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4621 {
4622 struct net_device *dev = skb->dev;
4623 struct netdev_queue *txq = NULL;
4624 struct Qdisc *q;
4625 int rc = -ENOMEM;
4626 bool again = false;
4627
4628 skb_reset_mac_header(skb);
4629 skb_assert_len(skb);
4630
4631 if (unlikely(skb_shinfo(skb)->tx_flags &
4632 (SKBTX_SCHED_TSTAMP | SKBTX_BPF)))
4633 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4634
4635 /* Disable soft irqs for various locks below. Also
4636 * stops preemption for RCU.
4637 */
4638 rcu_read_lock_bh();
4639
4640 skb_update_prio(skb);
4641
4642 qdisc_pkt_len_init(skb);
4643 tcx_set_ingress(skb, false);
4644 #ifdef CONFIG_NET_EGRESS
4645 if (static_branch_unlikely(&egress_needed_key)) {
4646 if (nf_hook_egress_active()) {
4647 skb = nf_hook_egress(skb, &rc, dev);
4648 if (!skb)
4649 goto out;
4650 }
4651
4652 netdev_xmit_skip_txqueue(false);
4653
4654 nf_skip_egress(skb, true);
4655 skb = sch_handle_egress(skb, &rc, dev);
4656 if (!skb)
4657 goto out;
4658 nf_skip_egress(skb, false);
4659
4660 if (netdev_xmit_txqueue_skipped())
4661 txq = netdev_tx_queue_mapping(dev, skb);
4662 }
4663 #endif
4664 /* If device/qdisc don't need skb->dst, release it right now while
4665 * its hot in this cpu cache.
4666 */
4667 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4668 skb_dst_drop(skb);
4669 else
4670 skb_dst_force(skb);
4671
4672 if (!txq)
4673 txq = netdev_core_pick_tx(dev, skb, sb_dev);
4674
4675 q = rcu_dereference_bh(txq->qdisc);
4676
4677 trace_net_dev_queue(skb);
4678 if (q->enqueue) {
4679 rc = __dev_xmit_skb(skb, q, dev, txq);
4680 goto out;
4681 }
4682
4683 /* The device has no queue. Common case for software devices:
4684 * loopback, all the sorts of tunnels...
4685
4686 * Really, it is unlikely that netif_tx_lock protection is necessary
4687 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
4688 * counters.)
4689 * However, it is possible, that they rely on protection
4690 * made by us here.
4691
4692 * Check this and shot the lock. It is not prone from deadlocks.
4693 *Either shot noqueue qdisc, it is even simpler 8)
4694 */
4695 if (dev->flags & IFF_UP) {
4696 int cpu = smp_processor_id(); /* ok because BHs are off */
4697
4698 /* Other cpus might concurrently change txq->xmit_lock_owner
4699 * to -1 or to their cpu id, but not to our id.
4700 */
4701 if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4702 if (dev_xmit_recursion())
4703 goto recursion_alert;
4704
4705 skb = validate_xmit_skb(skb, dev, &again);
4706 if (!skb)
4707 goto out;
4708
4709 HARD_TX_LOCK(dev, txq, cpu);
4710
4711 if (!netif_xmit_stopped(txq)) {
4712 dev_xmit_recursion_inc();
4713 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4714 dev_xmit_recursion_dec();
4715 if (dev_xmit_complete(rc)) {
4716 HARD_TX_UNLOCK(dev, txq);
4717 goto out;
4718 }
4719 }
4720 HARD_TX_UNLOCK(dev, txq);
4721 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4722 dev->name);
4723 } else {
4724 /* Recursion is detected! It is possible,
4725 * unfortunately
4726 */
4727 recursion_alert:
4728 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4729 dev->name);
4730 }
4731 }
4732
4733 rc = -ENETDOWN;
4734 rcu_read_unlock_bh();
4735
4736 dev_core_stats_tx_dropped_inc(dev);
4737 kfree_skb_list(skb);
4738 return rc;
4739 out:
4740 rcu_read_unlock_bh();
4741 return rc;
4742 }
4743 EXPORT_SYMBOL(__dev_queue_xmit);
4744
__dev_direct_xmit(struct sk_buff * skb,u16 queue_id)4745 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4746 {
4747 struct net_device *dev = skb->dev;
4748 struct sk_buff *orig_skb = skb;
4749 struct netdev_queue *txq;
4750 int ret = NETDEV_TX_BUSY;
4751 bool again = false;
4752
4753 if (unlikely(!netif_running(dev) ||
4754 !netif_carrier_ok(dev)))
4755 goto drop;
4756
4757 skb = validate_xmit_skb_list(skb, dev, &again);
4758 if (skb != orig_skb)
4759 goto drop;
4760
4761 skb_set_queue_mapping(skb, queue_id);
4762 txq = skb_get_tx_queue(dev, skb);
4763
4764 local_bh_disable();
4765
4766 dev_xmit_recursion_inc();
4767 HARD_TX_LOCK(dev, txq, smp_processor_id());
4768 if (!netif_xmit_frozen_or_drv_stopped(txq))
4769 ret = netdev_start_xmit(skb, dev, txq, false);
4770 HARD_TX_UNLOCK(dev, txq);
4771 dev_xmit_recursion_dec();
4772
4773 local_bh_enable();
4774 return ret;
4775 drop:
4776 dev_core_stats_tx_dropped_inc(dev);
4777 kfree_skb_list(skb);
4778 return NET_XMIT_DROP;
4779 }
4780 EXPORT_SYMBOL(__dev_direct_xmit);
4781
4782 /*************************************************************************
4783 * Receiver routines
4784 *************************************************************************/
4785 static DEFINE_PER_CPU(struct task_struct *, backlog_napi);
4786
4787 int weight_p __read_mostly = 64; /* old backlog weight */
4788 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
4789 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
4790
4791 /* Called with irq disabled */
____napi_schedule(struct softnet_data * sd,struct napi_struct * napi)4792 static inline void ____napi_schedule(struct softnet_data *sd,
4793 struct napi_struct *napi)
4794 {
4795 struct task_struct *thread;
4796
4797 lockdep_assert_irqs_disabled();
4798
4799 if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4800 /* Paired with smp_mb__before_atomic() in
4801 * napi_enable()/netif_set_threaded().
4802 * Use READ_ONCE() to guarantee a complete
4803 * read on napi->thread. Only call
4804 * wake_up_process() when it's not NULL.
4805 */
4806 thread = READ_ONCE(napi->thread);
4807 if (thread) {
4808 if (use_backlog_threads() && thread == raw_cpu_read(backlog_napi))
4809 goto use_local_napi;
4810
4811 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4812 wake_up_process(thread);
4813 return;
4814 }
4815 }
4816
4817 use_local_napi:
4818 DEBUG_NET_WARN_ON_ONCE(!list_empty(&napi->poll_list));
4819 list_add_tail(&napi->poll_list, &sd->poll_list);
4820 WRITE_ONCE(napi->list_owner, smp_processor_id());
4821 /* If not called from net_rx_action()
4822 * we have to raise NET_RX_SOFTIRQ.
4823 */
4824 if (!sd->in_net_rx_action)
4825 raise_softirq_irqoff(NET_RX_SOFTIRQ);
4826 }
4827
4828 #ifdef CONFIG_RPS
4829
4830 struct static_key_false rps_needed __read_mostly;
4831 EXPORT_SYMBOL(rps_needed);
4832 struct static_key_false rfs_needed __read_mostly;
4833 EXPORT_SYMBOL(rfs_needed);
4834
rfs_slot(u32 hash,const struct rps_dev_flow_table * flow_table)4835 static u32 rfs_slot(u32 hash, const struct rps_dev_flow_table *flow_table)
4836 {
4837 return hash_32(hash, flow_table->log);
4838 }
4839
4840 static struct rps_dev_flow *
set_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow * rflow,u16 next_cpu)4841 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4842 struct rps_dev_flow *rflow, u16 next_cpu)
4843 {
4844 if (next_cpu < nr_cpu_ids) {
4845 u32 head;
4846 #ifdef CONFIG_RFS_ACCEL
4847 struct netdev_rx_queue *rxqueue;
4848 struct rps_dev_flow_table *flow_table;
4849 struct rps_dev_flow *old_rflow;
4850 u16 rxq_index;
4851 u32 flow_id;
4852 int rc;
4853
4854 /* Should we steer this flow to a different hardware queue? */
4855 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4856 !(dev->features & NETIF_F_NTUPLE))
4857 goto out;
4858 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4859 if (rxq_index == skb_get_rx_queue(skb))
4860 goto out;
4861
4862 rxqueue = dev->_rx + rxq_index;
4863 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4864 if (!flow_table)
4865 goto out;
4866 flow_id = rfs_slot(skb_get_hash(skb), flow_table);
4867 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4868 rxq_index, flow_id);
4869 if (rc < 0)
4870 goto out;
4871 old_rflow = rflow;
4872 rflow = &flow_table->flows[flow_id];
4873 WRITE_ONCE(rflow->filter, rc);
4874 if (old_rflow->filter == rc)
4875 WRITE_ONCE(old_rflow->filter, RPS_NO_FILTER);
4876 out:
4877 #endif
4878 head = READ_ONCE(per_cpu(softnet_data, next_cpu).input_queue_head);
4879 rps_input_queue_tail_save(&rflow->last_qtail, head);
4880 }
4881
4882 WRITE_ONCE(rflow->cpu, next_cpu);
4883 return rflow;
4884 }
4885
4886 /*
4887 * get_rps_cpu is called from netif_receive_skb and returns the target
4888 * CPU from the RPS map of the receiving queue for a given skb.
4889 * rcu_read_lock must be held on entry.
4890 */
get_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow ** rflowp)4891 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4892 struct rps_dev_flow **rflowp)
4893 {
4894 const struct rps_sock_flow_table *sock_flow_table;
4895 struct netdev_rx_queue *rxqueue = dev->_rx;
4896 struct rps_dev_flow_table *flow_table;
4897 struct rps_map *map;
4898 int cpu = -1;
4899 u32 tcpu;
4900 u32 hash;
4901
4902 if (skb_rx_queue_recorded(skb)) {
4903 u16 index = skb_get_rx_queue(skb);
4904
4905 if (unlikely(index >= dev->real_num_rx_queues)) {
4906 WARN_ONCE(dev->real_num_rx_queues > 1,
4907 "%s received packet on queue %u, but number "
4908 "of RX queues is %u\n",
4909 dev->name, index, dev->real_num_rx_queues);
4910 goto done;
4911 }
4912 rxqueue += index;
4913 }
4914
4915 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4916
4917 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4918 map = rcu_dereference(rxqueue->rps_map);
4919 if (!flow_table && !map)
4920 goto done;
4921
4922 skb_reset_network_header(skb);
4923 hash = skb_get_hash(skb);
4924 if (!hash)
4925 goto done;
4926
4927 sock_flow_table = rcu_dereference(net_hotdata.rps_sock_flow_table);
4928 if (flow_table && sock_flow_table) {
4929 struct rps_dev_flow *rflow;
4930 u32 next_cpu;
4931 u32 ident;
4932
4933 /* First check into global flow table if there is a match.
4934 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4935 */
4936 ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4937 if ((ident ^ hash) & ~net_hotdata.rps_cpu_mask)
4938 goto try_rps;
4939
4940 next_cpu = ident & net_hotdata.rps_cpu_mask;
4941
4942 /* OK, now we know there is a match,
4943 * we can look at the local (per receive queue) flow table
4944 */
4945 rflow = &flow_table->flows[rfs_slot(hash, flow_table)];
4946 tcpu = rflow->cpu;
4947
4948 /*
4949 * If the desired CPU (where last recvmsg was done) is
4950 * different from current CPU (one in the rx-queue flow
4951 * table entry), switch if one of the following holds:
4952 * - Current CPU is unset (>= nr_cpu_ids).
4953 * - Current CPU is offline.
4954 * - The current CPU's queue tail has advanced beyond the
4955 * last packet that was enqueued using this table entry.
4956 * This guarantees that all previous packets for the flow
4957 * have been dequeued, thus preserving in order delivery.
4958 */
4959 if (unlikely(tcpu != next_cpu) &&
4960 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4961 ((int)(READ_ONCE(per_cpu(softnet_data, tcpu).input_queue_head) -
4962 rflow->last_qtail)) >= 0)) {
4963 tcpu = next_cpu;
4964 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4965 }
4966
4967 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4968 *rflowp = rflow;
4969 cpu = tcpu;
4970 goto done;
4971 }
4972 }
4973
4974 try_rps:
4975
4976 if (map) {
4977 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4978 if (cpu_online(tcpu)) {
4979 cpu = tcpu;
4980 goto done;
4981 }
4982 }
4983
4984 done:
4985 return cpu;
4986 }
4987
4988 #ifdef CONFIG_RFS_ACCEL
4989
4990 /**
4991 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4992 * @dev: Device on which the filter was set
4993 * @rxq_index: RX queue index
4994 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4995 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4996 *
4997 * Drivers that implement ndo_rx_flow_steer() should periodically call
4998 * this function for each installed filter and remove the filters for
4999 * which it returns %true.
5000 */
rps_may_expire_flow(struct net_device * dev,u16 rxq_index,u32 flow_id,u16 filter_id)5001 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
5002 u32 flow_id, u16 filter_id)
5003 {
5004 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
5005 struct rps_dev_flow_table *flow_table;
5006 struct rps_dev_flow *rflow;
5007 bool expire = true;
5008 unsigned int cpu;
5009
5010 rcu_read_lock();
5011 flow_table = rcu_dereference(rxqueue->rps_flow_table);
5012 if (flow_table && flow_id < (1UL << flow_table->log)) {
5013 rflow = &flow_table->flows[flow_id];
5014 cpu = READ_ONCE(rflow->cpu);
5015 if (READ_ONCE(rflow->filter) == filter_id && cpu < nr_cpu_ids &&
5016 ((int)(READ_ONCE(per_cpu(softnet_data, cpu).input_queue_head) -
5017 READ_ONCE(rflow->last_qtail)) <
5018 (int)(10 << flow_table->log)))
5019 expire = false;
5020 }
5021 rcu_read_unlock();
5022 return expire;
5023 }
5024 EXPORT_SYMBOL(rps_may_expire_flow);
5025
5026 #endif /* CONFIG_RFS_ACCEL */
5027
5028 /* Called from hardirq (IPI) context */
rps_trigger_softirq(void * data)5029 static void rps_trigger_softirq(void *data)
5030 {
5031 struct softnet_data *sd = data;
5032
5033 ____napi_schedule(sd, &sd->backlog);
5034 /* Pairs with READ_ONCE() in softnet_seq_show() */
5035 WRITE_ONCE(sd->received_rps, sd->received_rps + 1);
5036 }
5037
5038 #endif /* CONFIG_RPS */
5039
5040 /* Called from hardirq (IPI) context */
trigger_rx_softirq(void * data)5041 static void trigger_rx_softirq(void *data)
5042 {
5043 struct softnet_data *sd = data;
5044
5045 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5046 smp_store_release(&sd->defer_ipi_scheduled, 0);
5047 }
5048
5049 /*
5050 * After we queued a packet into sd->input_pkt_queue,
5051 * we need to make sure this queue is serviced soon.
5052 *
5053 * - If this is another cpu queue, link it to our rps_ipi_list,
5054 * and make sure we will process rps_ipi_list from net_rx_action().
5055 *
5056 * - If this is our own queue, NAPI schedule our backlog.
5057 * Note that this also raises NET_RX_SOFTIRQ.
5058 */
napi_schedule_rps(struct softnet_data * sd)5059 static void napi_schedule_rps(struct softnet_data *sd)
5060 {
5061 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
5062
5063 #ifdef CONFIG_RPS
5064 if (sd != mysd) {
5065 if (use_backlog_threads()) {
5066 __napi_schedule_irqoff(&sd->backlog);
5067 return;
5068 }
5069
5070 sd->rps_ipi_next = mysd->rps_ipi_list;
5071 mysd->rps_ipi_list = sd;
5072
5073 /* If not called from net_rx_action() or napi_threaded_poll()
5074 * we have to raise NET_RX_SOFTIRQ.
5075 */
5076 if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
5077 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5078 return;
5079 }
5080 #endif /* CONFIG_RPS */
5081 __napi_schedule_irqoff(&mysd->backlog);
5082 }
5083
kick_defer_list_purge(struct softnet_data * sd,unsigned int cpu)5084 void kick_defer_list_purge(struct softnet_data *sd, unsigned int cpu)
5085 {
5086 unsigned long flags;
5087
5088 if (use_backlog_threads()) {
5089 backlog_lock_irq_save(sd, &flags);
5090
5091 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
5092 __napi_schedule_irqoff(&sd->backlog);
5093
5094 backlog_unlock_irq_restore(sd, &flags);
5095
5096 } else if (!cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) {
5097 smp_call_function_single_async(cpu, &sd->defer_csd);
5098 }
5099 }
5100
5101 #ifdef CONFIG_NET_FLOW_LIMIT
5102 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
5103 #endif
5104
skb_flow_limit(struct sk_buff * skb,unsigned int qlen)5105 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
5106 {
5107 #ifdef CONFIG_NET_FLOW_LIMIT
5108 struct sd_flow_limit *fl;
5109 struct softnet_data *sd;
5110 unsigned int old_flow, new_flow;
5111
5112 if (qlen < (READ_ONCE(net_hotdata.max_backlog) >> 1))
5113 return false;
5114
5115 sd = this_cpu_ptr(&softnet_data);
5116
5117 rcu_read_lock();
5118 fl = rcu_dereference(sd->flow_limit);
5119 if (fl) {
5120 new_flow = hash_32(skb_get_hash(skb), fl->log_buckets);
5121 old_flow = fl->history[fl->history_head];
5122 fl->history[fl->history_head] = new_flow;
5123
5124 fl->history_head++;
5125 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
5126
5127 if (likely(fl->buckets[old_flow]))
5128 fl->buckets[old_flow]--;
5129
5130 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
5131 /* Pairs with READ_ONCE() in softnet_seq_show() */
5132 WRITE_ONCE(fl->count, fl->count + 1);
5133 rcu_read_unlock();
5134 return true;
5135 }
5136 }
5137 rcu_read_unlock();
5138 #endif
5139 return false;
5140 }
5141
5142 /*
5143 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
5144 * queue (may be a remote CPU queue).
5145 */
enqueue_to_backlog(struct sk_buff * skb,int cpu,unsigned int * qtail)5146 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
5147 unsigned int *qtail)
5148 {
5149 enum skb_drop_reason reason;
5150 struct softnet_data *sd;
5151 unsigned long flags;
5152 unsigned int qlen;
5153 int max_backlog;
5154 u32 tail;
5155
5156 reason = SKB_DROP_REASON_DEV_READY;
5157 if (!netif_running(skb->dev))
5158 goto bad_dev;
5159
5160 reason = SKB_DROP_REASON_CPU_BACKLOG;
5161 sd = &per_cpu(softnet_data, cpu);
5162
5163 qlen = skb_queue_len_lockless(&sd->input_pkt_queue);
5164 max_backlog = READ_ONCE(net_hotdata.max_backlog);
5165 if (unlikely(qlen > max_backlog))
5166 goto cpu_backlog_drop;
5167 backlog_lock_irq_save(sd, &flags);
5168 qlen = skb_queue_len(&sd->input_pkt_queue);
5169 if (qlen <= max_backlog && !skb_flow_limit(skb, qlen)) {
5170 if (!qlen) {
5171 /* Schedule NAPI for backlog device. We can use
5172 * non atomic operation as we own the queue lock.
5173 */
5174 if (!__test_and_set_bit(NAPI_STATE_SCHED,
5175 &sd->backlog.state))
5176 napi_schedule_rps(sd);
5177 }
5178 __skb_queue_tail(&sd->input_pkt_queue, skb);
5179 tail = rps_input_queue_tail_incr(sd);
5180 backlog_unlock_irq_restore(sd, &flags);
5181
5182 /* save the tail outside of the critical section */
5183 rps_input_queue_tail_save(qtail, tail);
5184 return NET_RX_SUCCESS;
5185 }
5186
5187 backlog_unlock_irq_restore(sd, &flags);
5188
5189 cpu_backlog_drop:
5190 atomic_inc(&sd->dropped);
5191 bad_dev:
5192 dev_core_stats_rx_dropped_inc(skb->dev);
5193 kfree_skb_reason(skb, reason);
5194 return NET_RX_DROP;
5195 }
5196
netif_get_rxqueue(struct sk_buff * skb)5197 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
5198 {
5199 struct net_device *dev = skb->dev;
5200 struct netdev_rx_queue *rxqueue;
5201
5202 rxqueue = dev->_rx;
5203
5204 if (skb_rx_queue_recorded(skb)) {
5205 u16 index = skb_get_rx_queue(skb);
5206
5207 if (unlikely(index >= dev->real_num_rx_queues)) {
5208 WARN_ONCE(dev->real_num_rx_queues > 1,
5209 "%s received packet on queue %u, but number "
5210 "of RX queues is %u\n",
5211 dev->name, index, dev->real_num_rx_queues);
5212
5213 return rxqueue; /* Return first rxqueue */
5214 }
5215 rxqueue += index;
5216 }
5217 return rxqueue;
5218 }
5219
bpf_prog_run_generic_xdp(struct sk_buff * skb,struct xdp_buff * xdp,const struct bpf_prog * xdp_prog)5220 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
5221 const struct bpf_prog *xdp_prog)
5222 {
5223 void *orig_data, *orig_data_end, *hard_start;
5224 struct netdev_rx_queue *rxqueue;
5225 bool orig_bcast, orig_host;
5226 u32 mac_len, frame_sz;
5227 __be16 orig_eth_type;
5228 struct ethhdr *eth;
5229 u32 metalen, act;
5230 int off;
5231
5232 /* The XDP program wants to see the packet starting at the MAC
5233 * header.
5234 */
5235 mac_len = skb->data - skb_mac_header(skb);
5236 hard_start = skb->data - skb_headroom(skb);
5237
5238 /* SKB "head" area always have tailroom for skb_shared_info */
5239 frame_sz = (void *)skb_end_pointer(skb) - hard_start;
5240 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
5241
5242 rxqueue = netif_get_rxqueue(skb);
5243 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
5244 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
5245 skb_headlen(skb) + mac_len, true);
5246 if (skb_is_nonlinear(skb)) {
5247 skb_shinfo(skb)->xdp_frags_size = skb->data_len;
5248 xdp_buff_set_frags_flag(xdp);
5249 } else {
5250 xdp_buff_clear_frags_flag(xdp);
5251 }
5252
5253 orig_data_end = xdp->data_end;
5254 orig_data = xdp->data;
5255 eth = (struct ethhdr *)xdp->data;
5256 orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
5257 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
5258 orig_eth_type = eth->h_proto;
5259
5260 act = bpf_prog_run_xdp(xdp_prog, xdp);
5261
5262 /* check if bpf_xdp_adjust_head was used */
5263 off = xdp->data - orig_data;
5264 if (off) {
5265 if (off > 0)
5266 __skb_pull(skb, off);
5267 else if (off < 0)
5268 __skb_push(skb, -off);
5269
5270 skb->mac_header += off;
5271 skb_reset_network_header(skb);
5272 }
5273
5274 /* check if bpf_xdp_adjust_tail was used */
5275 off = xdp->data_end - orig_data_end;
5276 if (off != 0) {
5277 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
5278 skb->len += off; /* positive on grow, negative on shrink */
5279 }
5280
5281 /* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers
5282 * (e.g. bpf_xdp_adjust_tail), we need to update data_len here.
5283 */
5284 if (xdp_buff_has_frags(xdp))
5285 skb->data_len = skb_shinfo(skb)->xdp_frags_size;
5286 else
5287 skb->data_len = 0;
5288
5289 /* check if XDP changed eth hdr such SKB needs update */
5290 eth = (struct ethhdr *)xdp->data;
5291 if ((orig_eth_type != eth->h_proto) ||
5292 (orig_host != ether_addr_equal_64bits(eth->h_dest,
5293 skb->dev->dev_addr)) ||
5294 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
5295 __skb_push(skb, ETH_HLEN);
5296 skb->pkt_type = PACKET_HOST;
5297 skb->protocol = eth_type_trans(skb, skb->dev);
5298 }
5299
5300 /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
5301 * before calling us again on redirect path. We do not call do_redirect
5302 * as we leave that up to the caller.
5303 *
5304 * Caller is responsible for managing lifetime of skb (i.e. calling
5305 * kfree_skb in response to actions it cannot handle/XDP_DROP).
5306 */
5307 switch (act) {
5308 case XDP_REDIRECT:
5309 case XDP_TX:
5310 __skb_push(skb, mac_len);
5311 break;
5312 case XDP_PASS:
5313 metalen = xdp->data - xdp->data_meta;
5314 if (metalen)
5315 skb_metadata_set(skb, metalen);
5316 break;
5317 }
5318
5319 return act;
5320 }
5321
5322 static int
netif_skb_check_for_xdp(struct sk_buff ** pskb,const struct bpf_prog * prog)5323 netif_skb_check_for_xdp(struct sk_buff **pskb, const struct bpf_prog *prog)
5324 {
5325 struct sk_buff *skb = *pskb;
5326 int err, hroom, troom;
5327
5328 local_lock_nested_bh(&system_page_pool.bh_lock);
5329 err = skb_cow_data_for_xdp(this_cpu_read(system_page_pool.pool), pskb, prog);
5330 local_unlock_nested_bh(&system_page_pool.bh_lock);
5331 if (!err)
5332 return 0;
5333
5334 /* In case we have to go down the path and also linearize,
5335 * then lets do the pskb_expand_head() work just once here.
5336 */
5337 hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
5338 troom = skb->tail + skb->data_len - skb->end;
5339 err = pskb_expand_head(skb,
5340 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
5341 troom > 0 ? troom + 128 : 0, GFP_ATOMIC);
5342 if (err)
5343 return err;
5344
5345 return skb_linearize(skb);
5346 }
5347
netif_receive_generic_xdp(struct sk_buff ** pskb,struct xdp_buff * xdp,const struct bpf_prog * xdp_prog)5348 static u32 netif_receive_generic_xdp(struct sk_buff **pskb,
5349 struct xdp_buff *xdp,
5350 const struct bpf_prog *xdp_prog)
5351 {
5352 struct sk_buff *skb = *pskb;
5353 u32 mac_len, act = XDP_DROP;
5354
5355 /* Reinjected packets coming from act_mirred or similar should
5356 * not get XDP generic processing.
5357 */
5358 if (skb_is_redirected(skb))
5359 return XDP_PASS;
5360
5361 /* XDP packets must have sufficient headroom of XDP_PACKET_HEADROOM
5362 * bytes. This is the guarantee that also native XDP provides,
5363 * thus we need to do it here as well.
5364 */
5365 mac_len = skb->data - skb_mac_header(skb);
5366 __skb_push(skb, mac_len);
5367
5368 if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
5369 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
5370 if (netif_skb_check_for_xdp(pskb, xdp_prog))
5371 goto do_drop;
5372 }
5373
5374 __skb_pull(*pskb, mac_len);
5375
5376 act = bpf_prog_run_generic_xdp(*pskb, xdp, xdp_prog);
5377 switch (act) {
5378 case XDP_REDIRECT:
5379 case XDP_TX:
5380 case XDP_PASS:
5381 break;
5382 default:
5383 bpf_warn_invalid_xdp_action((*pskb)->dev, xdp_prog, act);
5384 fallthrough;
5385 case XDP_ABORTED:
5386 trace_xdp_exception((*pskb)->dev, xdp_prog, act);
5387 fallthrough;
5388 case XDP_DROP:
5389 do_drop:
5390 kfree_skb(*pskb);
5391 break;
5392 }
5393
5394 return act;
5395 }
5396
5397 /* When doing generic XDP we have to bypass the qdisc layer and the
5398 * network taps in order to match in-driver-XDP behavior. This also means
5399 * that XDP packets are able to starve other packets going through a qdisc,
5400 * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
5401 * queues, so they do not have this starvation issue.
5402 */
generic_xdp_tx(struct sk_buff * skb,const struct bpf_prog * xdp_prog)5403 void generic_xdp_tx(struct sk_buff *skb, const struct bpf_prog *xdp_prog)
5404 {
5405 struct net_device *dev = skb->dev;
5406 struct netdev_queue *txq;
5407 bool free_skb = true;
5408 int cpu, rc;
5409
5410 txq = netdev_core_pick_tx(dev, skb, NULL);
5411 cpu = smp_processor_id();
5412 HARD_TX_LOCK(dev, txq, cpu);
5413 if (!netif_xmit_frozen_or_drv_stopped(txq)) {
5414 rc = netdev_start_xmit(skb, dev, txq, 0);
5415 if (dev_xmit_complete(rc))
5416 free_skb = false;
5417 }
5418 HARD_TX_UNLOCK(dev, txq);
5419 if (free_skb) {
5420 trace_xdp_exception(dev, xdp_prog, XDP_TX);
5421 dev_core_stats_tx_dropped_inc(dev);
5422 kfree_skb(skb);
5423 }
5424 }
5425
5426 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
5427
do_xdp_generic(const struct bpf_prog * xdp_prog,struct sk_buff ** pskb)5428 int do_xdp_generic(const struct bpf_prog *xdp_prog, struct sk_buff **pskb)
5429 {
5430 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
5431
5432 if (xdp_prog) {
5433 struct xdp_buff xdp;
5434 u32 act;
5435 int err;
5436
5437 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
5438 act = netif_receive_generic_xdp(pskb, &xdp, xdp_prog);
5439 if (act != XDP_PASS) {
5440 switch (act) {
5441 case XDP_REDIRECT:
5442 err = xdp_do_generic_redirect((*pskb)->dev, *pskb,
5443 &xdp, xdp_prog);
5444 if (err)
5445 goto out_redir;
5446 break;
5447 case XDP_TX:
5448 generic_xdp_tx(*pskb, xdp_prog);
5449 break;
5450 }
5451 bpf_net_ctx_clear(bpf_net_ctx);
5452 return XDP_DROP;
5453 }
5454 bpf_net_ctx_clear(bpf_net_ctx);
5455 }
5456 return XDP_PASS;
5457 out_redir:
5458 bpf_net_ctx_clear(bpf_net_ctx);
5459 kfree_skb_reason(*pskb, SKB_DROP_REASON_XDP);
5460 return XDP_DROP;
5461 }
5462 EXPORT_SYMBOL_GPL(do_xdp_generic);
5463
netif_rx_internal(struct sk_buff * skb)5464 static int netif_rx_internal(struct sk_buff *skb)
5465 {
5466 int ret;
5467
5468 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5469
5470 trace_netif_rx(skb);
5471
5472 #ifdef CONFIG_RPS
5473 if (static_branch_unlikely(&rps_needed)) {
5474 struct rps_dev_flow voidflow, *rflow = &voidflow;
5475 int cpu;
5476
5477 rcu_read_lock();
5478
5479 cpu = get_rps_cpu(skb->dev, skb, &rflow);
5480 if (cpu < 0)
5481 cpu = smp_processor_id();
5482
5483 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5484
5485 rcu_read_unlock();
5486 } else
5487 #endif
5488 {
5489 unsigned int qtail;
5490
5491 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5492 }
5493 return ret;
5494 }
5495
5496 /**
5497 * __netif_rx - Slightly optimized version of netif_rx
5498 * @skb: buffer to post
5499 *
5500 * This behaves as netif_rx except that it does not disable bottom halves.
5501 * As a result this function may only be invoked from the interrupt context
5502 * (either hard or soft interrupt).
5503 */
__netif_rx(struct sk_buff * skb)5504 int __netif_rx(struct sk_buff *skb)
5505 {
5506 int ret;
5507
5508 lockdep_assert_once(hardirq_count() | softirq_count());
5509
5510 trace_netif_rx_entry(skb);
5511 ret = netif_rx_internal(skb);
5512 trace_netif_rx_exit(ret);
5513 return ret;
5514 }
5515 EXPORT_SYMBOL(__netif_rx);
5516
5517 /**
5518 * netif_rx - post buffer to the network code
5519 * @skb: buffer to post
5520 *
5521 * This function receives a packet from a device driver and queues it for
5522 * the upper (protocol) levels to process via the backlog NAPI device. It
5523 * always succeeds. The buffer may be dropped during processing for
5524 * congestion control or by the protocol layers.
5525 * The network buffer is passed via the backlog NAPI device. Modern NIC
5526 * driver should use NAPI and GRO.
5527 * This function can used from interrupt and from process context. The
5528 * caller from process context must not disable interrupts before invoking
5529 * this function.
5530 *
5531 * return values:
5532 * NET_RX_SUCCESS (no congestion)
5533 * NET_RX_DROP (packet was dropped)
5534 *
5535 */
netif_rx(struct sk_buff * skb)5536 int netif_rx(struct sk_buff *skb)
5537 {
5538 bool need_bh_off = !(hardirq_count() | softirq_count());
5539 int ret;
5540
5541 if (need_bh_off)
5542 local_bh_disable();
5543 trace_netif_rx_entry(skb);
5544 ret = netif_rx_internal(skb);
5545 trace_netif_rx_exit(ret);
5546 if (need_bh_off)
5547 local_bh_enable();
5548 return ret;
5549 }
5550 EXPORT_SYMBOL(netif_rx);
5551
net_tx_action(void)5552 static __latent_entropy void net_tx_action(void)
5553 {
5554 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5555
5556 if (sd->completion_queue) {
5557 struct sk_buff *clist;
5558
5559 local_irq_disable();
5560 clist = sd->completion_queue;
5561 sd->completion_queue = NULL;
5562 local_irq_enable();
5563
5564 while (clist) {
5565 struct sk_buff *skb = clist;
5566
5567 clist = clist->next;
5568
5569 WARN_ON(refcount_read(&skb->users));
5570 if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5571 trace_consume_skb(skb, net_tx_action);
5572 else
5573 trace_kfree_skb(skb, net_tx_action,
5574 get_kfree_skb_cb(skb)->reason, NULL);
5575
5576 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5577 __kfree_skb(skb);
5578 else
5579 __napi_kfree_skb(skb,
5580 get_kfree_skb_cb(skb)->reason);
5581 }
5582 }
5583
5584 if (sd->output_queue) {
5585 struct Qdisc *head;
5586
5587 local_irq_disable();
5588 head = sd->output_queue;
5589 sd->output_queue = NULL;
5590 sd->output_queue_tailp = &sd->output_queue;
5591 local_irq_enable();
5592
5593 rcu_read_lock();
5594
5595 while (head) {
5596 struct Qdisc *q = head;
5597 spinlock_t *root_lock = NULL;
5598
5599 head = head->next_sched;
5600
5601 /* We need to make sure head->next_sched is read
5602 * before clearing __QDISC_STATE_SCHED
5603 */
5604 smp_mb__before_atomic();
5605
5606 if (!(q->flags & TCQ_F_NOLOCK)) {
5607 root_lock = qdisc_lock(q);
5608 spin_lock(root_lock);
5609 } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5610 &q->state))) {
5611 /* There is a synchronize_net() between
5612 * STATE_DEACTIVATED flag being set and
5613 * qdisc_reset()/some_qdisc_is_busy() in
5614 * dev_deactivate(), so we can safely bail out
5615 * early here to avoid data race between
5616 * qdisc_deactivate() and some_qdisc_is_busy()
5617 * for lockless qdisc.
5618 */
5619 clear_bit(__QDISC_STATE_SCHED, &q->state);
5620 continue;
5621 }
5622
5623 clear_bit(__QDISC_STATE_SCHED, &q->state);
5624 qdisc_run(q);
5625 if (root_lock)
5626 spin_unlock(root_lock);
5627 }
5628
5629 rcu_read_unlock();
5630 }
5631
5632 xfrm_dev_backlog(sd);
5633 }
5634
5635 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5636 /* This hook is defined here for ATM LANE */
5637 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5638 unsigned char *addr) __read_mostly;
5639 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5640 #endif
5641
5642 /**
5643 * netdev_is_rx_handler_busy - check if receive handler is registered
5644 * @dev: device to check
5645 *
5646 * Check if a receive handler is already registered for a given device.
5647 * Return true if there one.
5648 *
5649 * The caller must hold the rtnl_mutex.
5650 */
netdev_is_rx_handler_busy(struct net_device * dev)5651 bool netdev_is_rx_handler_busy(struct net_device *dev)
5652 {
5653 ASSERT_RTNL();
5654 return dev && rtnl_dereference(dev->rx_handler);
5655 }
5656 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5657
5658 /**
5659 * netdev_rx_handler_register - register receive handler
5660 * @dev: device to register a handler for
5661 * @rx_handler: receive handler to register
5662 * @rx_handler_data: data pointer that is used by rx handler
5663 *
5664 * Register a receive handler for a device. This handler will then be
5665 * called from __netif_receive_skb. A negative errno code is returned
5666 * on a failure.
5667 *
5668 * The caller must hold the rtnl_mutex.
5669 *
5670 * For a general description of rx_handler, see enum rx_handler_result.
5671 */
netdev_rx_handler_register(struct net_device * dev,rx_handler_func_t * rx_handler,void * rx_handler_data)5672 int netdev_rx_handler_register(struct net_device *dev,
5673 rx_handler_func_t *rx_handler,
5674 void *rx_handler_data)
5675 {
5676 if (netdev_is_rx_handler_busy(dev))
5677 return -EBUSY;
5678
5679 if (dev->priv_flags & IFF_NO_RX_HANDLER)
5680 return -EINVAL;
5681
5682 /* Note: rx_handler_data must be set before rx_handler */
5683 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5684 rcu_assign_pointer(dev->rx_handler, rx_handler);
5685
5686 return 0;
5687 }
5688 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5689
5690 /**
5691 * netdev_rx_handler_unregister - unregister receive handler
5692 * @dev: device to unregister a handler from
5693 *
5694 * Unregister a receive handler from a device.
5695 *
5696 * The caller must hold the rtnl_mutex.
5697 */
netdev_rx_handler_unregister(struct net_device * dev)5698 void netdev_rx_handler_unregister(struct net_device *dev)
5699 {
5700
5701 ASSERT_RTNL();
5702 RCU_INIT_POINTER(dev->rx_handler, NULL);
5703 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5704 * section has a guarantee to see a non NULL rx_handler_data
5705 * as well.
5706 */
5707 synchronize_net();
5708 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5709 }
5710 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5711
5712 /*
5713 * Limit the use of PFMEMALLOC reserves to those protocols that implement
5714 * the special handling of PFMEMALLOC skbs.
5715 */
skb_pfmemalloc_protocol(struct sk_buff * skb)5716 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5717 {
5718 switch (skb->protocol) {
5719 case htons(ETH_P_ARP):
5720 case htons(ETH_P_IP):
5721 case htons(ETH_P_IPV6):
5722 case htons(ETH_P_8021Q):
5723 case htons(ETH_P_8021AD):
5724 return true;
5725 default:
5726 return false;
5727 }
5728 }
5729
nf_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev)5730 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5731 int *ret, struct net_device *orig_dev)
5732 {
5733 if (nf_hook_ingress_active(skb)) {
5734 int ingress_retval;
5735
5736 if (*pt_prev) {
5737 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5738 *pt_prev = NULL;
5739 }
5740
5741 rcu_read_lock();
5742 ingress_retval = nf_hook_ingress(skb);
5743 rcu_read_unlock();
5744 return ingress_retval;
5745 }
5746 return 0;
5747 }
5748
__netif_receive_skb_core(struct sk_buff ** pskb,bool pfmemalloc,struct packet_type ** ppt_prev)5749 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5750 struct packet_type **ppt_prev)
5751 {
5752 enum skb_drop_reason drop_reason = SKB_DROP_REASON_UNHANDLED_PROTO;
5753 struct packet_type *ptype, *pt_prev;
5754 rx_handler_func_t *rx_handler;
5755 struct sk_buff *skb = *pskb;
5756 struct net_device *orig_dev;
5757 bool deliver_exact = false;
5758 int ret = NET_RX_DROP;
5759 __be16 type;
5760
5761 net_timestamp_check(!READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5762
5763 trace_netif_receive_skb(skb);
5764
5765 orig_dev = skb->dev;
5766
5767 skb_reset_network_header(skb);
5768 #if !defined(CONFIG_DEBUG_NET)
5769 /* We plan to no longer reset the transport header here.
5770 * Give some time to fuzzers and dev build to catch bugs
5771 * in network stacks.
5772 */
5773 if (!skb_transport_header_was_set(skb))
5774 skb_reset_transport_header(skb);
5775 #endif
5776 skb_reset_mac_len(skb);
5777
5778 pt_prev = NULL;
5779
5780 another_round:
5781 skb->skb_iif = skb->dev->ifindex;
5782
5783 __this_cpu_inc(softnet_data.processed);
5784
5785 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5786 int ret2;
5787
5788 migrate_disable();
5789 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog),
5790 &skb);
5791 migrate_enable();
5792
5793 if (ret2 != XDP_PASS) {
5794 ret = NET_RX_DROP;
5795 goto out;
5796 }
5797 }
5798
5799 if (eth_type_vlan(skb->protocol)) {
5800 skb = skb_vlan_untag(skb);
5801 if (unlikely(!skb))
5802 goto out;
5803 }
5804
5805 if (skb_skip_tc_classify(skb))
5806 goto skip_classify;
5807
5808 if (pfmemalloc)
5809 goto skip_taps;
5810
5811 list_for_each_entry_rcu(ptype, &dev_net_rcu(skb->dev)->ptype_all,
5812 list) {
5813 if (pt_prev)
5814 ret = deliver_skb(skb, pt_prev, orig_dev);
5815 pt_prev = ptype;
5816 }
5817
5818 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5819 if (pt_prev)
5820 ret = deliver_skb(skb, pt_prev, orig_dev);
5821 pt_prev = ptype;
5822 }
5823
5824 skip_taps:
5825 #ifdef CONFIG_NET_INGRESS
5826 if (static_branch_unlikely(&ingress_needed_key)) {
5827 bool another = false;
5828
5829 nf_skip_egress(skb, true);
5830 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5831 &another);
5832 if (another)
5833 goto another_round;
5834 if (!skb)
5835 goto out;
5836
5837 nf_skip_egress(skb, false);
5838 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5839 goto out;
5840 }
5841 #endif
5842 skb_reset_redirect(skb);
5843 skip_classify:
5844 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) {
5845 drop_reason = SKB_DROP_REASON_PFMEMALLOC;
5846 goto drop;
5847 }
5848
5849 if (skb_vlan_tag_present(skb)) {
5850 if (pt_prev) {
5851 ret = deliver_skb(skb, pt_prev, orig_dev);
5852 pt_prev = NULL;
5853 }
5854 if (vlan_do_receive(&skb))
5855 goto another_round;
5856 else if (unlikely(!skb))
5857 goto out;
5858 }
5859
5860 rx_handler = rcu_dereference(skb->dev->rx_handler);
5861 if (rx_handler) {
5862 if (pt_prev) {
5863 ret = deliver_skb(skb, pt_prev, orig_dev);
5864 pt_prev = NULL;
5865 }
5866 switch (rx_handler(&skb)) {
5867 case RX_HANDLER_CONSUMED:
5868 ret = NET_RX_SUCCESS;
5869 goto out;
5870 case RX_HANDLER_ANOTHER:
5871 goto another_round;
5872 case RX_HANDLER_EXACT:
5873 deliver_exact = true;
5874 break;
5875 case RX_HANDLER_PASS:
5876 break;
5877 default:
5878 BUG();
5879 }
5880 }
5881
5882 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5883 check_vlan_id:
5884 if (skb_vlan_tag_get_id(skb)) {
5885 /* Vlan id is non 0 and vlan_do_receive() above couldn't
5886 * find vlan device.
5887 */
5888 skb->pkt_type = PACKET_OTHERHOST;
5889 } else if (eth_type_vlan(skb->protocol)) {
5890 /* Outer header is 802.1P with vlan 0, inner header is
5891 * 802.1Q or 802.1AD and vlan_do_receive() above could
5892 * not find vlan dev for vlan id 0.
5893 */
5894 __vlan_hwaccel_clear_tag(skb);
5895 skb = skb_vlan_untag(skb);
5896 if (unlikely(!skb))
5897 goto out;
5898 if (vlan_do_receive(&skb))
5899 /* After stripping off 802.1P header with vlan 0
5900 * vlan dev is found for inner header.
5901 */
5902 goto another_round;
5903 else if (unlikely(!skb))
5904 goto out;
5905 else
5906 /* We have stripped outer 802.1P vlan 0 header.
5907 * But could not find vlan dev.
5908 * check again for vlan id to set OTHERHOST.
5909 */
5910 goto check_vlan_id;
5911 }
5912 /* Note: we might in the future use prio bits
5913 * and set skb->priority like in vlan_do_receive()
5914 * For the time being, just ignore Priority Code Point
5915 */
5916 __vlan_hwaccel_clear_tag(skb);
5917 }
5918
5919 type = skb->protocol;
5920
5921 /* deliver only exact match when indicated */
5922 if (likely(!deliver_exact)) {
5923 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5924 &ptype_base[ntohs(type) &
5925 PTYPE_HASH_MASK]);
5926
5927 /* orig_dev and skb->dev could belong to different netns;
5928 * Even in such case we need to traverse only the list
5929 * coming from skb->dev, as the ptype owner (packet socket)
5930 * will use dev_net(skb->dev) to do namespace filtering.
5931 */
5932 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5933 &dev_net_rcu(skb->dev)->ptype_specific);
5934 }
5935
5936 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5937 &orig_dev->ptype_specific);
5938
5939 if (unlikely(skb->dev != orig_dev)) {
5940 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5941 &skb->dev->ptype_specific);
5942 }
5943
5944 if (pt_prev) {
5945 *ppt_prev = pt_prev;
5946 } else {
5947 drop:
5948 if (!deliver_exact)
5949 dev_core_stats_rx_dropped_inc(skb->dev);
5950 else
5951 dev_core_stats_rx_nohandler_inc(skb->dev);
5952
5953 kfree_skb_reason(skb, drop_reason);
5954 /* Jamal, now you will not able to escape explaining
5955 * me how you were going to use this. :-)
5956 */
5957 ret = NET_RX_DROP;
5958 }
5959
5960 out:
5961 /* The invariant here is that if *ppt_prev is not NULL
5962 * then skb should also be non-NULL.
5963 *
5964 * Apparently *ppt_prev assignment above holds this invariant due to
5965 * skb dereferencing near it.
5966 */
5967 *pskb = skb;
5968 return ret;
5969 }
5970
__netif_receive_skb_one_core(struct sk_buff * skb,bool pfmemalloc)5971 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5972 {
5973 struct net_device *orig_dev = skb->dev;
5974 struct packet_type *pt_prev = NULL;
5975 int ret;
5976
5977 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5978 if (pt_prev)
5979 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5980 skb->dev, pt_prev, orig_dev);
5981 return ret;
5982 }
5983
5984 /**
5985 * netif_receive_skb_core - special purpose version of netif_receive_skb
5986 * @skb: buffer to process
5987 *
5988 * More direct receive version of netif_receive_skb(). It should
5989 * only be used by callers that have a need to skip RPS and Generic XDP.
5990 * Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5991 *
5992 * This function may only be called from softirq context and interrupts
5993 * should be enabled.
5994 *
5995 * Return values (usually ignored):
5996 * NET_RX_SUCCESS: no congestion
5997 * NET_RX_DROP: packet was dropped
5998 */
netif_receive_skb_core(struct sk_buff * skb)5999 int netif_receive_skb_core(struct sk_buff *skb)
6000 {
6001 int ret;
6002
6003 rcu_read_lock();
6004 ret = __netif_receive_skb_one_core(skb, false);
6005 rcu_read_unlock();
6006
6007 return ret;
6008 }
6009 EXPORT_SYMBOL(netif_receive_skb_core);
6010
__netif_receive_skb_list_ptype(struct list_head * head,struct packet_type * pt_prev,struct net_device * orig_dev)6011 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
6012 struct packet_type *pt_prev,
6013 struct net_device *orig_dev)
6014 {
6015 struct sk_buff *skb, *next;
6016
6017 if (!pt_prev)
6018 return;
6019 if (list_empty(head))
6020 return;
6021 if (pt_prev->list_func != NULL)
6022 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
6023 ip_list_rcv, head, pt_prev, orig_dev);
6024 else
6025 list_for_each_entry_safe(skb, next, head, list) {
6026 skb_list_del_init(skb);
6027 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
6028 }
6029 }
6030
__netif_receive_skb_list_core(struct list_head * head,bool pfmemalloc)6031 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
6032 {
6033 /* Fast-path assumptions:
6034 * - There is no RX handler.
6035 * - Only one packet_type matches.
6036 * If either of these fails, we will end up doing some per-packet
6037 * processing in-line, then handling the 'last ptype' for the whole
6038 * sublist. This can't cause out-of-order delivery to any single ptype,
6039 * because the 'last ptype' must be constant across the sublist, and all
6040 * other ptypes are handled per-packet.
6041 */
6042 /* Current (common) ptype of sublist */
6043 struct packet_type *pt_curr = NULL;
6044 /* Current (common) orig_dev of sublist */
6045 struct net_device *od_curr = NULL;
6046 struct sk_buff *skb, *next;
6047 LIST_HEAD(sublist);
6048
6049 list_for_each_entry_safe(skb, next, head, list) {
6050 struct net_device *orig_dev = skb->dev;
6051 struct packet_type *pt_prev = NULL;
6052
6053 skb_list_del_init(skb);
6054 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
6055 if (!pt_prev)
6056 continue;
6057 if (pt_curr != pt_prev || od_curr != orig_dev) {
6058 /* dispatch old sublist */
6059 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
6060 /* start new sublist */
6061 INIT_LIST_HEAD(&sublist);
6062 pt_curr = pt_prev;
6063 od_curr = orig_dev;
6064 }
6065 list_add_tail(&skb->list, &sublist);
6066 }
6067
6068 /* dispatch final sublist */
6069 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
6070 }
6071
__netif_receive_skb(struct sk_buff * skb)6072 static int __netif_receive_skb(struct sk_buff *skb)
6073 {
6074 int ret;
6075
6076 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
6077 unsigned int noreclaim_flag;
6078
6079 /*
6080 * PFMEMALLOC skbs are special, they should
6081 * - be delivered to SOCK_MEMALLOC sockets only
6082 * - stay away from userspace
6083 * - have bounded memory usage
6084 *
6085 * Use PF_MEMALLOC as this saves us from propagating the allocation
6086 * context down to all allocation sites.
6087 */
6088 noreclaim_flag = memalloc_noreclaim_save();
6089 ret = __netif_receive_skb_one_core(skb, true);
6090 memalloc_noreclaim_restore(noreclaim_flag);
6091 } else
6092 ret = __netif_receive_skb_one_core(skb, false);
6093
6094 return ret;
6095 }
6096
__netif_receive_skb_list(struct list_head * head)6097 static void __netif_receive_skb_list(struct list_head *head)
6098 {
6099 unsigned long noreclaim_flag = 0;
6100 struct sk_buff *skb, *next;
6101 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
6102
6103 list_for_each_entry_safe(skb, next, head, list) {
6104 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
6105 struct list_head sublist;
6106
6107 /* Handle the previous sublist */
6108 list_cut_before(&sublist, head, &skb->list);
6109 if (!list_empty(&sublist))
6110 __netif_receive_skb_list_core(&sublist, pfmemalloc);
6111 pfmemalloc = !pfmemalloc;
6112 /* See comments in __netif_receive_skb */
6113 if (pfmemalloc)
6114 noreclaim_flag = memalloc_noreclaim_save();
6115 else
6116 memalloc_noreclaim_restore(noreclaim_flag);
6117 }
6118 }
6119 /* Handle the remaining sublist */
6120 if (!list_empty(head))
6121 __netif_receive_skb_list_core(head, pfmemalloc);
6122 /* Restore pflags */
6123 if (pfmemalloc)
6124 memalloc_noreclaim_restore(noreclaim_flag);
6125 }
6126
generic_xdp_install(struct net_device * dev,struct netdev_bpf * xdp)6127 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
6128 {
6129 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
6130 struct bpf_prog *new = xdp->prog;
6131 int ret = 0;
6132
6133 switch (xdp->command) {
6134 case XDP_SETUP_PROG:
6135 rcu_assign_pointer(dev->xdp_prog, new);
6136 if (old)
6137 bpf_prog_put(old);
6138
6139 if (old && !new) {
6140 static_branch_dec(&generic_xdp_needed_key);
6141 } else if (new && !old) {
6142 static_branch_inc(&generic_xdp_needed_key);
6143 netif_disable_lro(dev);
6144 dev_disable_gro_hw(dev);
6145 }
6146 break;
6147
6148 default:
6149 ret = -EINVAL;
6150 break;
6151 }
6152
6153 return ret;
6154 }
6155
netif_receive_skb_internal(struct sk_buff * skb)6156 static int netif_receive_skb_internal(struct sk_buff *skb)
6157 {
6158 int ret;
6159
6160 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
6161
6162 if (skb_defer_rx_timestamp(skb))
6163 return NET_RX_SUCCESS;
6164
6165 rcu_read_lock();
6166 #ifdef CONFIG_RPS
6167 if (static_branch_unlikely(&rps_needed)) {
6168 struct rps_dev_flow voidflow, *rflow = &voidflow;
6169 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
6170
6171 if (cpu >= 0) {
6172 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
6173 rcu_read_unlock();
6174 return ret;
6175 }
6176 }
6177 #endif
6178 ret = __netif_receive_skb(skb);
6179 rcu_read_unlock();
6180 return ret;
6181 }
6182
netif_receive_skb_list_internal(struct list_head * head)6183 void netif_receive_skb_list_internal(struct list_head *head)
6184 {
6185 struct sk_buff *skb, *next;
6186 LIST_HEAD(sublist);
6187
6188 list_for_each_entry_safe(skb, next, head, list) {
6189 net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue),
6190 skb);
6191 skb_list_del_init(skb);
6192 if (!skb_defer_rx_timestamp(skb))
6193 list_add_tail(&skb->list, &sublist);
6194 }
6195 list_splice_init(&sublist, head);
6196
6197 rcu_read_lock();
6198 #ifdef CONFIG_RPS
6199 if (static_branch_unlikely(&rps_needed)) {
6200 list_for_each_entry_safe(skb, next, head, list) {
6201 struct rps_dev_flow voidflow, *rflow = &voidflow;
6202 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
6203
6204 if (cpu >= 0) {
6205 /* Will be handled, remove from list */
6206 skb_list_del_init(skb);
6207 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
6208 }
6209 }
6210 }
6211 #endif
6212 __netif_receive_skb_list(head);
6213 rcu_read_unlock();
6214 }
6215
6216 /**
6217 * netif_receive_skb - process receive buffer from network
6218 * @skb: buffer to process
6219 *
6220 * netif_receive_skb() is the main receive data processing function.
6221 * It always succeeds. The buffer may be dropped during processing
6222 * for congestion control or by the protocol layers.
6223 *
6224 * This function may only be called from softirq context and interrupts
6225 * should be enabled.
6226 *
6227 * Return values (usually ignored):
6228 * NET_RX_SUCCESS: no congestion
6229 * NET_RX_DROP: packet was dropped
6230 */
netif_receive_skb(struct sk_buff * skb)6231 int netif_receive_skb(struct sk_buff *skb)
6232 {
6233 int ret;
6234
6235 trace_netif_receive_skb_entry(skb);
6236
6237 ret = netif_receive_skb_internal(skb);
6238 trace_netif_receive_skb_exit(ret);
6239
6240 return ret;
6241 }
6242 EXPORT_SYMBOL(netif_receive_skb);
6243
6244 /**
6245 * netif_receive_skb_list - process many receive buffers from network
6246 * @head: list of skbs to process.
6247 *
6248 * Since return value of netif_receive_skb() is normally ignored, and
6249 * wouldn't be meaningful for a list, this function returns void.
6250 *
6251 * This function may only be called from softirq context and interrupts
6252 * should be enabled.
6253 */
netif_receive_skb_list(struct list_head * head)6254 void netif_receive_skb_list(struct list_head *head)
6255 {
6256 struct sk_buff *skb;
6257
6258 if (list_empty(head))
6259 return;
6260 if (trace_netif_receive_skb_list_entry_enabled()) {
6261 list_for_each_entry(skb, head, list)
6262 trace_netif_receive_skb_list_entry(skb);
6263 }
6264 netif_receive_skb_list_internal(head);
6265 trace_netif_receive_skb_list_exit(0);
6266 }
6267 EXPORT_SYMBOL(netif_receive_skb_list);
6268
6269 /* Network device is going away, flush any packets still pending */
flush_backlog(struct work_struct * work)6270 static void flush_backlog(struct work_struct *work)
6271 {
6272 struct sk_buff *skb, *tmp;
6273 struct sk_buff_head list;
6274 struct softnet_data *sd;
6275
6276 __skb_queue_head_init(&list);
6277 local_bh_disable();
6278 sd = this_cpu_ptr(&softnet_data);
6279
6280 backlog_lock_irq_disable(sd);
6281 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
6282 if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) {
6283 __skb_unlink(skb, &sd->input_pkt_queue);
6284 __skb_queue_tail(&list, skb);
6285 rps_input_queue_head_incr(sd);
6286 }
6287 }
6288 backlog_unlock_irq_enable(sd);
6289
6290 local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6291 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
6292 if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) {
6293 __skb_unlink(skb, &sd->process_queue);
6294 __skb_queue_tail(&list, skb);
6295 rps_input_queue_head_incr(sd);
6296 }
6297 }
6298 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6299 local_bh_enable();
6300
6301 __skb_queue_purge_reason(&list, SKB_DROP_REASON_DEV_READY);
6302 }
6303
flush_required(int cpu)6304 static bool flush_required(int cpu)
6305 {
6306 #if IS_ENABLED(CONFIG_RPS)
6307 struct softnet_data *sd = &per_cpu(softnet_data, cpu);
6308 bool do_flush;
6309
6310 backlog_lock_irq_disable(sd);
6311
6312 /* as insertion into process_queue happens with the rps lock held,
6313 * process_queue access may race only with dequeue
6314 */
6315 do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
6316 !skb_queue_empty_lockless(&sd->process_queue);
6317 backlog_unlock_irq_enable(sd);
6318
6319 return do_flush;
6320 #endif
6321 /* without RPS we can't safely check input_pkt_queue: during a
6322 * concurrent remote skb_queue_splice() we can detect as empty both
6323 * input_pkt_queue and process_queue even if the latter could end-up
6324 * containing a lot of packets.
6325 */
6326 return true;
6327 }
6328
6329 struct flush_backlogs {
6330 cpumask_t flush_cpus;
6331 struct work_struct w[];
6332 };
6333
flush_backlogs_alloc(void)6334 static struct flush_backlogs *flush_backlogs_alloc(void)
6335 {
6336 return kmalloc(struct_size_t(struct flush_backlogs, w, nr_cpu_ids),
6337 GFP_KERNEL);
6338 }
6339
6340 static struct flush_backlogs *flush_backlogs_fallback;
6341 static DEFINE_MUTEX(flush_backlogs_mutex);
6342
flush_all_backlogs(void)6343 static void flush_all_backlogs(void)
6344 {
6345 struct flush_backlogs *ptr = flush_backlogs_alloc();
6346 unsigned int cpu;
6347
6348 if (!ptr) {
6349 mutex_lock(&flush_backlogs_mutex);
6350 ptr = flush_backlogs_fallback;
6351 }
6352 cpumask_clear(&ptr->flush_cpus);
6353
6354 cpus_read_lock();
6355
6356 for_each_online_cpu(cpu) {
6357 if (flush_required(cpu)) {
6358 INIT_WORK(&ptr->w[cpu], flush_backlog);
6359 queue_work_on(cpu, system_highpri_wq, &ptr->w[cpu]);
6360 __cpumask_set_cpu(cpu, &ptr->flush_cpus);
6361 }
6362 }
6363
6364 /* we can have in flight packet[s] on the cpus we are not flushing,
6365 * synchronize_net() in unregister_netdevice_many() will take care of
6366 * them.
6367 */
6368 for_each_cpu(cpu, &ptr->flush_cpus)
6369 flush_work(&ptr->w[cpu]);
6370
6371 cpus_read_unlock();
6372
6373 if (ptr != flush_backlogs_fallback)
6374 kfree(ptr);
6375 else
6376 mutex_unlock(&flush_backlogs_mutex);
6377 }
6378
net_rps_send_ipi(struct softnet_data * remsd)6379 static void net_rps_send_ipi(struct softnet_data *remsd)
6380 {
6381 #ifdef CONFIG_RPS
6382 while (remsd) {
6383 struct softnet_data *next = remsd->rps_ipi_next;
6384
6385 if (cpu_online(remsd->cpu))
6386 smp_call_function_single_async(remsd->cpu, &remsd->csd);
6387 remsd = next;
6388 }
6389 #endif
6390 }
6391
6392 /*
6393 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6394 * Note: called with local irq disabled, but exits with local irq enabled.
6395 */
net_rps_action_and_irq_enable(struct softnet_data * sd)6396 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6397 {
6398 #ifdef CONFIG_RPS
6399 struct softnet_data *remsd = sd->rps_ipi_list;
6400
6401 if (!use_backlog_threads() && remsd) {
6402 sd->rps_ipi_list = NULL;
6403
6404 local_irq_enable();
6405
6406 /* Send pending IPI's to kick RPS processing on remote cpus. */
6407 net_rps_send_ipi(remsd);
6408 } else
6409 #endif
6410 local_irq_enable();
6411 }
6412
sd_has_rps_ipi_waiting(struct softnet_data * sd)6413 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6414 {
6415 #ifdef CONFIG_RPS
6416 return !use_backlog_threads() && sd->rps_ipi_list;
6417 #else
6418 return false;
6419 #endif
6420 }
6421
process_backlog(struct napi_struct * napi,int quota)6422 static int process_backlog(struct napi_struct *napi, int quota)
6423 {
6424 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6425 bool again = true;
6426 int work = 0;
6427
6428 /* Check if we have pending ipi, its better to send them now,
6429 * not waiting net_rx_action() end.
6430 */
6431 if (sd_has_rps_ipi_waiting(sd)) {
6432 local_irq_disable();
6433 net_rps_action_and_irq_enable(sd);
6434 }
6435
6436 napi->weight = READ_ONCE(net_hotdata.dev_rx_weight);
6437 while (again) {
6438 struct sk_buff *skb;
6439
6440 local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6441 while ((skb = __skb_dequeue(&sd->process_queue))) {
6442 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6443 rcu_read_lock();
6444 __netif_receive_skb(skb);
6445 rcu_read_unlock();
6446 if (++work >= quota) {
6447 rps_input_queue_head_add(sd, work);
6448 return work;
6449 }
6450
6451 local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6452 }
6453 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6454
6455 backlog_lock_irq_disable(sd);
6456 if (skb_queue_empty(&sd->input_pkt_queue)) {
6457 /*
6458 * Inline a custom version of __napi_complete().
6459 * only current cpu owns and manipulates this napi,
6460 * and NAPI_STATE_SCHED is the only possible flag set
6461 * on backlog.
6462 * We can use a plain write instead of clear_bit(),
6463 * and we dont need an smp_mb() memory barrier.
6464 */
6465 napi->state &= NAPIF_STATE_THREADED;
6466 again = false;
6467 } else {
6468 local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6469 skb_queue_splice_tail_init(&sd->input_pkt_queue,
6470 &sd->process_queue);
6471 local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6472 }
6473 backlog_unlock_irq_enable(sd);
6474 }
6475
6476 if (work)
6477 rps_input_queue_head_add(sd, work);
6478 return work;
6479 }
6480
6481 /**
6482 * __napi_schedule - schedule for receive
6483 * @n: entry to schedule
6484 *
6485 * The entry's receive function will be scheduled to run.
6486 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6487 */
__napi_schedule(struct napi_struct * n)6488 void __napi_schedule(struct napi_struct *n)
6489 {
6490 unsigned long flags;
6491
6492 local_irq_save(flags);
6493 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6494 local_irq_restore(flags);
6495 }
6496 EXPORT_SYMBOL(__napi_schedule);
6497
6498 /**
6499 * napi_schedule_prep - check if napi can be scheduled
6500 * @n: napi context
6501 *
6502 * Test if NAPI routine is already running, and if not mark
6503 * it as running. This is used as a condition variable to
6504 * insure only one NAPI poll instance runs. We also make
6505 * sure there is no pending NAPI disable.
6506 */
napi_schedule_prep(struct napi_struct * n)6507 bool napi_schedule_prep(struct napi_struct *n)
6508 {
6509 unsigned long new, val = READ_ONCE(n->state);
6510
6511 do {
6512 if (unlikely(val & NAPIF_STATE_DISABLE))
6513 return false;
6514 new = val | NAPIF_STATE_SCHED;
6515
6516 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6517 * This was suggested by Alexander Duyck, as compiler
6518 * emits better code than :
6519 * if (val & NAPIF_STATE_SCHED)
6520 * new |= NAPIF_STATE_MISSED;
6521 */
6522 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6523 NAPIF_STATE_MISSED;
6524 } while (!try_cmpxchg(&n->state, &val, new));
6525
6526 return !(val & NAPIF_STATE_SCHED);
6527 }
6528 EXPORT_SYMBOL(napi_schedule_prep);
6529
6530 /**
6531 * __napi_schedule_irqoff - schedule for receive
6532 * @n: entry to schedule
6533 *
6534 * Variant of __napi_schedule() assuming hard irqs are masked.
6535 *
6536 * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6537 * because the interrupt disabled assumption might not be true
6538 * due to force-threaded interrupts and spinlock substitution.
6539 */
__napi_schedule_irqoff(struct napi_struct * n)6540 void __napi_schedule_irqoff(struct napi_struct *n)
6541 {
6542 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6543 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6544 else
6545 __napi_schedule(n);
6546 }
6547 EXPORT_SYMBOL(__napi_schedule_irqoff);
6548
napi_complete_done(struct napi_struct * n,int work_done)6549 bool napi_complete_done(struct napi_struct *n, int work_done)
6550 {
6551 unsigned long flags, val, new, timeout = 0;
6552 bool ret = true;
6553
6554 /*
6555 * 1) Don't let napi dequeue from the cpu poll list
6556 * just in case its running on a different cpu.
6557 * 2) If we are busy polling, do nothing here, we have
6558 * the guarantee we will be called later.
6559 */
6560 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6561 NAPIF_STATE_IN_BUSY_POLL)))
6562 return false;
6563
6564 if (work_done) {
6565 if (n->gro.bitmask)
6566 timeout = napi_get_gro_flush_timeout(n);
6567 n->defer_hard_irqs_count = napi_get_defer_hard_irqs(n);
6568 }
6569 if (n->defer_hard_irqs_count > 0) {
6570 n->defer_hard_irqs_count--;
6571 timeout = napi_get_gro_flush_timeout(n);
6572 if (timeout)
6573 ret = false;
6574 }
6575
6576 /*
6577 * When the NAPI instance uses a timeout and keeps postponing
6578 * it, we need to bound somehow the time packets are kept in
6579 * the GRO layer.
6580 */
6581 gro_flush_normal(&n->gro, !!timeout);
6582
6583 if (unlikely(!list_empty(&n->poll_list))) {
6584 /* If n->poll_list is not empty, we need to mask irqs */
6585 local_irq_save(flags);
6586 list_del_init(&n->poll_list);
6587 local_irq_restore(flags);
6588 }
6589 WRITE_ONCE(n->list_owner, -1);
6590
6591 val = READ_ONCE(n->state);
6592 do {
6593 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6594
6595 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6596 NAPIF_STATE_SCHED_THREADED |
6597 NAPIF_STATE_PREFER_BUSY_POLL);
6598
6599 /* If STATE_MISSED was set, leave STATE_SCHED set,
6600 * because we will call napi->poll() one more time.
6601 * This C code was suggested by Alexander Duyck to help gcc.
6602 */
6603 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6604 NAPIF_STATE_SCHED;
6605 } while (!try_cmpxchg(&n->state, &val, new));
6606
6607 if (unlikely(val & NAPIF_STATE_MISSED)) {
6608 __napi_schedule(n);
6609 return false;
6610 }
6611
6612 if (timeout)
6613 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6614 HRTIMER_MODE_REL_PINNED);
6615 return ret;
6616 }
6617 EXPORT_SYMBOL(napi_complete_done);
6618
skb_defer_free_flush(struct softnet_data * sd)6619 static void skb_defer_free_flush(struct softnet_data *sd)
6620 {
6621 struct sk_buff *skb, *next;
6622
6623 /* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6624 if (!READ_ONCE(sd->defer_list))
6625 return;
6626
6627 spin_lock(&sd->defer_lock);
6628 skb = sd->defer_list;
6629 sd->defer_list = NULL;
6630 sd->defer_count = 0;
6631 spin_unlock(&sd->defer_lock);
6632
6633 while (skb != NULL) {
6634 next = skb->next;
6635 napi_consume_skb(skb, 1);
6636 skb = next;
6637 }
6638 }
6639
6640 #if defined(CONFIG_NET_RX_BUSY_POLL)
6641
__busy_poll_stop(struct napi_struct * napi,bool skip_schedule)6642 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6643 {
6644 if (!skip_schedule) {
6645 gro_normal_list(&napi->gro);
6646 __napi_schedule(napi);
6647 return;
6648 }
6649
6650 /* Flush too old packets. If HZ < 1000, flush all packets */
6651 gro_flush_normal(&napi->gro, HZ >= 1000);
6652
6653 clear_bit(NAPI_STATE_SCHED, &napi->state);
6654 }
6655
6656 enum {
6657 NAPI_F_PREFER_BUSY_POLL = 1,
6658 NAPI_F_END_ON_RESCHED = 2,
6659 };
6660
busy_poll_stop(struct napi_struct * napi,void * have_poll_lock,unsigned flags,u16 budget)6661 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock,
6662 unsigned flags, u16 budget)
6663 {
6664 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6665 bool skip_schedule = false;
6666 unsigned long timeout;
6667 int rc;
6668
6669 /* Busy polling means there is a high chance device driver hard irq
6670 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6671 * set in napi_schedule_prep().
6672 * Since we are about to call napi->poll() once more, we can safely
6673 * clear NAPI_STATE_MISSED.
6674 *
6675 * Note: x86 could use a single "lock and ..." instruction
6676 * to perform these two clear_bit()
6677 */
6678 clear_bit(NAPI_STATE_MISSED, &napi->state);
6679 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6680
6681 local_bh_disable();
6682 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6683
6684 if (flags & NAPI_F_PREFER_BUSY_POLL) {
6685 napi->defer_hard_irqs_count = napi_get_defer_hard_irqs(napi);
6686 timeout = napi_get_gro_flush_timeout(napi);
6687 if (napi->defer_hard_irqs_count && timeout) {
6688 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6689 skip_schedule = true;
6690 }
6691 }
6692
6693 /* All we really want here is to re-enable device interrupts.
6694 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6695 */
6696 rc = napi->poll(napi, budget);
6697 /* We can't gro_normal_list() here, because napi->poll() might have
6698 * rearmed the napi (napi_complete_done()) in which case it could
6699 * already be running on another CPU.
6700 */
6701 trace_napi_poll(napi, rc, budget);
6702 netpoll_poll_unlock(have_poll_lock);
6703 if (rc == budget)
6704 __busy_poll_stop(napi, skip_schedule);
6705 bpf_net_ctx_clear(bpf_net_ctx);
6706 local_bh_enable();
6707 }
6708
__napi_busy_loop(unsigned int napi_id,bool (* loop_end)(void *,unsigned long),void * loop_end_arg,unsigned flags,u16 budget)6709 static void __napi_busy_loop(unsigned int napi_id,
6710 bool (*loop_end)(void *, unsigned long),
6711 void *loop_end_arg, unsigned flags, u16 budget)
6712 {
6713 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6714 int (*napi_poll)(struct napi_struct *napi, int budget);
6715 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6716 void *have_poll_lock = NULL;
6717 struct napi_struct *napi;
6718
6719 WARN_ON_ONCE(!rcu_read_lock_held());
6720
6721 restart:
6722 napi_poll = NULL;
6723
6724 napi = napi_by_id(napi_id);
6725 if (!napi)
6726 return;
6727
6728 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6729 preempt_disable();
6730 for (;;) {
6731 int work = 0;
6732
6733 local_bh_disable();
6734 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6735 if (!napi_poll) {
6736 unsigned long val = READ_ONCE(napi->state);
6737
6738 /* If multiple threads are competing for this napi,
6739 * we avoid dirtying napi->state as much as we can.
6740 */
6741 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6742 NAPIF_STATE_IN_BUSY_POLL)) {
6743 if (flags & NAPI_F_PREFER_BUSY_POLL)
6744 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6745 goto count;
6746 }
6747 if (cmpxchg(&napi->state, val,
6748 val | NAPIF_STATE_IN_BUSY_POLL |
6749 NAPIF_STATE_SCHED) != val) {
6750 if (flags & NAPI_F_PREFER_BUSY_POLL)
6751 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6752 goto count;
6753 }
6754 have_poll_lock = netpoll_poll_lock(napi);
6755 napi_poll = napi->poll;
6756 }
6757 work = napi_poll(napi, budget);
6758 trace_napi_poll(napi, work, budget);
6759 gro_normal_list(&napi->gro);
6760 count:
6761 if (work > 0)
6762 __NET_ADD_STATS(dev_net(napi->dev),
6763 LINUX_MIB_BUSYPOLLRXPACKETS, work);
6764 skb_defer_free_flush(this_cpu_ptr(&softnet_data));
6765 bpf_net_ctx_clear(bpf_net_ctx);
6766 local_bh_enable();
6767
6768 if (!loop_end || loop_end(loop_end_arg, start_time))
6769 break;
6770
6771 if (unlikely(need_resched())) {
6772 if (flags & NAPI_F_END_ON_RESCHED)
6773 break;
6774 if (napi_poll)
6775 busy_poll_stop(napi, have_poll_lock, flags, budget);
6776 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6777 preempt_enable();
6778 rcu_read_unlock();
6779 cond_resched();
6780 rcu_read_lock();
6781 if (loop_end(loop_end_arg, start_time))
6782 return;
6783 goto restart;
6784 }
6785 cpu_relax();
6786 }
6787 if (napi_poll)
6788 busy_poll_stop(napi, have_poll_lock, flags, budget);
6789 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6790 preempt_enable();
6791 }
6792
napi_busy_loop_rcu(unsigned int napi_id,bool (* loop_end)(void *,unsigned long),void * loop_end_arg,bool prefer_busy_poll,u16 budget)6793 void napi_busy_loop_rcu(unsigned int napi_id,
6794 bool (*loop_end)(void *, unsigned long),
6795 void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6796 {
6797 unsigned flags = NAPI_F_END_ON_RESCHED;
6798
6799 if (prefer_busy_poll)
6800 flags |= NAPI_F_PREFER_BUSY_POLL;
6801
6802 __napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6803 }
6804
napi_busy_loop(unsigned int napi_id,bool (* loop_end)(void *,unsigned long),void * loop_end_arg,bool prefer_busy_poll,u16 budget)6805 void napi_busy_loop(unsigned int napi_id,
6806 bool (*loop_end)(void *, unsigned long),
6807 void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6808 {
6809 unsigned flags = prefer_busy_poll ? NAPI_F_PREFER_BUSY_POLL : 0;
6810
6811 rcu_read_lock();
6812 __napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6813 rcu_read_unlock();
6814 }
6815 EXPORT_SYMBOL(napi_busy_loop);
6816
napi_suspend_irqs(unsigned int napi_id)6817 void napi_suspend_irqs(unsigned int napi_id)
6818 {
6819 struct napi_struct *napi;
6820
6821 rcu_read_lock();
6822 napi = napi_by_id(napi_id);
6823 if (napi) {
6824 unsigned long timeout = napi_get_irq_suspend_timeout(napi);
6825
6826 if (timeout)
6827 hrtimer_start(&napi->timer, ns_to_ktime(timeout),
6828 HRTIMER_MODE_REL_PINNED);
6829 }
6830 rcu_read_unlock();
6831 }
6832
napi_resume_irqs(unsigned int napi_id)6833 void napi_resume_irqs(unsigned int napi_id)
6834 {
6835 struct napi_struct *napi;
6836
6837 rcu_read_lock();
6838 napi = napi_by_id(napi_id);
6839 if (napi) {
6840 /* If irq_suspend_timeout is set to 0 between the call to
6841 * napi_suspend_irqs and now, the original value still
6842 * determines the safety timeout as intended and napi_watchdog
6843 * will resume irq processing.
6844 */
6845 if (napi_get_irq_suspend_timeout(napi)) {
6846 local_bh_disable();
6847 napi_schedule(napi);
6848 local_bh_enable();
6849 }
6850 }
6851 rcu_read_unlock();
6852 }
6853
6854 #endif /* CONFIG_NET_RX_BUSY_POLL */
6855
__napi_hash_add_with_id(struct napi_struct * napi,unsigned int napi_id)6856 static void __napi_hash_add_with_id(struct napi_struct *napi,
6857 unsigned int napi_id)
6858 {
6859 napi->gro.cached_napi_id = napi_id;
6860
6861 WRITE_ONCE(napi->napi_id, napi_id);
6862 hlist_add_head_rcu(&napi->napi_hash_node,
6863 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6864 }
6865
napi_hash_add_with_id(struct napi_struct * napi,unsigned int napi_id)6866 static void napi_hash_add_with_id(struct napi_struct *napi,
6867 unsigned int napi_id)
6868 {
6869 unsigned long flags;
6870
6871 spin_lock_irqsave(&napi_hash_lock, flags);
6872 WARN_ON_ONCE(napi_by_id(napi_id));
6873 __napi_hash_add_with_id(napi, napi_id);
6874 spin_unlock_irqrestore(&napi_hash_lock, flags);
6875 }
6876
napi_hash_add(struct napi_struct * napi)6877 static void napi_hash_add(struct napi_struct *napi)
6878 {
6879 unsigned long flags;
6880
6881 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6882 return;
6883
6884 spin_lock_irqsave(&napi_hash_lock, flags);
6885
6886 /* 0..NR_CPUS range is reserved for sender_cpu use */
6887 do {
6888 if (unlikely(!napi_id_valid(++napi_gen_id)))
6889 napi_gen_id = MIN_NAPI_ID;
6890 } while (napi_by_id(napi_gen_id));
6891
6892 __napi_hash_add_with_id(napi, napi_gen_id);
6893
6894 spin_unlock_irqrestore(&napi_hash_lock, flags);
6895 }
6896
6897 /* Warning : caller is responsible to make sure rcu grace period
6898 * is respected before freeing memory containing @napi
6899 */
napi_hash_del(struct napi_struct * napi)6900 static void napi_hash_del(struct napi_struct *napi)
6901 {
6902 unsigned long flags;
6903
6904 spin_lock_irqsave(&napi_hash_lock, flags);
6905
6906 hlist_del_init_rcu(&napi->napi_hash_node);
6907
6908 spin_unlock_irqrestore(&napi_hash_lock, flags);
6909 }
6910
napi_watchdog(struct hrtimer * timer)6911 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6912 {
6913 struct napi_struct *napi;
6914
6915 napi = container_of(timer, struct napi_struct, timer);
6916
6917 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6918 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6919 */
6920 if (!napi_disable_pending(napi) &&
6921 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6922 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6923 __napi_schedule_irqoff(napi);
6924 }
6925
6926 return HRTIMER_NORESTART;
6927 }
6928
napi_stop_kthread(struct napi_struct * napi)6929 static void napi_stop_kthread(struct napi_struct *napi)
6930 {
6931 unsigned long val, new;
6932
6933 /* Wait until the napi STATE_THREADED is unset. */
6934 while (true) {
6935 val = READ_ONCE(napi->state);
6936
6937 /* If napi kthread own this napi or the napi is idle,
6938 * STATE_THREADED can be unset here.
6939 */
6940 if ((val & NAPIF_STATE_SCHED_THREADED) ||
6941 !(val & NAPIF_STATE_SCHED)) {
6942 new = val & (~NAPIF_STATE_THREADED);
6943 } else {
6944 msleep(20);
6945 continue;
6946 }
6947
6948 if (try_cmpxchg(&napi->state, &val, new))
6949 break;
6950 }
6951
6952 /* Once STATE_THREADED is unset, wait for SCHED_THREADED to be unset by
6953 * the kthread.
6954 */
6955 while (true) {
6956 if (!test_bit(NAPIF_STATE_SCHED_THREADED, &napi->state))
6957 break;
6958
6959 msleep(20);
6960 }
6961
6962 kthread_stop(napi->thread);
6963 napi->thread = NULL;
6964 }
6965
napi_set_threaded(struct napi_struct * napi,enum netdev_napi_threaded threaded)6966 int napi_set_threaded(struct napi_struct *napi,
6967 enum netdev_napi_threaded threaded)
6968 {
6969 if (threaded) {
6970 if (!napi->thread) {
6971 int err = napi_kthread_create(napi);
6972
6973 if (err)
6974 return err;
6975 }
6976 }
6977
6978 if (napi->config)
6979 napi->config->threaded = threaded;
6980
6981 /* Setting/unsetting threaded mode on a napi might not immediately
6982 * take effect, if the current napi instance is actively being
6983 * polled. In this case, the switch between threaded mode and
6984 * softirq mode will happen in the next round of napi_schedule().
6985 * This should not cause hiccups/stalls to the live traffic.
6986 */
6987 if (!threaded && napi->thread) {
6988 napi_stop_kthread(napi);
6989 } else {
6990 /* Make sure kthread is created before THREADED bit is set. */
6991 smp_mb__before_atomic();
6992 assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
6993 }
6994
6995 return 0;
6996 }
6997
netif_set_threaded(struct net_device * dev,enum netdev_napi_threaded threaded)6998 int netif_set_threaded(struct net_device *dev,
6999 enum netdev_napi_threaded threaded)
7000 {
7001 struct napi_struct *napi;
7002 int err = 0;
7003
7004 netdev_assert_locked_or_invisible(dev);
7005
7006 if (threaded) {
7007 list_for_each_entry(napi, &dev->napi_list, dev_list) {
7008 if (!napi->thread) {
7009 err = napi_kthread_create(napi);
7010 if (err) {
7011 threaded = NETDEV_NAPI_THREADED_DISABLED;
7012 break;
7013 }
7014 }
7015 }
7016 }
7017
7018 WRITE_ONCE(dev->threaded, threaded);
7019
7020 /* The error should not occur as the kthreads are already created. */
7021 list_for_each_entry(napi, &dev->napi_list, dev_list)
7022 WARN_ON_ONCE(napi_set_threaded(napi, threaded));
7023
7024 return err;
7025 }
7026
7027 /**
7028 * netif_threaded_enable() - enable threaded NAPIs
7029 * @dev: net_device instance
7030 *
7031 * Enable threaded mode for the NAPI instances of the device. This may be useful
7032 * for devices where multiple NAPI instances get scheduled by a single
7033 * interrupt. Threaded NAPI allows moving the NAPI processing to cores other
7034 * than the core where IRQ is mapped.
7035 *
7036 * This function should be called before @dev is registered.
7037 */
netif_threaded_enable(struct net_device * dev)7038 void netif_threaded_enable(struct net_device *dev)
7039 {
7040 WARN_ON_ONCE(netif_set_threaded(dev, NETDEV_NAPI_THREADED_ENABLED));
7041 }
7042 EXPORT_SYMBOL(netif_threaded_enable);
7043
7044 /**
7045 * netif_queue_set_napi - Associate queue with the napi
7046 * @dev: device to which NAPI and queue belong
7047 * @queue_index: Index of queue
7048 * @type: queue type as RX or TX
7049 * @napi: NAPI context, pass NULL to clear previously set NAPI
7050 *
7051 * Set queue with its corresponding napi context. This should be done after
7052 * registering the NAPI handler for the queue-vector and the queues have been
7053 * mapped to the corresponding interrupt vector.
7054 */
netif_queue_set_napi(struct net_device * dev,unsigned int queue_index,enum netdev_queue_type type,struct napi_struct * napi)7055 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index,
7056 enum netdev_queue_type type, struct napi_struct *napi)
7057 {
7058 struct netdev_rx_queue *rxq;
7059 struct netdev_queue *txq;
7060
7061 if (WARN_ON_ONCE(napi && !napi->dev))
7062 return;
7063 netdev_ops_assert_locked_or_invisible(dev);
7064
7065 switch (type) {
7066 case NETDEV_QUEUE_TYPE_RX:
7067 rxq = __netif_get_rx_queue(dev, queue_index);
7068 rxq->napi = napi;
7069 return;
7070 case NETDEV_QUEUE_TYPE_TX:
7071 txq = netdev_get_tx_queue(dev, queue_index);
7072 txq->napi = napi;
7073 return;
7074 default:
7075 return;
7076 }
7077 }
7078 EXPORT_SYMBOL(netif_queue_set_napi);
7079
7080 static void
netif_napi_irq_notify(struct irq_affinity_notify * notify,const cpumask_t * mask)7081 netif_napi_irq_notify(struct irq_affinity_notify *notify,
7082 const cpumask_t *mask)
7083 {
7084 struct napi_struct *napi =
7085 container_of(notify, struct napi_struct, notify);
7086 #ifdef CONFIG_RFS_ACCEL
7087 struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap;
7088 int err;
7089 #endif
7090
7091 if (napi->config && napi->dev->irq_affinity_auto)
7092 cpumask_copy(&napi->config->affinity_mask, mask);
7093
7094 #ifdef CONFIG_RFS_ACCEL
7095 if (napi->dev->rx_cpu_rmap_auto) {
7096 err = cpu_rmap_update(rmap, napi->napi_rmap_idx, mask);
7097 if (err)
7098 netdev_warn(napi->dev, "RMAP update failed (%d)\n",
7099 err);
7100 }
7101 #endif
7102 }
7103
7104 #ifdef CONFIG_RFS_ACCEL
netif_napi_affinity_release(struct kref * ref)7105 static void netif_napi_affinity_release(struct kref *ref)
7106 {
7107 struct napi_struct *napi =
7108 container_of(ref, struct napi_struct, notify.kref);
7109 struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap;
7110
7111 netdev_assert_locked(napi->dev);
7112 WARN_ON(test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER,
7113 &napi->state));
7114
7115 if (!napi->dev->rx_cpu_rmap_auto)
7116 return;
7117 rmap->obj[napi->napi_rmap_idx] = NULL;
7118 napi->napi_rmap_idx = -1;
7119 cpu_rmap_put(rmap);
7120 }
7121
netif_enable_cpu_rmap(struct net_device * dev,unsigned int num_irqs)7122 int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs)
7123 {
7124 if (dev->rx_cpu_rmap_auto)
7125 return 0;
7126
7127 dev->rx_cpu_rmap = alloc_irq_cpu_rmap(num_irqs);
7128 if (!dev->rx_cpu_rmap)
7129 return -ENOMEM;
7130
7131 dev->rx_cpu_rmap_auto = true;
7132 return 0;
7133 }
7134 EXPORT_SYMBOL(netif_enable_cpu_rmap);
7135
netif_del_cpu_rmap(struct net_device * dev)7136 static void netif_del_cpu_rmap(struct net_device *dev)
7137 {
7138 struct cpu_rmap *rmap = dev->rx_cpu_rmap;
7139
7140 if (!dev->rx_cpu_rmap_auto)
7141 return;
7142
7143 /* Free the rmap */
7144 cpu_rmap_put(rmap);
7145 dev->rx_cpu_rmap = NULL;
7146 dev->rx_cpu_rmap_auto = false;
7147 }
7148
7149 #else
netif_napi_affinity_release(struct kref * ref)7150 static void netif_napi_affinity_release(struct kref *ref)
7151 {
7152 }
7153
netif_enable_cpu_rmap(struct net_device * dev,unsigned int num_irqs)7154 int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs)
7155 {
7156 return 0;
7157 }
7158 EXPORT_SYMBOL(netif_enable_cpu_rmap);
7159
netif_del_cpu_rmap(struct net_device * dev)7160 static void netif_del_cpu_rmap(struct net_device *dev)
7161 {
7162 }
7163 #endif
7164
netif_set_affinity_auto(struct net_device * dev)7165 void netif_set_affinity_auto(struct net_device *dev)
7166 {
7167 unsigned int i, maxqs, numa;
7168
7169 maxqs = max(dev->num_tx_queues, dev->num_rx_queues);
7170 numa = dev_to_node(&dev->dev);
7171
7172 for (i = 0; i < maxqs; i++)
7173 cpumask_set_cpu(cpumask_local_spread(i, numa),
7174 &dev->napi_config[i].affinity_mask);
7175
7176 dev->irq_affinity_auto = true;
7177 }
7178 EXPORT_SYMBOL(netif_set_affinity_auto);
7179
netif_napi_set_irq_locked(struct napi_struct * napi,int irq)7180 void netif_napi_set_irq_locked(struct napi_struct *napi, int irq)
7181 {
7182 int rc;
7183
7184 netdev_assert_locked_or_invisible(napi->dev);
7185
7186 if (napi->irq == irq)
7187 return;
7188
7189 /* Remove existing resources */
7190 if (test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state))
7191 irq_set_affinity_notifier(napi->irq, NULL);
7192
7193 napi->irq = irq;
7194 if (irq < 0 ||
7195 (!napi->dev->rx_cpu_rmap_auto && !napi->dev->irq_affinity_auto))
7196 return;
7197
7198 /* Abort for buggy drivers */
7199 if (napi->dev->irq_affinity_auto && WARN_ON_ONCE(!napi->config))
7200 return;
7201
7202 #ifdef CONFIG_RFS_ACCEL
7203 if (napi->dev->rx_cpu_rmap_auto) {
7204 rc = cpu_rmap_add(napi->dev->rx_cpu_rmap, napi);
7205 if (rc < 0)
7206 return;
7207
7208 cpu_rmap_get(napi->dev->rx_cpu_rmap);
7209 napi->napi_rmap_idx = rc;
7210 }
7211 #endif
7212
7213 /* Use core IRQ notifier */
7214 napi->notify.notify = netif_napi_irq_notify;
7215 napi->notify.release = netif_napi_affinity_release;
7216 rc = irq_set_affinity_notifier(irq, &napi->notify);
7217 if (rc) {
7218 netdev_warn(napi->dev, "Unable to set IRQ notifier (%d)\n",
7219 rc);
7220 goto put_rmap;
7221 }
7222
7223 set_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state);
7224 return;
7225
7226 put_rmap:
7227 #ifdef CONFIG_RFS_ACCEL
7228 if (napi->dev->rx_cpu_rmap_auto) {
7229 napi->dev->rx_cpu_rmap->obj[napi->napi_rmap_idx] = NULL;
7230 cpu_rmap_put(napi->dev->rx_cpu_rmap);
7231 napi->napi_rmap_idx = -1;
7232 }
7233 #endif
7234 napi->notify.notify = NULL;
7235 napi->notify.release = NULL;
7236 }
7237 EXPORT_SYMBOL(netif_napi_set_irq_locked);
7238
napi_restore_config(struct napi_struct * n)7239 static void napi_restore_config(struct napi_struct *n)
7240 {
7241 n->defer_hard_irqs = n->config->defer_hard_irqs;
7242 n->gro_flush_timeout = n->config->gro_flush_timeout;
7243 n->irq_suspend_timeout = n->config->irq_suspend_timeout;
7244
7245 if (n->dev->irq_affinity_auto &&
7246 test_bit(NAPI_STATE_HAS_NOTIFIER, &n->state))
7247 irq_set_affinity(n->irq, &n->config->affinity_mask);
7248
7249 /* a NAPI ID might be stored in the config, if so use it. if not, use
7250 * napi_hash_add to generate one for us.
7251 */
7252 if (n->config->napi_id) {
7253 napi_hash_add_with_id(n, n->config->napi_id);
7254 } else {
7255 napi_hash_add(n);
7256 n->config->napi_id = n->napi_id;
7257 }
7258
7259 WARN_ON_ONCE(napi_set_threaded(n, n->config->threaded));
7260 }
7261
napi_save_config(struct napi_struct * n)7262 static void napi_save_config(struct napi_struct *n)
7263 {
7264 n->config->defer_hard_irqs = n->defer_hard_irqs;
7265 n->config->gro_flush_timeout = n->gro_flush_timeout;
7266 n->config->irq_suspend_timeout = n->irq_suspend_timeout;
7267 napi_hash_del(n);
7268 }
7269
7270 /* Netlink wants the NAPI list to be sorted by ID, if adding a NAPI which will
7271 * inherit an existing ID try to insert it at the right position.
7272 */
7273 static void
netif_napi_dev_list_add(struct net_device * dev,struct napi_struct * napi)7274 netif_napi_dev_list_add(struct net_device *dev, struct napi_struct *napi)
7275 {
7276 unsigned int new_id, pos_id;
7277 struct list_head *higher;
7278 struct napi_struct *pos;
7279
7280 new_id = UINT_MAX;
7281 if (napi->config && napi->config->napi_id)
7282 new_id = napi->config->napi_id;
7283
7284 higher = &dev->napi_list;
7285 list_for_each_entry(pos, &dev->napi_list, dev_list) {
7286 if (napi_id_valid(pos->napi_id))
7287 pos_id = pos->napi_id;
7288 else if (pos->config)
7289 pos_id = pos->config->napi_id;
7290 else
7291 pos_id = UINT_MAX;
7292
7293 if (pos_id <= new_id)
7294 break;
7295 higher = &pos->dev_list;
7296 }
7297 list_add_rcu(&napi->dev_list, higher); /* adds after higher */
7298 }
7299
7300 /* Double check that napi_get_frags() allocates skbs with
7301 * skb->head being backed by slab, not a page fragment.
7302 * This is to make sure bug fixed in 3226b158e67c
7303 * ("net: avoid 32 x truesize under-estimation for tiny skbs")
7304 * does not accidentally come back.
7305 */
napi_get_frags_check(struct napi_struct * napi)7306 static void napi_get_frags_check(struct napi_struct *napi)
7307 {
7308 struct sk_buff *skb;
7309
7310 local_bh_disable();
7311 skb = napi_get_frags(napi);
7312 WARN_ON_ONCE(skb && skb->head_frag);
7313 napi_free_frags(napi);
7314 local_bh_enable();
7315 }
7316
netif_napi_add_weight_locked(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int),int weight)7317 void netif_napi_add_weight_locked(struct net_device *dev,
7318 struct napi_struct *napi,
7319 int (*poll)(struct napi_struct *, int),
7320 int weight)
7321 {
7322 netdev_assert_locked(dev);
7323 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
7324 return;
7325
7326 INIT_LIST_HEAD(&napi->poll_list);
7327 INIT_HLIST_NODE(&napi->napi_hash_node);
7328 hrtimer_setup(&napi->timer, napi_watchdog, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
7329 gro_init(&napi->gro);
7330 napi->skb = NULL;
7331 napi->poll = poll;
7332 if (weight > NAPI_POLL_WEIGHT)
7333 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
7334 weight);
7335 napi->weight = weight;
7336 napi->dev = dev;
7337 #ifdef CONFIG_NETPOLL
7338 napi->poll_owner = -1;
7339 #endif
7340 napi->list_owner = -1;
7341 set_bit(NAPI_STATE_SCHED, &napi->state);
7342 set_bit(NAPI_STATE_NPSVC, &napi->state);
7343 netif_napi_dev_list_add(dev, napi);
7344
7345 /* default settings from sysfs are applied to all NAPIs. any per-NAPI
7346 * configuration will be loaded in napi_enable
7347 */
7348 napi_set_defer_hard_irqs(napi, READ_ONCE(dev->napi_defer_hard_irqs));
7349 napi_set_gro_flush_timeout(napi, READ_ONCE(dev->gro_flush_timeout));
7350
7351 napi_get_frags_check(napi);
7352 /* Create kthread for this napi if dev->threaded is set.
7353 * Clear dev->threaded if kthread creation failed so that
7354 * threaded mode will not be enabled in napi_enable().
7355 */
7356 if (dev->threaded && napi_kthread_create(napi))
7357 dev->threaded = NETDEV_NAPI_THREADED_DISABLED;
7358 netif_napi_set_irq_locked(napi, -1);
7359 }
7360 EXPORT_SYMBOL(netif_napi_add_weight_locked);
7361
napi_disable_locked(struct napi_struct * n)7362 void napi_disable_locked(struct napi_struct *n)
7363 {
7364 unsigned long val, new;
7365
7366 might_sleep();
7367 netdev_assert_locked(n->dev);
7368
7369 set_bit(NAPI_STATE_DISABLE, &n->state);
7370
7371 val = READ_ONCE(n->state);
7372 do {
7373 while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
7374 usleep_range(20, 200);
7375 val = READ_ONCE(n->state);
7376 }
7377
7378 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
7379 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
7380 } while (!try_cmpxchg(&n->state, &val, new));
7381
7382 hrtimer_cancel(&n->timer);
7383
7384 if (n->config)
7385 napi_save_config(n);
7386 else
7387 napi_hash_del(n);
7388
7389 clear_bit(NAPI_STATE_DISABLE, &n->state);
7390 }
7391 EXPORT_SYMBOL(napi_disable_locked);
7392
7393 /**
7394 * napi_disable() - prevent NAPI from scheduling
7395 * @n: NAPI context
7396 *
7397 * Stop NAPI from being scheduled on this context.
7398 * Waits till any outstanding processing completes.
7399 * Takes netdev_lock() for associated net_device.
7400 */
napi_disable(struct napi_struct * n)7401 void napi_disable(struct napi_struct *n)
7402 {
7403 netdev_lock(n->dev);
7404 napi_disable_locked(n);
7405 netdev_unlock(n->dev);
7406 }
7407 EXPORT_SYMBOL(napi_disable);
7408
napi_enable_locked(struct napi_struct * n)7409 void napi_enable_locked(struct napi_struct *n)
7410 {
7411 unsigned long new, val = READ_ONCE(n->state);
7412
7413 if (n->config)
7414 napi_restore_config(n);
7415 else
7416 napi_hash_add(n);
7417
7418 do {
7419 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
7420
7421 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
7422 if (n->dev->threaded && n->thread)
7423 new |= NAPIF_STATE_THREADED;
7424 } while (!try_cmpxchg(&n->state, &val, new));
7425 }
7426 EXPORT_SYMBOL(napi_enable_locked);
7427
7428 /**
7429 * napi_enable() - enable NAPI scheduling
7430 * @n: NAPI context
7431 *
7432 * Enable scheduling of a NAPI instance.
7433 * Must be paired with napi_disable().
7434 * Takes netdev_lock() for associated net_device.
7435 */
napi_enable(struct napi_struct * n)7436 void napi_enable(struct napi_struct *n)
7437 {
7438 netdev_lock(n->dev);
7439 napi_enable_locked(n);
7440 netdev_unlock(n->dev);
7441 }
7442 EXPORT_SYMBOL(napi_enable);
7443
7444 /* Must be called in process context */
__netif_napi_del_locked(struct napi_struct * napi)7445 void __netif_napi_del_locked(struct napi_struct *napi)
7446 {
7447 netdev_assert_locked(napi->dev);
7448
7449 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
7450 return;
7451
7452 /* Make sure NAPI is disabled (or was never enabled). */
7453 WARN_ON(!test_bit(NAPI_STATE_SCHED, &napi->state));
7454
7455 if (test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state))
7456 irq_set_affinity_notifier(napi->irq, NULL);
7457
7458 if (napi->config) {
7459 napi->index = -1;
7460 napi->config = NULL;
7461 }
7462
7463 list_del_rcu(&napi->dev_list);
7464 napi_free_frags(napi);
7465
7466 gro_cleanup(&napi->gro);
7467
7468 if (napi->thread) {
7469 kthread_stop(napi->thread);
7470 napi->thread = NULL;
7471 }
7472 }
7473 EXPORT_SYMBOL(__netif_napi_del_locked);
7474
__napi_poll(struct napi_struct * n,bool * repoll)7475 static int __napi_poll(struct napi_struct *n, bool *repoll)
7476 {
7477 int work, weight;
7478
7479 weight = n->weight;
7480
7481 /* This NAPI_STATE_SCHED test is for avoiding a race
7482 * with netpoll's poll_napi(). Only the entity which
7483 * obtains the lock and sees NAPI_STATE_SCHED set will
7484 * actually make the ->poll() call. Therefore we avoid
7485 * accidentally calling ->poll() when NAPI is not scheduled.
7486 */
7487 work = 0;
7488 if (napi_is_scheduled(n)) {
7489 work = n->poll(n, weight);
7490 trace_napi_poll(n, work, weight);
7491
7492 xdp_do_check_flushed(n);
7493 }
7494
7495 if (unlikely(work > weight))
7496 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
7497 n->poll, work, weight);
7498
7499 if (likely(work < weight))
7500 return work;
7501
7502 /* Drivers must not modify the NAPI state if they
7503 * consume the entire weight. In such cases this code
7504 * still "owns" the NAPI instance and therefore can
7505 * move the instance around on the list at-will.
7506 */
7507 if (unlikely(napi_disable_pending(n))) {
7508 napi_complete(n);
7509 return work;
7510 }
7511
7512 /* The NAPI context has more processing work, but busy-polling
7513 * is preferred. Exit early.
7514 */
7515 if (napi_prefer_busy_poll(n)) {
7516 if (napi_complete_done(n, work)) {
7517 /* If timeout is not set, we need to make sure
7518 * that the NAPI is re-scheduled.
7519 */
7520 napi_schedule(n);
7521 }
7522 return work;
7523 }
7524
7525 /* Flush too old packets. If HZ < 1000, flush all packets */
7526 gro_flush_normal(&n->gro, HZ >= 1000);
7527
7528 /* Some drivers may have called napi_schedule
7529 * prior to exhausting their budget.
7530 */
7531 if (unlikely(!list_empty(&n->poll_list))) {
7532 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
7533 n->dev ? n->dev->name : "backlog");
7534 return work;
7535 }
7536
7537 *repoll = true;
7538
7539 return work;
7540 }
7541
napi_poll(struct napi_struct * n,struct list_head * repoll)7542 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
7543 {
7544 bool do_repoll = false;
7545 void *have;
7546 int work;
7547
7548 list_del_init(&n->poll_list);
7549
7550 have = netpoll_poll_lock(n);
7551
7552 work = __napi_poll(n, &do_repoll);
7553
7554 if (do_repoll) {
7555 #if defined(CONFIG_DEBUG_NET)
7556 if (unlikely(!napi_is_scheduled(n)))
7557 pr_crit("repoll requested for device %s %ps but napi is not scheduled.\n",
7558 n->dev->name, n->poll);
7559 #endif
7560 list_add_tail(&n->poll_list, repoll);
7561 }
7562 netpoll_poll_unlock(have);
7563
7564 return work;
7565 }
7566
napi_thread_wait(struct napi_struct * napi)7567 static int napi_thread_wait(struct napi_struct *napi)
7568 {
7569 set_current_state(TASK_INTERRUPTIBLE);
7570
7571 while (!kthread_should_stop()) {
7572 /* Testing SCHED_THREADED bit here to make sure the current
7573 * kthread owns this napi and could poll on this napi.
7574 * Testing SCHED bit is not enough because SCHED bit might be
7575 * set by some other busy poll thread or by napi_disable().
7576 */
7577 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state)) {
7578 WARN_ON(!list_empty(&napi->poll_list));
7579 __set_current_state(TASK_RUNNING);
7580 return 0;
7581 }
7582
7583 schedule();
7584 set_current_state(TASK_INTERRUPTIBLE);
7585 }
7586 __set_current_state(TASK_RUNNING);
7587
7588 return -1;
7589 }
7590
napi_threaded_poll_loop(struct napi_struct * napi)7591 static void napi_threaded_poll_loop(struct napi_struct *napi)
7592 {
7593 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
7594 struct softnet_data *sd;
7595 unsigned long last_qs = jiffies;
7596
7597 for (;;) {
7598 bool repoll = false;
7599 void *have;
7600
7601 local_bh_disable();
7602 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
7603
7604 sd = this_cpu_ptr(&softnet_data);
7605 sd->in_napi_threaded_poll = true;
7606
7607 have = netpoll_poll_lock(napi);
7608 __napi_poll(napi, &repoll);
7609 netpoll_poll_unlock(have);
7610
7611 sd->in_napi_threaded_poll = false;
7612 barrier();
7613
7614 if (sd_has_rps_ipi_waiting(sd)) {
7615 local_irq_disable();
7616 net_rps_action_and_irq_enable(sd);
7617 }
7618 skb_defer_free_flush(sd);
7619 bpf_net_ctx_clear(bpf_net_ctx);
7620 local_bh_enable();
7621
7622 if (!repoll)
7623 break;
7624
7625 rcu_softirq_qs_periodic(last_qs);
7626 cond_resched();
7627 }
7628 }
7629
napi_threaded_poll(void * data)7630 static int napi_threaded_poll(void *data)
7631 {
7632 struct napi_struct *napi = data;
7633
7634 while (!napi_thread_wait(napi))
7635 napi_threaded_poll_loop(napi);
7636
7637 return 0;
7638 }
7639
net_rx_action(void)7640 static __latent_entropy void net_rx_action(void)
7641 {
7642 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7643 unsigned long time_limit = jiffies +
7644 usecs_to_jiffies(READ_ONCE(net_hotdata.netdev_budget_usecs));
7645 struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
7646 int budget = READ_ONCE(net_hotdata.netdev_budget);
7647 LIST_HEAD(list);
7648 LIST_HEAD(repoll);
7649
7650 bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
7651 start:
7652 sd->in_net_rx_action = true;
7653 local_irq_disable();
7654 list_splice_init(&sd->poll_list, &list);
7655 local_irq_enable();
7656
7657 for (;;) {
7658 struct napi_struct *n;
7659
7660 skb_defer_free_flush(sd);
7661
7662 if (list_empty(&list)) {
7663 if (list_empty(&repoll)) {
7664 sd->in_net_rx_action = false;
7665 barrier();
7666 /* We need to check if ____napi_schedule()
7667 * had refilled poll_list while
7668 * sd->in_net_rx_action was true.
7669 */
7670 if (!list_empty(&sd->poll_list))
7671 goto start;
7672 if (!sd_has_rps_ipi_waiting(sd))
7673 goto end;
7674 }
7675 break;
7676 }
7677
7678 n = list_first_entry(&list, struct napi_struct, poll_list);
7679 budget -= napi_poll(n, &repoll);
7680
7681 /* If softirq window is exhausted then punt.
7682 * Allow this to run for 2 jiffies since which will allow
7683 * an average latency of 1.5/HZ.
7684 */
7685 if (unlikely(budget <= 0 ||
7686 time_after_eq(jiffies, time_limit))) {
7687 /* Pairs with READ_ONCE() in softnet_seq_show() */
7688 WRITE_ONCE(sd->time_squeeze, sd->time_squeeze + 1);
7689 break;
7690 }
7691 }
7692
7693 local_irq_disable();
7694
7695 list_splice_tail_init(&sd->poll_list, &list);
7696 list_splice_tail(&repoll, &list);
7697 list_splice(&list, &sd->poll_list);
7698 if (!list_empty(&sd->poll_list))
7699 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
7700 else
7701 sd->in_net_rx_action = false;
7702
7703 net_rps_action_and_irq_enable(sd);
7704 end:
7705 bpf_net_ctx_clear(bpf_net_ctx);
7706 }
7707
7708 struct netdev_adjacent {
7709 struct net_device *dev;
7710 netdevice_tracker dev_tracker;
7711
7712 /* upper master flag, there can only be one master device per list */
7713 bool master;
7714
7715 /* lookup ignore flag */
7716 bool ignore;
7717
7718 /* counter for the number of times this device was added to us */
7719 u16 ref_nr;
7720
7721 /* private field for the users */
7722 void *private;
7723
7724 struct list_head list;
7725 struct rcu_head rcu;
7726 };
7727
__netdev_find_adj(struct net_device * adj_dev,struct list_head * adj_list)7728 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7729 struct list_head *adj_list)
7730 {
7731 struct netdev_adjacent *adj;
7732
7733 list_for_each_entry(adj, adj_list, list) {
7734 if (adj->dev == adj_dev)
7735 return adj;
7736 }
7737 return NULL;
7738 }
7739
____netdev_has_upper_dev(struct net_device * upper_dev,struct netdev_nested_priv * priv)7740 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7741 struct netdev_nested_priv *priv)
7742 {
7743 struct net_device *dev = (struct net_device *)priv->data;
7744
7745 return upper_dev == dev;
7746 }
7747
7748 /**
7749 * netdev_has_upper_dev - Check if device is linked to an upper device
7750 * @dev: device
7751 * @upper_dev: upper device to check
7752 *
7753 * Find out if a device is linked to specified upper device and return true
7754 * in case it is. Note that this checks only immediate upper device,
7755 * not through a complete stack of devices. The caller must hold the RTNL lock.
7756 */
netdev_has_upper_dev(struct net_device * dev,struct net_device * upper_dev)7757 bool netdev_has_upper_dev(struct net_device *dev,
7758 struct net_device *upper_dev)
7759 {
7760 struct netdev_nested_priv priv = {
7761 .data = (void *)upper_dev,
7762 };
7763
7764 ASSERT_RTNL();
7765
7766 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7767 &priv);
7768 }
7769 EXPORT_SYMBOL(netdev_has_upper_dev);
7770
7771 /**
7772 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7773 * @dev: device
7774 * @upper_dev: upper device to check
7775 *
7776 * Find out if a device is linked to specified upper device and return true
7777 * in case it is. Note that this checks the entire upper device chain.
7778 * The caller must hold rcu lock.
7779 */
7780
netdev_has_upper_dev_all_rcu(struct net_device * dev,struct net_device * upper_dev)7781 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7782 struct net_device *upper_dev)
7783 {
7784 struct netdev_nested_priv priv = {
7785 .data = (void *)upper_dev,
7786 };
7787
7788 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7789 &priv);
7790 }
7791 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7792
7793 /**
7794 * netdev_has_any_upper_dev - Check if device is linked to some device
7795 * @dev: device
7796 *
7797 * Find out if a device is linked to an upper device and return true in case
7798 * it is. The caller must hold the RTNL lock.
7799 */
netdev_has_any_upper_dev(struct net_device * dev)7800 bool netdev_has_any_upper_dev(struct net_device *dev)
7801 {
7802 ASSERT_RTNL();
7803
7804 return !list_empty(&dev->adj_list.upper);
7805 }
7806 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7807
7808 /**
7809 * netdev_master_upper_dev_get - Get master upper device
7810 * @dev: device
7811 *
7812 * Find a master upper device and return pointer to it or NULL in case
7813 * it's not there. The caller must hold the RTNL lock.
7814 */
netdev_master_upper_dev_get(struct net_device * dev)7815 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7816 {
7817 struct netdev_adjacent *upper;
7818
7819 ASSERT_RTNL();
7820
7821 if (list_empty(&dev->adj_list.upper))
7822 return NULL;
7823
7824 upper = list_first_entry(&dev->adj_list.upper,
7825 struct netdev_adjacent, list);
7826 if (likely(upper->master))
7827 return upper->dev;
7828 return NULL;
7829 }
7830 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7831
__netdev_master_upper_dev_get(struct net_device * dev)7832 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7833 {
7834 struct netdev_adjacent *upper;
7835
7836 ASSERT_RTNL();
7837
7838 if (list_empty(&dev->adj_list.upper))
7839 return NULL;
7840
7841 upper = list_first_entry(&dev->adj_list.upper,
7842 struct netdev_adjacent, list);
7843 if (likely(upper->master) && !upper->ignore)
7844 return upper->dev;
7845 return NULL;
7846 }
7847
7848 /**
7849 * netdev_has_any_lower_dev - Check if device is linked to some device
7850 * @dev: device
7851 *
7852 * Find out if a device is linked to a lower device and return true in case
7853 * it is. The caller must hold the RTNL lock.
7854 */
netdev_has_any_lower_dev(struct net_device * dev)7855 static bool netdev_has_any_lower_dev(struct net_device *dev)
7856 {
7857 ASSERT_RTNL();
7858
7859 return !list_empty(&dev->adj_list.lower);
7860 }
7861
netdev_adjacent_get_private(struct list_head * adj_list)7862 void *netdev_adjacent_get_private(struct list_head *adj_list)
7863 {
7864 struct netdev_adjacent *adj;
7865
7866 adj = list_entry(adj_list, struct netdev_adjacent, list);
7867
7868 return adj->private;
7869 }
7870 EXPORT_SYMBOL(netdev_adjacent_get_private);
7871
7872 /**
7873 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7874 * @dev: device
7875 * @iter: list_head ** of the current position
7876 *
7877 * Gets the next device from the dev's upper list, starting from iter
7878 * position. The caller must hold RCU read lock.
7879 */
netdev_upper_get_next_dev_rcu(struct net_device * dev,struct list_head ** iter)7880 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7881 struct list_head **iter)
7882 {
7883 struct netdev_adjacent *upper;
7884
7885 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7886
7887 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7888
7889 if (&upper->list == &dev->adj_list.upper)
7890 return NULL;
7891
7892 *iter = &upper->list;
7893
7894 return upper->dev;
7895 }
7896 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7897
__netdev_next_upper_dev(struct net_device * dev,struct list_head ** iter,bool * ignore)7898 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7899 struct list_head **iter,
7900 bool *ignore)
7901 {
7902 struct netdev_adjacent *upper;
7903
7904 upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7905
7906 if (&upper->list == &dev->adj_list.upper)
7907 return NULL;
7908
7909 *iter = &upper->list;
7910 *ignore = upper->ignore;
7911
7912 return upper->dev;
7913 }
7914
netdev_next_upper_dev_rcu(struct net_device * dev,struct list_head ** iter)7915 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7916 struct list_head **iter)
7917 {
7918 struct netdev_adjacent *upper;
7919
7920 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7921
7922 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7923
7924 if (&upper->list == &dev->adj_list.upper)
7925 return NULL;
7926
7927 *iter = &upper->list;
7928
7929 return upper->dev;
7930 }
7931
__netdev_walk_all_upper_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7932 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7933 int (*fn)(struct net_device *dev,
7934 struct netdev_nested_priv *priv),
7935 struct netdev_nested_priv *priv)
7936 {
7937 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7938 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7939 int ret, cur = 0;
7940 bool ignore;
7941
7942 now = dev;
7943 iter = &dev->adj_list.upper;
7944
7945 while (1) {
7946 if (now != dev) {
7947 ret = fn(now, priv);
7948 if (ret)
7949 return ret;
7950 }
7951
7952 next = NULL;
7953 while (1) {
7954 udev = __netdev_next_upper_dev(now, &iter, &ignore);
7955 if (!udev)
7956 break;
7957 if (ignore)
7958 continue;
7959
7960 next = udev;
7961 niter = &udev->adj_list.upper;
7962 dev_stack[cur] = now;
7963 iter_stack[cur++] = iter;
7964 break;
7965 }
7966
7967 if (!next) {
7968 if (!cur)
7969 return 0;
7970 next = dev_stack[--cur];
7971 niter = iter_stack[cur];
7972 }
7973
7974 now = next;
7975 iter = niter;
7976 }
7977
7978 return 0;
7979 }
7980
netdev_walk_all_upper_dev_rcu(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7981 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7982 int (*fn)(struct net_device *dev,
7983 struct netdev_nested_priv *priv),
7984 struct netdev_nested_priv *priv)
7985 {
7986 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7987 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7988 int ret, cur = 0;
7989
7990 now = dev;
7991 iter = &dev->adj_list.upper;
7992
7993 while (1) {
7994 if (now != dev) {
7995 ret = fn(now, priv);
7996 if (ret)
7997 return ret;
7998 }
7999
8000 next = NULL;
8001 while (1) {
8002 udev = netdev_next_upper_dev_rcu(now, &iter);
8003 if (!udev)
8004 break;
8005
8006 next = udev;
8007 niter = &udev->adj_list.upper;
8008 dev_stack[cur] = now;
8009 iter_stack[cur++] = iter;
8010 break;
8011 }
8012
8013 if (!next) {
8014 if (!cur)
8015 return 0;
8016 next = dev_stack[--cur];
8017 niter = iter_stack[cur];
8018 }
8019
8020 now = next;
8021 iter = niter;
8022 }
8023
8024 return 0;
8025 }
8026 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
8027
__netdev_has_upper_dev(struct net_device * dev,struct net_device * upper_dev)8028 static bool __netdev_has_upper_dev(struct net_device *dev,
8029 struct net_device *upper_dev)
8030 {
8031 struct netdev_nested_priv priv = {
8032 .flags = 0,
8033 .data = (void *)upper_dev,
8034 };
8035
8036 ASSERT_RTNL();
8037
8038 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
8039 &priv);
8040 }
8041
8042 /**
8043 * netdev_lower_get_next_private - Get the next ->private from the
8044 * lower neighbour list
8045 * @dev: device
8046 * @iter: list_head ** of the current position
8047 *
8048 * Gets the next netdev_adjacent->private from the dev's lower neighbour
8049 * list, starting from iter position. The caller must hold either hold the
8050 * RTNL lock or its own locking that guarantees that the neighbour lower
8051 * list will remain unchanged.
8052 */
netdev_lower_get_next_private(struct net_device * dev,struct list_head ** iter)8053 void *netdev_lower_get_next_private(struct net_device *dev,
8054 struct list_head **iter)
8055 {
8056 struct netdev_adjacent *lower;
8057
8058 lower = list_entry(*iter, struct netdev_adjacent, list);
8059
8060 if (&lower->list == &dev->adj_list.lower)
8061 return NULL;
8062
8063 *iter = lower->list.next;
8064
8065 return lower->private;
8066 }
8067 EXPORT_SYMBOL(netdev_lower_get_next_private);
8068
8069 /**
8070 * netdev_lower_get_next_private_rcu - Get the next ->private from the
8071 * lower neighbour list, RCU
8072 * variant
8073 * @dev: device
8074 * @iter: list_head ** of the current position
8075 *
8076 * Gets the next netdev_adjacent->private from the dev's lower neighbour
8077 * list, starting from iter position. The caller must hold RCU read lock.
8078 */
netdev_lower_get_next_private_rcu(struct net_device * dev,struct list_head ** iter)8079 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
8080 struct list_head **iter)
8081 {
8082 struct netdev_adjacent *lower;
8083
8084 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
8085
8086 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
8087
8088 if (&lower->list == &dev->adj_list.lower)
8089 return NULL;
8090
8091 *iter = &lower->list;
8092
8093 return lower->private;
8094 }
8095 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
8096
8097 /**
8098 * netdev_lower_get_next - Get the next device from the lower neighbour
8099 * list
8100 * @dev: device
8101 * @iter: list_head ** of the current position
8102 *
8103 * Gets the next netdev_adjacent from the dev's lower neighbour
8104 * list, starting from iter position. The caller must hold RTNL lock or
8105 * its own locking that guarantees that the neighbour lower
8106 * list will remain unchanged.
8107 */
netdev_lower_get_next(struct net_device * dev,struct list_head ** iter)8108 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
8109 {
8110 struct netdev_adjacent *lower;
8111
8112 lower = list_entry(*iter, struct netdev_adjacent, list);
8113
8114 if (&lower->list == &dev->adj_list.lower)
8115 return NULL;
8116
8117 *iter = lower->list.next;
8118
8119 return lower->dev;
8120 }
8121 EXPORT_SYMBOL(netdev_lower_get_next);
8122
netdev_next_lower_dev(struct net_device * dev,struct list_head ** iter)8123 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
8124 struct list_head **iter)
8125 {
8126 struct netdev_adjacent *lower;
8127
8128 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
8129
8130 if (&lower->list == &dev->adj_list.lower)
8131 return NULL;
8132
8133 *iter = &lower->list;
8134
8135 return lower->dev;
8136 }
8137
__netdev_next_lower_dev(struct net_device * dev,struct list_head ** iter,bool * ignore)8138 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
8139 struct list_head **iter,
8140 bool *ignore)
8141 {
8142 struct netdev_adjacent *lower;
8143
8144 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
8145
8146 if (&lower->list == &dev->adj_list.lower)
8147 return NULL;
8148
8149 *iter = &lower->list;
8150 *ignore = lower->ignore;
8151
8152 return lower->dev;
8153 }
8154
netdev_walk_all_lower_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)8155 int netdev_walk_all_lower_dev(struct net_device *dev,
8156 int (*fn)(struct net_device *dev,
8157 struct netdev_nested_priv *priv),
8158 struct netdev_nested_priv *priv)
8159 {
8160 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8161 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8162 int ret, cur = 0;
8163
8164 now = dev;
8165 iter = &dev->adj_list.lower;
8166
8167 while (1) {
8168 if (now != dev) {
8169 ret = fn(now, priv);
8170 if (ret)
8171 return ret;
8172 }
8173
8174 next = NULL;
8175 while (1) {
8176 ldev = netdev_next_lower_dev(now, &iter);
8177 if (!ldev)
8178 break;
8179
8180 next = ldev;
8181 niter = &ldev->adj_list.lower;
8182 dev_stack[cur] = now;
8183 iter_stack[cur++] = iter;
8184 break;
8185 }
8186
8187 if (!next) {
8188 if (!cur)
8189 return 0;
8190 next = dev_stack[--cur];
8191 niter = iter_stack[cur];
8192 }
8193
8194 now = next;
8195 iter = niter;
8196 }
8197
8198 return 0;
8199 }
8200 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
8201
__netdev_walk_all_lower_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)8202 static int __netdev_walk_all_lower_dev(struct net_device *dev,
8203 int (*fn)(struct net_device *dev,
8204 struct netdev_nested_priv *priv),
8205 struct netdev_nested_priv *priv)
8206 {
8207 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8208 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8209 int ret, cur = 0;
8210 bool ignore;
8211
8212 now = dev;
8213 iter = &dev->adj_list.lower;
8214
8215 while (1) {
8216 if (now != dev) {
8217 ret = fn(now, priv);
8218 if (ret)
8219 return ret;
8220 }
8221
8222 next = NULL;
8223 while (1) {
8224 ldev = __netdev_next_lower_dev(now, &iter, &ignore);
8225 if (!ldev)
8226 break;
8227 if (ignore)
8228 continue;
8229
8230 next = ldev;
8231 niter = &ldev->adj_list.lower;
8232 dev_stack[cur] = now;
8233 iter_stack[cur++] = iter;
8234 break;
8235 }
8236
8237 if (!next) {
8238 if (!cur)
8239 return 0;
8240 next = dev_stack[--cur];
8241 niter = iter_stack[cur];
8242 }
8243
8244 now = next;
8245 iter = niter;
8246 }
8247
8248 return 0;
8249 }
8250
netdev_next_lower_dev_rcu(struct net_device * dev,struct list_head ** iter)8251 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
8252 struct list_head **iter)
8253 {
8254 struct netdev_adjacent *lower;
8255
8256 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
8257 if (&lower->list == &dev->adj_list.lower)
8258 return NULL;
8259
8260 *iter = &lower->list;
8261
8262 return lower->dev;
8263 }
8264 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
8265
__netdev_upper_depth(struct net_device * dev)8266 static u8 __netdev_upper_depth(struct net_device *dev)
8267 {
8268 struct net_device *udev;
8269 struct list_head *iter;
8270 u8 max_depth = 0;
8271 bool ignore;
8272
8273 for (iter = &dev->adj_list.upper,
8274 udev = __netdev_next_upper_dev(dev, &iter, &ignore);
8275 udev;
8276 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
8277 if (ignore)
8278 continue;
8279 if (max_depth < udev->upper_level)
8280 max_depth = udev->upper_level;
8281 }
8282
8283 return max_depth;
8284 }
8285
__netdev_lower_depth(struct net_device * dev)8286 static u8 __netdev_lower_depth(struct net_device *dev)
8287 {
8288 struct net_device *ldev;
8289 struct list_head *iter;
8290 u8 max_depth = 0;
8291 bool ignore;
8292
8293 for (iter = &dev->adj_list.lower,
8294 ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
8295 ldev;
8296 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
8297 if (ignore)
8298 continue;
8299 if (max_depth < ldev->lower_level)
8300 max_depth = ldev->lower_level;
8301 }
8302
8303 return max_depth;
8304 }
8305
__netdev_update_upper_level(struct net_device * dev,struct netdev_nested_priv * __unused)8306 static int __netdev_update_upper_level(struct net_device *dev,
8307 struct netdev_nested_priv *__unused)
8308 {
8309 dev->upper_level = __netdev_upper_depth(dev) + 1;
8310 return 0;
8311 }
8312
8313 #ifdef CONFIG_LOCKDEP
8314 static LIST_HEAD(net_unlink_list);
8315
net_unlink_todo(struct net_device * dev)8316 static void net_unlink_todo(struct net_device *dev)
8317 {
8318 if (list_empty(&dev->unlink_list))
8319 list_add_tail(&dev->unlink_list, &net_unlink_list);
8320 }
8321 #endif
8322
__netdev_update_lower_level(struct net_device * dev,struct netdev_nested_priv * priv)8323 static int __netdev_update_lower_level(struct net_device *dev,
8324 struct netdev_nested_priv *priv)
8325 {
8326 dev->lower_level = __netdev_lower_depth(dev) + 1;
8327
8328 #ifdef CONFIG_LOCKDEP
8329 if (!priv)
8330 return 0;
8331
8332 if (priv->flags & NESTED_SYNC_IMM)
8333 dev->nested_level = dev->lower_level - 1;
8334 if (priv->flags & NESTED_SYNC_TODO)
8335 net_unlink_todo(dev);
8336 #endif
8337 return 0;
8338 }
8339
netdev_walk_all_lower_dev_rcu(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)8340 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
8341 int (*fn)(struct net_device *dev,
8342 struct netdev_nested_priv *priv),
8343 struct netdev_nested_priv *priv)
8344 {
8345 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8346 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8347 int ret, cur = 0;
8348
8349 now = dev;
8350 iter = &dev->adj_list.lower;
8351
8352 while (1) {
8353 if (now != dev) {
8354 ret = fn(now, priv);
8355 if (ret)
8356 return ret;
8357 }
8358
8359 next = NULL;
8360 while (1) {
8361 ldev = netdev_next_lower_dev_rcu(now, &iter);
8362 if (!ldev)
8363 break;
8364
8365 next = ldev;
8366 niter = &ldev->adj_list.lower;
8367 dev_stack[cur] = now;
8368 iter_stack[cur++] = iter;
8369 break;
8370 }
8371
8372 if (!next) {
8373 if (!cur)
8374 return 0;
8375 next = dev_stack[--cur];
8376 niter = iter_stack[cur];
8377 }
8378
8379 now = next;
8380 iter = niter;
8381 }
8382
8383 return 0;
8384 }
8385 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
8386
8387 /**
8388 * netdev_lower_get_first_private_rcu - Get the first ->private from the
8389 * lower neighbour list, RCU
8390 * variant
8391 * @dev: device
8392 *
8393 * Gets the first netdev_adjacent->private from the dev's lower neighbour
8394 * list. The caller must hold RCU read lock.
8395 */
netdev_lower_get_first_private_rcu(struct net_device * dev)8396 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
8397 {
8398 struct netdev_adjacent *lower;
8399
8400 lower = list_first_or_null_rcu(&dev->adj_list.lower,
8401 struct netdev_adjacent, list);
8402 if (lower)
8403 return lower->private;
8404 return NULL;
8405 }
8406 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
8407
8408 /**
8409 * netdev_master_upper_dev_get_rcu - Get master upper device
8410 * @dev: device
8411 *
8412 * Find a master upper device and return pointer to it or NULL in case
8413 * it's not there. The caller must hold the RCU read lock.
8414 */
netdev_master_upper_dev_get_rcu(struct net_device * dev)8415 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
8416 {
8417 struct netdev_adjacent *upper;
8418
8419 upper = list_first_or_null_rcu(&dev->adj_list.upper,
8420 struct netdev_adjacent, list);
8421 if (upper && likely(upper->master))
8422 return upper->dev;
8423 return NULL;
8424 }
8425 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
8426
netdev_adjacent_sysfs_add(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)8427 static int netdev_adjacent_sysfs_add(struct net_device *dev,
8428 struct net_device *adj_dev,
8429 struct list_head *dev_list)
8430 {
8431 char linkname[IFNAMSIZ+7];
8432
8433 sprintf(linkname, dev_list == &dev->adj_list.upper ?
8434 "upper_%s" : "lower_%s", adj_dev->name);
8435 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
8436 linkname);
8437 }
netdev_adjacent_sysfs_del(struct net_device * dev,char * name,struct list_head * dev_list)8438 static void netdev_adjacent_sysfs_del(struct net_device *dev,
8439 char *name,
8440 struct list_head *dev_list)
8441 {
8442 char linkname[IFNAMSIZ+7];
8443
8444 sprintf(linkname, dev_list == &dev->adj_list.upper ?
8445 "upper_%s" : "lower_%s", name);
8446 sysfs_remove_link(&(dev->dev.kobj), linkname);
8447 }
8448
netdev_adjacent_is_neigh_list(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)8449 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
8450 struct net_device *adj_dev,
8451 struct list_head *dev_list)
8452 {
8453 return (dev_list == &dev->adj_list.upper ||
8454 dev_list == &dev->adj_list.lower) &&
8455 net_eq(dev_net(dev), dev_net(adj_dev));
8456 }
8457
__netdev_adjacent_dev_insert(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list,void * private,bool master)8458 static int __netdev_adjacent_dev_insert(struct net_device *dev,
8459 struct net_device *adj_dev,
8460 struct list_head *dev_list,
8461 void *private, bool master)
8462 {
8463 struct netdev_adjacent *adj;
8464 int ret;
8465
8466 adj = __netdev_find_adj(adj_dev, dev_list);
8467
8468 if (adj) {
8469 adj->ref_nr += 1;
8470 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
8471 dev->name, adj_dev->name, adj->ref_nr);
8472
8473 return 0;
8474 }
8475
8476 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
8477 if (!adj)
8478 return -ENOMEM;
8479
8480 adj->dev = adj_dev;
8481 adj->master = master;
8482 adj->ref_nr = 1;
8483 adj->private = private;
8484 adj->ignore = false;
8485 netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
8486
8487 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
8488 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
8489
8490 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
8491 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
8492 if (ret)
8493 goto free_adj;
8494 }
8495
8496 /* Ensure that master link is always the first item in list. */
8497 if (master) {
8498 ret = sysfs_create_link(&(dev->dev.kobj),
8499 &(adj_dev->dev.kobj), "master");
8500 if (ret)
8501 goto remove_symlinks;
8502
8503 list_add_rcu(&adj->list, dev_list);
8504 } else {
8505 list_add_tail_rcu(&adj->list, dev_list);
8506 }
8507
8508 return 0;
8509
8510 remove_symlinks:
8511 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8512 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8513 free_adj:
8514 netdev_put(adj_dev, &adj->dev_tracker);
8515 kfree(adj);
8516
8517 return ret;
8518 }
8519
__netdev_adjacent_dev_remove(struct net_device * dev,struct net_device * adj_dev,u16 ref_nr,struct list_head * dev_list)8520 static void __netdev_adjacent_dev_remove(struct net_device *dev,
8521 struct net_device *adj_dev,
8522 u16 ref_nr,
8523 struct list_head *dev_list)
8524 {
8525 struct netdev_adjacent *adj;
8526
8527 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
8528 dev->name, adj_dev->name, ref_nr);
8529
8530 adj = __netdev_find_adj(adj_dev, dev_list);
8531
8532 if (!adj) {
8533 pr_err("Adjacency does not exist for device %s from %s\n",
8534 dev->name, adj_dev->name);
8535 WARN_ON(1);
8536 return;
8537 }
8538
8539 if (adj->ref_nr > ref_nr) {
8540 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
8541 dev->name, adj_dev->name, ref_nr,
8542 adj->ref_nr - ref_nr);
8543 adj->ref_nr -= ref_nr;
8544 return;
8545 }
8546
8547 if (adj->master)
8548 sysfs_remove_link(&(dev->dev.kobj), "master");
8549
8550 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8551 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8552
8553 list_del_rcu(&adj->list);
8554 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
8555 adj_dev->name, dev->name, adj_dev->name);
8556 netdev_put(adj_dev, &adj->dev_tracker);
8557 kfree_rcu(adj, rcu);
8558 }
8559
__netdev_adjacent_dev_link_lists(struct net_device * dev,struct net_device * upper_dev,struct list_head * up_list,struct list_head * down_list,void * private,bool master)8560 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
8561 struct net_device *upper_dev,
8562 struct list_head *up_list,
8563 struct list_head *down_list,
8564 void *private, bool master)
8565 {
8566 int ret;
8567
8568 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
8569 private, master);
8570 if (ret)
8571 return ret;
8572
8573 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
8574 private, false);
8575 if (ret) {
8576 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
8577 return ret;
8578 }
8579
8580 return 0;
8581 }
8582
__netdev_adjacent_dev_unlink_lists(struct net_device * dev,struct net_device * upper_dev,u16 ref_nr,struct list_head * up_list,struct list_head * down_list)8583 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
8584 struct net_device *upper_dev,
8585 u16 ref_nr,
8586 struct list_head *up_list,
8587 struct list_head *down_list)
8588 {
8589 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
8590 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
8591 }
8592
__netdev_adjacent_dev_link_neighbour(struct net_device * dev,struct net_device * upper_dev,void * private,bool master)8593 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
8594 struct net_device *upper_dev,
8595 void *private, bool master)
8596 {
8597 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
8598 &dev->adj_list.upper,
8599 &upper_dev->adj_list.lower,
8600 private, master);
8601 }
8602
__netdev_adjacent_dev_unlink_neighbour(struct net_device * dev,struct net_device * upper_dev)8603 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
8604 struct net_device *upper_dev)
8605 {
8606 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
8607 &dev->adj_list.upper,
8608 &upper_dev->adj_list.lower);
8609 }
8610
__netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,bool master,void * upper_priv,void * upper_info,struct netdev_nested_priv * priv,struct netlink_ext_ack * extack)8611 static int __netdev_upper_dev_link(struct net_device *dev,
8612 struct net_device *upper_dev, bool master,
8613 void *upper_priv, void *upper_info,
8614 struct netdev_nested_priv *priv,
8615 struct netlink_ext_ack *extack)
8616 {
8617 struct netdev_notifier_changeupper_info changeupper_info = {
8618 .info = {
8619 .dev = dev,
8620 .extack = extack,
8621 },
8622 .upper_dev = upper_dev,
8623 .master = master,
8624 .linking = true,
8625 .upper_info = upper_info,
8626 };
8627 struct net_device *master_dev;
8628 int ret = 0;
8629
8630 ASSERT_RTNL();
8631
8632 if (dev == upper_dev)
8633 return -EBUSY;
8634
8635 /* To prevent loops, check if dev is not upper device to upper_dev. */
8636 if (__netdev_has_upper_dev(upper_dev, dev))
8637 return -EBUSY;
8638
8639 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
8640 return -EMLINK;
8641
8642 if (!master) {
8643 if (__netdev_has_upper_dev(dev, upper_dev))
8644 return -EEXIST;
8645 } else {
8646 master_dev = __netdev_master_upper_dev_get(dev);
8647 if (master_dev)
8648 return master_dev == upper_dev ? -EEXIST : -EBUSY;
8649 }
8650
8651 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8652 &changeupper_info.info);
8653 ret = notifier_to_errno(ret);
8654 if (ret)
8655 return ret;
8656
8657 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
8658 master);
8659 if (ret)
8660 return ret;
8661
8662 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8663 &changeupper_info.info);
8664 ret = notifier_to_errno(ret);
8665 if (ret)
8666 goto rollback;
8667
8668 __netdev_update_upper_level(dev, NULL);
8669 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8670
8671 __netdev_update_lower_level(upper_dev, priv);
8672 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8673 priv);
8674
8675 return 0;
8676
8677 rollback:
8678 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8679
8680 return ret;
8681 }
8682
8683 /**
8684 * netdev_upper_dev_link - Add a link to the upper device
8685 * @dev: device
8686 * @upper_dev: new upper device
8687 * @extack: netlink extended ack
8688 *
8689 * Adds a link to device which is upper to this one. The caller must hold
8690 * the RTNL lock. On a failure a negative errno code is returned.
8691 * On success the reference counts are adjusted and the function
8692 * returns zero.
8693 */
netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,struct netlink_ext_ack * extack)8694 int netdev_upper_dev_link(struct net_device *dev,
8695 struct net_device *upper_dev,
8696 struct netlink_ext_ack *extack)
8697 {
8698 struct netdev_nested_priv priv = {
8699 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8700 .data = NULL,
8701 };
8702
8703 return __netdev_upper_dev_link(dev, upper_dev, false,
8704 NULL, NULL, &priv, extack);
8705 }
8706 EXPORT_SYMBOL(netdev_upper_dev_link);
8707
8708 /**
8709 * netdev_master_upper_dev_link - Add a master link to the upper device
8710 * @dev: device
8711 * @upper_dev: new upper device
8712 * @upper_priv: upper device private
8713 * @upper_info: upper info to be passed down via notifier
8714 * @extack: netlink extended ack
8715 *
8716 * Adds a link to device which is upper to this one. In this case, only
8717 * one master upper device can be linked, although other non-master devices
8718 * might be linked as well. The caller must hold the RTNL lock.
8719 * On a failure a negative errno code is returned. On success the reference
8720 * counts are adjusted and the function returns zero.
8721 */
netdev_master_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,void * upper_priv,void * upper_info,struct netlink_ext_ack * extack)8722 int netdev_master_upper_dev_link(struct net_device *dev,
8723 struct net_device *upper_dev,
8724 void *upper_priv, void *upper_info,
8725 struct netlink_ext_ack *extack)
8726 {
8727 struct netdev_nested_priv priv = {
8728 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8729 .data = NULL,
8730 };
8731
8732 return __netdev_upper_dev_link(dev, upper_dev, true,
8733 upper_priv, upper_info, &priv, extack);
8734 }
8735 EXPORT_SYMBOL(netdev_master_upper_dev_link);
8736
__netdev_upper_dev_unlink(struct net_device * dev,struct net_device * upper_dev,struct netdev_nested_priv * priv)8737 static void __netdev_upper_dev_unlink(struct net_device *dev,
8738 struct net_device *upper_dev,
8739 struct netdev_nested_priv *priv)
8740 {
8741 struct netdev_notifier_changeupper_info changeupper_info = {
8742 .info = {
8743 .dev = dev,
8744 },
8745 .upper_dev = upper_dev,
8746 .linking = false,
8747 };
8748
8749 ASSERT_RTNL();
8750
8751 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8752
8753 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8754 &changeupper_info.info);
8755
8756 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8757
8758 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8759 &changeupper_info.info);
8760
8761 __netdev_update_upper_level(dev, NULL);
8762 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8763
8764 __netdev_update_lower_level(upper_dev, priv);
8765 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8766 priv);
8767 }
8768
8769 /**
8770 * netdev_upper_dev_unlink - Removes a link to upper device
8771 * @dev: device
8772 * @upper_dev: new upper device
8773 *
8774 * Removes a link to device which is upper to this one. The caller must hold
8775 * the RTNL lock.
8776 */
netdev_upper_dev_unlink(struct net_device * dev,struct net_device * upper_dev)8777 void netdev_upper_dev_unlink(struct net_device *dev,
8778 struct net_device *upper_dev)
8779 {
8780 struct netdev_nested_priv priv = {
8781 .flags = NESTED_SYNC_TODO,
8782 .data = NULL,
8783 };
8784
8785 __netdev_upper_dev_unlink(dev, upper_dev, &priv);
8786 }
8787 EXPORT_SYMBOL(netdev_upper_dev_unlink);
8788
__netdev_adjacent_dev_set(struct net_device * upper_dev,struct net_device * lower_dev,bool val)8789 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8790 struct net_device *lower_dev,
8791 bool val)
8792 {
8793 struct netdev_adjacent *adj;
8794
8795 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8796 if (adj)
8797 adj->ignore = val;
8798
8799 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8800 if (adj)
8801 adj->ignore = val;
8802 }
8803
netdev_adjacent_dev_disable(struct net_device * upper_dev,struct net_device * lower_dev)8804 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8805 struct net_device *lower_dev)
8806 {
8807 __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8808 }
8809
netdev_adjacent_dev_enable(struct net_device * upper_dev,struct net_device * lower_dev)8810 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8811 struct net_device *lower_dev)
8812 {
8813 __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8814 }
8815
netdev_adjacent_change_prepare(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev,struct netlink_ext_ack * extack)8816 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8817 struct net_device *new_dev,
8818 struct net_device *dev,
8819 struct netlink_ext_ack *extack)
8820 {
8821 struct netdev_nested_priv priv = {
8822 .flags = 0,
8823 .data = NULL,
8824 };
8825 int err;
8826
8827 if (!new_dev)
8828 return 0;
8829
8830 if (old_dev && new_dev != old_dev)
8831 netdev_adjacent_dev_disable(dev, old_dev);
8832 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8833 extack);
8834 if (err) {
8835 if (old_dev && new_dev != old_dev)
8836 netdev_adjacent_dev_enable(dev, old_dev);
8837 return err;
8838 }
8839
8840 return 0;
8841 }
8842 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8843
netdev_adjacent_change_commit(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev)8844 void netdev_adjacent_change_commit(struct net_device *old_dev,
8845 struct net_device *new_dev,
8846 struct net_device *dev)
8847 {
8848 struct netdev_nested_priv priv = {
8849 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8850 .data = NULL,
8851 };
8852
8853 if (!new_dev || !old_dev)
8854 return;
8855
8856 if (new_dev == old_dev)
8857 return;
8858
8859 netdev_adjacent_dev_enable(dev, old_dev);
8860 __netdev_upper_dev_unlink(old_dev, dev, &priv);
8861 }
8862 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8863
netdev_adjacent_change_abort(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev)8864 void netdev_adjacent_change_abort(struct net_device *old_dev,
8865 struct net_device *new_dev,
8866 struct net_device *dev)
8867 {
8868 struct netdev_nested_priv priv = {
8869 .flags = 0,
8870 .data = NULL,
8871 };
8872
8873 if (!new_dev)
8874 return;
8875
8876 if (old_dev && new_dev != old_dev)
8877 netdev_adjacent_dev_enable(dev, old_dev);
8878
8879 __netdev_upper_dev_unlink(new_dev, dev, &priv);
8880 }
8881 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8882
8883 /**
8884 * netdev_bonding_info_change - Dispatch event about slave change
8885 * @dev: device
8886 * @bonding_info: info to dispatch
8887 *
8888 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8889 * The caller must hold the RTNL lock.
8890 */
netdev_bonding_info_change(struct net_device * dev,struct netdev_bonding_info * bonding_info)8891 void netdev_bonding_info_change(struct net_device *dev,
8892 struct netdev_bonding_info *bonding_info)
8893 {
8894 struct netdev_notifier_bonding_info info = {
8895 .info.dev = dev,
8896 };
8897
8898 memcpy(&info.bonding_info, bonding_info,
8899 sizeof(struct netdev_bonding_info));
8900 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8901 &info.info);
8902 }
8903 EXPORT_SYMBOL(netdev_bonding_info_change);
8904
netdev_offload_xstats_enable_l3(struct net_device * dev,struct netlink_ext_ack * extack)8905 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
8906 struct netlink_ext_ack *extack)
8907 {
8908 struct netdev_notifier_offload_xstats_info info = {
8909 .info.dev = dev,
8910 .info.extack = extack,
8911 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8912 };
8913 int err;
8914 int rc;
8915
8916 dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
8917 GFP_KERNEL);
8918 if (!dev->offload_xstats_l3)
8919 return -ENOMEM;
8920
8921 rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
8922 NETDEV_OFFLOAD_XSTATS_DISABLE,
8923 &info.info);
8924 err = notifier_to_errno(rc);
8925 if (err)
8926 goto free_stats;
8927
8928 return 0;
8929
8930 free_stats:
8931 kfree(dev->offload_xstats_l3);
8932 dev->offload_xstats_l3 = NULL;
8933 return err;
8934 }
8935
netdev_offload_xstats_enable(struct net_device * dev,enum netdev_offload_xstats_type type,struct netlink_ext_ack * extack)8936 int netdev_offload_xstats_enable(struct net_device *dev,
8937 enum netdev_offload_xstats_type type,
8938 struct netlink_ext_ack *extack)
8939 {
8940 ASSERT_RTNL();
8941
8942 if (netdev_offload_xstats_enabled(dev, type))
8943 return -EALREADY;
8944
8945 switch (type) {
8946 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8947 return netdev_offload_xstats_enable_l3(dev, extack);
8948 }
8949
8950 WARN_ON(1);
8951 return -EINVAL;
8952 }
8953 EXPORT_SYMBOL(netdev_offload_xstats_enable);
8954
netdev_offload_xstats_disable_l3(struct net_device * dev)8955 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
8956 {
8957 struct netdev_notifier_offload_xstats_info info = {
8958 .info.dev = dev,
8959 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8960 };
8961
8962 call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
8963 &info.info);
8964 kfree(dev->offload_xstats_l3);
8965 dev->offload_xstats_l3 = NULL;
8966 }
8967
netdev_offload_xstats_disable(struct net_device * dev,enum netdev_offload_xstats_type type)8968 int netdev_offload_xstats_disable(struct net_device *dev,
8969 enum netdev_offload_xstats_type type)
8970 {
8971 ASSERT_RTNL();
8972
8973 if (!netdev_offload_xstats_enabled(dev, type))
8974 return -EALREADY;
8975
8976 switch (type) {
8977 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8978 netdev_offload_xstats_disable_l3(dev);
8979 return 0;
8980 }
8981
8982 WARN_ON(1);
8983 return -EINVAL;
8984 }
8985 EXPORT_SYMBOL(netdev_offload_xstats_disable);
8986
netdev_offload_xstats_disable_all(struct net_device * dev)8987 static void netdev_offload_xstats_disable_all(struct net_device *dev)
8988 {
8989 netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
8990 }
8991
8992 static struct rtnl_hw_stats64 *
netdev_offload_xstats_get_ptr(const struct net_device * dev,enum netdev_offload_xstats_type type)8993 netdev_offload_xstats_get_ptr(const struct net_device *dev,
8994 enum netdev_offload_xstats_type type)
8995 {
8996 switch (type) {
8997 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8998 return dev->offload_xstats_l3;
8999 }
9000
9001 WARN_ON(1);
9002 return NULL;
9003 }
9004
netdev_offload_xstats_enabled(const struct net_device * dev,enum netdev_offload_xstats_type type)9005 bool netdev_offload_xstats_enabled(const struct net_device *dev,
9006 enum netdev_offload_xstats_type type)
9007 {
9008 ASSERT_RTNL();
9009
9010 return netdev_offload_xstats_get_ptr(dev, type);
9011 }
9012 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
9013
9014 struct netdev_notifier_offload_xstats_ru {
9015 bool used;
9016 };
9017
9018 struct netdev_notifier_offload_xstats_rd {
9019 struct rtnl_hw_stats64 stats;
9020 bool used;
9021 };
9022
netdev_hw_stats64_add(struct rtnl_hw_stats64 * dest,const struct rtnl_hw_stats64 * src)9023 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
9024 const struct rtnl_hw_stats64 *src)
9025 {
9026 dest->rx_packets += src->rx_packets;
9027 dest->tx_packets += src->tx_packets;
9028 dest->rx_bytes += src->rx_bytes;
9029 dest->tx_bytes += src->tx_bytes;
9030 dest->rx_errors += src->rx_errors;
9031 dest->tx_errors += src->tx_errors;
9032 dest->rx_dropped += src->rx_dropped;
9033 dest->tx_dropped += src->tx_dropped;
9034 dest->multicast += src->multicast;
9035 }
9036
netdev_offload_xstats_get_used(struct net_device * dev,enum netdev_offload_xstats_type type,bool * p_used,struct netlink_ext_ack * extack)9037 static int netdev_offload_xstats_get_used(struct net_device *dev,
9038 enum netdev_offload_xstats_type type,
9039 bool *p_used,
9040 struct netlink_ext_ack *extack)
9041 {
9042 struct netdev_notifier_offload_xstats_ru report_used = {};
9043 struct netdev_notifier_offload_xstats_info info = {
9044 .info.dev = dev,
9045 .info.extack = extack,
9046 .type = type,
9047 .report_used = &report_used,
9048 };
9049 int rc;
9050
9051 WARN_ON(!netdev_offload_xstats_enabled(dev, type));
9052 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
9053 &info.info);
9054 *p_used = report_used.used;
9055 return notifier_to_errno(rc);
9056 }
9057
netdev_offload_xstats_get_stats(struct net_device * dev,enum netdev_offload_xstats_type type,struct rtnl_hw_stats64 * p_stats,bool * p_used,struct netlink_ext_ack * extack)9058 static int netdev_offload_xstats_get_stats(struct net_device *dev,
9059 enum netdev_offload_xstats_type type,
9060 struct rtnl_hw_stats64 *p_stats,
9061 bool *p_used,
9062 struct netlink_ext_ack *extack)
9063 {
9064 struct netdev_notifier_offload_xstats_rd report_delta = {};
9065 struct netdev_notifier_offload_xstats_info info = {
9066 .info.dev = dev,
9067 .info.extack = extack,
9068 .type = type,
9069 .report_delta = &report_delta,
9070 };
9071 struct rtnl_hw_stats64 *stats;
9072 int rc;
9073
9074 stats = netdev_offload_xstats_get_ptr(dev, type);
9075 if (WARN_ON(!stats))
9076 return -EINVAL;
9077
9078 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
9079 &info.info);
9080
9081 /* Cache whatever we got, even if there was an error, otherwise the
9082 * successful stats retrievals would get lost.
9083 */
9084 netdev_hw_stats64_add(stats, &report_delta.stats);
9085
9086 if (p_stats)
9087 *p_stats = *stats;
9088 *p_used = report_delta.used;
9089
9090 return notifier_to_errno(rc);
9091 }
9092
netdev_offload_xstats_get(struct net_device * dev,enum netdev_offload_xstats_type type,struct rtnl_hw_stats64 * p_stats,bool * p_used,struct netlink_ext_ack * extack)9093 int netdev_offload_xstats_get(struct net_device *dev,
9094 enum netdev_offload_xstats_type type,
9095 struct rtnl_hw_stats64 *p_stats, bool *p_used,
9096 struct netlink_ext_ack *extack)
9097 {
9098 ASSERT_RTNL();
9099
9100 if (p_stats)
9101 return netdev_offload_xstats_get_stats(dev, type, p_stats,
9102 p_used, extack);
9103 else
9104 return netdev_offload_xstats_get_used(dev, type, p_used,
9105 extack);
9106 }
9107 EXPORT_SYMBOL(netdev_offload_xstats_get);
9108
9109 void
netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd * report_delta,const struct rtnl_hw_stats64 * stats)9110 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
9111 const struct rtnl_hw_stats64 *stats)
9112 {
9113 report_delta->used = true;
9114 netdev_hw_stats64_add(&report_delta->stats, stats);
9115 }
9116 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
9117
9118 void
netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru * report_used)9119 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
9120 {
9121 report_used->used = true;
9122 }
9123 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
9124
netdev_offload_xstats_push_delta(struct net_device * dev,enum netdev_offload_xstats_type type,const struct rtnl_hw_stats64 * p_stats)9125 void netdev_offload_xstats_push_delta(struct net_device *dev,
9126 enum netdev_offload_xstats_type type,
9127 const struct rtnl_hw_stats64 *p_stats)
9128 {
9129 struct rtnl_hw_stats64 *stats;
9130
9131 ASSERT_RTNL();
9132
9133 stats = netdev_offload_xstats_get_ptr(dev, type);
9134 if (WARN_ON(!stats))
9135 return;
9136
9137 netdev_hw_stats64_add(stats, p_stats);
9138 }
9139 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
9140
9141 /**
9142 * netdev_get_xmit_slave - Get the xmit slave of master device
9143 * @dev: device
9144 * @skb: The packet
9145 * @all_slaves: assume all the slaves are active
9146 *
9147 * The reference counters are not incremented so the caller must be
9148 * careful with locks. The caller must hold RCU lock.
9149 * %NULL is returned if no slave is found.
9150 */
9151
netdev_get_xmit_slave(struct net_device * dev,struct sk_buff * skb,bool all_slaves)9152 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
9153 struct sk_buff *skb,
9154 bool all_slaves)
9155 {
9156 const struct net_device_ops *ops = dev->netdev_ops;
9157
9158 if (!ops->ndo_get_xmit_slave)
9159 return NULL;
9160 return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
9161 }
9162 EXPORT_SYMBOL(netdev_get_xmit_slave);
9163
netdev_sk_get_lower_dev(struct net_device * dev,struct sock * sk)9164 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
9165 struct sock *sk)
9166 {
9167 const struct net_device_ops *ops = dev->netdev_ops;
9168
9169 if (!ops->ndo_sk_get_lower_dev)
9170 return NULL;
9171 return ops->ndo_sk_get_lower_dev(dev, sk);
9172 }
9173
9174 /**
9175 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
9176 * @dev: device
9177 * @sk: the socket
9178 *
9179 * %NULL is returned if no lower device is found.
9180 */
9181
netdev_sk_get_lowest_dev(struct net_device * dev,struct sock * sk)9182 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
9183 struct sock *sk)
9184 {
9185 struct net_device *lower;
9186
9187 lower = netdev_sk_get_lower_dev(dev, sk);
9188 while (lower) {
9189 dev = lower;
9190 lower = netdev_sk_get_lower_dev(dev, sk);
9191 }
9192
9193 return dev;
9194 }
9195 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
9196
netdev_adjacent_add_links(struct net_device * dev)9197 static void netdev_adjacent_add_links(struct net_device *dev)
9198 {
9199 struct netdev_adjacent *iter;
9200
9201 struct net *net = dev_net(dev);
9202
9203 list_for_each_entry(iter, &dev->adj_list.upper, list) {
9204 if (!net_eq(net, dev_net(iter->dev)))
9205 continue;
9206 netdev_adjacent_sysfs_add(iter->dev, dev,
9207 &iter->dev->adj_list.lower);
9208 netdev_adjacent_sysfs_add(dev, iter->dev,
9209 &dev->adj_list.upper);
9210 }
9211
9212 list_for_each_entry(iter, &dev->adj_list.lower, list) {
9213 if (!net_eq(net, dev_net(iter->dev)))
9214 continue;
9215 netdev_adjacent_sysfs_add(iter->dev, dev,
9216 &iter->dev->adj_list.upper);
9217 netdev_adjacent_sysfs_add(dev, iter->dev,
9218 &dev->adj_list.lower);
9219 }
9220 }
9221
netdev_adjacent_del_links(struct net_device * dev)9222 static void netdev_adjacent_del_links(struct net_device *dev)
9223 {
9224 struct netdev_adjacent *iter;
9225
9226 struct net *net = dev_net(dev);
9227
9228 list_for_each_entry(iter, &dev->adj_list.upper, list) {
9229 if (!net_eq(net, dev_net(iter->dev)))
9230 continue;
9231 netdev_adjacent_sysfs_del(iter->dev, dev->name,
9232 &iter->dev->adj_list.lower);
9233 netdev_adjacent_sysfs_del(dev, iter->dev->name,
9234 &dev->adj_list.upper);
9235 }
9236
9237 list_for_each_entry(iter, &dev->adj_list.lower, list) {
9238 if (!net_eq(net, dev_net(iter->dev)))
9239 continue;
9240 netdev_adjacent_sysfs_del(iter->dev, dev->name,
9241 &iter->dev->adj_list.upper);
9242 netdev_adjacent_sysfs_del(dev, iter->dev->name,
9243 &dev->adj_list.lower);
9244 }
9245 }
9246
netdev_adjacent_rename_links(struct net_device * dev,char * oldname)9247 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
9248 {
9249 struct netdev_adjacent *iter;
9250
9251 struct net *net = dev_net(dev);
9252
9253 list_for_each_entry(iter, &dev->adj_list.upper, list) {
9254 if (!net_eq(net, dev_net(iter->dev)))
9255 continue;
9256 netdev_adjacent_sysfs_del(iter->dev, oldname,
9257 &iter->dev->adj_list.lower);
9258 netdev_adjacent_sysfs_add(iter->dev, dev,
9259 &iter->dev->adj_list.lower);
9260 }
9261
9262 list_for_each_entry(iter, &dev->adj_list.lower, list) {
9263 if (!net_eq(net, dev_net(iter->dev)))
9264 continue;
9265 netdev_adjacent_sysfs_del(iter->dev, oldname,
9266 &iter->dev->adj_list.upper);
9267 netdev_adjacent_sysfs_add(iter->dev, dev,
9268 &iter->dev->adj_list.upper);
9269 }
9270 }
9271
netdev_lower_dev_get_private(struct net_device * dev,struct net_device * lower_dev)9272 void *netdev_lower_dev_get_private(struct net_device *dev,
9273 struct net_device *lower_dev)
9274 {
9275 struct netdev_adjacent *lower;
9276
9277 if (!lower_dev)
9278 return NULL;
9279 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
9280 if (!lower)
9281 return NULL;
9282
9283 return lower->private;
9284 }
9285 EXPORT_SYMBOL(netdev_lower_dev_get_private);
9286
9287
9288 /**
9289 * netdev_lower_state_changed - Dispatch event about lower device state change
9290 * @lower_dev: device
9291 * @lower_state_info: state to dispatch
9292 *
9293 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
9294 * The caller must hold the RTNL lock.
9295 */
netdev_lower_state_changed(struct net_device * lower_dev,void * lower_state_info)9296 void netdev_lower_state_changed(struct net_device *lower_dev,
9297 void *lower_state_info)
9298 {
9299 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
9300 .info.dev = lower_dev,
9301 };
9302
9303 ASSERT_RTNL();
9304 changelowerstate_info.lower_state_info = lower_state_info;
9305 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
9306 &changelowerstate_info.info);
9307 }
9308 EXPORT_SYMBOL(netdev_lower_state_changed);
9309
dev_change_rx_flags(struct net_device * dev,int flags)9310 static void dev_change_rx_flags(struct net_device *dev, int flags)
9311 {
9312 const struct net_device_ops *ops = dev->netdev_ops;
9313
9314 if (ops->ndo_change_rx_flags)
9315 ops->ndo_change_rx_flags(dev, flags);
9316 }
9317
__dev_set_promiscuity(struct net_device * dev,int inc,bool notify)9318 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
9319 {
9320 unsigned int old_flags = dev->flags;
9321 unsigned int promiscuity, flags;
9322 kuid_t uid;
9323 kgid_t gid;
9324
9325 ASSERT_RTNL();
9326
9327 promiscuity = dev->promiscuity + inc;
9328 if (promiscuity == 0) {
9329 /*
9330 * Avoid overflow.
9331 * If inc causes overflow, untouch promisc and return error.
9332 */
9333 if (unlikely(inc > 0)) {
9334 netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
9335 return -EOVERFLOW;
9336 }
9337 flags = old_flags & ~IFF_PROMISC;
9338 } else {
9339 flags = old_flags | IFF_PROMISC;
9340 }
9341 WRITE_ONCE(dev->promiscuity, promiscuity);
9342 if (flags != old_flags) {
9343 WRITE_ONCE(dev->flags, flags);
9344 netdev_info(dev, "%s promiscuous mode\n",
9345 dev->flags & IFF_PROMISC ? "entered" : "left");
9346 if (audit_enabled) {
9347 current_uid_gid(&uid, &gid);
9348 audit_log(audit_context(), GFP_ATOMIC,
9349 AUDIT_ANOM_PROMISCUOUS,
9350 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
9351 dev->name, (dev->flags & IFF_PROMISC),
9352 (old_flags & IFF_PROMISC),
9353 from_kuid(&init_user_ns, audit_get_loginuid(current)),
9354 from_kuid(&init_user_ns, uid),
9355 from_kgid(&init_user_ns, gid),
9356 audit_get_sessionid(current));
9357 }
9358
9359 dev_change_rx_flags(dev, IFF_PROMISC);
9360 }
9361 if (notify) {
9362 /* The ops lock is only required to ensure consistent locking
9363 * for `NETDEV_CHANGE` notifiers. This function is sometimes
9364 * called without the lock, even for devices that are ops
9365 * locked, such as in `dev_uc_sync_multiple` when using
9366 * bonding or teaming.
9367 */
9368 netdev_ops_assert_locked(dev);
9369 __dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
9370 }
9371 return 0;
9372 }
9373
netif_set_promiscuity(struct net_device * dev,int inc)9374 int netif_set_promiscuity(struct net_device *dev, int inc)
9375 {
9376 unsigned int old_flags = dev->flags;
9377 int err;
9378
9379 err = __dev_set_promiscuity(dev, inc, true);
9380 if (err < 0)
9381 return err;
9382 if (dev->flags != old_flags)
9383 dev_set_rx_mode(dev);
9384 return err;
9385 }
9386
netif_set_allmulti(struct net_device * dev,int inc,bool notify)9387 int netif_set_allmulti(struct net_device *dev, int inc, bool notify)
9388 {
9389 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
9390 unsigned int allmulti, flags;
9391
9392 ASSERT_RTNL();
9393
9394 allmulti = dev->allmulti + inc;
9395 if (allmulti == 0) {
9396 /*
9397 * Avoid overflow.
9398 * If inc causes overflow, untouch allmulti and return error.
9399 */
9400 if (unlikely(inc > 0)) {
9401 netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
9402 return -EOVERFLOW;
9403 }
9404 flags = old_flags & ~IFF_ALLMULTI;
9405 } else {
9406 flags = old_flags | IFF_ALLMULTI;
9407 }
9408 WRITE_ONCE(dev->allmulti, allmulti);
9409 if (flags != old_flags) {
9410 WRITE_ONCE(dev->flags, flags);
9411 netdev_info(dev, "%s allmulticast mode\n",
9412 dev->flags & IFF_ALLMULTI ? "entered" : "left");
9413 dev_change_rx_flags(dev, IFF_ALLMULTI);
9414 dev_set_rx_mode(dev);
9415 if (notify)
9416 __dev_notify_flags(dev, old_flags,
9417 dev->gflags ^ old_gflags, 0, NULL);
9418 }
9419 return 0;
9420 }
9421
9422 /*
9423 * Upload unicast and multicast address lists to device and
9424 * configure RX filtering. When the device doesn't support unicast
9425 * filtering it is put in promiscuous mode while unicast addresses
9426 * are present.
9427 */
__dev_set_rx_mode(struct net_device * dev)9428 void __dev_set_rx_mode(struct net_device *dev)
9429 {
9430 const struct net_device_ops *ops = dev->netdev_ops;
9431
9432 /* dev_open will call this function so the list will stay sane. */
9433 if (!(dev->flags&IFF_UP))
9434 return;
9435
9436 if (!netif_device_present(dev))
9437 return;
9438
9439 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
9440 /* Unicast addresses changes may only happen under the rtnl,
9441 * therefore calling __dev_set_promiscuity here is safe.
9442 */
9443 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
9444 __dev_set_promiscuity(dev, 1, false);
9445 dev->uc_promisc = true;
9446 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
9447 __dev_set_promiscuity(dev, -1, false);
9448 dev->uc_promisc = false;
9449 }
9450 }
9451
9452 if (ops->ndo_set_rx_mode)
9453 ops->ndo_set_rx_mode(dev);
9454 }
9455
dev_set_rx_mode(struct net_device * dev)9456 void dev_set_rx_mode(struct net_device *dev)
9457 {
9458 netif_addr_lock_bh(dev);
9459 __dev_set_rx_mode(dev);
9460 netif_addr_unlock_bh(dev);
9461 }
9462
9463 /**
9464 * netif_get_flags() - get flags reported to userspace
9465 * @dev: device
9466 *
9467 * Get the combination of flag bits exported through APIs to userspace.
9468 */
netif_get_flags(const struct net_device * dev)9469 unsigned int netif_get_flags(const struct net_device *dev)
9470 {
9471 unsigned int flags;
9472
9473 flags = (READ_ONCE(dev->flags) & ~(IFF_PROMISC |
9474 IFF_ALLMULTI |
9475 IFF_RUNNING |
9476 IFF_LOWER_UP |
9477 IFF_DORMANT)) |
9478 (READ_ONCE(dev->gflags) & (IFF_PROMISC |
9479 IFF_ALLMULTI));
9480
9481 if (netif_running(dev)) {
9482 if (netif_oper_up(dev))
9483 flags |= IFF_RUNNING;
9484 if (netif_carrier_ok(dev))
9485 flags |= IFF_LOWER_UP;
9486 if (netif_dormant(dev))
9487 flags |= IFF_DORMANT;
9488 }
9489
9490 return flags;
9491 }
9492 EXPORT_SYMBOL(netif_get_flags);
9493
__dev_change_flags(struct net_device * dev,unsigned int flags,struct netlink_ext_ack * extack)9494 int __dev_change_flags(struct net_device *dev, unsigned int flags,
9495 struct netlink_ext_ack *extack)
9496 {
9497 unsigned int old_flags = dev->flags;
9498 int ret;
9499
9500 ASSERT_RTNL();
9501
9502 /*
9503 * Set the flags on our device.
9504 */
9505
9506 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
9507 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
9508 IFF_AUTOMEDIA)) |
9509 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
9510 IFF_ALLMULTI));
9511
9512 /*
9513 * Load in the correct multicast list now the flags have changed.
9514 */
9515
9516 if ((old_flags ^ flags) & IFF_MULTICAST)
9517 dev_change_rx_flags(dev, IFF_MULTICAST);
9518
9519 dev_set_rx_mode(dev);
9520
9521 /*
9522 * Have we downed the interface. We handle IFF_UP ourselves
9523 * according to user attempts to set it, rather than blindly
9524 * setting it.
9525 */
9526
9527 ret = 0;
9528 if ((old_flags ^ flags) & IFF_UP) {
9529 if (old_flags & IFF_UP)
9530 __dev_close(dev);
9531 else
9532 ret = __dev_open(dev, extack);
9533 }
9534
9535 if ((flags ^ dev->gflags) & IFF_PROMISC) {
9536 int inc = (flags & IFF_PROMISC) ? 1 : -1;
9537 old_flags = dev->flags;
9538
9539 dev->gflags ^= IFF_PROMISC;
9540
9541 if (__dev_set_promiscuity(dev, inc, false) >= 0)
9542 if (dev->flags != old_flags)
9543 dev_set_rx_mode(dev);
9544 }
9545
9546 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
9547 * is important. Some (broken) drivers set IFF_PROMISC, when
9548 * IFF_ALLMULTI is requested not asking us and not reporting.
9549 */
9550 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
9551 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
9552
9553 dev->gflags ^= IFF_ALLMULTI;
9554 netif_set_allmulti(dev, inc, false);
9555 }
9556
9557 return ret;
9558 }
9559
__dev_notify_flags(struct net_device * dev,unsigned int old_flags,unsigned int gchanges,u32 portid,const struct nlmsghdr * nlh)9560 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
9561 unsigned int gchanges, u32 portid,
9562 const struct nlmsghdr *nlh)
9563 {
9564 unsigned int changes = dev->flags ^ old_flags;
9565
9566 if (gchanges)
9567 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
9568
9569 if (changes & IFF_UP) {
9570 if (dev->flags & IFF_UP)
9571 call_netdevice_notifiers(NETDEV_UP, dev);
9572 else
9573 call_netdevice_notifiers(NETDEV_DOWN, dev);
9574 }
9575
9576 if (dev->flags & IFF_UP &&
9577 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
9578 struct netdev_notifier_change_info change_info = {
9579 .info = {
9580 .dev = dev,
9581 },
9582 .flags_changed = changes,
9583 };
9584
9585 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
9586 }
9587 }
9588
netif_change_flags(struct net_device * dev,unsigned int flags,struct netlink_ext_ack * extack)9589 int netif_change_flags(struct net_device *dev, unsigned int flags,
9590 struct netlink_ext_ack *extack)
9591 {
9592 int ret;
9593 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
9594
9595 ret = __dev_change_flags(dev, flags, extack);
9596 if (ret < 0)
9597 return ret;
9598
9599 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
9600 __dev_notify_flags(dev, old_flags, changes, 0, NULL);
9601 return ret;
9602 }
9603
__netif_set_mtu(struct net_device * dev,int new_mtu)9604 int __netif_set_mtu(struct net_device *dev, int new_mtu)
9605 {
9606 const struct net_device_ops *ops = dev->netdev_ops;
9607
9608 if (ops->ndo_change_mtu)
9609 return ops->ndo_change_mtu(dev, new_mtu);
9610
9611 /* Pairs with all the lockless reads of dev->mtu in the stack */
9612 WRITE_ONCE(dev->mtu, new_mtu);
9613 return 0;
9614 }
9615 EXPORT_SYMBOL_NS_GPL(__netif_set_mtu, "NETDEV_INTERNAL");
9616
dev_validate_mtu(struct net_device * dev,int new_mtu,struct netlink_ext_ack * extack)9617 int dev_validate_mtu(struct net_device *dev, int new_mtu,
9618 struct netlink_ext_ack *extack)
9619 {
9620 /* MTU must be positive, and in range */
9621 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
9622 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
9623 return -EINVAL;
9624 }
9625
9626 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
9627 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
9628 return -EINVAL;
9629 }
9630 return 0;
9631 }
9632
9633 /**
9634 * netif_set_mtu_ext() - Change maximum transfer unit
9635 * @dev: device
9636 * @new_mtu: new transfer unit
9637 * @extack: netlink extended ack
9638 *
9639 * Change the maximum transfer size of the network device.
9640 *
9641 * Return: 0 on success, -errno on failure.
9642 */
netif_set_mtu_ext(struct net_device * dev,int new_mtu,struct netlink_ext_ack * extack)9643 int netif_set_mtu_ext(struct net_device *dev, int new_mtu,
9644 struct netlink_ext_ack *extack)
9645 {
9646 int err, orig_mtu;
9647
9648 netdev_ops_assert_locked(dev);
9649
9650 if (new_mtu == dev->mtu)
9651 return 0;
9652
9653 err = dev_validate_mtu(dev, new_mtu, extack);
9654 if (err)
9655 return err;
9656
9657 if (!netif_device_present(dev))
9658 return -ENODEV;
9659
9660 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
9661 err = notifier_to_errno(err);
9662 if (err)
9663 return err;
9664
9665 orig_mtu = dev->mtu;
9666 err = __netif_set_mtu(dev, new_mtu);
9667
9668 if (!err) {
9669 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
9670 orig_mtu);
9671 err = notifier_to_errno(err);
9672 if (err) {
9673 /* setting mtu back and notifying everyone again,
9674 * so that they have a chance to revert changes.
9675 */
9676 __netif_set_mtu(dev, orig_mtu);
9677 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
9678 new_mtu);
9679 }
9680 }
9681 return err;
9682 }
9683
netif_set_mtu(struct net_device * dev,int new_mtu)9684 int netif_set_mtu(struct net_device *dev, int new_mtu)
9685 {
9686 struct netlink_ext_ack extack;
9687 int err;
9688
9689 memset(&extack, 0, sizeof(extack));
9690 err = netif_set_mtu_ext(dev, new_mtu, &extack);
9691 if (err && extack._msg)
9692 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
9693 return err;
9694 }
9695 EXPORT_SYMBOL(netif_set_mtu);
9696
netif_change_tx_queue_len(struct net_device * dev,unsigned long new_len)9697 int netif_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
9698 {
9699 unsigned int orig_len = dev->tx_queue_len;
9700 int res;
9701
9702 if (new_len != (unsigned int)new_len)
9703 return -ERANGE;
9704
9705 if (new_len != orig_len) {
9706 WRITE_ONCE(dev->tx_queue_len, new_len);
9707 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
9708 res = notifier_to_errno(res);
9709 if (res)
9710 goto err_rollback;
9711 res = dev_qdisc_change_tx_queue_len(dev);
9712 if (res)
9713 goto err_rollback;
9714 }
9715
9716 return 0;
9717
9718 err_rollback:
9719 netdev_err(dev, "refused to change device tx_queue_len\n");
9720 WRITE_ONCE(dev->tx_queue_len, orig_len);
9721 return res;
9722 }
9723
netif_set_group(struct net_device * dev,int new_group)9724 void netif_set_group(struct net_device *dev, int new_group)
9725 {
9726 dev->group = new_group;
9727 }
9728
9729 /**
9730 * netif_pre_changeaddr_notify() - Call NETDEV_PRE_CHANGEADDR.
9731 * @dev: device
9732 * @addr: new address
9733 * @extack: netlink extended ack
9734 *
9735 * Return: 0 on success, -errno on failure.
9736 */
netif_pre_changeaddr_notify(struct net_device * dev,const char * addr,struct netlink_ext_ack * extack)9737 int netif_pre_changeaddr_notify(struct net_device *dev, const char *addr,
9738 struct netlink_ext_ack *extack)
9739 {
9740 struct netdev_notifier_pre_changeaddr_info info = {
9741 .info.dev = dev,
9742 .info.extack = extack,
9743 .dev_addr = addr,
9744 };
9745 int rc;
9746
9747 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
9748 return notifier_to_errno(rc);
9749 }
9750 EXPORT_SYMBOL_NS_GPL(netif_pre_changeaddr_notify, "NETDEV_INTERNAL");
9751
netif_set_mac_address(struct net_device * dev,struct sockaddr_storage * ss,struct netlink_ext_ack * extack)9752 int netif_set_mac_address(struct net_device *dev, struct sockaddr_storage *ss,
9753 struct netlink_ext_ack *extack)
9754 {
9755 const struct net_device_ops *ops = dev->netdev_ops;
9756 int err;
9757
9758 if (!ops->ndo_set_mac_address)
9759 return -EOPNOTSUPP;
9760 if (ss->ss_family != dev->type)
9761 return -EINVAL;
9762 if (!netif_device_present(dev))
9763 return -ENODEV;
9764 err = netif_pre_changeaddr_notify(dev, ss->__data, extack);
9765 if (err)
9766 return err;
9767 if (memcmp(dev->dev_addr, ss->__data, dev->addr_len)) {
9768 err = ops->ndo_set_mac_address(dev, ss);
9769 if (err)
9770 return err;
9771 }
9772 dev->addr_assign_type = NET_ADDR_SET;
9773 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9774 add_device_randomness(dev->dev_addr, dev->addr_len);
9775 return 0;
9776 }
9777
9778 DECLARE_RWSEM(dev_addr_sem);
9779
9780 /* "sa" is a true struct sockaddr with limited "sa_data" member. */
netif_get_mac_address(struct sockaddr * sa,struct net * net,char * dev_name)9781 int netif_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9782 {
9783 size_t size = sizeof(sa->sa_data_min);
9784 struct net_device *dev;
9785 int ret = 0;
9786
9787 down_read(&dev_addr_sem);
9788 rcu_read_lock();
9789
9790 dev = dev_get_by_name_rcu(net, dev_name);
9791 if (!dev) {
9792 ret = -ENODEV;
9793 goto unlock;
9794 }
9795 if (!dev->addr_len)
9796 memset(sa->sa_data, 0, size);
9797 else
9798 memcpy(sa->sa_data, dev->dev_addr,
9799 min_t(size_t, size, dev->addr_len));
9800 sa->sa_family = dev->type;
9801
9802 unlock:
9803 rcu_read_unlock();
9804 up_read(&dev_addr_sem);
9805 return ret;
9806 }
9807 EXPORT_SYMBOL_NS_GPL(netif_get_mac_address, "NETDEV_INTERNAL");
9808
netif_change_carrier(struct net_device * dev,bool new_carrier)9809 int netif_change_carrier(struct net_device *dev, bool new_carrier)
9810 {
9811 const struct net_device_ops *ops = dev->netdev_ops;
9812
9813 if (!ops->ndo_change_carrier)
9814 return -EOPNOTSUPP;
9815 if (!netif_device_present(dev))
9816 return -ENODEV;
9817 return ops->ndo_change_carrier(dev, new_carrier);
9818 }
9819
9820 /**
9821 * dev_get_phys_port_id - Get device physical port ID
9822 * @dev: device
9823 * @ppid: port ID
9824 *
9825 * Get device physical port ID
9826 */
dev_get_phys_port_id(struct net_device * dev,struct netdev_phys_item_id * ppid)9827 int dev_get_phys_port_id(struct net_device *dev,
9828 struct netdev_phys_item_id *ppid)
9829 {
9830 const struct net_device_ops *ops = dev->netdev_ops;
9831
9832 if (!ops->ndo_get_phys_port_id)
9833 return -EOPNOTSUPP;
9834 return ops->ndo_get_phys_port_id(dev, ppid);
9835 }
9836
9837 /**
9838 * dev_get_phys_port_name - Get device physical port name
9839 * @dev: device
9840 * @name: port name
9841 * @len: limit of bytes to copy to name
9842 *
9843 * Get device physical port name
9844 */
dev_get_phys_port_name(struct net_device * dev,char * name,size_t len)9845 int dev_get_phys_port_name(struct net_device *dev,
9846 char *name, size_t len)
9847 {
9848 const struct net_device_ops *ops = dev->netdev_ops;
9849 int err;
9850
9851 if (ops->ndo_get_phys_port_name) {
9852 err = ops->ndo_get_phys_port_name(dev, name, len);
9853 if (err != -EOPNOTSUPP)
9854 return err;
9855 }
9856 return devlink_compat_phys_port_name_get(dev, name, len);
9857 }
9858
9859 /**
9860 * netif_get_port_parent_id() - Get the device's port parent identifier
9861 * @dev: network device
9862 * @ppid: pointer to a storage for the port's parent identifier
9863 * @recurse: allow/disallow recursion to lower devices
9864 *
9865 * Get the devices's port parent identifier.
9866 *
9867 * Return: 0 on success, -errno on failure.
9868 */
netif_get_port_parent_id(struct net_device * dev,struct netdev_phys_item_id * ppid,bool recurse)9869 int netif_get_port_parent_id(struct net_device *dev,
9870 struct netdev_phys_item_id *ppid, bool recurse)
9871 {
9872 const struct net_device_ops *ops = dev->netdev_ops;
9873 struct netdev_phys_item_id first = { };
9874 struct net_device *lower_dev;
9875 struct list_head *iter;
9876 int err;
9877
9878 if (ops->ndo_get_port_parent_id) {
9879 err = ops->ndo_get_port_parent_id(dev, ppid);
9880 if (err != -EOPNOTSUPP)
9881 return err;
9882 }
9883
9884 err = devlink_compat_switch_id_get(dev, ppid);
9885 if (!recurse || err != -EOPNOTSUPP)
9886 return err;
9887
9888 netdev_for_each_lower_dev(dev, lower_dev, iter) {
9889 err = netif_get_port_parent_id(lower_dev, ppid, true);
9890 if (err)
9891 break;
9892 if (!first.id_len)
9893 first = *ppid;
9894 else if (memcmp(&first, ppid, sizeof(*ppid)))
9895 return -EOPNOTSUPP;
9896 }
9897
9898 return err;
9899 }
9900 EXPORT_SYMBOL(netif_get_port_parent_id);
9901
9902 /**
9903 * netdev_port_same_parent_id - Indicate if two network devices have
9904 * the same port parent identifier
9905 * @a: first network device
9906 * @b: second network device
9907 */
netdev_port_same_parent_id(struct net_device * a,struct net_device * b)9908 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9909 {
9910 struct netdev_phys_item_id a_id = { };
9911 struct netdev_phys_item_id b_id = { };
9912
9913 if (netif_get_port_parent_id(a, &a_id, true) ||
9914 netif_get_port_parent_id(b, &b_id, true))
9915 return false;
9916
9917 return netdev_phys_item_id_same(&a_id, &b_id);
9918 }
9919 EXPORT_SYMBOL(netdev_port_same_parent_id);
9920
netif_change_proto_down(struct net_device * dev,bool proto_down)9921 int netif_change_proto_down(struct net_device *dev, bool proto_down)
9922 {
9923 if (!dev->change_proto_down)
9924 return -EOPNOTSUPP;
9925 if (!netif_device_present(dev))
9926 return -ENODEV;
9927 if (proto_down)
9928 netif_carrier_off(dev);
9929 else
9930 netif_carrier_on(dev);
9931 WRITE_ONCE(dev->proto_down, proto_down);
9932 return 0;
9933 }
9934
9935 /**
9936 * netdev_change_proto_down_reason_locked - proto down reason
9937 *
9938 * @dev: device
9939 * @mask: proto down mask
9940 * @value: proto down value
9941 */
netdev_change_proto_down_reason_locked(struct net_device * dev,unsigned long mask,u32 value)9942 void netdev_change_proto_down_reason_locked(struct net_device *dev,
9943 unsigned long mask, u32 value)
9944 {
9945 u32 proto_down_reason;
9946 int b;
9947
9948 if (!mask) {
9949 proto_down_reason = value;
9950 } else {
9951 proto_down_reason = dev->proto_down_reason;
9952 for_each_set_bit(b, &mask, 32) {
9953 if (value & (1 << b))
9954 proto_down_reason |= BIT(b);
9955 else
9956 proto_down_reason &= ~BIT(b);
9957 }
9958 }
9959 WRITE_ONCE(dev->proto_down_reason, proto_down_reason);
9960 }
9961
9962 struct bpf_xdp_link {
9963 struct bpf_link link;
9964 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9965 int flags;
9966 };
9967
dev_xdp_mode(struct net_device * dev,u32 flags)9968 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9969 {
9970 if (flags & XDP_FLAGS_HW_MODE)
9971 return XDP_MODE_HW;
9972 if (flags & XDP_FLAGS_DRV_MODE)
9973 return XDP_MODE_DRV;
9974 if (flags & XDP_FLAGS_SKB_MODE)
9975 return XDP_MODE_SKB;
9976 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9977 }
9978
dev_xdp_bpf_op(struct net_device * dev,enum bpf_xdp_mode mode)9979 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9980 {
9981 switch (mode) {
9982 case XDP_MODE_SKB:
9983 return generic_xdp_install;
9984 case XDP_MODE_DRV:
9985 case XDP_MODE_HW:
9986 return dev->netdev_ops->ndo_bpf;
9987 default:
9988 return NULL;
9989 }
9990 }
9991
dev_xdp_link(struct net_device * dev,enum bpf_xdp_mode mode)9992 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9993 enum bpf_xdp_mode mode)
9994 {
9995 return dev->xdp_state[mode].link;
9996 }
9997
dev_xdp_prog(struct net_device * dev,enum bpf_xdp_mode mode)9998 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9999 enum bpf_xdp_mode mode)
10000 {
10001 struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
10002
10003 if (link)
10004 return link->link.prog;
10005 return dev->xdp_state[mode].prog;
10006 }
10007
dev_xdp_prog_count(struct net_device * dev)10008 u8 dev_xdp_prog_count(struct net_device *dev)
10009 {
10010 u8 count = 0;
10011 int i;
10012
10013 for (i = 0; i < __MAX_XDP_MODE; i++)
10014 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
10015 count++;
10016 return count;
10017 }
10018 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
10019
dev_xdp_sb_prog_count(struct net_device * dev)10020 u8 dev_xdp_sb_prog_count(struct net_device *dev)
10021 {
10022 u8 count = 0;
10023 int i;
10024
10025 for (i = 0; i < __MAX_XDP_MODE; i++)
10026 if (dev->xdp_state[i].prog &&
10027 !dev->xdp_state[i].prog->aux->xdp_has_frags)
10028 count++;
10029 return count;
10030 }
10031
netif_xdp_propagate(struct net_device * dev,struct netdev_bpf * bpf)10032 int netif_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf)
10033 {
10034 if (!dev->netdev_ops->ndo_bpf)
10035 return -EOPNOTSUPP;
10036
10037 if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED &&
10038 bpf->command == XDP_SETUP_PROG &&
10039 bpf->prog && !bpf->prog->aux->xdp_has_frags) {
10040 NL_SET_ERR_MSG(bpf->extack,
10041 "unable to propagate XDP to device using tcp-data-split");
10042 return -EBUSY;
10043 }
10044
10045 if (dev_get_min_mp_channel_count(dev)) {
10046 NL_SET_ERR_MSG(bpf->extack, "unable to propagate XDP to device using memory provider");
10047 return -EBUSY;
10048 }
10049
10050 return dev->netdev_ops->ndo_bpf(dev, bpf);
10051 }
10052 EXPORT_SYMBOL_GPL(netif_xdp_propagate);
10053
dev_xdp_prog_id(struct net_device * dev,enum bpf_xdp_mode mode)10054 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
10055 {
10056 struct bpf_prog *prog = dev_xdp_prog(dev, mode);
10057
10058 return prog ? prog->aux->id : 0;
10059 }
10060
dev_xdp_set_link(struct net_device * dev,enum bpf_xdp_mode mode,struct bpf_xdp_link * link)10061 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
10062 struct bpf_xdp_link *link)
10063 {
10064 dev->xdp_state[mode].link = link;
10065 dev->xdp_state[mode].prog = NULL;
10066 }
10067
dev_xdp_set_prog(struct net_device * dev,enum bpf_xdp_mode mode,struct bpf_prog * prog)10068 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
10069 struct bpf_prog *prog)
10070 {
10071 dev->xdp_state[mode].link = NULL;
10072 dev->xdp_state[mode].prog = prog;
10073 }
10074
dev_xdp_install(struct net_device * dev,enum bpf_xdp_mode mode,bpf_op_t bpf_op,struct netlink_ext_ack * extack,u32 flags,struct bpf_prog * prog)10075 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
10076 bpf_op_t bpf_op, struct netlink_ext_ack *extack,
10077 u32 flags, struct bpf_prog *prog)
10078 {
10079 struct netdev_bpf xdp;
10080 int err;
10081
10082 netdev_ops_assert_locked(dev);
10083
10084 if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED &&
10085 prog && !prog->aux->xdp_has_frags) {
10086 NL_SET_ERR_MSG(extack, "unable to install XDP to device using tcp-data-split");
10087 return -EBUSY;
10088 }
10089
10090 if (dev_get_min_mp_channel_count(dev)) {
10091 NL_SET_ERR_MSG(extack, "unable to install XDP to device using memory provider");
10092 return -EBUSY;
10093 }
10094
10095 memset(&xdp, 0, sizeof(xdp));
10096 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
10097 xdp.extack = extack;
10098 xdp.flags = flags;
10099 xdp.prog = prog;
10100
10101 /* Drivers assume refcnt is already incremented (i.e, prog pointer is
10102 * "moved" into driver), so they don't increment it on their own, but
10103 * they do decrement refcnt when program is detached or replaced.
10104 * Given net_device also owns link/prog, we need to bump refcnt here
10105 * to prevent drivers from underflowing it.
10106 */
10107 if (prog)
10108 bpf_prog_inc(prog);
10109 err = bpf_op(dev, &xdp);
10110 if (err) {
10111 if (prog)
10112 bpf_prog_put(prog);
10113 return err;
10114 }
10115
10116 if (mode != XDP_MODE_HW)
10117 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
10118
10119 return 0;
10120 }
10121
dev_xdp_uninstall(struct net_device * dev)10122 static void dev_xdp_uninstall(struct net_device *dev)
10123 {
10124 struct bpf_xdp_link *link;
10125 struct bpf_prog *prog;
10126 enum bpf_xdp_mode mode;
10127 bpf_op_t bpf_op;
10128
10129 ASSERT_RTNL();
10130
10131 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
10132 prog = dev_xdp_prog(dev, mode);
10133 if (!prog)
10134 continue;
10135
10136 bpf_op = dev_xdp_bpf_op(dev, mode);
10137 if (!bpf_op)
10138 continue;
10139
10140 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
10141
10142 /* auto-detach link from net device */
10143 link = dev_xdp_link(dev, mode);
10144 if (link)
10145 link->dev = NULL;
10146 else
10147 bpf_prog_put(prog);
10148
10149 dev_xdp_set_link(dev, mode, NULL);
10150 }
10151 }
10152
dev_xdp_attach(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link,struct bpf_prog * new_prog,struct bpf_prog * old_prog,u32 flags)10153 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
10154 struct bpf_xdp_link *link, struct bpf_prog *new_prog,
10155 struct bpf_prog *old_prog, u32 flags)
10156 {
10157 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
10158 struct bpf_prog *cur_prog;
10159 struct net_device *upper;
10160 struct list_head *iter;
10161 enum bpf_xdp_mode mode;
10162 bpf_op_t bpf_op;
10163 int err;
10164
10165 ASSERT_RTNL();
10166
10167 /* either link or prog attachment, never both */
10168 if (link && (new_prog || old_prog))
10169 return -EINVAL;
10170 /* link supports only XDP mode flags */
10171 if (link && (flags & ~XDP_FLAGS_MODES)) {
10172 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
10173 return -EINVAL;
10174 }
10175 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
10176 if (num_modes > 1) {
10177 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
10178 return -EINVAL;
10179 }
10180 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
10181 if (!num_modes && dev_xdp_prog_count(dev) > 1) {
10182 NL_SET_ERR_MSG(extack,
10183 "More than one program loaded, unset mode is ambiguous");
10184 return -EINVAL;
10185 }
10186 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
10187 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
10188 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
10189 return -EINVAL;
10190 }
10191
10192 mode = dev_xdp_mode(dev, flags);
10193 /* can't replace attached link */
10194 if (dev_xdp_link(dev, mode)) {
10195 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
10196 return -EBUSY;
10197 }
10198
10199 /* don't allow if an upper device already has a program */
10200 netdev_for_each_upper_dev_rcu(dev, upper, iter) {
10201 if (dev_xdp_prog_count(upper) > 0) {
10202 NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
10203 return -EEXIST;
10204 }
10205 }
10206
10207 cur_prog = dev_xdp_prog(dev, mode);
10208 /* can't replace attached prog with link */
10209 if (link && cur_prog) {
10210 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
10211 return -EBUSY;
10212 }
10213 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
10214 NL_SET_ERR_MSG(extack, "Active program does not match expected");
10215 return -EEXIST;
10216 }
10217
10218 /* put effective new program into new_prog */
10219 if (link)
10220 new_prog = link->link.prog;
10221
10222 if (new_prog) {
10223 bool offload = mode == XDP_MODE_HW;
10224 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
10225 ? XDP_MODE_DRV : XDP_MODE_SKB;
10226
10227 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
10228 NL_SET_ERR_MSG(extack, "XDP program already attached");
10229 return -EBUSY;
10230 }
10231 if (!offload && dev_xdp_prog(dev, other_mode)) {
10232 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
10233 return -EEXIST;
10234 }
10235 if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
10236 NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
10237 return -EINVAL;
10238 }
10239 if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
10240 NL_SET_ERR_MSG(extack, "Program bound to different device");
10241 return -EINVAL;
10242 }
10243 if (bpf_prog_is_dev_bound(new_prog->aux) && mode == XDP_MODE_SKB) {
10244 NL_SET_ERR_MSG(extack, "Can't attach device-bound programs in generic mode");
10245 return -EINVAL;
10246 }
10247 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
10248 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
10249 return -EINVAL;
10250 }
10251 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
10252 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
10253 return -EINVAL;
10254 }
10255 }
10256
10257 /* don't call drivers if the effective program didn't change */
10258 if (new_prog != cur_prog) {
10259 bpf_op = dev_xdp_bpf_op(dev, mode);
10260 if (!bpf_op) {
10261 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
10262 return -EOPNOTSUPP;
10263 }
10264
10265 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
10266 if (err)
10267 return err;
10268 }
10269
10270 if (link)
10271 dev_xdp_set_link(dev, mode, link);
10272 else
10273 dev_xdp_set_prog(dev, mode, new_prog);
10274 if (cur_prog)
10275 bpf_prog_put(cur_prog);
10276
10277 return 0;
10278 }
10279
dev_xdp_attach_link(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link)10280 static int dev_xdp_attach_link(struct net_device *dev,
10281 struct netlink_ext_ack *extack,
10282 struct bpf_xdp_link *link)
10283 {
10284 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
10285 }
10286
dev_xdp_detach_link(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link)10287 static int dev_xdp_detach_link(struct net_device *dev,
10288 struct netlink_ext_ack *extack,
10289 struct bpf_xdp_link *link)
10290 {
10291 enum bpf_xdp_mode mode;
10292 bpf_op_t bpf_op;
10293
10294 ASSERT_RTNL();
10295
10296 mode = dev_xdp_mode(dev, link->flags);
10297 if (dev_xdp_link(dev, mode) != link)
10298 return -EINVAL;
10299
10300 bpf_op = dev_xdp_bpf_op(dev, mode);
10301 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
10302 dev_xdp_set_link(dev, mode, NULL);
10303 return 0;
10304 }
10305
bpf_xdp_link_release(struct bpf_link * link)10306 static void bpf_xdp_link_release(struct bpf_link *link)
10307 {
10308 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10309
10310 rtnl_lock();
10311
10312 /* if racing with net_device's tear down, xdp_link->dev might be
10313 * already NULL, in which case link was already auto-detached
10314 */
10315 if (xdp_link->dev) {
10316 netdev_lock_ops(xdp_link->dev);
10317 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
10318 netdev_unlock_ops(xdp_link->dev);
10319 xdp_link->dev = NULL;
10320 }
10321
10322 rtnl_unlock();
10323 }
10324
bpf_xdp_link_detach(struct bpf_link * link)10325 static int bpf_xdp_link_detach(struct bpf_link *link)
10326 {
10327 bpf_xdp_link_release(link);
10328 return 0;
10329 }
10330
bpf_xdp_link_dealloc(struct bpf_link * link)10331 static void bpf_xdp_link_dealloc(struct bpf_link *link)
10332 {
10333 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10334
10335 kfree(xdp_link);
10336 }
10337
bpf_xdp_link_show_fdinfo(const struct bpf_link * link,struct seq_file * seq)10338 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
10339 struct seq_file *seq)
10340 {
10341 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10342 u32 ifindex = 0;
10343
10344 rtnl_lock();
10345 if (xdp_link->dev)
10346 ifindex = xdp_link->dev->ifindex;
10347 rtnl_unlock();
10348
10349 seq_printf(seq, "ifindex:\t%u\n", ifindex);
10350 }
10351
bpf_xdp_link_fill_link_info(const struct bpf_link * link,struct bpf_link_info * info)10352 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
10353 struct bpf_link_info *info)
10354 {
10355 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10356 u32 ifindex = 0;
10357
10358 rtnl_lock();
10359 if (xdp_link->dev)
10360 ifindex = xdp_link->dev->ifindex;
10361 rtnl_unlock();
10362
10363 info->xdp.ifindex = ifindex;
10364 return 0;
10365 }
10366
bpf_xdp_link_update(struct bpf_link * link,struct bpf_prog * new_prog,struct bpf_prog * old_prog)10367 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
10368 struct bpf_prog *old_prog)
10369 {
10370 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10371 enum bpf_xdp_mode mode;
10372 bpf_op_t bpf_op;
10373 int err = 0;
10374
10375 rtnl_lock();
10376
10377 /* link might have been auto-released already, so fail */
10378 if (!xdp_link->dev) {
10379 err = -ENOLINK;
10380 goto out_unlock;
10381 }
10382
10383 if (old_prog && link->prog != old_prog) {
10384 err = -EPERM;
10385 goto out_unlock;
10386 }
10387 old_prog = link->prog;
10388 if (old_prog->type != new_prog->type ||
10389 old_prog->expected_attach_type != new_prog->expected_attach_type) {
10390 err = -EINVAL;
10391 goto out_unlock;
10392 }
10393
10394 if (old_prog == new_prog) {
10395 /* no-op, don't disturb drivers */
10396 bpf_prog_put(new_prog);
10397 goto out_unlock;
10398 }
10399
10400 netdev_lock_ops(xdp_link->dev);
10401 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
10402 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
10403 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
10404 xdp_link->flags, new_prog);
10405 netdev_unlock_ops(xdp_link->dev);
10406 if (err)
10407 goto out_unlock;
10408
10409 old_prog = xchg(&link->prog, new_prog);
10410 bpf_prog_put(old_prog);
10411
10412 out_unlock:
10413 rtnl_unlock();
10414 return err;
10415 }
10416
10417 static const struct bpf_link_ops bpf_xdp_link_lops = {
10418 .release = bpf_xdp_link_release,
10419 .dealloc = bpf_xdp_link_dealloc,
10420 .detach = bpf_xdp_link_detach,
10421 .show_fdinfo = bpf_xdp_link_show_fdinfo,
10422 .fill_link_info = bpf_xdp_link_fill_link_info,
10423 .update_prog = bpf_xdp_link_update,
10424 };
10425
bpf_xdp_link_attach(const union bpf_attr * attr,struct bpf_prog * prog)10426 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
10427 {
10428 struct net *net = current->nsproxy->net_ns;
10429 struct bpf_link_primer link_primer;
10430 struct netlink_ext_ack extack = {};
10431 struct bpf_xdp_link *link;
10432 struct net_device *dev;
10433 int err, fd;
10434
10435 rtnl_lock();
10436 dev = dev_get_by_index(net, attr->link_create.target_ifindex);
10437 if (!dev) {
10438 rtnl_unlock();
10439 return -EINVAL;
10440 }
10441
10442 link = kzalloc(sizeof(*link), GFP_USER);
10443 if (!link) {
10444 err = -ENOMEM;
10445 goto unlock;
10446 }
10447
10448 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog,
10449 attr->link_create.attach_type);
10450 link->dev = dev;
10451 link->flags = attr->link_create.flags;
10452
10453 err = bpf_link_prime(&link->link, &link_primer);
10454 if (err) {
10455 kfree(link);
10456 goto unlock;
10457 }
10458
10459 netdev_lock_ops(dev);
10460 err = dev_xdp_attach_link(dev, &extack, link);
10461 netdev_unlock_ops(dev);
10462 rtnl_unlock();
10463
10464 if (err) {
10465 link->dev = NULL;
10466 bpf_link_cleanup(&link_primer);
10467 trace_bpf_xdp_link_attach_failed(extack._msg);
10468 goto out_put_dev;
10469 }
10470
10471 fd = bpf_link_settle(&link_primer);
10472 /* link itself doesn't hold dev's refcnt to not complicate shutdown */
10473 dev_put(dev);
10474 return fd;
10475
10476 unlock:
10477 rtnl_unlock();
10478
10479 out_put_dev:
10480 dev_put(dev);
10481 return err;
10482 }
10483
10484 /**
10485 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
10486 * @dev: device
10487 * @extack: netlink extended ack
10488 * @fd: new program fd or negative value to clear
10489 * @expected_fd: old program fd that userspace expects to replace or clear
10490 * @flags: xdp-related flags
10491 *
10492 * Set or clear a bpf program for a device
10493 */
dev_change_xdp_fd(struct net_device * dev,struct netlink_ext_ack * extack,int fd,int expected_fd,u32 flags)10494 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
10495 int fd, int expected_fd, u32 flags)
10496 {
10497 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
10498 struct bpf_prog *new_prog = NULL, *old_prog = NULL;
10499 int err;
10500
10501 ASSERT_RTNL();
10502
10503 if (fd >= 0) {
10504 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
10505 mode != XDP_MODE_SKB);
10506 if (IS_ERR(new_prog))
10507 return PTR_ERR(new_prog);
10508 }
10509
10510 if (expected_fd >= 0) {
10511 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
10512 mode != XDP_MODE_SKB);
10513 if (IS_ERR(old_prog)) {
10514 err = PTR_ERR(old_prog);
10515 old_prog = NULL;
10516 goto err_out;
10517 }
10518 }
10519
10520 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
10521
10522 err_out:
10523 if (err && new_prog)
10524 bpf_prog_put(new_prog);
10525 if (old_prog)
10526 bpf_prog_put(old_prog);
10527 return err;
10528 }
10529
dev_get_min_mp_channel_count(const struct net_device * dev)10530 u32 dev_get_min_mp_channel_count(const struct net_device *dev)
10531 {
10532 int i;
10533
10534 netdev_ops_assert_locked(dev);
10535
10536 for (i = dev->real_num_rx_queues - 1; i >= 0; i--)
10537 if (dev->_rx[i].mp_params.mp_priv)
10538 /* The channel count is the idx plus 1. */
10539 return i + 1;
10540
10541 return 0;
10542 }
10543
10544 /**
10545 * dev_index_reserve() - allocate an ifindex in a namespace
10546 * @net: the applicable net namespace
10547 * @ifindex: requested ifindex, pass %0 to get one allocated
10548 *
10549 * Allocate a ifindex for a new device. Caller must either use the ifindex
10550 * to store the device (via list_netdevice()) or call dev_index_release()
10551 * to give the index up.
10552 *
10553 * Return: a suitable unique value for a new device interface number or -errno.
10554 */
dev_index_reserve(struct net * net,u32 ifindex)10555 static int dev_index_reserve(struct net *net, u32 ifindex)
10556 {
10557 int err;
10558
10559 if (ifindex > INT_MAX) {
10560 DEBUG_NET_WARN_ON_ONCE(1);
10561 return -EINVAL;
10562 }
10563
10564 if (!ifindex)
10565 err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
10566 xa_limit_31b, &net->ifindex, GFP_KERNEL);
10567 else
10568 err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
10569 if (err < 0)
10570 return err;
10571
10572 return ifindex;
10573 }
10574
dev_index_release(struct net * net,int ifindex)10575 static void dev_index_release(struct net *net, int ifindex)
10576 {
10577 /* Expect only unused indexes, unlist_netdevice() removes the used */
10578 WARN_ON(xa_erase(&net->dev_by_index, ifindex));
10579 }
10580
from_cleanup_net(void)10581 static bool from_cleanup_net(void)
10582 {
10583 #ifdef CONFIG_NET_NS
10584 return current == READ_ONCE(cleanup_net_task);
10585 #else
10586 return false;
10587 #endif
10588 }
10589
10590 /* Delayed registration/unregisteration */
10591 LIST_HEAD(net_todo_list);
10592 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
10593 atomic_t dev_unreg_count = ATOMIC_INIT(0);
10594
net_set_todo(struct net_device * dev)10595 static void net_set_todo(struct net_device *dev)
10596 {
10597 list_add_tail(&dev->todo_list, &net_todo_list);
10598 }
10599
netdev_sync_upper_features(struct net_device * lower,struct net_device * upper,netdev_features_t features)10600 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
10601 struct net_device *upper, netdev_features_t features)
10602 {
10603 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
10604 netdev_features_t feature;
10605 int feature_bit;
10606
10607 for_each_netdev_feature(upper_disables, feature_bit) {
10608 feature = __NETIF_F_BIT(feature_bit);
10609 if (!(upper->wanted_features & feature)
10610 && (features & feature)) {
10611 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
10612 &feature, upper->name);
10613 features &= ~feature;
10614 }
10615 }
10616
10617 return features;
10618 }
10619
netdev_sync_lower_features(struct net_device * upper,struct net_device * lower,netdev_features_t features)10620 static void netdev_sync_lower_features(struct net_device *upper,
10621 struct net_device *lower, netdev_features_t features)
10622 {
10623 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
10624 netdev_features_t feature;
10625 int feature_bit;
10626
10627 for_each_netdev_feature(upper_disables, feature_bit) {
10628 feature = __NETIF_F_BIT(feature_bit);
10629 if (!(features & feature) && (lower->features & feature)) {
10630 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
10631 &feature, lower->name);
10632 netdev_lock_ops(lower);
10633 lower->wanted_features &= ~feature;
10634 __netdev_update_features(lower);
10635
10636 if (unlikely(lower->features & feature))
10637 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
10638 &feature, lower->name);
10639 else
10640 netdev_features_change(lower);
10641 netdev_unlock_ops(lower);
10642 }
10643 }
10644 }
10645
netdev_has_ip_or_hw_csum(netdev_features_t features)10646 static bool netdev_has_ip_or_hw_csum(netdev_features_t features)
10647 {
10648 netdev_features_t ip_csum_mask = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
10649 bool ip_csum = (features & ip_csum_mask) == ip_csum_mask;
10650 bool hw_csum = features & NETIF_F_HW_CSUM;
10651
10652 return ip_csum || hw_csum;
10653 }
10654
netdev_fix_features(struct net_device * dev,netdev_features_t features)10655 static netdev_features_t netdev_fix_features(struct net_device *dev,
10656 netdev_features_t features)
10657 {
10658 /* Fix illegal checksum combinations */
10659 if ((features & NETIF_F_HW_CSUM) &&
10660 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
10661 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
10662 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
10663 }
10664
10665 /* TSO requires that SG is present as well. */
10666 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
10667 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
10668 features &= ~NETIF_F_ALL_TSO;
10669 }
10670
10671 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
10672 !(features & NETIF_F_IP_CSUM)) {
10673 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
10674 features &= ~NETIF_F_TSO;
10675 features &= ~NETIF_F_TSO_ECN;
10676 }
10677
10678 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
10679 !(features & NETIF_F_IPV6_CSUM)) {
10680 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
10681 features &= ~NETIF_F_TSO6;
10682 }
10683
10684 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
10685 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
10686 features &= ~NETIF_F_TSO_MANGLEID;
10687
10688 /* TSO ECN requires that TSO is present as well. */
10689 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
10690 features &= ~NETIF_F_TSO_ECN;
10691
10692 /* Software GSO depends on SG. */
10693 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
10694 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
10695 features &= ~NETIF_F_GSO;
10696 }
10697
10698 /* GSO partial features require GSO partial be set */
10699 if ((features & dev->gso_partial_features) &&
10700 !(features & NETIF_F_GSO_PARTIAL)) {
10701 netdev_dbg(dev,
10702 "Dropping partially supported GSO features since no GSO partial.\n");
10703 features &= ~dev->gso_partial_features;
10704 }
10705
10706 if (!(features & NETIF_F_RXCSUM)) {
10707 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
10708 * successfully merged by hardware must also have the
10709 * checksum verified by hardware. If the user does not
10710 * want to enable RXCSUM, logically, we should disable GRO_HW.
10711 */
10712 if (features & NETIF_F_GRO_HW) {
10713 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
10714 features &= ~NETIF_F_GRO_HW;
10715 }
10716 }
10717
10718 /* LRO/HW-GRO features cannot be combined with RX-FCS */
10719 if (features & NETIF_F_RXFCS) {
10720 if (features & NETIF_F_LRO) {
10721 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
10722 features &= ~NETIF_F_LRO;
10723 }
10724
10725 if (features & NETIF_F_GRO_HW) {
10726 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
10727 features &= ~NETIF_F_GRO_HW;
10728 }
10729 }
10730
10731 if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
10732 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
10733 features &= ~NETIF_F_LRO;
10734 }
10735
10736 if ((features & NETIF_F_HW_TLS_TX) && !netdev_has_ip_or_hw_csum(features)) {
10737 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
10738 features &= ~NETIF_F_HW_TLS_TX;
10739 }
10740
10741 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
10742 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
10743 features &= ~NETIF_F_HW_TLS_RX;
10744 }
10745
10746 if ((features & NETIF_F_GSO_UDP_L4) && !netdev_has_ip_or_hw_csum(features)) {
10747 netdev_dbg(dev, "Dropping USO feature since no CSUM feature.\n");
10748 features &= ~NETIF_F_GSO_UDP_L4;
10749 }
10750
10751 return features;
10752 }
10753
__netdev_update_features(struct net_device * dev)10754 int __netdev_update_features(struct net_device *dev)
10755 {
10756 struct net_device *upper, *lower;
10757 netdev_features_t features;
10758 struct list_head *iter;
10759 int err = -1;
10760
10761 ASSERT_RTNL();
10762 netdev_ops_assert_locked(dev);
10763
10764 features = netdev_get_wanted_features(dev);
10765
10766 if (dev->netdev_ops->ndo_fix_features)
10767 features = dev->netdev_ops->ndo_fix_features(dev, features);
10768
10769 /* driver might be less strict about feature dependencies */
10770 features = netdev_fix_features(dev, features);
10771
10772 /* some features can't be enabled if they're off on an upper device */
10773 netdev_for_each_upper_dev_rcu(dev, upper, iter)
10774 features = netdev_sync_upper_features(dev, upper, features);
10775
10776 if (dev->features == features)
10777 goto sync_lower;
10778
10779 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
10780 &dev->features, &features);
10781
10782 if (dev->netdev_ops->ndo_set_features)
10783 err = dev->netdev_ops->ndo_set_features(dev, features);
10784 else
10785 err = 0;
10786
10787 if (unlikely(err < 0)) {
10788 netdev_err(dev,
10789 "set_features() failed (%d); wanted %pNF, left %pNF\n",
10790 err, &features, &dev->features);
10791 /* return non-0 since some features might have changed and
10792 * it's better to fire a spurious notification than miss it
10793 */
10794 return -1;
10795 }
10796
10797 sync_lower:
10798 /* some features must be disabled on lower devices when disabled
10799 * on an upper device (think: bonding master or bridge)
10800 */
10801 netdev_for_each_lower_dev(dev, lower, iter)
10802 netdev_sync_lower_features(dev, lower, features);
10803
10804 if (!err) {
10805 netdev_features_t diff = features ^ dev->features;
10806
10807 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
10808 /* udp_tunnel_{get,drop}_rx_info both need
10809 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
10810 * device, or they won't do anything.
10811 * Thus we need to update dev->features
10812 * *before* calling udp_tunnel_get_rx_info,
10813 * but *after* calling udp_tunnel_drop_rx_info.
10814 */
10815 udp_tunnel_nic_lock(dev);
10816 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
10817 dev->features = features;
10818 udp_tunnel_get_rx_info(dev);
10819 } else {
10820 udp_tunnel_drop_rx_info(dev);
10821 }
10822 udp_tunnel_nic_unlock(dev);
10823 }
10824
10825 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
10826 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
10827 dev->features = features;
10828 err |= vlan_get_rx_ctag_filter_info(dev);
10829 } else {
10830 vlan_drop_rx_ctag_filter_info(dev);
10831 }
10832 }
10833
10834 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
10835 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
10836 dev->features = features;
10837 err |= vlan_get_rx_stag_filter_info(dev);
10838 } else {
10839 vlan_drop_rx_stag_filter_info(dev);
10840 }
10841 }
10842
10843 dev->features = features;
10844 }
10845
10846 return err < 0 ? 0 : 1;
10847 }
10848
10849 /**
10850 * netdev_update_features - recalculate device features
10851 * @dev: the device to check
10852 *
10853 * Recalculate dev->features set and send notifications if it
10854 * has changed. Should be called after driver or hardware dependent
10855 * conditions might have changed that influence the features.
10856 */
netdev_update_features(struct net_device * dev)10857 void netdev_update_features(struct net_device *dev)
10858 {
10859 if (__netdev_update_features(dev))
10860 netdev_features_change(dev);
10861 }
10862 EXPORT_SYMBOL(netdev_update_features);
10863
10864 /**
10865 * netdev_change_features - recalculate device features
10866 * @dev: the device to check
10867 *
10868 * Recalculate dev->features set and send notifications even
10869 * if they have not changed. Should be called instead of
10870 * netdev_update_features() if also dev->vlan_features might
10871 * have changed to allow the changes to be propagated to stacked
10872 * VLAN devices.
10873 */
netdev_change_features(struct net_device * dev)10874 void netdev_change_features(struct net_device *dev)
10875 {
10876 __netdev_update_features(dev);
10877 netdev_features_change(dev);
10878 }
10879 EXPORT_SYMBOL(netdev_change_features);
10880
10881 /**
10882 * netif_stacked_transfer_operstate - transfer operstate
10883 * @rootdev: the root or lower level device to transfer state from
10884 * @dev: the device to transfer operstate to
10885 *
10886 * Transfer operational state from root to device. This is normally
10887 * called when a stacking relationship exists between the root
10888 * device and the device(a leaf device).
10889 */
netif_stacked_transfer_operstate(const struct net_device * rootdev,struct net_device * dev)10890 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10891 struct net_device *dev)
10892 {
10893 if (rootdev->operstate == IF_OPER_DORMANT)
10894 netif_dormant_on(dev);
10895 else
10896 netif_dormant_off(dev);
10897
10898 if (rootdev->operstate == IF_OPER_TESTING)
10899 netif_testing_on(dev);
10900 else
10901 netif_testing_off(dev);
10902
10903 if (netif_carrier_ok(rootdev))
10904 netif_carrier_on(dev);
10905 else
10906 netif_carrier_off(dev);
10907 }
10908 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10909
netif_alloc_rx_queues(struct net_device * dev)10910 static int netif_alloc_rx_queues(struct net_device *dev)
10911 {
10912 unsigned int i, count = dev->num_rx_queues;
10913 struct netdev_rx_queue *rx;
10914 size_t sz = count * sizeof(*rx);
10915 int err = 0;
10916
10917 BUG_ON(count < 1);
10918
10919 rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10920 if (!rx)
10921 return -ENOMEM;
10922
10923 dev->_rx = rx;
10924
10925 for (i = 0; i < count; i++) {
10926 rx[i].dev = dev;
10927
10928 /* XDP RX-queue setup */
10929 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10930 if (err < 0)
10931 goto err_rxq_info;
10932 }
10933 return 0;
10934
10935 err_rxq_info:
10936 /* Rollback successful reg's and free other resources */
10937 while (i--)
10938 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10939 kvfree(dev->_rx);
10940 dev->_rx = NULL;
10941 return err;
10942 }
10943
netif_free_rx_queues(struct net_device * dev)10944 static void netif_free_rx_queues(struct net_device *dev)
10945 {
10946 unsigned int i, count = dev->num_rx_queues;
10947
10948 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10949 if (!dev->_rx)
10950 return;
10951
10952 for (i = 0; i < count; i++)
10953 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10954
10955 kvfree(dev->_rx);
10956 }
10957
netdev_init_one_queue(struct net_device * dev,struct netdev_queue * queue,void * _unused)10958 static void netdev_init_one_queue(struct net_device *dev,
10959 struct netdev_queue *queue, void *_unused)
10960 {
10961 /* Initialize queue lock */
10962 spin_lock_init(&queue->_xmit_lock);
10963 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10964 queue->xmit_lock_owner = -1;
10965 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10966 queue->dev = dev;
10967 #ifdef CONFIG_BQL
10968 dql_init(&queue->dql, HZ);
10969 #endif
10970 }
10971
netif_free_tx_queues(struct net_device * dev)10972 static void netif_free_tx_queues(struct net_device *dev)
10973 {
10974 kvfree(dev->_tx);
10975 }
10976
netif_alloc_netdev_queues(struct net_device * dev)10977 static int netif_alloc_netdev_queues(struct net_device *dev)
10978 {
10979 unsigned int count = dev->num_tx_queues;
10980 struct netdev_queue *tx;
10981 size_t sz = count * sizeof(*tx);
10982
10983 if (count < 1 || count > 0xffff)
10984 return -EINVAL;
10985
10986 tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10987 if (!tx)
10988 return -ENOMEM;
10989
10990 dev->_tx = tx;
10991
10992 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10993 spin_lock_init(&dev->tx_global_lock);
10994
10995 return 0;
10996 }
10997
netif_tx_stop_all_queues(struct net_device * dev)10998 void netif_tx_stop_all_queues(struct net_device *dev)
10999 {
11000 unsigned int i;
11001
11002 for (i = 0; i < dev->num_tx_queues; i++) {
11003 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
11004
11005 netif_tx_stop_queue(txq);
11006 }
11007 }
11008 EXPORT_SYMBOL(netif_tx_stop_all_queues);
11009
netdev_do_alloc_pcpu_stats(struct net_device * dev)11010 static int netdev_do_alloc_pcpu_stats(struct net_device *dev)
11011 {
11012 void __percpu *v;
11013
11014 /* Drivers implementing ndo_get_peer_dev must support tstat
11015 * accounting, so that skb_do_redirect() can bump the dev's
11016 * RX stats upon network namespace switch.
11017 */
11018 if (dev->netdev_ops->ndo_get_peer_dev &&
11019 dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS)
11020 return -EOPNOTSUPP;
11021
11022 switch (dev->pcpu_stat_type) {
11023 case NETDEV_PCPU_STAT_NONE:
11024 return 0;
11025 case NETDEV_PCPU_STAT_LSTATS:
11026 v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
11027 break;
11028 case NETDEV_PCPU_STAT_TSTATS:
11029 v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
11030 break;
11031 case NETDEV_PCPU_STAT_DSTATS:
11032 v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
11033 break;
11034 default:
11035 return -EINVAL;
11036 }
11037
11038 return v ? 0 : -ENOMEM;
11039 }
11040
netdev_do_free_pcpu_stats(struct net_device * dev)11041 static void netdev_do_free_pcpu_stats(struct net_device *dev)
11042 {
11043 switch (dev->pcpu_stat_type) {
11044 case NETDEV_PCPU_STAT_NONE:
11045 return;
11046 case NETDEV_PCPU_STAT_LSTATS:
11047 free_percpu(dev->lstats);
11048 break;
11049 case NETDEV_PCPU_STAT_TSTATS:
11050 free_percpu(dev->tstats);
11051 break;
11052 case NETDEV_PCPU_STAT_DSTATS:
11053 free_percpu(dev->dstats);
11054 break;
11055 }
11056 }
11057
netdev_free_phy_link_topology(struct net_device * dev)11058 static void netdev_free_phy_link_topology(struct net_device *dev)
11059 {
11060 struct phy_link_topology *topo = dev->link_topo;
11061
11062 if (IS_ENABLED(CONFIG_PHYLIB) && topo) {
11063 xa_destroy(&topo->phys);
11064 kfree(topo);
11065 dev->link_topo = NULL;
11066 }
11067 }
11068
11069 /**
11070 * register_netdevice() - register a network device
11071 * @dev: device to register
11072 *
11073 * Take a prepared network device structure and make it externally accessible.
11074 * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
11075 * Callers must hold the rtnl lock - you may want register_netdev()
11076 * instead of this.
11077 */
register_netdevice(struct net_device * dev)11078 int register_netdevice(struct net_device *dev)
11079 {
11080 int ret;
11081 struct net *net = dev_net(dev);
11082
11083 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
11084 NETDEV_FEATURE_COUNT);
11085 BUG_ON(dev_boot_phase);
11086 ASSERT_RTNL();
11087
11088 might_sleep();
11089
11090 /* When net_device's are persistent, this will be fatal. */
11091 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
11092 BUG_ON(!net);
11093
11094 ret = ethtool_check_ops(dev->ethtool_ops);
11095 if (ret)
11096 return ret;
11097
11098 /* rss ctx ID 0 is reserved for the default context, start from 1 */
11099 xa_init_flags(&dev->ethtool->rss_ctx, XA_FLAGS_ALLOC1);
11100 mutex_init(&dev->ethtool->rss_lock);
11101
11102 spin_lock_init(&dev->addr_list_lock);
11103 netdev_set_addr_lockdep_class(dev);
11104
11105 ret = dev_get_valid_name(net, dev, dev->name);
11106 if (ret < 0)
11107 goto out;
11108
11109 ret = -ENOMEM;
11110 dev->name_node = netdev_name_node_head_alloc(dev);
11111 if (!dev->name_node)
11112 goto out;
11113
11114 /* Init, if this function is available */
11115 if (dev->netdev_ops->ndo_init) {
11116 ret = dev->netdev_ops->ndo_init(dev);
11117 if (ret) {
11118 if (ret > 0)
11119 ret = -EIO;
11120 goto err_free_name;
11121 }
11122 }
11123
11124 if (((dev->hw_features | dev->features) &
11125 NETIF_F_HW_VLAN_CTAG_FILTER) &&
11126 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
11127 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
11128 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
11129 ret = -EINVAL;
11130 goto err_uninit;
11131 }
11132
11133 ret = netdev_do_alloc_pcpu_stats(dev);
11134 if (ret)
11135 goto err_uninit;
11136
11137 ret = dev_index_reserve(net, dev->ifindex);
11138 if (ret < 0)
11139 goto err_free_pcpu;
11140 dev->ifindex = ret;
11141
11142 /* Transfer changeable features to wanted_features and enable
11143 * software offloads (GSO and GRO).
11144 */
11145 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
11146 dev->features |= NETIF_F_SOFT_FEATURES;
11147
11148 if (dev->udp_tunnel_nic_info) {
11149 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
11150 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
11151 }
11152
11153 dev->wanted_features = dev->features & dev->hw_features;
11154
11155 if (!(dev->flags & IFF_LOOPBACK))
11156 dev->hw_features |= NETIF_F_NOCACHE_COPY;
11157
11158 /* If IPv4 TCP segmentation offload is supported we should also
11159 * allow the device to enable segmenting the frame with the option
11160 * of ignoring a static IP ID value. This doesn't enable the
11161 * feature itself but allows the user to enable it later.
11162 */
11163 if (dev->hw_features & NETIF_F_TSO)
11164 dev->hw_features |= NETIF_F_TSO_MANGLEID;
11165 if (dev->vlan_features & NETIF_F_TSO)
11166 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
11167 if (dev->mpls_features & NETIF_F_TSO)
11168 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
11169 if (dev->hw_enc_features & NETIF_F_TSO)
11170 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
11171
11172 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
11173 */
11174 dev->vlan_features |= NETIF_F_HIGHDMA;
11175
11176 /* Make NETIF_F_SG inheritable to tunnel devices.
11177 */
11178 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
11179
11180 /* Make NETIF_F_SG inheritable to MPLS.
11181 */
11182 dev->mpls_features |= NETIF_F_SG;
11183
11184 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
11185 ret = notifier_to_errno(ret);
11186 if (ret)
11187 goto err_ifindex_release;
11188
11189 ret = netdev_register_kobject(dev);
11190
11191 netdev_lock(dev);
11192 WRITE_ONCE(dev->reg_state, ret ? NETREG_UNREGISTERED : NETREG_REGISTERED);
11193 netdev_unlock(dev);
11194
11195 if (ret)
11196 goto err_uninit_notify;
11197
11198 netdev_lock_ops(dev);
11199 __netdev_update_features(dev);
11200 netdev_unlock_ops(dev);
11201
11202 /*
11203 * Default initial state at registry is that the
11204 * device is present.
11205 */
11206
11207 set_bit(__LINK_STATE_PRESENT, &dev->state);
11208
11209 linkwatch_init_dev(dev);
11210
11211 dev_init_scheduler(dev);
11212
11213 netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
11214 list_netdevice(dev);
11215
11216 add_device_randomness(dev->dev_addr, dev->addr_len);
11217
11218 /* If the device has permanent device address, driver should
11219 * set dev_addr and also addr_assign_type should be set to
11220 * NET_ADDR_PERM (default value).
11221 */
11222 if (dev->addr_assign_type == NET_ADDR_PERM)
11223 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
11224
11225 /* Notify protocols, that a new device appeared. */
11226 netdev_lock_ops(dev);
11227 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
11228 netdev_unlock_ops(dev);
11229 ret = notifier_to_errno(ret);
11230 if (ret) {
11231 /* Expect explicit free_netdev() on failure */
11232 dev->needs_free_netdev = false;
11233 unregister_netdevice_queue(dev, NULL);
11234 goto out;
11235 }
11236 /*
11237 * Prevent userspace races by waiting until the network
11238 * device is fully setup before sending notifications.
11239 */
11240 if (!(dev->rtnl_link_ops && dev->rtnl_link_initializing))
11241 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11242
11243 out:
11244 return ret;
11245
11246 err_uninit_notify:
11247 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11248 err_ifindex_release:
11249 dev_index_release(net, dev->ifindex);
11250 err_free_pcpu:
11251 netdev_do_free_pcpu_stats(dev);
11252 err_uninit:
11253 if (dev->netdev_ops->ndo_uninit)
11254 dev->netdev_ops->ndo_uninit(dev);
11255 if (dev->priv_destructor)
11256 dev->priv_destructor(dev);
11257 err_free_name:
11258 netdev_name_node_free(dev->name_node);
11259 goto out;
11260 }
11261 EXPORT_SYMBOL(register_netdevice);
11262
11263 /* Initialize the core of a dummy net device.
11264 * The setup steps dummy netdevs need which normal netdevs get by going
11265 * through register_netdevice().
11266 */
init_dummy_netdev(struct net_device * dev)11267 static void init_dummy_netdev(struct net_device *dev)
11268 {
11269 /* make sure we BUG if trying to hit standard
11270 * register/unregister code path
11271 */
11272 dev->reg_state = NETREG_DUMMY;
11273
11274 /* a dummy interface is started by default */
11275 set_bit(__LINK_STATE_PRESENT, &dev->state);
11276 set_bit(__LINK_STATE_START, &dev->state);
11277
11278 /* Note : We dont allocate pcpu_refcnt for dummy devices,
11279 * because users of this 'device' dont need to change
11280 * its refcount.
11281 */
11282 }
11283
11284 /**
11285 * register_netdev - register a network device
11286 * @dev: device to register
11287 *
11288 * Take a completed network device structure and add it to the kernel
11289 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
11290 * chain. 0 is returned on success. A negative errno code is returned
11291 * on a failure to set up the device, or if the name is a duplicate.
11292 *
11293 * This is a wrapper around register_netdevice that takes the rtnl semaphore
11294 * and expands the device name if you passed a format string to
11295 * alloc_netdev.
11296 */
register_netdev(struct net_device * dev)11297 int register_netdev(struct net_device *dev)
11298 {
11299 struct net *net = dev_net(dev);
11300 int err;
11301
11302 if (rtnl_net_lock_killable(net))
11303 return -EINTR;
11304
11305 err = register_netdevice(dev);
11306
11307 rtnl_net_unlock(net);
11308
11309 return err;
11310 }
11311 EXPORT_SYMBOL(register_netdev);
11312
netdev_refcnt_read(const struct net_device * dev)11313 int netdev_refcnt_read(const struct net_device *dev)
11314 {
11315 #ifdef CONFIG_PCPU_DEV_REFCNT
11316 int i, refcnt = 0;
11317
11318 for_each_possible_cpu(i)
11319 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
11320 return refcnt;
11321 #else
11322 return refcount_read(&dev->dev_refcnt);
11323 #endif
11324 }
11325 EXPORT_SYMBOL(netdev_refcnt_read);
11326
11327 int netdev_unregister_timeout_secs __read_mostly = 10;
11328
11329 #define WAIT_REFS_MIN_MSECS 1
11330 #define WAIT_REFS_MAX_MSECS 250
11331 /**
11332 * netdev_wait_allrefs_any - wait until all references are gone.
11333 * @list: list of net_devices to wait on
11334 *
11335 * This is called when unregistering network devices.
11336 *
11337 * Any protocol or device that holds a reference should register
11338 * for netdevice notification, and cleanup and put back the
11339 * reference if they receive an UNREGISTER event.
11340 * We can get stuck here if buggy protocols don't correctly
11341 * call dev_put.
11342 */
netdev_wait_allrefs_any(struct list_head * list)11343 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
11344 {
11345 unsigned long rebroadcast_time, warning_time;
11346 struct net_device *dev;
11347 int wait = 0;
11348
11349 rebroadcast_time = warning_time = jiffies;
11350
11351 list_for_each_entry(dev, list, todo_list)
11352 if (netdev_refcnt_read(dev) == 1)
11353 return dev;
11354
11355 while (true) {
11356 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
11357 rtnl_lock();
11358
11359 /* Rebroadcast unregister notification */
11360 list_for_each_entry(dev, list, todo_list)
11361 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11362
11363 __rtnl_unlock();
11364 rcu_barrier();
11365 rtnl_lock();
11366
11367 list_for_each_entry(dev, list, todo_list)
11368 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
11369 &dev->state)) {
11370 /* We must not have linkwatch events
11371 * pending on unregister. If this
11372 * happens, we simply run the queue
11373 * unscheduled, resulting in a noop
11374 * for this device.
11375 */
11376 linkwatch_run_queue();
11377 break;
11378 }
11379
11380 __rtnl_unlock();
11381
11382 rebroadcast_time = jiffies;
11383 }
11384
11385 rcu_barrier();
11386
11387 if (!wait) {
11388 wait = WAIT_REFS_MIN_MSECS;
11389 } else {
11390 msleep(wait);
11391 wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
11392 }
11393
11394 list_for_each_entry(dev, list, todo_list)
11395 if (netdev_refcnt_read(dev) == 1)
11396 return dev;
11397
11398 if (time_after(jiffies, warning_time +
11399 READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
11400 list_for_each_entry(dev, list, todo_list) {
11401 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
11402 dev->name, netdev_refcnt_read(dev));
11403 ref_tracker_dir_print(&dev->refcnt_tracker, 10);
11404 }
11405
11406 warning_time = jiffies;
11407 }
11408 }
11409 }
11410
11411 /* The sequence is:
11412 *
11413 * rtnl_lock();
11414 * ...
11415 * register_netdevice(x1);
11416 * register_netdevice(x2);
11417 * ...
11418 * unregister_netdevice(y1);
11419 * unregister_netdevice(y2);
11420 * ...
11421 * rtnl_unlock();
11422 * free_netdev(y1);
11423 * free_netdev(y2);
11424 *
11425 * We are invoked by rtnl_unlock().
11426 * This allows us to deal with problems:
11427 * 1) We can delete sysfs objects which invoke hotplug
11428 * without deadlocking with linkwatch via keventd.
11429 * 2) Since we run with the RTNL semaphore not held, we can sleep
11430 * safely in order to wait for the netdev refcnt to drop to zero.
11431 *
11432 * We must not return until all unregister events added during
11433 * the interval the lock was held have been completed.
11434 */
netdev_run_todo(void)11435 void netdev_run_todo(void)
11436 {
11437 struct net_device *dev, *tmp;
11438 struct list_head list;
11439 int cnt;
11440 #ifdef CONFIG_LOCKDEP
11441 struct list_head unlink_list;
11442
11443 list_replace_init(&net_unlink_list, &unlink_list);
11444
11445 while (!list_empty(&unlink_list)) {
11446 dev = list_first_entry(&unlink_list, struct net_device,
11447 unlink_list);
11448 list_del_init(&dev->unlink_list);
11449 dev->nested_level = dev->lower_level - 1;
11450 }
11451 #endif
11452
11453 /* Snapshot list, allow later requests */
11454 list_replace_init(&net_todo_list, &list);
11455
11456 __rtnl_unlock();
11457
11458 /* Wait for rcu callbacks to finish before next phase */
11459 if (!list_empty(&list))
11460 rcu_barrier();
11461
11462 list_for_each_entry_safe(dev, tmp, &list, todo_list) {
11463 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
11464 netdev_WARN(dev, "run_todo but not unregistering\n");
11465 list_del(&dev->todo_list);
11466 continue;
11467 }
11468
11469 netdev_lock(dev);
11470 WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERED);
11471 netdev_unlock(dev);
11472 linkwatch_sync_dev(dev);
11473 }
11474
11475 cnt = 0;
11476 while (!list_empty(&list)) {
11477 dev = netdev_wait_allrefs_any(&list);
11478 list_del(&dev->todo_list);
11479
11480 /* paranoia */
11481 BUG_ON(netdev_refcnt_read(dev) != 1);
11482 BUG_ON(!list_empty(&dev->ptype_all));
11483 BUG_ON(!list_empty(&dev->ptype_specific));
11484 WARN_ON(rcu_access_pointer(dev->ip_ptr));
11485 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
11486
11487 netdev_do_free_pcpu_stats(dev);
11488 if (dev->priv_destructor)
11489 dev->priv_destructor(dev);
11490 if (dev->needs_free_netdev)
11491 free_netdev(dev);
11492
11493 cnt++;
11494
11495 /* Free network device */
11496 kobject_put(&dev->dev.kobj);
11497 }
11498 if (cnt && atomic_sub_and_test(cnt, &dev_unreg_count))
11499 wake_up(&netdev_unregistering_wq);
11500 }
11501
11502 /* Collate per-cpu network dstats statistics
11503 *
11504 * Read per-cpu network statistics from dev->dstats and populate the related
11505 * fields in @s.
11506 */
dev_fetch_dstats(struct rtnl_link_stats64 * s,const struct pcpu_dstats __percpu * dstats)11507 static void dev_fetch_dstats(struct rtnl_link_stats64 *s,
11508 const struct pcpu_dstats __percpu *dstats)
11509 {
11510 int cpu;
11511
11512 for_each_possible_cpu(cpu) {
11513 u64 rx_packets, rx_bytes, rx_drops;
11514 u64 tx_packets, tx_bytes, tx_drops;
11515 const struct pcpu_dstats *stats;
11516 unsigned int start;
11517
11518 stats = per_cpu_ptr(dstats, cpu);
11519 do {
11520 start = u64_stats_fetch_begin(&stats->syncp);
11521 rx_packets = u64_stats_read(&stats->rx_packets);
11522 rx_bytes = u64_stats_read(&stats->rx_bytes);
11523 rx_drops = u64_stats_read(&stats->rx_drops);
11524 tx_packets = u64_stats_read(&stats->tx_packets);
11525 tx_bytes = u64_stats_read(&stats->tx_bytes);
11526 tx_drops = u64_stats_read(&stats->tx_drops);
11527 } while (u64_stats_fetch_retry(&stats->syncp, start));
11528
11529 s->rx_packets += rx_packets;
11530 s->rx_bytes += rx_bytes;
11531 s->rx_dropped += rx_drops;
11532 s->tx_packets += tx_packets;
11533 s->tx_bytes += tx_bytes;
11534 s->tx_dropped += tx_drops;
11535 }
11536 }
11537
11538 /* ndo_get_stats64 implementation for dtstats-based accounting.
11539 *
11540 * Populate @s from dev->stats and dev->dstats. This is used internally by the
11541 * core for NETDEV_PCPU_STAT_DSTAT-type stats collection.
11542 */
dev_get_dstats64(const struct net_device * dev,struct rtnl_link_stats64 * s)11543 static void dev_get_dstats64(const struct net_device *dev,
11544 struct rtnl_link_stats64 *s)
11545 {
11546 netdev_stats_to_stats64(s, &dev->stats);
11547 dev_fetch_dstats(s, dev->dstats);
11548 }
11549
11550 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
11551 * all the same fields in the same order as net_device_stats, with only
11552 * the type differing, but rtnl_link_stats64 may have additional fields
11553 * at the end for newer counters.
11554 */
netdev_stats_to_stats64(struct rtnl_link_stats64 * stats64,const struct net_device_stats * netdev_stats)11555 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
11556 const struct net_device_stats *netdev_stats)
11557 {
11558 size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
11559 const atomic_long_t *src = (atomic_long_t *)netdev_stats;
11560 u64 *dst = (u64 *)stats64;
11561
11562 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
11563 for (i = 0; i < n; i++)
11564 dst[i] = (unsigned long)atomic_long_read(&src[i]);
11565 /* zero out counters that only exist in rtnl_link_stats64 */
11566 memset((char *)stats64 + n * sizeof(u64), 0,
11567 sizeof(*stats64) - n * sizeof(u64));
11568 }
11569 EXPORT_SYMBOL(netdev_stats_to_stats64);
11570
netdev_core_stats_alloc(struct net_device * dev)11571 static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc(
11572 struct net_device *dev)
11573 {
11574 struct net_device_core_stats __percpu *p;
11575
11576 p = alloc_percpu_gfp(struct net_device_core_stats,
11577 GFP_ATOMIC | __GFP_NOWARN);
11578
11579 if (p && cmpxchg(&dev->core_stats, NULL, p))
11580 free_percpu(p);
11581
11582 /* This READ_ONCE() pairs with the cmpxchg() above */
11583 return READ_ONCE(dev->core_stats);
11584 }
11585
netdev_core_stats_inc(struct net_device * dev,u32 offset)11586 noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset)
11587 {
11588 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
11589 struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
11590 unsigned long __percpu *field;
11591
11592 if (unlikely(!p)) {
11593 p = netdev_core_stats_alloc(dev);
11594 if (!p)
11595 return;
11596 }
11597
11598 field = (unsigned long __percpu *)((void __percpu *)p + offset);
11599 this_cpu_inc(*field);
11600 }
11601 EXPORT_SYMBOL_GPL(netdev_core_stats_inc);
11602
11603 /**
11604 * dev_get_stats - get network device statistics
11605 * @dev: device to get statistics from
11606 * @storage: place to store stats
11607 *
11608 * Get network statistics from device. Return @storage.
11609 * The device driver may provide its own method by setting
11610 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
11611 * otherwise the internal statistics structure is used.
11612 */
dev_get_stats(struct net_device * dev,struct rtnl_link_stats64 * storage)11613 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
11614 struct rtnl_link_stats64 *storage)
11615 {
11616 const struct net_device_ops *ops = dev->netdev_ops;
11617 const struct net_device_core_stats __percpu *p;
11618
11619 /*
11620 * IPv{4,6} and udp tunnels share common stat helpers and use
11621 * different stat type (NETDEV_PCPU_STAT_TSTATS vs
11622 * NETDEV_PCPU_STAT_DSTATS). Ensure the accounting is consistent.
11623 */
11624 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_bytes) !=
11625 offsetof(struct pcpu_dstats, rx_bytes));
11626 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_packets) !=
11627 offsetof(struct pcpu_dstats, rx_packets));
11628 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_bytes) !=
11629 offsetof(struct pcpu_dstats, tx_bytes));
11630 BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_packets) !=
11631 offsetof(struct pcpu_dstats, tx_packets));
11632
11633 if (ops->ndo_get_stats64) {
11634 memset(storage, 0, sizeof(*storage));
11635 ops->ndo_get_stats64(dev, storage);
11636 } else if (ops->ndo_get_stats) {
11637 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
11638 } else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_TSTATS) {
11639 dev_get_tstats64(dev, storage);
11640 } else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_DSTATS) {
11641 dev_get_dstats64(dev, storage);
11642 } else {
11643 netdev_stats_to_stats64(storage, &dev->stats);
11644 }
11645
11646 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
11647 p = READ_ONCE(dev->core_stats);
11648 if (p) {
11649 const struct net_device_core_stats *core_stats;
11650 int i;
11651
11652 for_each_possible_cpu(i) {
11653 core_stats = per_cpu_ptr(p, i);
11654 storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
11655 storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
11656 storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
11657 storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
11658 }
11659 }
11660 return storage;
11661 }
11662 EXPORT_SYMBOL(dev_get_stats);
11663
11664 /**
11665 * dev_fetch_sw_netstats - get per-cpu network device statistics
11666 * @s: place to store stats
11667 * @netstats: per-cpu network stats to read from
11668 *
11669 * Read per-cpu network statistics and populate the related fields in @s.
11670 */
dev_fetch_sw_netstats(struct rtnl_link_stats64 * s,const struct pcpu_sw_netstats __percpu * netstats)11671 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
11672 const struct pcpu_sw_netstats __percpu *netstats)
11673 {
11674 int cpu;
11675
11676 for_each_possible_cpu(cpu) {
11677 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
11678 const struct pcpu_sw_netstats *stats;
11679 unsigned int start;
11680
11681 stats = per_cpu_ptr(netstats, cpu);
11682 do {
11683 start = u64_stats_fetch_begin(&stats->syncp);
11684 rx_packets = u64_stats_read(&stats->rx_packets);
11685 rx_bytes = u64_stats_read(&stats->rx_bytes);
11686 tx_packets = u64_stats_read(&stats->tx_packets);
11687 tx_bytes = u64_stats_read(&stats->tx_bytes);
11688 } while (u64_stats_fetch_retry(&stats->syncp, start));
11689
11690 s->rx_packets += rx_packets;
11691 s->rx_bytes += rx_bytes;
11692 s->tx_packets += tx_packets;
11693 s->tx_bytes += tx_bytes;
11694 }
11695 }
11696 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
11697
11698 /**
11699 * dev_get_tstats64 - ndo_get_stats64 implementation
11700 * @dev: device to get statistics from
11701 * @s: place to store stats
11702 *
11703 * Populate @s from dev->stats and dev->tstats. Can be used as
11704 * ndo_get_stats64() callback.
11705 */
dev_get_tstats64(struct net_device * dev,struct rtnl_link_stats64 * s)11706 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
11707 {
11708 netdev_stats_to_stats64(s, &dev->stats);
11709 dev_fetch_sw_netstats(s, dev->tstats);
11710 }
11711 EXPORT_SYMBOL_GPL(dev_get_tstats64);
11712
dev_ingress_queue_create(struct net_device * dev)11713 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
11714 {
11715 struct netdev_queue *queue = dev_ingress_queue(dev);
11716
11717 #ifdef CONFIG_NET_CLS_ACT
11718 if (queue)
11719 return queue;
11720 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
11721 if (!queue)
11722 return NULL;
11723 netdev_init_one_queue(dev, queue, NULL);
11724 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
11725 RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
11726 rcu_assign_pointer(dev->ingress_queue, queue);
11727 #endif
11728 return queue;
11729 }
11730
11731 static const struct ethtool_ops default_ethtool_ops;
11732
netdev_set_default_ethtool_ops(struct net_device * dev,const struct ethtool_ops * ops)11733 void netdev_set_default_ethtool_ops(struct net_device *dev,
11734 const struct ethtool_ops *ops)
11735 {
11736 if (dev->ethtool_ops == &default_ethtool_ops)
11737 dev->ethtool_ops = ops;
11738 }
11739 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
11740
11741 /**
11742 * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
11743 * @dev: netdev to enable the IRQ coalescing on
11744 *
11745 * Sets a conservative default for SW IRQ coalescing. Users can use
11746 * sysfs attributes to override the default values.
11747 */
netdev_sw_irq_coalesce_default_on(struct net_device * dev)11748 void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
11749 {
11750 WARN_ON(dev->reg_state == NETREG_REGISTERED);
11751
11752 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
11753 netdev_set_gro_flush_timeout(dev, 20000);
11754 netdev_set_defer_hard_irqs(dev, 1);
11755 }
11756 }
11757 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
11758
11759 /**
11760 * alloc_netdev_mqs - allocate network device
11761 * @sizeof_priv: size of private data to allocate space for
11762 * @name: device name format string
11763 * @name_assign_type: origin of device name
11764 * @setup: callback to initialize device
11765 * @txqs: the number of TX subqueues to allocate
11766 * @rxqs: the number of RX subqueues to allocate
11767 *
11768 * Allocates a struct net_device with private data area for driver use
11769 * and performs basic initialization. Also allocates subqueue structs
11770 * for each queue on the device.
11771 */
alloc_netdev_mqs(int sizeof_priv,const char * name,unsigned char name_assign_type,void (* setup)(struct net_device *),unsigned int txqs,unsigned int rxqs)11772 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
11773 unsigned char name_assign_type,
11774 void (*setup)(struct net_device *),
11775 unsigned int txqs, unsigned int rxqs)
11776 {
11777 struct net_device *dev;
11778 size_t napi_config_sz;
11779 unsigned int maxqs;
11780
11781 BUG_ON(strlen(name) >= sizeof(dev->name));
11782
11783 if (txqs < 1) {
11784 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
11785 return NULL;
11786 }
11787
11788 if (rxqs < 1) {
11789 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
11790 return NULL;
11791 }
11792
11793 maxqs = max(txqs, rxqs);
11794
11795 dev = kvzalloc(struct_size(dev, priv, sizeof_priv),
11796 GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
11797 if (!dev)
11798 return NULL;
11799
11800 dev->priv_len = sizeof_priv;
11801
11802 ref_tracker_dir_init(&dev->refcnt_tracker, 128, "netdev");
11803 #ifdef CONFIG_PCPU_DEV_REFCNT
11804 dev->pcpu_refcnt = alloc_percpu(int);
11805 if (!dev->pcpu_refcnt)
11806 goto free_dev;
11807 __dev_hold(dev);
11808 #else
11809 refcount_set(&dev->dev_refcnt, 1);
11810 #endif
11811
11812 if (dev_addr_init(dev))
11813 goto free_pcpu;
11814
11815 dev_mc_init(dev);
11816 dev_uc_init(dev);
11817
11818 dev_net_set(dev, &init_net);
11819
11820 dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
11821 dev->xdp_zc_max_segs = 1;
11822 dev->gso_max_segs = GSO_MAX_SEGS;
11823 dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
11824 dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
11825 dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
11826 dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
11827 dev->tso_max_segs = TSO_MAX_SEGS;
11828 dev->upper_level = 1;
11829 dev->lower_level = 1;
11830 #ifdef CONFIG_LOCKDEP
11831 dev->nested_level = 0;
11832 INIT_LIST_HEAD(&dev->unlink_list);
11833 #endif
11834
11835 INIT_LIST_HEAD(&dev->napi_list);
11836 INIT_LIST_HEAD(&dev->unreg_list);
11837 INIT_LIST_HEAD(&dev->close_list);
11838 INIT_LIST_HEAD(&dev->link_watch_list);
11839 INIT_LIST_HEAD(&dev->adj_list.upper);
11840 INIT_LIST_HEAD(&dev->adj_list.lower);
11841 INIT_LIST_HEAD(&dev->ptype_all);
11842 INIT_LIST_HEAD(&dev->ptype_specific);
11843 INIT_LIST_HEAD(&dev->net_notifier_list);
11844 #ifdef CONFIG_NET_SCHED
11845 hash_init(dev->qdisc_hash);
11846 #endif
11847
11848 mutex_init(&dev->lock);
11849
11850 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
11851 setup(dev);
11852
11853 if (!dev->tx_queue_len) {
11854 dev->priv_flags |= IFF_NO_QUEUE;
11855 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
11856 }
11857
11858 dev->num_tx_queues = txqs;
11859 dev->real_num_tx_queues = txqs;
11860 if (netif_alloc_netdev_queues(dev))
11861 goto free_all;
11862
11863 dev->num_rx_queues = rxqs;
11864 dev->real_num_rx_queues = rxqs;
11865 if (netif_alloc_rx_queues(dev))
11866 goto free_all;
11867 dev->ethtool = kzalloc(sizeof(*dev->ethtool), GFP_KERNEL_ACCOUNT);
11868 if (!dev->ethtool)
11869 goto free_all;
11870
11871 dev->cfg = kzalloc(sizeof(*dev->cfg), GFP_KERNEL_ACCOUNT);
11872 if (!dev->cfg)
11873 goto free_all;
11874 dev->cfg_pending = dev->cfg;
11875
11876 napi_config_sz = array_size(maxqs, sizeof(*dev->napi_config));
11877 dev->napi_config = kvzalloc(napi_config_sz, GFP_KERNEL_ACCOUNT);
11878 if (!dev->napi_config)
11879 goto free_all;
11880
11881 strscpy(dev->name, name);
11882 dev->name_assign_type = name_assign_type;
11883 dev->group = INIT_NETDEV_GROUP;
11884 if (!dev->ethtool_ops)
11885 dev->ethtool_ops = &default_ethtool_ops;
11886
11887 nf_hook_netdev_init(dev);
11888
11889 return dev;
11890
11891 free_all:
11892 free_netdev(dev);
11893 return NULL;
11894
11895 free_pcpu:
11896 #ifdef CONFIG_PCPU_DEV_REFCNT
11897 free_percpu(dev->pcpu_refcnt);
11898 free_dev:
11899 #endif
11900 kvfree(dev);
11901 return NULL;
11902 }
11903 EXPORT_SYMBOL(alloc_netdev_mqs);
11904
netdev_napi_exit(struct net_device * dev)11905 static void netdev_napi_exit(struct net_device *dev)
11906 {
11907 if (!list_empty(&dev->napi_list)) {
11908 struct napi_struct *p, *n;
11909
11910 netdev_lock(dev);
11911 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
11912 __netif_napi_del_locked(p);
11913 netdev_unlock(dev);
11914
11915 synchronize_net();
11916 }
11917
11918 kvfree(dev->napi_config);
11919 }
11920
11921 /**
11922 * free_netdev - free network device
11923 * @dev: device
11924 *
11925 * This function does the last stage of destroying an allocated device
11926 * interface. The reference to the device object is released. If this
11927 * is the last reference then it will be freed.Must be called in process
11928 * context.
11929 */
free_netdev(struct net_device * dev)11930 void free_netdev(struct net_device *dev)
11931 {
11932 might_sleep();
11933
11934 /* When called immediately after register_netdevice() failed the unwind
11935 * handling may still be dismantling the device. Handle that case by
11936 * deferring the free.
11937 */
11938 if (dev->reg_state == NETREG_UNREGISTERING) {
11939 ASSERT_RTNL();
11940 dev->needs_free_netdev = true;
11941 return;
11942 }
11943
11944 WARN_ON(dev->cfg != dev->cfg_pending);
11945 kfree(dev->cfg);
11946 kfree(dev->ethtool);
11947 netif_free_tx_queues(dev);
11948 netif_free_rx_queues(dev);
11949
11950 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
11951
11952 /* Flush device addresses */
11953 dev_addr_flush(dev);
11954
11955 netdev_napi_exit(dev);
11956
11957 netif_del_cpu_rmap(dev);
11958
11959 ref_tracker_dir_exit(&dev->refcnt_tracker);
11960 #ifdef CONFIG_PCPU_DEV_REFCNT
11961 free_percpu(dev->pcpu_refcnt);
11962 dev->pcpu_refcnt = NULL;
11963 #endif
11964 free_percpu(dev->core_stats);
11965 dev->core_stats = NULL;
11966 free_percpu(dev->xdp_bulkq);
11967 dev->xdp_bulkq = NULL;
11968
11969 netdev_free_phy_link_topology(dev);
11970
11971 mutex_destroy(&dev->lock);
11972
11973 /* Compatibility with error handling in drivers */
11974 if (dev->reg_state == NETREG_UNINITIALIZED ||
11975 dev->reg_state == NETREG_DUMMY) {
11976 kvfree(dev);
11977 return;
11978 }
11979
11980 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
11981 WRITE_ONCE(dev->reg_state, NETREG_RELEASED);
11982
11983 /* will free via device release */
11984 put_device(&dev->dev);
11985 }
11986 EXPORT_SYMBOL(free_netdev);
11987
11988 /**
11989 * alloc_netdev_dummy - Allocate and initialize a dummy net device.
11990 * @sizeof_priv: size of private data to allocate space for
11991 *
11992 * Return: the allocated net_device on success, NULL otherwise
11993 */
alloc_netdev_dummy(int sizeof_priv)11994 struct net_device *alloc_netdev_dummy(int sizeof_priv)
11995 {
11996 return alloc_netdev(sizeof_priv, "dummy#", NET_NAME_UNKNOWN,
11997 init_dummy_netdev);
11998 }
11999 EXPORT_SYMBOL_GPL(alloc_netdev_dummy);
12000
12001 /**
12002 * synchronize_net - Synchronize with packet receive processing
12003 *
12004 * Wait for packets currently being received to be done.
12005 * Does not block later packets from starting.
12006 */
synchronize_net(void)12007 void synchronize_net(void)
12008 {
12009 might_sleep();
12010 if (from_cleanup_net() || rtnl_is_locked())
12011 synchronize_rcu_expedited();
12012 else
12013 synchronize_rcu();
12014 }
12015 EXPORT_SYMBOL(synchronize_net);
12016
netdev_rss_contexts_free(struct net_device * dev)12017 static void netdev_rss_contexts_free(struct net_device *dev)
12018 {
12019 struct ethtool_rxfh_context *ctx;
12020 unsigned long context;
12021
12022 mutex_lock(&dev->ethtool->rss_lock);
12023 xa_for_each(&dev->ethtool->rss_ctx, context, ctx) {
12024 xa_erase(&dev->ethtool->rss_ctx, context);
12025 dev->ethtool_ops->remove_rxfh_context(dev, ctx, context, NULL);
12026 kfree(ctx);
12027 }
12028 xa_destroy(&dev->ethtool->rss_ctx);
12029 mutex_unlock(&dev->ethtool->rss_lock);
12030 }
12031
12032 /**
12033 * unregister_netdevice_queue - remove device from the kernel
12034 * @dev: device
12035 * @head: list
12036 *
12037 * This function shuts down a device interface and removes it
12038 * from the kernel tables.
12039 * If head not NULL, device is queued to be unregistered later.
12040 *
12041 * Callers must hold the rtnl semaphore. You may want
12042 * unregister_netdev() instead of this.
12043 */
12044
unregister_netdevice_queue(struct net_device * dev,struct list_head * head)12045 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
12046 {
12047 ASSERT_RTNL();
12048
12049 if (head) {
12050 list_move_tail(&dev->unreg_list, head);
12051 } else {
12052 LIST_HEAD(single);
12053
12054 list_add(&dev->unreg_list, &single);
12055 unregister_netdevice_many(&single);
12056 }
12057 }
12058 EXPORT_SYMBOL(unregister_netdevice_queue);
12059
dev_memory_provider_uninstall(struct net_device * dev)12060 static void dev_memory_provider_uninstall(struct net_device *dev)
12061 {
12062 unsigned int i;
12063
12064 for (i = 0; i < dev->real_num_rx_queues; i++) {
12065 struct netdev_rx_queue *rxq = &dev->_rx[i];
12066 struct pp_memory_provider_params *p = &rxq->mp_params;
12067
12068 if (p->mp_ops && p->mp_ops->uninstall)
12069 p->mp_ops->uninstall(rxq->mp_params.mp_priv, rxq);
12070 }
12071 }
12072
unregister_netdevice_many_notify(struct list_head * head,u32 portid,const struct nlmsghdr * nlh)12073 void unregister_netdevice_many_notify(struct list_head *head,
12074 u32 portid, const struct nlmsghdr *nlh)
12075 {
12076 struct net_device *dev, *tmp;
12077 LIST_HEAD(close_head);
12078 int cnt = 0;
12079
12080 BUG_ON(dev_boot_phase);
12081 ASSERT_RTNL();
12082
12083 if (list_empty(head))
12084 return;
12085
12086 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
12087 /* Some devices call without registering
12088 * for initialization unwind. Remove those
12089 * devices and proceed with the remaining.
12090 */
12091 if (dev->reg_state == NETREG_UNINITIALIZED) {
12092 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
12093 dev->name, dev);
12094
12095 WARN_ON(1);
12096 list_del(&dev->unreg_list);
12097 continue;
12098 }
12099 dev->dismantle = true;
12100 BUG_ON(dev->reg_state != NETREG_REGISTERED);
12101 }
12102
12103 /* If device is running, close it first. Start with ops locked... */
12104 list_for_each_entry(dev, head, unreg_list) {
12105 if (netdev_need_ops_lock(dev)) {
12106 list_add_tail(&dev->close_list, &close_head);
12107 netdev_lock(dev);
12108 }
12109 }
12110 netif_close_many(&close_head, true);
12111 /* ... now unlock them and go over the rest. */
12112 list_for_each_entry(dev, head, unreg_list) {
12113 if (netdev_need_ops_lock(dev))
12114 netdev_unlock(dev);
12115 else
12116 list_add_tail(&dev->close_list, &close_head);
12117 }
12118 netif_close_many(&close_head, true);
12119
12120 list_for_each_entry(dev, head, unreg_list) {
12121 /* And unlink it from device chain. */
12122 unlist_netdevice(dev);
12123 netdev_lock(dev);
12124 WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERING);
12125 netdev_unlock(dev);
12126 }
12127 flush_all_backlogs();
12128
12129 synchronize_net();
12130
12131 list_for_each_entry(dev, head, unreg_list) {
12132 struct sk_buff *skb = NULL;
12133
12134 /* Shutdown queueing discipline. */
12135 netdev_lock_ops(dev);
12136 dev_shutdown(dev);
12137 dev_tcx_uninstall(dev);
12138 dev_xdp_uninstall(dev);
12139 dev_memory_provider_uninstall(dev);
12140 netdev_unlock_ops(dev);
12141 bpf_dev_bound_netdev_unregister(dev);
12142
12143 netdev_offload_xstats_disable_all(dev);
12144
12145 /* Notify protocols, that we are about to destroy
12146 * this device. They should clean all the things.
12147 */
12148 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
12149
12150 if (!(dev->rtnl_link_ops && dev->rtnl_link_initializing))
12151 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
12152 GFP_KERNEL, NULL, 0,
12153 portid, nlh);
12154
12155 /*
12156 * Flush the unicast and multicast chains
12157 */
12158 dev_uc_flush(dev);
12159 dev_mc_flush(dev);
12160
12161 netdev_name_node_alt_flush(dev);
12162 netdev_name_node_free(dev->name_node);
12163
12164 netdev_rss_contexts_free(dev);
12165
12166 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
12167
12168 if (dev->netdev_ops->ndo_uninit)
12169 dev->netdev_ops->ndo_uninit(dev);
12170
12171 mutex_destroy(&dev->ethtool->rss_lock);
12172
12173 net_shaper_flush_netdev(dev);
12174
12175 if (skb)
12176 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
12177
12178 /* Notifier chain MUST detach us all upper devices. */
12179 WARN_ON(netdev_has_any_upper_dev(dev));
12180 WARN_ON(netdev_has_any_lower_dev(dev));
12181
12182 /* Remove entries from kobject tree */
12183 netdev_unregister_kobject(dev);
12184 #ifdef CONFIG_XPS
12185 /* Remove XPS queueing entries */
12186 netif_reset_xps_queues_gt(dev, 0);
12187 #endif
12188 }
12189
12190 synchronize_net();
12191
12192 list_for_each_entry(dev, head, unreg_list) {
12193 netdev_put(dev, &dev->dev_registered_tracker);
12194 net_set_todo(dev);
12195 cnt++;
12196 }
12197 atomic_add(cnt, &dev_unreg_count);
12198
12199 list_del(head);
12200 }
12201
12202 /**
12203 * unregister_netdevice_many - unregister many devices
12204 * @head: list of devices
12205 *
12206 * Note: As most callers use a stack allocated list_head,
12207 * we force a list_del() to make sure stack won't be corrupted later.
12208 */
unregister_netdevice_many(struct list_head * head)12209 void unregister_netdevice_many(struct list_head *head)
12210 {
12211 unregister_netdevice_many_notify(head, 0, NULL);
12212 }
12213 EXPORT_SYMBOL(unregister_netdevice_many);
12214
12215 /**
12216 * unregister_netdev - remove device from the kernel
12217 * @dev: device
12218 *
12219 * This function shuts down a device interface and removes it
12220 * from the kernel tables.
12221 *
12222 * This is just a wrapper for unregister_netdevice that takes
12223 * the rtnl semaphore. In general you want to use this and not
12224 * unregister_netdevice.
12225 */
unregister_netdev(struct net_device * dev)12226 void unregister_netdev(struct net_device *dev)
12227 {
12228 rtnl_net_dev_lock(dev);
12229 unregister_netdevice(dev);
12230 rtnl_net_dev_unlock(dev);
12231 }
12232 EXPORT_SYMBOL(unregister_netdev);
12233
__dev_change_net_namespace(struct net_device * dev,struct net * net,const char * pat,int new_ifindex,struct netlink_ext_ack * extack)12234 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
12235 const char *pat, int new_ifindex,
12236 struct netlink_ext_ack *extack)
12237 {
12238 struct netdev_name_node *name_node;
12239 struct net *net_old = dev_net(dev);
12240 char new_name[IFNAMSIZ] = {};
12241 int err, new_nsid;
12242
12243 ASSERT_RTNL();
12244
12245 /* Don't allow namespace local devices to be moved. */
12246 err = -EINVAL;
12247 if (dev->netns_immutable) {
12248 NL_SET_ERR_MSG(extack, "The interface netns is immutable");
12249 goto out;
12250 }
12251
12252 /* Ensure the device has been registered */
12253 if (dev->reg_state != NETREG_REGISTERED) {
12254 NL_SET_ERR_MSG(extack, "The interface isn't registered");
12255 goto out;
12256 }
12257
12258 /* Get out if there is nothing todo */
12259 err = 0;
12260 if (net_eq(net_old, net))
12261 goto out;
12262
12263 /* Pick the destination device name, and ensure
12264 * we can use it in the destination network namespace.
12265 */
12266 err = -EEXIST;
12267 if (netdev_name_in_use(net, dev->name)) {
12268 /* We get here if we can't use the current device name */
12269 if (!pat) {
12270 NL_SET_ERR_MSG(extack,
12271 "An interface with the same name exists in the target netns");
12272 goto out;
12273 }
12274 err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST);
12275 if (err < 0) {
12276 NL_SET_ERR_MSG_FMT(extack,
12277 "Unable to use '%s' for the new interface name in the target netns",
12278 pat);
12279 goto out;
12280 }
12281 }
12282 /* Check that none of the altnames conflicts. */
12283 err = -EEXIST;
12284 netdev_for_each_altname(dev, name_node) {
12285 if (netdev_name_in_use(net, name_node->name)) {
12286 NL_SET_ERR_MSG_FMT(extack,
12287 "An interface with the altname %s exists in the target netns",
12288 name_node->name);
12289 goto out;
12290 }
12291 }
12292
12293 /* Check that new_ifindex isn't used yet. */
12294 if (new_ifindex) {
12295 err = dev_index_reserve(net, new_ifindex);
12296 if (err < 0) {
12297 NL_SET_ERR_MSG_FMT(extack,
12298 "The ifindex %d is not available in the target netns",
12299 new_ifindex);
12300 goto out;
12301 }
12302 } else {
12303 /* If there is an ifindex conflict assign a new one */
12304 err = dev_index_reserve(net, dev->ifindex);
12305 if (err == -EBUSY)
12306 err = dev_index_reserve(net, 0);
12307 if (err < 0) {
12308 NL_SET_ERR_MSG(extack,
12309 "Unable to allocate a new ifindex in the target netns");
12310 goto out;
12311 }
12312 new_ifindex = err;
12313 }
12314
12315 /*
12316 * And now a mini version of register_netdevice unregister_netdevice.
12317 */
12318
12319 netdev_lock_ops(dev);
12320 /* If device is running close it first. */
12321 netif_close(dev);
12322 /* And unlink it from device chain */
12323 unlist_netdevice(dev);
12324
12325 if (!netdev_need_ops_lock(dev))
12326 netdev_lock(dev);
12327 dev->moving_ns = true;
12328 netdev_unlock(dev);
12329
12330 synchronize_net();
12331
12332 /* Shutdown queueing discipline. */
12333 netdev_lock_ops(dev);
12334 dev_shutdown(dev);
12335 netdev_unlock_ops(dev);
12336
12337 /* Notify protocols, that we are about to destroy
12338 * this device. They should clean all the things.
12339 *
12340 * Note that dev->reg_state stays at NETREG_REGISTERED.
12341 * This is wanted because this way 8021q and macvlan know
12342 * the device is just moving and can keep their slaves up.
12343 */
12344 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
12345 rcu_barrier();
12346
12347 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
12348
12349 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
12350 new_ifindex);
12351
12352 /*
12353 * Flush the unicast and multicast chains
12354 */
12355 dev_uc_flush(dev);
12356 dev_mc_flush(dev);
12357
12358 /* Send a netdev-removed uevent to the old namespace */
12359 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
12360 netdev_adjacent_del_links(dev);
12361
12362 /* Move per-net netdevice notifiers that are following the netdevice */
12363 move_netdevice_notifiers_dev_net(dev, net);
12364
12365 /* Actually switch the network namespace */
12366 netdev_lock(dev);
12367 dev_net_set(dev, net);
12368 netdev_unlock(dev);
12369 dev->ifindex = new_ifindex;
12370
12371 if (new_name[0]) {
12372 /* Rename the netdev to prepared name */
12373 write_seqlock_bh(&netdev_rename_lock);
12374 strscpy(dev->name, new_name, IFNAMSIZ);
12375 write_sequnlock_bh(&netdev_rename_lock);
12376 }
12377
12378 /* Fixup kobjects */
12379 dev_set_uevent_suppress(&dev->dev, 1);
12380 err = device_rename(&dev->dev, dev->name);
12381 dev_set_uevent_suppress(&dev->dev, 0);
12382 WARN_ON(err);
12383
12384 /* Send a netdev-add uevent to the new namespace */
12385 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
12386 netdev_adjacent_add_links(dev);
12387
12388 /* Adapt owner in case owning user namespace of target network
12389 * namespace is different from the original one.
12390 */
12391 err = netdev_change_owner(dev, net_old, net);
12392 WARN_ON(err);
12393
12394 netdev_lock(dev);
12395 dev->moving_ns = false;
12396 if (!netdev_need_ops_lock(dev))
12397 netdev_unlock(dev);
12398
12399 /* Add the device back in the hashes */
12400 list_netdevice(dev);
12401 /* Notify protocols, that a new device appeared. */
12402 call_netdevice_notifiers(NETDEV_REGISTER, dev);
12403 netdev_unlock_ops(dev);
12404
12405 /*
12406 * Prevent userspace races by waiting until the network
12407 * device is fully setup before sending notifications.
12408 */
12409 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
12410
12411 synchronize_net();
12412 err = 0;
12413 out:
12414 return err;
12415 }
12416
dev_cpu_dead(unsigned int oldcpu)12417 static int dev_cpu_dead(unsigned int oldcpu)
12418 {
12419 struct sk_buff **list_skb;
12420 struct sk_buff *skb;
12421 unsigned int cpu;
12422 struct softnet_data *sd, *oldsd, *remsd = NULL;
12423
12424 local_irq_disable();
12425 cpu = smp_processor_id();
12426 sd = &per_cpu(softnet_data, cpu);
12427 oldsd = &per_cpu(softnet_data, oldcpu);
12428
12429 /* Find end of our completion_queue. */
12430 list_skb = &sd->completion_queue;
12431 while (*list_skb)
12432 list_skb = &(*list_skb)->next;
12433 /* Append completion queue from offline CPU. */
12434 *list_skb = oldsd->completion_queue;
12435 oldsd->completion_queue = NULL;
12436
12437 /* Append output queue from offline CPU. */
12438 if (oldsd->output_queue) {
12439 *sd->output_queue_tailp = oldsd->output_queue;
12440 sd->output_queue_tailp = oldsd->output_queue_tailp;
12441 oldsd->output_queue = NULL;
12442 oldsd->output_queue_tailp = &oldsd->output_queue;
12443 }
12444 /* Append NAPI poll list from offline CPU, with one exception :
12445 * process_backlog() must be called by cpu owning percpu backlog.
12446 * We properly handle process_queue & input_pkt_queue later.
12447 */
12448 while (!list_empty(&oldsd->poll_list)) {
12449 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
12450 struct napi_struct,
12451 poll_list);
12452
12453 list_del_init(&napi->poll_list);
12454 if (napi->poll == process_backlog)
12455 napi->state &= NAPIF_STATE_THREADED;
12456 else
12457 ____napi_schedule(sd, napi);
12458 }
12459
12460 raise_softirq_irqoff(NET_TX_SOFTIRQ);
12461 local_irq_enable();
12462
12463 if (!use_backlog_threads()) {
12464 #ifdef CONFIG_RPS
12465 remsd = oldsd->rps_ipi_list;
12466 oldsd->rps_ipi_list = NULL;
12467 #endif
12468 /* send out pending IPI's on offline CPU */
12469 net_rps_send_ipi(remsd);
12470 }
12471
12472 /* Process offline CPU's input_pkt_queue */
12473 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
12474 netif_rx(skb);
12475 rps_input_queue_head_incr(oldsd);
12476 }
12477 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
12478 netif_rx(skb);
12479 rps_input_queue_head_incr(oldsd);
12480 }
12481
12482 return 0;
12483 }
12484
12485 /**
12486 * netdev_increment_features - increment feature set by one
12487 * @all: current feature set
12488 * @one: new feature set
12489 * @mask: mask feature set
12490 *
12491 * Computes a new feature set after adding a device with feature set
12492 * @one to the master device with current feature set @all. Will not
12493 * enable anything that is off in @mask. Returns the new feature set.
12494 */
netdev_increment_features(netdev_features_t all,netdev_features_t one,netdev_features_t mask)12495 netdev_features_t netdev_increment_features(netdev_features_t all,
12496 netdev_features_t one, netdev_features_t mask)
12497 {
12498 if (mask & NETIF_F_HW_CSUM)
12499 mask |= NETIF_F_CSUM_MASK;
12500 mask |= NETIF_F_VLAN_CHALLENGED;
12501
12502 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
12503 all &= one | ~NETIF_F_ALL_FOR_ALL;
12504
12505 /* If one device supports hw checksumming, set for all. */
12506 if (all & NETIF_F_HW_CSUM)
12507 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
12508
12509 return all;
12510 }
12511 EXPORT_SYMBOL(netdev_increment_features);
12512
netdev_create_hash(void)12513 static struct hlist_head * __net_init netdev_create_hash(void)
12514 {
12515 int i;
12516 struct hlist_head *hash;
12517
12518 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
12519 if (hash != NULL)
12520 for (i = 0; i < NETDEV_HASHENTRIES; i++)
12521 INIT_HLIST_HEAD(&hash[i]);
12522
12523 return hash;
12524 }
12525
12526 /* Initialize per network namespace state */
netdev_init(struct net * net)12527 static int __net_init netdev_init(struct net *net)
12528 {
12529 BUILD_BUG_ON(GRO_HASH_BUCKETS >
12530 BITS_PER_BYTE * sizeof_field(struct gro_node, bitmask));
12531
12532 INIT_LIST_HEAD(&net->dev_base_head);
12533
12534 net->dev_name_head = netdev_create_hash();
12535 if (net->dev_name_head == NULL)
12536 goto err_name;
12537
12538 net->dev_index_head = netdev_create_hash();
12539 if (net->dev_index_head == NULL)
12540 goto err_idx;
12541
12542 xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
12543
12544 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
12545
12546 return 0;
12547
12548 err_idx:
12549 kfree(net->dev_name_head);
12550 err_name:
12551 return -ENOMEM;
12552 }
12553
12554 /**
12555 * netdev_drivername - network driver for the device
12556 * @dev: network device
12557 *
12558 * Determine network driver for device.
12559 */
netdev_drivername(const struct net_device * dev)12560 const char *netdev_drivername(const struct net_device *dev)
12561 {
12562 const struct device_driver *driver;
12563 const struct device *parent;
12564 const char *empty = "";
12565
12566 parent = dev->dev.parent;
12567 if (!parent)
12568 return empty;
12569
12570 driver = parent->driver;
12571 if (driver && driver->name)
12572 return driver->name;
12573 return empty;
12574 }
12575
__netdev_printk(const char * level,const struct net_device * dev,struct va_format * vaf)12576 static void __netdev_printk(const char *level, const struct net_device *dev,
12577 struct va_format *vaf)
12578 {
12579 if (dev && dev->dev.parent) {
12580 dev_printk_emit(level[1] - '0',
12581 dev->dev.parent,
12582 "%s %s %s%s: %pV",
12583 dev_driver_string(dev->dev.parent),
12584 dev_name(dev->dev.parent),
12585 netdev_name(dev), netdev_reg_state(dev),
12586 vaf);
12587 } else if (dev) {
12588 printk("%s%s%s: %pV",
12589 level, netdev_name(dev), netdev_reg_state(dev), vaf);
12590 } else {
12591 printk("%s(NULL net_device): %pV", level, vaf);
12592 }
12593 }
12594
netdev_printk(const char * level,const struct net_device * dev,const char * format,...)12595 void netdev_printk(const char *level, const struct net_device *dev,
12596 const char *format, ...)
12597 {
12598 struct va_format vaf;
12599 va_list args;
12600
12601 va_start(args, format);
12602
12603 vaf.fmt = format;
12604 vaf.va = &args;
12605
12606 __netdev_printk(level, dev, &vaf);
12607
12608 va_end(args);
12609 }
12610 EXPORT_SYMBOL(netdev_printk);
12611
12612 #define define_netdev_printk_level(func, level) \
12613 void func(const struct net_device *dev, const char *fmt, ...) \
12614 { \
12615 struct va_format vaf; \
12616 va_list args; \
12617 \
12618 va_start(args, fmt); \
12619 \
12620 vaf.fmt = fmt; \
12621 vaf.va = &args; \
12622 \
12623 __netdev_printk(level, dev, &vaf); \
12624 \
12625 va_end(args); \
12626 } \
12627 EXPORT_SYMBOL(func);
12628
12629 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
12630 define_netdev_printk_level(netdev_alert, KERN_ALERT);
12631 define_netdev_printk_level(netdev_crit, KERN_CRIT);
12632 define_netdev_printk_level(netdev_err, KERN_ERR);
12633 define_netdev_printk_level(netdev_warn, KERN_WARNING);
12634 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
12635 define_netdev_printk_level(netdev_info, KERN_INFO);
12636
netdev_exit(struct net * net)12637 static void __net_exit netdev_exit(struct net *net)
12638 {
12639 kfree(net->dev_name_head);
12640 kfree(net->dev_index_head);
12641 xa_destroy(&net->dev_by_index);
12642 if (net != &init_net)
12643 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
12644 }
12645
12646 static struct pernet_operations __net_initdata netdev_net_ops = {
12647 .init = netdev_init,
12648 .exit = netdev_exit,
12649 };
12650
default_device_exit_net(struct net * net)12651 static void __net_exit default_device_exit_net(struct net *net)
12652 {
12653 struct netdev_name_node *name_node, *tmp;
12654 struct net_device *dev, *aux;
12655 /*
12656 * Push all migratable network devices back to the
12657 * initial network namespace
12658 */
12659 ASSERT_RTNL();
12660 for_each_netdev_safe(net, dev, aux) {
12661 int err;
12662 char fb_name[IFNAMSIZ];
12663
12664 /* Ignore unmoveable devices (i.e. loopback) */
12665 if (dev->netns_immutable)
12666 continue;
12667
12668 /* Leave virtual devices for the generic cleanup */
12669 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
12670 continue;
12671
12672 /* Push remaining network devices to init_net */
12673 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
12674 if (netdev_name_in_use(&init_net, fb_name))
12675 snprintf(fb_name, IFNAMSIZ, "dev%%d");
12676
12677 netdev_for_each_altname_safe(dev, name_node, tmp)
12678 if (netdev_name_in_use(&init_net, name_node->name))
12679 __netdev_name_node_alt_destroy(name_node);
12680
12681 err = dev_change_net_namespace(dev, &init_net, fb_name);
12682 if (err) {
12683 pr_emerg("%s: failed to move %s to init_net: %d\n",
12684 __func__, dev->name, err);
12685 BUG();
12686 }
12687 }
12688 }
12689
default_device_exit_batch(struct list_head * net_list)12690 static void __net_exit default_device_exit_batch(struct list_head *net_list)
12691 {
12692 /* At exit all network devices most be removed from a network
12693 * namespace. Do this in the reverse order of registration.
12694 * Do this across as many network namespaces as possible to
12695 * improve batching efficiency.
12696 */
12697 struct net_device *dev;
12698 struct net *net;
12699 LIST_HEAD(dev_kill_list);
12700
12701 rtnl_lock();
12702 list_for_each_entry(net, net_list, exit_list) {
12703 default_device_exit_net(net);
12704 cond_resched();
12705 }
12706
12707 list_for_each_entry(net, net_list, exit_list) {
12708 for_each_netdev_reverse(net, dev) {
12709 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
12710 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
12711 else
12712 unregister_netdevice_queue(dev, &dev_kill_list);
12713 }
12714 }
12715 unregister_netdevice_many(&dev_kill_list);
12716 rtnl_unlock();
12717 }
12718
12719 static struct pernet_operations __net_initdata default_device_ops = {
12720 .exit_batch = default_device_exit_batch,
12721 };
12722
net_dev_struct_check(void)12723 static void __init net_dev_struct_check(void)
12724 {
12725 /* TX read-mostly hotpath */
12726 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags_fast);
12727 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops);
12728 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops);
12729 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx);
12730 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues);
12731 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size);
12732 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size);
12733 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs);
12734 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features);
12735 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc);
12736 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu);
12737 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom);
12738 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq);
12739 #ifdef CONFIG_XPS
12740 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps);
12741 #endif
12742 #ifdef CONFIG_NETFILTER_EGRESS
12743 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress);
12744 #endif
12745 #ifdef CONFIG_NET_XGRESS
12746 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress);
12747 #endif
12748 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160);
12749
12750 /* TXRX read-mostly hotpath */
12751 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats);
12752 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, state);
12753 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags);
12754 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len);
12755 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features);
12756 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr);
12757 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 46);
12758
12759 /* RX read-mostly hotpath */
12760 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific);
12761 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex);
12762 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues);
12763 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx);
12764 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size);
12765 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size);
12766 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler);
12767 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data);
12768 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net);
12769 #ifdef CONFIG_NETPOLL
12770 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo);
12771 #endif
12772 #ifdef CONFIG_NET_XGRESS
12773 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress);
12774 #endif
12775 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 92);
12776 }
12777
12778 /*
12779 * Initialize the DEV module. At boot time this walks the device list and
12780 * unhooks any devices that fail to initialise (normally hardware not
12781 * present) and leaves us with a valid list of present and active devices.
12782 *
12783 */
12784
12785 /* We allocate 256 pages for each CPU if PAGE_SHIFT is 12 */
12786 #define SYSTEM_PERCPU_PAGE_POOL_SIZE ((1 << 20) / PAGE_SIZE)
12787
net_page_pool_create(int cpuid)12788 static int net_page_pool_create(int cpuid)
12789 {
12790 #if IS_ENABLED(CONFIG_PAGE_POOL)
12791 struct page_pool_params page_pool_params = {
12792 .pool_size = SYSTEM_PERCPU_PAGE_POOL_SIZE,
12793 .flags = PP_FLAG_SYSTEM_POOL,
12794 .nid = cpu_to_mem(cpuid),
12795 };
12796 struct page_pool *pp_ptr;
12797 int err;
12798
12799 pp_ptr = page_pool_create_percpu(&page_pool_params, cpuid);
12800 if (IS_ERR(pp_ptr))
12801 return -ENOMEM;
12802
12803 err = xdp_reg_page_pool(pp_ptr);
12804 if (err) {
12805 page_pool_destroy(pp_ptr);
12806 return err;
12807 }
12808
12809 per_cpu(system_page_pool.pool, cpuid) = pp_ptr;
12810 #endif
12811 return 0;
12812 }
12813
backlog_napi_should_run(unsigned int cpu)12814 static int backlog_napi_should_run(unsigned int cpu)
12815 {
12816 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12817 struct napi_struct *napi = &sd->backlog;
12818
12819 return test_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
12820 }
12821
run_backlog_napi(unsigned int cpu)12822 static void run_backlog_napi(unsigned int cpu)
12823 {
12824 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12825
12826 napi_threaded_poll_loop(&sd->backlog);
12827 }
12828
backlog_napi_setup(unsigned int cpu)12829 static void backlog_napi_setup(unsigned int cpu)
12830 {
12831 struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12832 struct napi_struct *napi = &sd->backlog;
12833
12834 napi->thread = this_cpu_read(backlog_napi);
12835 set_bit(NAPI_STATE_THREADED, &napi->state);
12836 }
12837
12838 static struct smp_hotplug_thread backlog_threads = {
12839 .store = &backlog_napi,
12840 .thread_should_run = backlog_napi_should_run,
12841 .thread_fn = run_backlog_napi,
12842 .thread_comm = "backlog_napi/%u",
12843 .setup = backlog_napi_setup,
12844 };
12845
12846 /*
12847 * This is called single threaded during boot, so no need
12848 * to take the rtnl semaphore.
12849 */
net_dev_init(void)12850 static int __init net_dev_init(void)
12851 {
12852 int i, rc = -ENOMEM;
12853
12854 BUG_ON(!dev_boot_phase);
12855
12856 net_dev_struct_check();
12857
12858 if (dev_proc_init())
12859 goto out;
12860
12861 if (netdev_kobject_init())
12862 goto out;
12863
12864 for (i = 0; i < PTYPE_HASH_SIZE; i++)
12865 INIT_LIST_HEAD(&ptype_base[i]);
12866
12867 if (register_pernet_subsys(&netdev_net_ops))
12868 goto out;
12869
12870 /*
12871 * Initialise the packet receive queues.
12872 */
12873
12874 flush_backlogs_fallback = flush_backlogs_alloc();
12875 if (!flush_backlogs_fallback)
12876 goto out;
12877
12878 for_each_possible_cpu(i) {
12879 struct softnet_data *sd = &per_cpu(softnet_data, i);
12880
12881 skb_queue_head_init(&sd->input_pkt_queue);
12882 skb_queue_head_init(&sd->process_queue);
12883 #ifdef CONFIG_XFRM_OFFLOAD
12884 skb_queue_head_init(&sd->xfrm_backlog);
12885 #endif
12886 INIT_LIST_HEAD(&sd->poll_list);
12887 sd->output_queue_tailp = &sd->output_queue;
12888 #ifdef CONFIG_RPS
12889 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
12890 sd->cpu = i;
12891 #endif
12892 INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
12893 spin_lock_init(&sd->defer_lock);
12894
12895 gro_init(&sd->backlog.gro);
12896 sd->backlog.poll = process_backlog;
12897 sd->backlog.weight = weight_p;
12898 INIT_LIST_HEAD(&sd->backlog.poll_list);
12899
12900 if (net_page_pool_create(i))
12901 goto out;
12902 }
12903 if (use_backlog_threads())
12904 smpboot_register_percpu_thread(&backlog_threads);
12905
12906 dev_boot_phase = 0;
12907
12908 /* The loopback device is special if any other network devices
12909 * is present in a network namespace the loopback device must
12910 * be present. Since we now dynamically allocate and free the
12911 * loopback device ensure this invariant is maintained by
12912 * keeping the loopback device as the first device on the
12913 * list of network devices. Ensuring the loopback devices
12914 * is the first device that appears and the last network device
12915 * that disappears.
12916 */
12917 if (register_pernet_device(&loopback_net_ops))
12918 goto out;
12919
12920 if (register_pernet_device(&default_device_ops))
12921 goto out;
12922
12923 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
12924 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
12925
12926 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
12927 NULL, dev_cpu_dead);
12928 WARN_ON(rc < 0);
12929 rc = 0;
12930
12931 /* avoid static key IPIs to isolated CPUs */
12932 if (housekeeping_enabled(HK_TYPE_MISC))
12933 net_enable_timestamp();
12934 out:
12935 if (rc < 0) {
12936 for_each_possible_cpu(i) {
12937 struct page_pool *pp_ptr;
12938
12939 pp_ptr = per_cpu(system_page_pool.pool, i);
12940 if (!pp_ptr)
12941 continue;
12942
12943 xdp_unreg_page_pool(pp_ptr);
12944 page_pool_destroy(pp_ptr);
12945 per_cpu(system_page_pool.pool, i) = NULL;
12946 }
12947 }
12948
12949 return rc;
12950 }
12951
12952 subsys_initcall(net_dev_init);
12953